TextRWeb : Large-Scale Text Analytics with R on the Web

Guangchen Ruan
Data to Insight Center
School of Informatics and Computing
Indiana University

gruan@indiana.edu

Eric Wernert
Visualization and Analytics
Pervasive Technology Institute
Indiana University
ewernert@iu.edu

ABSTRACT

As digital data sources grow in number and size, they pose an op-
portunity for computational investigation by means of text mining,
NLP, and other text analysis techniques. R is a popular and pow-
erful text analytics tool; however, it needs to run in parallel and re-
quires special handling to protect copyrighted content against full
access (consumption). The HathiTrust Research Center (HTRC)
currently has 11 million volumes (books) where 7 million volumes
are copyrighted. In this paper we propose HTRC TextRWeb, an in-
teractive R software environment which employs complexity hid-
ing interfaces and automatic code generation to allow large-scale
text analytics in a non-consumptive means. For our principal test
case of copyrighted data in HathiTrust Digital Library, TextRWeb
permits us to code, edit, and submit text analytics methods empow-
ered by a family of interactive web user interfaces. All these meth-
ods combine to reveal a new interactive paradigm for large-scale
text analytics on the web.

Categories and Subject Descriptors

H.3.4 [Systems and Software]: Distributed systems—Cloud Com-
puting; K.6.m [Miscellaneous]: Security—Non-consumptive Use

General Terms

Text analytics, Software system

Keywords

R, text analytics, interactive, non-consumptive use, parallel com-
puting

1. INTRODUCTION

Text analytics or text mining refers to the process of deriving
high-quality information or pattern from textual sources [12]. It

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

XSEDE’14, July 13 - 18 2014, Atlanta, GA, USA

Copyright 2014 ACM 978-1-4503-2893-7/14/07$15.00.
http://dx.doi.org/10.1145/2616498.2616557.

Hui Zhang
Visualization and Analytics
Pervasive Technology Institute
Indiana University

huizhang@iu.edu

Beth Plale
Data to Insight Center
School of Informatics and Computing
Indiana University

plale@indiana.edu

involves a set of linguistic, statistical, and machine learning tech-
niques, and typical text mining tasks include text categorization [17,
30], text clustering [3], concept or entity extraction [21], sentiment
analysis [4], and document summarization [11], just to name a
few. Asincreasing amounts of digitized text become available from
sources such as university libraries, researchers encounter access to
more material than they could ever hope to read in a lifetime, creat-
ing opportunities for new forms of research that employ automated
analytical techniques.

As of 2014, HathiTrust [13] has digitized just over 11 million
volumes (books) from research libraries across the country. The
HathiTrust Research Center (HTRC) [14] was recently established
to provision for automated analytical techniques on the text data of
the HathiTrust digital repository. These analysis routines currently
access the 3.7 million volumes of the HathiTrust digital repository
that are in the public domain. But this is a small fraction of the
whole — 33%. The majority of the digitized texts have restrictions
on their use in the form of copyright. In extending HTRC to in-
clude the copyrighted content, we need stricter protections than ex-
ist presently, and, at the same time, want to allow the community
of users to use their own custom text analysis tools over the copy-
righted content.

Due to the complexity of text analytics and the novel challenges
of interaction and visualization, it has been very challenging to de-
sign a successful large-scale text analysis service for copyrighted
content. Building such a software environment or web service is
very different from many other conventional software design, and
important unique features for this class of problems include:

o Non-consumptive use — HTRC interprets “non-consumptive”
research as research in which computational analysis is per-
formed on one or more books, but not research in which a
researcher reads or displays substantial portions of a book
to understand the intellectual content presented within the
book [33]. The challenge is to strike the right balance be-
tween ensuring that the text analysis carried out does not
violate non-consumptive use, while keeping the HTRC ser-
vices as flexible as possible by not overly limiting the kinds
of use. HTRC does not want to have to walk through the
code of its users; nor are code walkthroughs an effective pro-
cess for spotting malicious code. But no user’s text mining
actions can, for instance, allow even a chapter to be recreated
or leaked to the Internet.

e [nteractive — Data exploration or knowledge discovery is
inherently iterative, i.e., researchers require multiple rounds

to interpret intermediate results, and refine and redirect their
analysis, before reaching final meaningful results. While
high performance computing (HPC) allocates resources dy-
namically based on workload, HPC systems remain largely
batch oriented which challenges text analysis that are fre-
quently highly interactive. Therefore it is desirable that the
working software environment allow a user to interactively
“wander” through a series of analyses in order to make sense
of the data. Meanwhile text analytics often uses statistics
complemented by visualization to interpret the volumes of
available information. For example, many text analytics meth-
ods can output intuitive visual representations to convey sta-
tistical information, including histograms, scatter plots, word
clouds and so forth.

e Large-scale — As an ever-growing amount of “born digi-
tal” text data are being collected by modern instruments in
various scientific research and social activities, and as mas-
sive volumes and documents are being digitized (exemplars
include Google Books Library [10] and HathiTrust Digital
Library [13]), users now have access to the data at the scale
one could not ever imagine before. Under the new circum-
stance, traditional sequential processing is infeasible due to
its prohibitive time cost.

