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Abstract

Amyloid-beta plaques are prominent biological markers in dementia brains. In response to
plaque formation, the brain’s immune cells, microglia, become reactive. Microglia are mea-
surable cells that surround amyloid-beta plaques, indicating their location. A system of
partial differential equations describes the concentration of microglia in dementia brains by
incorporating chemotactic signaling. However, this system fails to incorporate increasing
numbers of reactive microglia cells in response to amyloid-beta aggregation. A system of
ordinary differential equations describing the number of significant cells and proteins in the
brain suggests the amount of reactive microglia increases significantly during the progression
of dementia. We couple these two systems to examine the influence of increasing amounts
of reactive microglia on microglia concentration, which is indicative of amyloid-beta plaques.
We compare the results of these systems to data and confirm the ability to predict the width
of the aggregated microglia clusters when increasing amounts of microglia are included.

Keywords: dementia pathogenesis model, microglia proliferation, amyloid-beta plaque de-
velopment, numerical simulations

1 Introduction

Dementia is a degenerative brain disorder causing neuron
connections to deteriorate within the brain and the even-
tual death of neurons [1]. The pathogenesis of two com-
mon forms of dementia, Alzheimer’s Disease (AD) and
Parkinsonian Dementia (PD), is categorized by charac-
teristic amyloid-beta (Aβ) protein plaque development
[13, 8]. Throughout the progression of AD and PD,
Aβ aggregates into destructive plaques, altering the cell
makeup of the brain [12]; however, symptomatic onset
frequently occurs 17 years after the initial presence of the
disease [29].

Dementia pathogenesis focuses on two proteins: Aβ
protein and tau protein [1]. Amyloid-beta proteins, Aβ
aggregate and form dense plaques that are toxic to neu-
rons and inhibit neuron synapses, during the progression
of the disease [12]. In a healthy brain, tau proteins sta-
bilize microtubules, which run throughout a neuron and
transport nutrients. Throughout dementia progression,
however, tau proteins misfold and fall off microtubules,
causing the microtubules to disintegrate and leading to
eventual cell death [3]. While the disintegration of τ -
proteins play a key role in the progression of dementia,
we focus on the impacts of Aβ.

The aggregation of Aβ coincides with notable changes

1Department of Mathematics, Centre College, Danville, KY

in composition of cells in a dementia brain. Healthy
brains are composed of glial cells and neurons. Neurons
transmit information throughout the brain and glial cells
provide support and protection for neurons [12]. Mi-
croglia and astrocytes, subcategories of glial cells, are
impacted during the degradation of neurons due to Aβ.
In a healthy brain, astrocytes regulate synapses among
neurons and are quiescent [6, 28]. Astrocytes proliferate
throughout disease progression [23, 12]. Microglial cells
are the immune response cells [27] and exhibit chemo-
tactic behavior [16, 26, 18, 25], meaning that chemicals
functioning either as a chemoattractant or chemorepellent
are excreted either by or in response to the microglia cells.
When a foreign substance enters the brain, microglia cells
sensing the substance excrete a chemoattractant, result-
ing in the migration of other microglial cells towards the
foreign substance [4, 21, 22]. Once the foreign substance
is surrounded, the microglia revert to a reactive state,
and in this state are able to remove the foreign substance
[12]. As Aβ aggregate into plaques in a dementia brain,
microglia become reactive and surround the plaques, yet
are unsuccessful in removing the plaques. The unimpeded
aggregation of Aβ is believed to worsen the symptoms of
dementia [10, 24]. The progression of dementia, particu-
larly the aggregation of Aβ, causes large amounts of nor-
mal microglia to revert to their reactive state and form
dense clusters around Aβ plaques [11].

