
RESOURCE SHARING FOR MULTI-TENANT NOSQL DATA

STORE IN CLOUD

Jiaan Zeng

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements for the degree

Doctor of Philosophy

in the School of Informatics and Computing,

Indiana University

December 2015

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Beth Plale, Ph.D.
(Chairperson)

Martin Swany, Ph.D.

Judy Qiu, Ph.D.

David Crandall, Ph.D.

Atul Prakash, Ph.D.

December 4th, 2015

ii

Copyright c⃝ 2015

Jiaan Zeng

iii

I dedicate this dissertation to my family.

iv

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Beth Plale. She guided me

into the research field of data management system and inspired my thinking; she gave me

numerous opportunities to explore different directions and identify the research problems.

Through working with her, I learned to be a professional researcher. I am thankful to my

entire research committee: Prof. Martin Swany, Prof. Judy Qiu, Prof. David Crandall,

and Prof. Atul Prakash. Their valuable feedback and professional guidance keep me in the

right direction and push me to dive into the details without losing the big picture.

I was fortunate to work with great people in the technical team of the HathiTrust Re-

search Center: Guangchen Ruan, Zong Peng, Milinda Pathirage, Samitha Harshani Liyan-

age, Miao Chen and Yiming Sun. They continuously work with me on technical problems,

give me good advice on paper writing and presentations. In addition, I would like to thank

Alexander Crowell and Prof. Atul Prakash at University of Michigan for the collabora-

tion on the data capsule, and Jaimie Murdock and Prof. Colin Allen for applying the data

capsule to a real world application. Furthermore, I am grateful to my other colleagues in-

cluding Yuan Luo, Peng Chen, Quan Zhou, Yu Luo, and Isuru Eranga Suriarachchi at the

Data To Insight center. Their support on my projects and research is very helpful. Next I

would like to thank Jenny C. Olmes-Stevens, the project manager in the Data To Insight

center, for helping me the edits of several papers, and Jodi Stern, the secretary in the Data

v

To Insight center, for travel arrangement and meeting setup. I also appreciate the help from

Rob Henderson. He helps me for various system administrative tasks to make some of the

research outcome possible.

Finally, I am greatly thankful to my family and friends for their support and understand-

ing, which make this entire process a precious and rewarding experience in my life.

vi

Jiaan Zeng

RESOURCE SHARING FOR MULTI-TENANT NOSQL DATA STORE IN CLOUD

Multi-tenancy hosting of users in cloud NoSQL data stores is favored by cloud providers

because it enables resource sharing at low operating cost. Multi-tenancy takes several forms

depending on whether the back-end file system is a local file system (LFS) or a parallel file

system (PFS), and on whether tenants are independent or share data across tenants. In this

thesis I focus on and propose solutions to two cases: independent data-local file system,

and shared data-parallel file system.

In the independent data-local file system case, resource contention occurs under certain

conditions in Cassandra and HBase, two state-of-the-art NoSQL stores, causing perfor-

mance degradation for one tenant by another. We investigate the interference and propose

two approaches. The first provides a scheduling scheme that can approximate resource

consumption, adapt to workload dynamics and work in a distributed fashion. The second

introduces a workload-aware resource reservation approach to prevent interference. The

approach relies on a performance model obtained offline and plans the reservation accord-

ing to different workload resource demands. Results show the approaches together can

prevent interference and adapt to dynamic workloads under multi-tenancy.

In the shared data-parallel file system case, it has been shown that running a distributed

NoSQL store over PFS for shared data across tenants is not cost effective. Overheads are

introduced due to the unawareness of the NoSQL store of PFS. This dissertation targets

the key-value store (KVS), a specific form of NoSQL stores, and proposes a lightweight

KVS over a parallel file system to improve efficiency. The solution is built on an

vii

embedded KVS for high performance but uses novel data structures to support concurrent

writes, giving capability that embedded KVSs are not designed for. Results show the

proposed system outperforms Cassandra and Voldemort in several different workloads.

Beth Plale, Ph.D.
(Chairperson)

Martin Swany, Ph.D.

Judy Qiu, Ph.D.

David Crandall, Ph.D.

Atul Prakash, Ph.D.

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Emerging Characteristics for Big Data Storage 1

1.2 Multi-tenant NoSQL Data Store . 3

1.2.1 Logical View Layer . 3

1.2.2 Storage Layer . 4

1.2.3 Layer Mapping . 6

1.3 Research Problems . 6

1.3.1 Performance Interference Prevention 6

1.3.2 Cost Effective Multi-tenant Access 8

1.4 Contributions . 8

1.5 Dissertation Outline . 10

2 Background 11

2.1 Multi-tenancy Model . 11

2.2 Overview of NoSQL Data Store . 13

ix

2.2.1 Architecture . 15

2.2.2 Data Distribution . 18

2.2.3 Data Replication and Consistency 21

2.2.4 Resource Management . 22

3 Related Work 23

3.1 Storage Service Sharing . 24

3.1.1 Storage Services . 24

3.1.2 Resource Scheduling . 27

3.2 Data Sharing . 30

3.2.1 File System and Key-Value Store 30

3.2.2 Key-Value Store As A Library . 30

3.2.3 Compaction Management . 31

4 Multi-Tenant Fair Share in NoSQL Stores 33

4.1 Fairness Experiments in Cassandra . 35

4.2 Request Scheduling . 37

4.3 Adaptive Control Mechanisms . 42

4.4 Evaluation . 47

4.4.1 Overall Performance . 48

4.4.2 Effectiveness of Adaptive Control Mechanisms 53

4.5 Summary . 55

5 Workload-Aware Resource Reservation for Multi-Tenant NoSQL Stores 57

5.1 Analysis of Interference . 59

x

5.1.1 Setup . 59

5.1.2 Interference Experiments . 60

5.2 Resource Reservation . 66

5.2.1 Block Cache Reservation . 67

5.2.2 Disk Reservation . 68

5.2.3 Elastic Reservation . 73

5.3 Reservation Planning . 74

5.3.1 Problem Formalization . 75

5.3.2 Solution . 78

5.3.3 Limitations . 79

5.4 Evaluation . 80

5.4.1 Micro Evaluation . 80

5.4.2 Macro Evaluation . 87

5.5 Real World Applications . 93

5.6 Summary . 94

6 A Lightweight Key-Value Store for Distributed Access 96

6.1 Background and Motivation . 98

6.1.1 Background . 98

6.1.2 KVS on Parallel File System . 101

6.2 The KVLight Structure . 102

6.2.1 System Model . 102

6.2.2 Design Choices . 103

6.3 Design Details . 104

xi

6.3.1 Concurrent Write . 104

6.3.2 Compaction . 106

6.3.3 Consistency . 113

6.3.4 Limitations . 114

6.3.5 Applications . 114

6.4 Implementation . 115

6.5 Evaluation . 116

6.5.1 Overall Performance . 117

6.5.2 Effectiveness of Compaction . 122

6.5.3 Real World Applications . 124

6.6 Summary . 126

7 Conclusions and Future Work 128

7.1 Conclusions . 128

7.2 Future Directions . 131

Bibliography 133

Curriculum Vitae

xii

List of Figures

1.1 Multi-tenancy in the logical view layer. 4

1.2 Different storage layers for NoSQL data store. 5

2.1 Different multi-tenancy models on storage services. 12

2.2 Characteristics of NoSQL store. 14

2.3 The architecture of Berkeley DB, a single node NoSQL data store. 16

2.4 Two main architectures for distributed NoSQL stores. 17

2.5 Key-range based data distribution in HBase. 19

2.6 The principal of consistent hashing. 20

4.1 Throughputs of different workloads in a shared Cassandra. 35

4.2 Architecture. 39

4.3 Distributions of cumulative throughput and thread count over Cassandra

nodes. 46

4.4 Fair share for read-only workload on data sets with different tenant share

configurations. 49

4.5 Fair share for read-write workload on data sets with different tenant share

configurations. 51

4.6 Improvement in throughput through local weight adjustment. 54

xiii

4.7 Fair share protects the throughput of the read-only workload from scan

operations. 55

5.1 Normalized metrics show interference occurs in different resources. 63

5.2 Single resource reservation fails to prevent interference for workloads with

different resource demands. 65

5.3 Architecture. 67

5.4 Throughput varies with different resource reservations. 75

5.5 Impacts of #credits on disk reservation. 82

5.6 T1’s throughput under different workloads and different number of tenants. 84

5.7 Argus dynamically adjusts its reservations. 85

5.8 Overall performance of different workloads. 87

5.9 Throughput without planning normalized to throughput with planning. . . . 91

6.1 Lustre Architecture. 100

6.2 Read/write performance for different KVS in different setup. 101

6.3 KVLight architecture. 103

6.4 Design space of KVLight. The arrow points to high performance. 104

6.5 The structure supports concurrent write. 105

6.6 The aggregated throughput of read decreases as the number of BDBs in-

creases. 106

6.7 Different key range organizations across BDBs. 109

6.8 Tree based compaction design. 111

6.9 Compactions run in nodes from different levels of the tree. 111

6.10 KVLight implementation and deployment. 116

xiv

6.11 Aggregated throughput for various workloads on different KVS. 118

6.12 Impact of compaction on different workloads in terms of throughput. 119

6.13 I/O performance from Iozone. 120

6.14 Throughput comparison among different compaction strategies. 123

6.15 Speedup tests over various data sizes. Time is reported in log scale. 124

6.16 Performance comparison in real world applications. 125

xv

List of Tables

4.1 Notations. 40

4.2 Fairness of workloads on across data sets. 50

5.1 Workload parameters. 61

5.2 Baseline throughput for different workloads. 62

5.3 Comparison of different scheduling approaches. 71

5.4 Notations. 76

5.5 Performance interference compared with vanilla HBase. Values in paren-

theses are the performance numbers from vanilla HBase. 88

5.6 Evaluate Argus in versatile workloads. Values in parentheses are the per-

formance numbers from vanilla HBase. 91

5.7 Comparison with A-Cache. Values in parentheses are the performance

numbers from A-Cache. 92

6.1 Overhead evaluation of KVLight. 122

xvi

Chapter 1

Introduction

1.1 Emerging Characteristics for Big Data Storage

Science and business today are facing data sets that are growing dramatically in both com-

plexity and volume. In its informal definition, big data consists of large, diverse, and struc-

tured or unstructured data. The sheer volume of data increase is predicted to grow expo-

nentially by a factor of 300 from 130 exabytes in 2005 to 40,000 exabytes in 2020 [37].

Big data applications, whose data and request go beyond a single node’s capacity, have

begun to revolutionize the underlying storage system. In addition, high availability grows

increasingly important as businesses rely on online data services. Furthermore, data are in-

creasingly dynamically generated, coming from various sources with diverse formats and

schemas. All these factors taken together suggest distributed storage and flexible data mod-

els are the future.

Experience has shown that traditional systems like the relational databases (RDBM-

S) struggle to handle big data applications as they are difficult and expensive to scale

across multiple nodes and have I/O performance that does not meet application require-

ments [15, 83]. In contrast, NoSQL data store (called Not Only SQL) has emerged as an

alternate solution to big data storage. NoSQL store distributes and replicates data across

1

multiple nodes. Requests are served by every node in a peer-to-peer fashion, not only in-

creasing overall storage capacity but also the bandwidth. If a node goes down, other nodes

can still serve requests for high availability and minimize data loss. Additionally, NoSQL

data stores do not impose a rigid structured schema upon the data, thus providing greater

flexibility to store the unstructured data. Because of these attracting features, NoSQL data

stores have seen a great deal of uptake in both industry [11,28,100] and academia [33,49].

With the advent of cloud computing, cloud hosted NoSQL stores have grown in use.

Users (called tenants) are willing to move their data infrastructures to the cloud [18]. Fol-

lowing the spirit of infrastructure-as-a-service, tenants set up NoSQL stores across a set

of virtual machines (VMs) that are rented from a cloud provider and billed by a flexi-

ble price model, i.e. “pay-as-you-go” model. Additionally, many cloud providers offer

database-as-a-service to tenants. Such services ease most of the cluster management bur-

dens from tenants. Typical examples include Amazon Dynamo DB [5, 28], Google Cloud

Datastore [19] and Microsoft DocumentDB [30].

For economic reasons though, a cloud hosted NoSQL store is usually used by multiple

tenants simultaneously. For example, a database-as-a-service instance like Dynamo DB

may be shared by different companies (i.e. tenants). Different departments (i.e. tenants) of

an organization may be joint tenants of a single NoSQL store. Generally, there are several

advantages of adopting multi-tenancy in various storage services [53]. First, multi-tenancy

makes management tasks easier. For example, to upgrade the storage service, instead of

upgrading multiple service instances, a system admin can update the configurations or code

base in a single instance and have the changes immediately available to all tenants. Sec-

ond, multi-tenancy can yield better resource utilization as the storage service can support

dynamic resource allocation which avoids provisioning each tenant with its maximum re-

2

sources statically. Finally, data sharing is facilitated by multi-tenancy. For these reasons,

support for multi-tenancy in cloud hosted NoSQL data store is an important problem.

1.2 Multi-tenant NoSQL Data Store

A NoSQL data store in a cloud environment can be viewed as having a 2-layer architecture:

logical view layer and storage layer. The logical view layer presents to tenants a view of

the store and a set of APIs for them to interact with the store. The storage layer represents

the underlying infrastructure that physically stores and serves the data.

1.2.1 Logical View Layer

The logical view layer determines how tenants see the data and hides the complexities of

underlying infrastructures from them. Each tenant has a dedicated view of the store with

non-shared data sets. From a tenant’s point of view, its workload is run against dedicat-

ed resources and is not aware of other tenants’ existence. The cloud provider in reality

is consolidating each tenant’s data into as small an infrastructure as possible to maximize

resource utilization. Tenants’ data and requests end up co-locating with each other in the

underlying infrastructure. Performance interference becomes a concern as isolation of cur-

rent solutions are flawed.

On the other hand, tenants may share the same data sets in the store. Tenants may be

represented by different components in a pipeline that processes the data. For example,

the HathiTrust Research Center (HTRC) [49], which serves analytical access to nearly 14

million digitized volumes from the HathiTrust digital library, has an ingest component that

loads data from remote rsync points into Cassandra; a data API component used to read

data from Cassandra and serve it to external users and a Solr component indexed data in

3

(a) Non-shared data. (b) Shared data.

Figure 1.1: Multi-tenancy in the logical view layer.

Cassandra. All these components can be interpreted as tenants which share the same data

set stored in Cassandra to form the data infrastructure of HTRC.

It is important to efficiently support the shared data model in a multi-tenancy cloud

setting because of the attractiveness of its pay-as-you-go model and ability to bear elasticity.

Chapter 2 further describes the models used in multi-tenancy by most data management

systems.

1.2.2 Storage Layer

While the logical view layer serves as the front-end to tenants, the storage layer describes

the mechanisms for storing data and handling requests. Figure 1.2a shows a NoSQL data

store deployed across multiple nodes. Data is stored to the local file system on each node.

Because a local file system on a single node may suffer from disk failure and is not scalable,

the NoSQL store usually replicates data in a few nodes in the cluster. A persistent daemon

service runs on each node in the cluster and communicates with other daemon services to

provide a unified view over the local file systems. Various protocols among daemons exist

to coordinate daemons’ behaviors to support tasks like data replication, failover and so on.

4

(a) NoSQL over local file system. (b) NoSQL over parallel file system.

Figure 1.2: Different storage layers for NoSQL data store.

While the local file system has prevailed in the cloud platform for quite some time,

the parallel file system (PFS) has begun seeing usage in the cloud in both industry [68]

and academia [2, 79]. Originating from the high performance computing (HPC) platform,

PFS is a type of clustered file system that partitions data across a dedicated storage node

cluster [81]. PFS provides good scalability, high bandwidth access, and failover, all of

which are missing in a local file system solution. PFS serves concurrent access from a

number of clients and operates over high-speed networks. It can be mounted to multiple

nodes and allows files to be accessed using the same interfaces and semantics as local file

systems. Behind the scene, PFS transparently hides the complexities of accessing across

different storage nodes, data replication, and fail over from end users. Figure 1.2b depicts

the scenario of a NoSQL store which is set up over PFS. The daemon service per node gives

the illusion that data is stored in local file system while in reality data is transferred to/from

PFS transparently. PFS can take over the responsibility of reliable data storage which is

5

important in the NoSQL storage system.

1.2.3 Layer Mapping

Either of the logical views in Figure 1.1 can be mapped to one of the physical implemen-

tations in Figure 1.2. Usually the NoSQL store relies on the local file system to store data.

Thus this dissertation studies the performance interference in the multi-tenancy case using

a local file system (non-shared data-LFS). The unawareness of the NoSQL store to the fea-

tures PFS offers makes it inefficient to run a NoSQL store over PFS today. This dissertation

explores the viability of using PFS to support data sharing across tenants in NoSQL data

store (shared data-PFS). We leave the investigation of performance interference in NoSQL

over PFS for future work.

1.3 Research Problems

The cloud hosted NoSQL data store has seen a great deal of usage because of its scalability

and high availability. Because cloud environments encourage sharing, resource sharing and

data reuse across tenants is a growing use case. Multi-tenancy in such a shared environment

imposes significant performance challenges on the use of NoSQL store, however. The

following are the problems addressed in this dissertation.

• Performance interference prevention across tenants in the non-shared data-LFS case

• Cost Effective multi-tenant access in the shared data-PFS case

1.3.1 Performance Interference Prevention

Tenant data and requests may be consolidated in a single multi-tenant NoSQL store. Due to

the co-location, there will be performance interference among tenants caused by resource

6

contention. Interference prevention can be realized from the client perspective when a

service level agreement (SLA) is enforced, or can be realized at the server side when fair

share is enforced across tenants. This dissertation focuses on providing a non-client centric

solution to enforce fair share on the server side. A misbehaved tenant may consume a well-

behaved tenant’s resources by its workloads, thus degrading the latter’s performance. This

interference behavior in the multi-tenancy setting is undesirable. The resource reservation

approach in Chapter 5 can potentially be used to enforce SLA for each tenant. We leave

the SLA enforcement for future work.

Real world scenarios provide evidence of performance interference. Although Amazon

DynamoDB imposes a throughput limit to tenants to prevent the store deing dominated by

a few tenants [5], it does not guarantee throughput provision, nor provides fair share among

tenants [31,95]. People from BloomReach Inc. report back-end workloads have a negative

impact on front-end workloads’ performance in the same Cassandra cluster [10]. They also

report that back-end workloads from different teams (i.e. tenants) may interfere with each

other as well [10]. It is straightforward to address the interference issue by running different

tenants’ workloads on separate infrastructures, which is the approach BloomReach has

taken [10]. Dedicated hardware provides strong isolation but lowers resource utilization

and thus increases cost. Effort is occurring in open source NoSQL projects e.g. Cassandra

[14] and HBase [1], the base of the prototyped systems in this dissertation, to support

multi-tenancy [13, 44]. However, both are still a work-in-progress. Current effort simply

schedules requests for tenants in a round robin fashion in Cassandra (the tenant-oriented

request scheduling is planned but not implemented yet in HBase) and does not attempt

to identify the resource demands of tenants. There is no known performance modeling

in the multi-tenant setting. In addition, many of the multi-tenancy features only became

7

available recently and some of them are not merged to the trunk [43] as of the writing of

this dissertation.

1.3.2 Cost Effective Multi-tenant Access

Running a distributed NoSQL store over PFS may introduce overheads owning to the un-

awareness of the former to the PFS. For example, data may be unnecessarily replicated;

extra network trips may be needed to access the PFS because the daemon service delegates

all the requests to the back-end file system; and additional overhead may also arise from

the data replication and failover protocols, which are unnecessary in the presence of PFS.

In addition, the store provider may hold the resources (e.g. VM) even if no request comes,

which is not cost effective. That is because if the VMs are shutdown or repurposed, the

data stored in the VM’s is not accessible anymore. Recently, Greenberg et al. point out the

burden and inefficiency of running persistent daemon services for a key-value store in the

HPC environment [40]. We envision PFS will be widely used in the cloud and thus there

will be a pressing need to accommodate the features it provides to NoSQL data store.

1.4 Contributions

This dissertation proposes several approaches to address the multi-tenancy issues discussed

in Section 1.3 for the shared and non-shared settings in Figure 1.1. They are discussed here:

Non-shared data-LFS setting I investigate the performance interference in the setting of

local file system for storage and no data sharing. An experimental study carried out on Cas-

sandra, a state-of-the-art NoSQL store, shows that a tenant will experience unpredictable

performance in terms of throughput when multiple tenants access the store independently.

8

Chapter 4 proposes a throughput regulation framework that targets system-wide fairness.

Specifically, we adapt and extend the deficit round robin algorithm [71] with linear pro-

gramming as the scheduler to regulate throughput. The solution adaptively changes the

scheduling parameters to achieve system-wide fairness. It also protects the throughput of

reads in face of scans by splitting a scan operation into small pieces and scheduling them

along with reads.

Throughput regulation can be viewed as a form of resource reservation because through-

put represents the underlying resource consumption. It assumes every byte delivered to or

from the store consumes the same amount of resources. Such an assumption is also used

by [95, 106]. But this assumption does not always hold, especially for workloads having

different access patterns and demanding different resources. A workload with a hotspot

access pattern may require more cache than a workload with a random access pattern. An

equal reservation of cache and disk usage for all tenants may not yield the best result or

even fail to provide performance isolation. Chapter 5 models the impact of various resource

demands and proposes a resource reservation framework in HBase to enforce the perfor-

mance isolation among tenants. The reservation is also elastic in the sense that if a tenant

does not use up its reservation, the system is able to reallocate its redundant reservation

to tenants in need. Chapter 5 experimentally evaluates different fair sharing algorithms

and tries to quantify the trade-offs between fairness and efficiency. It also quantifies the

overhead introduced by the isolation mechanisms as too much overhead can undermine the

benefit of fairness.

Shared data-PFS setting I explore the feasibility of using PFS for NoSQL data store in

a shared data setting. Chapter 6 proposes a lightweight key-value store (KVS), a special

9

form of NoSQL data store, that makes use of PFS as the back-end storage and does not

require daemon services running in front. Such a feature allows the KVS to be accessed

on demand and avoids holding resources when no tenant makes requests. A VM hosting

a tenant can be revoked or repurposed once the tenant has completed sending requests. In

addition, the responsibility of data reliability is shifted to PFS. The KVS only cares about

data organization and serving request which is more lightweight than a traditional KVS.

Internally, the proposed KVS is built on an embedded KVS, i.e. Berkeley DB [75], to en-

able direct file system access for high performance and support the no persistent daemon

service feature. Embedded KVS solutions, including Berkeley DB, do not support concur-

rent writes due to file system locking. The proposed KVS follows the spirit of log structure

merge tree [76] to organize the data in PFS to support concurrent writes in a distributed

environment. To remedy the read deterioration caused by writes, it uses a novel tree-based

structure and parallel compaction to efficiently support concurrent reads.

1.5 Dissertation Outline

The remainder of this dissertation is as follows. Chapter 2 presents the background infor-

mation about multi-tenancy model and NoSQL data store. Chapter 3 summaries related

work. Chapter 4 investigates the performance interference and proposes a throughput reg-

ulation mechanism targeting system-wide fairness. Chapter 5 further studies the perfor-

mance interference based on the results from Chapter 4, and describes a workload-aware

resource reservation mechanism for performance isolation. Chapter 6 focuses on building a

lightweight key-value store, which is called KVLight, over a parallel file system with novel

data structures. Chapter 7 concludes with future work.

10

Chapter 2

Background

Supporting multi-tenancy is important in a storage service like a NoSQL data store. We

first present the background of multi-tenancy including its definition and different models.

A cloud hosted NoSQL data store usually runs as middleware between user applications

and file systems. It consists of a set of service processes running over a raw file system

and provides richer data management features than a regular file system. There are many

NoSQL systems nowadays with different APIs, data models, and architectures. Thus we

present an overview of NoSQL data store from several perspectives including architecture,

data distribution, data replication, and resource management, with a focus on three popular

NoSQL systems, i.e. Cassandra, HBase, and Berkeley DB [8, 75], which our prototyped

systems are based on.

2.1 Multi-tenancy Model

Multi-tenancy, in its most basic definition, refers to an architecture in which a single soft-

ware instance serves multiple users, customers, or tenants [70]. Multi-tenancy can be found

in several different places: network multiplexing [58], virtual machine management [92],

file system sharing [104], job runtime framework [54], data management system [53] and

11

so on. This dissertation focuses on multi-tenancy in the data management system, particu-

larly NoSQL data store.

Generally, in a data management system, the multi-tenancy can be supported in three

different models: shared machine, shared table, and shared process [53]. Each has different

advantages and disadvantages, shown in Figure 2.1. In the shared machine model, virtu-

alization technologies like virtual machines are used to host different tenants in a shared

machine. It provides the strongest isolation among tenants as tenants are separated by d-

ifferent VMs. On the contrary, the shared table model, which allows different tenants to

share the same table, provides the weakest isolation. Data from different tenants are mixed

together in the same place, as are the requests.

Figure 2.1: Different multi-tenancy models on storage services.

From the system utilization perspective, the shared machine model sacrifices the most

because each tenant is allocated with a VM which holds up some portion of dedicated

system resources. The shared table model, however, achieves the highest utilization by

aggregating tenant data into a single location and serving without dedicated resources.

The shared process model stays in the middle of aforementioned two models from both

the isolation and resource utilization perspective. In the shared process model, each tenant

12

has its own table and enjoys a dedicated view of the storage. Under the hood, the storage

service is shared by multiple tenants. Tenants have to share the memory, CPU, I/O, network

bandwidth and all other resources allocated to the particular storage service process. Com-

pared with the shared machine model and the shared table model, the shared process model

trades a little bit of tenant isolation for better performance and scale. On one hand, it solely

relies on throttling and reservation to isolate resource usage across tenants within the same

process, which may not be as strong as the shared machine model. On the other hand, it

improves resource utilization in the sense that resources may be reused by different tenants

and reallocated among tenants. For instance, if a tenant does not use up the memory given,

the management system may reallocate the memory to other tenants in need. The shared

process model is also superior to the shared table model in terms of flexibility because the

shared table model has to provide a unified schema to store data from all different tenants

with different formats, which is very difficult and inflexible.