This paper introduces the TextRWeb (Big Text Analytics using
R on Web), a text analytics web service prototype within HTRC
which allows (interactive) and (non-consumptive) text analytics us-
ing R at scale. The design of HTRC TextRWeb is motivated by four
related research questions:

e Non-consumptive use: can the framework provide safe han-
dling of large volumes of protected data?

e Complexity hiding interface: can the framework hide dis-
tributed systems details to the user?

e Interactivity: can the framework support interactive text an-
alytics?

e Large-scale and low cost: can the protections be extended to
utilize large-scale national (public) computational resources?

TextRWeb exploits a document-centric programming paradigm
and web-based interactive programming interfaces to enable and
enrich large-scale non-consumptive text analysis. Whereas most
previous efforts are developed for analyzing public domain data,
TextRWeb provides a non-consumptive analysis paradigm based on
the Term-Document Matrix (TDM) derived from the copyrighted
corpus, yet without interfering with the traditional advantages of
document-centric processing by leveraging R’s broad usefulness
in text mining. TextRWeb can automatically wrap up user-defined
document-centric processing and scale up to much larger datasets,
resulting in a more intuitive yet computationally powerful text an-
alytics paradigm.

The remainder of the paper is organized as follows: Section 2
presents background of HTRC and principles that guide the de-
sign of TextRWeb. Section 3 describes the implementation details
of our system. Section 4 presents performance evaluation results.
Section 5 discusses related work and 6 identifies future work and
open questions.

2. OVERVIEW

This section presents background on the HathiTrust Research
Center (HTRC) software and services within which TextRWeb re-
sides, and the principles that motivate our design of TextRWeb.

2.1 HathiTrust Research Center Background

The HathiTrust Research Center [14] is a set of software and
services to carry out computational analysis using digitized books
from the HathiTrust Digital Library [13] for research and educa-
tional use. Figure 1 is an illustrative diagram of the system. A
researcher accesses the system through one or more front ends, e.g.
TextRWeb (shown on right). The system in its simplest form sat-
isfies a user’s need by constructing for the user a Workset repre-
senting selected text mining tools, selected subsets of data from
either the HathiTrust digital repository, or from feature sets that
have been extracted in advance (e.g., TDM) and data from other
sources (e.g., users’ own data.) This Workset bundle is executed on
a large-scale compute resource. As is shown by the bidirectional
arrow between the compute resource and the front end (complexity
hiding interface), text analysis is a highly interactive process, thus
challenging the use of HPC resources shown, even if, like Big Red
2 [2] at Indiana University, the resources are architected to handle
data-intensive computations. The HTRC system is modularly ar-
chitected using a web services paradigm (i.e., REST interfaces). It
utilizes a Solr [1] index, and Cassandra NoSQL store [5, 19], both
of which are shared across a half-dozen machines for higher repli-
cability and availability. Analytical tools include the SEASR suite
of text mining tools, with ongoing extension of TextRWeb, IPython,
and Mahout to support HTRC’s diverse user communities.

TEXT MINING

TOOLS r‘

@S HATHI
£ TRUST
REPOSITORY

Complexity hiding interface

EXTRACTED

FEATHRE OTHER TEXT,E.G.,
SETS DICTIONARIES,
WIKI, TWITTER

Figure 1: Functional diagram of HathiTrust Research Center
software and services.

2.2 Design

Motivated by R’s broad usefulness in text analytics and its exten-
sive user group in the text mining domain [15], HTRC chose to de-
sign and develop a text analytics web service that incorporates the
most commonly used packages for R text mining and paralleliza-
tion to address aforementioned three challenges: non-consumptive
use, interactivity, and large-scale processing. In particular, we iden-
tify the following design goals:

1. Document-centric programming paradigm — TextRWeb’s tar-
get users are domain scientists, who do not necessarily have
knowledge of parallel computing, such as how to specify a
communication topology using low level constructs. In our
design, we consider a programming paradigm that hides de-
tails of distributed systems from the user. Our design is in-
spired by MapReduce’s [6] great success with a clean key-
value pair programming paradigm, therefore TextRWeb pro-
visions a document-centric API where users focus on a local

action, to process each document independently, and the sys-
tem composes these actions to lift the computation to a large
dataset.

