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Fei Tan

ECONOMETRIC MODELING AND EVALUATION OF

FISCAL-MONETARY POLICY INTERACTIONS

How do fiscal and monetary policies interact to determine inflation? The conventional

view rests on the Taylor principle, that central banks can control inflation by raising nom-

inal interest rate more than one-for-one with inflation. This principle embeds an implicit

assumption that the government always adjusts taxes or spending to assure fiscal solvency.

But when the required fiscal adjustments are not assured, as may occur during periods

of fiscal stress, monetary policy may no longer be able to determine inflation. Under this

alternative view, policy roles are reversed, with fiscal policy determining the price level and

monetary policy acting to stabilize debt. Because these two policy regimes imply starkly

different policy advice, identifying the prevailing regime is a prerequisite to understanding

the macro economy and to making good policy choices.

This dissertation employs econometric modeling and evaluation techniques to examine

the empirical implications of the dynamic interactions between post-war U.S. fiscal and

monetary policies. Chapter One compares two econometric interpretations of a dynamic

macro model designed to study U.S. policy interactions. Two main findings emerge. First,

the data overwhelmingly support the conventional view of inflation determination under the

prevailing, “strong” econometric interpretation that takes literally all of the model’s impli-

cations for the data. But this result is susceptible to any potential model misspecification.

Second, according to the alternative, “minimal” econometric interpretation that is immune

to the difficulties with the strong interpretation, the two views of inflation determination

can explain the data about equally well. These findings imply that the apparent statistical

support in favor of the conventional view over the alternative in the literature stems largely

v



from the strong interpretation rather than from compelling empirical evidence. Therefore, a

prudent policymaker should broaden her perspective beyond any single view on the inflation

process.

Chapter Two, joint with Todd B. Walker, develops an analytic function approach to

solving generalized multivariate linear rational expectations models. This solution method

is shown to provide important insights into equilibrium dynamics of well-known models.

Chapter Three further demonstrates the usefulness of this method via a conventional new

Keynesian model.

Eric M. Leeper, Ph.D., Co-Chair

Todd B. Walker, Ph.D., Co-Chair
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Chapter 1

Two Econometric Interpretations of U.S. Fiscal and Monetary Policy

Interactions

1.1 Introduction

How do fiscal and monetary policies interact to determine inflation? Two distinct views on

this fundamental economic question circulate in the profession. The conventional wisdom

is the Taylor principle, that central banks can control inflation by systematically raising

nominal interest rate more than one-for-one with inflation. This principle embeds an im-

plicit assumption that the government always adjusts taxes or spending to assure fiscal

solvency. But when the required fiscal adjustments are not assured, as may occur during

periods of fiscal stress, then monetary policy may no longer be able to determine inflation.

In this alternative regime, policy roles are reversed, with fiscal policy determining the price

level and monetary policy acting to stabilize debt. Because these two policy regimes im-

ply completely different mechanisms for determining inflation, different effects of fiscal and

monetary disturbances and, therefore, starkly different policy advice, identifying the pre-

vailing regime is a prerequisite to understanding the macro economy and to making good

policy choices.

Efforts to test interactions between U.S. fiscal and monetary policies typically find that

the alternative regime fails to explain post-war U.S. time series, leading to nearly uniform

acceptance of the conventional view of inflation determination. This consensus emerged
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despite theoretical demonstrations that the two regimes can provide equally plausible inter-

pretations of the data [Cochrane (2001, 2011), Sims (2011), Leeper and Walker (2011)]. To

address the gap between theory and empirical consensus, this article compares two econo-

metric procedures for interpreting a dynamic stochastic general equilibrium (DSGE) model

designed to study U.S. policy interactions.

Recent developments in macroeconometric techniques have brought DSGE models to the

forefront for guiding quantitative policymaking. Geweke (2010) points out that the relation

between DSGE models and their measured economic behavior can be given two alternative

econometric interpretations. [i.] The strong econometric interpretation is that the model

provides a predictive distribution for all the observables. DSGE models do not fare well

under this interpretation because it requires an explicit accounting of many aspects of the

data that are poorly explained by the model, making inferences susceptible to any possible

model misspecification.1 [ii.] The minimal econometric interpretation, initiated by DeJong

et al. (1996) and formalized by Geweke (2010), is that the model provides a predictive

distribution for selected population moments. Since the model has no direct implications

for the observable sequence, it is exempt from the difficulties with DSGEs interpreted in the

strong sense.2 This article compares the strong and minimal econometric interpretations of

the post-war U.S. fiscal and monetary policy interactions. The comparison is presented with

1Rational expectations models in the 1970s and the early 1980s that failed to pass the likelihood-
based specification tests can be understood to be interpreted in this strong sense. Recent notable
exceptions are Smets and Wouters (2003, 2007), who find that large-scale DSGE models can attain
competitive model fit relative to more profligately parameterized statistical models, such as VARs.
Nevertheless, Del Negro et al. (2007) have shown that model fit comparisons between DSGE models
and VAR models may not be robust since slight changes in the sample period can alter the fit
ranking.

2Geweke (2010) actually includes a third, weak econometric interpretation under which the model
provides a predictive distribution for selected sample moments. But other than making a dimensional
reduction, its assumptions are in essence no weaker than the strong one. DSGE models estimated
with the generalized method of moments (GMM) fall under this category, as do calibrated DSGE
models if calibration is considered as a just-identified GMM. This article focuses on just two in-
terpretations, leaving the exploration of weakly interpreted DSGE models of policy interactions for
future research.
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reference to a small-scale new Keynesian DSGE model with long-term nominal bonds—a

key feature missing from many existing models—and two determinacy regions. Each region

is indexed by a policy regime that postulates an institutional arrangement for controlling

inflation and stabilizing government debt.

Economic theory had long recognized that fiscal and monetary policies jointly determine

the price level [Sargent and Wallace (1981), Wallace (1981), Aiyagari and Gertler (1985),

Sims (1988), Leeper (1991)]. Recent expansions of central bank balance sheets and soaring

levels of sovereign debt, as well as the ensuing fiscal stress facing major advanced economies,

have also alerted central bankers that the ability of monetary policy to control inflation and

influence real activity rests fundamentally on the conduct of fiscal policy and on people’s

expectations of fiscal behavior [Leeper (2011)]. Our theory and evidence cast serious doubt

on the belief that conventional macro models, which are built on the premise that inflation

is determined solely by monetary policy, offer an adequate policy framework with which to

confront theory with data.3 The fiscal theory of the price level (FTPL), on the other hand,

recognizes that fiscal policy can be a determinant of the inflation process and, therefore,

also provides important insights into current policy discussions [Sims (2013)].

The distinction between conventional macro models and FTPL-type models is rooted

in two fundamentally different channels through which debt valuation effects force linkages

between equilibrium fiscal and monetary policies. Following Leeper (1991)’s terminology,

the policy mix capturing the channel in conventional macro models arises from the active

monetary-passive fiscal regime (regime M, for short)—the monetary authority systemati-

cally raises the nominal interest rate more than one-for-one with inflation, while the fiscal

authority adjusts taxes or spending to assure fiscal solvency. The policy mix that underlies

the alternative channel in FTPL models is the passive monetary-active fiscal regime (regime

3Good examples of the conventional macro models are those of the old monetarists and of the
New Keynesians.
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F)—the monetary authority forgoes inflation targeting and primary fiscal surpluses, for po-

litical or economic reasons, are insensitive to the state of government debt. The regime M

or regime F DSGE models arise from different regions of the model’s parameter space that

deliver a determinate equilibrium.4

Two main findings emerge. First, although including a maturity structure for govern-

ment debt plays a pronounced role in improving the model fit of regime F, the data still

overwhelmingly support regime M under the strong econometric interpretation. But this

likelihood-based result is susceptible to any possible model misspecification: it stems from

taking literally all of the model’s implications for the data, even though the model in each

regime may be quite misspecified along some dimensions of the data that are not directly

of interest. Second, according to the minimal econometric interpretation under which the

DSGE model is used to elicit prior information, regimes M and F fit the data about equally

well. Because the minimal econometric interpretation does not take the model’s implica-

tions for the data literally, it greatly reduces the susceptibility of this result to potential

model misspecification.

Taken together, these findings imply that the apparent statistical support in favor of

regime M over regime F stems largely from the strong econometric interpretation rather

than from compelling empirical evidence. Moreover, conventional DSGE models suggest

that the two regimes are “nearly” observationally equivalent under the minimal economet-

ric interpretation.5 These results cast serious doubt on empirical tests of policy interactions

that are based on simple correlations in the data [Bohn (1998), Canzoneri et al. (2001)].6

4Examining the indeterminacy—when fiscal and monetary policies both remain passive—may be
of interest, but we do not pursue it here [Lubik and Schorfheide (2004), Bhattarai et al. (2012)].

5Economic models that reflect distinct behavioral hypotheses but are observationally equivalent
for the set of targets they claim to explain are not rare. A prominent example is presented in Tobin
(1970) who shows that the correlations and timing patterns observed by the monetarists can arise
in an ultra-Keynesian model.

6Leeper and Walker (2011) also provides analytical results showing that both policy regimes can
be consistent with a wide range of correlation patterns in the data.
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Cautious macroeconometric modeling for monetary policy analyses should incorporate ex-

plicit and realistic treatment of the interactions between fiscal and monetary policies. This

also echoes the general policy advice of Leeper and Walker (2011) and Sims (2013) that

policymakers may wish to broaden their perspectives on inflation determination beyond the

single, conventional view that dominates policy research and discussions.

The preceding paragraphs argue for the model space of central bankers to be expanded to

encompass models operating under alternative regime and endowed with alternative econo-

metric interpretation. Yet it is worthwhile to point out that many of the well-known new

Keyesian DSGE models, such as Christiano et al. (2005) and Smets and Wouters (2003,

2007), have been estimated with fiscal behavior left unspecified. This amounts to implic-

itly assuming that the required fiscal adjustment is always forthcoming in response to any

government budget imbalance, forcing fiscal and monetary policies to conform to regime M.

One notable exception is Traum and Yang (2011) who use various post-war U.S. samples

to estimate a new Keynesian DSGE model that allows for the possibility of either regime

M or F. But their likelihood-based model evaluation exercises, which uniformly reject the

regime F DSGE model across all samples, are tantamount to yielding a strong econometric

interpretation of U.S. policy interactions. The minimal econometric interpretation, on the

other hand, suggests that a source of regime F’s forceful rejection under the strong inter-

pretation is the false model implications along some dimensions of the data that are not of

direct interest.

Existing regime-comparison results also presume that the underlying model space is

complete in Geweke’s (2010) sense, meaning that it has been adequately specified to include

the “true” data generating process. But another explanation is possible: perhaps neither

the regime M nor the regime F DSGE models even stay “close” to the true data generating

process. This article also questions the completeness of the model space by presenting
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statistical evidence that the cross-equation restrictions implied by the two policy regime

models are both misspecified, possibly to a similar degree.

Because this article takes a Bayesian stand on the identifiability of regime index, we

briefly review a couple of key concepts drawn from Kadane’s (1974) seminal work, which

are essential for understanding the notion of identification in a Bayesian framework. We

also illustrate how the observational equivalence between the minimally interpreted regime

M and F DSGE models can be articulated in terms of these concepts. Finally, while it can

be difficult in general to provide an explicit accounting for the DSGE model implications,

interested readers are directed to Tan (2014) who uses a simple analytical example to char-

acterize a rational expectations model’s cross-equation restrictions under each econometric

interpretation.

1.2 Regime Index as (Un)identified Hyperparameter

Not surprisingly, the expanded model space alluded to in Section 1.1 raises several issues

on the statistical inference about the competing models, among which identification figures

most pressingly. It then follows naturally that the object of identifying interest falls not

on the parameters of each model but rather the regime index as an additional parameter

of the model space. Put differently, we will study the identifiability of regime index as a

hyperparameter that is otherwise treated as given in many related work.7 This section is

intended to review a few important concepts concerning Bayesian identification, perhaps

not widely known among macroeconomists, which allow us to define precisely the sense in

which the notions of identification and observational equivalence used subsequently become

meaningful. In doing so, we closely follow the seminal work of Kadane (1974).

7In a Bayesian context, this amounts to specifying a hierarchical prior consisting of a marginal
distribution for the regime index and a distribution for the model parameters conditional on the
regime index.
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Definition 1. [Parameter Identification] Let (S,S) be a measurable state space and P =

{Pθ : θ ∈ Θ} a family of probability distributions on (S,S) indexed by the parameter θ. Two

parameters θ1 and θ2 are said to be observationally equivalent (denoted θ1 ∼ θ2) if and only

if

Pθ1(A) = Pθ2(A) for all A ∈ S (1.2.1)

Moreover, the parameter space Θ is said to be identified if and only if

∀ θ1, θ2 ∈ Θ, θ1 ∼ θ2 ⇒ θ1 = θ2 (1.2.2)

This is the notion of parameter identification most frequently used in the existing work.

It makes clear that identification is a property of the likelihood function alone—a parametric

model is identified if and only if distinct parameter values produce observationally distinct

behavior patterns characterized by the likelihood functions. It is not difficult to recognize

that Definition 1 is subject to at least two sources of limitation. First, attempts to achieve

full identifiability of the parameter space would inevitably demand unnecessary a priori

restrictions to rule out the parameter values that are unidentified but only in ways harmless

to the modeler’s purpose. As argued forcefully by Hurwicz (1962), both the degree of and

the need for identification are not absolute, but relative to the purpose for which the model

is designed.8 Second, in the presence of more than one modeling options available, the

identification of parameters associated with each model is only of secondary importance.

This is easiest to understand when regime M and F DSGE models are applied to study an

economy with high inflation rates and high levels of government debt, as well as a fiscal

8A standard textbook paradigm, in light of Hurwicz (1962)’s argument, is that the failure of
“invertibility” condition in a linear regression model should not disturb the modeler when her purpose
for the model is not to give a partial effect interpretation but to make prediction. This may well
leave the parameter space unidentified but only in a way irrelevant to her predictive intention.
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authority not committed to budgetary solvency—an environment to which regime F fits

well. It then makes little sense to identify the parameters in a monetary policy rule that

satisfies the “Taylor principle” without discerning in the first place which policy regime is

at work. After all, economic theory does not generally support such a policy configuration.

Indeed, one goal of this article is to investigate whether two different understandings of the

inflation process can be equally consistent with the data, so the object of identifying priority

ought to be the regime index.9 It turns out that both sources of limitation can be avoided

by the notion of function identification, which allows one to focus on the identification of

parameters only along dimensions of interest and of first-order importance.

Definition 2. [Function Identification] Let f : (Θ,A) → (Λ,B) be a measurable function.

f is said to be identified if and only if

∀ θ1, θ2 ∈ Θ, θ1 ∼ θ2 ⇒ f(θ1) = f(θ2) (1.2.3)

The concept of function identification generalizes that of parameter identification be-

cause in the case Λ = Θ and f is given by an identity function, the identification of function

f reduces to that of parameter θ. It maps all those parameterizations that imply observa-

tionally indistinguishable behavioral patterns to one single point in a transformed parameter

space of possibly lower dimension. In what follows, let θM and θF be the parameter vectors

by which regime M and F models are parameterized. Also, let a typical point in the joint

parameter space be given by (D, θM , θF ), where D ∈ {M,F} is a hyperparameter referring

to the regime index and represents the assumptions underlying regime D DSGE model. It

9This point is far from new but has not received enough attention in empirical work. For example,
Qu and Tkachenko (2012) show that the Taylor rule coefficient of a small-scale determinant DSGE
model is not locally identified at a particular value. In addition, Qu and Tkachenko (2013) and Lubik
and Schorfheide (2004) examine the identification of key policy parameters for a similar DSGE model
but under indeterminacy. An implicit assumption on the fiscal authority underlying these models is
that fiscal policy is responsible for providing a real anchor—the real value of government debt. It
still remains unclear whether their conclusions can survive if such assumption does not hold.
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follows naturally that the function of our identifying interest can be written as

f(D, θM , θF ) = D, D ∈ {M,F} (1.2.4)

To see how Definition 2 facilitates our discussion of identification and observational

equivalence in a Bayesian context, we establish the following notations. Let the underlying

experiment be characterized by the likelihood function p(y|θ), which is the conditional

probability density function (pdf) of the observable y with respect to a generic measure

µ(·). Moreover, let the initial belief about θ be summarized by a prior distribution P(·) on

Θ. Observe that any specification of f induces a corresponding prior distribution Pf (·) on

Λ given by Pf (B) = P(f−1(B)) for all B ∈ B. Then the posterior distribution on Λ can be

obtained by invoking the Bayes’ theorem

Pf (B|C) =

∫
C

∫
f−1(B) p(y|θ)p(θ)dν(θ)dµ(y)∫
C

∫
Θ p(y|θ)p(θ)dν(θ)dµ(y)

, ∀ B ∈ B, ∀ C ∈ S

where p(θ) is the pdf of θ with respect to a generic measure ν(·). Using the posterior

distribution on the transformed parameter space, we can define the informativeness of an

experiment.

Definition 3. [Informative Experiment] An experiment is informative about f with respect

to the prior P if and only if there exist B ∈ B and C ∈ S with 0 < µ(C) < 1 such that

Pf (B|C) 6= Pf (B|Cc) (1.2.5)

An easier way to digest the content of Definition 3 is from its contrary—the design of an

experiment provides no new information about the transformed parameter space relative

to the prior belief if and only if the occurrence of any event of the experiment does not

9



alter the posterior inference about that space. As noted by Kadane, the dependence of the

informativeness of an experiment on the prior P and function f indicates that the notions

of identification and informativeness are quite different. Were we to define observational

equivalence as the unidentifiability of f in a Bayesian context, asserting that the regime

index is unidentified would amount to verifying the uninformativeness of the experiment for

f with respect to every distinct two-point prior [see Kadane (1974), Theorem 2, p. 181].

From a practical perspective, this is difficult to implement, thereby forcing us to introduce

a strictly weaker sense of observational equivalence that is of more practical relevance.

Definition 4. [Observational Equivalence] Let p(θM ) and p(θF ) be the priors of regime M

and F model parameters, respectively. Regime M and F models are said to be observationally

equivalent if and only if

p(y|M) = p(y|F ) for all y ∈ S (1.2.6)

where the marginal likelihood functions are given by

p(y|D) =

∫
p(y|D, θD)p(θD)dθD, D ∈ {M,F}

This is also the notion of unidentifiability used by Zellner (1971). Weaker as it is, the

violation of Definition 4 in many model comparison exercises is oftentimes interpreted as if

the model index is identified. Before detailing the statistical evidence, it is worthwhile to

point out precisely in what sense one should interpret the empirical findings of this article.

That there do exist minimally interpreted regime M and F DSGE models whose implied

marginal data densities make criterion (1.2.6) approximately true for the data merely asserts

that the joint experiment, characterized by the expanded likelihood function p(y|D, θM , θF ),

is uninformative for the function f in (1.2.4), provided that we believe a priori the two

10



policy regimes are equally likely, i.e. p(M) = p(F ) = 1
2 . To verify this assertion, observe

that for any C ∈ S with 0 < µ(C) < 1, one has

Pf ({M}|C) =

∫
C p(y|M)p(M)dµ(y)∫

C p(y|M)p(M)dµ(y) +
∫
C p(y|F )p(F )dµ(y)

=
1

2

where we have used the fact that p(y|M) = p(y|F ) for all y ∈ S. By a similar token, one can

show that Pf ({M}|Cc) = Pf ({F}|C) = Pf ({F}|Cc) = 1
2 . Now the proof is completed by

invoking Definition 3. Therefore, the emergence of observationally equivalent policy regimes

serves only as a necessary condition for claiming the unidentifiability of f . A much stronger

observational equivalence result in the latter sense can be found, for example, in Leeper and

Walker (2011) and Leeper et al. (2014). These work establish the observational equivalence

of regime M and F only in very simple models that rely on the symmetry between fiscal

and monetary policies. The results of this article suggests that it is likely that the difficulty

in identifying the policy regime in simple models also generalizes to more realistic models

of policy interactions.

1.3 Complete Model Space: I

This section explores the strong econometric interpretation of the post-war U.S. fiscal and

monetary policy interactions. Regime M and F DSGE models, each featuring long-term

nominal bonds, are considered a priori as two trusted, complete, econometric models for

providing predictive distributions of the observable sequence. A tacit assumption is that the

model space is complete—either regime M or F DSGE model produces what we observe in

the data.10 A similar exploration using DSGE models that feature only short-term nominal

bonds can be found in Traum and Yang (2011). We show that the strong econometric in-

10Assuming the completeness of a model space is of course naive. A more defensible statement
may be that of Box (1980): all models are wrong, but some are useful.
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terpretation always remains unambiguous about regime selection; albeit the important role

of long-term nominal bonds in improving model fit, there is no decisive statistical evidence

supporting even the near observational equivalence, defined in the sense of Definition 4, of

the strongly interpreted regime M and F DSGE models.

1.3.1 A Tale of Two Regimes

To fix ideas, we consider the state space representation of a prototypical New Keynesian

DSGE model augmented with a fiscal rule, which can be estimated with Bayesian meth-

ods. The fiscal and monetary authorities are assigned with two primary policy objectives:

controlling inflation and stabilizing government liabilities. To keep the model specification

simple, we abstract from real money balances, wage rigidities, and capital accumulation but

otherwise the model captures most of the important features about price level determina-

tion [Leeper (1991, 1993), Sims (1988, 1994), Woodford (1994, 1995, 1999, 2001), Cochrane

(1998, 2001, 2005)].

Household’s Problem

The representative household derives utility from consumption Ct relative to a habit stock,

and disutility from hours worked Ht. We assume that the habit stock is given by the level of

labor-augmenting technology At. This assumption assures that the economy evolves along

a balanced growth path. The household has an infinite planning horizon and her preference

is characterized as

Et

[ ∞∑
s=0

βs

(
(Ct+s/At+s)

1−τ

1− τ
−
H1+ϕ
t+s

1 + ϕ

)]
(1.3.1)

where β is the discount factor, τ is the risk aversion parameter, and 1/ϕ is the Frisch

elasticity of labor supply. The household supplies perfectly elastic labor services to the
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firms, taking the real wage Wt as given. She also has access to a complete financial market

where nominal government bonds Bt, including state-contingent claims of many sorts, are

traded. Following Woodford (2001), this general bond portfolio consists of perpetuities with

coupons that decay exponentially. Specifically, suppose that a bond issued in period t pays

ρk dollars k + 1 periods later for each k ≥ 0 with some decay factor 0 ≤ ρ ≤ β−1. This

assumption allows us to mimic the behavior of arbitrary bond maturity structure with a

single parameter ρ.11 Meanwhile, we need only consider the equilibrium price of one type

of bond in each period because a bond of this type that has been issued k periods ago is

equivalent to ρk new bonds. Lastly, the household receives aggregate residual real profits

Dt from the firms and pays lump-sum taxes Tt to the government. Thus the household’s

budget constraint takes the form

PtCt + PB,tBt = (1 + ρPB,t)Bt−1 + [PtWtHt + PtDt − Tt] (1.3.2)

where PB,t is the price in period t of one unit of bond portfolio. The bond pricing relation

implied by the household’s optimal choice of bond portfolio is given by

PB,t = Et[Qt+1|t(1 + ρPB,t+1)] (1.3.3)

where the random variable Qt+1|t is a stochastic discount factor for pricing arbitrary nominal

contingent claims. The household, as a price taker in financial markets, takes the evolution

of the stochastic discount factor as being independent of her portfolio decisions. The (gross)

11The average maturity of such a bond portfolio is (1− βρ)−1. In reality, the average maturities
of outstanding government debt in many OECD countries are at above 20 quarters. In the U.S., it
is at 20 quarters, corresponding to βρ = 0.95 in the model.
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nominal interest rate Rt on one-period riskless claim purchased in period t must satisfy

1

Rt
= Et[Qt+1|t] (1.3.4)

Combining (1.3.3) and (1.3.4) gives the yield curve Rt = Et[RB,t] + RtCov[Qt+1|t, RB,t],

where RB,t =
1+ρPB,t+1

PB,t
is the (gross) nominal rate of return on general bond portfolio.

Necessary and sufficient conditions for household optimization are given by the following

intratemporal and intertemporal Euler equations

Hϕ
t+s

(Ct+s/At+s)−τ
=
Wt+s

At+s
, s ≥ 0 (1.3.5)

Qt+s|t =
Pt
Pt+s

mt+s|t, s ≥ 0 (1.3.6)

where mt+s|t is a stochastic discount factor for pricing arbitrary real contingent claims

mt+s|t = βs
(
Ct+s/At+s
Ct/At

)−τ At
At+s

(1.3.7)

Substitution of (1.3.6) and (1.3.7) into (1.3.4) then yields

1 = βEt

[
Rt

Pt+1/Pt

(
Ct+1/At+1

Ct/At

)−τ At
At+1

]
(1.3.8)

This optimality condition, when imposed by market clearing conditions, is a sort of “Fisher

equation”, linking short-term nominal interest rate and expected inflation, as well as en-

dogenous real factors that determine the equilibrium real interest rate.
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Firms’ Problem

The perfectly competitive, representative, final goods producing firm combines a continuum

of intermediate goods indexed by j ∈ [0, 1] using the technology

Yt =

(∫ 1

0
Yt(j)

1−vdj

) 1
1−v

(1.3.9)

where 1/v represents the elasticity of demand for each intermediate good. The firm takes

input prices Pt(j) and output prices Pt as given. Profit maximization implies that the

demand for intermediate goods is

Yt(j) =

(
Pt(j)

Pt

)−1/v

Yt (1.3.10)

and the aggregate price index relating intermediate goods prices and final good price is

Pt =

(∫ 1

0
Pt(j)

v−1
v dj

) v
v−1

(1.3.11)

Though each intermediate firm produces a differentiated good, they all use an identical

technology represented by the production function

Yt(j) = ztAtNt(j) with At = γtA0 (1.3.12)

where zt is an exogenous productivity process, Nt(j) is the labor input of firm j, and ztAt is

common to all firms. It implies that the economy grows at the rate γ in steady state. Labor

is hired in a perfectly competitive factor market at the real wage Wt. Nominal rigidity

is introduced by assuming that intermediate firms face quadratic price adjustment costs.

When a firm changes its price away from π∗, the steady-state inflation rate associated with
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the final good, it incurs menu costs in the form of lost output

ACt(j) =
φ

2

(
Pt(j)

Pt−1(j)
− π∗

)2

Yt(j) (1.3.13)

where φ governs the degree of price stickiness. Firm j chooses its price Pt(j) to maximize

the present value of all its future profits

Et

[ ∞∑
s=0

mt+s|t

(
Pt+s(j)

Pt+s
Yt+s(j)−Wt+sNt+s(j)−ACt+s(j)

)]
(1.3.14)

where mt+s|t is treated as exogenous by the firm.

Fiscal and Monetary Policies

The fiscal authority consumes a fraction ηt of aggregate output Yt, where ηt ∈ [0, 1] follows

an exogenous process with steady state g(Q). Moreover, it collects the lump-sum net taxes

(taxes net of transfers) to finance any shortfalls in government revenues. The nominal flow

government budget constraint is given by

PB,tB
s
t + Tt = PtGt + (1 + ρPB,t)B

s
t−1 (1.3.15)

where Gt = ηtYt. It is convenient to denote real debt-to-GDP ratio and real lump-sum

tax-to-GDP ratio by bt =
PB,tB

s
t

PtYt
and τt = Tt

PtYt
.12 The fiscal authority follows a taxation

feedback rule that responses to deviations of real debt-to-GDP ratio in previous period from

12The real flow government budget constraint corresponding to long-term and short-term debt
cases can be written as

bt + τt = ηt +
1 + ρPB,t
πtγt

bt−1

PB,t−1
(long-term debt)

bt + τt = ηt +
Rt−1

πtγt
bt−1 (short-term debt)

where γt = Yt/Yt−1 is the gross output growth rate.
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its steady state

τt = τ∗1−ρ
F

t τρ
F

t−1e
ψFt with τ∗t = τ∗

(
bt−1

b∗

)δb
(1.3.16)

where ψFt is a fiscal policy shock, τ∗ is the steady state real tax-to-GDP ratio, and b∗ is

the steady-state real debt-to-GDP ratio. The parameter 0 ≤ ρF < 1 determines the degree

of tax ratio smoothing. The monetary authority follows an interest rate feedback rule that

reacts to deviations of inflation and output from their respective target levels

Rt = R∗1−ρ
M

t Rρ
M

t−1e
θMt with R∗t = r∗π∗

( πt
π∗

)ψπ ( Yt
Y ∗t

)ψy
(1.3.17)

where θMt is a monetary policy shock, r∗ is the steady-state real interest rate, πt is the gross

inflation rate defined as πt = Pt
Pt−1

, and π∗ is the target inflation rate, which in equilibrium

coincides with the steady-state inflation rate. The parameter 0 ≤ ρM < 1 determines the

degree of interest rate smoothing. Finally, Y ∗t is the level of potential output that would

prevail in the absence of nominal rigidities.

