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Andrew Thomas Hendrickson

UNDERSTANDING THE IMPACT OF DIFFERENTIATION AND

UNITIZATION ON THE PERCEPTUAL FEATURES LEARNED DURING

CATEGORY TRAINING

Perceptual representations are a foundational aspect of all cognitive processes that involve

input from the external environment. Yet there is ample evidence that these perceptual

representations are altered by experience in systematic ways. This work focuses on

understanding how perceptual representations are modified through two perceptual

learning processes, differentiation and unitization, in the context of category learning.

First, we review the empirical evidence for perceptual learning with a focus on the

evidence for unitization and differentiation processes in the context of category learning.

This section also includes a discussion of the role of differentiation and unitization learning

processes in four computational models of perceptual learning. Second, we present a series

of four experiments that measure the change in perceptual representations after learning

category structures designed to promote differentiation and unitization in perceptual

learning. Third, we investigate the impact of these category structures on the features

inferred by a model that incorporates both differentiation and unitization perceptual

learning processes. Fourth, we develop a modeling framework to directly compare the fit

of computational models that assume different perceptual representations to the empirical

results. Finally, we conclude by considering the implications and limits of these results.
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CHAPTER 1

Literature Review

1.1 Overview

This chapter is divided into four sections. In the first section, we review how perceptual

learning has been historically conceptualized as a critical aspect of learning. Then, we

review the empirical evidence for three processes of perceptual learning: differentiation,

unitization, and imprinting. In the third section, we review four computational models of

perceptual learning and discuss how those models implement the processes of differentiation

and unitization. Finally, we discuss the interaction between differentiation and unitization

learning within the context of a single learning environment as a motivation for the empirical

work in the next chapter.

1.2 Perceptual Learning

A common intuition is that the perceptual system is stable across time. We believe that

how we see, hear, touch, taste, and smell a particular object today is how we will perceive

it tomorrow, next month, or next year because if the object does not change then our

perception of that object is always the same. Yet our experience is not stable across time

because our perceptual system is shaped by learning.

Helmholtz (1910/1924) was one of the first psychologists to point out the importance
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of learning to perception. He proposed that the “unconscious inferences” performed by

the visual system to process input, including binocular disparity between the eyes, could

be learned over the course of development. Helmholtz’s early theoretical work on binoc-

ular vision that led to his theories of perceptual learning were subsequently supported by

adaptation studies 60 years later (Nelson, 1977).

The debate over what mechanisms underlie perceptual learning through experience have

existed since before the cognitive revolution. J. J. Gibson and Gibson (1955) transformed

the debate by clearly identifying two theoretical frameworks for how perception might be

shaped by experience. The first proposes that perception is a “creative” process in which

initially meager representations are enriched through additional experience. This framework

anticipates many of the exemplar-based models of learning in categorization (Nosofsky,

1984, 1986; Medin & Schaffer, 1978) and memory (Shiffrin & Steyvers, 1997; Raaijmakers

& Shiffrin, 1981). These models are enrichment-based because improved processing of new

items is based entirely on enriching a stored set of exemplars through additional experience.

The enrichment framework is characterized by experience leading to an improvement in

inference but not processing (J. J. Gibson & Gibson, 1955).

The second theoretical framework is founded on improving perceptual processing by

differentiating aspects of the perceptual representation. J. J. Gibson and Gibson (1955)

believe this learning framework would include learning to perceive dimensions of variation

and properties of stimuli not previously processed and increase the discriminability of ex-

isting stimulus features. The enriching and differentiating frameworks are not mutually

exclusive. ALCOVE (Kruschke, 1992), a successful and prominent exemplar-based catego-

rization model, includes mechanisms to enrich the set of exemplars as well as connection

weights that are adjusted to minimize error which often increases discriminability.

In this work we will mostly constrain ourselves to discussing empirical results and com-
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putational modeling through the framework of differentiating. Enrichment processes alone

do not seem adequate to explain the systematic changes across all sensory domains includ-

ing visual acuity (Fine & Jacobs, 2002), auditory processing (Puel, Bonfils, & Pujol, 1988;

Girard, Collet, Bouchet, & Pernier, 1994), tone detection (Metherate & Weinberger, 1990;

Weinberger, Javid, & Lepan, 1993), phoneme detection (Liberman, Harris, Kinney, & Lane,

1961), haptic localization (Weinstein, 1968), taste (Curtis, Stevens, & Lawless, 1984; Green

et al., 1996), and smell (Blanes-Vidal et al., 2009; Overbosch, 1986). Instead, we will focus

on understanding two critical perceptual learning processes, differentiation and unitization,

and how they improve the utility of perceptual representations (E. J. Gibson, 1969) in the

context of category learning.

1.3 The processes of perceptual learning

Perceptual learning is not characterized by one pattern of change; it consists of multiple

processes that alter perceptual processing (Goldstone, 1998). In this section we will re-

view the evidence for three perceptual learning processes: differentiation, unitization, and

imprinting. These processes vary in how quickly they influence perceptual features (Kami

& Sagi, 1993) as well as their effect on the set of perceptual features. Differentiation and

unitization are both processes that alter representations slowly but have opposite effects on

representations: differentiation separates perceptual feature values and dimensions making

them easier to discriminate from each other while unitization combines configurations of

existing perceptual features into new features. Both processes occur across a wide array

of stimuli and learning tasks but evidence for them mostly is found when they change the

perceptual representations to be more useful for solving the current task of the learner

(E. J. Gibson, 1969). Imprinting is similar to the process of unitization but occurs much

quicker, often on the order of a few presentations of a stimulus or feature (Kami & Sagi,
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1993). All three perceptual learning processes occur across a wide array of stimuli, learning

tasks, and measures of perceptual learning.

1.3.1 Differentiation

The most commonly studied pattern of perceptual learning is Differentiation in which ex-

isting perceptual features are adjusted based on experience. This pattern is characterized

by a slow change in discriminability that takes place over the course over many trials but

the set of perceptual features does not change.

Improvements in perceptual processing that arise from prolonged exposure to discrimi-

nation tasks have been found in many low-level visual tasks (Fine & Jacobs, 2002). Percep-

tual tasks that show improvement include the detection or discrimination of visual gratings

(De Valois, 1977; Fiorentini & Berardi, 1980, 1981; Mayer, 1983), stimulus orientation

judgment (Ahissar & Hochstein, 1996; Dosher & Lu, 1998; Shiu & Pashler, 1992; Vo-

gels & Orban, 1985), motion direction discrimination (Ball & Sekuler, 1982, 1987; Sekuler

& Machamer, 1983), texture discrimination (Ahissar & Hochstein, 1996; Karni & Sagi,

1991; Kami & Sagi, 1993), time to perceive random dot stereograms (Ramachandran &

Braddick, 1973), stereoacuity (Fendick & Westheimer, 1983), Vernier discrimination tasks

(Beard, Levi, & Reich, 1995; Bennefl & Westheimer, 1991; Fahle & Edelman, 1993; Kumar

& Glaser, 1993; McKee & Westhe, 1978; Saarinen & Levi, 1995), and object recognition

(Furmanski & Engel, 2000). These improvements in processing due to perceptual learning

can occur even for a signal that is task-irrelevant and below the threshold of conscious

awareness if it is co-located with the cover task (Watanabe, Náñez, & Sasaki, 2001).

A traditional hallmark of visual perceptual learning effects has been that they are highly

specific to stimulus properties including stimulus size, orientation, direction, and many

others. More importantly to some models of perceptual learning, the improved processing
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due to learning does not transfer to other retinal locations (Shiu & Pashler, 1992; Karni

& Sagi, 1991; Kami & Sagi, 1993; Ahissar & Hochstein, 1997; Fahle, 1994). This has led

many researchers to claim that perceptual learning is the result of improved processing of

low-level perceptual information that is specific to retinal locations (Zhaoping, Herzog, &

Dayan, 2003; Karni & Sagi, 1991; Kami & Sagi, 1993; Adini, Sagi, & Tsodyks, 2002; Teich

& Qian, 2003) despite the evidence against changes in neural sensitivity of cells located in

low-level visual cortex (Schoups, Vogels, Qian, & Orban, 2001; Ghose, Yang, & Maunsell,

2002).

The empirical evidence for the location-specificity of perceptual learning was found in

tasks where training is limited to a single retinal location and transfer is assessed in a

novel location (Mollon & Danilova, 1996). Xiao et al. (2008) theorized that novel locations

might receive fewer perceptual and cognitive resources than locations that had received any

form of training and this might lead to the lack of transfer. To test this they developed

a new experimental paradigm with contrast discrimination training in one location and

Vernier discrimination training in another location. This training task resulted in near

perfect transfer of learning to trained locations but no transfer to novel locations (Xiao et

al., 2008). Transfer of learning across locations has also been found when both tasks are

orientation discrimination tasks (T. Zhang, Xiao, Klein, Levi, & Yu, 2010; J.-Y. Zhang et

al., 2010; Dosher, Jeter, Liu, & Lu, 2013) that previously did not show transfer to untrained

locations (Shiu & Pashler, 1992; Ahissar & Hochstein, 1997).

Differentiation and category learning

Perhaps the most striking example of learning categories shaping perception is language

learning. Language perception depends on the process of perceptual differentiation for

children to learn the basic phonemes of their native language. Most languages consist of
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approximately 40 phonemes, the smallest units of speech that change the meaning of a

word, drawn from a possible set of over 800 consonant and vowel sounds (Ladefoged &

Disner, 2012). Infants as young as one-month old are able to discriminate between many

of these phonemic groups from what will become their native language (Eimas, Siqueland,

Jusczyk, & Vigorito, 1971) but also between phonemes that do not exist in their native

language (Lasky, Syrdal-Lasky, & Klein, 1975; Werker & Lalonde, 1988). Adults improve

the discrimination between phonemes in their own language but lose the distinctiveness

across phonemic boundaries their language does not possess (Miyawaki et al., 1975). Dif-

ferentiation of phoneme boundaries for native language perception in adults is so strong

that many observers do not make above chance discriminations within a phonemic category

but make near perfect between category judgments (Liberman, Harris, Hoffman, & Grif-

fith, 1957). The differentiation process that changes perception from weakly discriminating

all phonemic differences to a native-language specific set of strong phonemes begins to oc-

cur within the first year of language experience (Werker & Tees, 1984; Werker & Lalonde,

1988). However, even in adulthood there is evidence the differentiation learning process for

language is still at work because people can learn to discriminate new phonemic categories

with extensive experience (Pisoni, Aslin, Perey, & Hennessy, 1982).

Differentiation induced by category learning can be specific to a stimulus dimension.

Goldstone (1994) demonstrated differentiation that was specific to stimulus dimensions by

using two-dimensional stimuli and category structures that highlighted one dimension or

another. The stimuli consisted of 16 color squares that varied across two dimensions, size

and brightness, shown in Figure 1.1. The two critical conditions for assessing perceptual

learning due to category training were the groups that learned a single-dimension category

structure. Participants in these conditions received category training in which only one

stimulus dimension was relevant for categorization. For one condition the size value was
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relevant for category membership (the 8 stimuli with size values less then the midpoint of

the size dimension were assigned to be in one category), and the other half were trained on

a category structure with brightness as the category relevant dimension. The largest change

in perceptual discriminability was an increase in discriminability between pairs of stimuli

that were assigned to different categories. Critically, these pairs of stimuli were not the

same in the size-relevant and brightness-relevant category conditions. For the size-relevant

condition, the largest increase occurred between pairs of stimuli that came from the second

and third columns of Figure 1.1, and the brightness-relevant condition had a large increase

in pairs of stimuli from the second and third rows of the figure.

This advantage for discriminations between two stimuli from different categories rela-

tive to discriminations between stimuli from the same category has been found across a

wide range of perceptual domains (Harnad, 1987; Goldstone & Hendrickson, 2010; Newell

& Bülthoff, 2002). Furthermore, this advantage emerges as a result of category train-

ing (Livingston, Andrews, & Harnad, 1998; Özgen & Davies, 2002; Goldstone, Lippa, &

Shiffrin, 2001; Goldstone, 1994). Yet the degree to which it can be attributed to changes

in perceptual representations is still under debate and perhaps the most notable example

of this has been the perception of color. People do not discriminate evenly across variation

in hue, people are worse at discriminating between two shades of red then same variation

in hue if it spans the border between red and orange (Wright, 1947; Roberson & Davidoff,

2000). This has led to the claim that category learning has shifted our perceptual repre-

sentations of hue such that hues that are in the same category are more similar to each

other than hues in different categories (Harnad, 1987) and learning a new color category

induces this change in representation (Özgen & Davies, 2002; Özgen, 2004). Bornstein and

Korda (1984) proposed that this advantage for processing between-category discriminations

might be due to the presence of labels and not the result of changes in perceptual process-
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ing. This view is strengthened by results that suggest verbal interference may reduce or

eliminate the advantage of between-category discriminations of color (Roberson & Davidoff,

2000; Winawer et al., 2007; Hanley & Roberson, 2011). However, experience does shape

perceptual representations of color because extensive training leads to massive increases in

speed and discriminability but eliminates the between-category advantage of discrimination

for novices (Witzel & Gegenfurtner, 2013, 2015).

Differentiation is not limited to separating stimulus values along a single dimension

because category learning also leads to differentiating two stimulus dimensions. Faces are

generally perceived as a composite percept (Gauthier, Curran, Curby, & Collins, 2003)

but Goldstone and Steyvers (2001) found category training of special faces could result in

learning to extract feature dimensions from faces. These special faces were constructed by

fusing four faces in different proportions (Figure 1.2) to create a two-dimensional space of

face stimuli. Training on categories with only one relevant dimension, horizontal or vertical

category boundaries, produced learning of that feature dimension but also the other feature

dimension. Participants transferring to a new categorization task were faster to learn when

the new boundary was orthogonal to the original boundary than a diagonal boundary. This

result is particularly surprising because a diagonal boundary would preserve some category

relevance for the originally relevant feature dimension, potentially improving performance

on the transfer condition. However, the results are instead consistent with the category

training resulting in the perceptual system learning a perceptual representation in which

each stimulus consists of two feature dimensions: one dimension consisting of the category

relevant variation in faces and the other dimension capturing the remaining variation. Given

that perceptual representation, a transfer categorization task in which the second dimension

becomes category relevant might be easier to learn than a task that requires a combination

of both dimensions, since learning a category structure that only requires a single dimension
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is faster then a structure that requires two dimensions (Shepard, Hovland, & Jenkins, 1961).

1.3.2 Unitization

Unitization is the perceptual learning process that is the opposite of differentiation; unitiza-

tion results in learning perceptual features that are composed of existing features instead of

learning to separate perceptual features or feature values. Unitized features are processed

by the perceptual system as a new individual feature rather than merely a conjunction of

individual features that are separately processed.

Shiffrin and Lightfoot (1997) show evidence that a simple visual search task can lead to

learning perceptual features that combine information from multiple independently-varying

component parts (also reported in (Czerwinski, Lightfoot, & Shiffrin, 1992)). The learning

of new perceptual features was characterized by a dramatic decrease in the amount of time

to respond per distractor using stimuli that were constructed by arranging three segments

inside a rectangle such that no single segment would uniquely identify a stimulus (Figure

1.3). Transfer tasks revealed that this improvement was specific to the stimuli being trained

but not unique to the groupings of targets and distractors. After 50 sessions of training, a

number of transfer tasks were assessed including shuffling the targets and distractors and

introducing new sets of targets and distractors created from the same segments. In the novel

stimuli condition (experiment 2), participants were transferred to a search task with novel

stimuli that were created from the same component segments. Search speed per distractor

reverted to the same speed as the first session of training. In the new conjunction condition,

participants were transferred to a search task with familiar target and distractor stimuli,

but a new pairing of targets and distractors such that a conjunction of three segments was

necessary to identify the target item (as in the initial training). Search speed per distractor

in the new conjunction condition did not show any difference from the end of the initial
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training (experiments 2b and 3). In the new single segment condition, participants were

transferred to a search task with familiar target and distractor stimuli, but a new pairing of

targets and distractors such that a single segment was sufficient to identify the target item.

Search speed per distractor in the new single segment condition did not show any difference

from the end of the initial training and was identical to the transfer in the new conjunction

condition (experiment 3). These results suggest that during the initial training participants

were learning a feature representation in which each whole stimulus was represented as

an individual perceptual feature. The improvement in perceptual processing of the target

stimuli was not specific to specific distractor stimuli and the gains were not lost when the

distractors were changed.

Not all visual search tasks with these stimuli led to learning new perceptual features.

When the initial training consisted of target stimuli that could be uniquely identified by a

single feature, initial search speed was much faster and improved quicker. However, when

the sets of targets and distractors were changed to require a conjunctive search (experiment

5), all search speed gains were lost and participants did not learn any faster than the initial

conjunctive search training from previous experiments. This complete lack of transfer did

not occur when switching from conjunctive search to single segment search (or a different

conjunctive search), suggesting that only conjunctive search led to forming new perceptual

features that map onto whole stimuli in this task.

Perceptual unitization does not require structured task instructions that highlight the

conjunction of components, exposure to stimuli containing structure across components

can produce unitization. In a passive viewing task with stimuli that contained some com-

ponents that reliably co-occurred and others that varied independently, Fiser and Aslin

(2001) found participants rated test configurations containing the co-occurring components

as more familiar than those containing independently-varying components. A similar pref-
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erence for looking at test configurations containing co-occurring components was found in

nine-month-old infants (Fiser & Aslin, 2002).

Developing visual expertise often requires learning to recognize and quickly process

complex configurations of features as an overall perceptual unit. One domain of visual

expertise that has been extensively studied is face processing. It has been hypothesized

that the primary perceptual representation of faces are a single perceptual feature that

encompasses the entire configuration of the face (Bradshaw & Wallacei, 1971) because

inverted faces (Yin, 1969; Barton, Keenan, & Bass, 2001; Freire, Lee, & Symons, 2000)

and components of faces (Tanaka & Farah, 1993; Farah, Wilson, Drain, & Tanaka, 1998)

are processed much less efficiently than faces relative to other non-face stimuli. Yet this

advantage does not seem to be limited only to faces. Other domains of visual expertise

also show strong advantages for processing upright and intact stimuli but only for experts

in those domains: fingerprint experts are much better at processing complete prints than

individual components and novices are poor at both (Busey & Vanderkolk, 2005), dog

experts are much better at processing upright dog images relative to inverted dog images

(Diamond & Carey, 1986), and extensive training with artificial stimuli leads to better

processing of intact stimuli (Gauthier & Tarr, 1997; Gauthier, Williams, Tarr, & Tanaka,

1998; Gauthier & Tarr, 2002). Over the course of development, the processing of faces as a

perceptual feature is learned through experience (Carey, Diamond, & Woods, 1980).

Neuroscience evidence also indicate neurological signals that were considered indicative

of processing faces but not other stimuli (Kanwisher, McDermott, & Chun, 1997; Bentin,

Allison, Puce, Perez, & McCarthy, 1996) are involved in processing complex visual stimuli

for experts but not novices (Bukach, Gauthier, & Tarr, 2006). This has been shown for

fingerprint experts (Busey & Vanderkolk, 2005), car experts (Gauthier, Skudlarski, Gore,

& Anderson, 2000; Gauthier et al., 2003), bird experts (Gauthier et al., 2000; Tanaka &
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Curran, 2001; Gauthier et al., 2003) dog experts (Tanaka & Curran, 2001) and expertise

developed from laboratory training (Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999;

Gauthier & Tarr, 2002; Rossion, Gauthier, Goffaux, Tarr, & Crommelinck, 2002).

Unitization and category learning

As with differentiation, perceptual unitization can result from learning categories and dif-

ferent perceptual features can be learned from different category structures defined across

the same stimuli. Pevtzow and Goldstone (1994) found people were much faster to de-

tect a combination of line segments that when present together were diagnostic of category

membership (Figure 1.4) than a combination of line segments presented equally often but

not diagnostic of the category. As in Shiffrin and Lightfoot (1997), none of the individual

line segments was diagnostic by itself, all three needed to be present to correctly categorize

each stimulus. By using two orthogonal category structures – the horizontal and vertical

categories shown in Figure 1.4 – the category relevant and irrelevant clusters were the same

clusters but changed their relevancy based on the category structure. Across both category

training conditions, responses were fastest when the whole and probe stimuli matched and

both contained a category relevant part. If either the whole or probe stimulus contained a

familiar, but category irrelevant part then judgements were slower. The familiar but cate-

gory irrelevant parts were still faster than judgments containing novel parts. This suggests

that though each prototype was shown equally often in the horizontal and vertical category

training conditions, different features were learned because different parts were relevant for

categorization.

The complexity of the unitized feature has a direct impact on how long it takes to learn.