Luca et. al. [15] create a system of partial differen-
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tial equations to model the distribution of microglia in
response to chemoattractant and repellents, specifically
IL-1β and TNF-α. This system solely examines the re-
lationship between the reactive microglia and the chemo-
attractants and repellents. Edelstein-Keshet et. al. [5]
computationally examine the roles of neurons, cytokines,
astrocytes, microglia, and Aβ in the formation of plaques.
However, both of these studies assume a constant amount
of reactive microglia. Puri et. al. [23] describe the
cross-talk between microglia, astrocytes, neurons, and
Aβ through a system of ordinary differential equations.
These results suggest a substantial increase in the pro-
liferation of reactive microglia during the progression of
dementia.

In this paper, we focus on incorporating an increasing
amount of reactive microglia to better understand the
movement of microglia and its connection to Aβ plaques.
In §2 we outline the chemotaxis model presented in [15]
and compare the results to data from a Parkinsonian
Dementia patient [17]. In §3 we outline the prolifer-
ation model presented in [23] for the amounts of rele-
vant types of cells and proteins. In §4 we couple the
models, developing a chemotaxis model with proliferation
and compare the results to both the original chemotaxis
model and data of microglia clusters from a Parkinsonian
Dementia patient [17]. While we acknowledge a differ-
ence in the pathogenesis of Parkinsonian Dementia and
Alzheimer’s Disease, both diseases feature the aggrega-
tion of Aβ plaques [1], and we assume microglia react to
Aβ aggregation similarly in AD and PD. Thus, we present
the chemotaxis model with proliferation used to describe
microglia behavior in dementia brains, and use data from
a PD brain to verify the model.

2 Chemotaxis Model

Luca et. al. [15] describe the concentration, in 1 dimen-
sion, of reactive microglia cells over time and space, and
is founded on the assumption that microglia are chemo-
tactic cells. The authors identify IL-1 β as a chemoat-
tractant and TNF-α as a chemorepellent. When IL-1 β is
secreted, microglial cells are estimated to move towards
the chemical at a rate of 1–2 µm min−1, and when TNF-
α is secreted the microglia are estimated to move at the
same rate away from the chemical [7]. The chemoattrac-
tant and chemorepellent used in the model are implicated
in AD and are known to induce microglial movement
[14, 16, 26, 19, 25].

The chemotaxis model (1) predicts the concentration of
microglia in response to arbitrary initial concentrations of
the chemoattractant and chemorepellent. The model is a
coupled system of partial differential equations, where the
variable m is the concentration of reactive microglia, c1

is the concentration of the chemoattractant, IL-1 β, and
c2 is the concentration of the chemorepellant, TNF-α.

∂m

∂t
= µ

∂2m

∂x2
− ∂

∂x

(
χ1m

∂c1
∂x
− χ2m

∂c2
∂x

)
, (1a)

∂c1
∂t

= D1
∂2c1
∂x2

+ a1m− b1c1, (1b)

∂c2
∂t

= D2
∂2c2
∂x2

+ a2m− b2c2 (1c)

The parameters used in the model (1) are defined in Ta-
ble 1.

Variable Description Value

µ Microglia random 33 µm2 min−1

motility
χ1 Chemoattraction 6–780 µm2 nM−1 min−1

χ2 Chemorepulsion Not provided
D1 IL-1 β diffusion 900 µm2 min−1

D2 TNF-α diffusion 900 µm2 min−1

a1 IL-1 β production 6.25 ∗ 10−6 pg min−1

rate
a2 TNF-α production 8.33 ∗ 10−6 pg min−1

rate
b1 IL-1 β decay rate 0.003–0.03 min−1

b2 TNF-α decay rate 0.002–0.03 min−1

m̄ Average cell density 10−6–10−4 cells µm−3

Table 1: Parameters for the chemotaxis model (1) from
[15]