Structural Disturbances

The model economy is perturbed by four exogenous shocks—technology shock ln zt, fiscal

shock ψFt , monetary shock θMt , and government spending shock gt = 1
1−ηt—that are assumed

to follow stationary AR (1) processes

ẑt = ρz ẑt−1 + εZt , ψFt = ρψψ
F
t−1 + εFt , θMt = ρθθ

M
t−1 + εMt , ĝt = ρg ĝt−1 + εGt (1.3.18)
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where x̂t = ln(xt/x
∗) denotes the percentage deviation of xt from its steady-state x∗, g∗ =

1
1−g(Q) , and 0 ≤ ρz, ρψ, ρθ, ρg < 1.13 The four innovations {εZt , εFt , εMt , εGt } are assumed to

be serially uncorrelated by themselves, independent of each other at all leads and lags, and

normally distributed with means zero and standard deviations {σZ , σF , σM , σG}.

Equilibrium

We consider the symmetric equilibrium in which all intermediate firms make identical

choices. The market clearing conditions are given by

Yt = Ct +Gt +ACt, Ht = Nt, Bt = Bs
t (1.3.19)

To shed light on all possible interactions between fiscal and monetary policies that are

consistent with a uniquely determined price level, it is useful to focus on the intertemporal

equilibrium condition linking the real debt-to-GDP ratio at the beginning of each period to

the present value of current and expected future primary surpluses

(
1 + ρ

∞∑
k=0

ρkEt
[

1

RtRt+1 · · ·Rt+k

])
︸ ︷︷ ︸

current and future MP

1

πtγt

bt−1

PB,t−1
=

∞∑
k=0

Et[m̄t+k|tst+k]︸ ︷︷ ︸
current and future FP

(1.3.20)

where st = τt−ηt is the real primary-surplus-to-GDP ratio, γt = Yt/Yt−1 is the gross output

growth rate, and m̄t+k|t = mt+k|tγt+k is the stochastic discount factor adjusted by output

growth rate.14 The appearance of ρ in (1.3.20) highlights the key role of long-term nominal

13The AR (1) structures of technology and government spending shocks are commonly assumed
in the literature and need no further explanation. There are plausible reasons to specify AR (1)
processes for fiscal and monetary shocks. For instance, business cycles usually take years to complete,
making it likely for ψFt and θMt to be persistent and positively autocorrelated for an extended period
of time. Some political factors, e.g. election cycles, will even pronounce the positive autocorrelation
of fiscal shock. Indeed, Canzoneri et al. (2001) use the estimated positive autocorrelation of primary
surplus process to argue in favor of the empirical plausibility of Ricardian regime (regime M) against
non-Ricardian regime (regime F).

14See Appendix A for derivation details. Sims (2013) and Leeper and Zhou (2013) have also
demonstrated conditions similar in essence to (1.3.20).
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debt in providing a sizeable source of fiscal financing—surprise changes in current inflation,

or current and future nominal interest rates (through changes in the market value of debt),

or any combination all serve as a cushion against fiscal shocks. This effectively alleviates

the complete reliance of fiscal financing on surprise inflation or deflation in a FTPL-type

model with only short-term nominal bonds. As hinted by Leeper and Zhou (2013), condition

(1.3.20) reflects a fundamental symmetry between fiscal policy (FP) and monetary policy

(MP)—any current and expected future policy mix that uniquely determines the inflation

today must satisfy (1.3.20), irrespective of the policy regime and its welfare properties.

Formally, there are two decoupled regions spanning the parameter subspace of (δb, ψπ)

that deliver a unique DSGE model solution. The first set of solutions is obtained under

regime M when δb > γ
β − 1 and ψπ > 1. This is the working assumption underlying basic

New Keynesian models—(1.3.20) works as a constraint for the fiscal behavior and output

and inflation can be determined without reference to the government budget constraint and

fiscal policy. The second set of solutions is obtained under regime F when |δb| < γ
β − 1 and

0 ≤ ψπ < 1. By symmetry, this is the working assumption underlying models in which FTPL

is valid—(1.3.20) works as a constraint for the monetary behavior and output and inflation

must be determined by the whole system of equations characterizing the equilibrium.

State Space Representation

We work with the log-linearized version of the model economy because it leads to a state-

space representation that can be evaluated with the Kalman filter. Stacking the endogenous

variables and exogenous shocks in the vector st and the shock innovations in the vector εt,

the linearized regime D DSGE model solution takes the form st = Φ(st−1, εt; θD), where Φ

is a linear function in st−1 and εt, θD is the vector containing all regime D DSGE model
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parameters

θD = [τ, ϕ, κ, ρ, δb, ψπ, ψy, ρF , ρM , r(A), π(A), γ(Q), b(Q), θs]
′

and the subvector θs = [ρz, ρψ, ρθ, ρg, σZ , σF , σM , σG]′ collects all parameters in the AR (1)

representations of the shock processes. The model description is completed by defining a

set of measurement equations that relate the model variables st to a set of observables—

quarter-to-quarter per capita GDP growth rate (YGR), annualized quarter-to-quarter in-

flation rate (INF), annualized nominal interest rate (INT), and quarterly real debt-to-GDP

ratio (DTY)—to which the model is fitted. All models are estimated for three post-war

U.S. samples with quarterly frequency. The first sample, ranging from 1955:Q1 to 1979:Q2,

begins with a period shown to be consistent with regime F [Davig and Leeper (2006), Davig

and Leeper (2011)], followed by the “Great Inflation” period, and ends after the appoint-

ment of Paul Volcker as Chairman of the Federal Reserve Board in August 1979. The second

sample, ranging from 1982:Q4 to 2007:Q4, roughly corresponds to the “Great Moderation”

period as recognized in the literature and ends with the burst of recent recession. The third

sample is quite short-lived, ranging from 2008:Q1 to 2014:Q2, and spans the worst period of

the “Great Recession”. For convenience, we also term the first two samples as “pre-Volcker”

and “post-Volcker” samples.

We follow the conventional notation throughout: The n× 1 vector yt stacks the quarter

t observation; The sample ranges from t = 1 to T and its observations are collected in

the matrix Y with rows y′t; We denote the likelihood function by p(Y |θD) and the posterior

density by p(θD|Y ). See Appendix A for a detailed analysis of the state space representation

of linearized regime M and F DSGE models and Appendix B for a description of the data

set.
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1.3.2 Strong Econometric Interpretation

A typical finding under the strong econometric interpretation of the U.S. policy interactions

is that regime F, due to its implied excessive volatility of inflation, always gets rejected

against regime M [Traum and Yang (2011)]. This section examines the robustness of such

finding with respect to the maturity structure by assessing the quantitative importance of

long-term government debt. It is found that, relative to the “null” policy regime, there

is decisive statistical evidence in favor of regime M for the pre- and post-Volcker samples,

reaffirming the empirical finding of Traum and Yang (2011), and that in favor of regime F

for the Great Recession sample.

To provide a predictive distribution of the observable sequence Y , we must combine

our a priori belief about the vector θD that parameterizes regime D DSGE model with its

likelihood function. Doing so yields the first, complete, model space of policy interactions

M1 = {(p(θM ), p(Y |M, θM )), (p(θF ), p(Y |F, θF ))} (1.3.21)

where the pair of prior distribution and likelihood function, (p(θD), p(Y |D, θD)), refers to

a specific point in the model space M1. Translated into the terminology of Section 1.2,

we apply Bayesian methods to estimate each element of M1 and evaluate the informative-

ness of the joint experiment, p(Y |D, θM , θF ) = p(Y |D, θD), about function f(D, θD) = D

with respect to the prior distribution over the joint parameter space of (D, θD).15 Inter-

ested readers are directed to An and Schorfheide (2007) for a thorough review on Bayesian

methods that have been developed in recent years to estimate and evaluate DSGE models.

15Since regime M and F DSGE models are identically parameterized, (D, θM , θF ) boils down to
(D, θD).
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Priors and Posteriors

Table 1.2 in Appendix C reports the marginal prior distributions of regime M and F DSGE

model parameters employed in this article. We assume a priori that all parameters are

independent and consider only the parameter subspace that implies a unique DSGE model

solution. The two policy parameters (δb, ψπ) and the decay factor ρ play a central role in

driving the major model dynamics. We place relatively tight priors on (δb, ψπ) that put

little probability mass outside the determinacy region of each policy regime. The first prior

is concentrated within the realm of Regime M. The prior for the responsive coefficient of

fiscal instrument to debt deviation δb has a mean of 0.15 that stays far above the mean

benchmark value of γ
β − 1; fiscal authority passively adjusts net tax revenues to stabilize

debt.16 The prior for the responsive coefficient of monetary instrument to inflation deviation

ψπ is centered at Taylor (1999)’s value 1.5; monetary authority actively adjusts policy rate

to stabilize price level. The second prior focuses on the realm of regime F. The prior

for δb has a zero mean and its absolute value tightly stays within the mean benchmark

value of γ
β − 1; fiscal authority makes no systematic adjustment in net tax revenues in

response to debt deviation. The prior for ψπ is centered at 0.5; monetary authority forgoes

the conventional policy prescription of controlling inflation. Because the decay factor ρ

becomes very sensitive as it approaches to unity—a tiny change in its value alters the

average maturity of government debt significantly—a tight prior is placed on ρ with mean

0.9. Given the mean value of r(A), it implies an average maturity of about ten quarters.17

Appendix C details the numerical implementation of Random-Walk Metropolis (RWM)

16Table 1.2 implies the prior means γ = 1.004 and β = 0.995, leading to a benchmark value of
γ
β − 1 = 0.009 for δb. Relaxing the fiscal rule to a less stringent specification can blur the borderline

between regime M and F. For example, Canzoneri et al. (2001) argues that what is necessary to result
in regime M is that the private sector expects there will sooner or later be a fiscal retrenchment.
Davig et al. (2011) shows that a nontrivial probability of fiscal limit in the future can influence the
inflation today and poses a serious challenge to a central bank pursuing an inflation target.

17See Appendix C for a detailed description about the priors of other DSGE model parameters.
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algorithm for generating the posterior draws of DSGE model parameters [Schorfeide (2000)].

Cross-regime comparison of the priors and posteriors in Tables 1.3–1.5 of Appendix C

indicates that overall the likelihood is informative and contains quite different information

for the two policy regimes. Relative to the priors, the pre-Volcker steady state annual

inflation rate π(A) is significantly revised upward under regime M with posterior mean 7.49,

whereas it is shifted downward by more than half under regime F with posterior mean

1.47. Given the distinct implications about inflation volatility from the two policy regimes,

this result is not surprising—the posteriors are supposed to drive a wedge between regime

M and F estimates of π(A) so as to account for the same high levels of inflation in the

data.18 The wedge is preserved for the post-Volcker and Great Recession samples but with

a reversed direction for the latter, perhaps revealing a hidden inflationary pressure brought

about by the great expansion of the Fed balance sheet in the last few years. Moreover,

both policy regimes tend to attribute a substantial portion of uncertainty to one single

shock, e.g. fiscal shock under regime M for all samples and technology shock under regime

F for pre-Volcker sample. This signifies the inability of the four shocks to accommodate

in a credible way for a large number of random disturbances in reality, because the strong

econometric interpretation sets out to account for many more dimensions of variation in the

data than those that can be accounted for in the model. While incorporating additional

shocks may resolve this issue, Section 1.4 shows that such phenomenon becomes much less

obvious once regime M and F DSGE models are interpreted in the minimal sense.

For comparison ease, Figures 1.4–1.6 in Appendix C plot the prior and posterior pdf’s of

(δb, ψπ, ρ). The pre- and post-Volcker posteriors for δb are slightly revised downward under

regime M, whereas those for ψπ are moderately shifted upward. In addition, the higher

18A common misperception of the FTPL-type model is that it implies high levels of average
inflation. The drastically different estimates of π(A) suggest that it is possible for regime M and F
DSGE models to generate similar sample means of the inflation series. See, for instance, the prior
predictive analysis conducted in Leeper et al. (2014).
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post-Volcker posteriors for (δb, ψπ) indicate that the fiscal and monetary authorities took a

stronger stand on jointly controlling inflation and stabilizing debt from pre- to post-Volcker

periods. Because the Great Recession sample is quite short-lived, its posteriors for (δb, ψπ)

closely mimic the priors. There seems to be no substantial difference between the short-

term and long-term debt posteriors for (δb, ψπ) under regime M.19 In sharp contrast, the

long-term debt posteriors for ψπ under regime F are tightly centered at values much above

the short-term debt posterior means across all samples, and nearly hit the upper bound

for post-Volcker and Great Recession samples. This result reaffirms the role of long-term

nominal debt in reducing the reliance of fiscal financing on surprise inflation or deflation—it

allows the central bank to engineer a strong, though less than one-for-one, change in current

policy rate in the same direction as current inflation deviation so as to absorb a sizeable

portion of any fiscal shock. With the issuance of only one-period nominal debt, however,

such “strong” response will result in an increased issuance of nominal debt as the only fiscal

outcome of any deliberate increase in policy rate. Central banks, understanding this, will

then pursue a much weaker response. Finally, all samples remain uninformative about ρ

under regime M as its posteriors roughly mimic the prior, verifying a type of Ricardian

equivalence result that holds for changes in the average maturity of government debt. See

Appendix A for a further discussion on this point. Nevertheless, the posteriors for ρ under

regime F are significantly revised upward across all samples and tightly center at values very

close to unity.20 It highlights the important role of long-term nominal bonds in smoothing

the inflation series and policy rates under regime F—longer maturity (higher ρ) can greatly

reduce the required adjustment in inflation and policy rates in response to a given fiscal

shock.

19The sole exception is the pre-Volcker ψπ, whose long-term debt posterior centers at a value much
beyond its short-term debt posterior mean, denoted by superscript * in Figure 1.3.

20The post-Volcker posterior for ρ has a so small dispersion that it becomes an almost vertical
line.
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Impulse Response Functions

To gain further insights into the distinct model dynamics under regime M and F, it is

useful to highlight the various financing schemes of government debt from the linearized

government budget constraint

b̂t = −

[(
g(Q)

b∗
+

1

β
− 1

)
τ̂t −

1− g(Q)

b∗
ĝt

]
︸ ︷︷ ︸

primary-surplus-to-GDP ratio

− 1

β
π̂t︸︷︷︸

surprise inflation

+
ρ

γπ∗
P̂B,t︸ ︷︷ ︸

bond price

− 1

β
(ŷt − ŷt−1)︸ ︷︷ ︸

output growth

+
1

β
(b̂t−1 − P̂B,t−1)︸ ︷︷ ︸
remainder term

(see (1.5.11) in Appendix A)

The right-hand side (RHS) of (1.5.11) makes it clear that a fiscal consolidation can be accom-

plished through several channels—higher primary-surplus-to-GDP ratio, surprise inflation,

lower bond price, and higher output growth—or any of their combinations, irrespective of

which policy regime is in place. One fundamental difference between the two policy regimes

lies in their fiscal financing schemes; regime M relies primarily on direct taxation, whereas

regime F hinges crucially on the debt revaluation effect of surprise inflation. Moreover, a

pairwise comparison of the terms in (1.5.11) and those in the linearized government bud-

get constraint with one-period debt (1.5.16) indicates that, while a higher nominal interest

rate, through higher interest payments on outstanding debt, tends to raise debt ratio in

a short-term debt model, it can lower debt ratio in a long-term debt model by reducing

the bond price and hence the market value of outstanding debt. Figures 1.10–1.12 in Ap-

pendix C depict the dynamic responses of output growth, inflation, nominal interest rate,

and real debt-to-GDP ratio to one percent unanticipated changes in the fiscal and monetary

instruments under regime M (left two columns) and F (right two columns). The qualitative

features of these impulse responses largely conform to those of the responses evaluated at

the prior means, detailed interpretation of which can be found in Appendix A. We shed light
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on two key findings, which hold across all samples, about the contemporaneous correlations

between the debt ratio and the two policy instruments.

First, analogous to the typical story of Ricardian equivalence, a fiscal contraction (first

and third columns) has practically none equilibrium effects on non-fiscal variables under

regime M. With unchanged output growth, inflation, and nominal interest rate but higher

real primary surplus ratio, the real debt ratio must fall by (1.5.11), giving rise to a negative

contemporaneous correlation between debt ratio and fiscal instrument. This is in sharp

contrast to the scenario under regime F. By (1.3.20) a fiscal contraction forces the market

value of government liabilities to be backed up more than sufficiently by the primary sur-

pluses, making the household feel less wealthier and hence try to substitute consumption

for government bonds. While a surprise deflation in the current period must occur under

regime F to eliminate the negative wealth effect so that (1.3.20) can be restored, long-term

nominal bonds also make possible the role of surprise changes in current and future nom-

inal interest rates in revaluing government liabilities. In response to the falling inflation

and output, central bank can engineer a monetary expansion by moderately reducing the

nominal interest rate. This bids up the bond price and hence the market value of govern-

ment liabilities, effectively reducing the complete reliance on current deflation. With falling

inflation, output, and nominal interest rate, the real debt ratio increases by (1.5.11), giving

rise to a positive contemporaneous correlation between debt ratio and fiscal instrument. It

is worthwhile to point out that the argument of Canzoneri et al. (2001) that both regime M

and F can produce such positive contemporaneous correlation indeed rests on their version

of regime M fiscal policy rule based on Bohn (1998)’s empirical finding: primary surpluses

have responded positively to contemporaneous government liabilities. This is quite different

from the fiscal policy rule (1.3.16).

Second, due to the costly price adjustment, a monetary contraction (second and fourth

26



columns) preserves its usual contractionary effects on the economy under regime M. Higher

policy rate also bids down the bond price but the contractionary effect of lower bond price

on debt ratio is fully offset by those of lower output growth and inflation. As a result, the

real debt ratio increases by (1.5.11), giving rise to a positive contemporaneous correlation

between debt ratio and monetary instrument. This is again in sharp contrast to the scenario

under regime F. By (1.3.20) a monetary contraction lowers the bond price and hence forces

the market value of government liabilities to be backed up more than sufficiently by the

primary surpluses. It follows almost tautologically, as in the fiscal contraction under regime

F, that a surprise deflation in the current period must occur, mimicking the initial impact of

a monetary contraction on inflation under regime M. But as the nominal interest rate falls

back to its steady-state, bond price starts increasing and (1.3.20) requires a surprise inflation

in the future periods so as to reestablish (1.3.20), thereby producing the “inflation reversal”

phenomenon documented by Kim (2003). Put differently, long-term nominal bonds allow

central bankers aiming at inflation stabilization to make a tradeoff between current and

future inflation or deflation in response to various shocks in the economy. Because the

contractionary effect of lower bond price on debt ratio dominates those of the lower output

growth and inflation, the real debt ratio decreases by (1.5.11), giving rise to a negative

contemporaneous correlation between debt ratio and monetary instrument.21

But that regime M and F DSGE models can produce opposite implications for simple

correlations among selected observables ought not to be regarded as powerful identifying

restrictions to discern which policy regime generated the data. For example, the sign of

contemporaneous correlation between debt ratio and monetary instrument relies heavily on

the magnitude of the effect of changes in bond price relative to those of changes in output

growth and inflation taken together, making such correlation a fragile identifying restriction.

21Such negative correlation agrees, at least qualitatively, with those calculated from the pre- and
post-Volcker samples.
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Posterior Odds

Since the model spaceM1 contains more than one element, it is natural to make cross-regime

comparison by evaluating the relative fit of each model, measured by the posterior odds.

With equal prior model probabilities, p(M) = p(F ) = 1
2 , this amounts to comparing the

marginal data densities of regime M and F DSGE models. Conditional on the prior means,

we simulate the long-term debt regime M and F DSGE models to obtain two data sets with

80 observations each. The upper panel reports the log marginal data densities of long-term

debt models for the two simulated samples, whereas the lower panel compares those of short-

term and long-term debt models for the three actual samples. Throughout this article we

treat regime F as the “null regime” and follow the guidance of Jeffreys (1961) for interpreting

the magnitude of Bayes factor—statistical evidence in favor of regime M as opposed to

regime F. Factors in [1, 3.2] signify “very slight evidence”; Factors in [3.2, 10] signify “slight

evidence”; Factors in [10, 100] signify “strong to very strong evidence”; Factors exceeding

100, or 4.6 in logarithm, signify “decisive evidence”.22 We summarize the results in Table

1.1 below.

22A log Bayes factor of 4.6 plays a role similar to a significance level in the frequentist approach.
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Table 1.1: Model Fit of Regime M and F DSGE Models

ln p(Y |M) ln p(Y |F ) Log Bayes Factor

Regime Long Debt Long Debt Long Debt

M [L] 394.9 226.4 168.6∗

F [L] 166.1 315.0 −148.9∗

Sample Short Long Short Long Short Long

55− 79 −286.3 −278.2 −371.8 −313.5 85.6∗ 35.3∗

82− 07 −114.7 −107.7 −354.9 −156.9 240.2∗ 49.1∗

08− 14 −153.5 −151.4 −240.4 −145.5 86.9∗ −5.8∗

Notes: All log marginal data densities are approximated using Geweke (1999)’s modified harmonic

mean estimator. Debt maturities are indicated in brackets. The log Bayes factors indicate the extent

to which data supports regime M against regime F DSGE models. Decisive evidence in favor of the

regime with superior fit is denoted by superscript *, corresponding to a Bayes factor greater than

100, or 4.6 in logarithm.

First, the enormous magnitudes of Bayes factors for the simulated samples indicate

that the true policy regime is always decisively favored within a complete model space,

making it unlikely to select the misspecified one by Jeffreys’ criterion. For example, when

the true policy regime is regime M, the log marginal data density of regime F is 226.4,

which translates into a Bayes factor of about e169. This is significantly larger than 100,

constituting decisive evidence in favor of regime M. Similarly, when the data is generated by

regime F, the inverse of the Bayes factor is about e149, again significantly larger than the 100

benchmark ratio for decisive evidence in favor of regime F. Given the starkly different model

dynamics under regime M and F, the immediate rejection of the misspecified policy regime is

not surprising at all. Recall that a fiscal contraction generates practically none equilibrium

effects on non-fiscal variables under regime M, whereas it preserves the contractionary effects

on the economy under regime F. Also, regime M and F can produce opposite implications
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for the contemporaneous correlation between debt ratio and policy instruments. These

reverse model dynamics could easily emerge as obvious forms of misspecification. It follows

naturally that the identification of policy regime, in the sense of data informativeness about

function f , from the equilibrium time series will not pose a serious challenge, provided that

the model space M1 is complete. This sanguine view, however, were it brought to guide

our regime selection for the actual samples, would turn out to be inconclusive once the

econometric interpretation for regime M and F DSGE models takes its weakest form.

Second, the strong econometric interpretation always remains unambiguous about regime

selection for the long-term debt models; there are decisive statistical evidence in favor of

regime M for the pre- and post-Volcker samples, extending the empirical finding of Traum

and Yang (2011) to the long-term debt case, and that in favor of regime F for the Great

Recession sample. The significant increase in Bayes factors from pre-Volcker (e35) to post-

Volcker (e49) periods turns out to be expected and is by and large attributable to the

distinct mechanisms of fiscal financing underlying the two policy regimes. For example, to

the extent of accounting for the much smoother inflation rates in the post-Volcker sample,

that the fiscal backing of government debt is always forthcoming under regime M allows

the Fed to actively pursue its inflation target, greatly reducing the variability of inflation

series. The fiscal backing, however, does not take place under regime F in which government

liabilities are primarily financed through surprise changes in inflation and policy rates. To

confront the data with regime F DSGE model, a sizeable extension of the average maturity

of government debt is needed to reduce the required adjustments in inflation and policy

rates—by (1.3.20) the longer the average duration of government debt (higher ρ), the less

the required adjustments. This explains why the post-Volcker posterior distribution of ρ

tightly centers at about 0.997 that is significantly above its prior mean. Furthermore, be-

cause of the great fiscal uncertainty and its resulting unanchored fiscal expectations during
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the Great Recession—a period to which regime F fits well—the inverse of the Bayes factor

for this latest sample is approximately 330, a value constituting decisive evidence in favor

of regime F. Lastly, building on the previous result, the much milder magnitudes of Bayes

factors for the actual samples than those for the simulated samples tend to forge some

statistical evidence against the completeness assumption of model space.

Third, a cross-regime comparison of the Bayes factors in favor of long-term debt mod-

els as opposed to short-term debt ones suggests that extending the average maturity of

government debt always plays a role in improving model fit, and the improvement gets

much more pronounced under regime F. This confirms a conjecture of Traum and Yang

(2011) that introducing nominal bonds of longer maturity may bring closer the two pol-

icy regimes in terms of model fit. For example, these factors (in logarithm) are given by

[8.1, 7.0, 2.1] for regime M, and [58.3, 198.0, 94.9] for regime F. Not surprisingly, the most

significant improvement happens to regime F with the post-Volcker sample. The short-term

debt model receives a big penalty in model fit under regime F because it relies entirely on

surprise inflation or deflation as a fiscal shock absorber, and the implied excessive volatility

of inflation is apparently at odds with the data. But more importantly, to the extent that

regime selection based on relative model fit is integral to interpretations of data, this last

result makes it clear that abstraction from government debt of longer maturity can funda-

mentally alter our understanding of the interactions between fiscal and monetary policies.

The short-term debt Bayes factors, which are [85.6, 240.2, 86.9] in logarithm, all constitute

decisive evidence against regime F, leading to a uniform acceptance of the conventional

perspective on inflation determination that dominates policy thinking.

As a final remark, we emphasize that the decisive rejection of either policy regime rests

more fundamentally on the fact that their DSGE models are forced to provide a fully trusted

marginal likelihood function—a complete probabilistic characterization of the observables

31



Y . Although the components of Y are not collectively confined to a degenerate space,

such provision by regime M and F DSGE models with a set of selected shocks can still

be ambitious. By a usual transformation argument, one can always use these primitive

predictive densities to determine the derived ones of arbitrary functions of Y , most of

which are likely to be at odds with the data. This explains why many rational expectations

models in their early stage failed to pass the likelihood-based specification tests. As Thomas

J. Sargent recalled in Evans and Honkapohja (2005):

My recollection is that Bob Lucas and Ed Prescott were initially very enthu-

siastic about rational expectations econometrics...But after about five years of

doing likelihood ratio tests on rational expectations models, I recall Bob Lucas

and Ed Prescott both telling me that those tests were rejecting too many good

models.