Goldstone (2000) assessed this learning by comparing the improvement in reaction time to

make categorization judgments across category structures that varied the complexity of a
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All One

Category 1 Category 2 Category 1 Category 2

ABCDE (5x) ABCDZ ABCDE ABCYE

ABCYE

ABXCE

AWCDE

VBCDE

Table 1.1: The two category structures from Experiment 5 from Goldstone (2000). The

All category structure encourages learning the unitized feature ABCDE that is composed of

five independent segments. The One category structure encourages learning a single feature

that corresponds to either the D or Y segment.

perceptual feature that would be relevant for categorization. These category structures,

shown in Table 1.1, were defined across stimuli that were line drawings that resembled the

outline of half an eggshell and each stimulus was composed of five connected line segments

with the endpoints joined by a curve as shown in Figure 1.5. The ALL category structure

required all five segments to be present together to correctly assign a stimulus to category 1.

This structure was hypothesized to promote learning a relatively large perceptual feature

that combines the information from all five segments (ABCDE) to create a one-to-one

mapping between the feature and category membership. This is in contrast to the ONE

category structure in which the information from one segment is required to make a correct

categorization. Goldstone (2000) found that the speed of categorization responses to the

ABCDE stimulus were slower in the ALL condition but improved much more than in the

ONE condition. The responses in the final session of categorization were faster in the

ALL condition than would be expected by processing all five segments at the same rate

as the ONE condition which suggests in the ALL condition segments are not processed

independently. This co-active architecture of segment processing is consistent with the
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process of learning a unitized perceptual feature.

1.3.3 Imprinting

Not all perceptual learning processes occur slowly over many presentations, the imprinting

perceptual learning process produces radical changes to perceptual features after a few

presentations. The result of imprinting is similar to the unitization process and changes

the set of perceptual features by adding new features to the perceptual representation, but

unlike the process of unitization, imprinting results in very fast learning because it occurs

in environments where features are relatively easy to parse.

Mere exposure to a correlation between components across stimuli can lead people to

imprint perceptual features that include all correlated components (Austerweil & Griffiths,

2011). Given instructions to freely “investigate” stimuli printed on index cards for up to

five minutes and then select which test stimuli belong with the inspection set, participants

who inspected stimuli with correlated components only selected test stimuli with correlated

features while participants who inspected stimuli with independently varying components

selected both correlated and independent stimuli at test. However, changing the stimuli

structure is not necessary to change the features encoded by imprinting. Lin and Murphy

(1997) found that given a single presentation of a set of stimuli, the speed and accuracy of

detecting changes to a component of those stimuli could be easily manipulated by presenting

a cover story that highlighted the functional aspect of components. Across two cover stories

that drew attention to different components of the same stimuli, changes to components that

were relevant to the cover story were more quickly and accurately detected than irrelevant

components.

Imprinting can change perceptual features very early in development. Three month

old infants prefer to look at stimuli that violate the Gestalt principle of good continuation
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(Quinn & Bhatt, 2005; Quinn, Burke, & Rush, 1993). By merely exposing them to 12 stimuli

that share a component that violates good continuation (Figure 1.6), the looking time

preference is reversed and infants prefer to look at a test stimulus with good continuation

rather than the familiar component (Quinn et al., 2006; Quinn & Schyns, 2003). This

reversal in looking time preference suggests that viewing the 12 stimuli containing the

component led infants to form a feature that corresponds to the component. This would

lead to faster processing of the component and infants are less interested in inspecting it in

the test phase.

Category structures can also lead to imprinting and the final set of perceptual features

is highly sensitive to the order in which categories are learned. The perceptual features

learned earlier influence the subsequent features that are learned. Schyns and Murphy

(1994) found that participants who learned individual component features (A and B) first

were more likely to represent a subsequently learned composite feature (AB) as an explicit

combination of the components (A+B) than participants who learned the composite feature

first. Two component-first conditions were trained by exposing participants in the first

training stage to 3D geometric stimuli containing a component part (either A or B) and in

the second stage to stimuli with a composite part (AB). The composite part consisted of both

component parts, A and B, that were adjacent and always in the same spatial arrangement.

The composite-first condition did not have a first stage of training and consisted only of

exposure to stimuli that contained the composite part (AB). When asked to circle the

“parts” of novel stimuli containing the composite AB part after all training, participants

from the component-first conditions were more likely to circle the A and B parts separately

than participants in the composite-first condition. The participants in the composite-first

condition most often drew a single circle around both A and B parts.

However, features learned later in training are not necessarily only defined in terms of
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Category training Test

1 2 3 X-Y as XY

X Y XY 88%

XY X Y 19%

Table 1.2: The category structure for the two conditions (rows) and test phase results of

Experiment 2 from Schyns and Rodet (1997). All category training phases consisted of

learning to discriminate between stimuli that contained a part (or two parts) and stimuli

with no parts present. The category structure columns indicate which part was present

during the training phase for each condition. During the XY category training, the X and

Y parts were always presented adjacent and in the same spatial orientation. The test phase

column indicates the percent of responses that select the XY category label responses to

the test stimulus in which X and Y are present but not adjacent.

the earlier features. In a second experiment, Schyns and Murphy (1994) found that when

learning the composite AB feature in the first training session, participants were able to

learn the component features in subsequent training. After first being exposed to stimuli

containing the composite AB part, participants who later were exposed to stimuli containing

only one component part (either A or B) were more likely to circle a component part at

test than the composite AB feature (though some participants circled both component and

composite features). A control group of participants who were exposed to the composite

AB part and then an unrelated part C circled the composite AB feature at test.

Schyns and Rodet (1997) expanded on this result and demonstrated that category learn-

ing can lead to different perceptual features even when the same set of category structures

are eventually learned across all conditions. This result is most clear in Experiment 2

which consisted of four phases: three training phases where participants learned a category

structure (with two different orders) and a test phase that was identical across conditions.

16



During each category training phase participants were asked to learn to categorize grey

cell-like stimuli that consisted of one or two dark colored parts (X and Y) embedded in

low-frequency visual noise. In each training phase one category consisted of stimuli with no

parts present and the other category was composed of stimuli containing the parts shown in

Table 1.2. Critically, all three category structures were identical across the two conditions

(indicated by rows in the table) but the order the categories were presented in was different.

In the components-first condition (top row) participants learned the component parts

(X and Y) before the two parts were presented together (as XY). Participants in this

condition learned that X and Y were separate parts and when they saw X and Y in the

same stimulus (but not adjacent) they categorized the test stimulus into the XY category.

In the composite-first condition (bottom row) participants learned the composite parts first

(XY) and later learned the component parts (X and Y). This led to learning a different

set of parts in which the composite XY was considered to be a single part along with the

component parts and did not consider the test stimulus containing a non-adjacent X and

Y parts to be in the XY category.

An asymmetry of the effect of order between component and composite features is seen

across both Schyns and Murphy (1994) and Schyns and Rodet (1997). In these short cat-

egory learning experiments, training orders that induce component feature learning first

impede the subsequent learning of composite features if they contain the component fea-

tures. The reverse is not true: learning the composite features early in training does not

seem to impede learning the component features later.

The degree to which imprinting is a fundamentally different process than unitization

is unclear. The empirical evidence for imprinting is highly similar to the evidence for

unitization, including learning features containing multiple co-occurring (and correlated)

components (Fiser & Aslin, 2001, 2002) and category relevant feature learning (Pevtzow &
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Goldstone, 1994; Goldstone, 2000). Yet these two processes seem to operate on different

time scales with imprinting leading to adding fully formed features and unitization result-

ing in a slow emergence of new perceptual features across many presentations. Though

interesting, this issue is not developed further in this work though it is an avenue for future

study.

1.4 Computational models of perceptual learning

In the following section we review four models of perceptual learning. The focus of each re-

view is on a few critical questions: what does the model learn, how does the model represent

features, does the model account for the role of category learning in perceptual learning, and

can the model account for the differentiation and unitization perceptual learning effects.

1.4.1 The augmented Hebbian reweighting model and the integrated

reweighting theory

Petrov, Dosher, and Lu (2005) outline the augmented Hebbian reweighting model (AHRM),

a biologically-inspired computational model of perceptual learning that relies on updating

weights to account for perceptual learning effects. The model is a three-layer neural network

with an input layer that corresponds to the current input stimulus, an intermediate layer

of units, and an output layer that has units that correspond to the possible responses. The

connection between the input layer and the intermediate layer is fixed with connections

that do not update with learning. These connections involve a series of complex, non-

linear transformations that take as input the activation of many input units to compute

the activation of 35 units in the intermediate layer. If more than one region of interest

is being processed in the input layer, a set of 35 intermediate layer units is added for

each region. The same non-linear transformations are applied to each region of interest
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and weights are not shared across regions. The connection weights between units in the

intermediate layer and output layer are updated using the Hebbian reweighting rule (Hebb,

1949). This learning rule increases the connection weight between units when they are

both active. The activation at the output layer is derived by computing the weighted sum

across all intermediate units. A defining characteristic of AHRM is that learning in one

region of interest does not transfer to any other regions, a property that was considered a

defining characteristic of visual perceptual learning (Ahissar & Hochstein, 1997; Karni &

Sagi, 1991). However, recent evidence has emerged that some amount of perceptual learning

does transfer across locations (T. Zhang et al., 2010; J.-Y. Zhang et al., 2010; Xiao et al.,

2008). AHRM cannot account for these transfer effects and has been extended to create a

new model that does transfer learning across regions.

Dosher et al. (2013) outline the integrated reweighting theory (IRT) of perceptual learn-

ing, a computational model based on AHRM that includes a mechanism to capture the

transfer of perceptual learning across locations. In the case of a task with only one region

of interest in the stimulus, the IRT model is identical to AHRM. When more than one

region of interest is present in the stimulus representation, each region has a region-specific

set of intermediate units with connection weights that are updated based only on the ac-

tivation in that region. However, the intermediate layer of the IRT model also contains a

set of region-independent units whose activation is driven by the input to all regions. The

connection weights of the region-independent units are also updated by Hebbian learning

rules but these weights are influenced by all regions. The activation at the output layer is

derived by computing the weighted sum across both region-independent and region-specific

intermediate units. The IRT model was able to account for the results of an experiment

that showed transfer of perceptual learning across visual locations (Dosher et al., 2013).

Both of these models based on updating the connections between perceptual units and
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output units are capable of accounting for the differentiation process of perceptual learning.

Discriminating the orientation of Gabor patches is a common experimental paradigm that

shows differentiation learning (Shiu & Pashler, 1992) and was the first paradigm to show

transfer of perceptual learning across retinal regions (T. Zhang et al., 2010). The AHRM

was able to account for the improvement in orientation discrimination performance with

feedback (Petrov et al., 2005) and without feedback (Petrov, Dosher, & Lu, 2006) and the

IRT was able to account for the transfer of improvement in orientation discrimination per-

formance to new retinal locations (Dosher et al., 2013). Even though these models focus

on processing orientation, they are capable of accounting for a wide range of differentiation

processes. If there exists any intermediate units that have different activations to the two

stimuli the model is learning to differentiate, the Hebbian learning rule will strengthen the

connection weights between those intermediate units and the response options. This updat-

ing of connections will eventually lead to those intermediate units having more influence in

the response of the model and leading to improved discrimination (Hebb, 1949), a hallmark

of the differentiation perceptual learning process.

These reweighting models can only account for the process of unitization in some ex-

perimental paradigms but not others. A network with a single layer of Hebbian connec-

tion weights can learn a category structure or discriminate between two groups of stimuli

where a conjunction of units are necessary to make a correct response (Rosenblatt, 1958).

Therefore, assuming that the AHRM had an intermediate unit that would differentially ac-

tivate for each component, the model could learn to discriminate the target stimulus from

Shiffrin and Lightfoot (1997) (Figure 1.3) and the category structure in Experiment 5 from

Goldstone (2000) (Table 1.1), which are both defined by conjunctions of components. How-

ever, a single-layer of Hebbian connections cannot learn an exclusive-OR structure (Minsky

& Seymour, 1969), and therefore these models could not learn the category structure in
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Experiment 1 from Goldstone (2000) (Table 1.5, Figure 1.5) or the category structure from

Pevtzow and Goldstone (1994) (Figure 1.4). A second layer and an additional set of learned

connections would be necessary for the model to account for learning an exclusive-OR cat-

egory structure (McClelland, Rumelhart, & Group, 1986). Furthermore, the reweighting

models are not sensitive to correlations or relationships between intermediate units and

thus would not be sensitive to the difference between stimuli constructed from indepen-

dently varying components and those with correlations between components (Austerweil &

Griffiths, 2011; Fiser & Aslin, 2001, 2002).

1.4.2 Bayesian chunk learner

The second computational model of perceptual learning we consider is the Bayesian chunk

learner (Orbán, Fiser, Aslin, & Lengyel, 2006, 2008, BCL). The BCL is a generative Bayesian

model that infers a set of perceptual features from visual stimuli composed of discrete parts.

The BCL assumes stimuli are generated by sampling from a hierarchical structure: each

stimulus is composed of one or more perceptual features, and each perceptual feature is

composed of one or more stimulus parts. The parts are pre-specified primitives of the

model that can occur in different locations of a stimulus and a part can be associated with

more than one latent chunk. Perceptual features are assumed to be latent chunks or clusters

that are associated with one or more parts.

The BCL is a Bayesian model and therefore can be characterized by a likelihood function

and prior distributions across the parameters of the model. The BCL uses a rather simple

likelihood function that assumes each latent chunk is present in each stimulus independent

of other chunks and the parts are also independent of each other, conditional on which

chunks are present. The strength of the model is in defining the relationship between

parts and latent chunks and the prior on chunks. For each latent chunk i there is a non-zero
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chance that chunk will activate a part p in a given stimulus. That probability is specified by

Sigmoid(wip) where wip is the influence of chunk i and part p and is estimated for each pair

of i and p and comes from a exponential distribution. The prior distribution of the number

of latent chunks across all stimuli is the geometric distribution. This distribution does

not pre-specify the number of features, instead it allows for a potentially infinite number

of features. This aspect of the BCL separates it from the IRT model which has exactly

35 perceptual features for each region, regardless of the complexity of the stimuli. The

geometric prior distribution on the number of features is biased to prefer representations

with fewer features but allows the number of features to increase if they are more likely

given the stimuli.

The BCL can account for some unitization patterns but none in experimental paradigms

that require category information. Features in the BCL are simply clusters of stimulus

parts that are statistically related, and therefore the model is good at learning features

when the parts are correlated or share a co-occurrence structure across stimuli. Orbán

et al. (2008) fit the BCL to the data from experiments with features constructed from

chunks of parts (Fiser & Aslin, 2001, 2002) and found it accounted well for the pattern

of generalization. It is likely the BCL would be able to infer the correlation structure

between parts of other results including the difference features learned in the correlated and

independent components conditions of Austerweil and Griffiths (2011) and the correlation

of segments across stimuli in Shiffrin and Lightfoot (1997) (Figure 1.3). Because the model

treats trials as exchangeable the BCL would have trouble accounting for order effects that

produce different patterns of feature learning (Schyns & Rodet, 1997; Schyns & Murphy,

1994) though this issue is solved in a similar Bayesian model (Austerweil & Griffiths, 2013).

The BCL cannot account for the process of differentiation because the component parts

of the model are pre-defined based on the stimuli. Furthermore, the similarity between parts
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are treated as either identical or completely mismatching, with no continuum between the

two values. This characterization completely eliminates any adjustment of similarity or

discriminability of parts without significantly altering the model.

1.4.3 Conceptual and perceptual learning by unitization and segmenta-

tion model (CPLUS)

The CPLUS model (Gerganov, Grinberg, Quinn, & Goldstone, 2007; Goldstone, 2003; Gold-

stone, Gerganov, Landy, & Roberts, 2009) is a computational model that unifies two per-

ceptual learning processes, unitization and differentiation, into a single perceptual learning

framework that is modulated by category information. The model consists of a connection-

ist network with three layers: an input layer, a hidden layer, and an output layer. The input

and hidden layers are connected with only feed-forward weights and the hidden and output

layers are connected by a set of weights that project activation in both directions. The

input and output layers are standard connectionist representations: the input layer consists

of one node for each pixel in the stimulus and the output layer consists of nodes that map

onto categorical responses. The hidden layer consists of a set of feature-detector units and

the number of units is pre-determined before training the model (Austerweil & Griffiths,

2011). A feature-detector unit consists of the same number of nodes as the input layer and

each node in the feature-detector unit has a weighted connection to exactly one node in the

input layer. The connection weights from one input node to the corresponding nodes in

different feature-detector units are updated independently and not shared. To categorize a

new stimulus the activation of that stimulus at the input layer is propagated to all nodes

in the hidden layer via weighted connections, and then the activation of the hidden nodes

is propagated to the output nodes via weighted connections.

Learning the connection weights in the CPLUS model is driven by two processes: a
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category learning process and a segmentation learning process. The category learning pro-

cess is a supervised learning rule that updates all connections between layers. First, the

activation of each node is determined by a combination of the weighted connections to the

input layer and the weighted connection to the category label. Both sources of information

drive the activation of the nodes in the hidden layer. Next, the weight connections between

the hidden and output layers are updated by the delta learning rule (Widrow & Hoff, 1960)

with a pre-defined learning rate. Then, the connections between the input and hidden layers

are updated using the competitive learning rule with leaky learning (Rumelhart & Zipser,

1985). This learning rule updates the connection weight to change the activation of a hidden

node to be more similar to the activation of the node in the input layer it is connected to.

Not all connections are updated with the same learning rate. The connections to the nodes

in the hidden unit whose activation is most similar to the input layer are updated with the

highest learning rate and connections to all nodes in other hidden units are also updated

but with a smaller learning rate. This results in all nodes in the hidden layer becoming

more similar to the input node they are connected to, but the nodes in the most-similar

feature-detecting unit update more. Since the activation of the hidden nodes was partially

influenced by the activation of and connections to the output layer, the category label con-

tributes to the activation of the hidden units and indirectly influences the learning of the

connections between the input layer and hidden units. This occurs despite not including any

back-propagated error-driven learning signals (Rumelhart, Hinton, & Williams, 1988). The

category learning process updates all connection weights after each stimulus is presented

and weights are updated in parallel.

The second learning process in CPLUS is the segmentation learning process. This is an

unsupervised learning rule that updates the connections from the input layer to the nodes

in the hidden layer but not the connections to the output layer. Unlike in the category
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learning process where feature-detecting units compete with each other and all nodes in

a unit are updated with the same learning rate, in the segmentation learning process, the

nodes from each feature-detector that are connected to the same input node compete with

each other. For each input node, the connection weight of the hidden node with the most

similar activation is updated to increase the similarity between them and all other weights

are not changed. This learning rule works, but learns features that are not psychologically

plausible (Goldstone, 2003). In order to account for perceptual constraints, the similarity

between an input node and a hidden node is influenced by the similarity of nearby nodes.

The result of combining these two learning rules into a single model of perceptual learning is

a model that learns to segment stimuli into perceptual features with a bias to learn features

that are relevant for categorization.

The CPLUS model can account for both unitization and differentiation processes when

category feedback is present. Goldstone (2003) shows CPLUS reliably learns different sets

of unitized features that correspond to the category relevant combinations of line segments

when trained on the two category structures from Pevtzow and Goldstone (1994) (Figure

1.4). These results suggest the strong influence of category information on connection weight

learning and the competition between feature-detector units for each category would lead

CPLUS to learn appropriate unitized features in other experimental contexts with category

feedback (Goldstone, 2000; Schyns & Rodet, 1997, e.g.). Furthermore, though it has not

been explicitly trained on such a stimulus set, CPLUS can account for the category-induced

differentiation learning effects because it is designed to learn features that discriminate

between two groups of stimuli that vary, even if the groups are difficult to discriminate.

However, CPLUS makes a strong representational commitment to explain differentiation

processes because CPLUS accounts for perceptual learning by extracting discrete features.

This implies the model does not represent feature dimensions, though the connectionist
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architecture of CPLUS allows it to make smooth generalizations between features that may

approximate feature dimensions if enough discrete features are present.

It is unclear if CPLUS would reliably account for either unitization or differentiation

processes without category feedback. There are at least two issues that hinder CPLUS from

accounting for either perceptual learning process without categorization. First, the com-

petitive learning rule in the segmentation learning process is not leaky, which can lead to a

suboptimal distribution of weights (Rumelhart & Zipser, 1985). Second, the segmentation

learning process by itself has no pressure to group pixels that occur in separate locations

in the same stimulus to the same feature unit. Both of these issues are not inherent to the

framework of CPLUS, but it suggests that CPLUS might rely heavily on the perceptual

constraints of similarity to learn the appropriate features in the correlated segments condi-

tion from Austerweil and Griffiths (2011) and Quinn et al. (2006) and be unable to learn

conjunctions of non-adjacent components that become unitized features (Schyns & Murphy,

1994; Fiser & Aslin, 2001, 2002, e.g.).

1.4.4 Non-parametric Bayesian framework for learning flexible feature

representations (NBFF)

Austerweil and Griffiths (2011) outline a framework for Bayesian computational models that

infer perceptual features from pixel representations of stimuli as well as an explicit mapping

of which features are in which stimuli. Being Bayesian models, the NBFF models have the

same general structure as the BCL model (Orbán et al., 2008), where the model specifies

a generative process for producing stimuli and category labels and the model infers likely

parameter values, including the perceptual features, given a set of stimuli and labels. The

mathematics of a NBFF model are reviewed in depth in the Learning Stimulus Features

chapter where it is applied to the stimuli in Experiments 1 through 4 from the next chapter,
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but a high-level overview is presented here for comparison with the other perceptual learning

models.