Most research work about interference prevention target the shared process model in

regard to provide isolation across tenants because of the advantages mentioned above [24,

84,104,106,113,115]. Similarly, in this dissertation, we focus on the shared process model

for isolation among independent tenants. For tenant consolidation over a shared data set,

we use the shared table model as tenants expect to see the same table structure and data in

this case.

2.2 Overview of NoSQL Data Store

To deal with the rapid growth of data, NoSQL data stores are designed as modern web-

scale databases in mind and the characteristics of schema-free data model, easy replication

support, distributed access, simple APIs and eventual consistency [74]. According to the

13

CAP-theorem [39], conflicts arise among different aspects of a distributed system in terms

of three factors: consistency, availability and partition-tolerance. The relationship between

factors is shown in Figure 2.2.

Figure 2.2: Characteristics of NoSQL store. Source: http://blog.nosqltips.com/

2011/04/cap-diagram-for-distribution.html

The CAP-theorem postulates that only two of the three factors can be achieved at the

same time. For the traditional SQL database, which stresses the ACID properties (Atomic,

Consistency, Isolation, and Durability) [39], partition-tolerance or availability is usually

sacrificed to honor the consistency. However, for NoSQL data store, because it is designed

to be distributed in nature, availability and partition tolerance become critical. Thus most

of NoSQL data stores trade in consistency with availability and partition-tolerance. This

results in the BASE properties (Basically Available, Soft-state, Eventually consistent) [39].

Next, we investigate NoSQL stores in terms of four aspects: architecture, data distribu-

14

tion, data replication and consistency, and resource management.

2.2.1 Architecture

Generally speaking, a NoSQL store can fall in one of the two categories: single node ori-

ented and multi-node oriented. Single node oriented NoSQL store is designed to work in

a single node environment and usually implemented as a library embedded into the appli-

cation. Unlike multi-node NoSQL stores, which have persistent running daemon services

delegate the access to file system through network, single node NoSQL store allows ap-

plications to access the file system directly and read or write data without going through a

network. In addition, no persistent daemon service is required. Thus it is lighter-weight and

performs better than multi-node NoSQL store. Examples include Berkeley DB (BDB) [75]

and Level DB [62]. Figure 2.3 displays the architecture in BDB. BDB embeds as a library

to an application. It provides a set of APIs for applications to access the data store and

carry out transactions. Lock, buffer pool and log are the three main components in BDB.

They all run in an application process space. BDB interacts with the file system to store

data through standard file system APIs.

However, single node NoSQL store suffers from data loss and is not scalable because

all its data is stored in the file system local to the node. Besides, it only allows exclusive

writes due to file system locking. Applications in different processes have to take turns to

write to the store. In contrast, multi-node NoSQL store (or distributed NoSQL) is designed

to work across multiple nodes or even multiple data centers. It partitions and distributes

data across nodes with replications, and provides not only reliable data storage but also

scalable access as requests are distributed in the cluster. Examples of multi-node NoSQL

include HBase, Cassandra, and CouchDB [21].

15

Figure 2.3: The architecture of Berkeley DB, a single node NoSQL data store.

Most of the distributed NoSQL stores draw heavily from either the master-slave archi-

tecture or the peer-to-peer architecture, shown in Figure 2.4. The master-slave architecture

is used in Google BigTable [16], and its open source implementations e.g. HBase, Hy-

perTable [50]. The master is responsible for bookkeeping metadata, request routing and

coordinating among slaves while the slave is responsible for carrying out the actual work-

load and responding to clients directly. The peer-to-peer architecture used by Amazon

Dynamo [28] treats each node as an equal peer. There is no central control point in such

architecture and thus it can avoid single point of failure. Nodes usually communicate and

propagate messages through a gossip protocol. However, due to the peer-to-peer character-

istic, it is usually hard to coordinate activities among nodes. Cassandra is an open source

implementation of Dynamo. Voldemort and Riak [86] are also heavily influenced by Dy-

namo’s design.

In practice, distributed NoSQL store is preferred over a single node NoSQL because

16

(a) The master-slave architecture of HBase. The HMaster monitors and coordi-

nate different HRegionServers, which responde to client for read/write requests

directly.

(b) The peer-to-peer architecture of Cassandra. There is no central control point

int the system. A client can connect to any node in the cluster. The connected

node serves as a coordinator that forwards the request to the nodes hosting the

replicas.

Figure 2.4: Two main architectures for distributed NoSQL stores.

17

of the aforementioned advantages. The main use of single node NoSQL is to serve as a

building block for a larger system. For example, Berkeley DB is used as the back-end store

in each individual node in Voldemort [100] and Riak [86]. Berkeley DB also sees usage in

many other systems [6].

2.2.2 Data Distribution

The data distribution scheme describes how data is organized in the underlying file system

and distributed across nodes. It determines the way data access works. Different distri-

bution schemes may be suited to different data access patterns. Generally, there are two

main distribution approaches for most of the systems: key-range based distribution and

hash based distribution. The key-range based distribution has the entire data set sorted ac-

cording to the order of the key and divides the data set into non-overlapped partitions. A

partition represents a range of keys between a minimum key value and a maximum key

value. Keys falling within that range go to the corresponding partition. Because keys are

sorted, scan queries can be answered very easily and quickly. HBase uses the key-range

based distribution to distribute data. Figure 2.5 shows a distribution scenario. In HBase,

data is stored in a table as rows and sorted by the key i.e. the row key. As the data grows,

the table will be split into several pieces called Regions. HBase sysadmin can specify what

the splitting policy may be for the store. After the splitting, each region consists of a bunch

of sorted rows and is the basic unit of data distribution. Regions are distributed across Re-

gionServers running in each node in the cluster. The HMaster holds a request routing table

which describes the mapping between a key to a region and its server. The client interacts

with the HMaster first to figure out which RegionServers to connect for its key requests.

Then the client communicates to the RegionServers directly for data access. Although H-

18

Base can support efficient scan operations, it may suffer from load imbalance situation as

some key ranges may be accessed more frequently than other key ranges.

Figure 2.5: Key-range based data distribution in HBase.

The hash based distribution uses a hash function to randomly hash keys to different

servers. The randomness may avoid the load imbalance occurring in key-range distribution.

In practice, consistent hashing is usually preferred because it makes adding and removing

machines in the system easy [56]. Specifically, the output values of the hash function form

a ring. The same hash function is applied to all data and mapped to positions in the ring.

Each individual node in the cluster maps itself to a position in the ring as well and has

knowledge about other nodes’ positions. A node is responsible for storing all the keys that

fall in the range between this node and its predecessor node. A client can send requests to

any of the nodes. A node receiving a request acts as a coordinator that either reads or writes

data to its local storage, or forwards the request to another proper node based on the output

value of the hash function. To deal with various node capacities and data skew, a node may

be mapped to multiple positions in the ring to take more data if it has a larger capacity or

further randomize the mapping in the case of data skew. Figure 2.6 shows an example of 4

nodes mapped into multiple positions in the ring. Each position is responsible for a range

19

of keys. Although hash based distribution can avoid load imbalance, it makes serving scan

operation very difficult as data is not sorted in the backend.

Figure 2.6: The principal of consistent hashing. It is used widely in the peer-to-peer archi-

tecture e.g. Dynamo, Cassandra, Riak, and so on. Source: http://www.paperplanes.

de/2011/12/9/the-magic-of-consistent-hashing.html

Cassandra by default uses consistent hashing to partition the data. It uses a MD5 hash-

ing algorithm to hash the row key to a big integer. The output of MD5 is guaranteed to

follow balanced distribution even if the input keys do not show an even distribution. It fol-

lows the steps described above to handle requests. Voldemort and Riak also use consistent

hashing to distribute data and follow similar request handling steps.

Finally, Berkeley DB supports both the key-range based (in the form of a B-Tree [75])

and the hash based data organization. But it does not distribute data across nodes as it is a

single node oriented NoSQL data store. It simply stores data into different files.

20

2.2.3 Data Replication and Consistency

Distributed NoSQL data store usually replicates data to provide highly reliable and con-

current data access. Different replication policies may be applied and lead to different

consistency levels. Notice that Berkeley DB is not concerned with data replication and

consistency as it only stores data locally.

HBase’s replication policy and consistency inherit from the Hadoop Distributed File

System (HDFS) which is the underlying storage for HBase. HDFS replicates a block, its

basic data unit, into two other nodes in the cluster by default. If one of the three nodes is

down, the other replicas can still serve the requests. HDFS maintains strong consistency for

the data access. A write to HDFS returns only when all the replicas are written successfully.

Thus any reads after the write can get the latest value. To update a record, the new value

will be appended to the write-ahead log file stored in HDFS and saved in the MemStore (an

in-memory structure). Reads which follow can query the MemStore to get the latest value.

In contrast to HBase’s rigid and singular model of replication and consistency, Cassan-

dra, the representative of a peer-to-peer system, has a flexible scheme. Similar to HBase, it

replicates a piece of data to two other nodes. Cassandra allows applications to pick repli-

cation policies such as “Rack Unaware” which randomly places the replicas in the cluster,

“Rack Aware” which tries to place replicas in different racks in the same data center and

“Datacenter Aware” which intends to place replicas in different data centers for greater reli-

ability. Cassandra by default follows eventual consistency but allows different consistency

levels to exist in the system. It uses the quorum to manage the replicas. The application

can specify the condition of a successful operation as the number of replicas responds. For

example, a quorum with value “ONE” can have a write return when only one replica is

written successfully and other replicas are still being written. A quorum with value “ALL”

21

requires a read to return only when all the replicas respond.

2.2.4 Resource Management

NoSQL data store usually has multiple resources involved to serve requests. For example,

CPU for serialization and de-serialization, memory for caching and buffering, disk for

reading and writing, network for transferring, and etc. Configuration about how resources

are allocated plays an important role in performance in some cases.

Single node NoSQL functions as an embedded library and manages the memory as well

as disk usage all by itself. Berkeley DB manages the memory used for reads caching and

writes buffering. It also controls the way to generate the data files on disk, e.g. how big a

file is, when to flush a file, and etc.

Compared with the monotonic resource management of single node NoSQL, distributed

NoSQL store usually separates the management into layers. In HBase, HDFS stores data

and manages the disk resource, while the HBase daemon service controls the CPU, cache

and network resources. In Cassandra, the RPC layer controls the request scheduling while

the StorageProxy layer takes care of the actual reading and writing.

22

Chapter 3

Related Work

Multi-tenancy hosting of users in cloud NoSQL data stores is favored by cloud providers

because it enables resource sharing at lower operating cost. As discussed in Chapter 2, the

models of multi-tenancy can be realized in three different abstractions: shared machine,

shared table and shared process [53]. Xiong et al. [110] allow tenants to set up database

instances within VMs that share a single host. The usage of VM by tenants uses the shared

machine model where tenants share the same set of hosts. Salesforce.com [109], provided

as software-as-a-service (SaaS), uses the shared table model where different tenants share

the same set of database tables. Amazon EC2 [32] provides infrastructure-as-a-service

(IaaS) by allowing tenants to create virtual machines (VM) in shared hosts. Amazon Dy-

namoDB service [5] and Relational Cloud [23] expose themselves as platform-as-a-service

(PaaS), and follow the shared process model where tenants share the same data store pro-

cess. Next, we discuss the multi-tenancy in the shared service case and the shared data

case.

23

3.1 Storage Service Sharing

The shared process model is usually preferred to serve tenants with non-shared data [53],

because it provides reasonable isolation without imposing too much overhead as discussed

in Section 2.1. Therefore, a majority of work [24,72,84,95,104,106] about storage service

sharing targets the shared process model. This section first summarizes multi-tenancy sup-

port in different storage services classified as file system, relational database and NoSQL

store. Then it surveys the literature of resource scheduling approaches used for perfor-

mance isolation.

3.1.1 Storage Services

File system Wachs et al. use a time-quanta-based disk scheduling approach with cache

space partitioning for performance insulation among applications running on a single file

server [104]. We adopt the idea of partitioning cache and disk for tenants but coordinate the

partitioning over these two resources through a constraint optimization model rather than

treating the resource independently. In addition, we focus on a distributed store which is

more complicated than a single node server. Due to the complexity, the underlying storage

system is sometimes treated as a black box as responses coming out from it vary in several

aspects e.g. latency, size, etc. Gulati et al. use a feedback-based approach on a black-box

storage system to dynamically adjust the number of IOs issued to the storage system with

observed latency as feedback [41]. We employ the idea of feedback-based scheduling, but

model all the tenant behaviors in a unified constraint optimization problem and globally

adjust the scheduling parameters instead of having separate adjustments per tenant.

24

Relational Database Narasayya et al. propose an abstract of resource reservation called

SQLVM on resources such as CPU, I/O and memory for tenant performance isolation and

focus on I/O scheduling [72]. Das et al. present a CPU scheduling approach in SQLVM

to reserve CPU usage for CPU interference prevention [24]. While our approach uses re-

source reservation as well, we target multiple resources as a whole instead of treating them

individually, because various resources may not be entirely independent. With regard to

multiple resources, Soundararajan et al. propose a multi-resource allocator to dynamically

partition the database’s cache and its storage bandwidth so as to minimize request latency

for all the tenants [97]. However, different from [97], we intend to provide fairness across

tenants. Additionally, we attempt the partitioning in a distributed NoSQL store with hi-

erarchical architecture instead of a monolithic RDBMS. Walraven et al. utilize a central

scheduler to dispatch requests to different back-end RDBMS in a multi-tier web applica-

tion [105]. Our work relies on each node to enforce the resource reservation instead of a

central scheduler.

NoSQL Data Store Pisces [95] uses partition placement, replica selection, and fair queu-

ing to provide multi-tenant fair share in terms of throughput in Membase, a memory-based

NoSQL store with hash partitioning. Like Pisces, our work also targets system-wide fair

share. In addition, we also adapt the deficit round robin algorithm [93] for scheduling.

Unlike Pisces, our target storage abstraction has disk, memory and network resources in-

volved, and is much more complicated than the memory-based store Pisces uses. Also

unlike Pisces, our approach distinguishes different resource demands from different work-

loads. Besides, our approach does not assume a static load distribution. It can dynamically

adjust tenant weights to achieve system-wide fairness. A-Cache [84] divides the block

25

cache space in HBase and limits a tenant’s cache activities within the cache space it is

assigned to resolve the cache interference among tenants. Our experiments show that the

cache partition by itself does not resolve interference in some cases.

The open source community has made efforts on supporting performance isolation for

multi-tenancy in HBase and Cassandra [13, 44], although in a limited way. In HBase,

to prevent a tenant from taking over the entire store, quota management is used [44]. It

enforces the maximum number of tables and the maximum number of regions a namespace

i.e. a tenant can create in the store. Furthermore, to prevent the interference caused by data

and request co-location, HBase uses the concept of region server grouping [43]. It instructs

the load balancer to assign regions such that a region server only serves a particular set

of regions from a particular set of tenants. Despite the significant amount of efforts on

supporting multi-tenancy in HBase, it is still a work-in-progress. Many of the multi-tenancy

features only became available recently and some of them are not merged to the trunk yet

[43]. In addition, the current multi-tenancy support does not consider resource utilization

of workloads and uses a static way to dispatch data and requests e.g. the region server

grouping approach. As our experiments show in chapter 5, ignoring resource demands

from workloads may lead to low utilization or even failure of isolation. Our work in HBase

can shed some light of the future development of multi-tenancy support.

Compared with HBase, the support of multi-tenancy in Cassandra is lessened [13]. Cas-

sandra uses a simple weighted round robin algorithm to schedule requests from different

tenants. Such a scheduler fails to prevent the domination because it keeps looking for pend-

ing requests. An ill-behaved tenant can use a large number of threads to send requests and

take up most of the scheduling chances easily. Thus multi-tenancy support in Cassandra is

an on-going effort – there are still many open tickets [13]. Our work in chapter 4 extend-

26

s Cassandra in terms of multi-tenancy support in a scheduling approach with a feedback

control loop and some adaptive control mechanisms.

3.1.2 Resource Scheduling

Resource scheduling can regulate the resource usage to avoid domination i.e. some tenants

dominate the use of resources. These kinds of resources include CPU, cache, disk, network

bandwidth, etc. We use resource scheduling in this dissertation to enforce fair share. We

adapt the deficit round robin algorithm [93] because of its simplicity and effectiveness.

However, we present related work of resource scheduling as some of it could strengthen

the results in future work. We first present the general scheduling algorithms classified as

the virtual-time-based approach and the quanta-based approach. Then we discuss the usage

of scheduling algorithms in two typical scenarios: reservation and proportional share. Most

work on resource scheduling focus on either enforcing resource reservation [24, 42, 84], or

providing proportional share [17, 41, 95, 104].

Scheduling Algorithms Generalized processor sharing (GPS) is an idealized scheduler

and achieves perfect fairness with the assumption that tenants’ traffic is fluid [80]. Howev-

er, in real world scenarios, resource schedulers can only approximate the behavior of GPS

due to the discretionary nature of computer [80]. There are two categories of approxima-

tion: virtual-time-based approximation and quanta-based approximation. The virtual-time-

based approximation estimates a request’s start time and finish time as virtual time, and

uses them as scheduling criterions. Fair queuing scheduler (FQ) assumes request time is

linear to the size of data delivered [29]. Weighted fair queuing scheduler (WFQ) extends

FQ by considering weights in the estimation of finish time [80]. Both FQ and WFQ pick

27

a task with the smallest finish time as the next task to run. [102] presents a comparison

of different fair queuing algorithms. The quanta based approximation does round robin

scheduling to schedule tasks according to the resource quanta allocated. Weighted round

robin (WRR) scheduler allocates quanta based on tenant weights. It works for fixed size

tasks but struggles with variable size tasks because it requires an estimation of mean task

size [57]. Deficit round robin (DRR) is a variation of WRR in the sense that it approximates

GPS without knowing the mean size of tasks [93]. In each scheduling round, DRR sched-

ules tasks according to a tenant’s quanta. Remaining quanta will be accumulated to the

next scheduling round. Due to its simplicity and low time complexity as shown in [24,95],

we use DRR in our resource scheduling. We also empirically compare DRR with WFQ, a

virtual-time-based scheduler, in Chapter 5.

Reservation mClock uses reservation and limitation to mitigate I/O interference across

VMs running on the same hypervisor [42]. Its virtual-time-based scheduling approach

statically allocates I/O resources, which may cause the storage capacity to be under utilized.

In contrast, our reservation is elastic and adaptively changes according to workloads. A-

Cache reserves the block cache space for tenants to protect hotspot oriented workload [84].

Our experiments show that our framework proposed is able to resolve interference in some

cases where A-Cache fails because it only considers block cache. Das et al. calculate the

deficit of CPU reservation and propose a variant of deficit round robin algorithm (DRR)

[93] for elastic CPU reservation [24]. However, the elastic approach simply boosts the

reservation to a fixed percentage and is not flexible enough for workloads with dynamic

resource demands. Our elastic approach adjusts the reservation proportionally according

to the actual throughput a tenant yields, and is able to reallocate resources when a tenant’s

28

workload changes its resource demands. SQLVM reserves IOPS (IO operations/second)

for each tenant [72]. It employs the virtual-time-based scheduling approach in [42] and

translates the IOPS to a deadline for each tenant to guide the scheduling. Narasayya et al.

study a page replacement algorithm for fair sharing the buffer pool memory in a RDBMS

[73]. The deadline oriented approach and memory sharing technique can potentially be

used in our framework to enforce service-level objectives specified by tenants.

Proportional Share Pisces [95] adapts the deficit round robin algorithm [93] for through-

put regulation and intends to achieve Dominant Resource Fairness (DRF) [38]. We argue

that the physical resources reflected from bytes read and bytes written are not independent

and violate a fundamental assumption of DRF. Unlike Pisces, our approach asynchronously

updates tenant credit account per request instead of synchronously because the disk-based

NoSQL store may have a longer delay than a memory-based store Pisces uses. Wachs et al.

use a time-quanta-based scheduling for fair sharing the disk [104]. A tenant withholds the

disk until the given time expires even though the tenant may not fully use the disk at that

time frame, which leads to low disk utilization. Gulati et al. use the FAST-TCP algorithm

to detect congestion and provide fair share on a black box storage system [41]. Our frame-

work in HBase could adapt this approach in the HDFS scheduling level. Our schedulers

use credits to represent the chances of scheduling. The virtualization hypervisor Xen [17]

also uses the notion of credit to schedule VCPU, a virtual CPU mapped to a physical core.

However, unlike our schedulers where credits are only an approximation of the requests’

resource consumption, the CPU usage of a VCPU is represented by the credits in the Xen

scheduler directly. Additionally, a VCPU can yield its usage of the host CPU due to I/O

blocking. A request in DRR cannot yield itself once it is scheduled.

29

3.2 Data Sharing

This dissertation targets the key-value store (KVS), a specific form of NoSQL data store,

in the shared data case. KVLight, the proposed system, uses the shared table model for

multi-tenancy, which is the most efficient way of sharing data with the same format among

tenants as discussed above.

3.2.1 File System and Key-Value Store

There have been efforts on integrating parallel file system (PFS) in the cloud [2,52,68,79].

We focus on building a storage layer over parallel file system to better utilize its features.

Yin et al. compare the performance between a parallel file system and a KVS in terms

of throughput [111]. Ren et al. propose a file system that utilizes an embedded KVS to

manage the file system metadata [85]. KVLight is a KVS that is built on top of a PFS and

realizes its data reliability and high scalability features.

3.2.2 Key-Value Store As A Library

Single node KVS (S-KVS) usually embeds itself as a library to the application for high

performance access in a single node environment. Berkeley DB uses B-Tree or Hash to

organize the key-value pairs [75], while LevelDB stores data in files in a logical tree level

[62]. RocksDB [87] extends LevelDB in terms of multi-cores utilization, multi-threaded

compaction, and so on. Systems like NVMKV [69], FlushStore [26] focus on building

S-KVS over flash storage with suitable data structures. KVLight extends the usability of

S-KVS for concurrent writes in a distributed environment where traditional S-KVS does

not support.

30

A distributed KVS over multiple nodes (M-KVS) is usually adopted in real world s-

cenarios to handle concurrent access. Several M-KVSs use S-KVS as the building block

because it is lightweight and has high performance. Both Dynamo [28] and Voldemor-

t [100] use Berkeley DB as their default back-end storage. Riak builds its own S-KVS

called Bitcask [9] but allows LevelDB as one of its back-end options [86]. Most M-KVS

require persistent running servers and assume the underlying file system is not reliable. KV-

Light is designed to support concurrent access workloads but can be accessed on-demand

without persistently running servers. MDHIM [40] is a recently developed KVS that also

provides on-demand access without running persistent servers in a distributed environment

through MPI and a S-KVS i.e. LevelDB. However, unlike MDHIM, KVLight does not

require applications to run a MPI cluster with fixed number of processes due to the static

data partition.

The idea of running a storage system as a library or “serverless” system is also employed

in file systems. PLFS is a library file system which optimizes an application’s data layout

for the underlying file system [7]. DeltaFS embeds the file system metadata server as a

library in an application to remove the centralized metadata server bottleneck [120]. They

are both orthogonal and complementary to KVLight.

3.2.3 Compaction Management

Most KVS achieve high write throughput through log-based write. The proposed KVS

in chapter 6 also follows the same spirit. Updates are appended to log files rather than

applied in-place. As a result, a read has to consult several files generated by writes to get

the data. A background procedure called compaction runs periodically to remedy the read

deterioration caused by writes [3,45,46]. BigTable’s compaction merges a fixed number of

31

data files whose sizes are the smallest into one single file [16]. Cassandra and HBase also

adopt such an approach. This can reduce the number of files a read request needs to consult.

Although the number of data files decreases, a read request may still have to linearly scan

several data files because the key range of each file overlaps with others. LevelDB uses a

level compaction to compact files level by level [63]. It divides the key space into disjoint

key ranges in separate files. Files in the same level will have disjoint key ranges. In a

compaction, a file in level-L and files in level-(L+1) with overlapped keys are merged into

a new file in level-(L+1). Therefore, a read request can be answered without linear scanning

multiple files. The disjoint partitioning is not directly applicable in our system because we

need to accommodate concurrent writes from different processes. Instead, we propose a

tree-based compaction strategy to approximate the level compaction. Additionally, we also

allow several compactions to run in parallel to speed up the entire remedy process. This is

similar to the multi-threaded compaction in RocksDB [87] which only applies in S-KVS.

Ahmad et al. propose a compaction management framework that offloads the compaction

on a dedicated server to lower the impact on actual workloads and uses a cache pre-fetching

scheme to avoid the performance penalty from offloading [3]. We adopt the offloading idea

and leave the cache usage in future work.

32

Chapter 4

Multi-Tenant Fair Share in NoSQL Stores

As discussed in Section 1, often for economic reasons, a NoSQL data store will be shared

by multiple tenants. The independent tenants may be from a single organization or from

different organizations. Tenant workloads operate on disjoint data sets and a tenant should

not see the impact of the workloads of other users. In a cloud environment, tenants often

want to treat the entire storage system as a black box that can scale on demand, while in

reality their data sets are usually co-located and cause resource contentions [95]. Thus a

critical goal of multi-tenancy is fair sharing across tenants. In a fair-shared system, fairness

is achieved in the sense that a tenant gets her share of the system no matter what other

tenants do, i.e., a well-behaved tenant should not experience any impact from misbehaved

tenants. Fair share is also the foundation of providing different service level agreements to

different tenants. Especially in a cloud environment, some tenants are willing to pay more

for a larger share of system resources.