Using the dimensionless variables

x∗ =
x

x̂
, t∗ =

t

t̂
, m∗ =

m

m̂
, c∗1 =

c1
ĉ1
, c∗2 =

c2
ĉ2

(2)

where L1 and L2 are the spatial ranges for the chemoat-
tractant and chemorepellent, τ is used as the time scale,
and

x̂ = L2 =
√
D2/b2, t̂ = τ = L2

2/µ, m̂ = m̄

ĉ1 = a1m̄/b1, ĉ2 = a2m̄/b2,

we create the nondimensional system, dropping the stars,

∂m

∂t
=
∂2m

∂x2
− ∂

∂x

[(
A1

∂c1
∂x
−A2

∂c2
∂x

)
m

]
(3a)

ε1
∂c1
∂t

=
∂2c1
∂x2

+ a2(m− c1) (3b)

ε2
∂c2
∂t

=
∂2c2
∂x2

+m− c2. (3c)
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The dimensionless parameters are

A1 =
χ1a1m̄

µb1
, A2 =

χ2a2m̄

µb2
, ε1 =

µ

D1
,

ε2 =
µ

D2
, a =

L2

L1
, A =

χ1a1D2

χ2a2D1

and the values are in Table 2.

Parameter A1 A2 ε1 ε2

Value 37.50 100 0.0367 0.0367

Parameter a A xLen

Value 2 1.5 5

Table 2: Dimensionless parameter values used in the
chemotaxis model (3) from [15]

We use random initial conditions for the densities of m,
c1, and c2 obtained using (4),

m(x, 0) = 1 + ε ∗ x1ran (4a)

c1(x, 0) = 1 + ε ∗ x2ran (4b)

c2(x, 0) = 1 + ε ∗ x3ran (4c)

where ε = 0.002 and xiran is a uniform random variable
such that |xiran| < 1. Note xiran is a different distribu-
tion for each initial density.

We assume no-flux boundary conditions

µ
∂m

∂x
−
(
χ1m

∂c1
∂x
− χ2m

∂c2
∂x

)∣∣∣∣
x=0,xLen

= 0 (5a)

∂c1
∂x

∣∣∣∣
x=0,xLen

= 0 (5b)

∂c2
∂x

∣∣∣∣
x=0,xLen

= 0. (5c)

We solve the chemotaxis model (3) using the pdepe
solver in MatLab over the nondimensional length of
the strip of brain xLen, where the initial condition is
shown in Figure 1a. The concentrations of reactive mi-
croglia, chemoattractant, and chemorepellent at t = 0.03,
t = 0.25, and t = 0.70, for xLen = 5, are shown in Fig-
ure 1b–d. The red lines in Figure 1 represent reactive
microglia concentration, the blue lines represent chemoat-
tractant (IL-1 β) concentration, and the green lines repre-
sent chemorepellent (TNF-α) concentration. Over time,
distinct clusters of reactive microglial cells form. The
chemotaxis behavior of microglia is triggered by the pres-
ence of foreign substances, and in dementia the triggering
foreign substance may be Aβ [9]. As a result, the concen-
tration of microglia in a dementia brain will be densest
surrounding Aβ plaques. The clusters observed in Fig-
ure 1 are thus indicative of Aβ plaques. Luca et. al. [15]

performed a stability analysis of this model and deter-
mined the number of peaks for xLen = 5 are dependent
on the parameters in the model. Considering a larger
value of xLen results in a greater number of peaks. For
xLen = 5 and using the parameters defined in Table 2,
three peaks form regardless of the initial condition, con-
sistent with [15]. The initial distributions of chemoattrac-
tant and chemorepellent used in Figure 1b–d resulted in
decreasing magnitudes of the microglia clusters, however;
varying distributions of chemoattractant and chemorepel-
lent will change the microglia cluster magnitudes, yield-
ing potentially different patterns of peak formation than
observed in Figure 1b–d.