The NBFF framework defines the relationships between stimuli, which are composed

of features, and features, which are composed of stimulus pixels. Stimuli are generated

from a potentially infinite set of features, though a finite number of features are inferred

for any given set of stimuli. The set of features present in each stimulus is modeled as a

matrix of binary indicators with a row for each stimulus and a potentially infinite number of

columns indicating features. Austerweil and Griffiths (2011) use the Indian Buffet Process

(Ghahramani & Griffiths, 2005; Griffiths & Ghahramani, 2011) to define a prior distribution

across matrices that contain an unknown number of columns. The IBP generates matrices

that have a potentially infinite number of columns but a finite number of columns that

contain at least one non-zero element, ensuring that a finite number of features are inferred

for a given set of stimuli (Griffiths & Ghahramani, 2011; Austerweil & Griffiths, 2013).

Features are composed of a finite set of pixels that are very likely to be present in the

stimulus if the feature is present. The construction of features depends on the prior beliefs

about the relationship between pixels within a feature. The most basic assumption, which

defines a class of NBFF models that make this assumption, is that all pixels are present

in each feature independent of all other pixels, but that assumption can lead to inferring

psychologically implausible features (Goldstone, 2003; Goldstone et al., 2009). This is the

assumption made by the BCL model (Orbán et al., 2008). However, the equation that

defines the relationship between pixels in NBFF models can be modified to include spatial

constraints between pixels that lead to inferring plausible psychological features.

The NBFF framework for models of perceptual learning can account for unitization

processes both with and without category information. Austerweil and Griffiths (2011)

show NBFF models extract the appropriate unitized features when presented with the
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stimuli from a number of experimental paradigms that show unitization processes without

category information (Shiffrin & Lightfoot, 1997; Czerwinski et al., 1992; Austerweil &

Griffiths, 2011). Austerweil and Griffiths (2013) extend the NBFF framework to include

category information and category order effects. This expanded model treats category labels

as additional pixels of each stimulus, a method used previously in other computational

models of category learning (Love, Medin, & Gureckis, 2004)1. This extension of the NBFF

model successfully inferred the category-specific perceptual features found in Pevtzow and

Goldstone (1994) However, NBFF models do not account for all unitization process effects.

As we discuss in depth in the Learning Stimulus Features chapter, the NBFF models do not

successfully infer a complete set of features for exclusive-OR category structures (Goldstone,

2000).

The original NBFF framework (Austerweil & Griffiths, 2011) cannot account for order

effects that lead to perceptual unitization (Schyns & Rodet, 1997; Schyns & Murphy, 1994)

because it assumed all trials were exchangeable and thus did not preserve order information.

Austerweil and Griffiths (2013) address this issue by switching from using a Gibbs sampler

(Geman & Geman, 1984), which assumes trials are exchangeable, to a particle filter (Gordon,

Salmond, & Smith, 1993) to perform inference in the model. Particle filters preserve order

information because they do not assume trials are exchangeable and have been used in

other Bayesian models of category learning to account for order effects (Sanborn, Griffiths,

& Navarro, 2010). An NBFF model using particle filters to perform inference but not

the standard Gibbs sampler was able to infer two different sets of features that match the

features people circled in the two category order conditions of Schyns and Rodet (1997)

(Austerweil & Griffiths, 2013). Austerweil and Griffiths (2013) also expanded the NBFF

framework to infer a limited set of psychologically plausible transformations of features in

1An alternative modeling framework that infers different features for each category is also presented in

Austerweil and Griffiths (2013) but not discussed here.
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stimuli. Some of these transformations, such as the translation of features, are consistent

with low-level perceptual learning transfer effects (Xiao et al., 2008; T. Zhang et al., 2010;

J.-Y. Zhang et al., 2010; Dosher et al., 2013) but many of the other transformations, such

as scaling, rotation (orientation), and reflection, might be inconsistent with the specificity

of perceptual learning (Zhaoping et al., 2003; Karni & Sagi, 1991; Kami & Sagi, 1993;

Adini et al., 2002; Teich & Qian, 2003) and more consistent with features at higher levels

of cognition (Hahn, Chater, & Richardson, 2003; Rips, 1989).

The relationship between the NBFF framework and the differentiation process is similar

to the CPLUS model (Goldstone, 2003). NBFF models make the strong claim that features

are discrete units and not dimensions of variation. Therefore any differentiation processes

that are accounted for by the NBFF are due to learning features that differentiate between

the groups and not from differentiating values along a continuum.

1.5 Differentiation and Unitization

Of the four models outlined in the previous section, one model only accounts for the dif-

ferentiation processes (ICAN), one model only accounts for the unitization process (BCL),

but the remaining two models include both differentiation and unitization processes. Both

of these models, the CPLUS and the NBFF framework, do not have individual mechanisms

for differentiation and unitization perceptual learning processes that operate in different

contexts. Instead, both processes emerge from a single perceptual learning mechanism that

produces behavior consistent with unitization or differentiation depending on the stimuli

and category structures. These models suggest a novel empirical prediction: evidence for

differentiation and unitization can emerge from the same stimuli given two category struc-

tures that encourage learning different features.

Three studies suggest differentiation and unitization processes can occur across the
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same set of stimuli. First, Shiffrin and Lightfoot (1997) found evidence of unitization when

searching for a conjunction of three segments and they also found some improvement when

searching for a target identified by a single segment. Though this improvement suggests a

differentiation process because discrimination improved, Shiffrin and Lightfoot (1997) ar-

gue these improvements are more consistent with search strategy improvements since the

segments were highly discriminable. Second, Goldstone (2000) found evidence of unitiza-

tion processes in the ALL condition, which required all five segments to make a category

judgment, but learning in the ONE condition, which required only one segment to make

a judgment, suggests a differentiation learning process. The improvement in the reaction

time for the ONE condition is consistent with differentiation in one sense because the stim-

uli containing the Y segment become easier to discriminate from the stimuli containing

the D segment (Table 1.1) but it is also consistent with learning perceptual features that

correspond to segments Y and D. The degree to which it is differentiation or unitization

depends on if participants viewed the eggshell stimuli more like a face, a single stimulus to

be differentiated (Goldstone & Steyvers, 2001), or a configuration of line segments to be

unitized (Shiffrin & Lightfoot, 1997). Finally, across two conditions with different training

order, Schyns and Rodet (1997) found evidence that people could learn features that corre-

spond to component parts (X and Y) as well as a composite of those parts (XY). However,

learning occurred in fewer than 40 training trials, suggesting that both component features

and the composite feature were easy to extract. This may be due to imprinting features

and not differentiation or unitization. In the next chapter we test these predictions in a

series of four experiments.
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Figure 1.1: The 16 stimuli from Experiment 2 in Goldstone (1994). The stimuli varied

across two dimensions: the size and the brightness of the square. The first letter in each

cell indicates the category membership of that stimulus when categorizing stimuli by size

and the second letter indicates the category membership when categorizing by brightness.
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Figure 1.2: The stimuli from Experiment 1 in Goldstone and Steyvers (2001) were created

by morphing four faces (labeled 1, 2, 3, and 4) to create 8 stimuli that varied in two

dimensions (labeled A and B). Across the columns faces vary along dimension A and faces

further left are more similar to face 1 than faces to the right. Across the rows faces vary

along dimension B and faces in higher rows are more similar to face 3 than faces in lower

rows.
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Figure 1.3: Stimuli from Shiffrin and Lightfoot (1997). One stimulus was randomly selected

to be the target items and the other three were distractor items. All stimuli are constructed

from three segments inside a rectangle and none of the four stimuli has a unique segment

that is not shared with at least one other stimulus. Across multiple training sessions using

these stimuli, visual search response times were consistent with learning perceptual features

that corresponded to whole stimuli.
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Figure 1.4: The four prototype stimuli (labeled x1 through X4) and the component parts

used to create them in Pevtzow and Goldstone (1994). When learning the horizontal cate-

gory structure the two top stimuli were in the same category and the two bottom were in

another. The component parts inside the Horizontal Group box were the relevant parts for

this category structure. When learning the vertical category structure the two left stimuli

were in the same category and the two right were in another. The component parts inside

the Vertical Group box were the relevant parts for this category structure. This figure is

reproduced from Austerweil and Griffiths (2013).

34



Figure 1.5: Stimuli and category structure for Experiment 1 in Goldstone (2000). Each

stimulus was created by combining five line segments with a curved bottom segment. Cate-

gory 1 contained the stimulus that contained segments A, B, C, D, and E and the stimulus

that contained none of these segments. All stimuli in Category 2 contained four of those

segments.
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Figure 1.6: Familiarization and test stimuli from Quinn et al. (2006). The familiarization

stimuli all share the circle-with-notch component. At test infants decreased their looking

time to the circle-with-notch component after viewing the familiarization trials suggesting

they learned a feature that corresponds to the circle-with-notch component.

36



CHAPTER 2

Experiments 1 through 4

In the following experiments we measure the effect of learning category structures on per-

ceptual representations. The role of category learning in shaping changes in perceptual

processing has been critiqued by those arguing any change in processing is due to task

demands (Firestone & Scholl, 2014, 2015). To avoid task demands, we measure changes in

perceptual processing with a whole-part perceptual discrimination task where participants

are asked to make fast judgments to determine if a part stimulus matches a whole stimulus

(Tanaka & Farah, 1993). The whole-part discrimination task avoids task demands because

participants are motivated to be as fast and accurate as possible on all discrimination trials,

regardless of the category training. Furthermore, whole-part judgments minimize the role

of language as a mediator of perceptual judgments (Witzel & Gegenfurtner, 2013; Hanley &

Roberson, 2011) because many part stimuli do not contain enough information to make con-

clusive category judgments and activate a category label. Whole-part discriminations are

also advantageous because they are simple judgments amenable to computational modeling

(Nosofsky, 1986).

The category structures and stimuli for these experiments are designed to promote dif-

ferentiation and unitization perceptual learning processes. The stimuli and Unitization cat-

egory structure are inspired by the eggshell stimuli and category structure from (Goldstone,

2000) (Table 1.5 and Figure 1.5) that show evidence of unitization. In order to use the same
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stimuli and have all the stimulus segments that are relevant for the Unitization category

structure continue to be relevant for the differentiation structure, a new Differentiation

category structure was developed. The Differentiation category structure consists of three

separate category structures each containing two categories. Each category structure is

defined by the presence or absence of a single segment, and across the three category struc-

tures, all of the category relevant segments from the Unitization category structure are

relevant for a differentiation structure. The stimuli are designed to be difficult to parse

into their independently-varying components (Braunstein, Hoffman, & Saidpour, 1989) to

ensure that learning is a slow process (Kami & Sagi, 1993). This decreases the likelihood

that the features will be learned through feature imprinting (Schyns & Rodet, 1997; Schyns

& Murphy, 1994; Austerweil & Griffiths, 2011; Quinn et al., 2006; Quinn & Schyns, 2003).

The first three experiments compare the effect on perceptual discriminations of learn-

ing category structures that are consistent with differentiation and unitization learning

processes across the same set of stimuli. The fourth experiment addresses the difficulty

of separating differentiation and unitization processes by including a category order ma-

nipulation (Schyns & Rodet, 1997; Schyns & Murphy, 1994) in a task designed to elicit

slower perceptual learning tasks. This experiment tests if the order of differentiation and

unitization perceptual learning has a dramatic effect on the set of features people learn.

2.1 Experiment 1: Unitization category structure

Experiment 1 measures the effect on perceptual discrimination judgments of learning a

category structure that encourages learning perceptual features through unitization. The

category structure is inspired by the category structure from Goldstone (2000) with one

category consisting of a small number of stimuli that are identified by a conjunction of

stimulus properties and the other category containing all other stimuli. This category
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structure has been shown to produce changes in reaction times consistent with learning a

unitized perceptual feature Goldstone (2000).

Perceptual discrimination performance is measured by sequentially presenting two stim-

uli and asking participants to indicate if the two stimuli were the same or different. The

number of segments present is manipulated by “occluding” some of the stimulus segments

of the second stimulus behind a mask. The second stimulus on all perceptual discrimination

trials is referred to as the part stimulus because often only a portion of that stimulus is

visible, while the first stimulus is referred to as the whole stimulus (Tanaka & Farah, 1993).

A change in perceptual processing due to learning unitized perceptual features could

potentially manifest itself in a number of ways, but two critical tests will be conducted.

First, does the category membership of the whole stimulus influence perceptual process-

ing? If unitized features are learned, then whole stimuli that contain these unitized features

might be expected to be more accurately processed during perceptual discriminations be-

cause more features are available for those stimuli. Second, does the category relevance of

the unoccluded stimulus segments in the part stimulus influence perceptual processing? If

category relevant features are learned better than category irrelevant features, then percep-

tual discriminations that contain only category relevant stimulus segments are be expected

to be more accurate than those that include category irrelevant segments.

2.1.1 Method

Participants

99 Indiana University undergraduates were recruited to participate and were compensated

with course credit. 67 participants completed the experiment within the allotted hour and

only data from those participants are included in the analyses.
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Figure 2.1: Sample stimuli used in all four experiments showing the variation across stimuli.

The middle stimulus shares two segments with both of the left and right stimuli. Dashed

lines have been added to the middle stimulus to indicate the segment positions and where the

segments join together. The angle these segments join was randomized for each participant.

Materials

Stimuli were red contour lines that formed an outline against a white background. Stimuli

were formed by placing a randomly selected arc segment in each of four positions so that the

segments aligned to form an outline. A set of sample stimuli are shown in Figure 2.1 with an

illustration of how segments are aligned into positions. Segments were drawn from a set of 60

segments constructed in Mathematica by fitting a spline through eight randomly perturbed

points from a 90-degree arc. The points were randomly selected and they were perturbed

no more than 20% of the radius of the arc. Each spline was additionally constrained to

pass through two randomly selected control points shared among all segments to ensure

segments aligned smoothly to form a connected outline. Stimuli were displayed as 360 by

360 pixel bitmap images against a white background on an LCD monitor in a dark booth.

The diameter of each stimulus was approximately 5 centimeters and the viewing distance

was approximately 40 centimeters, yielding a viewing angle of approximately 3.5 degrees

for each stimulus. The angle at which the segments aligned was fixed for all stimuli for a

participant and randomized across participants.
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Category structure

Unitization Category Differentiation Structures

Stimulus Structure Category 1 Category 2 Category 3

ABCD Yes 1 1 1

ABCZ Yes 1 1 1

ABYD No 1 1 0

ABYZ No 1 1 0

AXCD No 1 0 1

AXCZ No 1 0 1

AXYD No 1 0 0

AXYZ No 1 0 0

WBCD No 0 1 1

WBCZ No 0 1 1

WBYD No 0 1 0

WBYZ No 0 1 0

WXCD No 0 0 1

WXCZ No 0 0 1

WXYD Yes 0 0 0

WXYZ Yes 0 0 0

Table 2.1: Table of stimuli and which category they belong in. The Unitization category

structure has Yes and No responses pre-coded since the focus category was always the

“Yes” response option. For each of the Differentiation category structures “Yes” and “No”

responses were randomly assigned to the 1s and 0s. One critical aspect of these category

structures is that the final segments, D and Z, are not relevant to any category judgment.

A set of 16 training stimuli were constructed for each participant from eight randomly

selected segments which were arbitrarily labeled A, B, C, D, W, X, Y, and Z. Two segments

were randomly assigned to each position and only appeared in that position (A and W in

the first, B and X in the second, C and Y in the third, and D and Z in the fourth). A
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stimulus was produced by selecting one of the two segments for each of the four positions

and arranging them to form a contiguous outline. 16 unique stimuli were constructed in

this way and each segment appeared in exactly half of the stimuli.

The Unitization category structure consisted of two categories: the focus category con-

sisting of the four stimuli that either contained segments A, B and C or contained none

of those segments. The non-focus category that contained the remaining 12 stimuli. Table

2.1 shows the Unitization category structure across all 16 stimuli and Figure 2.2 shows 16

sample stimuli arranged into the set of focus and non-focus categories.

2.1.2 Procedure

The experiment consisted of two phases that had a different mixture of categorization trials

and whole-part perceptual discrimination trials. The first phase of the experiment was

composed of seven blocks consisting only of categorization training trials. The 16 stimuli

were presented exactly once in each of the seven initial blocks, resulting in 112 categorization

training trials in the first phase. The second phase consisted of a mixture of categorization

trials and whole-part perceptual discrimination trials. There were 736 total trials in the

second phase, 416 whole-part discrimination trials and 320 categorization trials.

Categorization trials

A category training trial consisted of a stimulus from the training set being displayed on

the screen for 400 ms, followed by a visual mask for 800 ms, and then a prompt asking

was displayed until the participant responded by pressing a key. Feedback was presented

for 1500 ms on incorrect trials and 1300 ms on correct trials. The feedback included the

stimulus, accuracy, and the number of points scored (or missed) on the trial. After feedback

a blank screen was shown for 500 ms before the next trial. Stimuli were presented with

equal frequency during category training regardless of the category structure being learned.
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Correctly categorizing a stimulus into the focus category while training the Unitization

category structure was rewarded with six points while correctly categorizing a non-focus

category stimulus was worth two points.

The Unitization category structure had a unique label randomly sampled for each par-

ticipant from four nonsense labels: beme, kipe, wune, and vade. If the label assigned to

the Unitization category structure was “beme” then response prompt was “Was that a

beme?” and the correct response for all four members of the focus category was “Yes”

and for all others the correct response was “No”. Before each of the seven blocks in the

categorization-only phase a break screen was displayed to help the participants learn which

stimuli belonged in the focus category. All four stimuli from the focus category were dis-

played on the screen at once and labeled as belonging to the focus category. Participants

could study the break screen for as long as they wanted before beginning the next block.

Whole-part perceptual judgments

The first phase of a perceptual discrimination trial was identical to a category training trial

and consisted of a stimulus (the whole stimulus) being displayed for 400 ms followed by

a visual mask for 800 ms. Instead of being asked to categorize the stimulus, a partially

occluded stimulus (the part stimulus) was presented and participants were asked “Does

what is visible match what you saw before?” No feedback was provided after the participant

responded and a blank screen was presented for 500 ms.

The occlusion mask for the part stimulus was selected from the set of occlusions shown

in Figure 2.3. The occlusion masks were rotated and aligned with the segments in the whole

and part stimuli so that segments were either completely visible or completely occluded.

The mask occluded from zero to three segments of the part stimulus. The part stimulus

was selected such that the segments came from the same training set as the whole stimulus
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and was constrained such that the visible segments matched across all segments or exactly

one segment did not match between the whole and part stimuli.

2.1.3 Results

Category learning

The rate of learning over time and the effect of category membership were assessed via

mixed effects linear regression. Participants were modeled with a random intercept but the

slope of the line as a function of block was considered a fixed effect. During first seven

blocks, which consisted of only the categorization trials, there was a significant effect of

block (F (1, 66) = 41.3, p < 0.001), category type (F (1, 66) = 102.8, p < 0.001), and a

significant interaction between category type and block (F (1, 66) = 5.0, p = 0.028).

Once whole-part perceptual discrimination trials were interspersed with categorization

trials (blocks 8 through 52) the main effect of category type continued to be significant

(F (1, 65) = 25.8, p < 0.001) but the effect of block was not significant (F (1, 63) = 1.6, p =

0.2)1 and there was no significant interaction (F (1, 66) < 1, p = 0.39). These results suggest

that categorization performance reached a plateau when whole-part judgment trials were

introduced and did not improve from then on.

Whole-part perceptual judgments

Overall, whole-part discrimination accuracy was not significantly above chance (M = 0.51,

t(66) < 1, p = 0.45). However, there was a significant effect of the number of segments

in the part stimulus on whole-part discrimination accuracy (F (1, 66) = 37.3, p < 0.001).

Figure 2.5 suggests this effect is due to accuracy increasing as the number of unoccluded

segments increased.

1The degrees of freedom varies in this analysis because due to random chance there were not focus and

non-focus categorization trials in every block for some participants.
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When the set of part stimuli was restricted to only those in which the category irrelevant

segment could be present or occluded (part stimuli with one to three segments unoccluded),

the main effect of the number of unoccluded segments in the part stimulus remained sig-

nificant (F (1, 66) = 5.3, p = 0.024) but there was no significant effect of the irrelevant

segment being present or occluded (F (1, 66) = 2.1, p = 0.15) or of the category membership

of the whole stimulus (F (1, 66) < 1, p = 0.3). No interactions between these factors were

significant.

2.1.4 Discussion

During the initial training phase participants improved their categorization accuracy with

more experience. This categorization accuracy did not continue to improve once whole-part

discrimination trials were introduced but leveled off and remained constant (Figure 2.4).

Throughout both phases, the focus category stimuli were more accurately categorized than

the non-focus stimuli. This asymmetry is indicative of a response bias toward selecting the

focus category response and suggests the training phase was not sufficient to learn a set of

stable perceptual features that could be used for categorization.