Fair share can be realized at two different levels: 1) at the infrastructure level where

fairness is guaranteed by directly scheduling physical resources (disk, CPU, network, etc.)

or 2) at the application level where fairness is guaranteed by application level scheduling

e.g., Hadoop fair scheduler [35] schedules based on task slots and Moab scheduler [98]

33

schedules based on compute nodes. For traditional storage systems, fair share is usually

provided at the infrastructure level and involves a single physical resource on a single ma-

chine [97], e.g., disk bandwidth, CPU, network bandwidth, etc. Ensuring fair sharing in a

distributed NoSQL data store is more challenging because NoSQL data stores engage mul-

tiple types of resources: cache memory, CPU, disk. It is difficult to maintain a scheduler

and queues for each type of physical resource because these schedulers need to cooperate

to serve requests. In addition, the use of a coordinator node in Dynamo style NoSQL stores,

e.g., Cassandra, involves multiple nodes to handle one request. The coordinator node takes

requests and forwards the requests to the nodes where the data is located. Such features

require the fair scheduling algorithms to coordinate among nodes. Therefore, our proposed

scheduling approach for ensuring fair share in a multi-tenancy NoSQL store is done at the

application level.

In this chapter, we propose a novel approach to provide fair share across multiple tenants

for NoSQL data stores, especially for Cassandra [14,60]. The approach is designed to work

in a distributed manner – cooperation among nodes is taken into account to provide system-

wide fairness (global fairness) instead of single node fairness (local fairness). Furthermore,

the system provides fair share for read operations by preventing the head-of-line blocking

impact of scan operations. In summary, this chapter makes the following contributions:

• A framework that employs a feedback control loop to monitor and schedule requests;

• A scheduler based on the adaption and extension of deficit round robin algorithm [71]

with linear programming;

• Adaptive control approaches to provide global fairness instead of local fairness and

protect reads from scans;

• Experimental results show effectiveness of our system.

34

4.1 Fairness Experiments in Cassandra

50 100 150 200

4000

8000

12000

16000

20000

24000

Th
ro

ug
hp

ut
 (o

p/
s)

Time (seconds)

 50 r 50 r 50 r 50 r 50 r

(a)

50 100 150 200

6000

12000

18000

24000

30000

36000

42000

Th
ro

ug
hp

ut
 (o

p/
s)

Time (seconds)

 50 r 50 r 100 r 200 r 300 r

(b)

50 100 150 200
8000

12000

16000

20000

R
ea

d
Th

ro
ug

hp
ut

 (o
p/

s)

Time (seconds)

 50 r 50 r 50 r

0

100

200

300

400 50 s 50 s

S
ca

n
Th

ro
ug

hp
ut

 (o
p/

s)

(c)

Figure 4.1: Throughputs of different workloads in a shared Cassandra. Each tenant’s

throughput is represented by a line of a different color. The legend shows the number

of threads a tenant uses and what requests it is sending, e.g.,“50 r” means the tenant uses

50 threads to send read requests, “50 s” means the tenant uses 50 threads to send scan re-

quests. (a) Tenants using the same number of threads can fair share. (b) Unfairness occurs

when tenants use different # threads. (c) Unfairness occurs when read operations coexist

with scan operations.

We motivate the need of fair share support in Cassandra as follows. We use Yahoo

Cloud Storage Benchmark (YCSB) [20] to generate the workloads and simulate multiple

tenant access. We set up a 9-node Cassandra cluster and allocate 5 additional nodes to run

the YCSB benchmark clients. Each tenant owns 1,000,000 rows, each row size is 1.2 KB,

the row is pre-loaded by YCSB in a table that is independent from other tenants. A YCSB

client connects to multiple nodes in a Cassandra cluster through multiple TCP connections.

Each TCP connection is managed by one thread which can be observed from the server

side as well because Cassandra launches one thread per connection to handle requests.

Like [22, 95, 105], we measure operation throughput i.e. operations per second (op/s) for

35

each tenant to represent a tenant’s share on the system. For more details of the experiment

setup, please see section 4.4. Figure 4.1 plots the throughput as a function of time.

In the first experiment, Figure 4.1a demonstrates that all tenants see roughly the same

throughput at 17,000 op/s which we interpret to mean that tenants each receive a fair share

of Cassandra under this scenario. In the second experiment, Figure 4.1b shows tenants

with 50 threads see throughput of about 6,000 op/s while the tenant with 300 threads sees

throughput that is 7 times higher (about 40,000 op/s). Compared to the first experiment,

throughput for the tenants with 50 threads drops 60%. Our supposition is that the large

drop in performance to the 50-thread tenant is because Cassandra’s resource allocation is

done based on the size of the workload that the client generates. This test clearly shows that

in a shared Cassandra cluster, a tenant’s throughput can be influenced by other tenants’ de-

mands, i.e., the number of threads. Figure 4.1c delineates the result of the third experiment.

The read-only tenants’ throughput oscillates dramatically and is worse than the one in Fig-

ure 4.1b. Even with the same number of threads, the read-only tenants do not get similar

throughput to each other. We attribute the difference to the impact of the scan operation

because it makes the system suffer from head-of-line blocking. In summary, the fair share

among tenants of Cassandra depends on tenant’s workload. Both the number of threads a

tenant uses and types of requests a tenant sends can lead to unfairness in Cassandra when

multiple tenants were present.

In the first experiment, Figure 4.1a, all tenants run a read-only workload that reads one

row per request. Tenants are configured at 50 threads each, which saturates the throughput

of our Cassandra cluster. We can tell from Figure 4.1a that all tenants see roughly the

same throughput at 17,000 op/s which we interpret to mean that tenants each receive a fair

share of Cassandra under this scenario. In the second experiment, we configure a unique

36

number of threads for each tenant: 50, 50, 100, 200, and 300 threads for the five tenants.

We rerun the read-only workload to see if tenants again see similar throughput. Figure

4.1b shows that tenants with 50 threads see throughput of about 6,000 op/s while the tenant

with 300 threads sees throughput that is 7 times higher (about 40,000 op/s). Compared

to the first experiment, throughput for the tenants with 50 threads drops 60%. Our hunch

is that the large drop in performance is because Cassandra’s resource allocation is done

based on the size of the workload that the client generates. A 300-thread client generates

requests faster than a 50 thread client; Cassandra sees this and adjusts resources. This

test clearly shows that in a shared Cassandra cluster, a tenant’s throughput is influenced

by other tenants’ demands. Tenants with more threads deprive tenants with fewer threads’

share of the cluster and thus lead to unfairness from the perspective of the smaller tenant.

In the third experiment, we configure 50 threads per tenant. Three of the tenants run the

same read-only workload as in the first experiment (read-only tenant), while the other two

tenants run a scan-only workload that scans 200 rows per request (scan-only tenant). Figure

4.1c delineates the result. The read-only tenants’ throughputs oscillate dramatically and are

worse than the ones in Figure 4.1b.

In summary, the fair share among tenants of Cassandra depends on tenant workloads.

We demonstrate that both number of threads and request type can lead to unfairness in

Cassandra when multiple tenants were present. Our fairness control approach targets these

two factors to provide fair share for multi-tenancy.

4.2 Request Scheduling

Two architectural components of Cassandra are involved in request handling: an RPC ser-

vice that exchanges information across the network, and a StorageProxy service for read-

37

ing and writing data from all replicas, maintaining certain consistency levels, detecting and

handling failures. This is shown in Figure 4.2. Our proposed approach adds a third compo-

nent that resides between RPC and StorageProxy and treats the latter as a black box. Such

a design decouples our scheduler from the underlying storage technology, making it easier

to adapt to different situations e.g., using solid state drive instead of hard disk as the storage

media.

Our proposed fairness control scheduler, working at the application level, uses feedback

collected from responses returned from the StorageProxy to guide scheduling. As such, it

does not track the number of physical resources a request consumes, a solution that is more

modular. The fairness control scheduler is designed with four major pieces: 1) Queues that

hold tenants’ requests; 2) Request Scheduler that schedules requests to the StorageProxy,

3) Request Models that collect different metrics from a response as feedbacks to support

scheduling; 4) Adaptive Controller that adaptively changes some of the scheduling parame-

ters e.g., weights. Each tenant has its own queue and request model. When a request arrives

at a coordinator node, the RPC service puts it into the corresponding tenant’s queue. The

scheduler schedules a request from queues to the StorageProxy for processing. When a

response is returned, the fairness control scheduler collects metrics, e.g., number of bytes

read, number of requests in last second, etc., as feedback from responses and serves them

as input to the Request Model.

The intuition behind request scheduling for fair share is this: if a tenant has consumed

more resources in the past, its upcoming requests will get fewer opportunities to be sched-

uled. This draws from the Moab scheduler [98] where future jobs have fewer chances to be

scheduled if past jobs consume more resources. We use the deficit round robin (DRR) [93]

algorithm to schedule requests because of its simplicity and effectiveness, and linear pro-

38

Figure 4.2: Architecture.

gramming to model the aforementioned intuition. DRR creates a credit account giving

some number of initial credits to each tenant. Upon a request, DRR removes credits from

the tenant’s credit account based on the size of the resource consumption of the request.

A request will not be scheduled if the tenant’s credit account has insufficient credits. The

scheduler then does round robin scheduling among the tenants. A tenant’s credit account

is refilled when it is its turn to be scheduled again in the round robin circuit. We adapt and

extend DRR for request scheduling as follows.

First, the scheduler uses bytes read and written as delivered by the StorageProxy as an

indirect means to measure the physical resource consumption. It assumes the existence

of a linear function that could combine bytes read from and bytes written to the Storage-

Proxy, which allows us to estimate and quantify underlying physical resources consump-

tion. Dominant resource fairness (DRF) [38] could be used here, and this is what Pisces

does [95]. However, we argue that the physical resources reflected from bytes read and

bytes written are not independent which violates a fundamental assumption of DRF. We

thus leave the usefulness of DRF for future work. Second, DRR requires that the resource

39

consumption of a request is known in advance. This is impossible for a read operation

because Cassandra does not know how many bytes a read operation requests before it pro-

cesses the request. Thus we will predict the size of an upcoming read operation using a

simple averaging of bytes in a sliding window of bytes of previous read operations. Other

approaches could be used here, for example linear regression. Third, to provide fair share

within a certain time frame, we refill a tenant’s credit account only when all tenants’ credit

accounts run dry. The number of credits a tenant has indicates how big its chance is to be

scheduled in in the current round of DRR and should be related to her previous resource

consumptions, i.e., the more resources she consumes, the less opportunities her request-

s will get scheduled. We use linear programming to implement this idea and describe it

below.

Table 4.1: Notations.

Notations Description

n Number of tenants

bi Resources consumed by tenant i since last refill

Bi Resources estimated to be consumed by tenant i

xi Credits assigned to tenant i

mi Scalar to translate credits to resources for tenant i

wi Weight for tenant i

M Total credits for all tenants

Notations in Table 4.1 are used for discussion. bi is the sum of bytes read and written

in current implementation. We express Bi in a linear equation in equation 4.1. mi × xi is

the resource tenant i can have if xi credits are assigned to her. Notice that bi is collected as

40

feedbacks and mi is a positive constant.

Bi = B(xi) = bi +mi × xi, i = 1, 2, . . . , n (4.1)

The optimization objective is to achieve max-min fairness which is expressed in equa-

tion 4.2 where {xi} are control variables. By solving equation 4.2, we can have {xi} that

enforce max-min fairness among tenants. Meanwhile, if bi is large, then xi will be small

because of the optimization objective and constraints in equation 4.2.

max
x1,...,xn

min
x1,...,xn

{B(xi)}

s.t.
∑

1≤i≤n

xi = M

xi ≥ 0, i = 1, 2, . . . , n

(4.2)

To convert equation 4.2 to the standard form in linear programming, we introduce an

auxiliary variable z and rewrite equation 4.2 to equation 4.3.

max
x1,...,xn

z

s.t. − (bi +mi × xi) ≤ −z∑
1≤i≤n

xi = M

xi ≥ 0, i = 1, 2, . . . , n

(4.3)

We show that equation 4.3 has optimal solutions. First, equation 4.3 has at least one

feasible solution, e.g., x1 = M , xi = 0, i = 2, . . . , n. Second, z is bounded as shown in

equation 4.4. Since z is a convex function and bounded, and feasible solutions exist for

constraints, an optimal solution exists for equation 4.3 according to [99].

0 ≤ z ≤ max {bi +mi × xi} ≤ max {bi +mi ×M} (4.4)

41

Besides even tenant share, our system allows a system admin to set weights for each

tenant to have weighted tenant share. Each tenant is given weight wi. A tenant with a larger

weight gets more share of the system. We extend our model in equation 4.3 to consider

different weights for different tenants. To avoid confusions, we use variable u and rewrite

the linear model in equation 4.5. The proof of existence of optimal solution is similar to

the one for equation 4.3.

max
x1,...,xn

u

s.t. − (bi +mi × xi) ≤ −u× wi∑
1≤i≤n

xi = M

∑
1≤i≤n

wi = 1

xi ≥ 0, i = 1, 2, . . . , n

wi ≥ 0, i = 1, 2, . . . , n

(4.5)

We present the scheduling algorithm in Algorithm 1.

4.3 Adaptive Control Mechanisms

The adaptive control mechanisms include the local weight adjustment approach to provide

system-wide fair share and scan operation splitting to avoid head-of-line blocking for read

operation.

Local weight adjustment The scheduling approach presented above focuses on provid-

ing fair share in a single node. We call such fairness local fairness and system-wide fairness

as global fairness. It is easy to show local fairness results in global fairness. However, in a

42

Algorithm 1 Request Scheduling Algorithm
1: crediti is the credits in tenant i’s credit account.

2: esti is the estimation of a request resource demand for tenant i.

3: procedure SCHEDULE

4: for each tenant i do

5: esti← RequestRcEstimation(tenant i)

6: while mi × crediti ≥ esti do

7: Take a request if tenant i’s queue is not empty.

8: crediti ← crediti − esti/mi

9: end while

10: end for

11: if RefillCredits() is true then

12: {xi} = LPModel({bi}, {wi}), i = 1, 2, . . . , n

13: Assign credit xi to tenant i, i = 1, 2, . . . , n

14: end if

15: end procedure

16: procedure REFILLCREDITS

17: if all tenants’ credit accounts run dry then Return True

18: elseReturn False

19: end if

20: end procedure

43

distributed environment, local fairness is not a sufficient condition for global fairness and

can lead to inefficiency. We demonstrate this through example: for the experiment in Figure

4.1a, we plot the distribution of cumulative throughput over nodes for each tenant within a

certain time frame in Figure 4.3a. It shows that although tenants have global fairness, i.e.,

their throughputs are about the same as Figure 4.1a shows, they actually receive different

throughputs on different nodes. For instance, tenant #1 has the lowest throughput in node

#9 and the highest throughput in node #3, while tenant #3 has the lowest throughput in

node #3 and the highest throughput in node #5. If we enforce local fairness for tenant #1

in node #9, then throughputs of other tenants are constrained unnecessarily.

To investigate the causes, we plot the distribution of number of threads each tenant uses

to connect over nodes in Figure 4.3b. We see that a tenant’s cumulative throughput on a

node is proportional to its number of threads connected to the same node. This matches

our expectation that the number of threads is related to throughput. In summary, Figure

4.3 suggests that 1) global fairness can be achieved without local fairness; 2) number of

threads can be used as a hint to regulate throughput.

We thus propose a local weight adjustment approach to achieve global fairness. Algo-

rithm 2 presents the approach. The idea is to recalculate the weight a tenant should have

on a particular node based on the ratio of its thread count on that node to its total thread

count on all the nodes (line 10 to 15). Then for each node, we can calculate the new weight

assignment based on the tenants’ new credits (line 16 to 20). In this step, the maximum

credits a node has would be changed and different from each other, although the total cred-

its a tenant has within the system is not changed. Finally, the algorithm disseminates the

new weight assignment along with the new maximum credit for each node (line 21 to 24).

44

Algorithm 2 Local Weight Adjustment Algorithm
1: total is the total credits for the entire system.

2: n is the number of tenants, m is the number of nodes.

3: ci,. is the total credits for tenant i. ci,j is credit for tenant i on node j.

4: di,. is the total thread count for tenant i. di,j is the thread count for tenant i on node j.

5: wi,j is the weight for tenant i on node j. Wi is the weight for tenant i initially.

6: procedure LOCALWEIGHTADJUSTMENT

7: for each tenant i do

8: ci,.← total ×Wi

9: for each node j do

10: ci,j ← ci,. × (di,j/di,.)

11: end for

12: end for

13: for each node j do

14: for each tenant i do

15: wi,j ← ci,j/
∑

1≤i≤n ci,j

16: end for

17: end for

18: for each node j do

19: Disseminate wi,j, i = 1, . . . , n and

20:
∑

1≤i≤n ci,j to node j.

21: end for

22: end procedure

45

1 2 3 4 5 6 7 8 9
0

3

6

9

12

N
um

be
r o

f O
pe

ra
tio

ns
 (1

05)

Node

 Tenant1 Tenant2 Tenant3 Tenant4 Tenant5

(a) Cumulative throughput distribution.

1 2 3 4 5 6 7 8 9
0

10

20

30

40

Th
re
ad

s

Node

 Tenant1 Tenant2 Tenant3 Tenant4 Tenant5

(b) Thread counts distribution.

Figure 4.3: Distributions of cumulative throughput and thread count over Cassandra nodes.

Interference between read and scan We have demonstrated that the presence of scan

operations will influence throughput of read operations. But read operations and scan op-

erations often coexist in the same system. MapReduce style workloads frequently use scan

operations while front-end workloads perform read operations. The read operations have

to wait for physical resources held by the scan operations, a problem known as head-of-line

blocking.

One solution is to use preemption to allow waiting operations to deprive physical re-

sources from current operation temporarily. However, not all physical resources are pre-

emptable, e.g.,network bandwidth and disk I/O. In Cassandra, once an operation is sched-

uled to process, it is difficult to suspend that operation because it may trigger operations on

other nodes. Instead of exploring how to suspend an ongoing operation temporarily, we use

a simple approach, which is used in other systems as well [55, 106]. That is to split a scan

operation into small pieces such that each piece does not lead to head-of-line blocking. The

scheduler then schedules small pieces of scan operations along with read operations so that

46

a read operation can get more chances to be scheduled. The results from these small pieces

need to be merged before handing back to the client. This approach trades performance of

scan with performance of read because the execution of a scan operation is interleaved with

the execution of read operation and the number of disk seeks is increased due to multiple

small pieces. The size of a piece is negatively correlated to the performance of read, and

positively correlated to the performance of scan. As the size increases, the throughput of

scan goes up and the throughput of read goes down, vice versa. Automatically tuning the

number of pieces a scan operation is chopped, based on different workload scenarios, is an

ongoing work.

4.4 Evaluation

We use computation resources of FutureGrid [36] in the evaluation of our system. Each

node has 2 Intel(R) Xeon(R) 2.93 GHz CPUs, 25 GB memory and a 800 GB local disk.

Nodes are connected with InfiniBand. Using a 9-node cluster, we install a modified version

of Cassandra 1.2.4 equipped with the fairness control scheduler in every node retaining the

default Cassandra settings. On the client side, we use YCSB [20] to generate the workloads

and use 5 additional nodes to run the clients to simulate 5 tenants accessing Cassandra.

Each tenant stays in a separate node, so interference on the client side is avoided. Each

tenant has its own Keyspace with one ColumnFamily. We pre-load 1,000,000 rows into each

tenant’s Keyspace. The row size is 1.2 KB and replication factor is set to 3. The consistency

level is set to 1. The tests are run with a read-only workload and a read-write workload.

For the former, all tenants send read operations only. For the read-write workload, some

tenants send read operations while other tenants send an even mix of read operations and

write operations. We configure the target throughput of the read-only workload to be a

47

large number so that a tenant can send as many read operations as possible. The target

throughput of the read-write workload is configured to be 25,000 op/s so as to avoid disk

saturation and dramatic increase of data size.

We use operation throughput, ops/second (op/s), to represent a tenant’s share of the

system. We compute min-max ratio of throughput as follows.

rateminmax = min {throughputi}/max {throughputi}, i = 1, 2, . . . , n, (4.6)

where throughputi is the throughput of tenant i, among all tenants as the fairness metric.

To get a stable throughput, we report the results after a ramp-up time of 20 seconds. We first

evaluate the overall performance of our system by running different workloads on different

data sets. Then we study the effectiveness of local weight adjustment. Finally, we test the

system with read and scan mixed workload.

4.4.1 Overall Performance

We begin by assessing whether our system can provide fair share when tenants use different

numbers of threads. Then we test if the system can differentiate tenants based on their

weight configurations. To test the system thoroughly, in addition to the fixed size data set,

we use YCSB to pre-load 1,000,000 rows, whose row size varies from 100B to 1.2 KB

uniformly for each tenant. Figure 4.4 and 4.5 plot the throughputs as a function of time.

The letter in the legend stands for the workload a tenant runs. For instance, “50 r” means

the tenant uses 50 threads to send read operations, while “50 rw” means the tenant uses 50

threads to send read as well as write operations. The percentage of throughput decrease

measures the performance degradation comparing with the vanilla system. The throughput

represents the system throughput and is measured as aggregated average throughput from

48

all tenants. Table 4.2 summarizes the min-max ratio for different runs.

50 100 150 200
6000

8000

10000

12000

14000

16000

Th

ro
ug

hp
ut

 (o
p/

s)

Time (seconds)

 50 r 50 r 100 r 200 r 300 r

(a) Fixed size data, even share, 16%

throughput decrease

50 100 150 200
10000

12000

14000

16000

18000

20000

Th
ro

ug
hp

ut
 (o

p/
s)

Time (seconds)

 50 r 50 r 100 r 200 r 300 r

(b) Variable size data, even share, 15%

throughput decrease

50 100 150 200
0

4000

8000

12000

16000

20000

24000

Th
ro

ug
hp

ut
 (o

p/
s)

Time (seconds)

 50 r 50 r 100 r 200 r 300 r

(c) Fixed size data, weighted share,

16% throughput decrease

50 100 150 200 250 300

4000

8000

12000

16000

20000

24000

28000

Th

ro
ug

hp
ut

 (o
p/

s)

Time (seconds)

 50 r 50 r 100 r 200 r 300 r

(d) Variable size data, weighted share,

16% throughput decrease

Figure 4.4: Fair share for read-only workload on data sets with different tenant share con-

figurations.

We run the read-only workload for even tenant share i.e., weight 0.2 for each tenant in

this case. We configure the number of threads as 50, 50, 100, 200, and 300 for each tenant

respectively. Figure 4.4a and 4.4b show the results. As reported from Table 4.2, the mean

49

min-max ratio is close to 1, i.e., 0.95 (std. 0.02) for fixed size data and 0.94 (std. 0.02)

for various size data. Therefore, our system can provide fair share in either fixed size or

variable size data given that one tenant demands more (e.g., the one with 300 threads) than

another tenant does (e.g., the one with 50 threads).

Table 4.2: Fairness of workloads on across data sets.

Workload Data Size Mean rateminmax Std. rateminmax

Read-Only Fixed 0.95 0.02

Read-Only Variable 0.94 0.02

Read-Write Fixed 0.90 0.04

Read-Write Variable 0.91 0.03

Additionally, we run the same read-only workload with the same threads setting as

above, but configure weighted tenant share. Specifically, the weight for each tenant is

configured as 0.3, 0.1, 0.2, 0.1, and 0.3. The corresponding number of threads is 50, 50,

100, 200, and 300 for each tenant. The purpose is threefold. First, we test if tenants’

throughputs could be differentiated based on their weights. Second, we evaluate if the

number of threads has an impact on the differentiation by configuring tenants with 50 and

300 threads to both have weight 0.3. Third, we want to see if the tenant with weight 0.2

will see similar throughput compared to the one in even tenant share. Figure 4.4c and 4.4d

depict the results. It is clear that 5 tenants are classified into 3 categories and tenants’

throughputs are roughly proportional to 3:2:1 which is equal to their weights ratio. Note

that the tenant with 50 threads gets similar throughput as the tenant with 300 threads does,

showing that the fairness control scheduler can eliminate the impact of a tenant’s thread

count in differentiation. In addition, the tenant with weight 0.2 gets similar throughput

compared to the one in even tenant share. That verifies the system can preserve a tenant’s

50

throughput in either even or weighted tenant share.

50 100 150 200
6000

8000

10000

12000

14000

16000

Th

ro
ug

hp
ut

 (o
p/

s)

Time (seconds)

 50 r 100 r 200 r 50 rw 100 rw

(a) Fixed size data, even share, 25%

throughput decrease

50 100 150 200
10000

12000

14000

16000

18000

20000

Th
ro

ug
hp

ut
 (o

p/
s)

Time (seconds)

 50 r 100 r 200 r 50 rw 100 rw

(b) Variable size data, even share, 24%

throughput decrease

50 100 150 200
0

4000

8000

12000

16000

20000

24000

Th
ro

ug
hp

ut
 (o

p/
s)

Time (seconds)

 50 r 100 r 200 r 50 rw 100 rw

(c) Fixed size data, weighted share,

25% throughput decrease

50 100 150 200

4000

8000

12000

16000

20000

24000

28000

Th

ro
ug

hp
ut

 (o
p/

s)

Time (seconds)

 50 r 100 r 200 r 50 rw 100 rw

(d) Variable size data, weighted share,

23% throughput decrease

Figure 4.5: Fair share for read-write workload on data sets with different tenant share

configurations.