After all, regime M and F DSGE models are mainly intended to study various aspects

of policy interactions and there are likely to be other dimensions of the reality along which

they are highly misspecified. Therefore, it is not the behavioral implications of regime M

and F to be blamed, but rather the difficulty of developing their DSGE models to the point

of accounting for what they claim to characterize in a credible way. Because the strong

econometric interpretation requires an explicit characterization of too many features in the

data that are poorly accounted for in the DSGE models, policy regime selection under this

category is subject to serious suspicion. On the positive side, however, the suspicion can be

avoided by considering a more modest claim for regime M and F DSGE models.
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1.4 Complete Model Space: II

To accommodate the limited scope of DSGE models and avoid the logical pitfall of strong

econometric interpretation, this section treats regime M and F DSGE models as two par-

tially trusted econometric models for providing predictive distributions of the selected pop-

ulation moments of Y . Following the terminology of Geweke (2010), we investigate the

minimal econometric interpretation of the post-war U.S. fiscal and monetary policy inter-

actions. It leads to a major departure from the conventional likelihood-based econometrics

underlying the strongly interpreted DSGE models, and greatly alters the nature of the em-

pirical findings about regime selection as established in Section 1.3. The use of regime M

and F DSGE models as two sources of a priori information about the selected population

moments renders these models incomplete since they do not yield immediately testable im-

plications for the observables. Therefore, it is necessary to posit a separate link between

the population moments and the observables by integrating regime M and F DSGE models

with an auxiliary econometric model that captures the empirical regularities reasonably

well. While maintaining the completeness assumption of model space, this step creates a

set of hybrid models that enlarges the model space of policy interactions upon M1. We

show that there is barely decisive statistical evidence supporting either of the two policy

regimes in the context of minimal econometric interpretation, rendering regime M and F

DSGE models nearly observationally equivalent in the sense of Definition 4.

1.4.1 Methodological Issues

We establish some notations. Let the collection of selected population moments be denoted

by m = EθD [g(Y )] for D ∈ {M,F}, where g(Y ) represents a matrix of selected sample

moments and expectation is taken with respect to the likelihood function of θD. Note that

the prior p(θD) induces a corresponding prior p(m|D), but otherwise regime D DSGE model
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has implications for neither Y nor f(Y ). To rebate regime D its empirical contents, it is

necessary to merge both policy regimes into a third econometric model E, parameterized

by θE , that specifies a likelihood function p(Y |θE ,m,E) together with a conditional prior

p(θE |m,E). Model E is also incomplete as it provides no prior p(m|E). Instead, the prior

for m is supplied by either regime M though p(m|M) or regime F through p(m|F ). Under

certain regularity conditions [see Geweke (2010), Condition 4.1, p. 111] that are satisfied

in this article, policy regime selection can be based on the following posterior odds

p(M |Y,E)

p(F |Y,E)
=
p(M |E)

p(F |E)︸ ︷︷ ︸
prior odds

∫
p(m|M)p(Y |m,E)dm∫
p(m|F )p(Y |m,E)dm︸ ︷︷ ︸

Bayes factor

(1.4.1)

where we assume a priori that both policy regimes are equally likely given model E, i.e.

p(M |E) = p(F |E) = 1
2 . In the example of DSGE models designed to study the U.S. equity

premium, Geweke (2010) assesses the Bayes factor in (1.4.1) by means of kernel density

approximation, and shows that the so-called equity premium puzzle disappears when m

consists of the population means for risk free rate and equity premium and model E is

given by a Gaussian vector autoregression (VAR). While this nonparametric approach has

the advantage of allowing the researcher to specify at will the population moments, it is

subject to the usual curse of dimensionality problem when m is of high dimension.

We adopt an alternative but closely related method advocated in Del Negro and Schorfheide

(2004), called DSGE-VAR approach, in which the sole function of regime M and F DSGE

models is to provide prior distributions for reduced-form VARs. Its earlier predecessors

include DeJong and Whiteman (1993) and Ingram and Whiteman (1994), which are subse-

quently extended by, among others, Del Negro and Schorfheide (2006, 2009), Del Negro et al.

(2007), and Park (2011). This approach turns out to be very efficient from a computational

perspective. What is given up is the flexibility of selecting the set of population moments
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that DSGE models aim to characterize. Nevertheless, the contents of m in the DSGE-VAR

approach should be rich enough to incorporate most types of population moments whose

sample counterparts are frequently used to calibrate and evaluate similar DSGE models.

To implement the DSGE-VAR approach, let yt = [YGRt, INFt, INTt,DTYt]
′ be an n×1

vector (n = 4) of observables and consider the following p-th order (p = 4) VAR model

yt = Φ0 + Φ1yt−1 + · · ·+ Φpyt−p + ut (1.4.2)

where ut is a vector of one-step-ahead forecast errors that has a multivariate Gaussian

distribution N(0,Σu) conditional on the past observations of yt. Let Y be a T × n matrix

with rows y′t. Also, define k = 1 + np and let X be a T × K matrix with rows x′t =

[1, y′t−1, . . . , y
′
t−p], U a T × n matrix with rows u′t, and Φ = [Φ0,Φ1, . . . ,Φp]

′. Then model

E can be compactly expressed as Y = XΦ + U with (θE ,m) = (Φ,Σu) since any choice of

m can be recovered through (1.4.2) as a function of (Φ,Σu). To induce regime D DSGE

model prior for the VAR parameters (Φ,Σu), we let the data (Y,X) be augmented with

T ∗ = λDT dummy observations (Y ∗(θD), X∗(θD)) that are simulated from regime D DSGE

model. The scaling parameter λD can be thought of as a tightness measure that controls

the weight of regime D DSGE model prior relative to VAR likelihood. Note that we may

interpret the following artificial likelihood function

pλD(Y ∗(θD)|Φ,Σu)

∝ |Σu|−λDT/2 exp

{
−1

2
trace[Σ−1

u (Y ∗
′
Y ∗ − Φ′X∗

′
Y ∗ − Y ∗′X∗Φ + Φ′X∗

′
X∗Φ)]

}
(1.4.3)

as a prior kernel density for (Φ,Σu) that summarizes the information about VAR parameters

contained in the simulated sample. To elicit the minimal econometric interpretation, we

replace the collection of nonstandardized artificial sample moments [Y ∗
′
Y ∗, Y ∗

′
X∗, X∗

′
X∗]
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in (1.4.3) by their expected values, and denote the resulting regime D DSGE model prior

by pλD(Φ,Σu|θD). This step delivers an explicit specification for m

m =
[
EθD [Y ∗

′
Y ∗],EθD [Y ∗

′
X∗],EθD [X∗

′
X∗]

]
(1.4.4)

It is straightforward to see thatm includes most population moments of our interest, ranging

from the population means of observables to up to their p-th order population autocovari-

ance matrices. For example, m retains the volatility implications for inflation and nominal

interest rate, two of the most distinctive features of regime M and F DSGE models. Com-

bining the Regime D DSGE model prior with the VAR likelihood p(Y |Φ,Σu, E), we call the

resulting hybrid model Regime D DSGE-VAR model. Observe that pλD(Φ,Σu|θD) depends

on θD only through m. This property allows us to compute the Bayes factor in favor of

Regime M as opposed to Regime F DSGE-VAR models as

pλM (Y |M,E)

pλF (Y |F,E)
=

∫ ∫
p(Y |Φ,Σu, E)pλM (Φ,Σu|θM )p(θM )d(Φ,Σu)dθM∫ ∫
p(Y |Φ,Σu, E)pλF (Φ,Σu|θF )p(θF )d(Φ,Σu)dθF

=

∫ ∫
p(Y |Φ,Σu, E)pλM (Φ,Σu|m)p(m|M)d(Φ,Σu)dm∫ ∫
p(Y |Φ,Σu, E)pλF (Φ,Σu|m)p(m|F )d(Φ,Σu)dm

=

∫
p(m|M)pλM (Y |m,E)dm∫
p(m|F )pλF (Y |m,E)dm

(1.4.5)

echoing the Bayes factor in (1.4.1); it conforms to the regime selection criterion under

minimal econometric interpretation.

1.4.2 Minimal Econometric Interpretation

To fix idea, we let the scaling parameter λD take values in a finite set Λ of grid points

and index the strongly interpreted DSGE model by λD = ∞.23 To endow Regime D with

23The notation differs from Del Negro and Schorfheide (2004), where λ = ∞ refers to a VAR
approximation of the DSGE model subject to no misspecification.
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refutable implications, we must combine the prior for regime D DSGE-VAR model param-

eters (θD,Φ,Σu) with its VAR likelihood function. Doing so gives the second, complete,

model space of policy interactions

M2 = {(pλD(θD,Φ,Σu), p(Y |Φ,Σu, E)) : D ∈ {M,F}, λD ∈ {Λ,∞}} (1.4.6)

where the pair of prior distribution and likelihood function, (pλD(θD,Φ,Σu), p(Y |Φ,Σu, E)),

represents a specific point in the model space M2. Translated into the terminology of

Section 1.2, we apply Bayesian methods to estimate each element of M2 and evaluate the

informativeness of the joint experiment, p(Y |D,λD, θD,Φ,Σu, E) = p(Y |Φ,Σu, E), about

function

f(D,λD, θD,Φ,Σu) = D, D ∈ {M,F} (1.4.7)

with respect to the prior distribution over the joint parameter space of (D,λD, θD,Φ,Σu).

The road ahead. Two sets of useful exercises can shed light on the empirical implications

of regime M and F DSGE-VAR models. First, we use a data-driven procedure to determine

the value of λD that attains the highest model fit, measured by the marginal data den-

sity. This value, denoted as λ̂D, measures the overall degree of misspecification associated

with Regime -D DSGE model, thereby quantifying how consistent regime D is with the

data. The posterior draws of (θD,Φ,Σu) corresponding to λ̂D are then used to compute

the impulse response functions of regime D DSGE and DSGE-VAR models. Second, we

make cross-regime comparison for each λM = λF and examine whether there exist regime

M and F DSGE models in M2, either interpreted strongly or minimally, that are nearly

observationally indistinguishable.
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Posteriors of DSGE Parameters

One major improvement of the DSGE-VAR approach over earlier procedures is that it

enables posterior inference with respect to the DSGE model parameters. In particular, the

posterior for regime D DSGE model parameters pλD(θD|Y,E) can be obtained by combining

its prior p(θD) with

pλD(Y |θD, E) =

∫
p(Y |Φ,Σu, E)pλD(Φ,Σu|θD)d(Φ,Σu) (1.4.8)

See Appendix A of Del Negro and Schorfheide (2004) for the expression of pλD(Y |θD, E).

The posterior estimates of regime M and F DSGE model parameters are reported in Tables

1.6–1.8 of Appendix C. Relative to the strong econometric interpretation, the likelihood

leads to a more modest updating on the prior and contains less different information for the

two policy regimes. Except for the post-Volcker π(A) under regime M, the estimates of π(A)

lie much closer to the prior under both policy regimes, and the cross-regime wedge needed

to reconcile the distinct implications for inflation volatility from regime M and F turns

out to be much smaller. Similar to Del Negro et al. (2007), most of the scaled standard

deviation parameters are estimated to be much lower than those under strong econometric

interpretation, with the sole exception being 100σF under regime F. Moreover, only regime

M tends to attribute a major portion of uncertainty to one single shock—fiscal shock—for

all samples. This is because by claiming to account for the selected population moments

m, the minimally interpreted regime M and F DSGE models void a direct characterization

of the variation in the data that can never be fully accounted for in the model with a set of

selected shocks.

For comparison ease, Figures 1.7–1.9 in Appendix C plot the prior and posterior pdf’s

of (δb, ψπ, ρ). The posteriors roughly mimic those under strong econometric interpretation.
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The only exception is the pre-Volcker posterior for ψπ under regime F, whose DSGE-VAR

estimate is tightly centered at a value close to unity, much above its DSGE posterior mean.

In other words, all the actual samples turn out to be quite informative about the role of long-

term nominal debt in smoothing the inflation series and policy rates under the minimally

interpreted regime F DSGE model.

Impulse Response Functions

Another major improvement of the DSGE-VAR approach is that it allows for a detailed

assessment of DSGE model misspecification by comparing the impulse responses from the

DSGE model and a benchmark DSGE-VAR model identified by the DSGE cross-equation

restrictions. Following Del Negro and Schorfheide (2004), this section uses regime M and

F DSGE cross-equation restrictions to identify their DSGE-VAR models and assesses the

DSGE model misspecification in terms of predicting the policy effects under each regime.

It can be shown that the initial impacts of the structural shocks εt on the observables yt in

any exactly identified VAR (1.4.2) and the state space representation of regime D DSGE

model are given by

(
∂yt
∂ε′t

)
VAR

= ΣtrΩ and

(
∂yt
∂ε′t

)
DSGE

= ΣD
tr(θD)ΩD(θD) (1.4.9)

where Σtr is the Cholesky decomposition of Σu, Ω is an arbitrary orthonormal matrix,

ΣD
tr(θD) is lower triangular, ΩD(θD) is orthonormal, and εt is normalized to have unit vari-

ance. To identify regime D DSGE-VAR model, we maintain Σtr but replace Ω with ΩD(θD)

in (1.4.9). Figures 1.13–1.15 in Appendix C depict the dynamic responses of output growth,

inflation, nominal interest rate, and real debt-to-GDP ratio to one percent unanticipated

changes in the fiscal and monetary instruments under regime M (left two columns) and F

(right two columns). The VAR impulse responses, at least qualitatively, conform to those
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of the DSGE models and in many dimensions place most probability mass in regions that

encompass the DSGE impulse responses. This suggests that Σtr and ΣD
tr(θD) are quite

similar.24 In what follows, we document some evidence for DSGE model misspecification

by focusing on the dimensions along which the DSGE impulse responses escape from the

VAR 90% confidence bands.

First, where the DSGE model predicts practically none equilibrium effects on non-fiscal

variables in response to a fiscal contraction under regime M (first column), the pre-Volcker

VAR impulse responses suggest that it does raise inflation and policy rates in the subsequent

periods. This is because the data predicts a much more persistent dampening effect of higher

net taxes on debt ratio than the DSGE model. The household, while having a firm belief

about fiscal authority’s mandate on debt stabilization, will anticipate lower future net taxes

for an extended period of time. By (1.3.20) the market value of government liabilities is

forced to be backed up less than sufficiently by the primary surpluses, making the household

feel wealthier and try to substitute government bonds for consumption. In response to the

rising aggregate demand and inflation, central bank reacts actively by raising the nominal

interest rate. In other words, the Ricardian equivalence story breaks down during the pre-

Volcker periods, which indicates that the assumption of non-distortionary taxation seems

to be a misspecified structure under regime M. However, no obvious evidence against such

assumption is found for the post-Volcker and Great Recession samples as the 90% confidence

band of any non-fiscal variable centers around zero. Another notable discrepancy between

the VAR and DSGE impulse responses is that regime M and F DSGE models tend to

underestimate the persistent impacts of a fiscal contraction (first and third columns) on debt

ratio for the two pre-recession samples, perhaps suggesting that a more flexible exogenous

process of fiscal shock is preferable.

24Such similarity becomes most apparent during the Great Recession as the VAR and DSGE
posterior mean responses nearly coincide. This is because the Great Recession sample is quite short-
lived and the DSGE model priors play a dominating role in shaping the DSGE-VAR posteriors.
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Second, where regime F DSGE model predicts an “inflation reversal” phenomenon to

take place in about one year following a monetary contraction (fourth column) for the two

pre-recession samples, the VAR impulse responses suggest that such phenomenon happens

much sooner for the pre-Volcker sample but nearly disappears for the post-Volcker sample.

This seems to be evidence favoring a more flexible exogenous process of monetary shock.

In addition, the signs of the estimated impacts of a monetary contraction on debt ratio

from regime M and F DSGE-VAR models remain quite ambiguous across all samples. In

other words, the data turns out to be uninformative about the magnitude of the effect of

changes in bond price relative to those of changes in output growth and inflation lumped

together. This makes the sign of contemporaneous correlation between debt ratio and

monetary instrument a fragile identifying restriction, a point made earlier in Section 1.3.2.

Posterior Odds

It is not surprising that the minimally interpreted regime M and F DSGE models can also

produce starkly different dynamic implications simply because model E is identified by two

sets of fundamentally different cross-equation restrictions. Nevertheless, we show that the

distinct model dynamics do not translate into appreciable differences in the model fit as

under strong econometric interpretation. We also document the overall degree of model

misspecification for each policy regime by finding the values of (λ̂M , λ̂F ) that attain the

highest marginal data densities. The larger the value of λ̂D, the less by which regime

D DSGE cross-equation restrictions must be relaxed so as to maintain a balance between

model fit and model complexity. Due to computational concerns, Λ is taken to be a finite set

of grid points that are sufficient to trace out the typical “inverted-U” shape of the marginal

data density as a function of λD [Del Negro and Schorfheide (2006), Del Negro et al. (2007)].

Figure 1.1 below gives a graphical illustration of the log marginal data densities (left three
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panels) for regime M and F DSGE-VAR models and the associated log Bayes factors (right

three panels). We report the numerical results in Table 1.9 of Appendix C.

First, overall the log marginal likelihood functions, as depicted in Panels (a,c,e) of Figure

1.1, display the expected inverted-U shape, constituting strong statistical evidence of DSGE

model misspecification—as regime M and F DSGE model priors shrink the estimates of VAR

parameters toward the neighborhoods of their cross-equation restrictions, the DSGE-VAR

model fits deteriorate substantially.25 In addition, the overall degrees of regime M and

F DSGE model misspecification turn out to be quite similar as the blue and red curves

peak at roughly the same value. For example, λ̂M ≈ λ̂F ≈ 0.5 for the pre-Volcker sample,

whereas λ̂M ≈ λ̂F ≈ 1 for the post-Volcker sample. The sole exception happens to be regime

F DSGE-VAR model for the Great Recession sample. Its log marginal likelihood function

persistently stays near the peak level for λF > λ̂F ≈ 2 and displays no tendency to drop even

when the artificial sample size is nine times as the actual one. In contrast, the log marginal

likelihood function of regime M DSGE-VAR model eventually drops though it peaks at

a similar value to regime F. On one hand, this may suggest that the likelihood remains

uninformative about the overall degree of regime F DSGE model misspecification for the

short-lived Great Recession sample. But on the other, considering Lawrence Christiano’s

comment on the DSGE-VAR approach—it is rare for the log marginal likelihood function

of a correctly specified DSGE model to be steeply sloped for λ > λ̂—it seems to hint

that regime F conforms quite well to the macroeconomic features in recent years, at least

better than its cousin. After all, the fiscal development during the Great Recession and

its accompanying worldwide financial crisis has made it clear that we are in a period of

remarkable shifts in fiscal policy and people’s expectations about future fiscal behavior are

likely to be uncertain. Therefore, a macro model of empirical relevance should be one that

25An and Schorfheide (2007) shows that the marginal likelihood function becomes monotonically
increasing when the DSGE model is correctly specified.
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treats fiscal policy and its interactions with monetary policy in a serious and realistic way.
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Figure 1.1: Model Fit and Bayes Factor. Notes: Panels (a,c,e) display the log marginal

data densities (y-axis) of regime M (blue) and F (red) DSGE-VAR models as functions of

DSGE prior weight λ (x-axis) for all samples. Panels (b,d,f) display the log Bayes factors

associated with strong and minimal econometric interpretations. for all samples
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Second, except for a few extreme cases marked by superscript * in Table 1.9, the Bayes

factors in favor of the policy regime with superior fit, as depicted in Panels (b,d,f) of

Figure 1.1, uniformly fall below those under strong econometric interpretation, and con-

sistently stay within a “small” neighborhood of zero that signifies no decisive statistical

evidence.26 It underscores the essence of minimal econometric interpretation of the U.S.

policy interactions—the minimally interpreted regime M and F DSGE models are nearly

observationally equivalent. This greatly alters the nature of the findings regarding policy

regime evaluation established under strong econometric interpretation in Section 1.3. To

the extent that the long-term debt regime M and F DSGE models also share some strong

similarity in model dynamics, this near observational equivalence result may not be too

surprising. Recall that because a contemporaneous surprise deflation is required to reestab-

lish the equilibrium, a monetary contraction under regime F, despite operating through a

different mechanism, preserves its contractionary effects, mimicking the initial impact of a

monetary contraction on inflation under regime M. Going forward, this subtle observational

equivalence result makes the practice of selecting the policy regime with highest posterior

probability unreliable, though it has been shown, e.g. Fernandez-Villaverde and Francisco

Rubio-Ramirez (2004), that posterior odds asymptotically favor the DSGE model closest

to the true model in the Kullback-Leibler sense.

The minimal econometric interpretation of the U.S. policy interactions also sheds new

light on the existing understandings of the macroeconomic dynamics during pre- and post-

Volcker periods. First, it is often discussed in the literature as if the high level and volatility

of inflation of the 1970s could have been prevented had the monetary policy followed the

“right” track. Fiscal policy, however, also underwent dramatic changes at that time and

economic theory on policy interactions makes it clear that monetary policy will lose its

26Because regime F DSGE model fares better in model fit under strong econometric interpretation,
all the Bayes factors in Panel (f) should be interpreted with negative signs.
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power of controlling inflation in an environment where expectations about fiscal behavior

are unanchored.27 In other words, regime F seems to fit well into what was happening

in the U.S. in the 1970s though it is found in Traum and Yang (2011) that the strongly

estimated regime F DSGE model receives a flat rejection. As can be seen from Panel (a)

that the blue and red curves closely track each other for most values of (λM , λF ), there

is barely decisive statistical evidence supporting either of the two minimally interpreted

policy regimes. Second, the “Good Policy” explanation, as opposed to “Good Luck”, that

has been attributed to the increasing macroeconomic stability during post-Volcker periods

argues that monetary policy has been active, characterized by Taylor-type rule, since the

appointment of Paul Volcker as Chairman of the Federal Reserve Board. This argument also

renders monetary policy omnipotent and ignores the alternative transmission mechanism

through which fiscal policy can play a key role in determining the price level. Although the

blue and red curves do not closely track each other as in Panel (a), Panel (c) suggests again

that there is virtually no decisive statistical evidence supporting either of the two minimally

interpreted policy regimes.

As a final remark, that regime M and F DSGE models are both detected to be mis-

specified and to a similar degree reinforces the statistical evidence against the completeness

assumption of model space found in Section 1.3. This makes the identification of policy

regime in practice even more challenging. We conjecture that such identification problem

also generalizes to medium- or large-scale regime M and F DSGE models with richer model

dynamics and more observables, and leave its exploration for future research.

27For example, the Ford tax cut and tax rebate had spurred primary deficits beginning in 1975
that sustained at an annual rate of 20% of the market value of outstanding debt [see Figure 1, Sims
(2011)].
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1.5 Concluding Remarks

This article compares two econometric interpretations of the post-war U.S. fiscal and mon-

etary policy interactions. The main findings were summarized in the introduction and I

repeat them more briefly here: [i.] the strong, likelihood-based econometric interpretation

tends to powerfully favor the conventional view on inflation determination; [ii.] this result

breaks down under the alternative, minimal econometric interpretation. Taken together,

these findings imply that the apparent statistical support in favor of the conventional view

over the fiscal theory stems largely from the strong econometric interpretation rather than

from compelling empirical evidence. Conventional DSGE models suggest that the two views

on inflation determination are nearly observationally equivalent under the minimal econo-

metric interpretation.

Because statistical evidence suggests that both policy regime models are misspecified,

this article also questions the completeness assumption of the model space underlying ex-

isting regime-comparison exercises. Perhaps neither the regime M nor the regime F DSGE

models even stay close to the true data generating process. Therefore, a prudent policy-

maker, while contemplating the potential impacts of a deliberate policy intervention, is

unlikely to rest her policy thinking solely upon any single regime. From a modeling per-

spective, this requires combining the dynamic implications from both policy regimes. For

example, one route is to allow for the spillover effects of alternative policy interaction in a

regime-switching framework [Davig and Leeper (2006, 2011), Bianchi and Melosi (2013)].

Another promising route is to model the decision makers as those who regard regime M

and F as two approximations to the “true” policy behavior, and want decision rules to be

robust with respect to a set of policy regimes nearby their approximating ones [Hansen and

Sargent (2007)]. Following Geweke (2010) and Negro et al. (2014), we also suggest a third

route that explores the idea of linear opinion pool models to overcome the identification
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issue with policy regime, and formally address it in Leeper et al. (2014). These approaches

all point toward modeling the policy interactions within an incomplete model space where

it is not assumed that the true data generating process has been included.

It is worthwhile to equip the foregoing small-scale DSGE model with more structural

features and observables so that even the minimal econometric interpretation might become

informative about the prevailing regime. But two points made here should stand the test

of these extensions. First, including a maturity structure for government debt always plays

a role in improving the model fit, and the improvement gets much more pronounced under

regime F. Second, Bayes factors will typically be deflated in general once the underlying

econometric interpretation is relaxed from being strong to minimal, making the strongly

interpreted policy regime with inferior model fit at best nominally rejected.

Online Appendix

Appendix A: DSGE Model Analysis

First, substituting the bond pricing relation (1.3.3) into household’s budget constraint

(1.3.2) and rearranging terms yield

PtCt + Et[Qt+1|t(1 + ρPB,t+1)Bt] = (1 + ρPB,t)Bt−1 + [PtWtHt + PtDt − Tt] (1.5.1)

where we also assume a borrowing limit each period, according to which the household’s

portfolio must satisfy

(1 + ρPB,t+1)Bt ≥ −
∞∑

s=t+1

Et+1[Qs|t+1(PtWtHt + PtDt − Tt)]

for each possible state in period t + 1; it says that the household must never accumulate

debts greater than the present value of all future after-tax income, which rules out the Ponzi
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schemes. The usual transversality condition on asset accumulation applies, i.e.

lim
T→∞

Et[QT |t(1 + ρPB,T )BT−1] = 0 (1.5.2)

which says that it is not optimal for household to overaccumulate assets. The sequence of

flow budget constraints (1.5.1) combined with the transversality condition (1.5.2) is then

equivalent to an intertemporal budget constraint

∞∑
s=t

Et[Qs|tPsCs] = (1 + ρPB,t)Bt−1 +
∞∑
s=t

Et[Qs|t(PtWtHt + PtDt − Tt)] <∞ (1.5.3)

where Qs|t for discounting income in period s back to period t is defined as the product

of factors Qi+1|i for i running from t through s − 1 with Qt|t = 1. Thus we can state

the household’s problem, looking forward from any date t, as the choice of a sequence

of planned consumption and working hours to maximize (1.3.1) subject to (1.5.3), given

financial wealth (1 + ρPB,t)Bt−1. This gives the necessary and sufficient conditions (1.3.5)

and (1.3.6) for household optimization.

To derive the intertemporal equilibrium condition (1.3.20), iterate on the bond pricing

relation (1.3.3) forward and impose the terminal condition limT→∞ ρ
T−2Et[QT |tPB,T ] = 0

to obtain

PB,t =
∞∑
j=0

ρjEt[Qt+1+j|t] =
∞∑
j=0

ρjEt

[(
j∏
i=0

1

πt+1+i

)
mt+1+j|t

]
(1.5.4)

which implies that PB,t+1 is determined by the expected, discounted, future stochastic

discount factors from period t + 1 onwards. So we may assume without loss of generality

that Cov[Qt+1|t, PB,t+1] = 0. Then the price of bond portfolio can be written in terms of
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current and expected future nominal interest rates

PB,t =
∞∑
k=0

ρkEt
[

1

RtRt+1 · · ·Rt+k

]
(1.5.5)

Also, substituting the bond pricing relation (1.3.3) into the government budget constraint

(1.3.15) and dividing through by the nominal income PtYt give

(1 + ρPB,t)B
s
t−1

PtYt
= st + Et

[
m̄t+1|t

(1 + ρPB,t+1)Bs
t

Pt+1Yt+1

]
(1.5.6)

where st, γt, and m̄t+1|t are defined as in the text. Iterating on (1.5.6) forward, imposing

the terminal condition limT→∞ Et
[
m̄T |t

(1+ρPB,T )BsT−1

PTYT

]
= 0, and rearranging give

1 + ρPB,t
πtγt

bst−1

PB,t−1
=

∞∑
k=0

Et[m̄t+k|tst+k] (1.5.7)

Substituting (1.5.5) into (1.5.7) and imposing the bond market clearing condition yield

(1.3.20).