Perhaps because of the limitations of the category training phase, there is little evidence

for a shift in feature representations in whole-part discrimination performance. Neither of

the two predicted effects of perceptual learning were found: there was no effect of the cat-

egory membership of the whole item, and there was no effect of the category relevance

of the segments in the part stimulus. One straightforward interpretation of both the sys-

tematic categorization response bias and lack of whole-part discrimination effects is that

the categorization task was not learned well enough for participants to extract stable uni-

tized perceptual features. Introducing the whole-part discrimination tasks so quickly after

beginning category learning may have prevented learning useful features.
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2.2 Experiment 2: Differentiation category structure

Experiment 2 measures the effect on perceptual discrimination judgments of learning cat-

egory structures that encourages learning features that correspond to individual segments

instead of one large feature. The same stimulus segments that were relevant for cate-

gorization in Experiment 1 were relevant for the Differentiation category structures. In

Experiment 1, segments were predictive of category membership only in conjunction with

each other, in Experiment 2 the same segments were independently predictive of category

membership. Due to the difficulty in Experiment 1 of learning the category structure after

categorization and whole-part discrimination trials were interspersed, the training regime

was modified for Experiment 2 to ensure participants reach an accuracy criterion across all

categories before progressing to whole-part discrimination trials.

2.2.1 Method

Participants

71 Indiana University undergraduates were recruited to participate and were compensated

with course credit.

Materials

The same stimuli from Experiments 1 were used in this experiment.

Category structures

The set of Differentiation category structures consisted of three structures each with two

categories. The two categories within each structure were defined by the presence of a

single segment. For example, one Differentiation category structure would assign all eight

stimuli containing the A segment to one category and the remaining eight that contain
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the W segment to another category. Each of the three Differentiation category structures

corresponded to one of the segments relevant to the Unitization category structure from

Experiment 1. The D and Z segments were not relevant for either the Unitization or

Differentiation category structures.

All Differentiation category structures mirrored the Untitization category structure in

that they were constructed and taught as a “Yes/No” response to a single category label.

Unlike the Unitization category structure, all Differentiation category structures had eight

stimuli that belonged to the “Yes” and “No” groups and the mapping of group to responses

was randomized across participants.

Procedure

The categorization trials of the Differentiation category structures were slightly different

than the the Unitization category structure from Experiment 1. Instead of having only a

single category that could be asked about on a categorization trial, there were three category

structures that could be asked about for every stimulus. The labels for each of those

category structures was selected from the set of random category labels used in Experiment

1. Categorization trials began with a stimulus being presented for 400 ms followed by a

visual mask for 800 ms, and then one of the three possible category structures was queried

on each trial. The response prompt was identical to that in Experiment 1, except that

participants were exposed to three of the four labels and their associated category structures

over the course of the experiment.

Experiment 2 consisted of two phases which were composed of the same categorization

and whole-part discrimination trials as Experiment 1. The first phase, though still composed

only of categorization trials as in Experiment 1, was not a fixed number of trials but

continued through three distinct stages. In the first stage, one of the three Differentiation
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category structures was randomly selected and categorization trials asked only about that

one category structure until an accuracy threshold of 80% correct was reached within a

block. The second stage of training included trials that asked about two of the three

category structures, and all three category structures were included in the final stage of

category training. If, for example, the randomly chosen labels were beme, kipe, and wune;

one possible training ordering would be if the first stage consisted only of kipe trials, the

second stage consisted of trials that asked about the kipe or wune categories, and the final

stage consisted of all three category structures. The second phase of Experiment 2 was the

same as in experiment 1, consisting of 736 total trials, 416 whole-part discrimination trials

and 320 categorization trials.

A break screen was shown to help the participants learn each category structure before

every block in the first phase of training. For each of the category structures being shown in

the current stage (one in the first, two in the second, and all three in the third stage) a help

screen displayed two “Yes” stimuli and two “No” stimuli. If more than one help screen was

due to be shown then the order of the screens was randomized. Participants could study

each screen for as long as they wanted before moving to the next one or beginning the next

block.

2.2.2 Results

Category learning

Participants struggled to learn all three Differentiation category structures within the hour

allotted for the experiment. Of the 71 total participants, 68 (95%) reached the second

stage of training, 40 (56%) reached the third stage of training, and 33 (46%) completed the

training phase and proceeded to the second phase. The analysis of the whole-part perceptual

discrimination performance includes all participants who reached that stage though most
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did not complete the full set of trials in that phase.

The participants who did learn each of the category structures did so efficiently. For all

subsequent analyses the number training blocks necessary to reach the accuracy criterion

is conditional on reaching the criterion. On average, the participants who completed the

first stage did so in 3.4 blocks, the second stage was completed in 6.0 blocks, and the third

stage was completed in 6.1 blocks. The participants who reached the second phase learned

all three category structures in 14.25 blocks, ranging from 8 to 38 blocks of training.

Once participants reached the second phase, in which whole-part perceptual discrim-

ination judgments were interleaved with categorization trials, categorization performance

remained highly accurate. On average, participants got 91.5% of categorization trials cor-

rect during the interleaved phase. This was much higher than Experiment 1, suggesting

that training until criterion was successful in ensuring participants learned the category

structures.

Whole-part perceptual judgments

Whole-part discrimination accuracy was significantly above chance (M = 0.54, t(32) =

5.1, p < 0.001). There was a significant effect of the the number of unoccluded segments in

the part stimulus on accuracy (F (1, 32) = 44.0, p < 0.001). Figure 2.6 shows that accuracy

increased as the number of unoccluded segments increased.

When the set of part stimuli was restricted to only those in which the category ir-

relevant segment could be present or occluded (part stimuli with one to three segments

unoccluded), the main effect of number of unoccluded segments on accuracy remained sig-

nificant (F (1, 32) = 15.5, p < 0.001) but there was no significant effect of the irrelevant

segment being present or occluded (F (1, 32) = 1.3, p = 0.26). The interaction between

category relevance and number of segments was not significant (F (1, 32) < 1, p = 0.5).
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2.2.3 Discussion

Participants struggled to learn all three Differentiation category structures. Slightly less

than half of the participants successfully completed the categorization training within an

hour. One surprising result was the lack of effect of category relevance on whole-part

discrimination. There was no significant difference between judgments that do or do not

include the category irrelevant segment. This suggests participants did not shift their

attention to only process segments that were relevant for categorization.

2.3 Experiment 3: Whole-part perceptual discrimination

Experiment 3 measures the pattern of whole-part perceptual discrimination judgment ac-

curacy without any categorization training. This is an important control for Experiments 1

and 2, to compare the whole-part discrimination performance after learning the Unitization

and Differentiation category structures to discrimination performance without any category

learning.

2.3.1 Method

Participants

27 Indiana University undergraduates were recruited to participate and were compensated

with course credit. All participants completed the experiment within the allotted hour.

Materials

The same stimuli from Experiments 1 and 2 were used in this experiment.
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Procedure

The experiment consisted of 416 whole-part perceptual discrimination trials. As in Experi-

ments 1 and 2, this set was constructed by pairing each whole stimulus with each occluder

mask twice. The whole and part stimuli matched on all unoccluded segments on approxi-

mately half the trials and the order of trials was randomized across participants.

2.3.2 Results

Whole-part discrimination accuracy was significantly above chance (M = 0.58, t(26) =

9.7, p < 0.001). There was a significant effect of the number of unoccluded segments in the

part stimulus on discrimination accuracy (F (1, 26) = 191, p < 0.001). Figure 2.7 shows that

accuracy increased as the number of unoccluded segments increased. A discussion of these

results in the context of Experiments 1 and 2 is included in the next section.

2.4 Analysis of whole-part discrimination performance across Experi-

ments 1, 2, and 3

Though these experiments were conducted with separate samples of participants, the struc-

ture of the whole-part trials were identical across all studies and comparing across them

may provide insight into the differences due to category structure.

A repeated-measures ANOVA predicting whole-part discrimination accuracy found a

significant main effect of category structure (F (2, 124) = 20.7, p < 0.001), a significant main

effect of the number of unoccluded segments in the part stimulus (F (1, 124) = 178.2, p <

0.001), and a significant interaction between category structure and number of segments

(F (2, 124) = 6.5, p = 0.002). The accuracy in the No category experiment (M = 0.58) was

significantly higher than the Differentiation category structure (M = 0.44, Welch’s unequal

variance t-test t(57.8) = 3.0, p = 0.004), which was significantly higher than the Unitization
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category structure (M = 0.51, Welch’s unequal variance t-test t(73.9) = 3.4, p = 0.001).

The slope of the best fitting line relating the number of unoccluded segments to accu-

racy showed an increase of 5.2% in accuracy for each additional unoccluded segment. The

interaction between category structure and the number of unoccluded segments was due

to differences in the relationship between the number of unoccluded segments and accu-

racy between category structures. This can be modeled as the slope of the best fitting line

for each category structure. The slope for the No category experiment (β = 0.073) was

higher than the Differentiation category structure (β = 0.060), which was higher than the

Unitization category structure (β = 0.040).

These results suggest that learning the category structures, or more likely, having cat-

egorization trials interspersed with whole-part discrimination trials, decreased accuracy on

the discrimination trials. The interspersed categorization trials had more of an effect for

the Unitization category structure than the differentiation structures. This is interesting

because participants were more accurate on the interspersed differentiation categorization

trials than the categorization trials. This might be due to differences in training between the

two conditions because participants in the differentiation training condition were trained to

criterion and only highly accurate participants advanced. This might have created a biased

sample toward more attentive participants or participants who had learned the categoriza-

tion well enough to devote less attention to it.

Did category relevance have a differential effect across the three experiments? To com-

pare the effect of category relevance in Experiments 1 and 2 with Experiment 3, which had no

category structure, a position for each participant in Experiment 3 was arbitrarily selected to

be category irrelevant. A repeated-measures ANOVA predicting whole-part discrimination

accuracy (on part stimuli with one to three segments unoccluded) found a significant main

effects of category structure (F (2, 124) = 17.75, p < 0.001), number of unoccluded segments

52



in the part stimulus (F (1, 124) = 40.0, p < 0.001), and a significant interaction between

category structure and number of segments (F (2, 124) = 4.3, p = 0.015). There was not a

significant effect of the category irrelevant segment being occluded (F (1, 124) < 1, p = 0.9)

and category relevance did not interact with any other factors (all F values ¡ 1).

2.5 Discussion

Experiments 1 through 3 do not show strong evidence of a change in perceptual discrimi-

nations due to learning either the Unitization or Differentation category structures. This

is made clear by the lack of effect of category membership in Experiment 1 and category

relevance in Experiments 1 and 2.

Furthermore, a lack of effect of category relevance in the Differentiation category struc-

ture condition suggests people were not able to learn to segment these stimuli into the

individually varying components within the experiment time. If people learned to represent

these stimuli as a combination of the four components, an advantage for processing cate-

gory relevant components would be predicted by attention shifting models of categorization

(Nosofsky, 1986; Kruschke, 1992; Love et al., 2004). These models would shift attention to

the components of the stimuli that are relevant for categorization, leading to improved pro-

cessing. It is very likely, therefore, that the amount of exposure to these stimuli within an

hour long session was insufficient for participants to learn any stable feature representation,

regardless of category structure. Instead, participants were likely processing the stimuli as

whole stimuli and struggling to make accurate judgments when more segments are occluded.

This is consistent with the result found in all three experiments that discrimination accu-

racy increased as the number of unoccluded segments in the part stimulus increased. When

the part stimulus contained more unoccluded segments, participants were more accurate in

their judgment despite the number of possible mismatching segments being fixed.
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In these one-hour experiments participants were not able to learn new features that

significantly influenced their perceptual discrimination performance. The pace of feature

learning in these experiments is much more consistent with the perceptual learning evidence

from visual search (Shiffrin & Schneider, 1977) or psychophysics (Fine & Jacobs, 2002)

where learning requires more than one session of training, than studies that find perceptual

learning within a session of category training (Goldstone, 2000; Goldstone & Steyvers, 2001;

Goldstone, 1994; Pevtzow & Goldstone, 1994). In Experiment 4 this concern is addressed

by increasing the amount of category training to more than one session.

2.6 Experiment 4: Multi-session experiment

Experiments 1 and 2 did not find reliable changes in perceptual discrimination performance

due to category learning. A major issue with interpreting the results of these studies was

the restriction on the amount of category training participants received. Participants in

Experiment 1 received a fixed amount of training on the Unitization category structure

and by the end of the experiment did not approach near-perfect accuracy (Figure 2.4),

suggesting their representations of the categories were incomplete. This issue was addressed

in Experiment 2 by adding an accuracy threshold to category training, but less than half of

the participants (46%) were able to learn the Differentiation category structures which may

have produced a selection effect. Furthermore, the previous experiments did not account

for individual differences in perceptual discriminations by measuring performance before

and after learning category structures.

These issues are addressed in Experiment 4 by spreading the category training and

whole-part discriminations across multiple sessions. This allows perceptual discrimination

performance to be assessed both before and after learning a category structure to assess

relative changes due to category learning within a single individual. Furthermore, it allows
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whole-part discrimination performance to be assessed without interspersing categorization

trials that may differentially interfere with processing. It also allows an individual to learn

multiple category structures in sequence. We will compare the perceptual discrimination

performance of participants who start with learning the Unitization category structure and

then learn the Differentiation category structures to participants who learn categories in

the opposite order.

The perceptual learning literature makes two contrasting predictions about how order

should impact the set of perceptual features. Perceptual learning effects due to the fast-

acting Imprinting perceptual learning process (Schyns & Murphy, 1994; Schyns & Rodet,

1997; Quinn et al., 2006) predict that different orders of category training would produce

different sets of perceptual features if imprinting, differentiation, and unitization processes

share a common learning mechanism. Training on the Unitization category structure first

should result in learning a unitized perceptual feature that will remain in set of features even

after differentiation category training. Training on the Differentiation category structure

first should result in learning a set of differentiated perceptual features and subsequent uni-

tization category training will not add a unitized perceptual feature. However, perceptual

learning effects due to the perceptual unitization process with structural relations across

clearly separable components (Pevtzow & Goldstone, 1994; Austerweil & Griffiths, 2011),

over many sessions of training (Shiffrin & Lightfoot, 1997), or the development of unitized

perceptual features through the acquisition of expertise (Busey & Vanderkolk, 2005; Gau-

thier & Tarr, 1997; Gauthier et al., 1998; Gauthier & Tarr, 2002) predict that given enough

training, a unitized perceptual feature can be added to the set of perceptual features even

after the components are features.
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2.6.1 Method

Participants

12 male Indiana University undergraduates aged 18 to 20 completed seven one-hour sessions

and were compensated $8 per session. All participants reported having normal or corrected-

to-normal vision and no color blindness.

Materials

Four sets of stimuli were generated for each participant following the same procedure out-

lined in Experiments 1 through 3. One set of stimuli was randomly selected to be the set

used during both Unitization and Differentiation category training. The other three sets

were never presented during training but used to assess whole-part perceptual discrimina-

tion of novel stimuli at various stages of training.

Category structures

The Unitization category structure was identical to the the structure in Experiment 1 and

the Differentiation category structures were identical to those in Experiment 2. Table 2.1

shows all four category structures across a set of 16 stimuli. The four category labels

from Experiments 1 and 2: beme, kipe, wune, and vade were randomly assigned to the

Unitization category structure and the three Differentiation category structures. As in the

previous experiments, the focus category within the Unitization category structure, which

consisted of only four stimuli, was always assigned to the “Yes” response of the category

query. For the Differentiation category structures the “Yes” and “No” responses were

randomly assigned within each structure.
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2.6.2 Procedure

Category training trials

The categorization trials were identical to those in Experiments 1 and 2.

Perceptual discrimination trials

Whole-part perceptual discrimination trials were identical to those in Experiments 1 through

3 except that instead of the segments of the part stimulus matching all segments from the

whole stimulus or mismatching exactly one segment, a third condition was added in which

none of the segments unoccluded in the part stimulus matched those in the whole stimulus.

Structure across sessions

The experiment consisted of seven sessions. Sessions 1, 4, and 7 contained only whole-part

perceptual discrimination trials, sessions 2 and 3 consisted of learning the first category

structure, and sessions 5 and 6 consisted of learning the second category structure. Half

the participants were randomly assigned to learn the Unitization category structure first

and the other half learned the Differentiation category structures first. Training for each

category structure was split across two one-hour sessions. A session consisting of whole-part

perceptual discrimination trials without any categorization trials was included before any

category learning, and after learning the Unitization category structure, as well as after

learning the Differentiation category structures.

Each whole-part perceptual discrimination session consisted of 832 trials. The 16 train-

ing stimuli were presented as the whole stimulus with each of the 13 occlusion patterns

shown in Figure 2.3 three times. This produced 624 whole-part discrimination trials with

stimuli used in training. The remaining 208 trials presented whole and part stimuli selected

from a set of 16 stimuli not used during training. One set of 16 novel stimuli was created
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for each whole-part perceptual discrimination session. These stimuli were generated follow-

ing the same procedure as the training stimuli and presented with segments at the same

rotation angle as the familiar trained stimuli. The 16 novel stimuli were presented once

with each of the 13 occlusion patterns. The order of all perceptual discrimination trials was

randomized within each session.

The four training sessions devoted to category training followed the same overall pat-

tern. All sessions lasted 58 minutes regardless of categorization performance. However, the

composition of trials varied depending on categorization accuracy. The category training

began exclusively with categorization trials for both the Unitization and Differentiation

category structures. Only categorization trials were presented for both the Unitization and

Differentiation category structures until a high accuracy was achieved. For both category

structures, after the threshold was reached, the second phase of category training began in

which the trials were a mixture of categorization trials and whole-part perceptual discrimi-

nation trials. This phase continued until both sessions of category training were completed.

75% of trials during this mixture phase were perceptual discrimination trials and only 25%

were categorization trials. Participants continued to receive feedback when they made in-

correct category responses but received no feedback on perceptual discrimination trials.

The procedure of category learning for both the Differentiation and Unitization category

structures closely resembled the procedure in Experiment 2. The training of the Differen-

tiation category structures began with presenting only one of the Differentiation category

structures. The second and third structures were added only when participants reached a

high accuracy within a block (80%). In order to mirror this procedure when training the

Unitization category structure, participants were required to reach the same accuracy crite-

rion in three blocks before advancing. Break screens, as described in Experiments 1 and 2,

were presented every 48 trials during the categorization-only phase of learning. These brake

58



screens showed examples of each category structure being learned. Once the second phase

of category training began and whole-part discrimination trials were presented, the break

screens no longer contained any category structure information and instructed participants

to rest for a minute.

2.6.3 Category training results

11 of the 12 participants reached the categorization accuracy threshold during the first ses-

sion of the first category structure, and the one remaining participant reached the threshold

early in their second session. All participants reached the accuracy threshold in their first

session of their second category structure. A repeated-measures ANOVA predicting the

number of blocks required to reach the accuracy thresholds shows a main effect of the

within-subject factor of training order (first training phase, M = 20.2; second training

phase, M = 9.1; F (1, 10) = 8.8, p = 0.014) but no significant effect of the type of category

structure (F (1, 10) = 4.4, p = 0.061) or significant interaction between category order and

category structure (F (1, 20) = 3.4, p = 0.10).

Categorization accuracy did not seem to drop off after interspersing whole-part discrim-

ination and the categorization trials. These categorization judgments were 92% correct

across all training conditions. An ANOVA predicting accuracy on these interspersed cate-

gorization trials found a significant effect of which category was learned first (Unitization M

= 0.95; Differentiation M = 0.89; F (1, 10) = 10.6, p = 0.009) but no significant effect of how

many category structures had been learned (F (1, 10) = 4.3, p = 0.064) nor an interaction

between the two factors (F (1, 10) = 1.9, p = 0.20). These effects are shown in Figure 2.10.

2.6.4 Whole-part perceptual discrimination results

The data presented here is restricted to the whole-part discrimination trials from sessions

1, 4, and 7 that consist only of discrimination trials.
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Stimulus-level effects

First we measure the effect of three factors that are specific to the stimulus and vary

across all conditions: the novelty of the stimuli, the number of unoccluded segments in

the part stimulus, and the proportion of segments that match between the whole and part

stimuli. Differences due to these factors might be entirely due to the properties of the stimuli

themselves (except for novelty), but an interaction of these factors with the novelty suggests

that category learning is changing the influence of that factor on whole-part discrimination

judgments. A three-factor repeated-measures ANOVA was performed with three stimulus-

level effects: familiarity, the number of unoccluded segments in the part stimulus, and the

match proportion.

There was a main effect of familiarity (F (1, 11) = 36.1, p < 0.001). Whole-part trials

that consisted of stimuli from training were more accurately processed (M = 0.78) than

novel stimuli (M = 0.72).

The number of unoccluded segments in the part stimulus also had a significant effect

on whole-part performance (F (1, 11) = 73, p < 0.001). Part stimuli with one unoccluded

segment were the least accurate (M = 0.71) and accuracy increased as the number of

unoccluded segments increased (two segments, M = 0.77; three segments, M = 0.80; four

segments, M = 0.83). Post-hoc comparisons, using a Bonferroni corrected alpha value

of 0.017 for three comparisons, show all adjacent comparisons were significant different:

comparisons with one unoccluded segment were less accurate than two segments (t(11) =

10.6, p < 0.001), two segment judgments were less accurate than three (t(11) = 4.1, p =

0.001), and three segment judgments were less accurate than those with four segments

unoccluded (t(11) = 3.7, p = 0.003). This pattern is the reverse of the effect found in the

first three experiments but this is likely due to the addition of trials where no segments in

the part stimulus match those in the whole stimulus (see Figure 2.11 and the interaction
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analysis below).