Next we rerun the tests with the read-write workload. Three tenants are configured to

send read requests with 50, 100, and 200 threads respectively (read-only tenants). The oth-

er two tenants are configured to send an evenly mixed workload of reads and writes with 50

51

and 100 threads respectively (read-write tenants). Figure 4.5a and 4.5b report the through-

puts of even tenant share, while figure 4.5c and 4.5d display the throughputs of weighted

tenant share. The percentage of throughput decrease comparing with vanilla Cassandra is

also reported in each case. Compared to throughputs in Figure 4.4, the throughputs in Fig-

ure 4.5 are similar in the sense that tenants get proportional throughputs to their weights

no matter how many threads they have. However, the performance degrades in terms of

throughput decreases, min-max ratio also drops and oscillates. We attribute the perfor-

mance degradation to the inability of isolating the performance of read operations from

the performance of write operations. Write operations in Cassandra have read operations

to read more MemTables and SSTables for the same tenant. This triggers the compaction

procedure [60], which requires many disk I/O and influences other tenants’ throughputs.

Similar situation also happens to Bigtable like systems [16]. To isolate writes from reads, a

performance model that can predict the impact of internal writes is required. That is given

a set of writes, the model should be able to predict the amount of internal writes. We leave

such a performance modeling and the isolation between read and write for future work.

Finally, we quantify the throughput degradation caused by the fair share scheduler.

Throughput degradation is measured from the client side. This work does not extend to

server side profiling to discern the precise location and type of throughput degradation. We

first measure degradation in scenarios having interference, i.e. the scenes in Figure 4.4 and

4.5. The percentage of aggregated throughput decrease varies by scenarios. The read-only

workloads experience about 16% degradation while the read-write workloads have about

25% degradation. We think the reason is the inaccurate estimate of resources consumed in

read-write mixed workloads imposes unnecessary constraints on requests. We further study

the degradation in a fair share scenario by having all tenants run the read-only workload

52

and the read-write workload respectively with 50 threads per tenant. We observe about

9% throughput decrease for both workloads. We think the reasons for smaller degradation

compared with interference scenarios are two folds. First, the 50-threads workloads do not

fully utilize the system as evidenced by smaller aggregated throughput generated. Second,

smaller thread count incurs fewer contentions to the scheduler.

The main reason behind these degradations, we believe, is the number of credits used

in the scheduling. Intuitively, the number of credits is directly proportional to throughput,

but inversely proportional to fairness. The more credits are given, the fewer constraints the

scheduler will impose, which results in higher throughput. Meanwhile, however, fairness

decreases because the scheduler has less control over throughput regulation. We speculate

that increasing 15% of the credits given might help to lower the overhead without hurting

too much of fairness based on the observations that read-only workloads experience about

15% overhead and fairness (i.e. the min-max ratio) is very close to 1. We experimentally

study the impact of the number of credits on overhead and fairness in the follow-up work in

Chapter 5, and present a near-optimal setting of the credit to avoid high overhead without

sacrificing too much fairness. It is an open problem to profile the server side system to

better tune the credit parameter.

4.4.2 Effectiveness of Adaptive Control Mechanisms

Local weight adjustment We compare the throughputs of the read-only workload as

well as the read-write workload with local weight adjustment to the ones without it. Two

thread distributions are tested. The first one is random distribution where each tenant thread

randomly picks a server node to connect to, while the second one is gaussian distribution

where each tenant thread picks a server node based on a pre-defined gaussian distribution.

53

Figure 4.6 presents the normalized throughputs. When the local weight adjustment is in

place, the bars with red and blue colors have similar heights on fixed size data and variable

size data. Therefore, the local weight adjustment can handle different thread distributions.

When there is no local weight adjustment present, the gray bar is higher than the green bar

which means the random distribution gets more throughputs than the gaussian distribution

does in our system. Additionally, the throughput with the local weight adjustment is up

to 8% higher for random distribution and 15% higher for gaussian distribution than the

throughput without it respectively. We attribute the throughput improvement to the ability

that the local weight adjustment can redistribute the weights based on a global view of

tenants’ demands and avoid unnecessary constraints.

read,fixed read,variable r/w,fixed r/w,variable
0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
ts

 (o
p/

s)

 local-random local-gaussian random gaussian

Figure 4.6: Improvement in throughput through local weight adjustment. “local-random”

and “local-gaussian” mean the local weight adjustment is applied to random and gaussian

thread distribution while “random” and “gaussian” mean no local weight adjustment.

54

50 100 150 200
8000

12000

16000

20000

R
ea

d
Th

ro
ug

hp
ut

 (o
p/

s)

Time (seconds)

 50 r 50 r 50 r 50 s 50 s

0

30

60

90

S
ca

n
Th

ro
ug

hp
ut

 (o
p/

s)

Figure 4.7: Fair share protects the throughput of the read-only workload from scan opera-

tions.

Interference between read and scan We test the effectiveness of our approach under

read + scan workloads. The test uses 3 tenants who send read operations (read tenants)

while the 2 remaining tenants send scan operations (scan tenants). A scan operation scans

200 rows per request. All tenants run 50 threads. The scheduler splits a scan request into 5

rows per request. The results, summarized in Figure 4.7, show throughput of read tenants

at close to 15,000 op/s which is similar to the throughput in Figure 4.4a. In addition, the

throughput oscillation is much smaller than shown in Figure 4.1c. This demonstrates that

our approach can preserve the read tenant’s throughput under a mixed load of read tenants

and scan tenants.

4.5 Summary

In this chapter, we examined the fairness in NoSQL data stores under multi-tenancy, with a

focus on the Cassandra NoSQL store. We propose extensions, both methodologically and

through a prototype implementation, of ensuring fairness that employs a deficit round robin

55

algorithm with linear programming to schedule tenants’ requests. We adaptively adjust

tenants’ weights on each node to improve throughput. Finally we protect the throughput of

read operations in face of scan operations by splitting one scan operation into small pieces

and scheduling them along with read operations.

Future study is of the impact of writes on reads so as to isolate read and write perfor-

mance. Besides, statistical machine learning may be effective in predicting future resource

consumption and detect slow tenants. Additionally, different resource models that either

combine resource types in a non-linear function or use the dominant resource fairness ap-

proach may improve fairness further. Finally, it appears beneficial to extend Cassandra’s

gossip protocol to integrate a more robust leader selection algorithm for local weight ad-

justment.

56

Chapter 5

Workload-Aware Resource Reservation for Multi-Tenant NoSQL Stores

Resource reservation is a common approach to avoiding performance interference among

tenants. The basic idea is to dedicate a portion of a resource to a tenant for its use. Chapter

4 uses throughput regulation to provide fair access among tenants. Such an approach can

be viewed as a special case of resource reservation – throughput represents the underlying

actual resource consumptions and is treated as a “resource” for each tenant.

As workloads usually have multiple resources involved e.g. memory for caching, CPU

for serialization or deserialization, disk for reading or writing data, a tenant needs to acquire

a reservation on each resource. But reservations are not all alike: a workload that has a

hotspot access pattern may require more cache than does a workload with a random access

pattern. An equal reservation of cache and disk usage for both workloads will not yield

the best result. So reservations have to be based on workload characteristics, also called

workload-aware reservation.

A workload-aware reservation becomes more complicated if a workload bears dynamics

i.e. a workload changes its access pattern during the access, which requires the system to

be able to adjust accordingly. In addition, the distributed nature of NoSQL stores makes

the workload-aware reservation more difficult. For a typical NoSQL store, a request is sent

57

to one node which may contact several other nodes to fetch the data. It is complicated to

have a coordination among different resources and nodes.

Previous research on preventing performance interference does so by simplifying the

scenario, either by considering a single resource [24, 59, 84, 105] (e.g. CPU, cache), or

representing multiple resources consumption as a single “virtual resource” consumption

[95, 113]. Similarly, work in Chapter 4 uses throughput to approximate the underlying

resource consumption of each tenant and regulates the throughput to provide fair access.

Ignoring various resource demands that workloads have could lead to low resource utiliza-

tion as the system imposes unnecessary constraints to tenants and even failure of preventing

interference.

Therefore, we propose Argus (the 100-eyed watchman in Greek mythology), a workload-

aware resource reservation framework that targets multiple resource reservations and aims

to prevent performance interference, in terms of fair throughput violation, in NoSQL stores.

Specifically, Argus focuses on cache and disk reservations. It enforces the cache reserva-

tion by splitting the cache space among tenants. It approximates the disk usage by the

throughput of a distributed file system and uses a request scheduler to enforce throughput

reservation. Argus models the workload-aware reservation as a constrained optimization

and uses the stochastic hill climbing algorithm to find the proper reservation according to

various workloads’ resource demands. We applied the idea of Argus to HBase [1], a state-

of-art NoSQL data store. In summary, this chapter makes the following contributions:

• Quantitative evidences for existence of interference in HBase;

• Mechanisms to enforce reservation on both cache and disk resource under multi-

tenancy;

• Offline performance model and stochastic hill climbing algorithm to discover a near-

58

optimal resource reservation plan;

• Experimental results that show our system successfully prevents interference across

tenants.

5.1 Analysis of Interference

NoSQL data stores are typically deployed across multiple nodes for enhanced availability

and performance. Data are represented as rows and distributed across nodes. We motivate

our approach by showing that NoSQL data stores can suffer from performance interfer-

ence when multiple tenants access simultaneously; and even that a reservation for a single

resource can fail to prevent interference in some cases.

5.1.1 Setup

As [84,95,113] show, multi-tenant performance interference could occur in various NoSQL

stores. In this chapter, we study HBase [1], a popular NoSQL store. HBase is an open

source implementation of Google BigTable [16]. It abstracts the data partition and distri-

bution to a distributed file system i.e. HDFS [96] and runs on top of it. HBase follows the

master-slave design: the HMaster on the master node is responsible for coordinating and

monitoring slaves nodes activities; the HRegionServers on the slave nodes handle client

requests directly. The HRegionServer exchanges data with HDFS in the unit of a block

and implements a block cache equipped with a LRU replacement algorithm to avoid HDFS

access. Thus HBase can be viewed as a two-level hierarchy storage system and provides a

clean separation between different resource managements in different levels: HDFS man-

ages the disk resource while HBase itself takes care of the caching and CPU usage.

59

We use the Yahoo Cloud Storage Benchmark (YCSB) [20] to simulate multi-tenant

access. We set up a 28-node HBase cluster with block cache size set to 1,200 MB per node.

We preload 80,000,000 rows for each tenant, where a row is about 1.2 KB. Additional

details on the experiment setup are given in Section 5.4. We run two YCSB clients to

simulate two tenant access. The clients are run on 2 additional nodes to avoid interference

on the client side.

We define and name several workloads with different access patterns below to test H-

Base in a multi-tenant setting. Each Get request fetches one row per request.

1. Uniform: Series of Get requests that retrieve any data with equal probability from the

table.

2. Extreme Hotspot (ExHot): Series of Get requests that retrieve a small portion of the

data in the table. The requested data is small enough to fit into cache entirely.

3. Regular Hotspot (Hot): Shows hotspot pattern but the data requested cannot fit into

cache entirely.

5.1.2 Interference Experiments

We define several metrics by which performance is measured: operation throughput, through-

put violation, cache occupancy, and HDFS throughput. Similar to [22, 95, 105, 113], we

measure the operation throughput, i.e. operation per second (ops/sec), from the client side

to reflect each client’s share of the system. Similar to [24], to quantify the interference, we

calculate the throughput violation as violationi = (baselinei − throughputi)/baselinei,

where baselinei and throughputi are the baseline throughput and actual throughput of

tenant i respectively. The baseline throughput is observed when the cluster is dedicated

60

for such a workload while the actual throughput is recorded when the cluster is shared

by multi-tenant workloads. To investigate the underlying resource consumptions, we take

advantage of HBase’s level design and break down a request’s resource consumption into

the usage of cache and disk since simple key-value pair access is not CPU intensive. The

cache usage is measured as the cache occupancy i.e. the ratio between current cache size a

tenant takes to the total cache size. The disk usage is difficult to directly measure because

a request may involve the disks in a few other nodes. Thus we approximate the disk usage

as HDFS throughput from the abstract of disk access on multiple nodes which HDFS pro-

vides. The implementation details of tracking the cache occupancy and HDFS throughput

are discussed in Section 5.2.

Baseline To measure interference, we first establish the baseline for the selected work-

loads. Table 5.1 summarizes the different parameters used in YCSB for the workloads. The

records column is the range of the records that will be accessed. For hotspot workloads,

there will be lots of repeated records access as there are only 0.2 and 3 million out of 80

million records accessed. To get a stable throughput, we report the results in Table 5.2 after

a ramp-up time of 300 seconds, after which the throughput tend to stay stable especially

for workloads with hotspot. The throughput as well as the HDFS throughput is averaged

over a 800 seconds period.

Table 5.1: Workload parameters.

Workload Key Distribution Records

Uniform Get Uniform 80 million

Extreme Hotspot Get Zipfian 0.2 million

Regular Hotspot Get Zipfian 3 million

61

Table 5.2: Baseline throughput for different workloads.

Workload Throughput (ops/sec)

Uniform Get 892.32

Extreme Hotspot Get 19853.53

Regular Hotspot Get 2030.76

Interference on different resources We next conduct several experiments that mix the

workloads shown in Table 5.1 to investigate the interference. For each experiment, we

measure throughput violation, normalized HDFS throughput and cache occupancy. Figure

5.1 plots the results.

In Figure 5.1a, two tenants run the uniform workload with 50 threads. They see similar

throughput violation which we interpret as fair access between these tenants. They also

have similar HDFS throughput as well as cache occupancies. In Figure 5.1b, tenant #1

uses 200 threads to run the Uniform workload while tenant #2 still uses 50 threads. We

observe that the throughput violation of tenant #2 is about 4 times higher than tenant #1’s.

Similarly, tenant #1’s HDFS throughput and cache occupancy are about 4 times higher than

tenant #2’s. We believe tenant #1 is able to take resources from tenant #2 by launching more

threads to send requests. HBase does not prevent throughput interference among tenants

which use different thread number.

In Figure 5.1c, tenant #1 runs the regular hotspot workload and tenant #2 runs the

uniform workload. Both use 50 threads. Throughput violation of tenant #1 goes above 60%

while tenant #2’s is only 50%. Furthermore, tenant #1 receives similar HDFS throughput

as tenant #2 and tenant #1’s cache occupancy is only 10% higher than tenant #2’s. This

indicates tenant #2 may take some cache space from tenant #1 which causes tenant #1

62

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Uniform-50 Uniform-50

N
or

m
al

iz
ed

 M
et

ric

throughput
violation

HDFS throughput cache occupancy

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Uniform-200 Uniform-50

N
or

m
al

iz
ed

 M
et

ric

throughput
violation

HDFS throughput cache occupancy

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Hot-50 Uniform-50

N
or

m
al

iz
ed

 M
et

ric

throughput
violation

HDFS throughput cache occupancy

(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 ExHot-50 Uniform-200
N

or
m

al
iz

ed
 M

et
ric

throughput
violation

HDFS throughput cache occupancy

(d)

Figure 5.1: Normalized metrics show interference occurs in different resources. We mea-

sure client throughput, HDFS throughput and cache occupancy for each tenant. The leg-

end shows the workload type and number of threads it uses. For example, “Uniform-200”

means uniform workload sent by 200 threads, “Hot-50” stands for regular hotspot workload

sent by 50 threads, and “ExHot-50” means extreme hotspot workload sent by 50 threads.

63

to read from HDFS and thus degrades its performance. HBase fails to isolate resources

among workloads with different resource demands.

Figure 5.1d shows the results where tenant #1 runs the extreme hotspot workload with

50 threads and tenant #2 runs the uniform workload with 200 threads. The throughput

violation of tenant #1 exceeds 90%. Its cache occupancy is only about 20% which explains

why its throughput drops significantly. In contrast, tenant #2 only suffers 10% throughput

violation because its HDFS throughput and cache occupancy are about 5 times higher than

tenant #1’s. Compared with Figure 5.1c, tenant #1’s throughput is less even it is supposed

to read more data from the cache. HBase’s incapability of isolating resources is magnified

when different resource demands and thread number coexist for workloads.

We conclude from the experiments above that 1) the number of threads a tenant uses

to connect to HBase and the data access pattern e.g. hotspot can lead to performance

interference; 2) interference could occur in different resources in HBase, e.g., cache, disk,

or both. 3) cache occupancy and HDFS throughput can indeed reflect workload’s resource

demands.

Single resource reservation A common way to prevent interference is to reserve re-

sources so that a tenant is guaranteed a certain amount of resources. Owning to its sim-

plicity, single resource reservation e.g. bytes delivered, CPU usage, and cache usage, has

been used by many people [24, 84, 95, 113]. In this section, we study two single resource

reservation approaches.

Similar to [95, 113], we use the bytes delivered from HBase as a “virtual resource” to

represent the underlying resource consumption. Such an approach imposes a maximum

number of bytes HBase can deliver to a tenant over a certain period. This approach is

64

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 ExHot-50 Uniform-200
N

or
m

al
iz

ed
 M

et
ric

throughput
violation

HDFS throughput cache occupancy

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Uniform-200 Uniform-50

N
or

m
al

iz
ed

 M
et

ric

throughput
violation

HDFS throughput cache occupancy

(b)

Figure 5.2: Single resource reservation fails to prevent interference for workloads with

different resource demands.

able to provide fair access in the case of Figure 5.1b. In this experiment, tenant #2 runs a

uniform workload with 200 threads and tenant #1 runs an extreme hotspot workload with 50

threads. Figure 5.2a shows the result. Although both tenants see similar throughput, tenant

#1 suffers more than 90% throughput decrease when compared with its baseline. Tenant

#2 also has less HDFS throughput and cache occupancy due to the throughput regulation.

Therefore, resource approximation using bytes delivered lowers tenant #2’s share but fails

to increase tenant #1’s because it cannot identify the cache and disk consumption.

In the second experiment, we divide up the block cache space into half for two tenants

so as to provide strong isolation in the cache space as suggested in [84]. Tenant #1 uses 200

threads and tenant #2 uses 50 threads to run the uniform workload simultaneously. Figure

5.2b displays the results. Although both tenants share the cache space equally, tenant #2

experiences about 80% throughput violation because tenant #1 uses more threads to send

requests faster and thus deprives tenant #2’s HDFS throughput. Therefore for workloads

65

that are not cache sensitive, cache space isolation does not prevent interference.

In summary, single resource reservation e.g. bytes delivered in the first experiment

and cache in the second experiment did not prevent interference across tenants because it

ignored the actual resource demands of workloads. The results motivate us to develop a

workload-aware reservation approach that targets multiple resources.

5.2 Resource Reservation

We design and implement Argus, a workload-aware resource reservation framework, to

prevent performance interference across tenants. Argus is built on HBase’s master-slave

architecture (see Figure 5.3 for details). The Master collects the resource info from different

slave nodes and makes wise resource reservation decisions. The RegionServer serves as

an executer to enforce any reservation plans decided by the Master. The disk access to

HDFS is controlled by the request scheduler in the RegionServer. The cache access in the

RegionServer is enhanced with multi-tenancy support.

Inside a RegionServer, the workload monitor module collects workloads’ performance

metrics, and the resource reservation module describes current resource reservation policy.

Disk reservation is approximated by HDFS throughput reservation as discussed in 5.1. The

request scheduler is used to enforce the HDFS throughput reservation given. The block

cache shipped with vanilla HBase is made resource reservation aware to support cache

reservation as well. The Master has three pieces: 1) Resource monitor that aggregates

the workload information from all the RegionServers; 2) Performance model that takes

workload information and estimates performance; 3) Decision maker that takes advantage

of the performance model to find an optimum resource reservation policy and sends it to

all the RegionServers. The performance model relies on an offline profiler that uses linear

66

Figure 5.3: Architecture.

interpolation to predict the performance.

Given a resource reservation policy, it is critical to enforce resource reservation in each

individual node as it provides the basis for cluster-wide resource reservation. As discussed

in Section 5.1, we focus on two resources: block cache and disk, both of which will be

discussed in the following sections.

5.2.1 Block Cache Reservation

The cache reservation is used to provide strong isolation in the cache space for tenants. In

our current prototype, we divide up the entire block cache space into partitions and limit a

tenant’s cache activities to the cache partition to which it is assigned. Unlike A-Cache [84]

that replaces HBase’s default cache replacement, we apply the built-in LRU cache replace-

ment in HBase to the cache partition of each tenant because the cache replacement in H-

67

Base has been improved to prioritize the eviction based on the times the blocks are reused.

Although strict cache reservation can provide strong isolation, it can result in poor cache

utilization if some tenants may not use up their reservations. We classify such situations in-

to two categories: some tenants change their access patterns e.g. they change from hotspot

access to random access; some tenants slow down their request rates. We discuss the details

and present the solutions in Section 5.2.3.

5.2.2 Disk Reservation

Owing to the reasons mentioned in Section 5.1, we use HDFS throughput to approximate

the disk usage. We design the request scheduler in the RegionServer instead of in the

Hadoop Distributed File System (HDFS) because many of the file systems including HDFS

are not designed with multi-tenancy in mind: multi-tenancy enforcement is carried out by

the application built on top of the file system.

As stated in Chapter 3, there are two types of scheduling approaches that approximate

the generalized processor sharing (GPS) model [80] to provide fair sharing. One is virtual

time based approximation and the other one is quanta based approximation. To understand

which approach may work well in the context of multi-tenancy in HBase, we study weight-

ed fair queuing (WFQ) [80], which is a virtual time based scheduler, and deficit round

robin (DRR) [93], which is a quanta based scheduler. We experimentally compare these

scheduling approaches in terms of fairness and efficiency.

A. Approaches for Request Scheduling

Each tenant is assigned a queue to hold its requests. WFQ schedules requests among queues

according to their finish time. To lower the computation cost of estimating request time, the

68

notion of virtual time is used to order requests. Each request is tagged with a virtual start

time and a virtual finish time. Equations 5.1 and 5.2 show how they are calculated [34,108],

where Sn
i and F n

i are the virtual start time and the virtual finish time for the nth request of

tenant i respectively, v(t) is the virtual time for real time t, Ln
i is the size of the nth request

and ri is the share of tenant i.

Sn
i = max(v(t), F n−1

i) (5.1)

F n
i = Sn

i + Ln
i × ri (5.2)

The virtual start time is the maximum of current virtual time and the virtual finish time

of the last request. The virtual finish time is based on an estimate of how long the request

will take. The estimate assumes a linear relationship between request length and virtual

time. The complexity of WFQ in each scheduling round is O(log(n)) as it needs to select

the request with the smallest virtual finish time from n queues in a min-heap.

DRR is a variant of weighted round robin [57] that uses quanta (sometimes called tokens

or credits) to throttle requests. DRR associates each tenant with a credit account. To

schedule a request, the scheduler takes some credits off from the tenant’s account according

to the size of the request. Eventually a tenant’s credit account will exhaust and need to be

refilled. There are two refill strategies: refill the accounts periodically; refill when tenants

are either exhausted i.e. not enough credits or inactive i.e. no pending requests. Periodic

refill can improve utilization as it does not need to wait until other tenants meet the refill

criterions.

69

B. Comparison

The goal of the evaluation is to assess the fairness and efficiency of various scheduling

approaches in the context of throughput reservation. We implemented WFQ and DRR as

the request scheduling approach in HBase respectively. DRR requires some adaptions and

extensions in the context of HBase. First, we have the scheduler interpret the credits as the

bytes read from or written to HDFS. It assumes there is a linear function that translates the

credits to the underlying resources usage, mainly disk access, in HDFS. Second, upon the

arrival of a read request, the scheduler does not know how much data will be read from

HDFS. The scheduler simply uses an average size over a sliding window, which has the

bytes read of 10 previous requests, as the bytes needed for upcoming requests. We also use

this as a prediction in WFQ. Krebs et al. discuss more advanced prediction options [59].

The evaluation environment is the same as the one in Section 5.1. A 28-node HBase

cluster is used. Two YCSB clients run on two additional nodes to send uniform read-only

workloads. One uses 50 threads while the other one uses 200 threads. Target throughput

is set as a large number to allow the client to send as many requests as possible. Since

we focus on disk throughput, we disable the block cache in HBase to eliminate its impact.

Similar to [24], to quantify fairness, we use the Jain index (J-index) defined in equation 5.3

where vi is the throughput violation of tenant i and can be expressed as vi = (bi − ti)/bi;

bi is the baseline throughput; and ti is the observed throughput. The baseline is established

when the workload is run delicately in the cluster. [64] also measures fairness through

comparing the actual throughput to the baseline throughput. The value of J varies between

1, where the violation of each tenant is the same, to 1/n, where one tenant gets the largest

vi while other tenants’ vi = 0. The denominator of equation 5.3 will never be zero as long

as there are competitions among tenants. If all tenants run slower than they should be, there

70

is no need to impose constraints through the scheduling.

J(v1, v2, . . . , vn) =
(
∑

1≤i≤n vi)
2

n×
∑

1≤i≤n v
2
i

(5.3)

Besides fairness, we also consider efficiency which is defined as the average of through-

put violation for all tenants in equation 5.4. The larger value of J-index and E indicates

better fairness and higher efficiency respectively.

E(v1, v2, . . . , vn) = 1−
∑

1≤i≤n vi

n
(5.4)

Table 5.3 summaries the values of the J-index and E for WFQ, DRR and a no schedul-

ing approach. For fairness, the no scheduling approach yields the worst fairness (lowest

J-index) in face of tenants running workloads with different thread numbers. DRR out-

performs WFQ. We think it is because WFQ assumes requests with the same size take the

same time to be processed which does not hold in our experiments. In fact, we observed a

large time variant for requests with the same size. [97] also evidences that such a variant

in a single node file system setting leads to failure of fairness enforcement. For efficiency,

the no scheduling approach has the highest value while DRR has the lowest number. We

attribute that to the constraints the scheduler imposes. Section 5.4.1 presents more details

about the tradeoff of fairness and efficiency for DRR. With the above results, we can con-

clude that DRR is able to provide stronger resource isolation which results in better fair

access than WFQ does. In the rest of this paper, we focus on the usage of DRR.

Table 5.3: Comparison of different scheduling approaches.