Next, it can be shown that consumption, labor, output, nominal interest rates, inflation,

bond prices, and real wage have to satisfy the following optimality conditions derived from

consumer’s utility maximization and firms’ optimal price-setting problems

Nϕ
t

(Ct/At)−τ
=

Wt

At

1 = βEt

[(
Ct+1/At+1

Ct/At

)−τ At
At+1

Rt
πt+1

]

PB,t = βEt

[(
Ct+1/At+1

Ct/At

)−τ At
At+1

1 + ρPB,t+1

πt+1

]

1 =
1

v

(
1− Wt

ztAt

)
+ φ(πt − π∗)

[(
1− 1

2v

)
πt +

π∗

2v

]
−φβEt

[(
Ct+1/At+1

Ct/At

)−τ Yt+1/At+1

Yt/At
(πt+1 − π∗)πt+1

]
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In the absence of nominal rigidities (φ = 0), the target level of output in the monetary

policy rule is given by

Y ∗t =

[
(1− v)

1
τ z

1+ϕ
τ

t gt

] τ
τ+ϕ

At

Since the non-stationary technology process ztAt induces stochastic growth in consumption

and output, it is convenient to express the model in terms of detrended and stationary vari-

ables ct = Ct/At and yt = Yt/At. The model economy has a unique steady-state associated

with the detrended variables that is attained when the innovations {εzt , εFt , εMt , εGt } are zero

at all times. The steady-state values are given by

r∗ =
γ

β
, R∗ = r∗π∗ =

1 + ρP ∗B
P ∗B

,
τ∗

b∗
=
g(Q)

b∗
+

1

β
− 1,

and y∗ = c∗g∗ =
[
(1− v)1/τg∗

] τ
τ+ϕ

Linearization of the optimality conditions, government budget constraint, aggregate re-

source constraint, aggregate production relationship, as well as fiscal and monetary policy
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rules yields

ĉt = Et[ĉt+1]− 1

τ
(R̂t − Et[π̂t+1]) (1.5.8)

P̂B,t =
βρ

γπ∗
Et[P̂B,t+1]− τ(Et[ĉt+1]− ĉt)− Et[π̂t+1] (1.5.9)

π̂t = βEt[π̂t+1] + κĉt +
κϕ

τ
N̂t −

κ

τ
ẑt (1.5.10)

b̂t = −

[(
g(Q)

b∗
+

1

β
− 1

)
τ̂t −

1− g(Q)

b∗
ĝt

]
− 1

β
π̂t +

ρ

γπ∗
P̂B,t −

1

β
(ŷt − ŷt−1)

+
1

β
(b̂t−1 − P̂B,t−1) (1.5.11)

ĉt = ŷt − ĝt (1.5.12)

N̂t = ŷt − ẑt (1.5.13)

τ̂t = ρF τ̂t−1 + (1− ρF )δbb̂t−1 + ψFt (1.5.14)

R̂t = ρM R̂t−1 + (1− ρM )ψππ̂t + (1− ρM )ψyŷt + θMt (1.5.15)

where κ = τ(1−v)
vφπ2 . These equations, when combined with the four exogenous shock pro-

cesses, form a linear rational expectations system in the vector of variables

st = [ŷt, N̂t, π̂t, R̂t, P̂B,t, b̂t, τ̂t, ẑt, ψ
F
t , θ

M
t , ĝt]

′

that is driven by the vector of innovations εt = [εZt , ε
F
t , ε

M
t , ε

G
t ]′. With the issuance of only

one-period nominal bonds, (1.5.9) disappears from the system and (1.5.11) is replaced by

b̂t = −

[(
g(Q)

b∗
+

1

β
− 1

)
τ̂t −

1− g(Q)

b∗
ĝt

]
− 1

β
π̂t −

1

β
(ŷt − ŷt−1) +

1

β
(b̂t−1 + R̂t−1)

(1.5.16)

Note that the model with only one-period nominal bonds is not exactly equivalent to the

one in the text by setting ρ = 0, though Table 1.1 shows that the two models have “close”
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fit under regime M.

We assume that the time period t in the model corresponds to one quarter and the

relationship between the four observable series and the model variables is given by the

following measurement equations

YGRt = γ(Q) + 100(ŷt − ŷt−1) (1.5.17)

INFt = π(A) + 400π̂t (1.5.18)

INTt = π(A) + r(A) + 4γ(Q) + 400R̂t (1.5.19)

DTYt = b(Q) + b(Q)b̂t (1.5.20)

where the parameters γ(Q), π(A), r(A), and b(Q) are related to the steady-states of the model

economy by

γ(Q) = 100(γ − 1), r(A) = 400

(
1

β
− 1

)
, π(A) = 400(π∗ − 1), b(Q) = b∗

The system of transition equations (1.5.8)–(1.5.15) and the set of measurement equations

(1.5.17)–(1.5.20) together form a state space representation available for estimation.

Lastly, we display the impulse response functions of DSGE models. Figure 1.2 docu-

ments the effects of four structural shocks on four observables under regime M.
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Figure 1.2: Impulse Response Functions of regime M DSGE Model. Notes: The solid lines

display the effects on the four observables (YGR, INF, INT, DTY) of the four structural

shocks (Z, F, M, G). Parameters are set according to the last column (DGP) of Table 1.2.

First column: A technological progress works as a favorable aggregate supply shock

that increases output growth and decreases inflation. Since the central bank responses to

inflation deviation much more strongly than output under regime M, the net effect of rising

output and falling inflation is to reduce the nominal interest rate, which raises the bond

price. Because the effect of higher output growth on debt ratio is fully offset by those of

lower inflation and higher bond price, by (1.5.11) the real debt ratio rises. In response to

the rising debt ratio, fiscal authority reacts passively by raising sufficient net tax revenues

now and in the future so as to make the government budget constraint satisfied.

Second column: A fiscal contraction in the form of higher net taxes has no real effect on
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household’s consumption streams because the household, while having a firm belief about

fiscal authority’s mandate on debt stabilization, simply decreases her holding of government

bonds so as to maintain the original consumption profile, expecting lower net taxes in the

future due to lower debt ratio. The anticipation of lower future net taxes eliminates the

wealth effect of higher current net taxes. Analogous to the typical story of Ricardian

equivalence, this leaves the present value of current and expected future primary surpluses

unchanged, and hence the output growth, inflation, and nominal interest rate. However, the

real debt ratio decreases by (1.5.11), giving rise to a negative contemporaneous correlation

between debt ratio and primary surplus ratio. In sum, a positive net tax shock does not

have any equilibrium effect on non-fiscal variables and it only lowers the debt ratio under

regime M. This type of Ricardian equivalence result also holds for changes in the average

maturity of nominal bonds. For example, an extension of the average maturity (ρ increases)

raises the bond price and hence the real debt ratio by (1.5.11), leading to an expectation of

higher future net taxes. By (1.3.20) this makes it have no real impact.

Third column: Because prices are sticky, a monetary contraction in the form of higher

nominal interest rate raises the real interest rate. By (1.5.8) consumption today becomes

more costly relative to tomorrow, leading to a decrease in consumption and hence output

growth and inflation. In addition, the effect of lower bond price and hence the market value

of government liabilities due to higher nominal interest rate is fully offset by those of the

lower output growth and inflation. By (1.5.11) the real debt ratio increases, giving rise to

a positive contemporaneous correlation between debt ratio and nominal interest rate under

regime M. In response to the rising debt ratio, fiscal authority reacts passively by raising net

tax revenues now and in the future sufficiently to retire the additional government deficits

so that the government budget remains solvent.

Fourth column: A fiscal expansion in the form of higher government spending spurs
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the aggregate demand and hence raises output growth and inflation. In response to the

rising inflation and output, the central bank reacts aggressively by raising the nominal

interest rate under regime M. Because prices are sticky, this raises the real interest rate

and decreases consumption, which partly offsets the increase in output. The monetary

contraction eventually brings output growth and inflation back to the steady states. In

addition, since the rising government deficits brought about by the higher government

expenditure are not fully absorbed by the inflation taxes, lower market value of government

liabilities due to lower bond price, as well as higher output growth, by (1.5.11) the real

debt ratio increases. In response to the rising debt ratio, fiscal authority reacts passively

by raising sufficient net tax revenues now and in the future so as to make the government

budget constraint satisfied.

Figure 1.3 documents the effects of four structural shocks on four observables under

regime F.
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Figure 1.3: Impulse Response Functions of Regime F DSGE Model. Notes: See Figure 1.2.

First column: A technological progress increases output growth and decreases inflation.

Since the central bank responses to inflation deviation more strongly than output under

regime F, this leads to an initial decrease in the nominal interest rate and increase in the

debt ratio. By (1.3.20) the real debt ratio at the beginning of the next period exceeds the

present value of current and expected future primary surpluses, and a surprise inflation in

the next period is required so as to restore (1.3.20). This produces an “inflation reversal”

phenomenon documented in Kim (2003)—an initial decrease in inflation below the steady

state due to a favorable aggregate supply shock is followed by a subsequent rise in inflation

above the steady state. In addition, such inflation reversal also induces an associated

“nominal interest rate reversal”. This is in contrast to the effects of a technological progress

under regime M in which the initial fall in inflation and nominal interest rate both smoothly
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die out over time.

Second column: By (1.3.20) a fiscal contraction, while the household having no antici-

pation of lower future net taxes, makes the real debt ratio at the beginning of the period fall

below the present value of current and expected future primary surpluses. In the presence

of only one-period nominal bonds, a surprise deflation in the current period must occur

under regime F by just enough amount so as to restore (1.3.20). This is because the market

value of government liabilities are backed up more than sufficiently by the primary sur-

pluses, making the households feel less wealthier and hence try to substitute consumption

for government bonds. As a result, output growth and inflation fall. Long-term nominal

bonds, however, introduce the possibility of surprise changes in current and future nominal

interest rates as an additional channel to revalue government liabilities. In response to the

falling inflation and output, central bank can engineer a monetary expansion by moderately

reducing the nominal interest rate. This bids up the bond price and hence the market value

of government liabilities, effectively reducing the complete reliance on current deflation. By

(1.5.11), the falling inflation, output growth, and nominal interest rate all tend to raise the

real debt ratio, giving rise to a positive contemporaneous correlation between debt ratio

and primary surplus ratio. In contrast to the scenario under regime M, a fiscal contraction

does have real impacts on the economy. So do changes in the average maturity of nominal

bonds. For example, an extension of the average maturity (ρ increases) raises the bond

price and hence the debt ratio but it generates no expectation of higher future net taxes.

As the household feels wealthier, her demand for consumption goods rises, which pushes up

inflation and output.

Third column: A monetary contraction lowers the bond price, which by (1.3.20) makes

the real debt ratio at the beginning of the period fall below the present value of current and

expected future primary surpluses. As a result, a surprise deflation in the current period
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must occur under regime F by just enough amount so as to restore (1.3.20), mimicking the

initial impact of a monetary contraction on inflation under regime M. This is because the

lower bond price or higher bond yield makes the government bond more attractive and the

household tries to substitute out consumption goods into government bonds, which lowers

inflation and output in the current period. But as the nominal interest rate falls back to

its steady-state, bond price starts increasing and (1.3.20) requires a surprise inflation in the

future periods so as to reestablish (1.3.20). Again this is because the household tries to

convert government bonds into consumption goods in response to the higher bond price,

leading to an increase in inflation and output in the future periods. In contrast, a monetary

contraction under regime F with only one-period nominal bonds decreases inflation initially,

which then smoothly dies out over time. In addition, the effect of lower bond price and hence

the market value of government liabilities due to higher nominal interest rate dominates

those of the lower inflation and output growth. By (1.5.11) real debt ratio decreases, giving

rise to a negative contemporaneous correlation between debt ratio and nominal interest

rate.

Fourth column: By (1.3.20) higher government spending decreases the present value of

current and expected future primary surpluses below the real debt ratio at the beginning

of the period. In the presence of only one-period nominal bonds, a surprise inflation in the

current period must occur under regime F by just enough amount so as to restore (1.3.20).

This is because the market value of government liabilities are not backed up sufficiently

by the primary surpluses, making the household feel wealthier and hence try to substitute

government bonds for consumption. As a result, output growth and inflation rise. In

response to the rising inflation and output, the central bank moderately raises the nominal

interest rate. With long-term nominal bonds, this bids down the bond price and hence the

market value of government liabilities, effectively reducing the complete reliance on current
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inflation to devalue government debt. The overall responses of output growth, inflation, and

nominal interest rate are larger than those under regime M, which by (1.5.11) completely

offset the effect of rising government deficits. As a result, the real debt ratio falls even

though the rising deficits induces no fiscal adjustment under regime F.

Appendix B: U.S. Data Set

Unless otherwise stated, the following data are drawn from the National Income and Product

Accounts Tables released by the Bureau of Economic Analysis. All data in levels are nominal

values. The four observable sequences in the text are constructed as follows:

1. Quarter-to-quarter per capita GDP growth rate, YGR. Per capita (real) GDP

is obtained by dividing the nominal GDP, defined as the sum of total personal con-

sumption expenditures (Table 1.1.5, line 2) and federal government consumption ex-

penditures and gross investment (Table 1.1.5, line 22), by population 16 years and

older (Bureau of Labor Statistics, series ID: CLF16OV) and deflating using GDP

deflator (Table 1.1.4, line 1).

2. Annualized quarter-to-quarter inflation rate, INF, is defined as the growth rate

of GDP deflator (Table 1.1.4, line 1) and converted into annualized percentage.

3. Annualized short-term nominal interest rate, INT, corresponds to the effective

federal funds rate (Board of Governors of the Federal Reserve System, series ID:

FEDFUNDS) and is also in percentage.

4. Quarterly real debt-to-GDP ratio, DTY, is obtained by dividing the market value

of privately held gross federal debt (Federal Reserve Bank of Dallas) by nominal GDP.

All growth rates are computed using quarter-to-quarter log differences and converted

into percentage by multiplying by 100. Quarterly data are the monthly data at the beginning

of each quarter. The prior means of steady-state parameters are calibrated using data from

1955:Q1 to 2014:Q2.
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Appendix C: Bayesian Implementation

First, Table 1.2 below lists the marginal prior distributions of regime M and F DSGE model

parameters, truncated to the determinacy region of each policy regime. The priors for τ

and ϕ are both loosely centered at 2 with the implied 90% credible sets encompassing the

empirical ranges of the degree of risk aversion and the Frisch elasticity of labor supply based

on microlevel studies.28 The slope of Phillips curve centers at 0.2 and lies between 0.07 and

0.39, so chosen as to be consistent with values used in the usual calibration exercises.

Based on the finding of almost no response of policy rate to output deviation for the pre-

and post-Volcker samples in Boivin and Giannoni (2006), ψy has a tight prior centered at

0.125, about one fourth of the value in univariate Taylor rule regressions with annualized

data. We are a priori uncertain about the smoothing parameters (ρF , ρM ) in the fiscal and

monetary policy rules and the autoregressive coefficients (ρz, ρψ, ρθ, ρg) in the structural

shocks, so their prior means are all centered at the midpoint of unit interval.29 A presample

of observations, ranging from 1955:Q1 to 2014:Q2, is used to provide guidance on choosing

the priors for all steady state parameters. A tight prior with mean 0.4 is imposed on

the steady state quarterly growth rate of technology γ(Q) (in percentage) to match the

average quarterly growth rate of output per capita. The prior for the inverse of annual

discount factor r(A) (in percentage) implies a growth-adjusted annual real interest rate of

3.6% on average. Due to the high volatility of inflation in the pre-Volcker sample, we put

a fairly diffuse prior on the steady state annual inflation rate π(A) (in percentage) with

mean 3.3 to match the average annual inflation rate. Because the real debt-to-GDP ratio

exhibits a modest magnitude of variability, its steady state b(Q) (not in percentage) has

a relatively tight prior with mean 0.4 to match the average quarterly real debt-to-GDP

28The prior on ϕ implies that the Frisch elasticity of labor supply, 1/ϕ, lies between 0.35 and 0.80
with 90% probability.

29The priors are also relatively tight to prevent these parameters from hitting the boundary.
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ratio. Since we do not include the time series for government spending in the data set,

the steady state government-spending-to-GDP ratio g(Q) is calibrated to the mean value

of the presample, which is 0.25. Finally, the choice of priors for the standard deviation

parameters (σZ , σF , σM , σG), all scaled by 100 to convert their units into percentages, is

based on a prior predictive check so as to obtain realistic volatilities of the observables, and

their means are all centered at 0.2.

Next, Tables 1.3–1.8 make cross-regime comparison for the posterior means and 90%

credible sets of regime M and F DSGE model parameters. Figures 1.4–1.9 make further

cross-regime comparison for the posterior density plots of the parameters (ρ, δb, ψπ). For

each policy regime, i.e. D ∈ {M,F}, the posterior draws can be obtained by the following

RWM algorithm:

1. Use the Matlab programs of BFGS quasi-Newton algorithm written by Chris Sims

to maximize the posterior density kernel p(Y |θD)p(θD). If the value of θD implies

either non-existence or non-uniqueness of a stable rational expectations solution, then

set p(Y |θD)p(θD) to be zero. Otherwise, use the Kalman filter to evaluate the linear

state space system. Denote the posterior mode by θ̂D and the inverse of the negative

Hessian evaluated at θ̂D by Σ̂D.

2. Initialize the Markov chain by setting θ
(0)
D = θ̂D.

3. For s = 1, . . . , N , draw θD from the proposal distribution N(θ
(s−1)
D , c2Σ̂D) where c

serves as a scaling parameter. The jump from θ
(s−1)
D is accepted (θ

(s)
D = θD) with

probability min{1, r(θ(s−1)
D , θD|Y )} and rejected (θ

(s)
D = θ

(s−1)
D ) otherwise. Here

r(θ
(s−1)
D , θD|Y ) =


p(Y |θD)p(θD)

p(Y |θ(s−1)
D )p(θ

(s−1)
D )

if solution exists and is unique

0 otherwise

To implement the DSGE-VAR approach, we generate draws from the joint posterior
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distribution of DSGE model parameters and VAR parameters for each policy regime, i.e.

D ∈ {M,F}, by following the steps below:

1. For each λD ∈ Λ, use the RWM algorithm described above to generate draws from

pλD(θD|Y ) ∝ pλD(Y |θD)p(θD), where the expression for the marginal likelihood func-

tion of θD, pλD(Y |θD), can be found in Appendix A.1 of Del Negro and Schorfheide

(2004). Note that conditional on θD, the population moments m can be computed

analytically from the solution of linearized regime M and F DSGE models.

2. Based on these posterior draws, apply Geweke (1999)’s modified harmonic mean esti-

mator to obtain numerical approximations of the marginal data densities pλD(Y |D,E).

3. Find the value of λ̂D that achieves the highest marginal data density.

4. Select the posterior draws of {θ(s)
D }Ns=1 that correspond to λ̂D and use standard meth-

ods to generate draws of (Φ,Σu) from pλ̂D(Φ,Σu|Y, θ(s)
D ) for each θ

(s)
D .

5. For each posterior draw of {θ(s)
D ,Σ

(s)
u }Ns=1, compute the corresponding Cholesky de-

composition of Σ
(s)
u and regime D DSGE model rotation under θ

(s)
D .

Lastly, the RWM algorithm is applied to sample 1.01 million draws from the posterior

distribution with the initial 10, 000 draws discarded, leaving a final sample size of one

million for each estimation. We choose the value of c that yields a rejection rate roughly

between 45% and 50% across estimations. As for the diagnostic check on the convergence

of Markov chain, we rely on the graphical method suggested by An and Schorfheide (2007)

that examines the convergence of the recursive means of all DSGE model parameters from

multiple chains. Upon convergence, these posterior draws are then used to compute the

impulse response functions of regime M and F DSGE and DSGE-VAR models as depicted

in Figures 1.10–1.15, and to approximate the marginal data densities based on Geweke
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(1999)’s modified harmonic mean estimator

p̂(Y |D) =

[
1

N

N∑
s=1

f(θ
(s)
D )

p(Y |θ(s)
D )p(θ

(s)
D )

]−1

, D ∈ {M,F}

where f(·) is the density function of a truncated multivariate normal distribution.
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Table 1.2: Marginal Prior Distributions for DSGE Model Parameters

Regime M p(θM ) / Regime F p(θF )

Name Domain Density Para (1) Para (2) DGP

τ R+ G 2.00 0.50 2.00

ϕ R+ G 2.00 0.50 2.00

κ R+ G 0.20 0.10 0.20

ρ [0, 1) B 0.90 0.05 0.90

δb R+/R N 0.15/0.00 0.03/0.002 0.15/0.00

ψπ (1,∞)/[0, 1) G/B 1.50/0.50 0.15 1.50/0.50

ψy R+ G 0.125 0.05 0.125

ρF [0, 1) B 0.50 0.10 0.50

ρM [0, 1) B 0.50 0.10 0.50

r(A) R+ G 2.00 0.50 2.00

π(A) R+ G 3.30 1.50 3.30

γ(Q) R N 0.40 0.05 0.40

b(Q) R+ G 0.40 0.15 0.40

ρz [0, 1) B 0.50 0.10 0.50

ρψ [0, 1) B 0.50 0.10 0.50

ρθ [0, 1) B 0.50 0.10 0.50

ρg [0, 1) B 0.50 0.10 0.50

(100σZ)2 R+ IG 10.00 0.36 0.202

(100σF )2 R+ IG 10.00 0.36 0.202

(100σM )2 R+ IG 10.00 0.36 0.202

(100σG)2 R+ IG 10.00 0.36 0.202

Notes: Para (1) and Para (2) list the means and standard deviations for Normal (N), Gamma

(G), and Beta (B) distributions; the shape and scale parameters (α, β) for Inverse Gamma (IG)

distribution with pdf p(x) ∝ x−α−1 exp (−β/x). The Inverse Gamma distribution has mean β
α−1

(α > 1) and variance β2

(α−1)2(α−2) (α > 2). The standard deviation parameters (σZ , σF , σM , σG) are

scaled by 100 to convert them into percentages. The effective priors for regime M and F DSGE

model parameters are truncated at the boundary of their determinacy regions.
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Table 1.3: Posterior Estimates of DSGE Model Parameters [1955:Q1–1979:Q2]

Prior Regime M DSGE Regime F DSGE

Name Mean [5, 95] Mean [5, 95] Mean [5, 95]

τ 2.00 [1.26, 2.89] 2.88 [2.26, 3.62] 3.02 [2.33, 3.80]

ϕ 2.00 [1.26, 2.89] 3.27 [2.17, 4.32] 2.30 [1.52, 3.23]

κ 0.20 [0.07, 0.39] 0.31 [0.19, 0.46] 0.01 [0.01, 0.02]

ρ 0.90 [0.81, 0.97] 0.88 [0.82, 0.93] 0.98 [0.97, 0.99]

δb [M] 0.15 [0.10, 0.20] 0.11 [0.06, 0.17] 0∗ ***

δb [F] 0.00 *** 0.15∗ [0.11, 0.20] 0 ***

ψπ [M] 1.50 [1.26, 1.76] 1.66 [1.46, 1.87] 0.25∗ [0.12, 0.39]

ψπ [F] 0.50 [0.26, 0.75] 1.01∗ [1.01, 1.03] 0.48 [0.36, 0.58]

ψy 0.125 [0.06, 0.22] 0.04 [0.02, 0.07] 0.04 [0.02, 0.05]

ρF 0.50 [0.34, 0.66] 0.49 [0.31, 0.73] 0.33 [0.21, 0.45]

ρM 0.50 [0.34, 0.66] 0.39 [0.29, 0.50] 0.51 [0.40, 0.61]

r(A) 2.00 [1.26, 2.88] 1.14 [0.74, 1.61] 1.65 [1.13, 2.23]

π(A) 3.30 [1.30, 6.20] 7.49 [5.29, 9.72] 1.47 [0.59, 2.98]

γ(Q) 0.40 [0.32, 0.48] 0.48 [0.43, 0.53] 0.34 [0.29, 0.40]

b(Q) 0.40 [0.19, 0.68] 0.43 [0.34, 0.52] 0.42 [0.36, 0.48]

ρz 0.50 [0.34, 0.66] 0.98 [0.97, 0.99] 0.97 [0.94, 0.99]

ρψ 0.50 [0.34, 0.66] 0.58 [0.37, 0.77] 0.98 [0.97, 0.98]

ρθ 0.50 [0.34, 0.66] 0.51 [0.42, 0.60] 0.46 [0.34, 0.57]

ρg 0.50 [0.34, 0.66] 0.83 [0.77, 0.89] 0.42 [0.33, 0.50]

100σZ 0.20 [0.15, 0.26] 1.04 [0.86, 1.18] 3.16 [2.07, 4.44]

100σF 0.20 [0.15, 0.26] 3.82 [3.34, 4.41] 0.16 [0.13, 0.19]

100σM 0.20 [0.15, 0.26] 0.31 [0.26, 0.37] 0.20 [0.18, 0.22]

100σG 0.20 [0.15, 0.26] 0.70 [0.53, 0.94] 0.83 [0.73, 0.94]

Notes: Posterior means and 90% credible sets for regime M and F DSGE model parameters are

computed based on the output of RWM algorithm described in Appendix C. Estimates of (δb, ψπ)

for short-term debt DSGE models are distinguished by superscript *. Their prior counterparts

with regime index indicated in brackets are provided for comparison ease. Triple-asterisk denotes

inapplicable items. The standard deviation parameters (σZ , σF , σM , σG) are scaled by 100 to convert

them into percentages.
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Table 1.4: Posterior Estimates of DSGE Model Parameters [1982:Q4–2007:Q4]

Prior Regime M DSGE Regime F DSGE

Name Mean [5, 95] Mean [5, 95] Mean [5, 95]

τ 2.00 [1.26, 2.89] 3.76 [2.94, 4.70] 3.76 [2.94, 4.70]

ϕ 2.00 [1.26, 2.89] 1.64 [1.15, 2.23] 1.67 [1.00, 2.52]

κ 0.20 [0.07, 0.39] 0.19 [0.12, 0.28] 0.09 [0.05, 0.14]

ρ 0.90 [0.81, 0.97] 0.92 [0.85, 0.97] 0.997 ***

δb [M] 0.15 [0.10, 0.20] 0.13 [0.08, 0.18] 0∗ ***

δb [F] 0.00 *** 0.13∗ [0.08, 0.18] 0 ***

ψπ [M] 1.50 [1.26, 1.76] 1.71 [1.46, 1.97] 0.39∗ [0.20, 0.58]

ψπ [F] 0.50 [0.26, 0.75] 1.67∗ [1.43, 1.93] 0.97 [0.95, 0.99]

ψy 0.125 [0.06, 0.22] 0.10 [0.05, 0.16] 0.11 [0.05, 0.18]

ρF 0.50 [0.34, 0.66] 0.43 [0.24, 0.64] 0.81 [0.43, 0.95]

ρM 0.50 [0.34, 0.66] 0.59 [0.49, 0.67] 0.67 [0.59, 0.74]

r(A) 2.00 [1.26, 2.88] 1.51 [1.07, 2.00] 1.32 [0.92, 1.77]

π(A) 3.30 [1.30, 6.20] 2.70 [2.10, 3.34] 1.09 [0.45, 1.86]

γ(Q) 0.40 [0.32, 0.48] 0.52 [0.50, 0.53] 0.52 [0.50, 0.53]

b(Q) 0.40 [0.19, 0.68] 0.50 [0.39, 0.64] 0.40 [0.37, 0.42]

ρz 0.50 [0.34, 0.66] 0.87 [0.82, 0.92] 0.94 [0.91, 0.96]

ρψ 0.50 [0.34, 0.66] 0.49 [0.28, 0.68] 0.68 [0.44, 0.94]

ρθ 0.50 [0.34, 0.66] 0.61 [0.52, 0.69] 0.59 [0.49, 0.68]

ρg 0.50 [0.34, 0.66] 0.89 [0.85, 0.92] 0.67 [0.62, 0.72]