The proportion of segments that matched between the whole and part stimuli, coded

as a three-level categorical predictor, had a significant effect on performance (F (2, 11) =

44.7, p < 0.001). stimulus pairs in which no segments matched were the most accurate (M =

0.83), followed by pairs with all segments matching (M = 0.77), and the least accurate pairs

were those that matched on all but one segment (M = 0.61).2 Post-hoc comparisons, using a

Bonferroni corrected alpha value of 0.017 for three comparisons, show that the one mismatch

trials were significantly less accurate than the all matching trials (t(11) = 6.0, p < 0.001)

or the none matching trials (t(11) = 14.6, p < 0.001) and the all matching trials were not

significantly different than the none matching trials (t(11) = 2.1, p = 0.05).

All three two-way interactions in the repeated-measures ANOVA were significant. The

number of segments and the proportion of matching segments showed a significant inter-

action (F (2, 22) = 65.1, p < 0.001), the proportion of matching segments and familiarity

showed a significant interaction (F (2, 22) = 7.5, p = 0.003), and the number of segments

and familiarity showed a marginally significant interaction (F (1, 11) = 4.9, p = 0.049). The

three-way interaction was not significant (F (2, 22) = 2.3, p = 0.1).

Figure 2.11 shows the effects and interactions between the stimulus-level factors. Over-

all, familiar trials are more accurate than novel, more unoccluded segments increases accu-

racy, and the one mismatch trials are less accurate than the all matching or none matching

trials. Furthermore, the effect of having more unoccluded segments in the part stimulus

increases accuracy for trials with unoccluded segments that all match or none match, but

decreases accuracy for trials with one mismatch. This is reasonable since additional seg-

ments in the first two trial types agree with the correct response, but additional segments

mislead in the one mismatch condition. Also, the advantage of processing trained stimuli

2Part segments composed of only one segment that mismatched the whole stimulus were coded as none

matching rather than one mismatching but changing this does not change the overall pattern.
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over novel stimuli seems to be strongest for stimuli with one mismatching segment (third

panel of Figure 2.11).

Session-level effects

Next, we measure the effect of two factors that vary across category training sessions: the

number of category structures learned thus far, and which category structure the participant

learned first. The two effects are first measured as separate analyses then combined into a

five-factor repeated-measures ANOVA with the stimulus-level factors to assess interactions.

Participants significantly improved as they got additional training (repeated-measures

ANOVA F (2, 11) = 10.5, p < 0.001). Accuracy on whole-part judgments was lowest before

any training (M = 0.69), higher after the first training regardless of the category structure

being taught (M = 0.78), and highest after both category structure training sessions (M

= 0.84). Post-hoc comparisons, using a Bonferroni corrected alpha value of 0.025 for two

comparisons, show that accuracy before any training was significantly lower than after the

first category training (t(11) = 10.1, p < 0.001) and the accuracy after the first training was

significantly lower than after the second category training (t(11) = 6.8, p < 0.001).

Furthermore, the participants who received the Unitization category structure training

first were significantly more accurate (M = 0.79) than those who trained on the Differentia-

tion category structure first (M = 0.74, F (1, 10) = 6.2, p = 0.03, Figure 2.12). Interestingly,

there was not a significant interaction between the number of category structures learned

and the type of category structure first learned (F (2, 20) = 1.1, p = 0.3). This suggests that

the advantage in perceptual discrimination for the participants who learned the Unitization

category structure first was not due to the training itself but something about this random

sample of people. This interpretation is strengthened by the significant difference between

the two groups in whole-part perceptual discrimination accuracy before any category train-
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ing (Unitization first, M = 0.70; Differentiation first, M = 0.66; Welch two-sample t-test

t(7.6) = 2.8, p = 0.024).

A five-factor repeated-measures ANOVA found no significant interactions between any

combination of the session-level factors and the stimulus-level factors. The interaction

between session-level and stimulus-level factors with the largest F value was for the non-

significant interaction between familiarity and the category structure first learned (F (1, 10) =

4.5, p = 0.06).

The main effect of initial training condition is troubling since participants were randomly

assigned to their training order. This effect, combined with the significant difference in

performance due to “initial training” before any training, strongly suggests that learning

the Unitization category structure first did not improve processing for those individuals,

they were better at perceptual discrimination before any training. Furthermore, the lack

of significant interaction between initial training and the number of category structures

learned suggests that category training did not increase or decrease the advantage.

Category-specific effects

Finally, we measure the effect of three factors that are specific to the category being learned.

It is hypothesized the Unitization category structure training should lead to improved pro-

cessing of the four stimuli that belong in the focus category (Figure 2.2) by learning the

two perceptual features relevant for the Unitization category structure (the features com-

posed of segments ABC and WXY in Table 2.1). To test for an advantage in perceptual

discriminations for whole stimuli that belong to the focus category, we compare accuracy

on whole-part discriminations of familiar stimuli after Unitization or Differentiation cate-

gory structure training. A repeated-measures ANOVA predicting accuracy on whole-part

discriminations with category structure, whole stimulus category membership, and the num-
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ber of unoccluded segments in the part revealed a main effect of the number of unoccluded

segments (F (1, 11) = 15.9, p = 0.002), no significant main effect of category structure

(F (1, 11) < 1), and no significant main effect of the focus category membership of the

whole stimulus (F (1, 11) = 1.6, p = 0.23). However, there was a significant interaction

between category structure and focus category membership (F (1, 11) = 5.6, p = 0.038) and

the remaining interactions were not significant (category structure and unoccluded segments

F (1, 11) < 1; category membership and unoccluded segments F (1, 11) = 3.9, p = 0.07; three

way interaction F (1, 11) = 2.7, p = 0.13).

Figure 2.13 suggests the interaction between focus category membership and category

structure is due to the focus category having an effect only after Unitization category train-

ing. Post-hoc comparisons show significantly higher accuracy on trials with whole stimuli

that belong in the focus category after Unitization category training (focus M = 0.85;

non-focus M = 0.82, paired t(11) = 2.8, p = 0.017) but no effect of focus category after

Differentiation category training (focus M = 0.84; non-focus M = 0.83, paired t(11) < 1).

This pattern suggests perceptual discriminations were more accurate for the stimuli in the

focus category after learning the Unitization category structure than after the Differenti-

ation category structures. This improvement does not seem to depend on the number of

unoccluded segments in the part stimulus.

The second category-specific effect we consider is the category relevance of the segments

in the part stimulus. When restricting part stimuli to those that are familiar and have

at least one segment occluded, exactly half of the part stimuli contain a segment that is

not relevant to either the Unitization or Differentiation category structures. Across all

conditions, there is not a significant difference in accuracy on whole-part discrimination

trials containing the irrelevant segment (M = 0.79) and those occluding that segment (M

= 0.77, paired t(11) = 1.5, p = 0.16). Yet category relevance should only matter after any
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category training. In the two sessions of whole-part discriminations following any category

training, accuracy was significantly higher on trials occluding the irrelevant segment (M

= 0.85) than those containing that segment (M = 0.81, paired t(11) = 3.7, p = 0.003).

To understand the relationship between the presence of category irrelevant segment and

other factors, a repeated-measures ANOVA was conducted to compare the effects of the

presence of the category irrelevant segment, the category structure, and number of unoc-

cluded segments in the part on discrimination accuracy. There were significant effects of

the presence of the category irrelevant segment (F (1, 11) = 13.0, p = 0.004), unoccluded

segments (F (1, 11) = 87.4, p < 0.001), and category structure (F (1, 11) = 35.0, p < 0.001).

The only significant interaction was between category structure and the presence of the

category irrelevant segment (F (1, 11) = 5.1, p = 0.015). Figure 2.14 suggests this interac-

tion may be due to the lack of effect of category relevance before any category training.

Post-hoc tests of this interaction (using a Bonferroni corrected p-value of 0.017) show that

the effect of occluding the category irrelevant segment is not significant after no category

training (t(11 = 1.1, p = 0.28)) or after Differentiation category training (present M = 0.81;

occluded M = 0.85; t(11) = 2.4, p = 0.035), but is significantly different after Unitization

category training (present M = 0.85; occluded M = 0.80; t(11) = 3.4, p = 0.006). This

pattern is shown in Figure 2.15. 3

Finally, we consider the effect of category structure on judgments with different number

of unoccluded segments in the part stimulus. Two specific predictions of the differentiation

and unitization learning processes are tested. First, the differentiation perceptual learning

process is hypothesized to improve processing of individual segments when learning the

Differentiation category structure because this structure will promote learning category

relevant features that map onto the individual segments. Yet there is no difference in ac-

3This effect is mostly due to a smaller variance in the judgments after unitization rather than a larger

difference between the means.
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curacy on perceptual judgments of familiar stimuli with one unoccluded category relevant

segment after training on the Differentiation category structure (M = 0.80) than the Uni-

tization category structure (M = 0.78; paired t-test t(11) ¡ 1). Similarly, the Unitization

category structure is hypothesized to improve processing of conjunctions of three category

relevant segments since the category relevant features align with the segments. Yet there is

no difference in accuracy on perceptual judgments of familiar stimuli with three unoccluded

category relevant segments after training on the Unitization category structure (M = 0.86)

than the Differentiation category structure (M = 0.86; paired t-test t(11) ¡ 1). Figure 2.16

shows the effect of category structure across the number of segments in the part stimulus

and suggests there was no differential effect of category structure in any level of the number

of segments. These null effects are particularly surprising from the perspective of perceptual

learning because they suggest category training was not leading to improvements in making

discrimination judgments when the part stimulus corresponded to the diagnostic feature of

the category.

2.6.5 Discussion

The results from Experiment 4 show a much stronger effect of learning the Unitization and

Differentiation category structures than Experiments 1 and 2. All participants were able

to learn both category structures and then maintain categorization accuracy above 90%

when whole-part discrimination trials were interspersed. Furthermore, this learning had a

dramatic influence on whole-part perceptual discrimination judgments. After any category

training, participants were more accurate on judgments of familiar stimuli and stimuli with

the category irrelevant segment occluded. Yet these changes do not point to a differential

effect due to learning the Unitization or Differentiation category structures.

There was a large effect on discrimination accuracy of which category structure was
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learned first, but this effect was found even before any training and did not change after

learning (Figure 2.12). This result highlights a potential issue with between-subject com-

parisons with few participants, an unlucky sample can bias results. However, including the

pre-training whole-part discrimination session identified this unlucky sample and highlights

the importance of comparing pre- and post-training within an individual.

Experiment 4 does contain evidence of differential processing due to learning the Uni-

tization or Differentiation category structures. First, learning the Unitization category

structure led to more accurate on judgements when the whole stimulus was a member of

the focus category and not in the non-focus category. There is no difference in accuracy for

the same stimuli after learning the Differentiation category structure (Figure 2.13). Sec-

ond, the difference between perceptual discriminations containing the category irrelevant

segment and those without it is significant after learning the Unitization category structure

but not after learning the Differentiation structure (Figure 2.14).

These effects are consistent with some difference in learning between the two condi-

tions, but are not unique to perceptual learning. Both of these effects are consistent with

attention shifting accounts of category learning. First, the improvement for judgments of

category relevant part stimuli after Unitization training might be due to an additional shift

of attention to category relevant segments (Kruschke, 1992; Nosofsky, 1986). Similarly, the

improvement for judgments of stimuli from the focus category after Unitization training

might be due to shifting attention to specific exemplars in memory (Nosofsky, 1988b). Yet

the category-specific effects on perceptual discrimination are not inconsistent with percep-

tual learning. These differences could be accounted for by Unitization category training

shifting attention to the category relevant segments more than the Differentation category

structure. More challenging for the perceptual learning account is the lack of advantage

in processing part stimuli that correspond to the diagnostic features of categories (Figure
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2.16). These were strong predictions of the perceptual learning account that would be diffi-

cult to account for with attention shifting alone. Yet the Differentiation category structure

did not improve judgments of single segment part stimuli and the Unitization category

structure did not improve judgments of three segment part stimuli. Overall, these results

do not demonstrate strong evidence for differentiation and unitization perceptual processes

in the same learning environment.
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Figure 2.2: 16 sample stimuli showing the Unitization category structure. In this example

the stimuli in the left column would be in the focus category and the other three columns

would be non-focus category stimuli. The focus category members are composed of segments

ABCD, ABCZ, WXYD, and WXYZ respectively.
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Figure 2.3: The 13 occlusion masks used to obscure segments to create part stimuli for all

experiments. Part stimuli with one, two, and three visible segments were equally probable.
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Figure 2.4: Accuracy on categorization judgments when learning the Unitization category

structure in Experiment 1. Participants were more accurate classifying stimuli from the

focus category (solid line) than the non-focus category (dotted line). The transition from

the first phase of learning, which consisted of only categorization trials, to second phase that

contained a mixture of categorization and whole-part discrimination trials is indicated by

the vertical dashed grey line. Accuracy on categorization judgments increased during the

first phase but remained stable during the second phase. The error bars indicate standard

errors.

71



●

●

●

●

●

●

●

0.50

0.55

0.60

1 2 3 4
Unoccluded segments in the part object

A
cc

ur
ac

y

Irrelevant Segment Unoccluded Occluded

Figure 2.5: Accuracy on whole part judgments when interspersed with Unitization category

structure trials in Experiment 1. The line type indicates if the category irrelevant segment

was occluded or present in the part stimulus. Error bars indicate standard errors.
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Figure 2.6: Accuracy on whole part discrimination judgments when interspersed with Dif-

ferentiation category structure trials in Experiment 2. The line type indicates if the cate-

gory irrelevant segment was occluded or present in the part stimulus. Error bars indicate

standard errors.
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Figure 2.7: Accuracy on whole part discrimination judgments in Experiment 3. Error bars

indicate standard errors.
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Figure 2.8: Accuracy on whole part judgments across the three category structures from

Experiments 1 through 3. The line type indicates if the category irrelevant segment was

occluded or present. Error bars indicate standard errors.
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Figure 2.9: Categorization accuracy across training block until the three accuracy criteria

were reached in each category learning phase in Experiment 4.
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Figure 2.10: Categorization accuracy after the accuracy criteria were reached in each cate-

gory learning phase in Experiment 4. Error bars indicate standard errors.

75



All Match None Match One Mismatch

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.6

0.8

1.0

1 2 3 4 1 2 3 4 1 2 3 4
Visible part segments

A
cc

ur
ac

y

Familiarity ● Trained Novel

Figure 2.11: The effect of the number of segments in the part stimulus and stimulus fa-

miliarity on whole-part judgment accuracy in Experiment 4. The left panel shows trials in

which all segments in the part stimulus match those in the whole stimulus. The middle

panel shows trials in which no segments in the part stimulus match the whole stimulus.

The right panel shows trials in which all segments in the part stimulus match the whole

stimulus except for one which does not match. These results are aggregated across category

structures and category orders.
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Figure 2.12: The effect on perceptual discrimination accuracy of the first category structure

learned across multiple test phases in Experiment 4. The advantage in accuracy for the

group of participants who learned the Unitization category structure first does not seem

to be due to any training phase, in fact they were significantly more accurate before any

training occurred. Error bars indicate standard errors.
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Figure 2.13: The effect on perceptual discrimination accuracy of the category membership

of the whole stimulus in Experiment 4. The whole stimulus belonging to the focus cate-

gory of the Unitization category structure improves performance after Unitization but not

Differentiation category training. Error bars indicate standard errors.

77



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

None Unitization Differentiation

0.6

0.7

0.8

0.9

1 2 3 1 2 3 1 2 3
Unoccluded segments in part object

A
cc

ur
ac

y

Category irrelevant segment ● ●Occluded Present

Figure 2.14: The effect on perceptual discrimination accuracy of occluding the category

irrelevant segment across the number of segments in Experiment 4. Occluding the category

irrelevant segment significantly improves performance after Unitization category training.

The improvement in accuracy after Differentiation category training is marginally signifi-

cant. Error bars indicate standard errors.
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Figure 2.15: The effect on perceptual discrimination accuracy of occluding the category

irrelevant segment. There is no effect of occluding the category irrelevant segments be-

fore any training, a significant effect after Unitization training, and a marginal effect after

Differentiation training (details in the text). Error bars indicate standard errors.
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Figure 2.16: The effect of category structure and number of unoccluded segments on percep-

tual judgment accuracy. This plot only includes judgments of familiar stimuli in which the

category irrelevant segment is occluded in the part stimulus. Training in either category

structure improves accuracy, but the Differentiation and Unitization category structures

have the same effect on accuracy across all number of segments in the part stimulus. Error

bars indicate standard errors.
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CHAPTER 3

Learning Stimulus Features

3.1 Overview

In this chapter we present the mathematics of a model from the non-parametric Bayesian

framework for learning flexible feature representations (NBFF) and provide an intuition for

how it infers a set of perceptual features from a set of stimuli (Austerweil & Griffiths, 2011,

2013). Particular care is taken to review the intuition for how the Indian Buffet Process

(Ghahramani & Griffiths, 2005; Griffiths & Ghahramani, 2011) allows the model to infer a

flexible set of features where the number of features is not predetermined. Next we apply

this model to the stimuli and category structures from the four experimental paradigms

presented in the previous chapter and compare the stimuli inferred by the model to the

features the category structures were designed to elicit. Finally, we conclude by discussing

the limitations of this model to account for all category structures with a focus on what the

results indicate for models of perceptual unitization.

3.2 Model definition

Learning a set of features from a given set of stimuli requires answering two mutually-

constraining questions: what do the features look like and which features are in each stim-

ulus. At one extreme, every unique stimulus could be a single feature. This simplifies the
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learning process because the mapping of features to stimuli is trivial. At the other extreme,

every feature could simply be a single pixel within each stimulus. This also simplifies the

learning process by making the features trivially easy to learn. Neither of these extreme

solutions captures the true benefits of extracting useful features: useful features reduce

the dimensionality of the stimuli representations by moving from pixels to features, and

useful features describe stimuli at the level that is useful for further cognitive processing

(J. J. Gibson & Gibson, 1955; E. J. Gibson, 1969). Inferring features that provide these

benefits is non-trivial for computational models and in the following section we describe a

model that does so and apply it to the stimuli and category structures from the previous

experiments.

An instructive way to think about the problem of feature learning comes from the ma-

chine learning literature where it has been reformulated as a special case of non-negative

matrix decomposition (Doshi-Velez & Ghahramani, 2009; Ghahramani & Griffiths, 2005;

Wood, Griffiths, & Ghahramani, 2006; Austerweil & Griffiths, 2011, 2013). In this formu-

lation, the goal of feature learning is to infer two matrices Z and Y such that

X = Z ∗Y (3.1)

where X is a NxD matrix in which each row corresponds to a stimulus and the nth

contains the stimulus dimensions d that are present in stimulus n. Y is a NxK matrix of

binary factors that indicate if stimulus n contains feature k. Z is a KxD matrix in which

the kth row shows which stimulus dimensions d are present in feature k.

A random matrix decomposition in this framework would be akin to finding any random

set of features and assignment of features to stimuli. There is no assurance a random

decomposition would be a useful set of features for describing the stimuli. What is needed

is a prior that favors parsimonious sets of features without limiting the possible set of
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features that can be inferred. Austerweil and Griffiths (2011, 2013) present the NBFF

framework for specifying non-parametric Bayesian models of feature learning. Using Bayes

theorem, the goal of finding Z and Y can be transformed into:

P (Z,Y|X) ∝ P (X|Z,Y)P (Z)P (Y) (3.2)

where priors P (Z) and P (Y) must be specified for the matrices Z and Y and a likelihood

function P (X|Z,Y) must be defined.

The most basic prior across matrix Y is to assume each entry in the matrix (k, d) is

independent of all other entries. If the probability of any pixel being on is φ then the prior

of matrix Y is given by:

P (Y|φ) =
∏
k,d

φyk,d(1− φ)1−yk,d (3.3)

Defining a prior across feature ownership matrix Z is more complex. The NBFF the

Indian Buffet Process (IBP) as a prior on Z (Ghahramani & Griffiths, 2005). The IBP is a

non-parametric probability distribution across binary matrices that have a fixed number of

rows (N stimuli) and a potentially unbounded number of columns (K features where K is

unknown). The IBP has two aspects that make it useful as a prior across feature matrices.

The number of potential features K is not fixed and can grow to whatever is necessary;

yet the IBP can be parameterized such that it is biased toward representations with fewer

features (Ghahramani & Griffiths, 2005; Griffiths & Ghahramani, 2011; Austerweil & Grif-

fiths, 2011, 2013). This combination in the IBP of preferring fewer features but having the

flexibility to expand given the complexity of the stimuli make it a natural prior for learning

new features. The full derivation of the IBP distribution is presented by Ghahramani and

Griffiths (2005), but the resulting equation for the probability of a particular matrix Z

83



depends only on one parameter α:

P (Z|α) =
exp(−αHN )aK+∏2N−1

h=1 Kh!