Metric NoSchedule WFQ DRR

J-Index 0.708 0.874 0.996

Efficiency 0.513 0.493 0.481

71

Algorithm 3 Request Scheduling Algorithm
1: crediti is the current credits in tenant i’s credit account.

2: esti is the estimation of bytes a request reads from or written to HDFS for tenant i.

3: actuali is the actual bytes a request reads from or written to HDFS for tenant i.

4: procedure SCHEDULE

5: for each tenant i do

6: esti← BytesEstimation(tenant i)

7: while crediti ≥ esti and tenant i’s queue is not empty do

8: crediti ← crediti − esti

9: esti← BytesEstimation(tenant i)

10: end while

11: end for

12: end procedure

13: procedure REFUND

14: if request is served from cache then

15: creditsi ← crediti + esti

16: else

17: creditsi ← crediti + (esti − actuali)

18: end if

19: end procedure

20: procedure REFILL

21: Redistribute credits assignment if slow tenants exist.

22: end procedure

72

To integrate the block cache into DRR, we introduce a refund procedure that refunds

credits later if the request can be served from cache. The refund procedure can also refund

positive credits if the amount of bytes is overestimated or negative credits if it is underes-

timated. Algorithm 3 describes the adaption of DRR. The Schedule procedure runs in the

background to schedule requests from different tenants’ queues in a round robin fashion.

The Refund procedure is invoked when a request finishes. The Refill procedure refills ten-

ants’ credit accounts periodically and boosts some of the tenants’ credits if necessary. The

details of it will be discussed in Section 5.2.3.

5.2.3 Elastic Reservation

Neither the cache reservation or disk reservation would be efficient if some tenants did not

use up their resources reserved, because both reservations are applied statically without any

elasticity. Static resource holding will lead to inefficiency as some of them may be idle and

cannot be used by other tenants in need.

There are two cases when a tenant does not use up its reservation. One is when its access

pattern does not need much of the resource reserved. For example, a random access work-

load does not need cache very much, neither does a hotspot workload need disk resource.

Therefore, reservation has to consider workload resource demands, i.e. workload-aware.

We will present the solution of workload-aware reservation in Section 5.3. The other one is

when a tenant slows down its throughput (called slow tenants). To deal with such a situa-

tion, we redistribute the resources. Specifically, redundant resources from the slow tenants

will be taken away and distributed evenly among tenants that are in need.

We establish an expected throughput as a reference to detect if a tenant slows down.

We obtain the baseline throughput by running the workload in a dedicated manner. Then

73

the expected throughput is calculated by dividing the baseline throughput with the number

of tenants. We assume both the size of cache and the number of credits reserved are linear

to the throughput. In the current prototype, a tenant will give away 10% of its cache and

credits to other tenants in need if it slows down every 10%. Busy tenants will share evenly

the cache and credits given away. The Refill procedure in Algorithm 3 implements the

aforementioned reallocation. In the prototype, it runs every 2 seconds to refill the credit

accounts and determines if cache and credit adjustments are needed. If there are slow

tenants, it will adjust the credits and notify the cache module for cache resizing accordingly.

To deal with the case where a slow tenant may bump up its throughput later, we allow slow

tenants to retain the same credit amount they had before the credit redistribution even they

may not need them. The cache reservation is reset periodically (3 minutes in the current

prototype) and runs with equal reservation for a short period (30 seconds in the current

prototype) so as to give slow tenants a chance to increase the throughput. A more accurate

way of detecting slow tenants as well as reallocating cache and credits among tenants is in

the future work.

5.3 Reservation Planning

We have described the mechanisms used to reserve resources. We also described the cases

where some tenants may not use up their reservations. The elastic reservation approach

mentioned in Section 5.2.3 adjusts reservation in a monotonic way and is not suitable to

handle the case where tenants have different resource demands. Because resource usages

are not independent, e.g. increasing cache allocation may decrease the disk usage and

vice versa, reservation of this kind requires a model that reflects the dependency between

different resources. In this section, we discuss the reservation planning used to decide how

74

much resource to reserve for each tenant according to its demands dynamically.

5.3.1 Problem Formalization

0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

Cache Percentage

0.0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1.0

FS
 T

h
ro

u
g
h
p
u
t
Pe

rc
e
n
ta

g
e

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a
v
g
.
re

q
.
th

ro
u
g
h
p
u
t
(k

o
p
/s

)

(a) Uniform workload.

0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

Cache Percentage

0.0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1.0

FS
 T
h
ro
u
g
h
p
u
t
Pe
rc
e
n
ta
g
e

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

a
v
g
.
re
q
.
th
ro
u
g
h
p
u
t
(k
o
p
/s
)

(b) Regular hotspot workload.

0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

Cache Percentage

0.0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1.0

FS
 T
h
ro
u
g
h
p
u
t
Pe
rc
e
n
ta
g
e

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

a
v
g
.
re
q
.
th
ro
u
g
h
p
u
t
(k
o
p
/s
)

(c) Extreme hotspot workload.

Figure 5.4: Throughput varies with different resource reservations. Each heat map shows

experiments on a range of cache reservation percentage (x-axis) and HDFS throughput

reservation percentage (y-axis). The magnitude of the color is shown in the legend on the

right.

Setting the reservation evenly among tenants may not fully utilize the resources. We

experimentally demonstrate that the same reservation could yield a different throughput

when used for different workloads. We run the three workloads defined in Section 5.1. We

vary the percentage of cache reservation and HDFS throughput reservation in a range from

0.125 to 1.0 in interval of 0.125. For example, 0.5 of cache and 0.25 of HDFS throughput

means we reserve 50% total cache space and 25% total credits of HDFS. Each experiment

only runs one workload in the cluster. Figure 5.4 plots the results.

In Figure 5.4a, the uniform workload is disk sensitive. Increasing HDFS throughput

reservation increases its throughput significantly while increasing cache reservation does

not. In Figure 5.4b, the regular hotspot workload needs both disk and cache. It achieves

75

maximum throughput when the reservations of HDFS throughput and cache are close to

1. In Figure 5.4c, the extreme hotspot workload is cache sensitive. Increasing cache reser-

vation significantly improves throughput. In summary, results in Figure 5.4 not only val-

idate the reservation mechanisms presented in Section 5.2 but also motivate the need of

workload-aware reservation planning. For example, in the case of multiple uniform work-

loads, it is better to reserve resources equally among tenants. While in the case of uniform

workloads mixed with extreme hotspot workloads, it is better to reserve more cache space

for extreme hotspot workloads and more HDFS throughput for uniform workloads.

The resource reservation planning in Argus is done by the decision maker in the master

node. In the following discussion, we first formalize the decision problem, and then present

a solution based on the hill climbing algorithm with offline training models. Notations in

Table 5.4 are used for discussion.

Table 5.4: Notations.

Notations Description

n The number of tenants

m The number of resources

bi The baseline throughput for tenant i

ti The actual throughput for tenant i

vi The throughput violation for tenant i

rij The amount of resource j reserved for tenant i

Mj The total amount of resource j

The goal of the reservation planning is to let tenants have fairness in terms of through-

put violation and keep the efficiency as much as possible. We use equation 5.3 to describe

fairness and equation 5.4 to represent efficiency. We need to maximize J to achieve similar

76

throughput violation among tenants as well as E to improve efficiency. Combining equa-

tion 5.3 and 5.4, we can express the optimization objective in 5.5. The definitions of J and

E are also reminded here.

D(v1, v2, . . . , vn) = α× J + (1− α)× E (5.5)

J(v1, v2, . . . , vn) =
(
∑

1≤i≤n vi)
2

n×
∑

1≤i≤n v
2
i

E(v1, v2, . . . , vn) = 1−
∑

1≤i≤n vi

n

α is a variable between 0 and 1. It indicates how much impact J and E have in the decision

procedure. In the current prototype, we set it to 0.5. Function D is the objective that the

decision maker needs to maximize.

With the baseline throughput and resources reserved, we express the resource reserva-

tion planning problem as a constrained optimization below.

max
(r11,...,rnm)

D(v1, . . . , vn)

s.t.
∑

1≤i≤n

rij = Mj

vi = (bi − fi(ri1, . . . , rim))/bi

i = 1, 2, . . . , n

j = 1, 2, . . . ,m

(5.6)

fi is the performance function that represents the throughput for tenant i’s workload, given

a set of resource reservations (ri1, . . . , rim). Figure 5.4 indicates that different workloads

will have different performance functions. The solution for the above problem is a list

of resource reservations (ri1, . . . , rim) for each tenant that maximizes the value of D. In

this chapter, we only consider cache and HDFS throughput. So there are two resources in

equation 5.6, i.e., m = 2.

77

5.3.2 Solution

Solving the problem above requires the knowledge of various performance functions. In-

stead of inferring to an analytic form of the function, which is difficult and error prone [97],

we simply use regression to interpolate the function on some sample data collected by run-

ning the workload offline with different cache and HDFS throughput reservation percent-

ages. Figure 5.4 shows the mapping between resource allocations and throughput demon-

strates linearity thus we use linear regression for the interpolation. The profiler in Figure

5.3 conducts the interpolation and generates the performance function. The key repeat ra-

tio is used to characterise a workload and is calculated as the number of keys repeatedly

accessed divided by the total keys accessed within a certain period. For an incoming work-

load, Argus associates it with a performance function which has the closest key repeat ratio

to the workload. If a workload changes its access pattern, say from uniform to hotspot, the

decision maker is able to detect the change and adjust the performance function associated

to the workload accordingly. The resource reservation may be changed consequently.

In more complicated scenarios, a workload may be characterised by more than one

attribute e.g. read/write/scan percentages, priority, etc. The corresponding performance

function may also have more resources involved e.g. MemStore size in memory, write ahead

log size, etc. In this chapter, we focus on the hotspot access pattern and use the key repeat

ratio to characterise a workload and utilize block cache as well as HDFS throughput as input

resources for the performance function. The modeling of workload and its performance

function in more complicated scenarios are left for future work.

To find an optimum solution for equation 5.6, we use the stochastic hill climbing algo-

rithm to search the feasible space. The basic idea is to let the searching algorithm start from

a potential solution point and pick a neighbor according to the probability distribution of

78

all the neighbors. The distribution is based on the value of each neighbor state. Since the

search space is infinite as both cache size and HDFS throughput are continuous variables,

we discretize them into 20 equal pieces, i.e. the basic unit of share is 0.05 given the entire

share is 1.0. Notice the number of pieces must be larger than the number of tenants in the

current prototype to guarantee each tenant can get its share of the resources. Generally

speaking, the finer the discretization is, the better result the searching algorithm can yield,

but the longer it takes to search. Dynamically adjusting the granularity of discretization

according to tenant number and accuracy is an ongoing work. The algorithm starts the

searching from (r1j, . . . , rnj), j = 1, . . . ,m where rij = rkj, i ̸= k. That is equal reserva-

tion. In addition, during the search, we only change one variable i.e., either cache size or

HDFS throughput. This limits the number of neighbors to explore and makes the search

tractable.

5.3.3 Limitations

To simplify the scenario, the current prototype makes the following assumptions. First, we

do not consider data locality and assume every byte read from HDFS consumes the same

amount of resources. Reading from local disk is faster and consumes less resources than

from remote nodes. Second, we do not address the read-write interference and assume both

read and write consume the same amount of resources. HBase follows the LSM [76] design

which periodically flushes data from MemStore, an in-memory structure, to fixed size files

in HDFS and merges those files later in the compaction procedure which incurs extra I/O

in the background. Third, we assume both the data and the request are evenly distributed.

Last but not least, we assume the access pattern does not change in a short time which

allows sufficient time for Argus to detect and react.

79

5.4 Evaluation

Argus is prototyped in HBase 0.94.21. We evaluate it in a 28-node cluster. Each node has

a 2.0 GHz dual-core CPU with 4 GB memory and a 40 GB disk. Three nodes are setup as

a Zookeeper ensemble, 1 node is setup up with both HDFS master and HBase master, and

the other 24 nodes are setup as HRegion servers and HDFS data nodes. The block cache

size is configured to be 1200 MB and the number of RPC handler threads in HBase is set

to 30. The HDFS replication factor is set to 1 to conserve disk space. We use the YCSB

benchmark [20] to populate the data and generate the workload. After all the data is pre-

loaded, we run major compactions to compact the store files. We have HBase to balance

the number of regions across nodes. The YCSB clients are run in additional nodes to

simulate multiple tenants accessing the system simultaneously. Running YCSB clients on

separated nodes can avoid interference on the client side. Each tenant has its own data set in

HBase. We use both micro-benchmark and macro-benchmark to evaluate the performance

of Argus. The throughput on the client side, i.e., operations per second (ops/sec), is used as

a measurement to reflect a tenant’s performance on the system. We first present the micro

evaluation which mainly focuses on the reservation enforcement, then present the macro

evaluation which studies the overall performance in various scenarios.

5.4.1 Micro Evaluation

This section presents micro-benchmark results of resource enforcement as it is the funda-

tion of resource reservation. Specifically, we conduct an in-depth analysis of disk reserva-

tion to study its impact on fairness and efficiency. Then, we study the stability of resource

enforcement in complex scenarios. In addition, we evaluate the effectiveness of elastic

80

reservation. Finally, we assess the overhead introduced by the enforcement approaches.

A. Disk Reservation

We adapt the deficit round robin algorithm as the request scheduler to enforce disk reser-

vation. The total number of credits per node is a parameter set by the system admin and

has an impact on the performance of the scheduler. We start by studying its impact on

throughput as well latency, and on fairness as well as efficiency. The block cache in HBase

is disabled so that we can concentrate on HDFS usage.

Impact on throughput and latency: We have two tenants with 50 threads to carry out

uniform read-only workloads respectively. We report the throughput as well as latency.

Throughput is measured as aggregated throughput of tenants and latency is measured as

average latency. Figure 5.5a shows the result. The x axis indicates the number of credits

allocated to tenants in every refill period (2 seconds in the current prototype) for each

node. The ideal throughput and ideal latency are obtained by running the workloads against

vanilla HBase. The throughput increases as the number of credits increases from 30 million

to 50 million. Afterwards, the throughput gets close to the ideal throughput. Latency has

a similar trend. As the number of credits increases, latency decreases until it gets close to

the ideal one. In DRR, the number of credits is used to throttle requests sent to HDFS.

On one hand, the larger the number of credits is, the closer the throughput can get to

the ideal one. On the other hand, the smaller it is, the more constraints are added to the

scheduling. As a result, tenants’ throughput degrade dramatically. From Figure 5.5a we

can see that both the throughput and latency tend to be stable when the number of credits

exceeds 50 million.

81

30 40 50 60 70

#Credits Per Node (×106)

400

500

600

700

800

A
g
g
re

g
a
te

d
 T

h
ro

u
g
h
p
u
t
(o

p
s/

se
c)

ideal throughput

60

80

100

120

140

160

180

200

220

La
te

n
cy

 (
m

s)

ideal latency

Throughput
Latency

(a) Impact of #credits on throughput and la-

tency.

30 40 50 60 70

#Credits Per Node (×106)

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

target fairness

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

n
cy

target efficiency

Fairness
Efficiency

(b) Impact of #credits on fairness and effi-

ciency.

Figure 5.5: Impacts of #credits on disk reservation. The x-axis represents the number of

credits allocated in every refill period.

Fairness and efficiency tradeoff: To study the impact of the number of credits on fair-

ness and efficiency, we have two tenants run the uniform read-only workload. One uses 50

threads while the other one uses 200 threads. Figure 5.5b displays the result. The fairness

is quantified with the throughput violation in equation 5.3, and the efficiency is measured

as the average throughput violation in equation 5.4. The target fairness and efficiency are

observed by running vanilla HBase and having both tenants use 50 threads. On one hand,

when the amount of credits is small (e.g. less than 50 million), the scheduler can achieve

target fairness. But at the same time the efficiency is smaller than the target one. On the

other hand, when the credits go above 50 million, fairness drops but efficiency increases

because the constraints the number of credits imposes become less. In a word, fewer credits

tend to have better fairness but lower efficiency, while more credits have worse fairness but

higher efficiency. Thus setting the amount of credits is a tradeoff between fairness and ef-

ficiency. In the current prototype, we set it as 50 million which sacrifices efficiency a little

82

bit but gives good fairness as the experiments shown above. A more advanced option is to

dynamically adjust the credits according to the workload characteristics suggested in [104].

We leave that in the future work.

B. Stability of Reservation Enforcement

Figure 5.4 in Section 5.3 already shows that the resource reservation is able to reserve given

HDFS throughput and cache size. To take this one step further, we evaluate its stability in

more complex scenarios. We have 3 groups of workloads: uniform, extreme hotspot, and

mixed. There are 1, 2, 5 and 8 tenants respectively to run the workloads. Tenants run the

same workload in the uniform and extreme hotspot groups while some tenants run uniform

workload and others run extreme hotspot workload in the mixed group. In the cases of 1

and 2 tenants, each tenant uses 50 threads. In the cases of 5 and 8 tenants, the thread counts

are 50, 50, 100, 200, and 300, and 50, 50, 100, 100, 200, 200, 300, and 300 respectively.

The reservation planning is turned off in this evaluation to avoid resource re-allocation.

We measure tenant #1’s throughput (represented as T1) to see how much it changes in

different settings. T1 runs the extreme hotspot workload in the mixed workload group.

T1’s HDFS throughput and cache occupancy percentages are set to 0.5. The remaining

HDFS throughput and cache occupancy percentage, i.e. 0.5, are distributed evenly across

other tenants. Figure 5.6 displays the results. Notice that for the mixed group, we only

report T1’s throughput when the number of tenants is at least 2. Each bar represents the

throughput of T1. Bars with different stripe patterns mean the throughput observed under

different tenant number settings. We can see that for all different workload groups, T1

achieves consistent performance even when the number of tenants increases from 1 to 8

and T1 is mixed with different workloads. Thus Argus is able to preserve throughput in a

83

multi-tenant environment by enforcing resource reservations.

10

100

1000

mixedextreme hotuniform

 1 Tenant 2 Tenants 5 Tenants 8 Tenants

T 1's
 th

ro
ug

hp
ut

 (o
ps

/s
ec

)

Figure 5.6: T1’s throughput under different workloads and different number of tenants.

C. Elastic Reservation

Real world workloads usually have dynamics and require the storage system to be able

to automatically adapt. The kinds of dynamics include the change of requesting rate and

access pattern e.g. hotspot, uniform, etc. The elastic reservation approach is applied to

block cache and disk reservation to dynamically adjust the reservation when some tenants

decrease their throughput. The reservation planning is used to plan the reservation when

tenants’ workload have different resource demands.

We evaluate the elastic reservation by having two tenants run the uniform workloads

and one of them depresses its request rate. They both use 50 threads. Figure 5.7a shows the

throughput as a function of time. Both tenants fair share the system in the first 200 seconds.

Between the 200th second and the 400th second, tenant #2 decreases its throughput to

200 ops/sec. During that period, Argus is able to raise the throughput of tenant #1 to

84

about 600 ops/sec. Then tenant #2 further decreases its throughput to 100 ops/sec in the

next 200 seconds. Because of the elastic reservation, Argus can further increases tenant

#1’s throughput to about 700 ops/sec. Finally, tenant #2 increases its throughput and both

tenants start seeing similar throughput after the 600th second. There are three throughput

changes.

0 100 200 300 400 500 600 700 800

Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
h
ro
u
g
h
p
u
t
(k
o
p
s/
se
c)

sl
o
w
 d
o
w
n

sl
o
w
 d
o
w
n

ra
m
p
 u
p

Tenant 1
Tenant 2

(a) Tenant #1 is allowed to have higher through-

put when tenant #2 slows down.

0 100 200 300 400 500 600 700 800

Time (seconds)

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(k
o
p
s/

se
c)

p
a
tt

e
rn

 s
w

it
ch

Tenant 1
Tenant 2

(b) Argus reacts when workload changes its ac-

cess pattern over time.

Figure 5.7: Argus dynamically adjusts its reservations.

Next, we examine Argus’ capability of dealing with workloads changing access pattern-

s. Two tenants switch their access patterns at some point to simulate access pattern change

in Figure 5.7b. Tenant #1 starts with an extreme hotspot workload and tenant #2 runs an

uniform workload. At the 180th second, they switch the access pattern i.e., tenant #1 now

runs uniform workload and tenant #2 runs extreme hotspot workload. It takes the decision

maker about 60 seconds to realize the change because it operates every 60 seconds. Once

the decision maker adjusts the resource reservation for both tenants, tenant #2’s through-

put increases gradually. Finally at about 580th second, tenant #2 achieves its maximum

throughput. Tenant #2 takes around 300 seconds to get to the maximum because it needs to

85

replace most of the cache items in the block cache. The reservation planning plays an im-

portant role to adjust the reservation according to workloads’ demands. The results above

show that Argus can handle workloads varying in throughput and access pattern efficiently.

D. Overhead

Finally, we study the overhead introduced by resource reservation. For the disk reservation,

there are two sources where overhead comes from. One is the implementation of the DRR

algorithm and the queues associated with it. Figure 5.5a shows that when the number

of credits per node is 70 million, which does not impose any constraints to the request

scheduling, about 2% overhead is observed for throughput and about 1% for latency. We

attribute that to the implementation of DRR and queues. The other source of overhead is

the number of credits used in the DRR algorithm. For 50 million credits in Figure 5.5a, we

observe around 3% overhead for throughput and 2% for latency. To study the overhead of

the cache reservation, we disable the disk reservation and have two tenant run the uniform,

hotspot and extreme hotspot workloads respectively with the same number of threads. The

overhead is ignorable for all three workloads (less than 1%).

To get the total overhead of a fully functioning system, we enable both the cache and

the disk reservations in Argus. We have two tenants run the same workloads above with

50 threads, and compare the aggregated throughput with the ones generated from vanilla

HBase. We observe approximately a 5% throughput decrease for the uniform workload, a

4% drop for the hotspot workload, and ignorable overhead for the extreme hotspot work-

load. Compared with the overhead obtained solely from disk reservation, the overhead from

cache and disk reservation increases. We think the usage of cache magnifies the throughput

overhead.

86

5.4.2 Macro Evaluation

We study the overall performance of Argus in more complex scenarios in this section.

We first present the performance of Argus by running the three workloads used in our

interference analysis in Section 5.1. Then we further assess Argus in versatile workloads

with scan operations as well as write operations. Next, we investigate the effectiveness of

reservation planning and its capability of dynamic workload handling. Finally, we compare

Argus with A-Cache [84], a HBase based system that aims at preventing cache interference.

A. Overall Performance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Uniform-200 Uniform-50

N
or

m
al

iz
ed

 M
et

ric

throughput
violation

HDFS throughput cache occupancy

(a) Two uniform workload-

s with different number of

threads.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 Hot-50 Uniform-50

N
or

m
al

iz
ed

 M
et

ric

throughput
violation

HDFS throughput cache occupancy

(b) Regular hotspot workload

mixed with uniform work-

load.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 ExHot-50 Uniform-200

N
or

m
al

iz
ed

 M
et

ric

throughput
violation

HDFS throughput cache occupancy

(c) Extreme hotspot workload

mixed with uniform work-

load.

Figure 5.8: Overall performance of different workloads.

The throughput (ops/sec) is measured as an average over an 800 second period. We use

the J-index in equation 5.3 to measure the fairness in terms of throughput violation and the

value of D (D-score) in equation 5.5 to measure the improvement. To get a stable output,

we report the results after a ramp-up time of 300 seconds. We clear the file system cache af-

87

ter each run. We evaluate whether Argus can prevent interference in cases where workloads

with different access patterns are mixed together. We run the interference experiments de-

scribed in Section 5.1. The purpose is threefold. First, we test if Argus is able to handle

tenants with different thread numbers. Second, we want to see if Argus can differentiate

cache and disk demands from different workloads. Third, we evaluate how Argus reacts

when tenants with various number of threads and resource demands coexist. The workload

is labeled with the same convention used in Figure 5.1. We pre-load 80,000,000 rows to

each tenant. Each row is about 1.2 KB. Figure 5.8 plots the throughput violation, normal-

ized HDFS throughput and cache occupancy. Table 5.5 summaries the J-index, D-score

and compares them with the ones obtained from vanilla HBase.

Table 5.5: Performance interference compared with vanilla HBase. Values in parentheses

are the performance numbers from vanilla HBase.

Workload J-index D-score

Uniform-50 and Uniform-200 0.999 (0.746) 0.715 (0.620)

Hot-50 and Uniform-50 0.997 (0.968) 0.741 (0.704)

ExHot-50 and Uniform-200 0.995 (0.662) 0.909 (0.656)

For throughput violation, both tenants see roughly the same in all experiments which

indicates that Argus is able to prevent interference by proper resource reservations. The

extreme hotspot workload mixed with the uniform workload in Figure 5.8c experiences

the least violation because the two workloads do not compete for the same resource i.e.,

tenant #1 mainly needs cache and tenant #2 mainly wants disk. The scheduler realizes the

resource demands and reallocates resources based on needs. For HDFS throughput and

cache occupancy, both tenants have similar share in Figure 5.8a. As tenant #1 becomes

88

more hotspot oriented (i.e. Hot-50 and ExHot-50), tenant #2 running the uniform workload

takes a larger share of HDFS throughput and gives away more share in cache occupancy

to tenant #1. This further verifies Argus’s capability of identifying workloads’ resource

demands and adjusting resource reservation. In Figure 5.8b and 5.8c, the regular hotspot

workload takes a larger share of HDFS throughput and less of a share of cache occupancy

than the extreme hotspot workload does which matches our expectation because the regular

hotspot workload demands more disk accesses and less cache visits. From Table 5.5, it is

clear that Argus outperforms vanilla HBase in terms of J-index and D-score. Notice that for

regular hotspot workload mixed with the uniform workload, the J-index from vanilla HBase

is close to the one in Argus. We think it is because the block cache replacement algorithm

with priority in vanilla HBase is able to identify popular data and avoid evicting them too

early, which protects the hotspot workload. But due to the lack of resource reservation,

the throughput violation from vanilla HBase is larger (smaller D-score) than Argus’ as the

D-score indicates.