100σZ 0.20 [0.15, 0.26] 0.56 [0.44, 0.70] 0.48 [0.34, 0.65]

100σF 0.20 [0.15, 0.26] 4.40 [3.92, 4.92] 0.21 [0.16, 0.27]

100σM 0.20 [0.15, 0.26] 0.19 [0.16, 0.22] 0.15 [0.14, 0.17]

100σG 0.20 [0.15, 0.26] 0.59 [0.51, 0.67] 0.67 [0.58, 0.76]

Notes: See Table 1.3.
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Table 1.5: Posterior Estimates of DSGE Model Parameters [2008:Q1–2014:Q2]

Prior Regime M DSGE Regime F DSGE

Name Mean [5, 95] Mean [5, 95] Mean [5, 95]

τ 2.00 [1.26, 2.89] 2.84 [2.07, 3.75] 2.75 [1.98, 3.66]

ϕ 2.00 [1.26, 2.89] 1.89 [1.31, 2.61] 1.89 [1.21, 2.69]

κ 0.20 [0.07, 0.39] 0.15 [0.09, 0.25] 0.13 [0.06, 0.22]

ρ 0.90 [0.81, 0.97] 0.91 [0.82, 0.97] 0.995 ***

δb [M] 0.15 [0.10, 0.20] 0.15 [0.10, 0.20] 0∗ ***

δb [F] 0.00 *** 0.15∗ [0.10, 0.20] 0 ***

ψπ [M] 1.50 [1.26, 1.76] 1.52 [1.28, 1.77] 0.28∗ [0.15, 0.44]

ψπ [F] 0.50 [0.26, 0.75] 1.53∗ [1.30, 1.77] 0.98 [0.95, 0.99]

ψy 0.125 [0.06, 0.22] 0.13 [0.06, 0.23] 0.16 [0.08, 0.27]

ρF 0.50 [0.34, 0.66] 0.41 [0.27, 0.56] 0.83 [0.68, 0.92]

ρM 0.50 [0.34, 0.66] 0.56 [0.44, 0.66] 0.55 [0.42, 0.66]

r(A) 2.00 [1.26, 2.88] 0.98 [0.62, 1.42] 1.09 [0.68, 1.58]

π(A) 3.30 [1.30, 6.20] 0.76 [0.33, 1.31] 1.44 [0.56, 2.49]

γ(Q) 0.40 [0.32, 0.48] 0.24 [0.20, 0.29] 0.22 [0.18, 0.27]

b(Q) 0.40 [0.19, 0.68] 0.61 [0.44, 0.81] 0.64 [0.58, 0.71]

ρz 0.50 [0.34, 0.66] 0.65 [0.46, 0.81] 0.79 [0.63, 0.90]

ρψ 0.50 [0.34, 0.66] 0.42 [0.28, 0.57] 0.84 [0.72, 0.92]

ρθ 0.50 [0.34, 0.66] 0.58 [0.47, 0.68] 0.60 [0.47, 0.71]

ρg 0.50 [0.34, 0.66] 0.65 [0.51, 0.79] 0.57 [0.45, 0.67]

100σZ 0.20 [0.15, 0.26] 0.41 [0.30, 0.54] 0.39 [0.27, 0.54]

100σF 0.20 [0.15, 0.26] 8.13 [6.67, 9.80] 0.30 [0.20, 0.52]

100σM 0.20 [0.15, 0.26] 0.23 [0.18, 0.28] 0.22 [0.17, 0.27]

100σG 0.20 [0.15, 0.26] 0.69 [0.54, 0.85] 0.63 [0.51, 0.76]

Notes: See Table 1.3.
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Table 1.6: Posterior Estimates of DSGE-VAR Model Parameters [1955:Q1–1979:Q2]

Prior Regime M VAR Regime F VAR

Name Mean [5, 95] Mean [5, 95] Mean [5, 95]

τ 2.00 [1.26, 2.89] 2.28 [1.61, 3.08] 2.32 [1.61, 3.14]

ϕ 2.00 [1.26, 2.89] 1.79 [1.13, 2.61] 1.81 [1.14, 2.62]

κ 0.20 [0.07, 0.39] 0.26 [0.15, 0.40] 0.21 [0.11, 0.33]

ρ 0.90 [0.81, 0.97] 0.90 [0.81, 0.97] 0.99 [0.98, 1.00]

δb [M] 0.15 [0.10, 0.20] 0.14 [0.09, 0.19] 0∗ ***

δb [F] 0.00 *** 0.11∗ [0.06, 0.17] 0 ***

ψπ [M] 1.50 [1.26, 1.76] 1.50 [1.26, 1.75] 0.48∗ [0.36, 0.58]

ψπ [F] 0.50 [0.26, 0.75] 1.66∗ [1.46, 1.87] 0.94 [0.89, 0.98]

ψy 0.125 [0.06, 0.22] 0.14 [0.06, 0.24] 0.17 [0.08, 0.28]

ρF 0.50 [0.34, 0.66] 0.40 [0.26, 0.54] 0.68 [0.51, 0.82]

ρM 0.50 [0.34, 0.66] 0.46 [0.34, 0.56] 0.45 [0.34, 0.55]

r(A) 2.00 [1.26, 2.88] 1.58 [0.98, 2.34] 1.50 [0.93, 2.21]

π(A) 3.30 [1.30, 6.20] 2.66 [1.27, 4.27] 2.10 [0.82, 3.85]

γ(Q) 0.40 [0.32, 0.48] 0.39 [0.30, 0.47] 0.38 [0.30, 0.46]

b(Q) 0.40 [0.19, 0.68] 0.33 [0.22, 0.49] 0.31 [0.23, 0.45]

ρz 0.50 [0.34, 0.66] 0.68 [0.55, 0.80] 0.66 [0.51, 0.80]

ρψ 0.50 [0.34, 0.66] 0.41 [0.27, 0.56] 0.68 [0.51, 0.81]

ρθ 0.50 [0.34, 0.66] 0.46 [0.34, 0.58] 0.43 [0.31, 0.55]

ρg 0.50 [0.34, 0.66] 0.46 [0.32, 0.60] 0.31 [0.21, 0.42]

100σZ 0.20 [0.15, 0.26] 0.38 [0.28, 0.49] 0.39 [0.28, 0.52]

100σF 0.20 [0.15, 0.26] 1.47 [1.07, 1.88] 0.24 [0.18, 0.33]

100σM 0.20 [0.15, 0.26] 0.22 [0.18, 0.26] 0.19 [0.16, 0.22]

100σG 0.20 [0.15, 0.26] 0.39 [0.30, 0.48] 0.36 [0.28, 0.45]

Notes: Posterior means and 90% credible sets for regime M and F DSGE-VAR model parameters

are computed based on the output of RWM algorithm described in Appendix C. The highest regime

M and F marginal data densities correspond to λ̂M = 0.5 and λ̂F = 0.5.
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Table 1.7: Posterior Estimates of DSGE-VAR Model Parameters [1982:Q4–2007:Q4]

Prior Regime M VAR Regime F VAR

Name Mean [5, 95] Mean [5, 95] Mean [5, 95]

τ 2.00 [1.26, 2.89] 2.45 [1.77, 3.23] 2.68 [1.94, 3.55]

ϕ 2.00 [1.26, 2.89] 1.49 [0.93, 2.19] 1.65 [0.99, 2.42]

κ 0.20 [0.07, 0.39] 0.20 [0.12, 0.31] 0.15 [0.08, 0.24]

ρ 0.90 [0.81, 0.97] 0.91 [0.82, 0.97] 0.99 [0.98, 1.00]

δb [M] 0.15 [0.10, 0.20] 0.14 [0.09, 0.19] 0∗ ***

δb [F] 0.00 *** 0.13∗ [0.08, 0.18] 0 ***

ψπ [M] 1.50 [1.26, 1.76] 1.63 [1.39, 1.88] 0.97∗ [0.95, 0.99]

ψπ [F] 0.50 [0.26, 0.75] 1.71∗ [1.46, 1.97] 0.95 [0.91, 0.98]

ψy 0.125 [0.06, 0.22] 0.14 [0.07, 0.24] 0.18 [0.09, 0.30]

ρF 0.50 [0.34, 0.66] 0.35 [0.22, 0.49] 0.73 [0.55, 0.86]

ρM 0.50 [0.34, 0.66] 0.53 [0.43, 0.63] 0.54 [0.45, 0.63]

r(A) 2.00 [1.26, 2.88] 1.94 [1.23, 2.81] 1.79 [1.13, 2.59]

π(A) 3.30 [1.30, 6.20] 2.53 [1.80, 3.27] 2.23 [1.02, 3.74]

γ(Q) 0.40 [0.32, 0.48] 0.41 [0.34, 0.49] 0.40 [0.33, 0.48]

b(Q) 0.40 [0.19, 0.68] 0.55 [0.44, 0.71] 0.54 [0.45, 0.68]

ρz 0.50 [0.34, 0.66] 0.75 [0.64, 0.84] 0.68 [0.52, 0.81]

ρψ 0.50 [0.34, 0.66] 0.36 [0.23, 0.52] 0.72 [0.53, 0.86]

ρθ 0.50 [0.34, 0.66] 0.49 [0.38, 0.60] 0.49 [0.38, 0.60]

ρg 0.50 [0.34, 0.66] 0.59 [0.43, 0.75] 0.40 [0.29, 0.51]

100σZ 0.20 [0.15, 0.26] 0.33 [0.25, 0.42] 0.41 [0.26, 0.70]

100σF 0.20 [0.15, 0.26] 2.55 [2.09, 3.03] 0.25 [0.18, 0.36]

100σM 0.20 [0.15, 0.26] 0.16 [0.14, 0.19] 0.15 [0.13, 0.17]

100σG 0.20 [0.15, 0.26] 0.32 [0.26, 0.39] 0.30 [0.25, 0.35]

Notes: See Table 1.6. The highest regime M and F marginal data densities correspond to λ̂M = 1.0

and λ̂F = 1.0.
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Table 1.8: Posterior Estimates of DSGE-VAR Model Parameters [2008:Q1–2014:Q2]

Prior Regime M VAR Regime F VAR

Name Mean [5, 95] Mean [5, 95] Mean [5, 95]

τ 2.00 [1.26, 2.89] 1.92 [1.26, 2.70] 2.00 [1.34, 2.81]

ϕ 2.00 [1.26, 2.89] 1.17 [0.66, 1.82] 1.64 [1.01, 2.40]

κ 0.20 [0.07, 0.39] 0.09 [0.05, 0.16] 0.13 [0.07, 0.22]

ρ 0.90 [0.81, 0.97] 0.90 [0.80, 0.97] 0.99 [0.98, 1.00]

δb [M] 0.15 [0.10, 0.20] 0.16 [0.11, 0.21] 0∗ ***

δb [F] 0.00 *** 0.15∗ [0.10, 0.20] 0 ***

ψπ [M] 1.50 [1.26, 1.76] 1.59 [1.36, 1.83] 0.98∗ [0.95, 0.99]

ψπ [F] 0.50 [0.26, 0.75] 1.52∗ [1.28, 1.77] 0.96 [0.93, 0.99]

ψy 0.125 [0.06, 0.22] 0.10 [0.04, 0.20] 0.16 [0.07, 0.27]

ρF 0.50 [0.34, 0.66] 0.39 [0.25, 0.53] 0.77 [0.61, 0.88]

ρM 0.50 [0.34, 0.66] 0.60 [0.48, 0.71] 0.54 [0.41, 0.66]

r(A) 2.00 [1.26, 2.88] 1.83 [1.14, 2.72] 1.72 [1.07, 2.50]

π(A) 3.30 [1.30, 6.20] 2.18 [0.83, 4.01] 1.99 [0.81, 3.62]

γ(Q) 0.40 [0.32, 0.48] 0.39 [0.31, 0.47] 0.37 [0.29, 0.45]

b(Q) 0.40 [0.19, 0.68] 0.36 [0.15, 0.64] 0.81 [0.67, 1.01]

ρz 0.50 [0.34, 0.66] 0.59 [0.42, 0.75] 0.62 [0.46, 0.76]

ρψ 0.50 [0.34, 0.66] 0.41 [0.26, 0.56] 0.77 [0.62, 0.88]

ρθ 0.50 [0.34, 0.66] 0.75 [0.65, 0.83] 0.61 [0.47, 0.72]

ρg 0.50 [0.34, 0.66] 0.53 [0.36, 0.72] 0.45 [0.32, 0.57]

100σZ 0.20 [0.15, 0.26] 0.22 [0.17, 0.28] 0.28 [0.20, 0.37]

100σF 0.20 [0.15, 0.26] 3.55 [2.58, 4.61] 0.31 [0.21, 0.43]

100σM 0.20 [0.15, 0.26] 0.16 [0.13, 0.20] 0.16 [0.13, 0.20]

100σG 0.20 [0.15, 0.26] 0.29 [0.23, 0.37] 0.33 [0.25, 0.42]

Notes: See Table 1.6. The highest regime M and F marginal data densities correspond to λ̂M = 2.0

and λ̂F = 2.0.
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Table 1.9: Model Fit of Regime M and F DSGE-VAR Models

1955:Q1–1979:Q2 1982:Q4–2007:Q4 2008:Q1–2014:Q2

λD Regime M/F λD Regime M/F λD Regime M/F

0.22∗ −170.8/− 176.6 0.21∗ −47.2/− 52.9 0.81∗ −103.9/− 121.2

0.40 −160.4/− 160.5 0.40 −29.5/− 33.8 1.50∗ −86.5/− 93.5

0.50 −158.0/− 157.3 0.50 −28.0/− 31.6 2.00 −85.6/− 89.1

0.75 −162.3/− 162.5 0.75 −31.9/− 34.9 3.00 −86.8/− 90.0

1.00 −165.0/− 166.0 1.00 −17.1/− 19.8 4.00 −90.7/− 90.0

1.50 −178.2/− 178.2 1.50 −24.3/− 28.0 5.00 −90.2/− 91.1

2.00 −181.2/− 180.8 2.00∗ −46.2/− 52.1 9.00∗ −98.1/− 90.0

∞∗ −278.2/− 313.5 ∞∗ −108/− 157 ∞∗ −151.4/− 145.5

Notes: All log marginal data densities are approximated using Geweke (1999)’s modified harmonic

mean estimator. Decisive evidence in favor of the policy regime with superior fit is denoted by

superscript *, corresponding to a Bayes factor greater than 100, or 4.6 in logarithm.

71



0.7 0.8 0.9 1
0

5

10

15

R
eg

im
e−

M
0 0.1 0.2 0.3

0

5

10

15

1 1.5 2 2.5
0

1

2

3

4

0.7 0.8 0.9 1
0

10

20

30

40

50

rho

R
eg

im
e−

F

 

 

Prior
Posterior

−0.01 0 0.01
0

50

100

150

200

250

deltab
0 0.5 1

0

2

4

6

8

psipi

Figure 1.4: DSGE Prior and Posterior Density Functions [1955:Q1–1979:Q2]. Notes: The

red-dashed and blue-solid lines display the prior and posterior density functions of the

DSGE model parameters (ρ, δb, ψπ). All posterior densities are estimated based on normal

kernel function.
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Figure 1.5: DSGE Prior and Posterior Density Functions [1982:Q4–2007:Q4]. Notes: See

Figure 1.4.
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Figure 1.6: DSGE Prior and Posterior Density Functions [2008:Q1–2014:Q2]. Notes: See

Figure 1.4.
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Figure 1.7: DSGE-VAR Prior and Posterior Density Functions [1955:Q1–1979:Q2]. Notes:

The highest regime M and F marginal data densities correspond to λ̂M = 0.5 and λ̂F = 0.5.
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Figure 1.8: DSGE-VAR Prior and Posterior Density Functions [1982:Q4–2007:Q4]. Notes:

See Figure 1.7. The highest regime M and F marginal data densities correspond to λ̂M = 1.0

and λ̂F = 1.0.
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Figure 1.10: Impulse Response Functions of DSGE Models [1955:Q1–1979:Q2]. Notes: The

solid lines display posterior mean effects on observables of fiscal and monetary shocks (F,

M) under regime M and F. The dashed-dotted lines represent 90% confidence bands.
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Figure 1.11: Impulse Response Functions of DSGE Models [1982:Q4–2007:Q4]. Notes: See

Figure 1.10.
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Figure 1.12: Impulse Response Functions of DSGE Models [2008:Q1–2014:Q2]. Notes: See

Figure 1.10.
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Figure 1.13: Impulse Response Functions of DSGE-VAR Models [1955:Q1–1979:Q2]. Notes:

The blue-solid lines display posterior mean effects from VAR models. The blue-dashed-

dotted lines represent 90% confidence bands. The red-solid lines are posterior mean re-

sponses from DSGE models.
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Figure 1.14: Impulse Response Functions of DSGE-VAR Models [1982:Q4–2007:Q4]. Notes:

See Figure 1.13.
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Figure 1.15: Impulse Response Functions of DSGE-VAR Models [2008:Q1–2014:Q2]. Notes:

See Figure 1.13.
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Chapter 2

Solving Generalized Multivariate Linear Rational Expectations Models

2.1 Introduction

Whiteman (1983) lays out a solution principle for solving stationary, linear rational expecta-

tions models. The four tenets of the solution principle are [i.] Exogenous driving processes

are taken to be zero-mean linearly regular covariance stationary stochastic processes with

known Wold representation; [ii.] Expectations are formed rationally and are computed

using Wiener-Kolmogorov formulas; [iii.] Solutions are sought in the space spanned by

time-independent square-summable linear combinations of the process fundamental for the

driving process; [iv.] The rational expectations restrictions will be required to hold for all

realizations of the driving process. The purpose of this paper is to extend the Whiteman

solution principle to the multivariate setting.

The solution principle is general in the sense that the exogenous driving processes are as-

sumed to only satisfy covariance stationarity. Solving for a rational expectations equilibrium

is nontrivial under this assumption and Whiteman demonstrates how powerful z-transform

techniques can be helpful in deriving the appropriate fixed point conditions.

The techniques advocated in Whiteman (1983) are not well known. This could be be-

cause the literature contains several well-vetted solution procedures for linearized rational

expectations models (e.g., Sims (2002)) or because the solution procedure requires working

knowledge of concepts unfamiliar to economists (e.g., z-transforms). We provide an intro-
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duction to these concepts and argue that there remain several advantages of the Whiteman

approach on both theoretical and applied grounds. First, the approach only assumes that

the exogenous driving processes possess a Wold representation, allowing for a relaxation of

the standard assumption that exogenous driving processes follow an autoregressive process

of order one, AR(1), specification. As recently emphasized in Curdia and Reis (2012), no

justification is typically given for the AR(1) specification with little exploration into alterna-

tive stochastic processes despite obvious benefits to such deviations.1 Second, models with

incomplete information or heterogenous beliefs are easier to solve using the z-transform

approach advocated by Whiteman. Kasa (2000) and Walker (2007) show how the analytic

function approach can be used to solve models that were approximated in the time domain

by Townsend (1983) and Singleton (1987).2 Third, as shown in Kasa (2001) and Whiteman

and Lewis (2008), the approach can easily be extended to allow for robustness as advocated

by Hansen and Sargent (2011) or rational inattention as advocated by Sims (2001). Finally,

there are potential insights into the econometrics of rational expectations models; two ex-

amples include Leeper et al. (2014), who show how observational equivalence problems can

be clearly articulated in the space of analytic functions, and Qu and Tkachenko (2012),

who demonstrate how working in the frequency domain can deliver simple identification

conditions.

The contribution of the paper is to extend the approach of Whiteman (1983) to the

multivariate setting and (re)introduce users of linear rational expectations models to the

analytic function solution technique. We provide sufficient (though not exhaustive) back-

ground by introducing a few key theorems in Section 2.2.1 and walking readers through the

1This is true despite the fact that Kydland and Prescott (1982), the paper that arguably started
the real business cycle literature, contains an interesting deviation from the AR(1) specification.

2Taub (1989), Kasa et al. (2013), Rondina (2009) and Rondina and Walker (2013) also use the
space of analytic functions to characterize equilibrium in models with informational frictions. Seiler
and Taub (2008), Bernhardt and Taub (2008), and Bernhardt et al. (2009) show how these methods
can be used to accurately approximate asymmetric information equilibria in models with richer
specifications of information.
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univariate examples of Whiteman (Section 2.2.2). Section 2.3 establishes the main results

of the paper. Section 2.4 provides a few examples that demonstrate the usefulness of solv-

ing linear rational expectations models in the frequency domain. An online Appendix C

provides a user’s guide to the MATLAB code that executes the solution procedure.

2.2 Preliminaries

Elementary results of the theory of stationary stochastic processes and the residue calculus

are necessary for grasping the z-transform approach advocated here. This section introduces

a few important theorems that are relatively well known but is by no means exhaustive.

Interested readers are directed to Churchill and Brown (1990) and Whittle (1983) for good

references on complex analysis and stochastic processes.3

2.2.1 A Few Useful Theorems

The first principle of Whiteman’s solution procedure assumes that the exogenous driving

process is a zero-mean linear covariance stationary stochastic processes with no other re-

strictions imposed. The Wold representation theorem allows for such a general specification.

Theorem 5. [Wold Representation Theorem] Let {xt} be any (n×1) covariance stationary

stochastic process with E(xt) = 0. Then it can be uniquely represented in the form

xt = ηt + Ψ(L)εt (2.2.1)

where Ψ(L) is a matrix polynomial in the lag operator with Ψ(0) = In and
∑∞

s=1 ΨsΨ
ᵀ
s

is convergent. The process εt is n-variate white noise with E(εt) = 0, E(εtε
ᵀ
t ) = Σ and

E(εtε
ᵀ
t−m) = 0 for m 6= 0. The process εt is the innovation in predicting xt from its own

3Sargent (1987) provides a good introduction to these concepts and discusses economic applica-
tions.
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past:

εt−s = xt−s − P [xt−s|xt−s−1,xt−s−2, ...], (2.2.2)

where P [·] denotes linear projection. The process ηt is linearly deterministic; there exists

an n vector c0 and n × n matrices Cs such that without error ηt = c0 +
∑∞

s=1Csηt−s and

E[εtη
ᵀ
t−m] = 0 for all m.

The Wold representation theorem states that any covariance stationary process can be

written as a linear combination of a (possibly infinite) moving average representation where

the innovations are the linear forecast errors for xt and a process that can be predicted

arbitrarily well by a linear function of past values of xt. The theorem is a representation

determined by second moments of the stochastic process only and therefore may not fully

capture the data generating process. For example, that the decomposition is linear suggests

that a process could be deterministic in the strict sense and yet linearly non-deterministic;

Whittle (1983) provides examples of such processes. The innovations in the Wold represen-

tation are generated by linear projections which need not be the same as the conditional

expectation (E[xt−s|xt−s−1,xt−s−2, ...]). However, our focus here will be on linear Gaus-

sian stochastic processes as is standard in the rational expectations literature. Under this

assumption, the best conditional expectation coincides with linear projection.

The second principle advocated by Whiteman is that expectations are formed rationally

and are computed using Wiener-Kolmogorov optimal prediction formulas. Consider min-

imizing the forecast error associated with the k-step ahead prediction of xt = A(L)εt =
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∑∞
j=0 ajεt−j by choosing yt = C(L)εt =

∑∞
j=0 cjεt−j .

min
yt

E(xt+k − yt)2 = min
cj

E
(
L−k

∞∑
j=0

ajεt−j −
∞∑
j=0

cjεt−j

)2

= min
cj

E
( k−1∑
j=0

ajεt+k−j +
∞∑
j=0

(aj+k − cj)εt−j
)2

= σ2
ε

k−1∑
j=0

a2
j + σ2

ε

∞∑
j=0

(aj+k − cj)2 (2.2.3)

Obviously, (2.2.3) is minimized by setting cj = aj+k, which yields the mean-square forecast

error of σ2ε
∑∞

j=0 c
2
j .

Due to the Riesz-Fischer Theorem, this sequential problem has an equivalent represen-

tation as a functional problem.

Theorem 6. [Riesz-Fischer Theorem] Let D(
√
r) denote a disk in the complex plane of

radius
√
r centered at the origin. There is an equivalence (i.e. an isometric isomorphism)

between the space of r-summable sequences
∑

j r
j |fj |2 <∞ and the Hardy space of analytic

functions f(z) in D(
√
r) satisfying the restriction

1

2πi

∮
f(z)f(rz−1)

dz

z
<∞

where
∮

denotes contour integration around D(
√
r). An analytic function satisfying the

above condition is said to be r-integrable.4

The Riesz-Fischer theorem implies that the optimal forecasting rule (2.2.5) can be de-

rived by finding the the analytic function C(z) on the unit disk |z| ≤ 1 corresponding to

4This theorem is usually proved for the case r = 1 and for functions defined on the boundary of
a disk. For further exposition see Sargent (1987).
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the z-transform of the {cj} sequence, C(z) =
∑∞

j=0 cjz
j that solves

min
C(z)∈H2

σ2
ε

2πi

∮
|z−kA(z)− C(z)|2dz

z
(2.2.4)

where H2 denotes the Hardy space of square-integrable analytic functions on the unit disk,

and
∮

denotes integration about the unit circle. The restriction C(z) ∈ H2 ensures that

the forecast is casual (i.e., that the forecast contains no future values of ε’s).

The sequential forecasting rule, cj = aj+k, has the functional equivalent

yt = C(z) =

∞∑
j=0

cjzj =

[
B(z)

zk

]
+

(2.2.5)

where B(z) =
∑∞

j=0 bjzj and the operator [·]+ is defined, for a sum that contains both

positive and negative powers of z, as the sum containing only the nonnegative powers of z.5

The beauty of the prediction formula (2.2.5) is its generality. It holds for any covariance

stationary stochastic process. As an example, consider the AR(1), xt = ρxt−1 + εt. Here

B(z) = (1− ρz)−1 and (2.2.5) yields

C(z) = [
1

(1− ρz)zk
]+ = [z−k(1 + ρz + ρ2z2 + · · · )]+

= ρk(1 + ρz + ρ2z2 + · · · ) =
ρk

1− ρz
(2.2.6)

which delivers the well-known least squares predictor ρkxt.
6

The third principle assumes that solutions are sought in the space spanned by the

time-independent square-summable linear combinations of the process fundamental for the

driving process. Consider the moving average process xt = Γ(L)ut; the innovations are said

5For a detailed derivation of (2.2.5) from (2.2.4) see Whiteman and Lewis (2008).
6It is often more convenient to express prediction formulas in terms of the x series as opposed to

past forecast errors as in (2.2.5). If the process has an autoregressive representation, then one may
write the prediction formula as H(L)xt, where H(z) = B(z)−1[z−kB(z)]+
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to be fundamental for the xt process if ut ∈ span{xt−k, k ≥ 0}. That is, if the innovations

span the same space as the current and past observables, then the innovations are fun-

damental for the xt process. By construction, the innovations in the Wold representation

theorem are fundamental. This implies that for any covariance stationary process there will

always exist a unique representation that is fundamental for the exogenous driving process.7

2.2.2 Univariate Case

It is instructive to work through a univariate example of Whiteman (1983). There is nothing

new here but it will set the stage for the generalizations in the next section. Consider the

following generic rational expectations model

Etyt+1 − (ρ1 + ρ2)yt + ρ1ρ2yt−1 = xt, (2.2.7)

xt = A(L)εt, εt
iid∼ N(0, 1) (2.2.8)

where εt is assumed to be fundamental for xt (i.e., A(L) is assumed to have a one-sided

inverse in non-negative powers of L). Following the solution principle, we will look for a

solution in current and past ε, yt = C(L)εt. If we invoke the optimal prediction formula

(2.2.5), then Etyt+1 = [C(z)/z]+ = z−1[C(z) − C0]. Together with the fourth tenet of the

solution principle (i.e., that the rational expectation restrictions holds for all realization),

this implies that (2.2.7) can be written in z-transform as

z−1[C(z)− C0]− (ρ1 + ρ2)C(z) + ρ1ρ2zC(z) = A(z)

7The spanning conditions prove extremely convenient for backing out the information content of
exogenous and endogenous variables.
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Multiplying by z and rearranging delivers

C(z) =
zA(z) + C0

(1− ρ1z)(1− ρ2z)
(2.2.9)

We seek a representation that is square summable in the Hilbert space generated by the

fundamental shock, εt (tenet iii.). Appealing to the Riesz-Fischer Thereom, analyticity on

the unit disk is tantamount to square-summability (stationarity) in the time domain.