K+∏
k=1

(N −mk)!(mk − 1)!

N !
(3.4)

where N is the number of stimuli, HN is the N th harmonic number (Hi =
∑i

j=1 j
−1),

K+ is the number of unique features in Z, and Kh is the number of features in Z that

appear in exactly the same set of stimuli.

Defining priors for Z and Y is not sufficient to fully specify all of the terms needed from

Equation 3.2. A function is required, P (X|Z,Y), that defines the likelihood of the matrix

of stimuli X given specific matrices Z and Y. Wood et al. (2006) show that the noisy-OR

function is an appropriate likelihood function when the stimulus dimensions of both stimuli

and features are binary properties. The noisy-OR function defines the probability that a

given stimulus dimension d is present in stimulus n as:

P (Xn,d = 1|λ, ε,Y,Z) = 1− (1− λ)q(1− ε) (3.5)

where ε is a parameter indicating the probability a stimulus dimension is present without

regard to features, λ is a parameter indicating the probability a stimulus dimension is present

in an item given a feature indicates it should be present, and q is the inner product of the

nth row of Z and the dth column of Y (Austerweil & Griffiths, 2011, 2013). Assuming all

Xn,d are independent, the full likelihood is given by Equation 3.6.

P (X|λ, ε,Y,Z) =
∏
n,d

P (Xn,d|λ, ε,Y,Z) (3.6)

Equations 3.3, 3.4, and 3.6 define the feature learning model proposed by Austerweil and

Griffiths (2011). This model was subsequently expanded to include category labels as part
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of the stimuli representation (Austerweil & Griffiths, 2013). Category labels are treated

as additional binary stimulus dimensions that increase the number of columns in the X

matrix. An inferred feature f in the matrix Z is associated with or predictive of category

membership if the binary indicator in row f is ON in the stimulus dimension columns that

correspond to that category label.

3.3 Learning features

In this section we apply the NHFF model defined earlier to the stimuli and category struc-

tures from the experiments in the previous chapter.

3.3.1 Stimuli

16 stimuli were constructed by sampling eight random segments (A, B, C, D, W, X, Y, and

Z), assigning two segments to each of the four positions (A and W were paired, B and X,

C and Y, and finally D and Z), and constructing all 16 unique pairings of those features

shown in the first column of Table 3.1.

A stimulus was originally constructed as a 360 by 360 matrix of binary pixels but these

matrices were transformed to vectors of length 129,600. The number of pixels in each vector

was reduced to 2,373 by removing more than 99% of the pixels that did not contain an on

pixel in any stimulus. A small proportion of pixels in the reduced stimuli were randomly

flipped, p(flip) = 1/75, to produce the actual stimuli used in these analyses. These stimuli

are shown in Figure 3.1.1 The 16 stimuli were combined to form an X matrix with 16 rows

and 2,373 columns. Roughly half of the pixels in each row of X were on.

1The pixels that matched across all stimuli are added back into to these visualizations to create in-

terpretable figures. The redundant stimulus dimensions were removed solely to decrease the duration of

simulations which are heavily dependent on the number of stimuli and stimulus dimensions. Removing these

redundant dimensions did not materially alter the features the model inferred for each category structure.
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3.3.2 Category information

Three separate simulations were run with different category information added to the stim-

ulus matrix X. 954 columns of category information were added to X in each simulation.

These columns constituted approximately 40% of the original number of columns in X.

The category information added to the No category structure simulation did not contain

any on pixels. This set of stimuli and category information corresponded to the stimulus

information available in Experiment 3 and Experiment 4 in the testing session before any

category training. The No category simulation reflects the features that the NHFF model

extracts from the stimuli without any category information to bias the feature inference

process.

The category information added to X for the Differentiation category structure simu-

lation consisted of six unique columns that were each repeated 159 times. These columns

of category information are shown in Table 3.1 in the Differentiation category information

columns. The first two of these category information columns were perfectly correlated with

the A and W segments being present in the stimulus. The pixels in the first column were

on if the stimulus contained the W segment, and the pixels in the second column were on if

the stimulus contained the A segment. The second set of two category information columns

were correlated with the B and X segments, and the third set of two category information

columns were correlated with the C and Y segments. These category information columns

mirror the Differentiation category structure in Experiments 2 and 4. For example, the

category information columns sensitive to segments A and W were perfectly predictive of

the Differentiation category structure defined by those segments.

The category information added to X for the Unitization category simulations consisted

of two unique columns that were each repeated 477 times. One column corresponded to the

focus category of the Unitization category structure in Experiments 1 and 4. The pixels in
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the focus category information column were on when either all three segments A, B, and C

were present in the stimulus or when W, X, and Y were present. The pixels in the non-focus

category information column followed the exact opposite pattern (Figure 3.1).

3.3.3 Simulation details

Each simulation was run using a modified version of the Gibbs sampler written for simulating

the IBP with a noisy-OR likelihood function and distributed as part of the supplemental

materials of Austerweil and Griffiths (2013). This implementation was based on code from

Wood et al. (2006). The simulations were run for 4,000 samples with the first 500 samples

discarded to minimize the effect of the initial conditions. The parameter values for all

simulations were set to: α = 2, λ = 0.99, ε = 0.01, and φ = 0.5. Additional simulations

were run with small changes to these parameter values and they did not produce noticeable

changes in the features inferred in each category structure.

3.4 Results

The features inferred from the No category stimuli are shown in Figure 3.2. These features

roughly correspond to the eight independently-varying segments that were used to construct

the set of stimuli but all of the features are missing some pixels that are on in the stimuli.

The “missing” pixels from the features are present in both segments that occur in that

position and the model did not include those pixels in any feature. (Austerweil & Griffiths,

2011) explain that this type of behavior is caused by the assumption in the prior on Y that

pixels are on independent of their neighbors. This issue can be addressed by augmenting

the model to add spatial constraints and neighbor effects into the prior on Y.

The features inferred from the simulation with the Differentiation category information

are shown in Figure 3.3. The features in the first three columns were each associated with
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a single category label from the category information added to the stimuli. Adding the

Differentiation category information did not lead to inferring features noticeably different

from the No category features. However, the model did infer reasonable associations

between features and category labels.

Adding the Differentiation category information pixels did not prevent the model from

learning two features that did not map onto any category information but did correspond

to the two segments not predictive of any category information. These category irrelevant

features were also inferred by the model. However, the empirical results show that after

learning the Differentiation category structure participants were more accurate on judg-

ments that did not contain the category irrelevant segment (Figure 2.14). This suggests

that the NHFF model alone cannot account for the learning results in the Differentiation

condition. In the next chapter we outline a model that uses these perceptual features but

learns attention weights for each feature to account for these results.

The features inferred from the simulation with the Unitization category information

are shown in Figure 3.4. The two features in the first row were associated with the focus

category. The first feature in this row roughly corresponds to a combination of the A, B,

and C segments that as a conjunction indicate the stimulus belongs in the focus category.

Yet the second feature in the top row does not correspond to the other combination of

segments (W, X, and Y) that also predict the focus category. This second feature contains

approximately 15% of the pixels from each of the W, X, and Y segments, and is more

than 90% composed of pixels from those features, but is not a strong representation of a

conjunction of the W, X, and Y segments into a single feature. The three features in the

second row were associated with the non-focus category. These three features correspond to

the A, B, and C segments, respectively. These segments were present in stimuli within the

non-focus category, but were not diagnostic of category membership by themselves. The
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five features in the third row were not associated with either category because they did

not contain any on category information pixels. The first two features in the third row

correspond to the D and W features that were never diagnostic of category membership.

These features match the non-diagnostic features inferred from the Differentiation category

structure that were not associated with a category. The remaining three features in the

third row correspond to the W, X, and Y segments and it is not immediately clear why

they were not associated with a category.

The inability of the NHPP model to extract two unitized features was not limited to a

particular set of parameters for the model. A set of simulations that vary these parameters,

especially the φ parameter that is the prior belief that a pixel is on in a feature, did

not produce one feature representation that included two features that correspond to the

conjunctions of segments ABC and WXY.

3.5 Discussion

A computational model based on the non-parametric Bayesian framework for learning flexi-

ble features (Austerweil & Griffiths, 2013) learned different sets of perceptual features across

the three category structures. The simulations that included No category information and

the Differentiation category structure both inferred perceptual features that matched the

individual segments of the stimuli. This suggests that category training in the Differentia-

tion might not produce qualitatively different perceptual features than training that merely

exposes people to the stimuli.

The simulations that included the Unitization category structure information did not

infer the same set of features as the other category structures. In addition to inferring

the eight features that match the stimulus segments, this simulation inferred two additional

features that correspond to more than one segment. One of these features corresponds to the
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three category relevant segments in a conjunction that is predictive of category membership,

but the other feature only roughly resembles the other category predictive conjunction.

What prevented the model from inferring both unitized features that correspond to the

conjunction of the ABC and WXY segments in the Unitization category structure? This

is particularly challenging because Austerweil and Griffiths (2011) report the same model

was able to infer features that are composed of conjunctions of segments from their own

experimental results as well as the conjunctive features from the visual search task from

(Shiffrin & Lightfoot, 1997). Furthermore, Austerweil and Griffiths (2013) infer conjunctive

features that are informed by category structures due to a quick imprinting process (Schyns

& Rodet, 1997), as well as a more slowly developing unitization process (Pevtzow & Gold-

stone, 1994). The Unitization category structure is similar to the structures from those

experiments, yet it is more complex in one key aspect: the Unitization category structure

cannot be correctly classified by learning a single conjunction of segments, it is an exclusive-

OR structure and exclusive-OR category structures are harder for people to learn (Shepard

et al., 1961) and require more complex representations to learn than conjunctions (Minsky

& Seymour, 1969). These simulation results suggest the NHFF framework struggles to learn

unitized perceptual features from exclusive-OR category structures.

It is not clear from these results if people learned unitized perceptual features when

training on the Unitization category structure and the model cannot capture that learning,

or if the model indicates people struggled to learn features in the Unitization training condi-

tion. However, the NHFF model does not extract the same set of perceptual features across

all category structures, and would predict differences in subsequent perceptual processing

due to the different feature vocabularies (Austerweil & Griffiths, 2011). One possible in-

terpretation of these results is that the perceptual features learned during the Unitization

category training may not perfectly align with the composite features that perfectly predict
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category membership.
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Category Information Columns Added

Stimulus Differentiation Unitization

ABCD 0 1 0 1 0 1 1 0

ABCZ 0 1 0 1 0 1 1 0

ABYD 0 1 0 1 1 0 0 1

ABYZ 0 1 0 1 1 0 0 1

AXCD 0 1 1 0 0 1 0 1

AXCZ 0 1 1 0 0 1 0 1

AXYD 0 1 1 0 1 0 0 1

AXYZ 0 1 1 0 1 0 0 1

WBCD 1 0 0 1 0 1 0 1

WBCZ 1 0 0 1 0 1 0 1

WBYD 1 0 0 1 1 0 0 1

WBYZ 1 0 0 1 1 0 0 1

WXCD 1 0 1 0 0 1 0 1

WXCZ 1 0 1 0 0 1 0 1

WXYD 1 0 1 0 1 0 1 0

WXYZ 1 0 1 0 1 0 1 0

Table 3.1: Category labels added to each stimulus. In this table the actual segments of the

stimuli are represented with binary features. The Differentiation Category features added to

the stimuli map one-to-one onto the first three segments of the stimuli and the Unitization

Category features are only on for stimuli with all 0s or all 1s in the first three segments.
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Figure 3.1: The 16 stimuli randomly selected for training the NBFF model with a small

amount of noise added to each stimulus. The stimuli in the left column are the four stimuli

in the focus category, the top two stimuli share the same segments (A, B, and C) in all

positions except the lower right, and the bottom two stimuli share a different set of segments

in the same positions (W, X, and Y).
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Figure 3.2: The features inferred by the NHFF model when no category information is

added to the stimulus representation. These features closely match the eight segments that

all segments are composed of.

Figure 3.3: The features inferred by the NHFF model when category information consistent

with the Differentiation category structure was included in the stimulus representation.

The features in the first three columns of the figure were all associated with one of the

six category information pixels. These features closely match the six segments that are

predictive of category membership in Table 3.1. The features in the fourth column did not

contain any category information but correspond to the segments that were not predictive

of any category label.
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Figure 3.4: The features inferred by the NHFF model when category information consistent

with the Unitization category structure was included in the stimulus representation (Table

3.1). The features in the first row of the figure contained stimulus pixels that indicated they

were associated with the focus category, The features in the second row contained stimulus

pixels that indicated they were associated with the non-focus category, and the features in

the third and fourth rows did not contain any category information pixels.
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CHAPTER 4

Modeling feature vocabularies

4.1 Overview

In this section we develop a modeling framework to test which perceptual features partic-

ipants were using when making the perceptual discrimination judgments before and after

category training. Perceptual features, in this context, do not necessarily have a one-to-one

correspondence with a single segment. Instead, these features detect sets of segments that

are processed quickly and automatically as a group (Goldstone, 2000). The set of segments

we consider range from encompassing a single segment, producing a one-to-one mapping

between that feature and a segment, to features that encompass to all four segments of a

stimulus.

The remainder of this section specifies a modeling framework to compare the fit of

computational models using different vocabularies of features to data from the experimental

results. We begin with a review of the role of similarity in computational models of choice

and explain how models of categorization (Medin & Schaffer, 1978; Nosofsky, 1986) and

identification (Luce, 1963; Shepard, 1957; Nosofsky, 1984, 1986) have been extended to

account for performance in old-new recognition memory and other single category judgment

tasks (Nosofsky, 1988a, 1991). This old-new recognition memory GCM framework will be

adapted to the task-specific structure of predicting same-different judgments in the whole-
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part perceptual discrimination task. The best-fitting parameters and overall performance

of models assuming different sets of perceptual features will be compared.

4.2 Similarity across features

The similarity between objects has been a fundamental aspect of computational models

of choice behavior since the earliest cognitive models (Luce, 1963; Shepard, 1957). Early

accounts of similarity have focused on the importance of weighting evidence across many

stimulus features or dimensions to compute the similarity between two objects (Tversky,

1977; Shepard, 1964). These principles were foundational to exemplar-based models of

categorization in which choice behavior was predicted by the relative similarity of a target

item to all examples from multiple categories (Medin & Schaffer, 1978; Nosofsky, 1984,

1986). The GCM framework was later extended to account for choice behavior in old-new

recognition memory tasks (Nosofsky, 1988a, 1991; Shin & Nosofsky, 1992; Zaki & Nosofsky,

2001; Knapp, Nosofsky, & Busey, 2006). This formulation of the GCM is particularly

relevant to modeling the whole-part perceptual judgment task because the similarity of a

test item to a set of exemplars is not compared to another similarity to produce a response

(Luce, 1963; Shepard, 1957; Tversky, 1977; Medin & Schaffer, 1978; Nosofsky, 1986) but

probabilistically compared to a similarity threshold to determine a choice response.

Shin and Nosofsky (1992) present a clear formulation for how this framework predicts

old-new decisions using the similarity derived by summing across weighted feature dimen-

sions. The probability of responding “old” to stimulus xi is a function of response bias b

and Si
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P (old|Si) =
Si

Si + b
(4.1)

Si =
∑
j

Sij (4.2)

Sij = exp(−cDij) (4.3)

where Si is a function of the sensitivity parameter c and the distance Di. Di is defined

to be the sum of the distances dij between stimulus xi and all previous stimuli j in the set

previous stimuli in memory J such that

Di =
∑
j∈J

dij (4.4)

dij =
∑
k∈K

wk

∣∣xik − xjk∣∣ (4.5)

where dij is the weighted sum of the distance between xi and xj across all features or

feature dimensions k in the set of all feature dimensions K. The free parameters of the

model are b, c, and the weights wk. All parameters are constrained to be positive and the

the weights are further constrained such that
∑

kinK wk = 1, and thus 0 < wk < 1 for all

k.1

To predict same-different judgments in the whole-part perceptual judgment task, a spe-

cial case of the recognition GCM is used. Generally the recognition memory GCM is applied

to situations when many exemplars are stored in memory and an overall similarity between

those items and a test item is used for recognition (Nosofsky, 1988a). In this task the whole

stimulus W is only relevant exemplar to compare the part stimulus P to. Therefore the

similarity Si in the full model reduces to the similarity between the whole and part stim-

1This formulation assumes a Minkowski r-metric of 1 and a γ value of 1. This has been done for simplicity

since those values were left as constants across all models.
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uli SWP . A similar formulation was developed by Cohen and Nosofsky (2000) to predict

reaction times in same-different judgments.

P (same|SWP ) =
SWP

SWP + b
(4.6)

SWP = exp(−cDWP ) (4.7)

DWP =
∑
f∈F

wf

∣∣xWf − xPf

∣∣1f (P ) (4.8)

The xif values are defined to be 1 if feature f is present in stimulus i and 0 otherwise.

Therefore the term
∣∣xWf − xPf

∣∣ has the value 0 if both the part or whole stimulus or neither

stimulus contains feature f and 1 otherwise. However, because some segments are occluded

in the part stimulus, an indicator function 1f (P ) has been added to Equation 4.8 that does

not exist in Equation 4.5. This function has the value 0 if feature f is occluded in part P

and 1 otherwise. With this term included, features that are occluded or partially occluded

in the part stimulus do not contribute to the perceptual distance between the whole and

part stimuli.

One interesting property of this model is that when the whole and part match across

all unoccluded features then DWP = 0 and SWP = 1. This occurs regardless of how

many features are included in the feature vocabulary or the number of features present

in the part stimulus. To account for less than perfectly accurate discrimination on these

trials, the model adjusts the value of the b parameter to adjust the background noise of

responses (Equation 4.7). Having a single shared b parameter across all trials might

be an unreasonable constraint, particularly if people adjust their response biases based

on the amount of information available in the part stimulus. A more flexible method of

parameterizing the b (and c) parameters is to allow them both to freely vary based on the

number of unoccluded segments in the part stimulus. This parameterization is characterized

as the flexible response strategy. Both the flexible and a shared parameterization was
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fit for all models. An alternative modeling framework that could be considered instead of

allowing the decision parameters to change is the Feature Contrast Model (Tversky, 1977).

The probability of responding “same” in the Feature Contrast Model increases from a

baseline response level as more features match between the part and whole. Both Zaki and

Nosofsky (2001) and Knapp et al. (2006) present a discussion of the relative merits of these

approaches in the context of old-new recognition judgments.

The whole-part GCM is closely related to the Context Theory Model (Medin & Schaffer,

1978). As noted by Nosofsky (1986, p. 42), when features are binary and c is fixed in the

GCM, then Equations 4.7 and 4.8 are functionally equivalent to the definition of similarity,

Sxy between two items x and y, in the Context Theory Model. This similarity is computed

across all features f in the set F :

Sxy =
∏
f∈F

sfxy (4.9)

where sfxy = 1 if x and y share the feature f and 0 < sfxy < 1 otherwise. In the

whole-part GCM, features are binary but c is allowed to vary across stimuli, resulting in a

slightly different definition of similarity than the Context Theory Model.

4.3 Feature vocabularies

One critical aspect of the whole-part GCM is that it is agnostic to the set of features that

comprise the feature vocabulary. This allows it to be fit using different vocabularies of

features and the relative quality of the vocabularies can be assessed using model selec-

tion techniques. The remainder of this section defines three possible feature vocabularies

and compares how well each feature vocabulary accounts for the perceptual discrimination

judgment data from Experiment 4. The three feature vocabularies are illustrated in Table

4.1.
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Feature sets for whole stimulus ABCD and part stimulus ABY-

Analytic Unitized category relevant Powerset

Whole Part Match Whole Part Match Whole Part Match

A A match A A match A A match

B B match B B match B B match

C Y mismatch C Y mismatch C Y mismatch

D - occluded D - occluded D - occluded

ABC ABY mismatch AB AB match

AD – occluded

BC BY mismatch

CD – occluded

ABC ABY mismatch

ABD — occluded

ACD — occluded

BCD — occluded

ABCD —- occluded

Table 4.1: A table of the features used to make similarity judgments for each feature

vocabulary for an example whole and part stimulus. The whole stimulus is composed

of four segments, ABCD, and the part stimulus consists of three segments, ABY, and

the fourth position is occluded. The whole stimulus is represented as four features when

assuming the Analytic feature vocabulary and the part stimulus has three features. Two

of those features match, one mismatches, and one is occluded in the part stimulus and thus

does not contribute to similarity judgments. When assuming the Unitized category

relevant feature vocabulary the whole stimulus is composed of five features, the same four

as in the Analytic vocabulary plus the three-segment unitized feature. The Powerset

feature vocabulary produces a representation of the whole stimulus that consists of 14

features and the part stimulus has 6 features (with 8 features occluded in the part stimulus

representation).
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The perceptual features people use could potentially vary from a single pixel to a full

stimulus from Experiments 1 through 4 that were composed of 129,600 pixels. However,

all stimuli were constructed by combining four segments, and in the following analyses we

assume that perceptual features are combinations of those segments.2 Perceptual features

cannot contain a portion of the pixels that “belong to” a segment; every segment is either

completely within a feature or not. We will compare three sets of features: the analytic,

the unitized category relevant, and the powerset feature vocabularies.