We next evaluate Argus in versatile workloads by running two additional workloads

with 200 threads: scan and read/write workloads, against the read workload. The scan

workload reads 100 rows per request while read/write workload sends read and write re-

quests together. The keys accessed in scan and read/write workload follow the uniform

distribution. Notice that Argus is the most effective in read operations because it deals with

the cache and disk usage, and the write operation does not consume cache in HBase. Table

5.6 summarizes the results.

Similar to Table ??, Argus achieves better interference isolation than vanilla HBase

does. However, the values of J-index and D-score drop for both scan mixed and read/write

mixed scenarios. This is especially true for scan mixed workloads, where the J-index values

89

drop over 20%, implying that throughput violation becomes more serious. We attribute the

decrease to the inability of system to isolate tenant resource demands in HDFS. First, a

scan request holds resources in HDFS for a relatively long period of time and prevents

Get requests’ access. Because Argus works on top of HDFS, it has no direct control of

the resource in HDFS. [106] suggests a two-level scheduler that works both at the HBase

level and HDFS level to deal with get and scan mixed workloads. Second, writes increase

the size of MemTable as well as the number of SSTable which force reads to consult more

SSTable. Additionally, writes will trigger a background procedure called compaction that

merges multiple SSTables into a single one. Thus the compaction procedure may compete

HDFS resources with reads and writes from clients.

It is challenging to deal with the interferences incurred internally e.g. the increase of

SSTables and compaction discussed above. It requires a model that can represent the I/O

behavior of the system with background procedures running, which is very difficult to infer

even in a single node storage system [94]. Similar to our offline modeling approach, [94]

derives a non-linear function that transforms a request to underlying I/O cost by running

workload offline. In a word, we feel Argus can be extended to use the approaches in [94,

106] although there are challenges from aggregating additional resources in the workload

model. We leave such extensions for future work.

B. Resource Reservation Planning

Argus relies on the reservation planning to decide how much resource to reserve for each

tenant. We investigate the effectiveness of planning by rerunning the interference exper-

iments in 5.4.2 with the planning turned off (i.e. even reservation for HDFS throughput

and cache occupancy) We compare the throughput with the corresponding run where the

90

Table 5.6: Evaluate Argus in versatile workloads. Values in parentheses are the perfor-

mance numbers from vanilla HBase.

Workload J-index D-score

Uniform-50 and Scan-200 0.750 (0.513) 0.651 (0.589)

ExHot-50 and Scan-200 0.686 (0.650) 0.544 (0.447)

Uniform-50 and RW-200 0.926 (0.894) 0.592 (0.469)

ExHot-50 and RW-200 0.995 (0.698) 0.654 (0.507)

planning is on. Figure 5.9 displays the normalized results. Overall, without planning, the

throughput in the uniform workload experiment is similar to the one with planning but it

falls behind in the other two experiments. We think it is because both tenants run uniform

workloads and the planning does not need to reallocate cache and HDFS throughput. So

tenants see similar throughput with the planning turned off.

0.0

0.2

0.4

0.6

0.8

1.0

ExHot + UniformHot + Uniform

 Tenant 1 Tenant 2

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Uniform

Figure 5.9: Throughput without planning normalized to throughput with planning.

In the Hot+Uniform and ExHot+Uniform experiments, the throughput of uniform work-

loads i.e. tenant #2’s workloads, drops when compared with the one in the Uniform exper-

91

iment. We attribute that to the lack of reservation planning. Tenant #2 is not able to use

some of the HDFS throughput reservation of tenant #1. Instead, it only relies on the re-

allocation approach described in Section 5.2 to “steal” HDFS throughput from tenant #1,

which is very limited in such cases. On the other hand, tenant #1 is not able to use the

redundant cache space held by tenant #2. In summary, Argus’ resource reservation plan-

ning is necessary and effective when workloads with different resource demands coexist in

a shared system.

C. Comparison with A-Cache

Lastly, we compare Argus with A-Cache [84] in terms of fairness and efficiency. A-Cache

is also developed on top of HBase to prevent performance interference among workloads.

It focuses on preventing the cache interference. It uses the cache reuse ratio to represent

the cache utilization for each tenant. The reuse ratio is calculated as the ratio of the number

of cache blocks visited at least twice to the total number of cache blocks. It estimates how

much cache space this workload may need because a cache block only becomes useful

when it is visited at least twice. The intuition is a tenant should only have what is needed.

Workloads with large reuse ratios deserve more cache space while workloads with small

reuse ratios need less.

Table 5.7: Comparison with A-Cache. Values in parentheses are the performance numbers

from A-Cache.

Workload J-index D-score

Uniform-50 and Uniform-200 0.999 (0.733) 0.715 (0.691)

Hot-50 and Uniform-50 0.997 (0.963) 0.741 (0.745)

ExHot-50 and Uniform-200 0.995 (0.691) 0.909 (0.667)

92

We implemented the A-Cache approach and evaluate its fairness as well as improvement

with the three workloads used in Section 5.1. Table 5.7 shows the results. From the J-

index and D-score values, it is clear that A-Cache is not able to provide the same fairness

and efficiency as Argus does. For the extreme hotspot and uniform mix workload and

uniform workload with different threads, the J-index values of A-Cache are close to the

ones of vanilla HBase in table 5.5, which means A-Cache fails to prevent interference. It

is because A-Cache only focuses on cache interference and does not take disk usage into

account. Therefore, compared with A-Cache, Argus can prevent interference by providing

stronger performance isolation.

5.5 Real World Applications

To see how Argus could work for real world applications, we draw on big data text mining

of the HathiTrust Research Center (HTRC) [49, 116]. HTRC provisions for community

research text mining of the nearly 14 million digital documents (books, serials, government

documents) of the HathiTrust digital repository [48]. HTRC manages different types of

data objects: raw text data, metadata about the books, and derived data e.g. term frequency

count. This is managed through a single key-value store. All of these data objects are slow

changing so workloads against all three are largely read-only, matching the observation

in [4] capturing realistic workloads in NoSQL stores.

The access patterns are different amongst workloads and could thus result in perfor-

mance interference. Reading from raw text and metadata has evidenced locality as parts

of the corpus are more interesting than other parts. Reading from derived data, however,

is likely done using a linear scan, which may interfere with the cache contents and access

patterns used by workloads over raw text and metadata. Additionally, some of the text

93

analysis may run on the same data set repeatedly e.g. topic modeling analysis, advanced

machine learning for classification [65, 89, 90], while some of the others may just run for

one time, e.g. a tag cloud generator may fetch the term frequency from the derived data

set. The cache in the topic modeling workload may be interfered by the other one-time

workloads where requests are mostly random. Argus can protect the cache by enforcing

reservation and allocating more disk resource to the random workload accordingly. An-

other interference scenario is the number of requests made to the metadata is a lot higher

than the number made to the raw text as users may want to investigate enough metadata

before studying the text. Argus can prevent the interference from high volume of requests

on metadata to workloads on raw text.

5.6 Summary

In this chapter, we characterize multi-tenancy interference in the context of NoSQL data

stores. We present Argus, a workload-aware resource reservation framework that prevents

interference by enforcing reservation on cache and disk usage. Furthermore, the resource

reservation technique is workload-aware. Empirical results show that Argus is able to pre-

vent interference across tenants and adapt to dynamic workloads accordingly.

Future work can go in several directions. We intend to quantify the impact of writes

on reads and model the I/O behavior through offline sampling. We want to investigate

another resource reservation, i.e. the memory usage for writes. Increasing the size of write

buffer will boost the write performance but harms read performance as the size of block

cache decreases. It is beneficial to set the sizes of cache and write buffer according to

different workload characteristics. Furthermore, we want to extend Argus to other NoSQL

solutions beyone HBase. Last but not least, it is interesting to study Argus in a heterogenous

94

environment.

95

Chapter 6

A Lightweight Key-Value Store for Distributed Access

Previous chapters present the performance isolation mechanisms we propose for the non-

shared data on local file system case. In this chapter, we study multi-tenancy in the case

where tenants share the same data set through a parallel file system. Specifically, we s-

tudy the key-value store (KVS), a special form of NoSQL data store. KVS offers flexible

data model, high scalability, as well as many other attracting features, and thus becomes

increasingly popular. Various key-value stores [27, 60, 100] have been developed to facili-

tate analysis on social media feeds, web logs, and etc. With the advent of cloud computing,

users are willing to move their data infrastructures to the cloud. They set up the KVS across

a set of virtual machines (VMs) billed by a flexible price model, i.e. “pay-as-you-go” mod-

el.

KVS is usually architected as a layer over local file system. Single node KVS (S-KVS),

such as Berkeley DB [75] and Level DB [62], targets a single node environment. It al-

lows direct access to the local file system by embedding to the applications. In contrast,

multi-node KVS (M-KVS), constructs network connected nodes as a cluster and provides

a unified interface for applications through the network. Examples include Cassandra [60],

HBase [1], and etc. It usually stores the data on the local file system in a cluster of VMs

96

and runs daemon services on each individual node to delegate application access. In gen-

eral, S-KVS is much more lighter-weight and has better performance in the sense that it is

embedded as a library in applications and allows direct file system access without going

through daemon services. However, S-KVS suffers from data loss and scalability issues

due to the limit of a local file system. Besides, it does not allow concurrent writes because

of file system locking, which is not desirable in a cloud environment where the store may

be accessed concurrently. On the contrary, M-KVS distributes data across different nodes,

supports concurrent access, and provides data replication as well as fail over. In this chap-

ter, we intend to retain the high performance access of S-KVS, but extend its capability in

a distributed environment, e.g. cloud, which M-KVS is good at, with the help of a parallel

file system.

Parallel file system (PFS) has begun seeing usage in the cloud in both industry [68]

and academia [2, 52, 79]. Originating from the high performance computing (HPC) plat-

form, PFS is a type of clustered file system that spreads data in a dedicated storage node

cluster [81]. PFS can be mounted to multiple VMs and provides the same interfaces and

semantics as local file systems. Essentially, PFS decouples data storing from VM’s local

disk to a dedicate storage system and provides a hybrid storage solution along with the lo-

cal file system in the cloud. However, there are some challenges to run KVS over PFS. On

one hand, although PFS can resolve the data reliability and scalability issues, S-KVS over

PFS is still subject to the exclusive writes constraint. On the other hand, M-KVS over PFS

introduces overheads owing to its unawareness of PFS. For example, data may be unneces-

sarily replicated; extra network trips may be needed to access the PFS because the daemon

service delegates all the requests to the back-end file system; overheads may also come

from the data replication and failover protocols, both of which are taken care of by PFS.

97

Additionally, most M-KVS withhold resources to have persistent running services even if

no request comes, which is not cost effective. Recently, Greenberg et al. also point out the

burden and inefficiency of running persistent KVS service in the HPC environment [40].

Therefore, we propose a lightweight and distributed KVS, KVLight, over a PFS to

better utilize the sharing and reliability nature of PFS. The design, presented in a poster

[114], is further developed in this chapter. Similar to S-KVS, KVLight is implemented as

a library embedded in applications for high performance. It makes use of the log structure

merge tree (LSM) [76] structure to support concurrent writes and uses a novel tree based

compaction strategy to support concurrent reads efficiently. In summary, this chapter makes

the following contributions:

• A LSM based framework with asynchronous mechanisms to support concurrent writes

and reads;

• A tree based compaction equipped with parallel processing to improve read perfor-

mance;

• Experimental results that show KVLight has better performance than other M-KVS

including Cassandra and Voldemort [100] in several different workloads including

two real world applications.

6.1 Background and Motivation

6.1.1 Background

Parallel file system (PFS) is designed for parallel and high performance access. It allows

concurrent access from a number of clients and operates over high-speed networks. Below

we summarize several PFSs, mainly from the architecture and data distribution prospects.

98

The Parallel Virtual File System (PVFS) [12] runs its server processes, i.e. pvfs2-server,

over a cluster of nodes. The pvfs2-server process stores data locally. Data is stored in files

and metadata is stored in Berkeley DB. PVFS provides two sets of APIs: the UNIX API

backed by the pvfs2-client, a user-space process, and the MPI-IO API which can bypass

the pvfs2-client and be more efficient. File is striped across all available servers in a round

robin fashion. The striping can be tuned with various parameters [82] according to data size

and access patterns. As its development continues, PVFS is now known as OrangeFS [77].

Some company has provided OrangeFS as a service through Amazon AWS [78]. How-

ever, PVFS does not support locking which prevents its API from conforming to POSIX

semantics.

The General Purpose File System (GPFS) [88], developed in IBM, bears a similar ar-

chitecture with PVFS. It runs the servers on a number of dedicated storage nodes called

file system nodes. The file system nodes are connected to a set of disks through switching

fabric. The disks are set up in RAID to provide reliable storage. A file in GPFS is divided

into blocks (256 KB by default) and distributed evenly across the disks. Reads and writes

can be served in parallel by multiple file system nodes and disks. Unlike the Hadoop File

System [96] which stores all the metadata in a single server, GPFS distributes the metadata

e.g. directory tree in its servers. Due to this kind of distribution, GPFS does not have limits

on the number of files a directory could have, which is often 65536 in many file systems.

Additionally, GPFS introduces a distributed locking mechanism which allows it to support

full POSIX file system semantics.

Among various PFS e.g. PVFS, GPFS, and etc., Lustre [107] is the most widely used

PFS nowadays. Figure 6.1 displays its architecture. It has a set of metadata servers (MDS)

to host file system metadata and a set of object storage servers (OSS) to interact with

99

clients. Behind each OSS, there are many object storage targets (OST) that store the data

in a redundant fashion. A file is striped into several pieces and stored across different OST

so that read/write operations can be performed in parallel. To read/write from/to Lustre,

a client will first consult the MDSs to get the locations of OSSs. Afterwards, the data

transfer is between the client and OSSs. With the separation among MDSs, OSSs and

OSTs, Lustre is able to provide highly reliable and scalable data access. Lustre also uses a

distributed locking mechanism and is able to support full POSIX filesystem semantics. In

practice, Lustre is often mounted to other compute nodes that provide computation power.

The access to Lustre in compute nodes is just like it is a local file system. The complexities

are completely hidden from users.

Figure 6.1: Lustre Architecture. Source: http://lustre.org/about/

We prototype KVLight over Lustre. Next, we motivate the design of KVLight by com-

paring a single node KVS (S-KVS) against a multi-node KVS (M-KVS) on Lustre.

100

6.1.2 KVS on Parallel File System

We run the experiments on Lustre 2.1.6 in Data Capacitor 2 at Indiana University [25].

We use Berkeley DB Java Edition (BDB) version 6.2.3 [8] as the S-KVS and Cassandra

version 2.0.14 [14] as the M-KVS. Yahoo Cloud Storage Benchmark (YCSB) [20] is used

to generate the workloads. For more details about the setup, please refer to Section 6.5. We

run write-only and read-only workloads. There are two setup variants for Cassandra: single

node Cassandra instance (S-Cassandra) and 15-node Cassandra cluster (M-Cassandra). We

use one client and six clients to access the BDB and Cassandra instances respectively.

A client runs on a separate node to carry out the workloads. We report the aggregated

throughput i.e. operations per second (ops/sec) on client side. Figure 6.2 displays the

results.

write read
0

10

20

30

40

50

60

Th
ro

ug
hp

ut
 (k

op
s/

se
c)

 BDB, 1 Client
 BDB, 6 Clients
 S-Cassandra, 1 Client
 M-Cassandra, 1 Client
 S-Cassandra, 6 Clients
 M-Cassandra, 6 Clients

Figure 6.2: Read/write performance for different KVS in different setup. “S-Cassandra”

means a single node Cassandra instance while “M-Cassandra” represents a multi-node Cas-

sandra instance. We do not report the throughput of 6-client write workload in BDB as it

does not support concurrent write.

101

In the one client case, BDB outperforms S-Cassandra and M-Cassandra. It is because

the access to BDB is lightweight – direct file system access, which avoids the overheads

Cassandra imposes. When there are 6 clients, the aggregated throughput of Cassandra is

much higher than the one of BDB with one client access. M-Cassandra delivers the highest

throughput among all KVSs in Figure 6.2. Although BDB does not support concurrent

writes from different clients, it does allow multiple clients to read from and yields a higher

throughput than S-Cassandra does.

We conclude from the above discussions that 1) S-KVS has better performance than

M-KVS in a single node due to its lightweight access, but S-KVS does not support concur-

rent writes; 2) M-KVS is much better than S-KVS when it is deployed and accessed in a

distributed environment because it well supports concurrent writes and reads. Motivated by

such experiments, we extend S-KVS to support concurrent writes and reads in a distributed

environment while retaining its lightweight access as much as possible.

6.2 The KVLight Structure

6.2.1 System Model

In a large scale compute environment, e.g. HPC and cloud, the system can usually be

organized into a 2-layer architecture, consisting of application and storage layer. The ap-

plication layer generates queries to the storage layer and processes the query results, while

the storage layer stores the data and handles queries. We design KVLight as a middleware

that stays between the application and storage layers in Figure 6.3. The KVLight library

provides basic key-value store APIs including Get(key), Put(key, value), and Delete(key).

The KVLight store is a list of files in Lustre. The files contain metadata e.g. KVLight

102

status and data i.e. the key-value pairs. Lustre is used as the underlying storage system and

a communication media among nodes.

Figure 6.3: KVLight architecture.

6.2.2 Design Choices

We address the problem of building a lightweight KVS in a distributed environment. The

heavyweight mechanisms e.g. data replication, fail over, nodes coordination and etc. are

shifted from KVS itself to the underlying file system i.e. Lustre. We explore the design

space in Figure 6.4. A S-KVS has low concurrent write performance as it only supports

exclusive writes. A simple solution is to have multiple processes write to independent S-

KVSs and let a read search all the existing S-KVSs. However, the read performance will

deteriorate as the number of S-KVS grows because a read has to consult more BDBs to

get the data. To remedy the read deterioration, compaction can be used to merge multiple

S-KVSs into one to reduce the number in the system. Therefore, to support concurrent

writes without sacrificing too much read performance, we design KVLight in the “Multiple

S-KVS + Compaction” category.

103

Figure 6.4: Design space of KVLight. The arrow points to high performance.

6.3 Design Details

KVLight uses Berkeley DB (BDB), a widely used S-KVS, to store key-value pairs. In

this section, we present the log structure merge tree (LSM) design that allows KVLight

to support concurrent writes and the asynchronous mechanisms that hide the overheads

introduced by LSM. Then we describe two different compaction approaches i.e. size based

compaction and tree based compaction, and their parallel implementations. Finally, we

present the consistency model used in KVLight.

6.3.1 Concurrent Write

To support concurrent writes, KVLight has each application write to a dedicated BDB

(called write BDB) which is not shared with other applications. Figure 6.5 shows the

details. All the writes of an application go to one write BDB or multiple write BDBs. A

write BDB is flushed as an immutable BDB and shared by other applications according to

a certain policy. Sample policies are when the size of the write BDB exceeds a threshold

or when the application wants to. After a write BDB is flushed, it becomes accessible by

other applications. Any new write requests will be added to a new write BDB. To read a

key-value pair, KVLight consults the write BDB first and then the immutable BDBs. To

104

delete a key-value pair, it marks the key as deleted by updating the key with a special value.

KVLight will report “key not found” if an application intends to read the key marked as

deleted. The key-value pair will be removed during the compaction.

Figure 6.5: The structure supports concurrent write.

To further improve performance, we introduce an asynchronous mechanism that runs

the flushing in the background as a separate thread and keeps admitting new write requests

at the same time. When a write BDB is closed for flushing, it will invoke a number of

procedures such as syncing buffer to disk, reclaiming unused disk space, and etc. These

procedures result in blocking for coming writes. The asynchronous mechanism can overlap

the flushing with write admission and thus hides the flushing overhead from applications

as much as possible.

Organizing BDBs in this way has some advantages. Using different “types” of BDB

allows KVLight to support both concurrent write and concurrent read. Thus we enact

dedicated BDB for write and immutable BDB for read. Having different applications to

write to different BDBs can better utilize the parallelism Lustre provides.

However, there are some caveats about such an organization. First, the read perfor-

mance will degrade as the system keeps admitting new write requests. Figure 6.6 shows

the read throughput degradation as a result of the number of BDB increases. That is be-

105

cause the number of immutable BDBs keeps increasing and forces a read to consult more

BDBs than before. Second, there will be some versioning issues as different values associ-

ated with the same key may exist in different BDBs. Third, the consistency is weakened as

a write BDB is visible to other applications until it is flushed and becomes immutable. We

address the read performance degradation and versioning issues through the compaction

procedure discussed in Section 6.3.2. We present the consistency model used for KVLight

in Section 6.3.3.

3 6 12 24 48

10

20

30

40

50

60

70

80

Th
ro

ug
hp

ut
 (k

op
s)

#BDB

Figure 6.6: The aggregated throughput of read decreases as the number of BDBs increases.

6.3.2 Compaction

To serve reads, all the immutable BDBs have to be searched so as to return the values

associated with the given key. The lookup cost is O(n × k) where n is the number of

BDBs, k is the cost of fetching data from BDB, and n keeps increasing as the system admits

new writes and flushes write BDBs. Compaction is a background procedure that merges

multiple BDBs into one to reduce the number of BDBs. Once a new BDB is generated, old

BDBs will be deleted. If there are multiple values associated with the same key, KVLight

106

only returns the one with the latest timestamp during read and discards other values during

compaction. We first present a straightforward approach to compact BDBs based on their

sizes. Then we propose a tree based compaction approach.

Size Based Compaction

A compaction will be triggered if the number of immutable BDBs exceeds a threshold.

The compaction picks a subset of BDBs with the smallest sizes to merge. This is to avoid

merging large BDBs repeatedly, which is similar to the tier compaction used in HBase and

Cassandra. To better utilize the parallism of Lustre and speed up the compaction, we intro-

duce parallel compaction to KVLight. Specifically, KVLight launches several procedures

that compact BDBs in parallel. Each of these procedures merges a separated set of BDB-

s. Algorithm 4 describes the details. The Compaction procedure monitors the number of

BDBs and dispatches them to different workers for compaction in a round robin fashion if

needed. Workers may be run on different nodes instead of the ones KVLight applications

run to avoid I/O competition. The CompactionWorker procedure merges the set of BDBs

assigned.

To further boost the read performance, KVLight uses bloom filter, an in-memory hash

structure, to quickly locate the BDBs that may have the data. A bloom filter can test if a

given key is in a BDB in O(1) with some false positive. This is much faster than using the

indices of BDB to test. Every BDB is associated with a bloom filter generated during the

flush of a write BDB. Given a key, KVLight tests the key against the bloom filters and finds

a subset of the BDBs that might have the associated values. Afterwards, KVLight linearly

searches the subset of the BDBs with their indices.

107

Algorithm 4 Size Based Compaction Algorithm
1: worker list is a list of workers where compaction can be performed.

2: bdb is a set of BDBs to be compacted.

3: procedure COMPACTION

4: if #BDBs > threshold then

5: if worker list is not empty then

6: bdb← Pick (#BDBs− threshold+ 2) BDBs

7: Update #BDBs

8: Remove workerj from worker list

9: Schedule workerj to work on bdb

10: end if

11: end if

12: end procedure

13: procedure COMPACTIONWORKER(bdb, workerj)

14: Compact(bdb) on workerj

15: Add workerj back to worker list

16: end procedure

108

Tree Based Compaction

The problem of the size based compaction is a read may still have to lookup a large number

of BDBs even after a compaction. Consider the following example in Figure 6.7a. Key1

spreads across 3 BDBs. After the first compaction, it is still in 3 BDBs. Only after a second

compaction it stays in 1 BDB. It is worse if the threshold is larger than 3 because there will

not be a second compaction and Key1 stays across three BDBs.

(a) (b) (c)

Figure 6.7: Different key range organizations across BDBs. A blue stripe represents a

BDB. The number in the key range is used as illustrations. (a) Overlapped key ranges; (b)

Non-overlapped key ranges; (c) Non-overlapped key ranges across partition, overlapped

key ranges within the same partition.

The cause of the scenario described above is the key ranges in different BDBs overlap

with each other. Ideally, if the key ranges of all the BDBs are disjointed, then a read

request only needs to lookup one BDB as shown in Figure 6.7b. However, implementing

such a model will be very inefficient in KVLight because concurrent writes from different

applications may write to the same BDB which only supports exclusive write. Therefore,

we propose another model that approximates the ideal one. The entire key space is divided

into a few partitions. A partition has a disjoint key range and is associated with a list

of BDBs. BDBs falling into different partitions will have non-overlapped key ranges but

109

BDBs in the same partition may have overlapped ones. A compaction may only be applied

within a partition. Figure 6.7c shows an example. Key1 spreads across 3 BDBs in the same

partition. After a compaction, Key1 stays in 1 BDB instead of 3 compared with Figure

6.7a. Thus after one compaction, KVLight is able to read Key1 by searching only one

BDB. BDBs in the same partition can be further partitioned into multiple sub-partitions

during the compaction, which makes the organization similar to a tree.

Motivated by the example in Figure 6.7c, we organize BDBs as a tree for read. Figure

6.8 describes the design. A node in the tree has a key range and is associated with a list

of BDBs whose keys fall within the node’s key range. Its children nodes further partition

the parent node’s key range into disjoint ranges. BDBs belonging to different nodes have

non-overlapped ranges while BDBs within the same node have overlapped key ranges. The

root of the tree is a node with the entire key range and an empty list of BDBs. Writes will

go the children of the root node. There are two types of compaction over the tree: one is

to push the key-value pairs down to the next level by reading the BDBs in the parent node

and writing into its children nodes; the other one is to merge several BDBs under the same

node into one. The former one further divides the key ranges while the latter one reduces

the number of BDBs. In addition, the height of the tree and the number of children of

a node can be dynamically adjusted. These two parameters determine the granularity of

the key range partition. This is especially helpful when dealing with skew data. If a node

has much more data than other nodes have, we may increase the height and the number of

children nodes to refine the partition of the key range.