As shown in Whiteman (1983), there are three cases one must consider. First, assume

that |ρ1| < 1, |ρ2| < 1, then (2.2.9) is an analytic function on |z| < 1 and the representation

is given by

yt =

(
LA(L) + C0

(1− ρ1L)(1− ρ2L)

)
εt (2.2.10)

For any finite value of C0, this is a solution that lies in the Hilbert space generated by {xt}

and satisfies the tenets of the solution principle. Thus when |ρ1| < 1, |ρ2| < 1, no unique

solution exists because C0 can be set arbitrarily.

The second case to consider is |ρ1| < 1 < |ρ2|. In this case, the function C(z) has an

isolated singularity at |ρ2|, implying that the C(z) function is not analytic on the unit disk.

In this case, the free parameter C0 can be used to remove the singularity at |ρ2| by setting

C0 in such a way as to cause the residue of C(·) to be zero at |ρ2|

lim
z→ρ−1

2

(1− ρ2)C(z) =
ρ−1

2 A(ρ−1
2 ) + C0

(1− ρ1ρ
−1
2 )−1

= 0 (2.2.11)

Solving for C0 delivers C0 = −ρ−1
2 A(ρ−1

2 ). Substituting this into (2.2.10) yields the following
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rational expectations equilibrium

yt =

(
LA(L)− ρ−1

2 A(ρ−1
2 )

(1− ρ2L)(1− ρ1L)

)
εt (2.2.12)

This is the unique solution that lies in the Hilbert space generated by {xt}. The solution is

the ubiquitous Hansen-Sargent prediction formula that clearly captures the cross-equation

restrictions that are the “hallmark of rational expectations models,” [Hansen and Sargent

(1980)].

The final case to consider is 1 < |ρ1| and 1 < |ρ2|. In this case, (2.2.9) has two isolated

singularities at ρ−1
1 and ρ−1

2 and C0 cannot be set to remove both singularities.8 Hence in

this case, there is no solution that exists in the Hilbert space generated by {xt}.

2.3 Generalization

This section extends the univariate solution method of Whiteman (1983) to the multivariate

case. We also provide a connection to existing approaches.

2.3.1 Multivariate Case

The multivariate linear rational expectations models we are interested in can be cast in the

form of

Et

[
m∑

k=−n
ΓkL

kyt

]
= Et

[
l∑

k=−n
ΨkL

kxt

]
(2.3.1)

where L is the lag operator: Lkyt = yt−k, yt is a (p × 1) vector of endogenous variables,

{Γk}mk=−n and {Ψk}lk=−n are (p×p) and (p×q) matrix coefficients, and Et represents math-

ematical expectation given information available at time t including the model’s structure

8As discussed by Whiteman (1983) the problem remains even if ρ1 = ρ2.
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and all past and present realizations of the exogenous and endogenous processes. Moreover,

xt is a (q× 1) covariance stationary vector driving process with known Wold representation

xt =

∞∑
k=0

Akεt−k ≡ A(L)εt (2.3.2)

where εt = xt − Π[xt|xt−1, xt−2, . . .] and Π[xt|xt−1, xt−2, . . .] is the optimal linear predictor

for xt conditional on observing {xt−j}∞j=1.9 Also, each element of
∑∞

k=0AkA
′
k is finite.

An illustrative example to show how we get a model into the form of (2.3.1) is given

by the following simple RBC model. Consider the standard stochastic growth model with

log preferences, inelastic labor supply, complete depreciation of capital, and Cobb-Douglas

technology, Yt = AtK
α
t−1. The Euler equation and aggregate resource constraint, after

log linearizing, reduce to the following bivariate system in (ct, kt) which must hold for

t = 0, 1, 2, . . ., i.e.

Etct+1 = ct + (α− 1)kt + Etat+1 (2.3.3)

1− αβ
αβ

ct + kt =
1

αβ
at +

1

β
kt−1 (2.3.4)

where we have used the steady state facts that Y/K = 1/αβ and C/K = (1 − αβ)/αβ.

Also, we assume that the technology shock is serially uncorrelated, which implies Etat+1 = 0.

9The inclusion of l periods of lags for exogenous driving process allows for the possibility that
agents have foresight about some of the future endogenous variables.
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Rewrite the above bivariate system into the form of (2.3.1)

Et




1 0

0 0


︸ ︷︷ ︸

Γ−1

L−1 +

 −1 1− α
1−αβ
αβ 1


︸ ︷︷ ︸

Γ0

L0 +

0 0

0 − 1
β


︸ ︷︷ ︸

Γ1

L


ct
kt


︸ ︷︷ ︸
yt



= Et




1

0


︸ ︷︷ ︸

Ψ−1

L−1 +

 0

1
αβ


︸ ︷︷ ︸

Ψ0

L0

 at︸︷︷︸
xt


where n = m = 1, l = 0, p = 2, and q = 1.

Analogous to the univariate solution procedure outlined above, we exploit the properties

of polynomial matrices to establish conditions for the existence and uniqueness of solutions

to multivariate linear rational expectations models for general exogenous driving processes.

Suppose a solution yt to (2.3.1) is of the form

yt =
∞∑
k=0

Ckεt−k ≡ C(L)εt (2.3.5)

where {yt} is taken to be covariance stationary. Let Γ(z) =
∑m

k=−n Γkz
k. Further suppose

that znΓ(z) is nonsingular almost everywhere in the complex plane, and some of the roots

of the polynomial in z, det[znΓ(z)] =
∑h

k=0 bkz
k, may have multiplicities greater than 1.10

Note that such moving average representation of the solution is very convenient because

it is the impulse response function. For example, the term Ck(i, j) measures exactly the

response of yt+k(i) to a shock εt(j)

(Et − Et−1)yt+k(i) = Ck(i, j)εt(j)

10Here h = (m+ n)p.
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where Ck(i, j) denotes the (i, j)-th element of Ck, yt+k(i) denotes the i-th component of

yt+k, and εt(j) denotes the j-th component of εt. In what follows, we describe the solu-

tion algorithm in detail and apply it to solve a few example models that demonstrate the

usefulness of this frequency-domain solution method in Section 2.4.

2.3.2 Solution Procedure

If we define ηt (resp. νt) as a (p× 1) vector of endogenous (resp. exogenous) expectational

errors, satisfying ηt+k = yt+k −Etyt+k (resp. νt+k = xt+k −Etxt+k) for all k > 0 and hence

Etηt+k = 0 (resp. Etνt+k = 0), then we may write (2.3.1) as

m∑
k=−n

ΓkL
kyt =

l∑
k=−n

ΨkL
kxt +

n∑
k=1

(Γ−kηt+k −Ψ−kνt+k) (2.3.6)

Similar to Sims (2002), it should be noted that the η terms are not given exogenously, but

instead are treated as determined as part of the model solution.

First, rewrite model (2.3.6) as

Γ(L)yt = Ψ(L)xt +

n∑
k=1

(Γ−kηt+k −Ψ−kνt+k)

where Ψ(L) =
∑l

k=−n ΨkL
k. Applying (2.3.5) and the Wiener-Kolmogorov optimal predic-

tion formula gives

ηt+k = yt+k − Etyt+k = L−k

(
k−1∑
i=0

CiL
i

)
εt

νt+k = xt+k − Etxt+k = L−k

(
k−1∑
i=0

AiL
i

)
εt
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Substituting the above expressions, (2.3.2), and (2.3.5) into (2.3.6) gives

Γ(L)C(L)εt =

{
Ψ(L)A(L) +

n∑
k=1

[
Γ−kL

−k

(
k−1∑
i=0

CiL
i

)
−Ψ−kL

−k

(
k−1∑
i=0

AiL
i

)]}
εt

which must hold for all realizations of {εt}. Thus, the coefficient matrices are related by

the z-transform identities

znΓ(z)C(z) = znΨ(z)A(z) +

n∑
t=1

n∑
s=t

[Γ−sCt−1 −Ψ−sAt−1]zn−s+t−1

Next, applying the Smith canonical decomposition to the polynomial matrix znΓ(z)

gives

U(z)znΓ(z)V (z) =


f1(z)

f2(z)

. . .

fp(z)

 (2.3.7)

where f1, . . . , fp are monic polynomials in z, fk|fk+1 for 1 ≤ k ≤ p − 1, U(z) is a product

of elementary row matrices, and V (z) is a product of elementary column matrices. For

i = 1, . . . , p, let

fi =

ri∏
j=1

(z − zij)mij︸ ︷︷ ︸
f
i

·
ri∏
j=1

(z − zij)mij︸ ︷︷ ︸
f i

where zij ’s are complex-valued roots inside the unit circle with multiplicity mij and zij ’s
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are complex-valued roots on or outside the unit circle with multiplicity mij . Then

znΓ(z) = U(z)−1


f

1

f
2

. . .

f
p


︸ ︷︷ ︸

S(z)


f1

f2

. . .

fp

V (z)−1

︸ ︷︷ ︸
T (z)

where S(z) is a polynomial matrix such that all roots of det[S(z)] lie inside the unit cir-

cle while T (z) is a polynomial matrix with all roots of det[T (z)] outside the unit circle.

Therefore, we have

S(z)−1 =



U1·(z)∏r1
k=1(z−z1k)m1k

U2·(z)∏r2
k=1(z−z2k)m2k

...

Up·(z)∏rp
k=1(z−zpk)

mpk


where Uj·(z) is the jth row of U(z). Now the z-transform identities become

Tj·(z)C(z) =
Uj·(z)∏rj

k=1(z − zjk)mjk

{
znΨ(z)A(z) +

n∑
t=1

n∑
s=t

[Γ−sCt−1 −Ψ−sAt−1]zn−s+t−1

}

for j = 1, . . . , p, which is valid for all z on the open unit disk except z = zjk for k = 1, . . . , rj .

But since C(z) is the z-transform of the moving average coefficients for yt, it must exist for all

|z| < 1. This condition places restrictions on the np2 unknown parameters C0, C1, . . . , Cn−1:

di

dzi

[ rj∏
k=1

(z − zjk)mjkTj·(z)C(z)

] ∣∣∣∣
z=zjk

= 0, i = 0, . . . ,mjk − 1, k = 1, . . . , rj
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Stacking the above expressions yields



[
Uj·(zj1)(znj1Ψ(zj1)A(zj1)−

∑n
t=1

∑n
s=t Ψ−sAt−1z

n−s+t−1
j1 )

](0)

...[
Uj·(zj1)(znj1Ψ(zj1)A(zj1)−

∑n
t=1

∑n
s=t Ψ−sAt−1z

n−s+t−1
j1 )

](mj1−1)

...[
Uj·(zjrj )(z

n
jrj

Ψ(zjrj )A(zjrj )−
∑n

t=1

∑n
s=t Ψ−sAt−1z

n−s+t−1
jrj

)
](0)

...[
Uj·(zjrj )(z

n
jrj

Ψ(zjrj )A(zjrj )−
∑n

t=1

∑n
s=t Ψ−sAt−1z

n−s+t−1
jrj

)
](mjrj

−1)


︸ ︷︷ ︸

Aj·

=

−



[
Uj·(zj1)

∑n
s=1 Γ−sz

n−s
j1

](0)
· · ·

[
Uj·(zj1)Γ−nz

n−1
j1

](0)

...
. . .

...[
Uj·(zj1)

∑n
s=1 Γ−sz

n−s
j1

](mj1−1)
· · ·

[
Uj·(zj1)Γ−nz

n−1
j1

](mj1−1)

...
. . .

...[
Uj·(zjrj )

∑n
s=1 Γ−sz

n−s
jrj

](0)
· · ·

[
Uj·(zjrj )Γ−nz

n−1
jrj

](0)

...
. . .

...[
Uj·(zjrj )

∑n
s=1 Γ−sz

n−s
jrj

](mjrj
−1)

· · ·
[
Uj·(zjrj )Γ−nz

n−1
jrj

](mjrj
−1)


︸ ︷︷ ︸

Rj·


C0

C1

...

Cn−1


︸ ︷︷ ︸

C

Further stacking over j = 1, . . . , p yields

A
[r×q]

= − R
[r×np]

C
[np×q]

where r =
∑p

j=1

∑rj
k=1mjk.

Lastly, we establish the existence and uniqueness conditions of the multivariate rational

expectations model. As we show below, these conditions are more robust than the standard

root counting analysis of Blanchard and Kahn (1980). Existence cannot be established if at

least one column of A is outside the space spanned by the columns of R—the endogenous

shocks or forecast errors η cannot adjust to offset the exogenous shocks x. Thus, the precise
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existence condition is that columns of R span the space spanned by the columns of A, i.e.

span(A) ⊆ span(R) (2.3.8)

To check whether (2.3.8) is satisfied, we follow Sims (2002). Let the singular value de-

compositions of A and R be given by A = UASAV
′
A and R = URSRV

′
R. Then R’s column

space spans A’s if and only if (I − URU ′R)UA = 0, in which case one candidate of C can be

computed as

C = −VRS−1
R U ′RA (2.3.9)

When (2.3.8) is satisfied, we can obtain the analytical solution for yt which is indexed by

C0, C1, . . . , Cn−1
11

yt = (LnΓ(L))−1

{
LnΨ(L)A(L) +

n∑
t=1

n∑
s=t

[Γ−sCt−1 −Ψ−sAt−1]Ln−s+t−1

}

The above solution captures all the multivariate cross-equation restrictions linking the Wold

representation of the exogenous process to the endogenous variables of the model. This

mapping is essentially a multivariate version of the celebrated Hansen-Sargent formula, and

serves as a key ingredient in the analysis and econometric evaluation of dynamic rational

expectations models.

In order for the solution to be unique, we must be able to determine {Ck}∞k=0 from the

parameter restrictions supplied by A = −RC. Since V (·) is unimodular, this is equivalent

to determining the coefficients {Dk}∞k=0 of D(z) = V (z)−1C(z), which can be computed

11We also need to impose a “consistency condition” when (2.3.1) is withholding—some relevant
information is concealed from agents so that (2.3.1) contains terms like Et−iyt+j for some i, j > 0.
See Whiteman (1983) for details.
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using the inversion formula

Dk =
1

2πi

∫
Γ
D(z)z−k−1dz

= sum of residues of D(z−1)zk−1 at poles inside unit circle

Note that the jth row of D(z−1)zk−1 is given by

Uj·(z
−1)zk−1∏rj

k=1(z−1 − zjk)mjk
∏rj
k=1(z−1 − zjk)mjk

×{
z−nΨ(z−1)A(z−1) +

n∑
t=1

n∑
s=t

[Γ−sCt−1 −Ψ−sAt−1]z−(n−s+t−1)

}

which has poles inside unit circle at z−1
jk with multiplicity mjk for k = 1, . . . , rj .

12 Some

tedious algebra allows us to write the jth row of each Dk as a function of C that only shows

up in the following common terms shared by all Dk’s

di

dzi

[
Uj·(z

−1)
n∑
t=1

n∑
s=t

Γ−sCt−1z
−(n−s+t−1)

] ∣∣∣∣
z=z−1

jk

, i = 0, . . . ,mjk − 1, k = 1, . . . , rj

Stacking the above expressions yields



[
Uj·(z

−1
j1 )

∑n
s=1 Γ−sz

−(n−s)
j1

](0)
· · ·

[
Uj·(z

−1
j1 )Γ−nz

−(n−1)
j1

](0)

...
. . .

...[
Uj·(z

−1
j1 )

∑n
s=1 Γ−sz

−(n−s)
j1

](mj1−1)
· · ·

[
Uj·(z

−1
j1 )Γ−nz

−(n−1)
j1

](mj1−1)

...
. . .

...[
Uj·(z

−1
jrj

)
∑n

s=1 Γ−sz
−(n−s)
jrj

](0)
· · ·

[
Uj·(z

−1
jrj

)Γ−nz
−(n−1)
jrj

](0)

...
. . .

...[
Uj·(z

−1
jrj

)
∑n

s=1 Γ−sz
−(n−s)
jrj

](mjrj−1)
· · ·

[
Uj·(z

−1
jrj

)Γ−nz
−(n−1)
jrj

](mjrj−1)


︸ ︷︷ ︸

Qj·


C0

C1

...

Cn−1


︸ ︷︷ ︸

C

12For k = 0, there is an additional pole inside unit circle at 0.
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Further stacking over j = 1, . . . , p yields QC. Thus A = −RC pins down all the error

terms in the system that are influenced by the expectational error η. That is, we use RC

to determine QC and the solution is unique if and only if

span(Q′) ⊆ span(R′) (2.3.10)

In other words, determinacy of the solution requires that the columns of R′ span the space

spanned by the columns of Q′, in which case we will have QC = ΦRC for some matrix Φ.13

This completes the solution procedure.

2.4 Examples

We provide a few examples that demonstrate the usefulness of solving linear rational ex-

pectations models in the frequency domain. Some of the content is new to this paper but

most of the examples are taken from the literature and are therefore not rigorous.

2.4.1 Incomplete Information

One of the more compelling reasons to solve models using the approach laid out above is

the ease with which it handles incomplete information. The following example is a slightly

modified version of Rondina and Walker (2013), which is based on Futia (1981).

Assume agents are risk neutral and discount the future at rate β. Agents trade an asset

with price pt and fundamentals given by st. Let there be a continuum of asymmetrically

informed agents indexed by i. The model is given by

pt = β

∫ 1

0
Eitpt+1di+ st (2.4.1)

13Similar to the space spanning condition for existence, (2.3.10) can be verified using the singular
value decompositions of Q and R.
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where Eit is the conditional expectation of agent i taken with respect to a filtration Ωi
t.

The exogenous process (st) is driven by a Gaussian shock

st = A(L)εt, εt
iid∼ N(0, σ2

ε) (2.4.2)

where A(L) is a square-summable polynomial in the lag operator L.

Solving models of the form of (2.4.1) is nontrivial because a rational expectations equi-

librium will consist of a fixed point in endogenous information and the coefficients of the

price process.

Definition 7. A Rational Expectations Equilibrium is a stochastic process for {pt} and

a stochastic process for the information sets
{

Ωi
t, i ∈ [0, 1]

}
such that: (i) each agent i,

given the price and the information set, optimally forms expectations; (ii) pt satisfies the

equilibrium condition (2.4.1).

The solution procedure involves two steps: [i] guess a candidate solution that is minimal

with respect to information and impose equilibrium conditions [ii] check the invertibility of

the endogenous variables to ensure the informational fixed point condition holds. Through

market interactions, the information conveyed by the candidate solution may be larger than

the initial information set of step [i]. If this is the case, the new enlarged information set

is used to generate a new candidate solution, and the process is repeated until conver-

gence. Since the expansion of the information set is bounded above by the full information

benchmark, the iteration is sure to converge.

A critical component of the solution procedure is initializing the recursion in informa-

tion. Here one can follow Radner (1979), who advocated forming an “exogenous information

equilibrium” as an initial guess for the IE. The exogenous information equilibrium assumes

agents are only able to condition on exogenous information (e.g., private exogenous signal),
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which places a lower-bound restriction on the initial condition for information. Radner

argued that such an equilibrium would persist only if every agent remained unsophisticated

and ignored the information coming from the endogenous variables. A dynamic interpre-

tation of Radner is to say that a “sophisticated” agent acting rationally will not generate

forecast errors that are serially correlated with respect to their own information sets.

Following Rondina and Walker (2013), suppose there are two types of agents, informed

and uninformed. The proportion of the informed agents is denoted by µ ∈ [0, 1] and they are

assumed to observe the entire history of the structural shock ε up to time t. The remaining

1−µ agents are uninformed in the sense that they observe only equilibrium outcomes (i.e.,

the price sequence). The exogenous information is given by

U it = Vt (ε) for i ∈ µ

U it = {0} for i ∈ 1− µ.

The equilibrium is given by

pt = β
[
µE
(
pt+1|Vt (ε) ∨Mt (p)

)
+ (1− µ)E

(
pt+1|Vt (p) ∨Mt (p)

)]
+ st. (2.4.3)

The following theorem is due to Rondina and Walker (2013).

Theorem 8. Under the exogenous information assumption U it = Vt(ε) for i ∈ µ and

U it = {0} for i ∈ 1 − µ, a unique Information Equilibrium for (2.4.3) with |β| < 1 always

exists and is determined as follows: If there exists a |λ| < 1 such that

A(λ)− µβA(β)

h(β)
= 0 (2.4.4)
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then the REE of (2.4.3) is given by

pt = (L− λ)Q(L)εt =
1

L− β

{
LA(L)− βA(β)

h(L)

h(β)

}
εt (2.4.5)

with

h(L) ≡ µλ− (1− µ)Bλ(L), Bλ(L) ≡ L− λ
1− λL

If restriction (2.4.4) does not hold for |λ| < 1, the REE converges to a complete information

equilibrium.

The proof follows the solution procedure outlined above. The Radner “exogenous equi-

librium” is a price sequence given by

pt = Q(L)(L− λ)εt (2.4.6)

where |λ| < 1 is assumed, and Q(L) is assumed to contain no zeros inside the unit circle.

Viewed as an analytic function, price process contains a zero inside the unit circle at z = λ.

Thus, the right-hand side of (2.4.6) is not invertible. This implies that the price sequence

pt spans a smaller space than εt. For the uninformed agents, this space is characterized by

a Blaschke factor [see Hansen and Sargent (1991), Lippi and Reichlin (1994)],

pt = Q(L)(1− λL)ε̃t (2.4.7)

ε̃t =

[
L− λ
1− λL

]
εt (2.4.8)

Once we have an initial guess for our endogenous variables, we simply follow the solution
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procedure and take the conditional expectations for the informed and uninformed agents

EIt (pt+1) = L−1[(L− λ)Q(L) + λQ0]εt

EUt (pt+1) = L−1[(L− λ)Q(L)−Q0Bλ(L)]εt

Substituting the expectations into the equilibrium gives the z-transform in εt space as

(z − λ)Q(z) = βµz−1[(z − λ)Q(z) + λQ0] + β(1− µ)z−1[(z − λ)Q(z)−Q0Bλ(z)] +A(z)

(2.4.9)

and re-arranging yields the following functional equation

(z − λ)(z − β)Q(z) = zA(z) + βQ0[µλ− (1− µ)Bλ(z)]

The Q(·) process will not be analytic unless the process vanishes at the poles z = {λ, β}.

Evaluating at z = λ gives the restriction on A(·), A(λ) = −βµQ0. Rearranging terms

(z − β)Q(z) =
1

z − λ
{
zA(z) + βQ0[µλ− (1− µ)Bλ(z)]

}
=

1

z − λ
{
zA(z) + βQ0h(z)

}
(2.4.10)

where h(z) ≡ [µλ − (1 − µ)Bλ(z)]. Evaluating at z = β gives Q0 as Q0 = −A(β)
h(β) . This

implies the restriction on A(·) is

A(λ) =
βµA(β)

h(β)

which is (2.4.4). Substituting this into (2.4.10) delivers (2.4.5).

Therefore, the only additional step to solving models with incomplete information is
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forming an initial guess for the endogenous variables. We advocate following the recursion

described by Radner (1979). We can then follow the stand solution procedure of Whiteman

(1983). Moreover, working with analytic functions makes keeping track of the information

content of endogenous and exogenous variables straightforward.

2.4.2 Observational Equivalence

In this section, we first solve a cashless version of the model in Leeper (1991) with simple

exogenous driving processes for policy shocks. Then we apply the solution methodology

developed in this paper and show that the two disjoint determinacy regions in this model

can generate observational equivalent equilibrium time series driven by carefully chosen

exogenous driving process for each determinacy region, a result due to Leeper et al. (2014).

In particular, an infinitely lived representative household is endowed each period with a

constant quantity of nondurable goods, y. Government issues nominal one-period bonds,

so the price level P can be defined as the rate at which bonds exchange for goods. The

household chooses sequences of consumption and bonds, {ct, Bt}, to maximize

E0

∞∑
t=0

βtu(ct)

where 0 < β < 1, subject to the budget constraint

ct +
Bt
Pt

+ τt = y +
Rt−1Bt−1

Pt

taking prices and the initial principal and interest payments on debt, R−1B−1 > 0, as given.

The household pays lump sum taxes, τt, each period. Government spending is zero each
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period, so the government chooses sequences of taxes and debt to satisfy its flow constraint

Bt
Pt

+ τt =
Rt−1Bt−1

Pt

given R−1B−1 > 0, while the monetary authority chooses a sequence for the nominal interest

rate. After imposing goods market clearing, ct = y for t ≥ 0, the household’s consumption

Euler equation reduces to the simple Fisher relation

1

Rt
= βEt

Pt
Pt+1

For analytical convenience, we close the model laid out above by specifying the following

monetary and fiscal policy rules

Rt = R∗(πt/π
∗)αeθt

τt = τ∗(bt−1/b
∗)γeψt

where πt ≡ Pt/Pt−1 and bt ≡ Bt/Pt and ∗ denotes steady state value for the corresponding

variable. Log linearizing around the steady states and combining the above equations, the

system can be reduced to a bivariate system in (π̃t, b̃t) where tilde denotes log deviation

from steady state value, which must hold for t = 0, 1, 2, . . ., i.e.

Etπ̃t+1 = απ̃t + θt (2.4.11)

b̃t + β−1π̃t = [β−1 − γ(β−1 − 1)]̃bt−1 + αβ−1π̃t−1 − (β−1 − 1)ψt + β−1θt−1(2.4.12)

Evidently, a unique bounded equilibrium can exist if either |α| > 1 and |γ| > 1 or |α| < 1

and |γ| < 1. This implies that the policy parameter space is divided into four disjoint regions

according to whether monetary and fiscal policies are, in Leeper (1991) terminology, active
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or passive.

Case 1: α < 1 and γ > 1. Then we have one root inside the unit circle, i.e. z1 = 0,

with the other two outside, i.e. z2 = 1
α > 1 and z3 = 1

1
β
−γ( 1

β
−1)

> 1. Since the existence

condition is satisfied but the uniqueness condition is violated, any candidate of C0 that

satisfies the existence condition may lead to a different solution for yt and hence there are

infinite solutions.

Case 2: α > 1 and γ > 1. Then we have two roots inside the unit circle, i.e. z1 = 0

and z2 = 1
α < 1, with the other outside, z3 = 1

1
β
−γ( 1

β
−1)

> 1. Since both the existence and

uniqueness conditions are satisfied, any candidate of C0 that satisfies the existence condition

leads to the same solution for yt and hence the solution is unique. Finally, the z-transform

of the coefficient matrices for yt is given by

C(z) = (zΓ(z))−1[zΨ(z) + Γ−1C0] =

 − 1
α 0

− 1
α

1−γ+βγ
1

z− 1
1
β
−γ( 1

β
−1)

1−β
1−γ+βγ

1
z− 1

1
β
−γ( 1

β
−1)


and thus the unique solution is given by

π̃t
b̃t

 = C(L)

θt
ψt

 =

− 1
α 0

1
αβ 1− 1

β


︸ ︷︷ ︸

C0

θt
ψt

+
∞∑
k=1

 0 0

ρk

αβ (1− 1
β )ρk


︸ ︷︷ ︸

Ck

θt−k
ψt−k



where ρ = 1
β−γ( 1

β−1) < 1 and C0 not only satisfies the existence condition but is consistent

as well. Also, observe that fiscal shock and its lags (ψt−k) do not enter the solution for π̃t.

This consequence is consistent with Gensys because we have one unstable eigenvalue (α > 1)

in the Fisher relation containing expectational terms, which enables it to evolve separately

from the real debt valuation equation and hence π̃t is not affected by the fiscal shocks.