2. Restricted users analysis via non-consumptive TDM — To
enforce non-consumptive use of copyrighted content, the ap-
proach we adopt is to make the data source upon which an-
alytics is conducted be non-consumptive. To be more spe-
cific, we extract term-frequency vectors for individual copy-
righted documents in advance and offline, and when a user
selects a copyrighted dataset to analyze, the corresponding
term-frequency vectors are simply concatenated into a term-
document matrix which in turn is accessible to the user. The
rationale is that TDM is a non-consumptive data representa-
tion which can be used as a direct input for many text mining
algorithms for aggregated or statistical information, while it
is nearly impossible to reconstruct original text from it.

3. Leveraging R’s broad usefulness in text mining — Among
various programming software environments, R [15] is open-
source and has been used extensively in statistics and text
analytics. R’s interactive analysis language, easy-to-use in-
teractive shell environment, and variety of open source li-
braries for data preprocessing and text mining tasks, combine
to make R a powerful tool for data analytics.

4. Web-based interactive programming interface and service —
As more parallel R packages become available to support
computing at scale, one way to support large-scale text an-
alytics is to deploy these parallel frameworks on cloud com-
puting or HPC resources, and launch jobs through a resource
manger like PBS [23] or SLURM [31]. However, this so-
lution is less appealing for text mining uses because R users
are data or domain scientists with little experience in figuring
out complicated dependencies and configurations needed to
make batch submission work; their experience is in interac-
tive shell-like environments instead of a batch system with its
limited support for interactivity. Based on this observation,
TextRWeb is designed with a web-based interactive program-
ming interface and service where the text mining researcher
can upload or specify datasets for analysis; compose, edit
and submit analysis scripts; examine statistical and visual-
ization results instantly on the web browser; and launch the
next round of analysis.

3. IMPLEMENTATION MODELS

This section describes the implementation details of our system.
‘We present the document-centric and TDM-based programming in-
terfaces for text analytics on public domain and copyrighted con-
tent respectively, the web-based interface, and the backend.

function (document) {
#user implemented function body

}

Figure 2: Document-centric API example. To use TextR-
Web, a user implements the function by filling the function
body in a edit-box like web interface.

3.1 Document-centric Programming Interface

Our solution consists of a complexity hiding interface and au-
tomatic code generation. We discuss the rationale of document-

centric programming paradigm and describe the automatic code
generation process that is transparent to the user.

#import libraries
library (multicore)
library (tm)

E NI SR

#user specified dataset, its path is #obtained
from web interface

5 documentHome <-
"/home/gruan/dataset/Dickens—collection”

6 (userCorpus <- Corpus (DirSource (documentHome,
encoding = "UTF-8"), readerControl =
list (language = "en")))

7 #wrap user code into function udf

8 udf <- function (document) {

9 #user code retrieved from web interface

10 user supplied function body, one example as
shown in Fig. 4

1 }

12 #user specified # of cores to use
13 numCores <- 8

14 #apply user function in parallel
15 result <- mclapply (userCorpus, udf,
mc.preschedule = TRUE, mc.cores = numCores)

Figure 3: A piece of complete code generated in TextRWeb
server. Code fragments generated by server are colored in
red while those specified by the user through web interface
widgets are colored in black. Blue colored lines are com-
ments.

3.1.1 Hiding Parallel Computing Details

As the scale of the dataset grows, traditional sequential approaches
become infeasible due to prohibitive processing times. A number
of parallel computing paradigms or frameworks are available with
different user control granularity [7]. On one extreme, paradigms
like MPI [20] support complicated communication topologies by
provisioning low level constructs or primitives. This gives great
control to the programmer but also requires explicit handling of
the mechanics of the data flow. On the other extreme, models like
MapReduce are more restricted in the sense that they offer limited
sorts of communication topologies.

MapReduce kinds of paradigms are useful in that they enable
provisioning of a clearly defined user interface that hides underly-
ing distributed systems details. Given that most text mining users
have limited knowledge of parallel computing, we choose to provi-
sion users with a document-centric programming interface (shown
in Fig. 2) where users focus on a local action, processing each doc-
ument independently, and leaving the parallelization details to the
system. As we will show, this Mapreduce-style paradigm is sim-
ple yet powerful enough for many text analytics tasks. Note that
we do not rule out the possibility of using other more complicated
models: advanced users can bypass the document-centric API and
directly write MPI code to deal with problems which need finer
control of communications. The TextRWeb backend simply exe-
cutes the users’ code intact.