The first set of features we consider is the analytic feature vocabulary. It consists

of four psychological features that have a one-to-one mapping with the true independent

segments in the part and whole stimuli. The first two columns of Table 4.1 indicate how these

features are defined for a sample whole and part stimuli. The whole stimulus, composed

of the segments A, B, C, and D, is represented by four features: A, B, C, and D because

each segment maps onto a unique feature in the analytic feature vocabulary. The part

stimulus, composed of segments A, B, Y, and no segment in the occluded fourth position,

is represented by three features: A, B, and Y. The first two features match between the

part and whole stimuli, third feature mismatches, and the fourth feature is occluded in the

part stimulus. The distance between the two stimuli would be computing the weighted

sum across all of these features. The analytic feature vocabulary has four total feature

weights, one for each feature, and three free parameters for the weights since the weights

must sum to one.

Second, the unitized category relevant feature vocabulary contains the four fea-

tures from the analytic vocabulary and adds one additional feature. This new feature is

composed of the three segments that are relevant for both the Unitization and Differen-

2This constraint is relaxed in the previous chapter where the Austerweil and Griffiths (2013) non-

parametric Bayesian framework for flexible feature discovery is applied to the pixel-level representation

of these stimuli.

102



tiation category structures. In the example shown in Table 4.1 the whole stimulus would

contain the unitized feature ABC and the part stimulus would contain the unitized feature

ABY. These two unitized features (ABC and ABY ) do not match and would be considered

a mismatch in the whole-part GCM. The unitized category relevant feature vocab-

ulary has five total feature weights, four of which are free parameters. We consider two

rules for how the three-segment unitized feature combined with the three category relevant

one-segment features in the unitized category relevant feature vocabulary. First, the

add rule allows the unitized feature and the analytic features to both contribute to similar-

ity simultaneously: the presence of the unitized feature does not influence how the analytic

features contributed to similarity. Second, the replace rule gates the contribution of the

component one-segment features based on the presence of the three-segment feature. If the

unitized feature is present in the part stimulus then the three one-segment category relevant

features do not contribute to the similarity for that judgment. The unitized category

relevant feature vocabulary corresponds to an idealized version of the perceptual fea-

tures inferred from the Unitization category structure by the Bayesian model (Austerweil

& Griffiths, 2013) in the previous chapter.

Finally, the powerset feature vocabulary is the largest possible set of psychological

features for these stimuli. This feature vocabulary consists of 13 total features: the four

features from the analytic model that correspond to individual segments, the four features

composed of all adjacent pairs of segments, the four features composed of all sets of three

adjacent segments, and the feature composed of all four segments. The powerset feature

vocabulary has 14 feature weights, 13 of which are free parameters. Table 4.1 shows the 14

features for a sample whole and part stimuli.
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4.3.1 Modeling details

For each feature vocabulary, the whole-part GCM was fit with two parameterizations of

the b and c parameters. The shared parameterization consisted of finding the single best

fitting b and c parameters across all whole and part stimuli. This parameterization had

two free parameters and reflects a responding strategy that is insensitive to the number of

occluded segments in the part stimulus. The flexible parameterization was also fit with

a freely varying b and c parameter for each unique number of unoccluded segments in the

part stimulus. This parameterization required six additional free parameters relative to the

shared parameterization. Both the shared and flexible parameterizations were included

for all feature vocabulary models because they reflect differences in decision strategies that

are independent of the feature vocabulary. The shared parameterization will provide

the best account for whole-part discriminations if the threshold for making responses does

not depend on the number of unoccluded segments in the part stimulus and the flexible

parameterization will be a better account if participants adjust their response criterion based

on the number of unoccluded segments in the part stimulus. Table 4.2 shows a summary

of all computational models fit to the data including the number of free parameters in each

model.

4.4 Parameter estimation and model assessment

A search was conducted for the free parameters of each model that provided a maximum-

likelihood fit to the part-whole judgment data for each testing session of each participant.

This search was done by maximizing the log-likelihood of the data given the model

ln(L) =
∑
i

ln

((
Ni

zi

)
pzii (1− pi)Ni−zi

)
(4.10)

where i is the ith trial type, Ni is the frequency of i, zi is the frequency of responding

“same” to i, and pi is the estimated probability of responding “same” to stimulus i and
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Free parameter Count

b and c

Feature vocabulary Feature weights Flexible Shared

Analytic Features 3 8 2

Unitized category relevant (replace) 4 8 2

Unitized category relevant (additive) 4 8 2

Powerset 13 8 2

Table 4.2: The parameter count for each combination of feature vocabulary and decision

rule. The flexible b and c parameter models had four independently-varying b and c param-

eters that were used based on how many segments were present in the part stimulus.

is a function of the model parameters. This likelihood function assumes that “same” and

“different” responses are made independently of each other and binomially distributed.

The search through parameter space was executed via particle swarm optimization using

the PSO package in R. The optimization algorithm was run with the default package settings

of 5000 search iterations and with the number of particles in the swarm proportional to the

number of free parameters (10 + 2 ∗ parameters).

In order to compare the performance of models with different numbers of parameters the

AIC (Akaike, 1974) and BIC (Schwarz, 1978) were computed for each model. The equation

for these information criteria are

AIC = − 2ln(L) + 2P (4.11)

BIC = − 2ln(L) + Pln(N) (4.12)

where ln(L) is the log-likelihood of the model (Equation 4.10), P is the number of free

parameters of the model (see Table 4.2), and N is the total number of test trials. As a

reference point for model comparison, the AIC and BIC were also computed for a saturated

model which had a free parameter for every trial type. Both information criterion were
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used because they tend to favor different models, the AIC generally supports models with

more parameters and the BIC prefers models with fewer parameters (Burnham & Anderson,

2004).

For each dataset a ∆AIC and ∆BIC score was computed for each model. These values

were computed by subtracting the AIC or BIC score of the best model from the score

of all models (Burnham & Anderson, 2004). A ∆BIC or ∆AIC score of 0 indicates the

best performing model for a particular dataset and larger values indicate increasingly worse

model performance. The ∆BIC and ∆AIC scores were normalized by computing AIC

weights and BIC weights. AIC and BIC weights were computed following the formulation:

wBICi =
exp(−0.5 ∗∆BICi)∑

j∈M exp(−0.5 ∗∆BICj)
(4.13)

wAICi =
exp(−0.5 ∗∆AICi)∑

j∈M exp(−0.5 ∗∆AICj)
(4.14)

The weighted AIC and BIC values provide the most straightforward interpretation of

relative model performance because all BIC and AIC weight scores range from 0 to 1. Larger

values indicating better model performance and a model that outperforms all competitor

models has an AIC or BIC weight value near 1 and a model that has a single close competitor

will have a weight near 0.5.

4.5 Datasets

The data from each participant in Experiment 4 consists of whole-part perceptual discrim-

ination judgments from three whole-part testing sessions: before any training, after the

first category structure training (either Unitization or Differentiation category structures),

and after the second category training. Within each test phase, 624 trials were composed

of familiar whole and part stimuli that were presented during category training and 208
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Pre−training Early Differentiation Late Unitization

Analytic (4)
Analytic (1)

Dianostic Unit (replace) (4)
Dianostic Unit (replace) (1)

Dianostic Unit (add) (4)
Dianostic Unit (add) (1)

Powerset (4)
Powerset (1)

Saturated

Analytic (4)
Analytic (1)

Dianostic Unit (replace) (4)
Dianostic Unit (replace) (1)

Dianostic Unit (add) (4)
Dianostic Unit (add) (1)

Powerset (4)
Powerset (1)
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Figure 4.1: The weighted BIC of all models for the participants who learned the Differentia-

tion category structures first. Dark cells indicate low weighted BIC values and models that

are not preferred according to BIC. Light cells indicate high weighted BIC values. Models

followed by (1) indicate fits that have a single the Shared b and c parameters across all

stimuli. The Flexible b and c parameters are indicated with a (4), indicating there were

four levels of each b and c parameter.

trials with stimuli that were novel and had never been seen before. The familiar and novel

trials for each of the 12 participants within each testing phase were separated into differ-

ent datasets, producing 144 datasets. These trials were grouped into 56 trial types that

were the unique combinations of segments matching, mismatching, and occluded in each

segment position across the all trials. Eight unique models, as outlined in Table 4.2, were

fit independently to each dataset. These models were fit via particle swarm optimization to

find the maximum likelihood estimate for the model parameters via the methods described

earlier.
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Figure 4.2: The weighted BIC of all models for the participants who learned the Unitization

category structure first. Dark cells indicate low weighted BIC values and models that are

not preferred according to BIC. Light cells indicate high weighted BIC values. Models

followed by (1) indicate fits that have a single the Shared b and c parameters across all

stimuli. The Flexible b and c parameters are indicated with a (4), indicating there were

four levels of each b and c parameter.

4.6 Results

4.6.1 BIC weights

The BIC weights for the participants who learned the Differentiation category structure

first are shown in Figure 4.1. In both familiar (14 of 18) and novel (14 of 18) stimuli, the

BIC weights favor the Analytic feature vocabularies for most datasets. This does not

seem to be due entirely to the number of free parameters being lower for the Analytic

models. Despite the Flexible Analytic having more free parameters than the Fixed

Diagnostic Unit models, it is the model that best accounts for the 5 of 6 participants
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Figure 4.3: The weighted AIC of all models for the participants who learned the Differentia-

tion category structures first. Dark cells indicate low weighted AIC values and models that

are not preferred according to AIC. Light cells indicate high weighted AIC values. Models

followed by (1) indicate fits that have a single the Shared b and c parameters across all

stimuli. The Flexible b and c parameters are indicated with a (4), indicating there were

four levels of each b and c parameter.

before any training.

The BIC weights for the participants who learned the Unitization category structure

first are shown in Figure 4.2. As in the participants from the other category ordering, the

BIC weights favor the Analytic feature vocabularies in 14 of 18 datasets of familiar stimuli

and 15 of 18 for novel stimuli. For these participants the model with the fewest parameters,

the Fixed Analytic model, is the most frequent high scoring model (26 of 36 datasets).

Across both category training orders, the BIC weights indicate the feature vocabulary

that is the best account for judgments of both novel and familiar stimuli is the analytic

feature vocabulary. The unitized category relevant feature vocabulary was occasion-
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Figure 4.4: The weighted AIC of all models for the participants who learned the Unitization

category structure first. Dark cells indicate low weighted AIC values and models that are

not preferred according to AIC. Light cells indicate high weighted AIC values. Models

followed by (1) indicate fits that have a single the Shared b and c parameters across all

stimuli. The Flexible b and c parameters are indicated with a (4), indicating there were

four levels of each b and c parameter.

ally the preferred model for familiar stimuli (2 of 12 before training, 4 of 12 after Unitization

category training, and 3 of 12 after Differentiation category training) but the powerset

feature vocabulary models and the saturated model were never the preferred model.

There was no evidence that learning category structures changed the preferred model or

that training order had an effect either. The Flexible response choice models were pre-

ferred overall (53 out of 72; χ2(1) = 16.1, p < 0.0005), suggesting participants were changing

their response thresholds based on the number of unoccluded segments in the part stimulus.
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4.6.2 AIC weights

The AIC weights suggest a different interpretation of the model comparison than BIC. Fig-

ures 4.3 and 4.4 show the AIC weights for the Differentiation and Unitization category

structures respectively. The participants trained on the Differentiation category struc-

ture first (Figure 4.3) show a progression toward more complex feature vocabularies across

training. The proportion of participants whose judgments on the familiar stimuli is best

accounted for by one of the analytic models decreased from 5/6 before training to 3/6

after Differentiation training, and to only 1/6 after Unitization training. A similar but

less pronounced pattern was found for the participants trained on the Unitization category

structure first. The proportion of participants whose judgments on the familiar stimuli is

best accounted for by one of the analytic models decreased from 4/6 before training to

2/6 after Unitization training, but increased to 3/6 after Differentiation training. When

collapsed across the order of category structure training, there is a marginally significant

effect of category structure on the proportion of participants best fit by the models that use

the analytic feature vocabulary (χ2(2) = 6, p = 0.04).3

The systematic shift from the analytic feature vocabulary to more complex feature

vocabularies particularly after Unitization training does not appear for novel stimuli. The

judgments of novel stimuli are better accounted for by the analytic feature vocabulary

(26 of 36) than the more complex feature vocabulary models (8 of 36).

What can we conclude about which models best account for the data based on the

disagreement between BIC and AIC model comparison? First, AIC and BIC agree that

the best model of perceptual discriminations for these stimuli before any training is the

Analytic feature vocabulary. Once category training occurs, the AIC weights indicate

3This post-hoc test is only marginally significant, but a stronger result would be hard to observe because

the χ2 test is severely underpowered due to having only 12 observations in each cell.
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that the fit of the more complex feature vocabularies increases relative to the Analytic

feature vocabulary but this improvement is not sufficient to outweigh the stronger penalty

for model complexity imposed by the BIC (Burnham & Anderson, 2004).

4.6.3 Feature weights

Analytic features

Moving beyond which model best accounted for the data, do the best fitting parameters

reveal anything about what is being learned? First we examine the feature weights from the

analytic feature set. For the purposes of this analysis, the three features that map onto

category relevant segments are grouped together into one average weight on one-segment

category relevant features. A repeated-measures ANOVA was performed on the feature

weights with three within-subject factors: 2 types of feature (category relevant and category

irrelevant), 3 test phases (before any training, after the first, and after the second training

phase), and 2 parameterization types (fixed with one b and c value or flexible with four b

and c values each). The 2 possible first category structures (Unitization or Differentiation)

were included as a between-subject factor.

There was a main effect of category relevance (F (1, 10) = 7.34, p = 0.022) and a marginal

effect of training phase (F (2, 20) = 3.55, p = 0.048) and a marginally significant interac-

tion between category relevance and training phase (F (2, 20) = 3.55, p = 0.048)4. These

effects are shown in Figure 4.5. The effects of first category structure (F (1, 10) < 1) and

parameterization (F (1, 10) < 1) were not significant as were all other interactions (F < 1).

4The main effect of training phase and the interaction between training phase and category relevance

share the same F value because the feature weights for any individual are normalized and thus the category

irrelevant feature weight is a function of the category relevant weight. Thus the interaction effect has the

exact same amount of variation as the main effect in both the numerator and the denominator and thus the

F ratio is identical.
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A set of five post-hoc comparisons, using a Bonferroni corrected alpha value of 0.01, were

conducted to understand the interaction between category relevance of the feature and

phase. In the test phase before any training, there was no significant difference between

category relevant (M = 0.25) and category irrelevant feature weights (M = 0.24; paired

t-test t(11) = 0.1, p = 0.87). In the test phase after the first category structure was learned

category relevant feature weights (M = 0.28) were significantly higher than category irrele-

vant weights (M = 0.15; paired t-test t(11) = 3.3, p = 0.007). The same pattern was found

after the second training (category relevant M = 0.28; category irrelevant M = 0.16; paired

t-test t(11) = 3.7, p = 0.003). There was not a significant interaction between the relevance

of feature weights and testing after the first or second training phase (t(11) = 0.3, p = 0.8).5

Furthermore, there was no interaction between the category relevant and category irrelevant

feature weights and if the most recently learned category structure was the Unitization or

Differentiation structures (paired t-test t(11) < 1).

These results suggest that the analytic models consistently assigned higher feature

weights to category relevant features than the category irrelevant feature. This difference

was not found before any training but was found after both Unitization and Differentiation

category training. Learning a second category structure did not continue to increase the

weight assigned to the category relevant features.

A similar pattern of feature weights were found when fitting the analytic models to

the whole-part judgments of novel stimuli shown in Figure 4.6. we performed the same

five-factor repeated-measures ANOVA that was used for the familiar stimuli on the feature

5These post-hoc comparisons do not have the same issue with the category relevant and category ir-

relevant weights being related as the repeated-measures ANOVA did. These paired t-tests can each be

re-conceptualized as a one-sample test comparing the weights to the overall average feature weight. Because

of this, we feel the interaction between category relevance and training phase is the appropriate way to

interpret the effect of category relevance.
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weights from the novel stimuli. There was a main effect effect of training phase (F (2, 20) =

4.6, p = 0.02) and a significant interaction between category relevance and training phase

(F (2, 20) = 4.6, p = 0.02). There was no main effect of category relevance (F (1, 10) =

4.4, p = 0.06) and all other main effects and interactions were not significant (p > 0.2).

A set of five post-hoc comparisons, using a Bonferroni corrected alpha value of 0.01, were

conducted to understand the interaction between category relevance and test phase. In the

test phase before any training, there was no significant difference between category relevant

(M = 0.23) and category irrelevant feature weights (M = 0.30; paired t-test t(11) = 1.25, p =

0.23). Category relevant feature weights (M = 0.27) were marginally higher than category

irrelevant weights (M = 0.17; paired t-test t(11) = 2.8, p = 0.017) in the test phase after

the first category structure was learned but the effect was not significant after the second

training (category relevant M = 0.28; category irrelevant M = 0.16; paired t-test t(11) =

2.7, p = 0.022). There was not a significant interaction between the relevance of feature

weights and testing after the first or second training phase (t(11) < 1). Furthermore, there

was no interaction between the category relevant and category irrelevant feature weights

and if the most recently learned category structure was the Unitization or Differentiation

structures (paired t-test t(11) = 1.4, p = 0.17).

The feature weights for novel stimuli from the analytic model mirror the weights for

the familiar stimuli but the effects do not seem to be as statistically reliable. The increase in

weight to the category relevant features after category training, even for the novel stimuli,

compliment the findings that improvements in the whole-part perceptual discriminations

was not specific to familiar stimuli. The category training seems to have led to an increase

in attention to segments in specific positions of novel stimuli structurally similar to the

familiar stimuli.
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Unitized category relevant features

The unitized category relevant feature set consists of five features: the four features

from the analytic feature set as well as a three-part feature that combines the three

category relevant segments. Figure 4.7 shows three feature weights for each model: the

one-segment category irrelevant feature, the three-segment unitized feature, and the av-

erage of the three one-segment category relevant features. A repeated-measures ANOVA

was performed on the feature weights with four within-subject factors: 3 types of features

(one-segment category relevant, one-segment category irrelevant, three-segment unit), 3

test phases (before any training, after the first, and after the second training phase), 2

feature combination rules (add the unitized feature to the one-segment features or re-

place the one-segment features), and 2 parameterization types (fixed with one b and c

value or flexible with four b and c values each). The 2 possible first category struc-

tures (Unitization or Differentiation) were included as a between-subject factor. There

was a main effect of feature type (F (2, 20) = 11.4, p < 0.005) but no significant effect

of training phase (F (2, 20) = 1.6, p = 0.2), the first type of category structure learned

(F (1, 10) = 1.7, p = 0.2), the parameterization (F (1, 10) = 3.6, p = 0.086), or the feature

combination rule (F (1, 10) < 1). The interaction between feature type and combination

rule was significant (F (2, 20) = 6.1, p = 0.009), as was the interaction between feature

type and the parameterization (F (2, 20) = 6.6, p = 0.006). The interaction between feature

type and training phase was marginally significant (F (4, 40) = 2.5, p = 0.062) but all other

interactions were not significant (p > 0.3).

Figure 4.8 shows the interaction between feature type and the number of parameters.

The figure suggests the three-segment unit feature changes due to the number of parameters

differently than the one-segment features. Figure 4.9 shows the interaction between feature

type and the feature combination rule. The figure suggests the interaction is due to the
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weight on the three-segment unit feature being higher under the replace rule than the

additive rule and the one-segment category irrelevant feature being lower under the replace

rule. Figure 4.10 shows the interaction between feature type and the training phase. The

figure suggests this interaction is due to the change in weight on the one-segment category

irrelevant segment. As in the analytic model, the weight on the category irrelevant feature

decreases after training.

For the novel stimuli (Figure 4.11) we performed the same five-factor repeated-measures

ANOVA that was used for the familiar stimuli. We find was a main effect of feature type

(F (2, 20) = 21.8, p < 0.005) and an interaction between feature type and the number of

parameters (F (2, 20) = 4.4, p = 0.025) as well as a three-way interaction between feature

type, the number of parameters, and the rule for combining features (F (2, 20) = 4.5, p =

0.025). This interaction is shown in Figure 4.12 and appears to be driven by the low feature

weight for the three-segment unit feature for the models where the unit feature is added

to the other features (instead of replacing them) and the b and c parameters are shared

across all judgments.

Overall, the feature weights for the Unitized category relevant feature vocabulary

are consistent. The relationship between the one-segment category relevant and irrelevant

features mirrors the analytic feature weights, category relevant features receive higher

weights than irrelevant once any category training occurs. This advantage also appears

for novel stimuli, suggesting it is not specific to individual stimuli. The weight assigned

to the three-segment feature depends on the flexibility of the decision rules. Models with

the fixed parameterization of b and the add combination rule produce the lowest weights

for the three-segment feature because an additional matching or mismatching feature with

a high weight will drive large differences in accuracy in a task where accuracy only varies

approximately 20% across trial types. Models that are more more flexibly parameterized
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can accommodate a larger weight on the three-segment feature.