Case 3: α < 1 and γ < 1. Then we have two roots inside the unit circle, i.e. z1 = 0

and z3 = 1
1
β
−γ( 1

β
−1)

< 1, with the other outside, z2 = 1
α > 1. Since both the existence and

102



uniqueness conditions are satisfied, any candidate of C0 that satisfies the existence condition

leads to the same solution for yt and hence the solution is unique. Finally, the z-transform

of the coefficient matrices for yt is given by

C(z) = (zΓ(z))−1[zΨ(z) + Γ−1C0] =

− 1
α

z
z− 1

α

1−β
α

1
z− 1

α

0 0


and thus the unique solution is given by

π̃t
b̃t

 = C(L)

θt
ψt

 =

0 β − 1

0 0


︸ ︷︷ ︸

C0

θt
ψt

+

∞∑
k=1

αk−1 (β − 1)αk

0 0


︸ ︷︷ ︸

Ck

θt−k
ψt−k



where C0 not only satisfies the existence condition but is consistent as well. Also, observe

that fiscal shock and its lags (ψt−k) enter the solution for π̃t. This consequence is also

consistent with Gensys because the only unstable eigenvalue ( 1
β − γ( 1

β − 1) > 1) lives

in the real debt valuation equation not containing expectational terms. Determinacy of

solution thus requires that such unstable eigenvalue be imported from the real debt valuation

equation into the Fisher relation which entails bringing the fiscal shocks in the solution for

π̃t.

Case 4: α > 1 and γ < 1. Then all roots are inside the unit circle. Since the existence

condition is violated in this case, there is no covariance stationary solution for yt. See

Appendix B for derivation details.

Further inspection of the preceding mechanism in pinning down C0 provides a more

intuitive and perhaps insightful interpretation on the consistency of solutions. A rational

expectations equilibrium is a fixed point of the mapping between the perceived law of

motion and the law of motion generated by those beliefs. Any candidate for C0 designates

a perceived law of motion, or agents’ belief about how endogenous variables evolve, and a
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solution obtained by plugging in such C0 represents a new law of motion with equilibrium

conditions imposed that is generated by such belief. The consistency of solution simply

requires that the two laws of motion be identical and hence the z-transform approach

reduces to solving a fixed point problem. By applying this argument, it is easy to see that

there are multiple fixed points in Case 1, unique fixed point in Case 2 & 3, and no fixed

point in Case 4.

Given the differences in the equilibria described in the previous example, it seems

straightforward to distinguish an equilibrium time series generated by active monetary/passive

fiscal policies (Case 2) from a time series generated by passive monetary/active fiscal policy

(Case 3). Unfortunately, subtle observational equivalence results may make it difficult to

identify whether a regime is “active” or “passive”. The theoretical framework proposed

in this paper makes it possible to study such observational equivalence phenomenon and

the implied identification challenges that potentially reside in well-known DSGE models.

In this section, we highlight the point that simple models show that two decoupled de-

terminacy regions may generate observational equivalent equilibrium time series driven by

generic exogenous driving process. Consequently, identification of policy regimes may thus

be achieved by imposing ad hoc identifying restrictions on the exogenous driving process.

One iconoclastic or even depressing conclusion flows naturally from this result: empirically

testing for the interactions between monetary and fiscal policies by examining simple cor-

relations in the data may lead to spurious results and potentially false conclusions. This

suggests that existing efforts to “test” for the fiscal theory may be more challenging than

originally believed.

For simplicity, we assume that the Wold representations for the exogenous driving pro-
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cesses in Case 2 & 3 of the above example are given by the following

θt
ψt

 =

A11(L) 0

0 A22(L)


︸ ︷︷ ︸

A(L)

ε1t

ε2t

 and

θt
ψt

 =

B11(L) 0

0 B22(L)


︸ ︷︷ ︸

B(L)

ε1t

ε2t



where the functional forms for {A11(·), A22(·), B11(·), B22(·)} are not specified.14 We proceed

by solving the model for both cases. See Appendix B for derivation details.

Case 2: let α = α1 > 1 and γ = γ1 > 1. Then we have two roots inside the unit circle,

i.e. 0 and zM1 = 1
α1

< 1, with the other outside, zM2 = 1
1
β
−γ1( 1

β
−1)

> 1. Therefore, the

z-transform of the coefficient matrices for yt is given by

C1(z) =

−zM1 zA11(z)−zM1 A11(zM1 )

z−zM1
0

− 1
β
zM1 zM2 A11(zM1 )

z−zM2
( 1
β − 1)zM2

A22(z)

z−zM2



which gives the solution under active monetary/passive fiscal policy regime.

Case 3’: let α = α2 < 1 and γ = γ2 < 1. Then we have two roots inside the unit

circle, i.e. 0 and zF2 = 1
1
β
−γ2( 1

β
−1)

< 1, with the other outside, zF1 = 1
α2
> 1. Therefore, the

z-transform of the coefficient matrices for yt is given by

C2(z) =

−zF1 zB11(z)

z−zF1
(1− β)

zF1 B22(zF2 )

z−zF1

0 ( 1
β − 1)zF2

B22(z)−B22(zF2 )

z−zF2



which gives the solution under passive monetary/active fiscal policy regime.

Equating the polynomial matrix C1(z) with C2(z) element by element delivers the fol-

14Obviously, this modified model is not readily solvable by conventional approaches.
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lowing system of restrictions on the exogenous driving processes in both cases

zA11(z)− zM1 A11(zM1 )

z − zM1
= µ

zB11(z)

z − zF1

A11(zM1 ) = 0

B22(zF2 ) = 0

A22(z)

z − zM2
= ν

B22(z)−B22(zF2 )

z − zF2

where µ =
zF1
zM1

and ν =
zF2
zM2

. The above system of restrictions seems overly restrictive but the

fact that there are sequences of infinite undetermined coefficients in the polynomial functions

{A11(z), A22(z), B11(z), B22(z)} buys one enough freedom of matching the coefficients. The

following theorem is due to Leeper et al. (2014).

Theorem 9. Let {A11(z), A22(z), B11(z), B22(z)} be given by the following polynomials

A11(z) = a0 + a1z (2.4.13)

B11(z) = b0 + b1z (2.4.14)

A22(z) = c0 + c1z (2.4.15)

B22(z) = d0 + d1z (2.4.16)

Then there exist an infinite sequence of solutions satisfying the above system of restrictions,
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one of which is given by the following15

a0 = 1, a1 = − 1

zM1
(2.4.17)

b0 = 1, b1 = − 1

zF1
(2.4.18)

c0 = 1, c1 = − 1

zM2
(2.4.19)

d0 = 1, d1 = − 1

zF2
(2.4.20)

Its proof is trivial and thus omitted. This simple monetary model shows that two disjoint

determinacy regions can generate observational equivalent equilibrium time series driven by

properly chosen exogenous driving processes for each determinacy region. However, further

study is needed to examine whether such conclusion plagues in more complicated DSGE

models that researchers and policy institutions employ to study monetary and fiscal policy

interactions.

2.4.3 Decoupled System

We now give an example that is due to Sims (2007). Consider a linear rational expectations

model that has no stable solution for which the Blanchard and Kahn (1980) regularity

conditions do not hold and that is not “generic” in the terminology of Onatski (2006).

xt = αxt−1 + εt (2.4.21)

Etyt+1 = βyt + vt (2.4.22)

where |α| > 1, |β| < 1, and εt and vt are exogenous, non-explosive stochastic processes.16

The two equations are unrelated and there is no way to import the unstable root from the

15Under the specification given in Theorem 9, we have one free coefficient and hence there are
infinite solutions.

16In Sims (2007), α = 1.1 and β = 0.9.
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first equation into the second equation. As Sims noted, “the Blanchard-Kahn rule, that the

number of unstable roots must match the number of forward-looking variables, is satisfied,

yet there is no stable solution. The reason is that the unstable root occurs in a part of the

system that is decoupled from the expectational equation.”

Now we apply the solution methodology proposed in this paper to solve the model.

Note that det[zΓ(z)] has three distinct roots given by z1 = 0, z2 = 1
α , and z3 = 1

β . Here

we have two roots inside the unit circle, i.e. z1 = 0 and z2 = 1
α < 1, with the other one

outside, i.e. z3 = 1
β > 1. Imposing the restrictions U2·(z)(zΨ(z) + Γ−1C0)|z=0 = 0 and

U2·(z)(zΨ(z) + Γ−1C0)|z= 1
α

= 0 gives the following system

−

0 0

0 0

C0(1, 1) C0(1, 2)

C0(2, 1) C0(2, 2)

 =

 0 0

β−α
α3β

0



which requires that β−α
α3β

= 0, or α = β, a contradiction.17 Since the existence condition

is violated in this case, there is no covariance stationary solution for (xt, yt). Though the

winding number criterion in Onatski (2006) gives the wrong answer as pointed out by Sims

(2007), our approach is immune to the trouble brought about by the decoupled system and

hence gives the right answer. See Appendix B for derivation details.

2.5 Concluding Comments

There are many other solution methodology papers in the literature that, like this one,

expand the range of models beyond that of Blanchard and Kahn (1980) [Anderson and

Moore (1985), Broze et al. (1995), Klein (2000), Binder and Pesaran (1997), King and Wat-

17One may easily realize that one of the possibilities that such contradiction arises is due to the
appearance of εt in the first equation. Removing εt from the first equation makes this contradiction
dissipate but it also yields a “degenerate” covariance stationary solution for xt, i.e. xt = 0 for all t,
which is consistent with the fact that existence condition holds when εt is dropped off. This shows
that, unlike “root-counting” or “winding number” criteria, the approach in this paper is immune to
the troubles posed by decoupling issue.
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son (1998), McCallum (1998), Zadrozny (1998), Uhlig (1999), and Onatski (2006)]. There

are compelling reasons why studying models with arbitrary number of lags of endogenous

variables, or lagged expectations, or with expectations of more distant future values, and

with generic exogenous driving processes may be interesting to economists. From a purely

methodological perspective, analyzing more general models gives new insights about meth-

ods developed under more restrictive assumptions and allows their deeper interpretation.

Moreover, as we argue here, new (or old) techniques could prove useful for solving compli-

cated linear rational expectation models.

We show that the advantage of this frequency-domain approach over other popular time-

domain approaches derives from its provision of new insights to solving several well-known

challenging problems, e.g. forecasting the forecasts of others in Townsend (1983) and obser-

vational equivalence of monetary and fiscal policy interactions in Leeper et al. (2014), etc.

In particular, we solve a simple cashless version of the model in Leeper (1991) and highlight

the point that two decoupled determinacy regions may generate observational equivalent

equilibrium time series driven by generic exogenous driving process. Therefore, our solu-

tion methodology proves to be an indispensable supplement to the existing approaches both

from theoretical and applied perspectives.

One useful extension of the solution methodology proposed in this paper would be to

accommodate continuous-time processes into our general framework as Sims (2002). On one

hand, explicit extension to the continuous-time system enables one to tackle problems that

can hardly be dealt with in the discrete-time system and thus brings new insights to the

table. On the other hand, a continuous-time extension makes it possible to study various

non-stationary or near non-stationary features commonly present in almost all important

macroeconomic time series data. These non-stationarities usually cannot be fully removed

by the simple detrending or transformations and very often, these detrending efforts may
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incur loss of important long-term information about the data that is potentially valuable

to the researchers. Therefore, an explicit extension of our solution methodology to the

continuous-time setting proves to be both non-trivial and useful. We leave this for future

research.

Online Appendix

Appendix A: Proofs

The solution method derived in this paper is intimately related to many other approaches

proposed in the literature. In this appendix, we will focus our attention only on its con-

nection to one of the most popular solution methodologies, i.e. that of Sims (2002). We

summarize the equivalence relation of our approach and Sims’ approach in the following

theorem.

Theorem 10. Consider the following multivariate linear rational expectations model18

(Γ−1L
−1 + Γ0)yt = Ψ−1L

−1xt + Γ−1ηt+1 (2.5.1)

Assume that Γ−1 is of full rank, and both the eigenvalues of −Γ−1
−1Γ0 and the roots of

det[Γ−1 + zΓ0] = 0 are nonzero and distinct. Then

1. Factorization equivalence: the eigenvalues of −Γ−1
−1Γ0 are exactly the inverse of the

corresponding roots of det[Γ−1 + zΓ0] = 0, or equivalently, those roots of the determi-

nant of the Smith canonical form for Γ−1 + zΓ0;

2. Existence equivalence: the restrictions imposed by the unstable eigenvalues in Sims

(2002) are exactly those imposed by the roots inside unit circle in this paper.

18Since all variables are taken to be zero-mean linearly regular covariance stationary stochastic
processes in this paper, the vector of constants in Sims (2002) drops off from (2.5.1).
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3. Uniqueness equivalence: the conditions under which the solution to (2.5.1) is unique

are equivalent between Sims (2002) and this paper.

This theorem shows an equivalence relation between Sims (2002) and this paper, with

Gensys as a special case. One of the major differences lies in the fact that the solution is

expressed in ARMA form in Sims (2002) while this paper gives the solution in MA form.

In what follows, we prove Theorem 10.

Proof of (1): first, the eigenvalue λ of−Γ−1
−1Γ0 can be computed as |Γ−1

−1Γ0+λI| = 0. Also,

since Γ−1 is assumed to be of full rank and z 6= 0, we have |Γ−1+zΓ0| = |zΓ−1||Γ−1
−1Γ0+ 1

z I| =

0, or |Γ−1
−1Γ0 + 1

z I| = 0. This establishes λ = 1
z .

Second, let Γ−1 + zΓ0 = U(z)−1P (z)V (z)−1 where U(z) and V (z) are unimodular

matrices and P (z) is the Smith canonical form for Γ−1 + zΓ0. Since |U(z)| and |V (z)| are

nonzero constants, the roots of |Γ−1 + zΓ0| = 0 are exactly those of |P (z)| = 0.

Part (1) of Theorem 10 shows an equivalence relation between identifying the unstable

eigenvalues in Sims (2002) and identifying the roots inside unit circle in this paper.

Proof of (2): first, we derive the restriction system in Sims (2002). Since all eigenvalues

of −Γ−1
−1Γ0 are distinct, we know that −Γ−1

−1Γ0 is diagonalizable and can be factorized as

−Γ−1
−1Γ0 = PΛP−1

where P is the matrix of right-eigenvectors, P−1 is the matrix of left-eigenvectors, and Λ is

a diagonal matrix with all eigenvalues of −Γ−1
−1Γ0 on its main diagonal. Stability conditions

then require that for all t

PU ·(Γ−1
−1Ψ−1xt+1 + ηt+1) = 0 (2.5.2)
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where PU · collects all the rows of P−1 corresponding to unstable eigenvalues.

Second, we derive the restriction system in this paper. Note that the polynomial matrix

Γ−1 + zΓ0 can be factorized as

Γ−1 + zΓ0 = U(z)−1P (z)V (z)−1 = U(z)−1P1(z)︸ ︷︷ ︸
S(z)

P2(z)V (z)−1︸ ︷︷ ︸
T (z)

where U(z) and V (z) are unimodular matrices and S(z) is the Smith canonical form for

Γ−1 + zΓ0. Also, S(z) is a polynomial matrix such that all the roots of det[S(z)] lie inside

the unit circle while T (z) is a polynomial matrix with all the roots of det[T (z)] outside the

unit circle. Since all the roots of det[Γ−1 + zΓ0] are distinct, the property that the (i, i)

entry of Smith canonical form is divisible by its (i− 1, i− 1) entry for i = 2, . . . , p implies

that P1(z) is of the form

P1(z) =



1

1

. . .

1 ∏r
j=1(z − zj)


and hence

S(z)−1 =



U1·(z)
...

Up−1·(z)

1∏r
j=1(z−zj)

Up·(z)



112



This implies the following restriction system


Up·(z1)

...

Up·(zr)

Γ−1(Γ−1
−1Ψ−1 + C0) = 0 (2.5.3)

Observe that for ∀zj with j = 1, 2, . . . , r, we have the following equation

U(zj)Γ−1

(
Γ−1
−1Γ0 +

1

zj
I

)
=

1

zj
P (zj)V (zj)

−1

where the last row is given by

Up·(zj)Γ−1

(
Γ−1
−1Γ0 +

1

zj
I

)
= (0 · · · 0)

This implies that Up·(zj)Γ−1 is exactly the left eigenvector corresponding to the unstable

eigenvalue 1
zj

of −Γ−1
−1Γ0. Stacking Up·(zj)Γ−1 = P j· for j = 1, 2, . . . , r then gives


Up·(z1)

...

Up·(zr)

Γ−1 = PU ·

This implies that (2.5.3) is equivalent to

PU ·(Γ−1
−1Ψ−1 + C0) = 0 (2.5.4)

The proof is completed by noticing that both (2.5.2) and (2.5.4) hold if and only if the

columns of PU · span the space spanned by the columns of PU ·Γ−1
−1Ψ−1, i.e.

span(PU ·Γ−1
−1Ψ−1) ⊆ span(PU ·)
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which shows that the algorithm in Sims (2002) and that discussed in this paper yield iden-

tical existence condition.

Proof of (3): first, the uniqueness condition in Sims (2002) requires that the knowledge

of PU ·η can be used to determine PS·η, where PS· is made up of all the rows of P−1

corresponding to stable eigenvalues.

Second, the uniqueness condition in this paper requires that the knowledge of


Up·(z1)

...

Up·(zr)

Γ−1C0

can be used to determine


Up·(z

−1
1 )

...

Up·(z
−1
r )

Γ−1C0

where zj for j = 1, . . . , r are those roots outside unit circle for det[Γ−1 + zΓ0] = 0, and

hence their inverses are exactly the stable eigenvalues of −Γ−1
−1Γ0 by part (1). Therefore,

by part (2) the solution is unique when the knowledge of PU ·C0 can be used to determine

PS·C0.

The proof is completed by noticing that the uniqueness conditions in Sims (2002) and

this paper both hold if and only if the columns of (PU ·)′ span the space spanned by the

columns of (PS·)′, i.e.

span((PS·)′) ⊆ span((PU ·)′)
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Appendix B: Solutions

First, we solve the example model in Section 2.4.2. Rewrite the bivariate system into the

form of (2.3.6)


1 0

0 0


︸ ︷︷ ︸

Γ−1

L−1 +

−α 0

1
β 1


︸ ︷︷ ︸

Γ0

L0 +

 0 0

−α
β −

[
1
β − γ( 1

β − 1)
]


︸ ︷︷ ︸
Γ1

L


π̃t
b̃t


︸ ︷︷ ︸
yt

=


1 0

0 −( 1
β − 1)


︸ ︷︷ ︸

Ψ0

L0 +

0 0

1
β 0


︸ ︷︷ ︸

Ψ1

L


θt
ψt


︸ ︷︷ ︸
xt

+

1 0

0 0


︸ ︷︷ ︸

Γ−1

ηπt+1

ηbt+1


︸ ︷︷ ︸
ηt+1

where n = m = l = 1, p = q = 2, and A(L) is taken to be a (2× 2) identity matrix. Then

we can obtain

zΓ(z) = U(z)−1

1 0

0 z
(
z − 1

α

)(
z − 1

1
β
−γ( 1

β
−1)

)V (z)−1

where U(z) and V (z) are unimodular matrices. Obviously det[zΓ(z)] has three distinct

roots, i.e. z1 = 0, z2 = 1
α , and z3 = 1

1
β
−γ( 1

β
−1)

. In this example, we have four cases.

Case 1: α < 1 and γ > 1. Then we have one root inside the unit circle, i.e. z1 = 0, with

the other two outside, i.e. z2 = 1
α > 1 and z3 = 1

1
β
−γ( 1

β
−1)

> 1. Therefore, the polynomial

matrix zΓ(z) can be decomposed as

zΓ(z) = U(z)−1

1 0

0 z


︸ ︷︷ ︸

S(z)

1 0

0
(
z − 1

α

)(
z − 1

1
β
−γ( 1

β
−1)

)V (z)−1

︸ ︷︷ ︸
T (z)
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and hence

S(z)−1 =

 U1·(z)

1
zU2·(z)


Imposing the restriction U2·(z)[zΨ(z) + Γ−1C0]|z=0 = 0 gives the following system

−
(

0 0
)C0(1, 1) C0(1, 2)

C0(2, 1) C0(2, 2)

 =
(

0 0
)

and hence we have no restrictions imposed on the unknown coefficient matrix C0. Now we

examine the uniqueness condition. Notice that

R = U2·(z1)Γ−1 =
(

0 0
)

and Q =

U2·(z
−1
2 )Γ−1

U2·(z
−1
3 )Γ−1

 =

 α(α+1−γ+βγ)−(1+β)
1−γ+βγ 0

(α+1−γ+βγ)(1−γ+βγ)−β(1+β)
αβ2 0


and since the columns of R′ do not span the space spanned by the columns of Q′, i.e.

span(Q′) 6⊆ span(R′), any candidate of C0 that satisfies the existence condition may lead to

a different solution for yt and hence there are infinite solutions.

Case 2: α > 1 and γ > 1. Then we have two roots inside the unit circle, i.e. z1 = 0

and z2 = 1
α < 1, with the other outside, z3 = 1

1
β
−γ( 1

β
−1)

> 1. Therefore, the polynomial

matrix zΓ(z) can be decomposed as

zΓ(z) = U(z)−1

1 0

0 z
(
z − 1

α

)


︸ ︷︷ ︸
S(z)

1 0

0 z − 1
1
β
−γ( 1

β
−1)

V (z)−1

︸ ︷︷ ︸
T (z)

and hence

S(z)−1 =

 U1·(z)

1
z(z−1/α)U2·(z)


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Imposing the restriction U2·(z)[zΨ(z) + Γ−1C0]|z=1/α = 0 gives the following system

−
(

1−γ+βγ−αβ
α3(1−γ+βγ)

0
)C0(1, 1) C0(1, 2)

C0(2, 1) C0(2, 2)

 =
(

1−γ+βγ−αβ
α4(1−γ+βγ)

0
)

and hence C0(1, 1) = − 1
α and C0(1, 2) = 0.19 Now we examine the uniqueness condition.

Notice that

R =

U2·(z1)Γ−1

U2·(z2)Γ−1

 =

 0 0

1−γ+βγ−αβ
α3(1−γ+βγ)

0

 ,

Q = U2·(z
−1
3 )Γ−1 =

(
(α+1−γ+βγ)(1−γ+βγ)−β(1+β)

αβ2 0
)

and the columns of R′ span the space spanned by the columns of Q′, i.e. span(Q′) ⊆

span(R′) is satisfied. Therefore, for any candidate of C0 that satisfies the existence condition,

it leads to the same solution for yt and thus the solution is unique. Finally, the z-transform

of the coefficient matrices for yt is given by

C(z) = (zΓ(z))−1[zΨ(z) + Γ−1C0] =

 − 1
α 0

− 1
α

1−γ+βγ
1

z− 1
1
β
−γ( 1

β
−1)

1−β
1−γ+βγ

1
z− 1

1
β
−γ( 1

β
−1)


and thus the unique solution is given by

π̃t
b̃t

 = C(L)

θt
ψt

 =

− 1
α 0

1
αβ 1− 1

β


︸ ︷︷ ︸

C0

θt
ψt

+
∞∑
k=1

 0 0

ρk

αβ (1− 1
β )ρk


︸ ︷︷ ︸

Ck

θt−k
ψt−k



where ρ = 1
β−γ( 1

β−1) < 1 and C0 not only satisfies the existence condition but is consistent

as well.

19Here we omit the restriction imposed by z = 0 because it is unrestrictive.
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Case 3: α < 1 and γ < 1. Then we have two roots inside the unit circle, i.e. z1 = 0

and z3 = 1
1
β
−γ( 1

β
−1)

< 1, with the other outside, z2 = 1
α > 1. Therefore, polynomial matrix

zΓ(z) can be decomposed as

zΓ(z) = U(z)−1

1 0

0 z

(
z − 1

1
β
−γ( 1

β
−1)

)
︸ ︷︷ ︸

S(z)

1 0

0 z − 1
α

V (z)−1

︸ ︷︷ ︸
T (z)

and hence

S(z)−1 =


U1·(z)

1

z

(
z− 1

1
β
−γ( 1

β
−1)

)U2·(z)



Imposing the restriction U2·(z)[zΨ(z) + Γ−1C0]|z= 1
1
β
−γ( 1

β
−1)

= 0 gives the following system

−
(
−β(1−γ+βγ−αβ)

α(1−γ+βγ)3
0
)C0(1, 1) C0(1, 2)

C0(2, 1) C0(2, 2)

 =
(

0 −β(1−β)(1−γ+βγ−αβ)
α(1−γ+βγ)3

)

and hence C0(1, 1) = 0 and C0(1, 2) = β − 1. Now we examine the uniqueness condition.

Notice that

R =

U2·(z1)Γ−1

U2·(z3)Γ−1

 =

 0 0

−β(1−γ+βγ−αβ)
α(1−γ+βγ)3

0

 ,

Q = U2·(z
−1
2 )Γ−1 =

(
α(α+1−γ+βγ)−(1+β)

1−γ+βγ 0
)

and the columns of R′ span the space spanned by the columns of Q′, i.e. span(Q′) ⊆

span(R′) is satisfied. Therefore, for any candidate of C0 that satisfies the existence condition,

it leads to the same solution for yt and thus the solution is unique. Finally, the z-transform
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of the coefficient matrices for yt is given by

C(z) = (zΓ(z))−1[zΨ(z) + Γ−1C0] =

− 1
α

z
z− 1

α

1−β
α

1
z− 1

α

0 0


and thus the unique solution is given by

π̃t
b̃t

 = C(L)

θt
ψt

 =

0 β − 1

0 0


︸ ︷︷ ︸

C0

θt
ψt

+

∞∑
k=1

αk−1 (β − 1)αk

0 0


︸ ︷︷ ︸

Ck

θt−k
ψt−k



where C0 not only satisfies the existence condition but is consistent as well.

Case 4: α > 1 and γ < 1. Then all roots are inside the unit circle. Therefore, the

polynomial matrix zΓ(z) can be decomposed as

zΓ(z) = U(z)−1

1 0

0 z
(
z − 1

α

)(
z − 1

1
β
−γ( 1

β
−1)

)
︸ ︷︷ ︸

S(z)

V (z)−1︸ ︷︷ ︸
T (z)

and hence

S(z)−1 =


U1·(z)

1

z(z− 1
α)

(
z− 1

1
β
−γ( 1

β
−1)

)U2·(z)



Imposing the restrictions U2·(z)[zΨ(z)+Γ−1C0]|z= 1
α
, 1
1
β
−γ( 1

β
−1)

= 0 gives the following system

−

 1−γ+βγ−αβ
α3(1−γ+βγ)

0

−β(1−γ+βγ−αβ)
α(1−γ+βγ)3

0

C0(1, 1) C0(1, 2)

C0(2, 1) C0(2, 2)

 =

1−γ+βγ−αβ
α4(1−γ+βγ)

0

0 −β(1−β)(1−γ+βγ−αβ)
α(1−γ+βγ)3


which does not have a solution. Since the existence condition is violated in this case, there

is no covariance stationary solution for yt.
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Next, we solve for the exogenous driving processes under the two regimes so that we

can perfectly match the equilibrium solutions across regimes. First, let α = α1 > 1 and

γ = γ1 > 1. Then we have two roots inside the unit circle, i.e. 0 and zM1 = 1
α1

< 1, with

the other outside, zM2 = 1
1
β
−γ1( 1

β
−1)

> 1. Therefore, the polynomial matrix zΓ(z) can be

decomposed as

zΓ(z) = U(z)−1

1 0

0 z
(
z − zM1

)


︸ ︷︷ ︸
S(z)

1 0

0 z − zM2

V (z)−1

︸ ︷︷ ︸
T (z)

and hence

S(z)−1 =

 U1·(z)

1
z(z−zM1 )

U2·(z)


Imposing the restriction U2·(z)[zΨ(z)A(z) + Γ−1C0]|z=zM1 = 0 gives the following system

−
(

1−γ1+βγ1−α1β
α3
1(1−γ1+βγ2)

0
)C0(1, 1) C0(1, 2)

C0(2, 1) C0(2, 2)

 =
(

1−γ1+βγ1−α1β
α4
1(1−γ1+βγ1)

A11(zM1 ) 0
)

and hence C0(1, 1) = −zM1 A11(zM1 ) and C0(1, 2) = 0. Therefore, the z-transform of the

coefficient matrices for yt is given by

C1(z) =

−zM1 zA11(z)−zM1 A11(zM1 )

z−zM1
0

− 1
β
zM1 zM2 A11(zM1 )

z−zM2
( 1
β − 1)zM2

A22(z)

z−zM2



which gives the solution under active monetary/passive fiscal policy regime.