3.1.2 Code Generation

After the user provides the implementation of a user function
and submits the the code, TextRWeb server automatically gener-
ates the parallelized solution which applies document-centric pro-
cessing document by document but in parallel, and this process is
totally transparent to the user. In Fig. 3 we illustrate a piece of

complete code generated by TextRWeb server. Red colored code
fragments are added by the server while black colored ones are ob-
tained from user input through web interface widgets. Lines 2-3 are
imports of dependent libraries. In line 5, variable documentHome
points to the dataset which user specifies through a dropdown list
widget. In line 6, the dataset is loaded into the variable userCor-
pus which is a list of documents: e.g., in this very simple illustra-
tion, the user specifies the corpus to be analyzed which has been
uploaded to /home/gruan/dataset/Dickens-collection. Lines 8-10
wrap user code into a user defined function (udf). In line 12, vari-
able numCores holds the number of cores user specifies through a
sliding bar widget to run the analysis. In line 14, the mcapply func-
tion applys the udf to each document in userCorpus in parallel with
user specified number of cores. The results are stored in variable
result which is a list of processed documents, i.e. each entry within
the list is the returned value of applying udf against a particular
document.

-

function (document) {
2 #define custom tokenizer

3 strsplit_space_tokenizer <- function (x)
unlist (strsplit (x, "[[:space:]]+")

4 #specify minimal frequency threshold

5 minFreqThreshold <- 3

6 #specify control list

7 ctrl <- list (tolower = TRUE, tokenize =

strsplit_space_tokenizer, stopwords =
stopwords ("english"), wordLengths =
c (minFreqThreshold, Inf))
8 #generate and return term frequency vector
9 termFrequencyVector <- termFreq (document,
control = ctrl)

10}

Figure 4: User implementation of document-centric API
which extracts term frequency vector.

Upon completion of parallel execution of the udf against the doc-
uments, a user conduct further analysis by writing code against the
returned variable result in the web interface. Suppose in the udf
the user extracts the term frequency vector from the input parame-
ter document (shown in Fig. 4), Fig. 5 shows the code snippet that
the user programs to show the top 10 most frequent words in a bar
plot. When the user clicks the submit button on the web interface,
the code snippet is transferred to and executed on the server, and
the resulting bar plot is instantly visualized on the web interface
for user examination. We note that only analytics results (e.g. the
bar plot) are transferred back to client browser, intermediate data
(e.g. variable result) used to generate the results always sits on
the server. However, the user manipulates the intermediate data
through web interface just as if it were local; this is implemented
using fast bidirectional communication between the web browser
and R environment hosted in TextRWeb server using the Websock-
ets package. This local computing illusion is desirable since it hides
the complexity of remote parallel computing.

To facilitate user debugging, users are allowed to download the
generated-code from TextRWeb (e.g. code shown in Fig. 3). Users
can also run the code on other computing resources with minimal
changes.

3.2 Non-consumptive Text Analytics

With the advance of digitization techniques and state-of-the-art
cloud computing and HPC techniques [8], a substantial number of

1 #combine term frequency vectors into a single
term-document matrix
tdm <- do.call ("c", result)

#plot top 10 most frequent words

tdm.m <- as.matrix (tdm)

wordFregs <- sort (rowSums(tdm.m), decreasing =
TRUE)

6 topWords <- head (wordFreqgs, 10)

7 barplot (topWords)

N oA W N

Figure 5: User runs further analysis against intermediate
data.

books and documents are being made available to researchers in
digitized form. Whether it is permissible to perform automated
analysis on copyrighted digitized texts from university libraries has
been hotly debated ever since the Authors Guild issued a class ac-
tion lawsuit against Google [9] in 2008. A number of stakeholders
have argued that data and text mining should be permitted, drawing
on the principle of "non-consumptive" use, that is, uses that do not
trade on the underlying or expressive purpose of the work. What
this means is that text mining creates a new use and does not gain
monetarily or otherwise from the original work.

To support analytics on copyrighted content, we need stricter
protections than exist presently, and at the same time want to al-
low the community of users to use their own custom text analysis
codes or tools over the copyrighted content. There are two design
options to enforce non-consumptive research:

1. Open access on full textual contents — In this design users
are allowed to use the document-centric API shown in Fig 2
to manipulate the copyrighted documents while leaving the
non-consumptive use checking to the system. The advan-
tages of this approach is that users can perform any analyt-
ics since they have access to full textual contents; the disad-
vantage is that the system needs to ensure that the value re-
turned by the user implemented document-centric API con-
tains only aggregated or statistical information and this task
itself is a research topic in machine learning and security.
Since determination of whether user retrieved information
leaks out copyrighted textual contents is quite challenging,
we currently leave this approach as ongoing work.