We compare the results of the chemotaxis model (1) to
an image of stained reactive microglia cells in the brain of
a deceased Parkinsonian Dementia patient [17], again as-
suming microglia behavior in PD brains is representative
of all dementia patients suffering from PD and AD [1].
We use an image of stained reactive microglial cells from
the hippocampus of a PD brain (Figure 4 from [17]). The
image shows a section of the brain 104 µm2 in area and
30 µm thick [15]. Since we are considering a 1-dimensional
strip of the brain, we work with a strip 2cm above the bot-
tom of the image and spanning the width of the image.
Using the improfile function in MatLab, we determine
the intensity values of the pixels along this chosen line
on the image in grayscale. The intensity values of the
pixels increase as the density of reactive microglial cells
increase. However, we focus on comparing the spatial
width of the predicted microglia clusters rather than the
concentration amount, due to the unavailability of the
necessary information to calibrate the image to determine
the actual concentration of microglia. We determine the
spatial width of the microglial clusters in a PD brain by
nondimensionalizing the width of the image, using x̂, and
examining the profile of the pixel values. We normalize
the pixel intensities to the maximum and minimum value
of the microglia concentrations predicted by the chemo-
taxis model (3), and overlay the pixel intensity profile on
the same nondimensionalized spatial scale as used by the
chemotaxis model (3). The maximum and minimum val-
ues used to nondimensionalize the data vary with each
set of initial conditions, since the initial conditions are
randomly generated.

Figure 2 shows the predicted concentration of microglia
from the chemotaxis model at t = 0.10 compared to the
data for reactive microglia cells in a PD brain. The value
t = 0.10 corresponds to about 18 years, and we consider
the results at this time to allow for sufficient disease pro-
gression. The peak of the pixel intensity profile in Fig-
ure 2 corresponds to the high density microglia cluster
observed in Figure 4 from [17]. The nondimensionalized
width of the pixel intensity profile obtained from Fig-
ure 4 of [17] is less than 0.5 units; however, we display
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Figure 1: Concentration of reactive microglia, chemoattractant, and chemorepellent over space at (a) t = 0, (b) t =
0.03, (c) t = 0.25, (d) t = 0.70.

the pixel intensity profile overlaid onto the results from
the chemotaxis model over a wider spatial region. We
offset the beginning of the pixel intensity profile from the
origin such that the data corresponds to the beginning of
a cluster predicted by (3), thus enabling a comparison be-
tween the width of the microglia cluster observed in a PD
brain and the predicted cluster from (3). The chemotaxis
model predicts too wide of clusters of microglia.

A constraint of the chemotaxis model is the assumption
of a constant amount of reactive microglia over time. Nor-
mal microglia revert to their reactive form in the presence
of foreign bodies [12], and thus, in a dementia brain, we
expect reactive microglia to proliferate with the aggre-
gation of Aβ. We examine the proliferation of reactive
microglia and its influences on the concentration.

3 Proliferation Model

Puri and Li [23] describe the relationships among the
amount of Aβ, neurons, astrocytes, and microglia using
a system of seven coupled, ordinary differential equations
(6). Each equation describes the rate of change of num-
ber of cells over time. Variables are assumed to exist as
one of two distinct states. That is, neurons exist either as
surviving neurons (Ns) or dead neurons (Nd), astrocytes
exist either as proliferating (Ap) or quiescent (Aq), and
microglia exist either as normal (Mn) or reactive (Mr).
The cells found predominately in a healthy brain are Ns,
Aq, and Mn, and the cells found in a diseased brain are
Nd, Ap, Mr, and Aβ. The total amount of each cell type
remains constant over time; however, the proportion of
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the variable in each state may change. For example, the
total number of reactive microglia plus normal microglia
remains constant over time, but the proportion of normal
to reactive microglia varies over time. This assumption
allows normal microglia to become reactive in response
to Aβ, while retaining a constant total amount of mi-
croglia. In addition, the equations describing the number
of cells found in an AD brain are the negated equations
describing the corresponding healthy cells. For example,
the equation describing reactive microglia, Equation 6f,
is the negated version of the equation describing normal
microglia, Equation 6e, meaning when the number of re-
active microglia increase, the number of normal microglia
decrease at the same rate. The normal microglia equation
features the largest number of interactions among other
variables, including Aβ. The variables are scaled by rates,
denoted αi, with the units 1/year.