Second, let α = α2 < 1 and γ = γ2 < 1. Then we have two roots inside the unit circle,

i.e. 0 and zF2 = 1
1
β
−γ2( 1

β
−1)

< 1, with the other outside, zF1 = 1
α2
> 1. Therefore, polynomial
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matrix zΓ(z) can be decomposed as

zΓ(z) = U(z)−1

1 0

0 z
(
z − zF2

)


︸ ︷︷ ︸
S(z)

1 0

0 z − zF1

V (z)−1

︸ ︷︷ ︸
T (z)

and hence

S(z)−1 =

 U1·(z)

1
z(z−zF2 )

U2·(z)


Imposing the restriction U2·(z)[zΨ(z)B(z) + Γ−1C0]|z=zF2 = 0 gives the following system

−
(
−β(1−γ+βγ−αβ)

α(1−γ+βγ)3
0
)C0(1, 1) C0(1, 2)

C0(2, 1) C0(2, 2)

 =
(

0 −β(1−β)(1−γ+βγ−αβ)
α(1−γ+βγ)3

B22(zF2 )
)

and hence C0(1, 1) = 0 and C0(1, 2) = (β − 1)B22(zF2 ). Therefore, the z-transform of the

coefficient matrices for yt is given by

C2(z) =

−zF1 zB11(z)

z−zF1
(1− β)

zF1 B22(zF2 )

z−zF1

0 ( 1
β − 1)zF2

B22(z)−B22(zF2 )

z−zF2



which gives the solution under passive monetary/active fiscal policy regime.

Lastly, we solve the example model in Section 2.4.3. Rewrite the bivariate system into
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the form of (2.3.6)


0 0

0 1


︸ ︷︷ ︸

Γ−1

L−1 +

1 0

0 −β


︸ ︷︷ ︸

Γ0

L0 +

−α 0

0 0


︸ ︷︷ ︸

Γ1

L


xt
yt



=

1 0

0 1


︸ ︷︷ ︸

Ψ0

εt
vt

+

0 0

0 1


︸ ︷︷ ︸

Γ−1

ηxt+1

ηyt+1


︸ ︷︷ ︸
ηt+1

where n = m = 1, l = 0, and p = q = 2.20 Then we can obtain

zΓ(z) =

z − αz2 0

0 1− βz

 = U(z)−1

1 0

0 z(z − 1
α)(z − 1

β )



Obviously det[zΓ(z)] has three distinct roots, i.e. z1 = 0, z2 = 1
α , and z3 = 1

β . Here we have

two roots inside the unit circle, i.e. z1 = 0 and z2 = 1
α < 1, with the other one outside, i.e.

z3 = 1
β > 1. The polynomial matrix can be decomposed as

zΓ(z) = U(z)−1

1 0

0 z(z − 1
α)


︸ ︷︷ ︸

S(z)

1 0

0 z − 1
β

V (z)−1

︸ ︷︷ ︸
T (z)

and hence

S(z)−1 =

 U1·(z)

1
z(z− 1

α
)
U2·(z)



Imposing the restrictions U2·(z)(zΨ(z)+Γ−1C0)|z=0 = 0 and U2·(z)(zΨ(z)+Γ−1C0)|z= 1
α

= 0

20Here A(L) is taken to be a (2× 2) identity matrix.
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gives the following system

−

0 0

0 0

C0(1, 1) C0(1, 2)

C0(2, 1) C0(2, 2)

 =

 0 0

β−α
α3β

0



which requires that β−α
α3β

= 0, or α = β, a contradiction. Since the existence condition is

violated in this case, there is no covariance stationary solution for (xt, yt).

Appendix C: User’s Guide

All of the routines required to implement this solution algorithm are written and compiled

in MATLAB, which take the advantages of MATLAB Symbolic Toolbox and are executed

with the following files:21

• model.m file serves as a template for inputting all of the matrix coefficients of a gen-

eralized multivariate linear rational expectations model of the form given by (2.3.1).

It then calls the function tranz(Gamma,Psi,A,n,T) in tranz.m;

• tranz.m file serves as the main script that performs the z-transform algorithm for

a given multivariate linear rational expectations model and computes its solution by

invoking related functions in MATLAB Symbolic Toolbox. It also examines the model’s

existence and uniqueness conditions;

• multroot.m file finds all the distinct roots of a given polynomial with their corre-

sponding multiplicities;

• U.txt file defines a MAPLE procedure that computes the (left) unimodular matrix

U(z) in the Smith canonical decomposition of a given polynomial matrix.

As an example, we use the model in Section 2.4.2 to outline how to implement the

solution algorithm. There are a number of model-specific initializations that are specified

by the user and break down into several easily implementable steps:
21This program is available upon request.
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• Step 1 – define the symbolic variable z and the numerical values of the model’s pa-

rameters. MATLAB code:

syms z % symbolic z

beta = 0.9804; % discount factor

alpha = 1.5; % active monetary

gamma = 1.2; % passive fiscal

• Step 2 – specify the indices for both endogenous and exogenous variables. MATLAB

code:

npi = 1; % inflation

nb = 2; % real debt

ntheta = 1; % monetary shock

npsi = 2; % fiscal shock

• Step 3 – define the matrix coefficients and relevant parameters. MATLAB code:

p = 2; % system dimension

n = 1; % number of leads

m = 1; % number of endo lags

l = 1; % number of exo lags

Gamma = zeros(p,p,n+m+1); % endo matrix polynomial

Psi = zeros(p,p,n+l+1); % exo matrix polynomial

A = [1 0;0 1]; % driving matrix polynomial
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• Step 4 – enter the equilibrium equations one by one. MATLAB code:

% (1) Fisher equation

Gamma(1,npi,1) = 1;

Gamma(1,npi,2) = -alpha;

Psi(1,ntheta,2) = 1;

% (2) Government budget constraint

Gamma(2,npi,2) = 1/beta;

Gamma(2,nb,2) = 1;

Gamma(2,npi,3) = -alpha/beta;

Gamma(2,nb,3) = -(1/beta-gamma*(1/beta-1));

Psi(2,npsi,2) = -(1/beta-1);

Psi(2,ntheta,3) = 1/beta;

• Step 5 – construct the matrix polynomials and solve the model by calling the function

tranz(Gamma,Psi,A,n,T) in tranz.m. The program returns two elements, i.e. eu

(existence and uniqueness) and sol (first T moving average matrix coefficients of the

solution). MATLAB code:

% construct matrix polynomials

Gamma = Gamma(:,:,1)/z+Gamma(:,:,2)+Gamma(:,:,3)*z;

Psi = Psi(:,:,1)/z+Psi(:,:,2)+Psi(:,:,3)*z;

% solve model

[eu,sol] = tranz(Gamma,Psi,A,n,T);
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Chapter 3

An Analytical Approach to New Keynesian Models under the Fiscal Theory

3.1 Introduction

This article builds on the seminal work, most notably of Hansen and Sargent (1980) and

Whiteman (1983), in providing analytical approaches for integrating dynamic economic

theory with econometric methods for the purpose of formulating and interpreting economic

time series. The paper is illustrative; we walk the reader through the frequency-domain

methodology of our companion paper, Tan and Walker (2014), to solving linear rational

expectations models, who generalizes its predecessors to the multivariate setting. This

method is of wide applicability and facilitates the spectral estimation of these models.

Our approach is applied to a conventional new Keynesian model of the kind presented in

Woodford (2003) and Gaĺı (2008). This has the advantage of keeping the illustration simple

and concrete, but it should be emphasized that the techniques we describe are widely

applicable in more general settings, e.g. models with a maturity structure, which we leave

for future research. We derive an analytical solution to a linearized version of the model

under the assumption that primary surpluses evolve independently of government liabilities,

a regime in which the fiscal theory of the price level is valid [Woodford (1998), Cochrane

(2001), Kim (2003), Sims (2011)]. This solution is useful in characterizing the cross-equation

restrictions and understanding the policy transmission mechanisms implied by the fiscal

theory. An equivalent derivation using time-domain method and a more extensive study of
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the fiscal theory can be found in Leeper and Leith (2015).

3.2 A Conventional New Keynesian Model

The model’s essential elements include: a representative household and a continuum of

firms, each producing a differentiated good for which it sets the price; Calvo (1983) sticky

prices in which only a fraction of firms can reset their prices each period; a cashless economy

with one-period nominal bonds that pay a gross interest rate of Rt; lump-sum taxation and

zero government spending so that consumption equals output, ct = yt; monetary policy

follows an interest rate rule whereas fiscal policy sets primary surplus exogenously.

3.2.1 Linearized Model

Let x̂ ≡ ln(xt) − ln(x∗) denote the log-deviation of a variable xt from its steady state x∗.

First, the household’s optimizing behavior, when imposed by the goods market clearing

condition, implies

ŷt = Etŷt+1 − σ(R̂t − Etπ̂t+1) (3.2.1)

where σ > 0 is the intertemporal elasticity of substitution and π̂t is the inflation between t−1

and t. (3.2.1) represents a “Fisher relation”, linking the short-term nominal interest rate,

expected inflation, and endogenous output that determines the equilibrium real interest

rate. It is also referred to as the dynamic IS equation. The firm’s optimal price-setting

behavior reduces to

π̂t = βEtπ̂t+1 + κŷt (3.2.2)
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where 0 < β < 1 is the discount factor. (3.2.2) is referred to as the new Keynesian Phillips

curve whose slope is given by κ > 0. (3.2.1) and (3.2.2) constitute the non-policy block of

the basic new Keynesian model.

Next, the monetary authority follows an interest rate feedback rule that reacts to devi-

ations of inflation from its steady state

R̂t = απ̂t + θt (3.2.3)

where θt is an exogenous monetary policy shock.1 The fiscal authority sets an exogenous

primary surplus process, st, that evolves independently of government liabilities. This

profligate fiscal policy requires that monetary policy adjust nominal interest rate only weakly

to inflation so that 0 ≤ α < 1. We assume that the joint (θt, ŝt) process is white noise,

normally distributed with mean zero and diagonal covariance matrix Σ.

Lastly, policy choices must satisfy the flow government budget constraint

b̂t = R̂t + β−1(b̂t−1 − π̂t)− (β−1 − 1)ŝt (3.2.4)

where b̂t is the real value of government debt. (3.2.1)—(3.2.4) constitute a system of four

expectational difference equations in the variables {ŷt, π̂t, R̂t, b̂t}, which fully characterizes

the equilibrium conditions under the fiscal theory.

3.2.2 Analytical Solution

Substituting the monetary policy rule (3.2.3) into (3.2.1) and (3.2.4) and rewriting the

resulting multivariate linear rational expectations model into the framework of Tan and

1For analytical clarity, we assume that monetary authority does not respond to output.
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Walker (2014) yield




1 σ 0

0 β 0

0 0 0


︸ ︷︷ ︸

Γ−1

L−1 +


−1 −ασ 0

κ −1 0

0 β−1 − α 1


︸ ︷︷ ︸

Γ0

L0 +


0 0 0

0 0 0

0 0 −β−1


︸ ︷︷ ︸

Γ1

L




ŷt

π̂t

b̂t


︸ ︷︷ ︸
zt

=


σ 0

0 0

1 1− β−1


︸ ︷︷ ︸

Ψ0

L0

θt
ŝt


︸ ︷︷ ︸
εt

+


1 σ 0

0 β 0

0 0 0


︸ ︷︷ ︸

Γ−1


ηyt+1

ηπt+1

ηbt+1


︸ ︷︷ ︸
ηt+1

(3.2.5)

where L is the lag operator, i.e. Lkxt = xt−k, {Γ−1,Γ0,Γ1,Ψ0} are matrix coefficients,

and ηxt+1 is an endogenous forecasting error defined as ηxt+1 = xt+1 − Etxt+1. Because Et

represents the conditional expectation given information available at time t that includes

the model’s structure and all past and current realizations of the exogenous and endogenous

processes, we have Etηxt+1 = 0.

Suppose a solution zt = [ŷt, π̂t, b̂t]
′ to (3.2.5) is of the form

zt =
∞∑
k=0

Ckεt−k ≡ C(L)εt (3.2.6)

where εt = [θt, ŝt]
′ and zt is taken to be covariance stationary. Note that such moving

average representation of the solution is very useful because it is the impulse response

function—the coefficient Ck(i, j) measures exactly the response of zt+k(i) to a shock εt(j).

From (3.2.6), we may also easily obtain the spectrum of zt

s(w|α, β, σ, κ) = C(e−iw)ΣC(eiw)′, w ∈ [0, 2π) (3.2.7)

as a function of all the model parameters [α, β, σ, κ]′, which can be estimated by the standard
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methods of spectral estimation. In what follows, we walk the reader through the solution

algorithm of Tan and Walker (2014) in details.

First, evaluate the forecasting errors ηt+1 = [ηyt+1, η
π
t+1, η

b
t+1]′ using (3.2.6) and the

Wiener-Kolmogorov optimal prediction formula

ηt+1 =

{
C(L)L−1 −

[
C(L)

L

]
+

}
εt = C0L

−1εt (3.2.8)

where [·]+ is the annihilation operator that instructs us to ignore negative powers of L.

Define Γ(L) = Γ−1L
−1 + Γ0 + Γ1L and substitute (3.2.6) and (3.2.8) into (3.2.5)

Γ(L)C(L)εt = (Ψ0 + Γ−1C0L
−1)εt

which must hold for all realizations of εt. Therefore, the coefficient matrices are related by

the z-transform identities

zΓ(z)C(z) = zΨ0 + Γ−1C0

Next, apply the Smith canonical factorization to the polynomial matrix zΓ(z)2

zΓ(z) = U(z)−1


1 0 0

0 1 0

0 0 z(z − β)(z − λ−)(z − λ+)

V (z)−1

where U(z) and V (z) are unimodular matrices and

λ± =
1 + β + σκ±

√
(1 + β + σκ)2 − 4β(1 + ασκ)

2(1 + ασκ)
(3.2.9)

2The Smith decomposition is available in MAPLE or MATLAB’s Symbolic Toolbox.
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It is straightforward to show that ∂λ+
∂α < 0 and ∂λ−

∂α > 0.3 Moreover, given the parameter

restrictions underlying the fiscal theory, both roots are real, one inside the unit circle,

|λ−| < 1, and the other outside, |λ+| > 1:

0 < λ− <
β

1 + ασκ
< β < 1, λ+ >

1 + σκ

1 + ασκ
> 1 (3.2.10)

Separate the roots inside the unit circle, 0, β, and λ−, from the one outside, λ+, by

decomposing zΓ(z) as

zΓ(z) = U(z)−1


1 0 0

0 1 0

0 0 z(z − β)(z − λ−)


︸ ︷︷ ︸

S(z)


1 0 0

0 1 0

0 0 z − λ+

V (z)−1

︸ ︷︷ ︸
T (z)

Now the z-transform identities become

T (z)C(z) =


U1·(z)

U2·(z)

1
z(z−β)(z−λ−)U3·(z)

 (zΨ0 + Γ−1C0)

where Uj·(z) is the jth row of U(z). These identities are valid for all z on the open unit disk

except for z = 0, β, λ−. But since C(z) is the z-transform of the moving average coefficients

for zt, it must exist for all |z| < 1. This condition places restrictions on the unknown matrix

3This is because

1

λ±
=

1 + β + σκ∓
√

(1 + β + σκ)2 − 4β(1 + ασκ)

2β

are increasing and decreasing in α, respectively. Since 0 ≤ α < 1, we can also obtain the lower
bound for the square root of the discriminant√

(1 + β + σκ)2 − 4β(1 + ασκ) >
√

(1 + β + σκ)2 − 4β(1 + σκ) = 1− β + σκ > 0
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coefficient C0:

U3·(z)(zΨ0 + Γ−1C0)|z=0,β,λ− = 0 (3.2.11)

Stacking the restrictions in (3.2.11) yields4

−

 β2κ(αβ−1)
1+ασκ

β2(αβ−1)(β−1+σκ)
1+ασκ 0

λ2−κ(αβ−1)

1+ασκ

λ2−(αβ−1)(σκ+β)

1+ασκ − λ−β(αβ−1)
1+ασκ 0


︸ ︷︷ ︸

R

C0 =

 0 β2σκ(1−β)(αβ−1)
1+ασκ

σκλ3−(αβ−1)

1+ασκ 0


︸ ︷︷ ︸

A

Lastly, we establish the existence and uniqueness of solutions to this model.5 Existence

cannot be established if at least one column of A is outside the space spanned by the columns

of R—the endogenous forecasting errors η cannot fully adjust to offset the exogenous shocks

ε. Thus, the solution exists if and only if the column space of R spans the column space of

A, i.e. span(A) ⊆ span(R), which is satisfied here. Solving for C0 gives

C0(1, 1) C0(1, 2)

C0(2, 1) C0(2, 2)

 =

σλ2−(β−1+σκ)

λ−−β − (1−β)σ[(σκ+β)λ−−β]
λ−−β

− σκλ2−
λ−−β

σκλ−(1−β)
λ−−β


where C0(3, 1) and C0(3, 2) are left undetermined. In order for the solution to be unique, we

must be able to determine {Ck}∞k=0 from the parameter restrictions supplied by −RC0 = A.

This is tantamount to verifying whether the columns of R′ span the space spanned by the

rows of

Q = U3·(λ
−1
+ )Γ−1 =

(
κ(αβ−1)
λ2+(1+ασκ)

(αβ−1)[σκ+β(1−λ+)]
λ2+(1+ασκ)

0

)
4Here we omit the restriction imposed by z = 0 because it is unrestrictive. One key result proved

in Tan and Walker (2014) is that, roots inside (outside) the unit circle in the frequency-domain are
exactly the inverses of unstable (stable) eigenvalues in the time-domain approach to solving linear
rational expectations models, e.g. Sims (2002).

5As pointed out by Sims (2007), the standard root-counting analysis of Blanchard and Kahn
(1980) would fail if the unstable root occurs in a part of the system that is decoupled from the
expectational equations.
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i.e. span(Q′) ⊆ span(R′), which is also satisfied here.6 Therefore, any candidate of C0 that

satisfies the existence condition will lead to the same solution and hence the solution is

unique, which can be computed as


ŷt

π̂t

b̂t

 = [LΓ(L)]−1(LΨ0 + Γ−1C0)︸ ︷︷ ︸
C(L)

θt
ŝt



=


C0(1, 1)

1− β−λ−
βλ−(β−1+σκ)

L

1− 1
λ+

L
C0(1, 2) 1

1− 1
λ+

L

C0(2, 1)
1−λ−−β

βλ−
L

1− 1
λ+

L
C0(2, 2) 1

1− 1
λ+

L

C0(3, 1) 1
1− 1

λ+
L

C0(3, 2) 1
1− 1

λ+
L


θt
ŝt

 (3.2.12)

where

C0(3, 1) =
β + σκ

(1 + ασκ)λ+
, C0(3, 2) =

β − 1

λ+

Evidently, [ŷt, π̂t, b̂t]
′ follows a vector autoregressive moving average process of order (1, 1).

It is worth emphasizing that (3.2.12) clearly captures the cross-equation restrictions

imposed by the hypothesis of rational expectations, which are the “hallmark of rational

expectations models” [Hansen and Sargent (1980)]. For example, (3.2.12) implies that none

of the entries in C(L) is identically zero. But in the companion regime not examined in this

paper, in which monetary authority adjusts nominal rate more than one-for-one to inflation

and fiscal authority systematically raises primary surpluses to pay off government liabilities,

the moving average representation of the joint (π̂t, b̂t) process (and the (ŷt, b̂t) process) will

display a lower-triangular structure, indicating that b̂t fails to Granger-cause π̂t [Sims (1972),

Theorem 1].7 Therefore, an empirically plausible way to test for the underlying regime is

6Practically, the two space spanning conditions for existence and uniqueness and the computation
of C0 can be obtained by employing the singular value decompositions of {A,R,Q}.

7This result relies on the assumption of lump-sum taxation. Also, to apply Sims’ theorem when
C(L) is not invertible, we may transform C(L) into a fundamental representation using Blaschke
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to regress b̂t onto the entire π̂t process, and test whether the coefficients of future π̂’s are

identically zero [Sims (1972), Theorem 2].

From the moving average representation of the solution (3.2.12), we can easily write

output, inflation, and real debt as linear functions of all past and present policy shocks

with unambiguously signed coefficients. In particular, output follows8

ŷt = C0(1, 1)︸ ︷︷ ︸
<0

θt +

∞∑
k=1

C0(1, 1)

[
1

λ+
− β − λ−
βλ−(β − 1 + σκ)

](
1

λ+

)k−1

︸ ︷︷ ︸
>0

θt−k

+ C0(1, 2)︸ ︷︷ ︸
<0

ŝt +

∞∑
k=1

C0(1, 2)

(
1

λ+

)k
︸ ︷︷ ︸

<0

ŝt−k (3.2.13)

inflation follows

π̂t = C0(2, 1)︸ ︷︷ ︸
>0

θt +
∞∑
k=1

C0(2, 1)

[
1

λ+
− λ− − β

βλ−

](
1

λ+

)k−1

︸ ︷︷ ︸
>0

θt−k

+ C0(2, 2)︸ ︷︷ ︸
<0

ŝt +
∞∑
k=1

C0(2, 2)

(
1

λ+

)k
︸ ︷︷ ︸

<0

ŝt−k (3.2.14)

and real debt follows

b̂t = C0(3, 1)︸ ︷︷ ︸
>0

θt +
∞∑
k=1

C0(3, 1)

(
1

λ+

)k
︸ ︷︷ ︸

>0

θt−k + C0(3, 2)︸ ︷︷ ︸
<0

ŝt +
∞∑
k=1

C0(3, 2)

(
1

λ+

)k
︸ ︷︷ ︸

<0

ŝt−k

(3.2.15)

where we have separated shocks in the current period from those in the past.

factors. See Hansen and Sargent (1980) for a similar analysis of a labor demand model.
8C0(1, 1) < 0 holds by (3.2.10) and the fact that β − 1 + σκ > 0 for most plausible values of

{β, σ, κ}. 1
λ+
− β−λ−
βλ−(β−1+σκ) < 0 holds by (3.2.10) and the property that λ+λ− = β

1+ασκ . C0(1, 2) < 0

holds by (3.2.10) and the fact that ∂λ−
∂α > 0. A similar argument can be used to sign the coefficients

in π̂ and b̂.
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3.2.3 Economic Interpretations

The closed-form solution (3.2.12), or (3.2.13)—(3.2.15), is useful in understanding how

monetary and fiscal disturbances are transmitted to influence the endogenous variables

under the fiscal theory. The economic interpretations hinge on a ubiquitous relation in any

dynamic macro model, that the real value of government liabilities derives its value from

the present value of current and expected future primary surpluses.9 See also Kim (2003)

for a more detailed, numerical analysis.

First, we examine the effects of a monetary contraction (an increase in the nominal in-

terest rate). Since primary surpluses evolve exogenously and do not systematically respond

to government liabilities, a higher nominal rate leads to more rapidly growing government

debt services without changing the present value of current and expected future primary

surpluses. This raises the real debt in (3.2.15) and makes government bonds more at-

tractive, inducing households to convert consumption goods into government bonds in the

current period. Thus, output falls initially in (3.2.13). However, because the real value of

government liabilities is backed up less than sufficiently by the present value of primary sur-

pluses in the next period, households will convert government bonds back into consumption

goods. From (3.2.13) and (3.2.14), this aggregate demand increase pushes up both output

and inflation in the next period. Inflation must also rise in the current period because the

firm’s price-setting behavior is forward looking. Therefore, a monetary tightening under the

fiscal theory will lose its usual contractionary effects—(3.2.14) makes it clear that a more

aggressive monetary policy stance (larger α) is not only inflationary but makes the effects

of these shocks more persistent as well.10

Next, we examine the impacts of a fiscal contraction (an increase in the primary surplus).

9This relation can be obtained by combining the government budget constraint, a fiscal policy
rule, and the Fisher equation.

10Observe that the decay factor, 1/λ+, is an increasing function of α.
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Higher primary surplus allows the government to retire some of the outstanding liabilities,

thereby reducing the real debt in (3.2.15). Moreover, since households have no anticipation

of lower future taxation under an exogenous fiscal policy, the real value of government

liabilities is backed up more than sufficiently by the present value of primary surpluses.

As a result, households feel less wealthy and hence substitute consumption goods into

government bonds. From (3.2.13) and (3.2.14), this aggregate demand decrease pushes

down both output and inflation.

Lastly, we analyze the effects of policy shocks on the real interest rate. Let u(c) = c1−1/σ

1−1/σ

denote the representative household’s utility over consumption and define the ex ante real

interest rate rt such that

1

rt
= Et

[
β
u′(yt+1)

u′(yt)

]
= Et

[
β

(
yt+1

yt

)−1/σ
]

Log-linearizing the above relation around the steady state and combining with (3.2.1) yield

r̂t = R̂t − Etπ̂t+1

=

[
1 + C0(2, 1)

(
α− 1

λ+
+
λ− − β
βλ−

)]
θt

+
∞∑
k=1

C0(2, 1)

(
1

λ+
− λ− − β

βλ−

)(
α− 1

λ+

)(
1

λ+

)k−1

θt−k

+ C0(2, 2)

(
α− 1

λ+

)
ŝt +

∞∑
k=1

C0(2, 2)

(
α− 1

λ+

)(
1

λ+

)k
ŝt−k (3.2.16)

where we have substituted (1.3.17) and (3.2.14) into (3.2.16). Thus, it remains to determine

the sign of α−1/λ+. Note that 1/λ+ is a strictly increasing, continuous function in α ∈ [0, 1]

and its two endpoint values stay within the open unit interval. This implies that the graph

of 1/λ+ as a function of α intersects the 45-degree line of the unit square for an odd number

of times. Therefore, there exists at least one fixed point at which 1/λ+ = α and the sign

136



of α − 1/λ+ remains ambiguous, depending on the monetary policy behavior and all the

model parameters.11

For example, (3.2.16) suggests that higher primary deficits need not necessarily lower

the real rate, which is in contrast to what is commonly believed under the fiscal theory. This

ambiguity of the effects of policy disturbances on real rate is not surprising. (3.2.13) makes

it clear that higher primary deficits are expansionary, raising both current and expected

future consumption. Furthermore, the consumption-Euler equation (3.2.1) suggests that

the real rate is the price of current consumption relative to expected future consumption.

Therefore, the change in real rate can be inferred from the relative increase in consumption

from the current period to the next, which itself remains ambiguous.

3.3 Concluding Remarks

This article illustrates the frequency-domain solution methodology of Tan and Walker (2014)

in the context of a conventional new Keynesian model under the fiscal theory of the price

level. The analytical solution derived herein is useful in characterizing the cross-equation

restrictions and understanding the policy transmission mechanisms implied by the fiscal

theory. We conclude by pointing out that our approach can be easily extended to allow for

robustness as advocated by Hansen and Sargent (2007) or rational inattention as advocated

by Sims (2001), and defer these extensions to a sequel to this paper.

11For example, the sign of α − 1/λ+ can depend on the frequency of the data to which a model
is calibrated or fit; κ depends on the degree of price stickiness which in turn depends on the data
frequency, being much higher for higher frequency. Eric Leeper made this point to me.
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