2. Restricted access on non-consumptive TDM — Instead of
opening full access to textual content, the other means is
restricting the “workset” upon which user algorithms oper-
ate. Ideally, on one hand, the “workset” has minimal im-
pact on the variety of possible user algorithms or tasks; on
the other hand, it should make it very difficult to reconstruct
copyrighted content from the resultant data. Based on these
two goals, we chose the term-document matrix (TDM) as
the “workset” provisioned to users for non-consumptive re-
search. TDM can be used as the direct input for many text
analytics algorithms while making it difficult (or even pos-
sible) to reconstruct the original text from it. To this end,
we extract term-frequency vectors for individual copyrighted
documents offline and in advance, and when the user selects
a copyrighted dataset to analyze, the corresponding term-

frequency vectors are simply concatenated into a term-document

matrix which in turn is returned to the user. The advantage
of this approach is our system doesn’t require any compli-
cated algorithm to check the resultant data since the TDM it-
self, and hence all its derivatives, are non-consumptive. The

TextRWeb: Large-Scale Text Analysis with R on the Web

HIRC &

function (tdm) {

Result

TRUE)

one
king

~(€)

their frequencies

wordFreqs)
[Filit #plot wordcloud

(b)

= }

(a)

#define tdm as matrix
tdm.m <- as.matrix (tdm)

#get word counts in decreasing order
wordFreqs <- sort (rowSums (tdm.m), decreasing =

#create a data frame with words and

dm <- data. frame (word = names(wordFreqs), freq =

wordcloud (dm$word, dm$freq, random.order = FALSE,
colors = brewer.pal(8, "Dark2"))

(b)

eiplace

ngimake
"‘uIEHCh”dCHH
e

Wisee w2

(a) TextRWeb web interface.

(b) User implementation of TDM-based API.

(c) Resulting wordcloud.

Figure 6: Text analytics on copyrighted datasets. (a) Users compose custom code which manipulates the non-consumptive TDM
and examine results through TextRWeb web interface. (b) An example of user code which draws wordcloud from non-consumptive

TDM. (c) Resulting wordcloud displayed at web interface.

disadvantage is that algorithms requiring full text access are
excluded under this model.

Figure 6 shows an example of text analytics on copyrighted cor-
pus with TDM-based API (shown in Fig. 7). After selecting the
corpus, user composes code in web interface as shown in Fig 6(a).
In this example, the user code is to draw a wordcloud as shown in
Fig. 6(b). Note that similar to the document-centric API, users fo-
cus on the processing of the TDM regardless how the TDM is com-
puted. When the user submits the code, the TextRWeb backend in-
vokes HTRC RESTful data services to generate the required TDM
and performs the computation. The visualization of the wordcloud
(shown in Fig. 6(c)) is in turn transferred to the client and displayed
in the user’s web brower.

function (tdm) {
fuser implemented function body

}

Figure 7: TDM-based non-consumptive API. Users fill the
function body in the code edit box of web interface.

3.3 System Architecture and Implementation

Our ultimate goal is to integrate aforementioned key elements,
i.e., text analytics, non-consumptive use, visual analysis and multi-
core computing into a user friendly software environment. Based
on the fourth design principle as discussed in Section 2.2, TextR-
Web should deliver a web-based interactive programming interface
and service where a user can upload or specify dataset to be ana-
lyzed; compose, edit and submit code; examine returned statistical
and visualization results; launch next round analysis and so forth.

3.3.1 User Authentication

TextRWeb delegates user authentication to HTRC’s dedicated
authentication server which uses OAuth 2.0 authentication proto-
col [22] in a four step procedure: first, the user requests login to the
TextRWeb’s web UI; second, the web UI redirects the user to the
authentication server which requires user login credentials; third,
the authentication server sends a token back to the web UI if vali-
dation is successful; and finally, the web UI allows user to perform

following actions (e.g. compose, edit and submit code) at the user’s
will.

3.3.2 Overall Architecture

The overall architecture of TextRWeb is shown in Fig. 8. TextR-
Web consists of two layers: the load balancers layer and the worker
hosts layer. Each load balancer manages multiple worker hosts.
When external requests are first directed to a load balancer through
DNS, it distributes requests to the worker hosts, balancing the load
across the worker hosts as a function of their current load. In our
current implementation the balancer simply uses a round robin al-
gorithm. We are working on a more load aware scheme where
worker hosts periodically send usage information (e.g. CPU, mem-
ory and disk load obtained through Linux system utilities) to the
corresponding load balancer, which in turn distributes work based
on the collected load reports. Meanwhile, the periodically sent load
reports serve as the heart beat messages of work hosts which help
the load balancer detect malfunctioned nodes. Note that load bal-
ancers have public external IP addresses while worker hosts have
private internal IP addresses. Hence the load balancer not only
balances the work load across worker hosts, but also provides a
NAT (Netwrok Address Translation) -like function, translating the
public external IP address to the internal IP address of the appro-
priate worker host, and then translating back for packets traveling
in the reverse direction back to the clients. Worker hosts gener-
ate complete code for parallelization based on user implemented
document-centric or TDM-based APIs and the conduct the compu-
tation.