dNs

dt
= α1Aq − α2Ap − α3Mr, (6a)

dNd

dt
= −dNs

dt
, (6b)

dAq

dt
= α4Mn − α5Mr, (6c)

dAp

dt
= −Aq

dt
, (6d)

dMn

dt
= (α6 + α11)Ns − α10Nd + (α7 + α12)Aq

− α9Mr + α14Mn − (α8 + α13)Aβ, (6e)

dMr

dt
= −dMn

dt
, (6f)

dAβ

dt
= α15Ns − α16Mn (6g)

The parameters used in the proliferation model (6),
denoted by αi, are defined in Table 3, and the initial
conditions are defined in Table 4. These values are not
based on clinical data.

We solve the proliferation model (6) using the ode45
solver in MatLab and Figure 3 shows the number of cells
of microglia, astrocytes, neurons and Aβ over time. We
observe a slow rate of exponential growth for the number
of reactive microglia cells in response to the aggregation
of Aβ. The number of surviving neurons decreases as
the Aβ and reactive microglia populations increase. The
amount of surviving neurons becomes smaller than the
reactive microglia population around 10–12 years, which
may correlate to symptomatic onset that usually occurs in
AD patients around 17 years [29]. This observation sug-
gests that symptomatic onset may begin after reactive mi-
croglia are more prevalent than surviving neurons in the
brain. We assume a constant amount of total microglia,
meaning that the sum of the amount of reactive microglia
and normal microglia is constant over time. Thus, the
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Figure 2: Predicted concentration of reactive microglia
cells at t = 0.10 by the chemotaxis model compared to
the pixel intensity profile of microglia clusters in a PD
brain.

Parameter α1 α2 α3 α4 α5 α6

Value 10−5 10−3 10−2 10−4 10−2 10−2

Parameter α7 α8 α9 α10 α11 α12

Value 10−4 10−2 10−2 10−2 10−2 10−4

Parameter α13 α14 α15 α16

Value 10−2 10−4 1 10−2

Table 3: Parameter values used in the proliferation model
(6) from [23].

Variable Ns(0) Nd(0) Aq(0) Ap(0)

Initial condition 104 102 105 103

Variable Mr(0) Mn(0) Aβ(0)

Initial condition 103 105 103

Table 4: Initial conditions used in the proliferation model
(6) from [23].
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Figure 3: Number of surviving neuron, reactive microglia,
and amyloid-beta cells over a 20-year span.

exponential growth of reactive microglia in Figure 3 indi-
cates that normal microglial cells revert to their reactive
state as Aβ aggregates. We refer to this increase in reac-
tive microglial cells as reactive microglia proliferation.

4 Chemotaxis Model with Prolif-
eration

We incorporate the proliferation of reactive microglia us-
ing (6), into the chemotaxis model (3) to better pre-
dict reactive microglia behavior in response to Aβ. Luca
et. al. [15] assume that proliferation of reactive microglia
is inconsequential; however, results from the prolifera-
tion model (6) indicate reactive microglia proliferate up
to 15% per year, coinciding with Aβ aggregation.

We nondimensionalize the proliferation model (6) using
the dimensionless variables defined in (2). We use m̂ to
nondimensionalize all cell type variables Ns, Nd, Aq, Ap,
Mr, Mn, and Aβ, and t̂ to nondimensionalize the time
variable, t. The dimensionless variables are represented
with stars.