In the current prototype of KVLight, the maximum level of the tree and the maximum

number of children of a node, i.e. the fan out, are set as fixed numbers. We leave the

dynamical adjustment of the parameters in future work. The KVLight library maintains

110

Figure 6.8: Tree based compaction design.

an index that describes the tree structure of BDBs. The key range is decided by hashing.

A portion of the key is extracted for hashing in different levels. Specifically, we have two

levels (the root is not counted in the level hierarchy). In the 2nd level, we hash the last 16

bytes of the key to decide which child it goes to. In the 3rd level, we hash the first 16 bytes.

The compaction procedure is triggered when the number of BDBs under a node exceeds a

threshold. BDBs in a non-leaf node will be pushed down to the leaf node and the BDBs in

the leaf node are merged together. Figure 6.9 shows a running example of compaction in

the tree structure.

Figure 6.9: Compactions run in nodes from different levels of the tree. For the node in

the top, the compaction pushes keys down to the next level by further partitioning the key

range. For the nodes in the bottom, the compaction merges BDBs of the same node into

one.

111

To parallelize tree based compaction, we allow multiple compactions to run on different

branches of the tree independently. Algorithm 5 describes the procedure. The Compact

procedure dispatches nodes to compaction workers. The Update function traverses the

tree level by level and updates a list of nodes to be compacted. The CompactionWorker

procedure either pushes the BDBs to the next level for non-leaf nodes or merges the BDBs

for leaf nodes.

Algorithm 5 Tree Based Compaction Algorithm
1: node list is a list of nodes to be compacted.

2: worker list is a list of workers where compaction can be performed.

3: procedure COMPACTION

4: Update(node list)

5: for each nodei in node list do

6: if worker list is not empty then

7: Remove workerj from worker list

8: Schedule workerj to work on nodei

9: end if

10: end for

11: end procedure

12: procedure COMPACTIONWORKER(nodei, workerj)

13: Compact(nodei) on workerj

14: Add workerj back to worker list

15: end procedure

To read a key-value pair, KVLight searches down the tree and locates the node con-

taining the key. Then it linearly searches all the BDBs under the node to get the values.

112

Bloom filter is also used here to quickly detect if a BDB contains the key or not. Compared

with the size based compaction, the tree based compaction can quickly focus on a subset

of BDBs containing the key and provides a flexible structure that can dynamically adjust

according to different key distribution.

6.3.3 Consistency

Although Lustre, where KVLight is built, provides strong consistency for concurrent ac-

cess, KVLight introduces data inconsistency because it needs to support concurrent writes.

There are two scenarios related to consistency: consistency within a process and consis-

tency among processes. For consistency within a process, according to [101], KVLight

follows the read-your-write consistency. The effect of a write can always be seen by fol-

lowing reads in the same process. That is because a write will either stay in the write BDB

or one of the immutable BDBs. Successive reads in the same application can read the

value of write from either the write BDB or immutable BDBs immediately. For consisten-

cy among processes, a process might not read the latest value written by another process

in advance, but it will eventually. The reason is that a key-value pair is admitted to the

write BDB which only becomes visible to other applications until flushed. The time took

for the key-value pair becomes visible depends on the flushing policy discussed in Section

6.3.1. To support strong consistency in the inter-processs case, the KVLight library can

search all the existing BDBs to serve reads. Such an operation is very expensive in terms

of performance because KVLight has to reopen the write BDBs every time it tries to read

a key-value pair in order to get the newly admitted data. KVLight follows an eventual con-

sistency model by default, but allows a client to specify strong consistency as an option in

the API.

113

6.3.4 Limitations

To simplify the situations, the current KVLight prototype is limited to simple key-value pair

lookup. It does not support transaction and atomic operation. Both require a central mech-

anism that can coordinate among applications. Additionally, it does not support advanced

operations like scan and join. The scan operation requires a global order of keys across

different BDBs while the join requires extra indices. Furthermore, it assumes the back-end

PFS can accommodate reads and writes from both applications and internal procedures i.e.

compaction without creating contentions.

6.3.5 Applications

The aforementioned consistency model and limitations impose constraints to the appli-

cations that can use KVLight. For applications that involve operations across multiple

processes, KVLight is not suitable. Examples include the strong consistency case where a

process reads from the writes made by another process, the transaction case where a pro-

cess wants to commit a series of operations as a transaction, and the atomic operation case

where a counter is maintained among applications. Despite of these constraints, KVLight

is suitable to a wide range of applications. KVLight can be used in situations where eventu-

al consistency can be tolerated. An example is the advertisement listing application. Many

users (applications) post advertisements. It is OK that some advertisements do not get to

the reader immediately. KVLight can also be used in situations where write and read are

separate. An example is log processing [112]. Log data is injected as key-value pairs to

KVLight by multiple processes (potentially distributed). Once the injection is done, several

other processes read from KVLight to process the log data. Another usage scenario is to

114

persistently store data in HPC environment. The access to compute nodes is granted as the

job is scheduled and revoked as the job is terminated, which makes traditional M-KVS like

Cassandra unable to persist data as it requires a long running service on each compute n-

ode [40]. KVLight does not require persistent running services and thus allows on-demand

access.

6.4 Implementation

We implemented KVLight in Java 1.7 with Berkeley DB Java Edition 6.2.3. The KVLight

library shown in Figure 6.10 consists of a write manager and a read manager. The write

manager dispatches the key-value pairs to different BDBs based on the hash partition. It

also implements an asynchronous mechanism to avoid blocking when flushing a write B-

DB. The read manager maintains the tree structure of various BDBs and is responsible for

handling reads. The compaction manager is a separate process triggered by the library. It

launches serval compactions to compact BDBs in parallel. Only one compaction manager

is allowed to run at a time. Both the compaction manager and the workers are run through

ssh on additional nodes. KVLight has to maintain system status. We implement the system

status e.g. paths of the immutable BDBs in several metadata tables backed by a BDB in

Lustre. Retry logic is applied to update operation on the metadata table in case of failure

caused by concurrent write. The read manager updates the tree model every 1 second by

reading the paths from the metadata table.

115

Figure 6.10: KVLight implementation and deployment.

6.5 Evaluation

We evaluate the performance of KVLight in a cluster environment and compare against

Cassandra version 2.0.14 and Voldemort version 1.9.17, both of which are state-of-the-art

KVS. Voldemort is a KVS using Berkeley DB Java Edition as the default backend store and

used widely in LinkedIn [100]. The experiments are carried out in a distribute environment.

Each node has 2 Intel Xeon E5-2650 v2 8-core processors and 32 GB memory. Both

Cassandra and Voldemort are setup as a 15-nodes cluster. We use Data Capacitor II (DC2)

as the parallel file system [25]. DC2 runs Lustre 2.1.6 with 26 storage nodes connected

with 56-Gb FDR InfiniBand and provides 3.5 PB storage capacity. It is mounted to all

the nodes as a shared file system. The client uses YCSB [20] to generate the data as well

as workloads and runs on additional nodes. To use YCSB with KVLight, we develop a

KVLight plugin for it.

For KVLight, it uses the tree based compaction by default. A write BDB will be flushed

when its size exceeds 256 MB. The maximum level is set to 2. The maximum children per

node is 4. The compaction threshold for each node is set to 3. Therefore, the maximum

number of BDBs is 48 (4 × 4 × 3). The maximum number of compaction procedures

116

running in parallel is 6. For Cassandra, we keep its default settings, and configure the Java

heap size to 4GB so as to leave most of the memory to OS as recommended in [45]. The

consistency level defaults to one which enables eventual consistency. We configure BDB

with 5 GB cache size and 256 MB log file size for both KVLight and Voldemort according

to the suggestions from [103]. For the data stored in Lustre, we set the stripe count to 1

and stripe size to 4 MB. An evaluation of impacts of different stripe counts and sizes is left

in future work. The workloads used in evaluation include write-only, read-only and write-

read mixed. Requests are drawn from 2,500,000 randomly generated key-value pairs. Each

pair is about 1.2 KB. The write-only workload sends write requests, while the read-only

workload sends read requests. 50% of the requests in the write-read workload is writes

while the other 50% is reads. We use throughput, i.e. operations per second (ops/sec),

as the performance measurement. We report the aggregated throughput from all clients to

reflect the throughput of a KVS.

We first evaluate the overall performance of KVLight and quantify the impact of com-

paction to workloads. Then we investigate the effectiveness of different compaction strate-

gies. Finally, we examine KVLight’s performance under two real world applications.

6.5.1 Overall Performance

We start by running the workloads against KVLight, Cassandra and Voldemort. The write

workload tests if KVLight can handle concurrent writes. The read workload evaluates if

the organization of BDBs can serve concurrent reads efficiently. The write-read workload

assesses the impact of compaction when writes and reads are present. To thoroughly test

the KVS, Cassandra and Voldemort are set up on two different file systems: a parallel

file system i.e. Lustre and a local file system backed by the local disk in the compute

117

write read write-read
0

10

20

30

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (k

op
s/

se
c)

 KVLight
 Cassandra
 Voldemort
 Cassandra Local
 Voldemort Local

Figure 6.11: Aggregated throughput for various workloads on different KVS.

node. We have 8 clients run simultaneously on separate nodes. We preload 2,500,000 key-

value pairs for the read-only workload and the write-read workload. Both the read-only

and write-read workloads are launched after the store has been compacted for Cassandra

and KVLight. Cassandra and Voldemort are restarted to clear the cache before serving

reads. Figure 6.11 displays aggregated throughput of different KVS. We first compare

three KVSs when they store data in Lustre. For the write workload, KVLight outperforms

Cassandra and Voldemort by 23% and 62% respectively. We think it is because KVLight

avoids the protocol overhead and redundant network trip mentioned in Section 6.1. For the

read workload, KVLight’s throughput is about 26% higher than Cassandra’s which reflects

the effectiveness of tree organization of BDBs in KVLight. Compared with Voldemort,

KVLight’s throughput is about 5% less. We attribute that to the overhead of locating the

BDBs. To serve a read request, KVLight searches down the tree to locate the node whose

key range contains the target key. Then it linearly searches the BDBs that belong to the

node to find the value. In contrast, Voldemort divides the key space into non-overlapped

118

0 100 200 300 400 500 600 700 800

Time (seconds)

0

2

4

6

8

10

12

14

16

T
h

ro
u

g
h

p
u

t
(k

o
p

s
/s

e
c
)

compaction

(a) Write-only workload

0 100 200 300 400 500 600 700 800

Time (seconds)

0

2

4

6

8

10

12

14

16

T
h

ro
u

g
h

p
u

t
(k

o
p

s
/s

e
c
)

compaction

(b) Read-only workload

0 200 400 600 800 1000

Time (seconds)

0

2

4

6

8

10

12

14

16

T
h

ro
u

g
h

p
u

t
(k

o
p

s
/s

e
c
)

compaction compaction compaction compaction

(c) Write-read workload

Figure 6.12: Impact of compaction on different workloads in terms of throughput. (a)

There is no observable impact for the write-only workload. (b) Throughput improves as

compaction goes on for the read-only workload. (c) Throughput drops during compaction

and improves afterwards for the write-read workload.

partitions (one BDB per partition) through consistent hashing and serves a read request by

just looking up one BDB. For the write-read workload, KVLight’s throughput is about 5%

and 16% higher than the ones of Cassandra and Voldemort respectively. Such results show

KVLight is able to run compaction efficiently to mitigate the write impact. Compared with

Cassandra, KVLight runs multiple compactions in parallel instead of one compaction at a

time. Furthermore, KVLight runs compactions on additional nodes rather than the nodes

hosting the applications to avoid I/O contentions.

When the data is stored in the local disk, both Cassandra and Voldemort perform worse,

evidenced by the throughput drop in Figure 6.11. After consulting to the system admin of

DC 2, we conclude that it is because the local file system is slower than Lustre in the kind of

workloads generated by KVS. The local disk is a 7200 RPM SATA drive while a OST i.e. a

Lustre data node is composed from (10) 7200 RPM SATA drives configured in Raid-6. The

nodes running the Cassandra and Voldemort instances have 10Gb Ethernet connectivity to

Lustre nodes. A 7200 RPM SATA drive typically yields about 90 MB/s bandwidth while

119

an OST yields about 300 MB/s. Because the network bandwidth is 1.2 GB/s which is larger

than an OST can sustain, data transferred to or from Lustre is subjected to the bandwidth

of OSTs rather than to the network.

Sequential W Random W Sequential R Random R
0

50

100

150

200

W
rit

e
Th

ro
ug

hp
ut

 (M
B

/s
ec

)
 local file system
 Lustre

0

40

80

120

160

200

R
ea

d
Th

ro
ug

hp
ut

 (1
00

 M
B

/s
ec

)

Figure 6.13: I/O performance from Iozone.

We run an I/O benchmark, Iozone [51] to report writes and reads throughput with re-

spect to sequential and random patterns on the local file system and on Lustre. The size

of data written and read is set to 30 GB. Figure 6.13 plots the average throughput of 10

runs. For sequential write, Lustre outperforms the local file system about 2 times, which

matches the expectation based on the hardware spec mentioned. That also explains why

Cassandra and Voldemort are worse in local file system because both systems append data

to log files which are sequential writes. However, Lustre is about 15% worse than the local

file system in the random write workload. For sequential read and random read, both local

file system and Lustre obtain higher throughput than the disk can generate. We think it

is due to the impact of cache including Linux VFS cache, disk cache, and Lustre cache.

Iozone does not support direct I/O and we do not have the privilege to reset the cache in

120

the system. For reads, Lustre’s throughput is about 20% higher than the local file system in

the sequential read and 8% higher in the random read. In a word, Lustre outperforms the

local file system in sequential write as well as read and random read, all of which are main

workloads Cassandra and Voldemort impose to the file system.

Next, we investigate the impact of compaction on aforementioned workloads. We use a

YCSB client to carry out the workloads and plot the throughput as well as compaction span

as functions of time in Figure 6.12. We preload the data for the read-only and write-read

workloads. We disable the compaction when preloading data for the read-only workload

so that compaction will be triggered during reads. Figure 6.12 shows the result. For the

write-only workload, although the compaction lasts about 400 seconds, there is no observ-

able impact to the throughput as displayed in Figure 6.12a. For writes, a compaction is just

another batch of writes and the reads in compaction do not interfere with writes from ap-

plications. For the read-only workload in Figure 6.12b, the compaction starts shortly after

the workload begins and lasts about 400 seconds. The throughput gradually improves dur-

ing the compaction which shows the compaction indeed can improve read performance by

reducing the number of BDBs and organizing them in a tree structure. For the write-read

workload in Figure 6.12c, its throughput stays about 10,000 ops/sec but drops to around

5,500 ops/sec when the compaction runs. There are several reasons behind that. First,

some of the slowdown may come from the frequent update of the tree structure of BDBs

because obsolete BDBs are deleted and new BDBs are generated. Second, a BDB being

read by a KVLight library may be deleted by the compaction procedure which cause excep-

tion. The KVLight library ignores such types of exceptions, updates its view of available

BDBs and retries. All these steps contribute to the slowdown.

Finally, we evaluate the overhead KVLight adds to BDB by running 1-client workloads

121

against them. Table 6.1 shows the results. The overhead of writes in KVLight is ignorable

owning to the asynchronous write mechanism in Section 6.3. KVLight suffers about 5%

degradation in the read workload and 9% degradation in the write-read workload. The over-

head mainly comes from the tree based organization of BDBs and compaction. However,

KVLight stands out in concurrent access situation where BDB struggles.

Table 6.1: Overhead evaluation of KVLight.

Workload Berkeley DB (ops/sec) KVLight (ops/sec)

Write 11763 11045

Read 10323 9832

Write-read 9425 8545

6.5.2 Effectiveness of Compaction

In this section, we investigate the effectiveness of different compaction strategies and the

speedup of parallel compaction.

Compaction Strategies

To study different compaction strategies in KVLight, we use the size based compaction and

the tree based compaction to merge the data respectively, and afterwards run workloads a-

gainst KVLight. The compaction threshold for the size based compaction is set to 48 which

is the same as the maximum number of BDBs in tree based compaction. We use a read-

only workload and a write-read workload in this experiment. Throughputs are normalized

to the one obtained without any compaction and reported in Figure 6.14. With compaction,

throughput is improved by around 40% and 65% in the read-only workload, and around

122

30% and 50% in the write-read workload. That is because without compaction, KVLight

has to consult many BDBs with overlapping key ranges to get a key-value pair, which is

time consuming. The tree based compaction is better than the size based compaction be-

cause it further reduces the number of BDBs searched during reads by partitioning the key

space into disjoin sets. To verify such an statement, we report the average number of BDBs

read per request for the read-only workload. The tree based approach visited 1.3 BDBs

in average while the size based approach accessed 8.7 BDBs in average which is about 7

times higher. Therefore we can conclude from the above results that compaction can im-

prove read performance significantly and the tree based compaction strategy can further

boost performance by efficiently organizing the BDBs.

read write-read
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

 no compaction
 size based compaction
 tree based compaction

Figure 6.14: Throughput comparison among different compaction strategies.

Parallel Compaction

KVLight runs multiple compactions in parallel to reduce the total time spent on com-

paction. We evaluate the speedup by varying the total number of compaction workers that

123

run in parallel. We have a YCSB client to inject 2,500,000 and 5,000,000 key-value pairs

respectively. Figure 6.15 displays the time spent in compaction corresponding to different

numbers of compaction workers. In the 2,500,000 case, when the number of workers in-

creases from 1 to 3, we obtain near ideal speedup. The speedup begins to deteriorate when

the number of workers goes beyond 6. We think it is because the compaction rate has al-

ready matched the write BDB flush rate. In the 5,000,000 case, we observe a similar trend.

In addition, the performance gain in terms of time saved in the 5,000,000 case is much more

significant than the one in the 2,500,000 case. That implies parallel compaction becomes

more effective when the size of data increases.

1 3 6 9
1

10

100

1000

Ti
m

e
(m

in
ut

es
)

Compaction Workers

 2.5 million keys
 5 million keys

Figure 6.15: Speedup tests over various data sizes. Time is reported in log scale.

6.5.3 Real World Applications

To further evaluate KVLight’s performance, we apply two real applications. The first one

is a Facebook key-value pair access application i.e. ETC [4]. We generate 25 million key-

values pairs based on the key-size and value-size distributions specified in [4]. We use the

124

power law distribution with the shape parameter set as 3.2 to approximate the key access

sequence in [4]. There are three workloads on this data set: a write-only workload (W) that

loads the data into the store; a read-write workload (R) whose read-write ratio is 30:1; a

read-write-delete workload (R/W/D) whose read-write-delete ratio is 30:1:15. These ratios

are also specified in [4]. The second application is from the file I/O trace of Los Alamos

national laboratory Anonymous App1 application (LANL) [61]. Yin et al. interpret each

write in the trace as a key-value pair whose key size is fixed and value size is the number of

bytes written [111]. We adopt the same interpretation but repeat the trace 5 times to have

a larger data set with 860390 key-value pairs. We only evaluate the write-only (W) and

read-only (R) workloads for the LANL data set as the trace does not reveal the read-write

ratio. To generate aforementioned workloads, we extend YCSB to support customized key

size and value size distribution, as well as the delete operation. Eight clients are used to

carry out each workload. We report the aggregated throughput.

W R/W R/W/D
0

20

40

60

80

100

120

140

160

Th
ro

ug
hp

ut
 (k

op
s/

se
c)

 KVLight
 Cassandra
 Voldemort

(a) Facebook application.

W R
0

2

4

6

8

10

12

14

16

18

Th
ro

ug
hp

ut
 (k

op
s/

se
c)

 KVLight
 Cassandra
 Voldemort

(b) LANL App1 application.

Figure 6.16: Performance comparison in real world applications.

125

Figure 6.16a displays the results of the Facebook application. We can observe that

KVLight yields 38% and 70% higher throughput than Cassandra and Voldemort do respec-

tively. In the R/W workload, KVLight’s throughput is 49% higher than Cassandra’s but is

8% less than Voldemort’s. In the R/W/D workload, KVLight achieves about 13% higher

throughput than the other two systems. Figure 6.16b shows the results of the LANL App1

application. KVLight outperforms both Cassandra and Voldemort in the write-only work-

load, although the improvement is not as significant as the one in the Facebook workload.

However, KVLight is the worst in the read-only workload. Voldemort is also worse than

Cassandra in the read-only workload. It is probably because Berkeley DB does not handle

key-value pairs with large value size well. About 2/3 of the key-value pairs in the LANL

App1 application have value size over 100 KB which is significantly larger than the value

size in the synthetic experiments and the Facebook application.

6.6 Summary

This chapter describes KVLight, a lightweight key-value store in a distributed environment.

KVLight uses Berkeley DB for the lightweight access and extends it with a parallel file

system for data reliability, fail over and concurrent access. The core design behind KVLight

is a novel tree based organization of data with parallel compaction. Empirical results show

that KVLight is able to outperform Cassandra and Voldemort in most of the workloads.

There are a number of future directions for this work. First, it is useful to adjust the tree

structure (i.e. height and fan out) dynamically to handle different data distributions. For

key ranges with many keys, it is better to further partition such ranges to avoid consulting

too many BDBs in read, which results in the increase of height or fan out. For key ranges

with few keys, it is reasonable to keep the height as well as fan out low to avoid overheads

126

in compaction. Second, we plan to further optimize the metadata structure. Right now,

KVLight has to maintain a bloom filter for each BDB, which puts pressures on the use of

memory. Last but not least, we intend to investigate the impact of strip count and strip size

setting of Lustre on the BDB performance.

127

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Multi-tenancy in cloud hosted NoSQL data stores is favored by providers as it allows effec-

tive resource sharing amongst different tenants and thus lowers operating cost. For tenants

working on non-shared data sets, performance isolation becomes critical as it provides pre-

dictable performance and prevents interference. For tenants sharing the same data set, cost

effectiveness is the main concern. As we describe and experimentally show in chapter 4, 5,

and 6, traditional distributed NoSQL stores do not support performance isolation well and

are not cost effective while running over parallel file system. This dissertation proposes

several approaches in an attempt to address the isolation and efficiency issues. Empiri-

cal results show that our system allows tenants to share system throughputs fairly and the

performance of read operations is protected.

In chapter 4, we propose a system that targets fair share across tenants by throughput

regulation. We first show that interference can occur when tenants use different thread num-

bers to run workloads against Cassandra. Then we propose an architecture based on feed-

back control to enforce fair share. Essentially the system puts requests into queues and has

a scheduler to schedule them. When a response returns, the system collects some metrics

128

as feedbacks to the scheduler for adaptive control. The scheduler adapts the deficit round

robin algorithm with a linear programming model for credit refill. The system is further en-

hanced with several adaptive control approaches. We first experimentally demonstrate that

single node fairness (called local fairness) is unnecessary to achieve system-wide fairness

(called global fairness) and lower throughput. Then we propose a mechanism to dynam-

ically adjust the credit allocation of tenants for each node to accomplish global fairness

without achieving local fairness. Additionally, the system splits a scan operation into small

chunks to avoid head-of-line blocking and allows the overlapping of processing between

scan operations and get operations.

The aforementioned approach uses the number of bytes delivered from the store to rep-

resent the actual resource consumption in the system. It works in situations where work-

loads have the same access patterns but fails in cases when they do not. For example, bytes

of a workload with random access pattern mainly come from or go to disk while the ones of

a workload with a hotspot pattern rely on cache heavily, as discussed in chapter 5. There-

fore, we propose a workload-aware resource reservation approach which targets multiple

resources to prevent interference in chapter 5. We first conduct a set of experiments on a

state-of-the-art NoSQL store, i.e. HBase, and reveal that interference could be triggered

by tenants using different thread numbers and access patterns. Also, interference could oc-

cur in block cache (a cache layer maintained by HBase), disk, or both. We present Argus,

a workload-aware resource reservation framework that prevents interference by enforcing

reservation on cache and disk usage. We divide the block cache space into partitions and

limit a tenant’s activities to the cache partition it is assigned. We approximate the disk

usage by the HDFS throughput and design a scheduler in HBase to limit the number of re-

quests sent to HDFS. The reservation is elastic that it can adapt to workload changes on the

129

fly. Furthermore, the resource reservation technique is workload-aware. We have a reserva-

tion planning engine that decides how much resource to reserve according to the resource

demands of workloads. The engine models the problem as a constrained optimization and

relies on the performance functions of various workloads. The performance function of a

workload is approximated by using linear interpolation over sample date collected offline.

Evaluation results show that Argus is able to prevent interference across tenants and adapt

to dynamic workloads accordingly.

Chapter 6 investigates the multi-tenancy in the case that tenants share the same data

set over a parallel file system. We particularly target the key-value store (KVS), a special

instance of NoSQL, over parallel file system (PFS). Traditional KVS is inefficient in the

sense that it requires long running daemon services which prohibits resource reuse or re-

purpose and also introduces overheads while it runs over PFS. We explore the opportunity

of building a lightweight, high performant and distributed KVS, called KVLight, on PFS.

KVLight uses an embedded KVS, i.e. Berkeley DB, for the lightweight access but extends

it with a parallel file system for data reliability, fail over and concurrent access. To over-

come the limit of exclusive writes in most embedded KVS, KVLight proposes a novel tree

based organization of data with parallel compaction. KVLight employs the log structure

merge tree design and has each application write to a dedicated BDB to support concurrent

writes. The dedicated BDB for write does not become visible by other applications until it

is flushed as an immutable BDB. To improve the read performance, KVLight divides the

key space into disjoint partitions and employs the tree structure to organize BDBs. The

operation of reading a key-value pair only needs to search a portion of the BDBs. Com-

paction, a procedure that merges different BDBs into a single one to reduce the number of

BDBs, is used to further improve performance. A parallel mechanism is used to run multi-

130

ple compactions in parallel to speed up the process. Empirical results show that KVLight is

able to outperform Cassandra and Voldemort in most of the workloads, including two real

world application workloads.