3.3.3 Interaction Flow

We walk through the steps (denoted as numbered blue circles in
Fig. 8) to show the interaction flow between the user and the sys-
tem: step (D, the user composes custom code with restricted pro-
gramming interfaces. Depending on the type of the dataset to be
analyzed, the user either uses the document-centric API for public
domain dataset or the TDM-based non-consumptive API for copy-
righted dataset; step (@), the user clicks the “submit” button upon
finishing code composition, which triggers a request to TextRWeb;
step 3, DNS directs the request to one of the load balancers which
share the same service name of TextRWeb web service; step @,
the chosen load balancer delegates the request to a worker host and
performs NAT; step), the chosen worker host generates the com-

TewtEWeh; Text Anabyls with B on the Web

Hesli

Document-centric API

one
king

Restricted

analytics

on TDM

Returned results

mr pmacEasmis - TRUE

TextRWeb web service

HTRC data
services

P
Worker

¥ ' hosts
»

Cloud /HPC

Figure 8: Overall architecture and interaction flow. TextRWeb is composed of two layers: load balancers and worker hosts. The load
balancers delegate requests to a worker host and performs network address translation (NAT); the generated code is executed either
at the worker hosts or on a cloud or HPC resource. The user defined function can interact with HTRC RESTful data services.

plete code for parallel execution; step (©), the generated complete
code is executed either locally at the worker host or remotely at
a cloud or HPC resource; step (7), the work host or cloud / HPC
nodes may in turn invoke HTRC RESTful data services to retrieve
the data, e.g., requested TDM; step (8), the worker host sends the
response back to the load balancer; and step (9), the load balancer
performs NAT and forwards the response to the user. Results are
displayed on TextRWeb’s web interface at user’s browser. We note
that through DNS and load balancers, work loads are distributed
evenly among worker hosts and hence there is no single bottleneck
in the system.

3.3.4 Backend Computation

Backend computation can be conducted in one of three modes:
1) local mode where computation is conducted locally at a single
worker host. In the local mode, the parallelization is performed
in a multi-threaded means and confined within a single node; 2)
cloud mode where computation is conducted remotely at a pub-
lic cloud or HPC resource. Under this approach, the worker host
serves as a proxy which delegates the payload to a cloud or HPC
resource which is capable of handling larger scale problems. In the
cloud mode, computation can be distributed across multiple cloud
or HPC nodes; and 3) mixed mode where computation is conducted
either locally at the worker host or remotely at a cloud or HPC re-
source, depending on the size of the problem. We use following
two rules to determine the problem scale: (a) the size of the input
dataset (i.e. the number of volumes to be analyzed). The larger
the dataset, the more computation cost we can expect; and (b) the

computation cost of the applied R routines. We predefine a table
which contains commonly used R routines and their corresponding
costs. By scanning user’s source code and looking up the table, we
can get a rough estimation of the computation cost of user’s code.
Currently TextRWeb uses local mode; the other two modes are still
under development.

4. PERFORMANCE EVALUATION

We use the XSEDE resource Stampede [32] at the Texas Ad-
vanced Computing Center (TACC) to evaluate the speedup of R
in multi-threaded and distributed settings. In particular, we ex-
plored performance boost by leveraging Intel Xeon Phi Coproces-
sor’s MIC offloading technique. On Stampede, each compute node
has two 8-core 2.7 GHz Intel Xeon E5-2680 processors and 32GB
DDR3 memory. The Xeon Phi SE10P Coprocessor installed on
each compute node has 61 cores with 8§GB GDDRS dedicated mem-
ory connected by an x16 PCle bus.

Figure 9 shows the computation time of 100 runs on R-benchmark [24]

under three groups of parallelization settings: 1) serial group, i.e.,
lapply which servers as the base line; 2) multi-threaded group, i.e.,
lapply with MIC offloading, and mclapply [26] with and without
MIC offloading; and 3) distributed or multi-node group, i.e., sfLap-
ply [27] with different number of nodes. Recall that in the parallel
code automatically generated by worker hosts, it leverages mclappy
and sfLappply to run user defined document-centric API in paral-
lel (e.g. line 15 in Fig. 3). From Fig. 9 we observe that single

sfLapply (4)
sfLapply (3) F
sfLapply (2)
sfLapply (1)
mclapply with MIC offloading (1) |
mclapply (1)
lapply with MIC offloading (1)

lapply (1)

0 1000 2000 3000 4000 5000 6000
Total run time in secs

Figure 9: Computation time of 100 runs on R-benchmark un-
der different parallelization settings. The number in the paren-
thesis indicates the # of compute nodes used.

node mcapply with MIC offloading is able to achieve a performance
boost which is comparable to sfLapply in multi-node settings.