N∗
s =

Ns

m̂
, N∗

d =
Nd

m̂
, A∗

q =
Aq

m̂
, A∗

p =
Ap

m̂
,

M∗
r =

Mr

m̂
, M∗

n =
Mn

m̂
, Aβ∗ =

Aβ

m̂
, t∗ =

t

t̂

(7)

We represent the addition of the proliferated reactive mi-
croglia by

∆Mr(x, t), (8)

corresponding to Equation (6f).
Substituting the variables in (7) into the proliferation

model (6), dropping the stars, and incorporating prolifer-

ated reactive microglia (8) into the predicted concentra-
tion of reactive microglia (3a) we obtain the chemotaxis
model with proliferation

dNs

dt
= t̂(α1Aq − α2Ap − α3Mr), (9a)

dNd

dt
= −dNs

dt
, (9b)

dAq

dt
= t̂(α4Mn − α5Mr), (9c)

dAp

dt
= −Aq

dt
, (9d)

dMn

dt
= t̂((α6 + α11)Ns − α10Nd + (α7 + α12)Aq

− α9Mr + α14Mn − (α8 + α13)Aβ), (9e)

dMr

dt
= −dMn

dt
, (9f)

dAβ

dt
= t̂(α15Ns − α16Mn) (9g)

∂m

∂t
=
∂2m

∂x2
− ∂

∂x
((A1

∂c1
∂x
−A2

∂c2
∂x

)m) + ∆Mr(x, t),

(9h)

ε1
∂c1
∂t

=
∂2c1
∂x2

+ a2(m− c1), (9i)

ε2
∂c2
∂t

=
∂2c2
∂x2

+m− c2. (9j)

The system is partially decoupled, with Equation 9h
reflecting the coupling of the systems. Equation 9h incor-
porates the change in proliferation of reactive microglia
predicted by the proliferation model, Equation 6f. We
consider a uniform distribution of microglia proliferation
and determine the equality

∆Mr(x, t) =
dMr

dt

xLen
(10)

In §4.4 we also consider a nonuniform distribution of
proliferating microglia, where (8) is a non-constant func-
tion depending on time, t, and spatial location, x.

The chemotaxis model with proliferation (9) requires
initial conditions of both total amount and spatial concen-
tration of the reactive microglia. In order to ensure this
agreement, we create the random spatial initial conditions
for m, c1, and c2 and then determine the initial conditions
for the reactive microglia by summing the number of re-
active microglia cells over the spatial region. We use (4)
to define the initial conditions for the chemotaxis model
variables, m, c1, and c2. We modify the initial condition
for the concentration of reactive microglia in the chemo-
taxis model, (4), to determine the initial condition for the
number of reactive microglia cells (Mr) in the prolifera-
tion model. We assume the brain is shaped like a cube as
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we define the initial conditions. The modified condition

N∑
i=0

(m(xi, 0)) ∗ xLen3 (11)

is multiplied by xLen3 to convert from a concentration to
the number of reactive microglia cells at each spatial step.
The summation determines the total number of reactive
microglia cells over the spatial region, where x0 = 0 and
xN = xLen. We use the values in Table 4 for the initial
conditions for the variables Ns, Nd, Aq, Ap, Mn, and Aβ.

4.1 Numerical Methods

To solve the chemotaxis model with proliferation (9), we
first solve (9a–g) for 0 ≤ t ≤ 1 using the ode45 solver in
MatLab to determine the number of reactive microglia
over time. We calculate the proliferation of reactive mi-
croglia cells over t using (10). We then use the pdepe
solver in MatLab to solve (9h–j). At each time step, we
incorporate the corresponding concentration of prolifer-
ated microglia into (9h).

4.2 Uniform Proliferation Results

We compare the microglia concentration predictions of
the chemotaxis model with uniform proliferation (9), and
the chemotaxis model (3) using the same initial condi-
tions. Figure 4 shows the results at t = 0.06, 0.45, 0.70,
where the blue lines represent the microglia concentra-
tion predictions from the chemotaxis model (3) and the
red lines represent the microglia concentration predictions
from the chemotaxis model with uniform proliferation (9).
Over time, both models form the three distinct peaks of
microglia density predicted by Luca et. al. [15]. Initially
the chemotaxis model with uniform proliferation has the
same shape as the chemotaxis model, only shifted higher.
However, over time the chemotaxis model with uniform
proliferation creates peaks that are taller and narrower
than the chemotaxis model. This corresponds to smaller,
more concentrated clusters of microglia. The maximum
concentration predicted by the chemotaxis model with
uniform proliferation is higher than the maximum pre-
dicted by the chemotaxis model, indicating that the pro-
liferation of microglia impacts both the density and shape
of microglia clusters.