7.2 Future Directions

There are several directions for future work.

For performance isolation in the non-shared data with local file system setting, it is

important to isolate reads and writes. Most of the NoSQL stores are log-structured stores

which append writes in log files and have internal data structures to organize the log files.

Our evaluations [113, 115] show that writes from client requests may trigger extra writes

to the internal data structures and influence reads. Modeling the extra I/O cost from writes

is non-trivial and requires further study. In addition, as mentioned in chapter 5, there are

multiple resources involved beyond just block cache and disk in serving requests, e.g. the

memory used to buffer writes. It is beneficial to incorporate additional resources to extend

the capability of reservation. Incorporating additional resources requires extensions of the

resource model in chapter 5. For example, the increase of write buffer size may decrease

the block cache size whose impact needs to be considered. And a workload needs to be

identified by multiple factors including the read/write ratio, key repeat ratio, etc. It is also

interesting to apply the NoSQL store equipped with multi-tenant support in the MapReduce

framework [66, 67] to support multi-tenancy. Another direction for exploration is to apply

the isolation mechanisms to cloud environments with security requirements [47,117–119].

We envision the performance isolation can further improve the security by eliminating

possible covert channels.

For cost effective access in the shared data with parallel file system setting, the proto-

131

type of KVLight organizes all the immutable Berkeley DBs as a static tree structure and

can be extended to a dynamic one. A dynamic tree structure can address uneven data dis-

tribution i.e. data skew. For a tree node with many keys, it is better to push down the BDBs

to the next level through compaction so as to further partition the key range. Such an oper-

ation results in the increase of tree height. For a tree node with few keys, it is reasonable to

keep the height as well as fan out small to avoid overheads over compaction. Additionally,

KVLight is built over a parallel file system without fine tuning its parameters. The strip

count and strip size play an important role in data access performance. It is worthwhile

to quantify the impact of those two factors and has the compaction procedure dynamically

change the two factors according to the workload. Last but not least, it is interesting to

apply the performance isolation mechanisms in Chapter 4 and 5 to KVLight to support the

case where tenants are independent. It is also interesting to explore the application space

for KVLight in a digital library setting [116] and a finance setting [91].

Systems proposed in this dissertation assume the environment is homogeneous. Such

assumptions limit the applicability of our results as the cluster environment may be hetero-

geneous. Handling the uneven distribution and heterogeneous environment requires each

node in the cluster has its own policy to deal with multi-tenant access. A more complicated

global coordination among nodes than the one used in chapter 4 is needed.

Finally, this dissertation only considers simple key-value pair query. Advanced queries

like join, filter, and etc. have not been investigated. Different queries may demand different

resources from the NoSQL data store. Some of them may hold the resources for a long time

like the scan query. We plan to categorize the queries and refine or propose new resource

models to accommodate advanced queries.

132

Bibliography

[1] Apache HBase. http://hbase.apache.org.

[2] Yoshihisa Abe and Garth Gibson. pWalrus: Towards better integration of parallel

file systems into cloud storage. In Workshop on Interfaces and Abstractions for

Scientific Data Storage. IEEE, Sep 2010.

[3] Muhammad Yousuf Ahmad and Bettina Kemme. Compaction management in dis-

tributed key-value data stores. In Proceedings of the VLDB Endowment, VLDB ’15,

pages 850–861. Very Large Data Bases Endowment Inc., 2015.

[4] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

Workload analysis of a large-scale key-value store. In Proceedings of the 12th

ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measure-

ment and Modeling of Computer Systems, SIGMETRICS ’12, pages 53–64, New

York, NY, USA, 2012. ACM.

[5] DynamoDB. http://aws.amazon.com/dynamodb/.

[6] Bdb-usage. https://en.wikipedia.org/wiki/Berkeley_DB#Programs_

that_use_Berkeley_DB/.

133

[7] John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowoczynski, James

Nunez, Milo Polte, and Meghan Wingate. PLFS: A checkpoint filesystem for parallel

applications. In Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis, SC ’09, pages 21:1–21:12, New York, NY, USA,

2009. ACM.

[8] Berkeley DB Java Edition. https://docs.oracle.com/cd/E17277_02/html/.

[9] Bitcask. http://docs.basho.com/riak/latest/ops/advanced/backends/

bitcask/.

[10] Workload interference in cassandra. https://www.youtube.com/watch?v=

eBaPCus06PM.

[11] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkaruppan,

Nicolas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov, Ar-

avind Menon, Samuel Rash, Rodrigo Schmidt, and Amitanand Aiyer. Apache

Hadoop goes realtime at Facebook. In Proceedings of the 2011 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD ’11, pages 1071–1080.

ACM, 2011.

[12] Philip H. Carns, Walter B. Ligon, III, Robert B. Ross, and Rajeev Thakur. Pvfs:

A parallel file system for linux clusters. In In Proceedings of the 4th Annual Linux

Showcase and Conference, pages 317–327. USENIX Association, 2000.

[13] Multi-tenancy with cassandra. https://wiki.apache.org/cassandra/

MultiTenant.

[14] Apache cassandra. http://cassandra.apache.org.

134

[15] Rick Cattell. Scalable sql and nosql data stores. SIGMOD Record, 39(4):12–27,

May 2011.

[16] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:

A distributed storage system for structured data. ACM Transactions on Computer

Systems, 26(2):4:1–4:26, 2008.

[17] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the three

cpu schedulers in xen. SIGMETRICS Performance Evaluation Review, 35(2):42–51,

2007.

[18] It is time to move to the cloud. http://goo.gl/KEpkwY.

[19] Google Cloud Datastore. https://cloud.google.com/datastore/.

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st

ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154. ACM, 2010.

[21] Couchdb. http://couchdb.apache.org/.

[22] Francisco Cruz et al. MeT: Workload aware elasticity for nosql. In Proceedings

of the 8th ACM European Conference on Computer Systems, EuroSys ’13, pages

183–196. ACM, 2013.

[23] Carlo Curino, Evan Jones, Raluca Ada Popa, Nirmesh Malviya, Eugene Wu, Samuel

Madden, Hari Balakrishnan, and Nickolai Zeldovich. Relational Cloud: A Database

Service for the Cloud. In 5th Biennial Conference on Innovative Data Systems Re-

search, CIDR ’11, Asilomar, CA, January 2011.

135

[24] Sudipto Das, Vivek R. Narasayya, Feng Li, and Manoj Syamala. CPU sharing tech-

niques for performance isolation in multi-tenant relational datab-as-a-service. In

Proceedings of the VLDB Endowment, PVLDB ’13. Very Large Data Bases Endow-

ment Inc., 2013.

[25] Data Capacitor II. https://kb.iu.edu/d/avvh/.

[26] Biplob Debnath, Sudipta Sengupta, and Jin Li. FlashStore: High throughput per-

sistent key-value store. Proceedings of the VLDB Endowment, 3(1-2):1414–1425,

2010.

[27] Giuseppe DeCandia et al. Dynamo: Amazon’s highly available key-value store. In

Proceedings of the 21th ACM SIGOPS Symposium on Operating Systems Principles,

SOSP ’07, pages 205–220. ACM, 2007.

[28] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,

and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Pro-

ceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles, SOSP

’07, pages 205–220. ACM, 2007.

[29] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing

algorithm. SIGCOMM Computer Communication Review, 19(4):1–12, 1989.

[30] Microsoft Azure DocumentDb. http://azure.microsoft.com/en-us/

services/documentdb/.

[31] Dynamodb faq. http://aws.amazon.com/dynamodb/faqs/.

136

[32] Amazon ec2. http://aws.amazon.com/ec2/.

[33] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Hyperdex: A distributed,

searchable key-value store. In Proceedings of the ACM SIGCOMM 2012 Conference

on Applications, Technologies, Architectures, and Protocols for Computer Commu-

nication, SIGCOMM ’12, pages 25–36. ACM, 2012.

[34] Fair queuing. https://en.wikipedia.org/wiki/Fair_queuing.

[35] Hadoop Fair Scheduler. http://hadoop.apache.org/docs/r1.2.1/fair_

scheduler.html.

[36] Futuregrid. https://www.futuregrid.org/.

[37] John Gantz and David Reinsel. The digital universe in 2020: Big data, bigger digital

shadows, and biggest growth in the far east. http://www.emc.com/collateral/

analyst-reports/idc-the-digital-universe-in-2020.pdf, 2013.

[38] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,

and Ion Stoica. Dominant resource fairness: Fair allocation of multiple resource

types. In Proceedings of the 8th USENIX Conference on Networked Systems Design

and Implementation, NSDI’11, pages 24–37. USENIX Association, 2011.

[39] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[40] Hugh Greenberg, John Bent, and Gary Grider. MDHIM: a parallel key/value frame-

work for HPC. In 7th USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage 15), Santa Clara, CA, 2015. USENIX Association.

137

[41] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. PARDA: proportional alloca-

tion of resources for distributed storage access. In Proccedings of the 7th Conference

on File and Storage Technologies, FAST ’09, pages 85–98. USENIX Association,

2009.

[42] Ajay Gulati, Arif Merchant, and Peter J. Varman. mClock: Handling throughput

variability for hypervisor io scheduling. In Proceedings of the 9th USENIX Con-

ference on Operating Systems Design and Implementation, OSDI ’10, pages 1–7,

Berkeley, CA, USA, 2010. USENIX Association.

[43] Region server grouping in hbase. https://issues.apache.org/jira/browse/

HBASE-6721.

[44] Quota management in hbase. https://issues.apache.org/jira/browse/

HBASE-8410.

[45] Eben Hewitt. Cassandra: The Definitive Guide. O’Reilly Media, 2010.

[46] Eben Hewitt. HBase: The Definitive Guide. O’Reilly Media, 2011.

[47] John Homer, Su Zhang, Xinming Ou, David Schmidt, Yanhui Du, S. Raj Ra-

jagopalan, and Anoop Singhal. Aggregating vulnerability metrics in enterprise net-

works using attack graphs. Journal of Computer Security, 21(4):561–597, July 2013.

[48] Hathitrust digital library. http://www.hathitrust.org/.

[49] Hathitrust research center. http://www.hathitrust.org/htrc.

[50] HyperTable. http://hypertable.org.

[51] Iozone. http://www.iozone.org/.

138

[52] Jetstream at indiana university. https://kb.iu.edu/d/bfde.

[53] Dean Jacobs, Stefan Aulbach, and Technische Universitt Mnchen. Ruminations on

multi-tenant databases. In BTW Proceedings, volume 103 of LNI, pages 514–521.

GI, 2007.

[54] Virajith Jalaparti, Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Row-

stron. Bridging the tenant-provider gap in cloud services. In Proceedings of the

Third ACM Symposium on Cloud Computing, SoCC ’12, pages 10:1–10:14, New

York, NY, USA, 2012. ACM.

[55] Achieving rapid response times in large online services. http://research.

google.com/people/jeff/latency.html.

[56] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and

Rina Panigrahy. Consistent hashing and random trees: Distributed caching protocols

for relieving hot spots on the world wide web. In the 29th Annual ACM Symposium

on Theory of Computing, pages 654–663. ACM, May 1997.

[57] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round-robin cell

multiplexing in a general-purpose atm switch chip. IEEE Journal on Selected Areas

in Communications, 9(8):1265–1279, 2006.

[58] Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chan-

da, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, An-

drew Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit,

Ben Pfaff, Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj

Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. Network virtualiza-

139

tion in multi-tenant datacenters. In 11th USENIX Symposium on Networked Systems

Design and Implementation, NSDI ’14, pages 203–216, Seattle, WA, April 2014.

USENIX Association.

[59] Rouven Krebs, Simon Spinner, Nadia Ahmed, and Samuel Kounev. Resource usage

control in multi-tenant applications. In Proceedings of the 14th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing. IEEE/ACM, 2014.

[60] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured stor-

age system. ACM SIGOPS Operating Systems Review, 44(2):35–40, April 2010.

[61] PLFS I/O traces. http://institutes.lanl.gov/plfs/maps/.

[62] LevelDB. https://github.com/google/leveldb/.

[63] LevelDB compaction. http://leveldb.googlecode.com/svn/trunk/doc/

impl.html.

[64] Hui Lu, Brendan Saltaformaggio, Ramana Kompella, and Dongyan Xu. vFair:

Latency-aware fair storage scheduling via per-io cost-based differentiation. In Pro-

ceedings of the Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages 125–

138, New York, NY, USA, 2015. ACM.

[65] Juan Luo, Alexander Brodsky, and Yuan Li. An em-based ensemble learning al-

gorithm on piecewise surface regression problem. International Journal of Applied

Mathematics and Statistics, 28(4):59–74, 2012.

[66] Yuan Luo and Beth Plale. Hierarchical mapreduce programming model and schedul-

ing algorithms. In Proceedings of the 2012 12th IEEE/ACM International Sympo-

140

sium on Cluster, Cloud and Grid Computing (Ccgrid 2012), CCGRID ’12, pages

769–774, Washington, DC, USA, 2012. IEEE Computer Society.

[67] Yuan Luo, Beth Plale, Zhenhua Guo, Wilfred W. Li, Judy Qiu, and Yiming Sun.

Hierarchical mapreduce: towards simplified cross-domain dataprocessing. Concur-

rency and Computation: Practice and Experience, pages 878–893, 2012.

[68] Lustre on amazon aws. https://aws.amazon.com/marketplace/pp/

B00GBFTZ6I.

[69] Leonardo Mármol, Swaminathan Sundararaman, Nisha Talagala, Raju Rangaswami,

Sushma Devendrappa, Bharath Ramsundar, and Sriram Ganesan. NVMKV: A scal-

able and lightweight flash aware key-value store. In Proceedings of the 6th USENIX

Conference on Hot Topics in Storage and File Systems, HotStorage ’14, pages 1–5,

Berkeley, CA, USA, 2014. USENIX Association.

[70] Multitenancy. https://en.wikipedia.org/wiki/Multitenancy.

[71] J. Nagle. On packet switches with infinite storage. IEEE Transactions on Commu-

nications, 35(4):435–438, 1987.

[72] Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and Surajit

Chaudhur. SQLVM: Performance isolation in multi-tenant relational database-as-a-

service. In 7th Biennial Conference on Innovative Data Systems Research, CIDR

’13, 2013.

[73] Vivek Narasayya, Ishai Menache, Mohit Singh, Feng Li, Manoj Syamala, and Surajit

Chaudhuri. Sharing buffer pool memory in multi-tenant relational database-as-a-

service. Proceedings of the VLDB Endowment, 8(7):726–737, February 2015.

141

[74] NoSQL Database. http://www.nosql-database.org/.

[75] Michael A. Olson et al. Berkeley DB. In Summer Usenix Technical Conference.

USENIX Association, 1999.

[76] Patrick O’Neil et al. The log-structured merge-tree (LSM-tree). In Acta Informatica,

pages 351–385, 1996.

[77] Orangefs. https://en.wikipedia.org/wiki/OrangeFS.

[78] Orangefs in amazon aws. https://aws.amazon.com/marketplace/

seller-profile?id=f34f2eeb-dcc6-4e41-90e1-92fbd146db9f.

[79] Abhisek Pan, John Paul Walters, Vijay S. Pai, Dong-In D. Kang, and Stephen P.

Crago. Integrating high performance file systems in a cloud computing environment.

In High Performance Computing, Networking, Storage and Analysis, SCC ’12, pages

753–759. IEEE, Nov 2012.

[80] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing approach

to flow control in integrated services networks: The single-node case. IEEE/ACM

Transactions on Networking, 1(3):344–357, 1993.

[81] Clustered File System. https://en.wikipedia.org/wiki/Clustered_file_

system.

[82] Pvfs tuning. http://www.pvfs.org/cvs/HEAD-docs/doc/pvfs2-tuning.pdf.

[83] Tilmann Rabl, Sergio Gómez-Villamor, Mohammad Sadoghi, Victor Muntés-

Mulero, Hans-Arno Jacobsen, and Serge Mankovskii. Solving big data challenges

142

for enterprise application performance management. Proceedings of the VLDB En-

dowment, 5(12):1724–1735, 2012.

[84] Bharath Ravi, Hrishikesh Amur, and Karsten Schwan. A-Cache: Resolving cache

interference for distributed storage with mixed workloads. In 2013 IEEE Interna-

tional Conference on Cluster Computing, CLUSTER’13, pages 1–8. IEEE, 2013.

[85] Kai Ren and Garth Gibson. TABLEFS: Enhancing metadata efficiency in the local

file system. In Proceedings of the 2013 USENIX Conference on Annual Technical

Conference, USENIX ATC’13, pages 145–156. USENIX Association, 2013.

[86] Riak. http://docs.basho.com/.

[87] RocksDB. http://rocksdb.org/.

[88] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large com-

puting clusters. In Proceedings of the 1st USENIX Conference on File and Storage

Technologies, FAST ’02, Berkeley, CA, USA, 2002. USENIX Association.

[89] Weiwei Shen and Jun Wang. Transaction costs-aware portfolio optimization via fast

lowner-john ellipsoid approximation. In Proceedings of the National Conference on

Artificial Intelligence, AAAI’ 15, pages 1854–1860. AAAI Press, 2015.

[90] Weiwei Shen, Jun Wang, Yu-Gang Jiang, and Hongyuan Zha. Portfolio choices with

orthogonal bandit learning. In Proceedings of the 24th International Conference on

Artificial Intelligence, IJCAI’ 15, pages 974–980. AAAI Press, 2015.

[91] Weiwei Shen, Jun Wang, and Shiqian Ma. Doubly regularized portfolio with risk

minimization. In Proceedings of the National Conference on Artificial Intelligence,

AAAI’ 14, pages 1286–1292. AAAI Press, 2014.

143

[92] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. Cloudscale:

Elastic resource scaling for multi-tenant cloud systems. In Proceedings of the 2Nd

ACM Symposium on Cloud Computing, SOCC ’11, pages 5:1–5:14, New York, NY,

USA, 2011. ACM.

[93] M. Shreedhar and George Varghese. Efficient fair queueing using deficit round robin.

In Proceedings of the Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communication, SIGCOMM ’95, pages 231–242. ACM,

1995.

[94] David Shue and Michael J. Freedman. From application requests to virtual iops:

Provisioned key-value storage with libra. In Proceedings of the 9th ACM European

Conference on Computer Systems, pages 1–14. ACM, 2014.

[95] David Shue, Michael J. Freedman, and Anees Shaikh. Performance isolation and

fairness for multi-tenant cloud storage. In Proceedings of the 10th USENIX Confer-

ence on Operating Systems Design and Implementation, OSDI ’12, pages 349–362.

USENIX Association, 2012.

[96] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. In 2010 IEEE 26th Symposium on Mass Storage

Systems and Technologies, pages 1–10, 2010.

[97] Gokul Soundararajan, Daniel Lupei, Saeed Ghanbari, Adrian Daniel Popescu, Jin

Chen, and Cristiana Amza. Dynamic resource allocation for database servers run-

ning on virtual storage. In Proccedings of the 7th Conference on File and Storage

Technologies, FAST ’09, pages 71–84. USENIX Association, 2009.

144

[98] Garrick Staples. Torque resource manager. In Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, SC ’06. ACM, 2006.

[99] James K. Strayer. Linear Programming and Applications. Springer-Verlag, 1989.

[100] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay Soman, and Sam

Shah. Serving large-scale batch computed data with project voldemort. In Proceed-

ings of the 10th USENIX Conference on File and Storage Technologies, FAST ’12,

pages 1–13. USENIX Association, 2012.

[101] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and

Paradigms (2nd Edition). Prentice-Hall, Inc., 2007.

[102] Andrew S. Tanenbaum and Maarten van Steen. Computer Network (5th Edition).

Prentice-Hall, Inc., 2010.

[103] Berkeley DB java engine tuning tips. https://github.com/voldemort/

voldemort/wiki/Berkeley-DB-Java-Engine-Tuning-Tips.

[104] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska, and Gregory R. Ganger.

Argon: Performance insulation for shared storage servers. In Proceedings of the

5th USENIX Conference on File and Storage Technologies, FAST ’07, pages 1–16.

USENIX Association, 2007.

[105] Stefan Walraven, Tanguy Monheim, Eddy Truyen, and Wouter Joosen. Toward-

s performance isolation in multi-tenant saas applications. In Proceedings of the

7th Workshop on Middleware for Next Generation Internet Computing, pages 1–6.

ACM, 2012.

145

[106] Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Randy Katz, and Ion Sto-

ica. Cake: Enabling high-level slos on shared storage systems. In Proceedings of

the 3rd ACM Symposium on Cloud Computing, SoCC ’12, pages 1–14. ACM, 2012.

[107] Feiyi Wang et al. Understanding Lustre file system internals. Technical report, Oak

Ridge National Laboratory, National Center for Computational Sciences, August

2009.

[108] Weighted fair queuing. https://en.wikipedia.org/wiki/Weighted_fair_

queueing.

[109] Craig D. Weissman and Steve Bobrowski. The design of the force.com multitenant

internet application development platform. In Proceedings of the 2009 ACM SIG-

MOD International Conference on Management of Data, SIGMOD ’09, pages 889–

896. ACM, 2009.

[110] Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, Calton Pu, and Hakan

Hacigumus. Intelligent management of virtualized resources for database systems in

cloud environment. In Proceedings of the 2011 IEEE 27th International Conference

on Data Engineering, ICDE ’11, pages 87–98. IEEE Computer Society, 2011.

[111] Yanlong Yin, Antonios Kougkas, Kun Feng, Hassan Eslami, Yin Lu, Xian-He Sun,

Rajeev Thakur, and William Gropp. Rethinking key-value store for parallel i/o op-

timization. In Proceedings of the 2014 International Workshop on Data Intensive

Scalable Computing Systems, DISCS ’14, pages 33–40. IEEE Press, 2014.

[112] Jiaan Zeng and B. Plale. Data pipeline in mapreduce. In 2013 IEEE 9th International

Conference on eScience, eScience ’13, pages 164–171. IEEE, 2013.

146

[113] Jiaan Zeng and Beth Plale. Multi-tenant fair share in nosql data stores. In 2014

IEEE International Conference on Cluster Computing, CLUSTER ’14, pages 176–

184. IEEE, 2014.

[114] Jiaan Zeng and Beth Plale. Towards building a lightweight key-value store on par-

allel file system. In 2015 IEEE International Conference on Cluster Computing,

CLUSTER ’15, pages 539–540. IEEE, 2015.

[115] Jiaan Zeng and Beth Plale. Workload-aware resource reservation for multi-tenant

nosql. In 2015 IEEE International Conference on Cluster Computing, CLUSTER

’15, pages 32–41. IEEE, 2015.

[116] Jiaan Zeng, Guangchen Ruan, Alexander Crowell, Atul Prakash, and Beth Plale.

Cloud computing data capsules for non-consumptiveuse of texts. In Proceedings

of the 5th ACM Workshop on Scientific Cloud Computing, ScienceCloud ’14, pages

9–16. ACM, 2014.

[117] Su Zhang. Quantitative Risk Assessment under Multi-Context Environments. PhD

thesis, Kansas State University, 2014.

[118] Su Zhang, Xinming Ou, and John Homer. Effective network vulnerability assess-

ment through model abstraction. In Proceedings of the 8th International Conference

on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA’11,

pages 17–34, Berlin, Heidelberg, 2011. Springer-Verlag.

[119] Su Zhang, Xinwen Zhang, and Xinming Ou. After we knew it: Empirical study and

modeling of cost-effectiveness of exploiting prevalent known vulnerabilities across

147

iaas cloud. In Proceedings of the 9th ACM Symposium on Information, Computer

and Communications Security, ASIA CCS ’14, pages 317–328. ACM, 2014.

[120] Qing Zheng, Kai Ren, Garth Gibson, Bradley W. Settlemyer, and Gary Grider.

DeltaFS: Exascale file systems scale better without dedicated servers. In the 10th

Parallel Data Storage Workshop, PDSW ’15, New York, NY, USA, 2015. ACM.

148

Curriculum Vitae

Jiaan Zeng

Education

• Doctor of Philosophy, 2009 - 2015

Computer Science, Indiana University Bloomington, USA

• Master of Science, 2006 - 2009

Computer Science and Engineering, South China University of Technology, China

• Bachelor of Science, 2002 - 2006

Software and Applied Mathematics, South China University of Technology, China

Publications

• Jiaan Zeng, Beth Plale, Workload-Aware Resource Reservation for Multi-Tenant

NoSQL, IEEE International Conference on Cluster (CLUSTER), 2015

• Jiaan Zeng, Beth Plale, Multi-Tenant Fair Share in NoSQL Data Stores, IEEE Inter-

national Conference on Cluster (CLUSTER), 2014

• Jiaan Zeng, Guangchen Ruan, Alexander Crowell, Atul Prakash, Beth Plale, Cloud

Computing Data Capsules for Non-Consumptive Use of Texts, the 5th Workshop on

Scientific Cloud Computing (ScienceCloud), 2014

• Jiaan Zeng, Beth Plale, Data pipeline in MapReduce, the 9th IEEE Conference on

e-Science (eScience), 2013

• Jiaan Zeng, Yinghua Han, A New Approach for Value Function Approximation Based

on Automatic State Partition, Proceedings of the International MultiConference of

Engineers and Computer Scientists, 2009

• Huaqing Min, Jiaan Zeng, Ronghua Luo, Fuzzy CMAC with Automatic State Parti-

tion for Reinforcement Learning, the 2009 World Summit on Genetic and Evolution-

ary Computation

• Huaqing Min, Jiaan Zeng, Jian Chen, Jinhui Zhu. A Study of Reinforcement Learn-

ing in a New Multi-agent Domain, IEEE/ACM International Conference on Intelli-

gent Agent Technology (IAT 08), 2008