Figure 10 shows performance comparison of different paralleliza-
tion settings when performing text analysis task. The dataset used
in this test contains 5000 HTRC volumes and the text analysis tasks
fulfilled by the document-centric API include standard text clean-
ing routines (e.g. stop words removal, upper to lower case con-
version and etc) and calculation of text statistical information (e.g.
word count, sentence count and etc). Although in this task we are
not able to utilize MIC offloading, mcapply is still able to deliver
promising performance compared to sfLapply in multi-node set-
tings.

S. RELATED WORK

There have been a few software environments developed for par-
allel data analytics. These software environments have emphasis
on different design goals such as scalability, interactivity, support
for a certain programming language and etc.

IPython [16] is an interactive computing environment for Python

programming language. It provisions terminal-based shell and browser-

based notebook to support interactive programming. It also has
an architecture for parallel and distributed computing. Compared
to IPython, TextRWeb has a similar web-based user interface and
support for large-scale process. However, TextRWeb employs a

document-metric API to hide distributed systems details while IPython

gives the full programming control to users. These different choices
stem from the fact that R users are mostly domain scientists while
Python users typically have stronger programming backgrounds.
Moreover, TextRWeb supports non-consumptive research on copy-
righted contents through TDM while IPython assumes analytics on
public domain data.

In [18], Kumar et al. propose a framework to perform high per-
formance data mining. They utilize and integrate several compo-
nents, including R, GPUs, multi-core CPUs, and MPI to boost the
computation. Compared to Kumar’s system which focuses on the
performance issues of using R on HPC resources, TextRWeb has
more emphases on interactive analytics environment which provi-
sions complexity hiding interfaces in the web-based frontend while
leveraging HPC for speedup in the backend.

RHadoop [29] is an integration of R and Hadoop for large-scale
data processing. It provisions a convenient R interface to com-

sfLapply (4) B

sfLapply (3) | q

sfLapply (2) | B

sfLapply (1) B

mclapply (1) B

lapply (1) 1

.
0 0.5 1 1.5 2 25
Total run time in secs 4

Figure 10: Computation time of text analysis task under dif-
ferent parallelization settings. The number in the parenthesis
indicates the # of compute nodes used.

pose map and reduce functions, and, under the hood, it leverages
Hadoop’s streaming mechanism to interface user implemented R
scripts with Hadoop system. Users are required to install and de-
ploy RHadoop before using it, which can be quite challenging in
HPC environments where RHadoop cluster needs to be set up upon
compute nodes which are allocated (or reclaimed) dynamically on
job start (or completion). Other popular R parallel packages in-
clude snow [27], multicore [26], Rmpi [25], and etc. Compared to
these R parallel packages which serve as built-in libraries, TextR-
Web is an interactive programming / analytics environment which
may utilize them to speedup computation, e.g., the parallel code
generated automatically in worker hosts may in turn invoke these
R packeages.

Revolution Analytics [28] is a corporation which pioneers R-
based data analytics solutions. It has several commercial products
supporting large-scale and interactive R analytics. However, these
products may not have large user groups because of their nontrivial
prices.

6. DISCUSSION AND FUTURE WORK

This paper proposes a cloud framework that performs interac-
tive, non-consumptive and large-scale text analytics with R. Early
results are promising. The current architecture of the HTRC Tex-
tRWeb not only meets the large-scale and low cost requirements by
offering a cloud computing solution to users, but also satisfies the
non-consumptive use restriction by restricting users to analytics on
a non-consumptive Term-Document Matrix (TDM), while keeping
interactivity by offering a web-based interface and services. For
the complexity hiding requirement, the document-centric API and
the TDM-based API allow users to focus on local processing and
TextRWeb transparently generates parallel code for multi-threaded
or distributed execution.

TextRWeb currently is still a prototype system and we envision
it evolving rapidly. In early experience with the tool, users report
that they are able to use TextRWeb interactively just as if they were
working with a R shell. Compared to the R shell, they also report
that TextRWeb’s web UI has better support for code composition,
editing, and display of statistical and visualization results. More-
over, they report that document-centric and TDM-based APIs allow
them to just write normal sequential code while obtaining “mys-
terious” short turnaround times. However, comprehensive perfor-

mance evaluation is missing and needed. In our further study, we
need to evaluate TextRWeb under different sorts of workloads and
measure the time transition between different system components.

There remain several open issues and questions. First is a thor-
ough performance evaluation to measure how TextRWeb’s perfor-
mance scales with size of corpus being analyzed.

Additionally, restricting user analytics to term document matri-
ces precludes the need for code walkthroughs of user’s analysis
code or examination of user’s resultant data, however, this approach
does exclude text mining algorithms that need full text access. Too,
when delegating code execution to a public cloud or HPC resource,
issues of user access to the resource arise. HTRC delegates con-
trol to a community user, and executes jobs on behalf of the user,
but this approach may not work as well when users do not enter
through a single portal (gateway). While running tests for this pa-
per, we utilized a dedicated queue on Big Red 2 which reduced
execution time. As size of the analysis grows and the popularity of
the tool grows, we will have to explore latency hiding schemes.