4.3 Uniform Proliferation Verification

We compare the results of the chemotaxis model with
uniform proliferation (9) to the image of stained reactive
microglia cells in a PD brain (Figure 4 from [17]). We
use the same pixel intensity profile obtained in Figure 2,
however, we normalize the pixel intensity profile to the
minimum and maximum concentration predictions from

the chemotaxis model with proliferation (9); we retain the
same nondimensionalized spatial scale.

Figure 5 shows the concentration of microglia from (9)
with a uniform distribution of microglia proliferation at
t = 0.10 compared to the normalized pixel intensity pro-
file of reactive microglia cells in a PD brain. Again, we
use t = 0.10 to examine microglia concentrations after the
likely time of symptomatic onset [29]. We compare the
chemotaxis model to the chemotaxis model with uniform
proliferation. While the chemotaxis model with uniform
proliferation predicts narrower, taller peaks compared to
the chemotaxis model, observed in Figure 4, the peaks
are still wider than the microglia cluster observed in Fig-
ure 4 from [17]. Note that the pixel intensity profile ap-
pears larger in concentration in Figure 5 than in Figure 2,
again due to normalizing the pixel intensity profile to the
maximum and minimum values of the models used to gen-
erate the microglia concentration predictions, (1) and (9),
respectively.

4.4 Nonuniform Proliferation

In §4.3 we assume the proliferating reactive microglia are
uniformly distributed. We now consider the impact of
nonuniform proliferation of reactive microglia on its con-
centration. In a diseased brain, chemotactic chemicals are
secreted by stimulated astrocytes, reactive microglia, and
other cells [2, 20]. Amyloid-β plaques aggravate astro-
cytes and microglia [20, 9], prompting the production of
chemotactic chemicals near Aβ plaques. Thus, while we
retain the overall concentration of proliferation predicted
by (6), we assume the proliferation of reactive microglia
occurs entirely on the edges of the clusters and is negli-
gible in the center of a microglia cluster and in the areas
between clusters. From Figure 4, we observe that for
a given initial condition, the microglia clusters develop
at constant spatial locations, but become more distinct
as time progresses. This observation justifies retaining a
constant location of microglia proliferation, which we as-
sume occurs at the edges of the formed peaks. At each
time step in solving (9), we distribute the proliferated
reactive microglia along the edges of the clusters. For ex-
ample, a nonuniform proliferation distribution is shown
in Figure 6 for three time steps, t = 0.03, 0.05, 0.10.

We compare the results of the chemotaxis model with
nonuniform proliferation (9) to the image of reactive mi-
croglia from a PD brain (Figure 4 from [17]), using the
nonuniform proliferation distribution shown in Figure 6.
We normalize the pixel intensity profile to the minimum
and maximum predicted concentrations from the chemo-
taxis model with nonuniform proliferation (9). Figure 7
compares the predictions from the chemotaxis model with
nonuniform proliferation at t = 0.10 to the pixel intensity
profile of reactive microglia in a PD brain. The nonuni-
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(a) (b)

(c)

Figure 4: Concentration of reactive microglia predicted by the chemotaxis model with uniform proliferation and by
the chemotaxis model over space at (a) t = 0.06, (b) t = 0.45, (c) t = 0.70.

form distribution of reactive microglia proliferation in-
creases the number of microglia clusters predicted by the
chemotaxis model with proliferation (9) and decreases the
width of the formed microglia clusters. The chemotaxis
model with nonuniform proliferation successfully predicts
a narrower microglia cluster width that corresponds more
applicably to the profile observed in the PD brain. The
predicted concentration values of microglia clusters were
higher using the model for nonuniform proliferation than
in previous models, and we suggest this increase in pre-
dicted microglia concentration is due to incorporating
large amounts of microglia into targeted areas of the brain
(Figure 6), rather than incorporating smaller amounts
of microglia uniformly distributed throughout the spatial
scale, as observed with the uniform proliferation model.
Note that we incorporate an equal amount of increasing
microglia in both the uniform proliferation model and the
nonuniform proliferation model, and change only the dis-
tribution of the increasing amounts of microglia.