Powerset features

The powerset feature set that consists of 13 features: four one-segment features, four

two-segment features, four three-segment features, and one feature that includes all four

segments. The features are grouped for analysis by the number of segments they contain

and if they contain the category irrelevant segment. The one-, two-, and three-segment fea-

ture groups each have at least one feature that contains the category irrelevant segment and

one that does not contain it, but the four-segment feature always contains the category irrel-

evant segment. Figure 4.13 shows the best fitting feature weights for each group of features

across all training conditions for the familiar stimuli. A repeated-measures ANOVA was

conducted on the feature weights with three within-subject factors: 7 types of features (one-

segment category relevant, one-segment category irrelevant, two-segment category relevant,

two-segment category irrelevant, three-segment category relevant, three-segment category

irrelevant, and four-segment), 3 test phases (before any training, after the first, and after

the second training phase), and 2 parameterization types (fixed with one b and c value

or flexible with four b and c values each). The 2 possible first category structures (Uni-

tization or Differentiation) were included as a between-subject factor. There was a main

effect of feature type (F (6, 60) = 3.2, p = 0.008) but no significant effect of training phase

(F (2, 20) = 2.4, p = 0.11), the first type of category structure learned (F (1, 10) < 1), or

the parameterization (F (1, 10) = 2.5, p = 0.15). The interaction between feature type and

training phase was significant (F (12, 120) = 2.3, p = 0.010) but all other interactions were

not significant (p > 0.05). Figure 4.14 shows this interaction but is difficult to interpret.

One method of improving this analysis is to consider the number of segments in the feature

and the category relevance of all segments as separate factors in the analysis. This requires

117



excluding the four-segment feature from the analysis to preserve the assumptions of the

ANOVA then performing a repeated-measures ANOVA on the feature weights with three

within-subject factors: a continuous variable indicating the number of segments (one, two,

and three), 2 category relevance levels (relevant and irrelevant), and 3 test phases (before

any training, after the first, and after the second training phase). The main effect of number

of segments in the feature was significant (one-segment M = 0.087; two-segment M = 0.087;

three-segment M = 0.063; F (1, 11) = 5.7, p = 0.036), as was the effect of category relevance

(relevant M = 0.099; irrelevant M = 0.059; F (1, 11) = 13.75, p = 0.0035). There was no

significant effect of test phase (F (1, 22) < 1) but it did have a significant interaction with

category relevance (F (2, 22) = 4.49, p = 0.023) and a marginally significant interaction with

number of segments (F (2, 22) = 2.86, p = 0.079). All other interactions were not significant

(p > 0.3). These effects are shown in Figure 4.15 where the interaction between category

relevance and test phase is due to category relevant features having a higher feature weight

after any type of training, regardless of the number of segments in the feature.

The same analysis can be performed for the feature weights from the powerset model

applied to the novel stimuli, shown in Figure 4.16. However, the larger number of free

parameters in these models may be due to noise and not reflect true differences because the

complexity of these models were not preferred by either the AIC or BIC model selection

criteria. We performed a repeated-measures ANOVA on the feature weights with three

within-subject factors: 7 types of features (one-segment category relevant, one-segment

category irrelevant, two-segment category relevant, two-segment category irrelevant, three-

segment category relevant, three-segment category irrelevant, four-segment), 3 test phases

(before any training, after the first, and after the second training phase), and 2 parameter-

ization types (fixed with one b and c value or flexible with four b and c values each).

The 2 possible first category structures (Unitization or Differentiation) were included as a
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between-subject factor. There was a main effect of feature type (F (6, 60) = 5.26, p = 0.0002)

and all other effects and interactions were not significant (p > 0.1).

As was done for the familiar segments, the effect of feature type for the novel stimuli can

be broken down into category relevance and the number of segments in each feature. This

requires excluding the four-segment feature from the analysis to preserve the assumptions of

the ANOVA then performing a repeated-measures ANOVA on the feature weights with two

within-subject factors: a continuous variable indicating the number of segments (one, two,

and three) and the 2 category relevance levels (relevant and irrelevant). The main effect

of number of segments in the feature was significant (one-segment M = 0.099; two-segment

M = 0.079; three-segment M = 0.050; F (1, 11) = 5.9, p = 0.033), but the effect of category

relevance was not significant (relevant M = 0.088; irrelevant M = 0.064; F (1, 11) = 4.3, p =

0.062). There was a a significant interaction between category relevance and number of

segments (F (1, 11) = 7.8, p = 0.017). The interaction between category relevance and the

number of segments is shown in Figure 4.17 and suggests the interaction is due to category

relevance having higher feature weights for the one-segment features only.

Perhaps the most interesting effect of feature weights for the powerset feature vocab-

ulary is the shift across learning toward assigning more weight to category relevant features

that span multiple segments (Figure 4.15). This effect is found for familiar stimuli but not

for novel stimuli (Figure 4.16), suggesting a learning process that increasingly puts weight

on larger features and is unique to trained stimuli.

4.7 Discussion

What do these models tell us about the changes in the perceptual representations people

learn from training and use to make perceptual discriminations? First, behavior in this

task is highly idiosyncratic. The perceptual representation that best accounts for an indi-
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vidual’s discriminations for familiar stimuli might not be the best set of features to explain

judgments of novel stimuli or familiar stimuli after the next set of training. However, the

weighted BIC and AIC scores of the models do provide some insight. Before any training,

all model comparison techniques agree the best set of features to account for the perceptual

discriminations is the analytic feature set in which each feature corresponds to a unique

segment in each stimulus. Training seems to change performance such that the models

with more perceptual features account for the data better according to the weighted AIC

measure, but the BIC continues to favor the analytic feature vocabulary models due to

model complexity.

The best fitting feature weights across all models also provide some insight into what

is being learned. Across all datasets category training increases the weight on category

relevant features relative to irrelevant features. This occurs regardless of the number of

segments in a feature, or if the stimuli are novel or familiar. This suggests an attentional

shift toward positions, not just toward specific segments, that are relevant for categorization

(Posner, 1980).

The feature weights also shift toward more complex features with additional category

training. In both the powerset and Unitized category relevant feature sets, cate-

gory training led to an increasing proportion of weight being assigned to category relevant

features that spanned more than one segment. Unlike the overall bias to shift attention to

category relevant positions, the increase in weight to more complex features appears to be

specific to judgments of familiar stimuli. There does not appear to be a strong difference

between the changes in processing induced by learning Unitization and Differentiation cate-

gory structures, the changes due to learning any structure were stronger than any difference

between them.
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Figure 4.5: The best fitting feature weights for the Analytic feature vocabulary to account

for the whole-part discrimination judgments of familiar stimuli. The top row consists of

participants who learned the Differentiation category structures first and the bottom row

learned the Unitization category structure first. The “Analytic (1)” points are the weights

from the Fixed b and c parameterization and the “Analytic (4)” points are the weights

from the Flexible parameterization. The black points show the average of three category

relevant features and the grey points show the weight on the single category irrelevant

feature. All features in the Analytic feature vocabulary are composed of exactly one

segment. Error bars indicate standard error.
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Figure 4.6: The best fitting feature weights for the Analytic feature vocabulary to account

for the whole-part discrimination judgments of novel stimuli. The top row consists of

participants who learned the Differentiation category structures first and the bottom row

learned the Unitization category structure first. The “Analytic (1)” points are the weights

from the Fixed b and c parameterization and the “Analytic (4)” points are the weights

from the Flexible parameterization. The black points show the average of three category

relevant features and the grey points show the weight on the single category irrelevant

feature. All features in the Analytic feature vocabulary are composed of exactly one

segment. Error bars indicate standard error.
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Figure 4.7: The best fitting feature weights for the Unitized category relevant feature

vocabulary to account for the whole-part discrimination judgments of familiar stimuli. The

top row consists of participants who learned the Differentiation category structures first

and the bottom row learned the Unitization category structure first. The black points show

the average of three one-segment category relevant features, the dark grey points show

the weight on the single one-segment category irrelevant feature, and the light grey points

indicate the weight assigned to the three-segment feature composed of all three category

relevant features. The model name indicates both the combination rule for the three-

segment feature (added to the component features or replacing them) as well as if the b and

c parameters were Fixed (1) or Flexible (4). Error bars indicate standard error.
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tized category relevant feature vocabulary on judgements of familiar stimuli. Error

bars indicate standard error.

125



●

●

●

●

●

●

●

●
●

0.10

0.15

0.20

0.25

Before training After first training After second training
Training phase

F
ea

tu
re

 w
ei

gh
t

Feature type ● ● ●Relevant Irrelevant Unit

Figure 4.10: The interaction between feature type and testing phase for the Unitized
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indicate standard error.
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Figure 4.11: The best fitting feature weights for the Unitized category relevant feature

vocabulary to account for the whole-part discrimination judgments of novel stimuli. The

top row consists of participants who learned the Differentiation category structures first

and the bottom row learned the Unitization category structure first. The black points show

the average of three one-segment category relevant features, the dark grey points show

the weight on the single one-segment category irrelevant feature, and the light grey points

indicate the weight assigned to the three-segment feature composed of all three category

relevant features. The model name indicates both the combination rule for the three-

segment feature (added to the component features or replacing them) as well as if the b and

c parameters were Fixed (1) or Flexible (4). Error bars indicate standard error.
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Figure 4.12: The three-way interaction between the feature type, feature combination rule,

and decision parameterization for Unitized category relevant feature vocabulary on

judgements of novel stimuli. Error bars indicate standard error.
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Figure 4.13: The best fitting feature weights for the Powerset feature vocabulary to ac-

count for the whole-part discrimination judgments of familiar stimuli. The top row consists

of participants who learned the Differentiation category structures first and the bottom row

learned the Unitization category structure first. The color of the points indicate how many

segments were included in the feature (one to four) and the shape of the point indicates

if all segments were category relevant (circle) or contained the category irrelevant segment

(triangle). The model name indicates if the b and c parameters were Fixed (1) or Flexible

(4). Error bars indicate standard error.
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Figure 4.15: The best fitting feature weights for the Powerset feature vocabulary for

judgments of familiar stimuli across testing phase and number of segments in the feature.

The color indicates if all segments in a feature are category relevant (black) or one is the

category irrelevant segment (grey). Error bars indicate standard error.
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Figure 4.16: The best fitting feature weights for the Powerset feature vocabulary to

account for the whole-part discrimination judgments of novel stimuli. The top row consists

of participants who learned the Differentiation category structures first and the bottom row

learned the Unitization category structure first. The color of the points indicate how many

segments were included in the feature (one to four) and the shape of the point indicates

if all segments were category relevant (circle) or contained the category irrelevant segment

(triangle). The model name indicates if the b and c parameters were Fixed (1) or Flexible

(4). Error bars indicate standard error.
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Figure 4.17: The best fitting feature weights for the Powerset feature vocabulary for

judgments of novel stimuli across the number of segments in the feature. The color indicates

if all segments in a feature are category relevant (black) or one is the category irrelevant

segment (grey). Error bars indicate standard error.
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CHAPTER 5

General Discussion

Our perceptual system adjusts based on experience and alters our perceptual representa-

tions to increase their utility. This learning can take many forms, and in this dissertation

we focus on two processes that drive slow-changing adjustments of the perceptual system:

unitization and differentiation. The empirical evidence for both processes comes from a

diverse set of stimuli and tasks but evidence for both unitization and differentiation has not

been shown within the same stimuli and task design. Despite the effects of unitization and

differentiation processes emerging in different learning environments, a number of promi-

nent computational models of perceptual learning treat differentiation and unitization as

processes that emerge from the same perceptual learning mechanism. These models claim

that the context, specifically the category structure being learned, can determine if per-

ceptual representations are joined together to form unitized features or separated apart to

differentiate features from the same set of stimuli.

In the second chapter, we tested the role of category structure for both processes in a set

of experiments that manipulate the category structure and the order of category training to

induce differentiation and unitization learning from the same set of stimuli. These experi-

ments use stimuli and category structures similar to those in previous studies by Goldstone

(2000) that have found evidence for unitization but are complex enough for differentiation

processes to emerge. The experimental results do not show strong evidence that learning
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a category structure designed to promote unitization has a dramatically different impact

than learning a category structure designed to promote differentiation. The most straight-

forward prediction of the computational models of perceptual learning, that accuracy would

be higher for whole-part judgments in which the part stimuli corresponded to category rel-

evant features, did not show any difference between the two category structures in either

the one-session or multi-session experiments.

This is not to say that people did not learn the correct category structure or that learn-

ing did not influence their perceptual discrimination judgments. Participants learned the

correct categorization for both category structures and this learning led to an increase in

attention to positions that were relevant for categorization, an improvement in judgments

involving the focus category after Unitization category structure training, and improved

perceptual discrimination of familiar stimuli relative to novel stimuli. Of these three learn-

ing effects, the improvement in processing familiar stimuli is the effect most consistent with

perceptual learning. The advantage for processing familiar stimuli relative to novel stimuli

is consistent with other evidence for the differentiation perceptual learning process that is

stimulus specific (Fine & Jacobs, 2002; Goldstone, 1994). Interestingly, this differentia-

tion process occurs for both category structures, suggesting it may not be driven in this

task by a particular category structure. The remaining two learning effects are consistent

with categorization models that shift attention among features and dimensions (Kruschke,

1992; Nosofsky, 1986) without changing the underlying perceptual representation. Though

Goldstone (1998) argues attention shifting among features is a form of perceptual learning

by improving the utility of perceptual representations, these effects are not evidence for a

change in the set of perceptual features.

The third chapter was devoted to generating a set of candidate feature representations

from a computational model of perceptual learning. This model included a mechanism
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to infer perceptual features that combined unitization and differentiation into one process

that was shaped by category structure. Though this model struggled to infer a set of stable

features for the Unitization category structure, the model did infer qualitatively different

sets of perceptual features based on the category structure. The features the model inferred

were consistent with the existing literature that predicted the Unitization category structure

would include a category relevant feature that was composed of multiple components and the

Differentiation category structure would produce a set of component features. These sets of

perceptual features were used as the basis for the feature representations in computational

models fit to the behavioral data.

In the fourth chapter, we developed a computational modeling framework to explicitly

predict the behavior using different sets of perceptual features. These models were fit to

the perceptual discrimination judgment data from Experiment 4 before and after each type

of category training and compared across perceptual features. The best-fitting attention

weights across all perceptual features found training increased the weight to features com-

posed of category relevant segments. This increase was found for both familiar and novel

stimuli, suggesting this attentional shift, as in the empirical results, was not specific to the

familiar stimuli but extended to novel segments in the same positions. The feature repre-

sentations that contained composite features saw an increase in weight to more complex

features after category training and specifically after the Unitization category structure

training. These changes in weights within a representation are consistent with shifting

toward adding composite features.

The comparisons between computational models containing different sets of perceptual

features were more ambiguous than the feature weights. The weighted BIC model com-

parison, which strongly favors less complex models, preferred the most basic perceptual

representation for all testing conditions and both novel and familiar stimuli. This model
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mapped features to segments in the stimuli and was consistent with static perceptual repre-

sentations. The weighted AIC model comparison preferred the perceptual representations

with more features for judgments of familiar stimuli after learning a category structure. The

Unitization category structure increased the proportion of people who were best accounted

for by a perceptual representation with composite feature regardless of when it occurred in

training, but the Differentiation category structure only did so when it was the first category

structure being learned. The same increase in composite perceptual features of the best fit-

ting model did not occur for novel stimuli. It is difficult to interpret the disconnect between

the AIC and BIC model comparisons beyond concluding that perceptual representations

might be shifting but the evidence does not overwhelmingly favor the models that require

additional complexity of more features. There appears to be strong individual differences

in what perceptual features best account for whole-part discrimination performance after

each type category training for these stimuli.

5.1 Future directions

The work presented here does not clearly identify if people were learning to differentiate and

unitize new features in these tasks. However, this work does provide a framework with many

advantages for future work to better understand the mechanisms of perceptual learning and

the influence of category information on them. First, perceptual discrimination judgments

address the recent controversy surrounding task demands accounting for many top-down

perceptual effects (Firestone & Scholl, 2015) by being a simple speeded judgment task that

has no clear demands due to training. Whole-part judgments are not dependent on the

category structure because participants are explicitly instructed that all of the unoccluded

part stimulus must match. Regardless of the category people most recently learned, on

each whole-part trial they are judging if the part stimulus matches the whole without re-
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gard to category membership. Second, perceptual discrimination judgments can potentially

separate the learning effects of perceptual processes from learning labels and language in

category tasks (Roberson & Davidoff, 2000). By manipulating what segments are present in

the part stimulus, it is possible to have trials in which the part stimulus can be categorized

and assigned a label and others where as many segments are present but the category is

ambiguous. This allows for manipulations where the number of matching segments can be

constant across trials for perceptual judgments but the category label information changes

between trials. This manipulation was not done in the current work but is possible in this

framework. Also, a critical set of controls that constrained the interpretation of the em-

pirical data were the perceptual judgments done before any training and the novel stimuli

included in all testing phases. Without a pre-training assessment, the general advantage in

discrimination of the participants who received the Unitization category training first would

have been indistinguishable from a benefit of learning that structure first. This straight-

forward methodological control is often used in psychometric studies of perceptual learning

(Fine & Jacobs, 2002) but less often for category-induced perceptual learning (Pevtzow &

Goldstone, 1994). Finally, the relevance of the empirical results were assessed via model

comparison with models that include a variety of sets of perceptual features, some of which

were predicted by computational models of perceptual learning. Quantitative model com-

parison is common for comparing representations in category learning paradigms (Nosofsky

& Johansen, 2000), but has not previously been applied to perceptual learning results. Thus

far, computational modeling in perceptual learning has focused on applying a single model

and demonstrating it can account for a given phenomena (Austerweil & Griffiths, 2013;

Goldstone, 2003; Dosher et al., 2013; Orbán et al., 2008).

Whole-part discrimination tasks are particularly appropriate for computational model-

ing in future work on understanding perceptual learning because they are a form of simple
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decision tasks that have been extensively modeled with computational models that predict

not only choice, but reaction time (Ratcliff, 1978; Nosofsky & Palmeri, 1997; Brown &

Heathcote, 2008). One limitation with the current study was the lack of a clear signal in

accuracy that disambiguated between the models of perceptual features. Measuring and

predicting reaction time distributions can add constraints that may disambiguate between

models (Goldstone, 2000). Models that predict both choices and reaction times would add

additional power to disambiguation.

Focusing exclusively on whole-part discrimination trials was not the only limitation of

the experimental design. Most experiments that show evidence of perceptual unitization

have a single unitized feature per feature. This is true for visual search tasks (Shiffrin &

Lightfoot, 1997), category learning tasks (Goldstone, 2000; Pevtzow & Goldstone, 1994),

and even in fast-learning experiments where the imprinting process leads to learning com-

posite features (Schyns & Rodet, 1997; Schyns & Murphy, 1994). The exception to this

are experiments without categories where clusters of stimuli can be formed with each hav-

ing their own feature (Fiser & Aslin, 2001, 2002; Austerweil & Griffiths, 2011). Yet in

the experimental design in the second chapter, the unitization category structure had two

equally frequent composite features in the focus category: the ABC and WXY features.

Categories that are defined by more than one feature are more difficult to learn in a regular

categorization task (Shepard et al., 1961) and having a many-to-one mapping between fea-

tures and category labels may have harmed perceptual learning by confusing the processes.

Furthermore, the set of whole-part discrimination trials tested were not optimized for com-

paring the computational models of perceptual discrimination, many irrelevant judgments

were included. This was done to control for the frequency of all segments across whole-part

judgments, but it left many discrimination trial types did not disambiguate between dif-

ferent sets of perceptual features. These extra trials increased the number of observations
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in the penalty for model complexity in the weighted BIC comparisons and impacted model

comparisons but did not differentiate between models.

5.2 Conclusion

The literature on perceptual learning identified two learning processes, unitization and dif-

ferentiation, that characterize seemingly opposite changes in perceptual representation. Yet

most prominent computational models of perceptual learning hypothesize both processes

are the result of a unified perceptual learning mechanism. This predicts that the task and

context determine if perceptual learning will result in forming unitized or differentiated

perceptual features, not inherent properties of the stimuli themselves. We tested this pre-

diction in a series of experiments that manipulated the category structure across a set of

stimuli and the order categories were learned. Using these stimuli and category structures,

we inferred a set of perceptual features for each category structure from an existing com-

putational model of perceptual learning. Finally, we compared the fit of a model assuming

each of those sets of perceptual features using a novel model comparison framework. The

results of the empirical and modeling work do not show strong evidence that different sets

of perceptual features were learned in the two category structures, though some evidence of

perceptual learning was found due to both category structures. The most reliable difference

due to learning category structures was a shift in attention both to stimulus components

and also to whole stimuli. We conclude by discussing the advantages and limitations of this

framework for studying perceptual learning and how it could be adapted in the future to

better understand perceptual learning in the context of categorization.
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