Finally, the current version of TextRWeb only focuses on par-
allel execution of user defined document-centric API (the parallel
generation of TDM is delegated to and fulfilled by HTRC data ser-
vices), however, user code against intermediate data can also be
time-consuming and needs be parallelized. A solution might be
to identify time-consuming routines and replace them with parallel
equivalents. For instance, substitute mclapply for lapply. To fully
investigate approaches that automatically parallelize intermediate
code is an area of our further study.

7. ACKNOWLEDGMENTS

This work is funded by a grant from the Alfred P. Sloan Founda-
tion award #2011-6-27. This work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported
by National Science Foundation grant number OCI-1053575. We
thank XSEDE for grant on Stampede computing cluster at Texas
Advanced Computing Center. (project number: TG-ASC130037).

8. REFERENCES

[1] Apache Solr. https://lucene.apache.org/solr/.

[2] Big Red 2 at Indiana University.
http://rt.uits.iu.edu/bigred2/.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
3:993-1022, January 2003.

[4] J. Bollen, B. Gongalves, G. Ruan, and H. Mao. Happiness is
assortative in online social networks. Artificial Life,
17(3):237-251, July 2011.

[5] R. Cattell. Scalable SQL and NoSQL data stores. In ACM
SIGMOD Record, volume 39, pages 12-27, 2010.

[6] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In 6¢th Symposium on Operating
System Design and Implementation (OSDI’04), volume 37,
CA, USA, December 2004.

[7] J. Diaz, C. Mufioz-Caro, and A. Nifio. A survey of parallel
programming models and tools in the multi and many-core
era. IEEE Trans. Parallel Distrib. Syst., 23(8):1369-1386,
August 2012.

[8] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and
grid computing 360-degree compared. In Grid Computing
Environments Workshop (GCE’08), 2008.

[9] Google Book Settlement. http://en.wikipedia.
org/wiki/Authors_Guild_v._Google/.

[10] Google Books Library. http://books.google.com/.

[11] A. Haghighi and L. Vanderwende. Exploring content models
for multi-document summarization. In Proceedings of
Human Language Technologies: The 2009 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL’09),
pages 362-370, Stroudsburg, PA, USA, 2009.

[12] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 3 edition, July 2011.

[13] HathiTrust Digital Library.
http://www.hathitrust.org/.

[14] HathiTrust Research Center.
http://www.hathitrust.org/htrc/.

[15] R. Ihaka and R. Gentleman. R: A language for data analysis
and graphics. Journal of Computational and Graphical
Statistics, 5(3):299-314, 1996.

[16] TPython. http://ipython.org/.

[17] T.Joachims. Text categorization with support vector
machines: Learning with many relevant features. In /0th
European Conference on Machine Learning (ECML’98),
volume 1398, pages 137-142, Chemnitz, Germany, April
1998.

[18] P. Kumar, B. Ozisikyilmaz, W.-K. Liao, G. Memik, and
A. Choudhary. High performance data mining using r on
heterogeneous platforms. In Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on, pages 1720-1729,
Alaska, USA, 2011.

[19] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. In ACM SIGOPS Operating
Systems Review, volume 44, pages 35-40, April 2010.

[20] MPI: A Message-Passing Interface Standard. M.P.I. Forum,
1997.

[21] D. Nadeau and S. Sekine. A survey of named entity
recognition and classification. Lingvisticae Investigationes,
30(1):3-26, January 2007.

[22] OAuth 2.0. http://ocauth.net/2/.

[23] Portable Batch System.
http://www.adaptivecomputing.com/
products/open-source/torque/.

[24] R benchmarks.
http://r.research.att.com/benchmarks/.

[25] R MPI package. http://cran.r-project.org/
web/packages/Rmpi/index.html/.

[26] R multicore package. http://cran.r-project.org/
web/packages/multicore/index.html/.

[27] R snowfall package. http://cran.r-project.org/
web/packages/snowfall/index.html/.

[28] Revolution Analytics.
http://www.revolutionanalytics.com/.

[29] RHadoop. https://github.com/
RevolutionAnalytics/RHadoop/wiki/.

[30] F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1-47, March
2002.

[31] Slurm Workload Manager.
http://slurm.schedmd.com/.

[32] Stampede computing cluster.
https://www.tacc.utexas.edu/stampede/.

[33] J. Unsworth. Computational work with very large text
collections. Interoperability, Sustainability, and the TEL.
Journal of the Text Encoding Initiative, (1), June 2011.