With the parameter values in Table 2, Luca et. al. [15]

determined the chemotaxis model to be stable. Incor-
porating uniform distributions of proliferating microglia
maintains the same wavenumber as that predicted in
[15]. However, with the nonuniform microglia prolifera-
tion function shown in Figure 6, we double the number of
predicted peaks. In all cases, the initial condition changes
the predicted spatial location of the peaks and the height
of the peaks, but will not alter the number of peaks ob-
served. The variability in initial conditions alters the cho-
sen spatial region of the models, equations (3) and (9),
used to compare to the pixel intensity profile of microglia
in a deceased PD brain. We shift the PD brain data to
begin at the first full predicted microglia cluster, and this
location changes depending on the initial condition used.

5 Discussion

The formation of amyloid-beta plaques is a hallmark of
dementia, effectively disrupting the communication of
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Figure 5: The reactive microglia cluster predictions of
the chemotaxis model with uniform proliferation of reac-
tive microglia at t = 0.10 compared to the pixel intensity
profile of reactive microglia in a PD brain.
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Figure 6: The nonuniform proliferation of reactive mi-
croglia at t = 0.03, 0.05, 0.10.
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Figure 7: The reactive microglia cluster predictions of the
chemotaxis model with nonuniform proliferation of reac-
tive microglia at t = 0.10 compared to the pixel intensity
profile of reactive microglia in a PD brain.

neurons [1]. However, measuring Aβ is a difficult task
but tracking microglial cells is more manageable. Us-
ing the assumption that microglia will cluster around Aβ
plaques, we focus on the location of the microglia. Ac-
cording to [23], as dementia progresses, the number of re-
active microglia increases due to proliferation. Previously,
the chemotactic behavior of microglia was examined in
[15] [5], however, these studies assumed the number of
reactive microglia remained constant. Incorporating the
effects of an increasing number of microglia suggests that
clusters of microglia will be more concentrated, better
targeting the Aβ plaques. Under the assumption that
normal microglia near high concentrations of reactive mi-
croglia are more likely to switch to the reactive state, the
robust results of the mathematical model suggest a good
description of the cluster location in comparison to pic-
tures of a PD brain.

While these results provide stronger support for the
influences of chemotactic signaling in the progression of
dementia, more experimental results are needed. The pa-
rameters used to model the crosstalk of the various cells
were not reliant on experimental data. This portion of
the model still needs to be validated as an accurate de-
scription of the change in number in each classification
for the cell types. Additionally, values for the concentra-
tion of the microglia clusters would allow a more accurate
comparison with the model, rather than being limited to
the location and width of the microglia clusters. This
study focused exclusively on a one dimensional descrip-
tion of the cell clusters. In order to be more realistic, the
model must be expanded and verified in, ideally 3 dimen-
sions. However, the limited data available is restricted to
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2 dimensions.
A limitation of the chemotaxis model with proliferation

is that the strength of the attraction and repulsion may
change as the disease progresses, suggesting the need for
a temporal influence on these parameters. In addition,
we have assumed that the number of each type of cells
is independent of the density of those cells. A future di-
rection of this work is to integrate the influence of the
density of the cells to the survival of neurons, thus im-
pacting the number of cells present. Despite these lim-
itations, a focused presence of an increasing number of
microglia supports the need to further experimentally ex-
plore the role chemotactic signaling plays in the creation
of plaques, which lead to degeneration of neurons.
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