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1. Introduction 

 

Most acquisition research, at least that done on typically-developing 

populations, takes as a starting assumption the fact that the target grammar will 

eventually be acquired. The path of development is the more interesting focus. 

On the other hand, many simulations of learning have focused on whether the 

model can learn the target grammar, without attending to whether the learning 

process also models real-life acquisition. The goals of this paper are first, to 

introduce and account for a particular stage that can arise in phonological 

development and second, to use a learning simulation to characterize the 

conditions that bring about this acquisition stage. 

The acquisition stage introduced here is the cumulative faithfulness effect 

(CFE; Farris-Trimble, 2008). CFEs occur when multiple individual unfaithful 

mappings are allowed, but those unfaithful mappings cannot combine in some 

domain. From a theoretical point of view, the focus here is on constraint-based 

accounts of phonological acquisition. For instance, optimality theory (Prince & 

Smolensky, 1993/2004) is a constraint-based account in which markedness 

constraints and faithfulness constraints are in a hierarchical ranking that 

determines the optimal output for any given input. CFEs arise when multiple 

markedness constraints outrank or outweigh multiple faithfulness constraints, 

which themselves are differentially ranked or weighted, forcing the grammar to 

choose between multiple unmarked (and thus unfaithful) mappings. First-

language acquisition is a prime source for CFEs: in the early stages of 

acquisition, children‟s outputs tend to be very unfaithful, and so the potential for 

multiple unfaithful mappings in a single domain is increased. Most researchers 

agree that in the earliest stages of learning, markedness constraints outrank 

faithfulness constraints, thus setting up the type of grammar in which CFEs are 

likely to be found. 

In the following sections, a CFE found in Amahl‟s acquisition of English 

(Smith, 1973) is described and accounted for. We then turn to the question of 
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how the CFE might have come about, using a learning algorithm to model both 

the CFE stage and the later correct acquisition of the target grammar. 

 

2. The CFE 

 

 An example of a CFE in first-language acquisition comes from Smith‟s 

(1973) influential diary study of Amahl, a typically developing child learning 

British English. Smith details Amahl‟s phonological acquisition from about two 

to four years of age; the examples in (1) come from Amahl‟s data between ages 

2;3 (years;months) and 2;5.
1
 During this stage, Amahl exhibited an allophonic 

voicing pattern in the stop series: all word-initial stops were realized as voiceless 

unaspirated lenis, all word-medial stops were realized as voiced, and all word-

final stops were realized as voiceless fortis. The most relevant of these patterns 

for the issue at hand is the word-final devoicing of all stops, as is shown in (1a). 

The second pattern is fricative stopping: coronal fricatives in all word positions 

are realized as stops, with the voicing corresponding to the allophonic pattern, as 

in (1b). The CFE arises when we examine the behavior of target word-final 

voiced fricatives. Given the evidenced stopping and devoicing patterns, we 

might expect word-final /z/ to be realized as [t]; instead, this segment is deleted 

entirely. This pattern is shown in (1c). 

 

(1) Amahl (2;3 to 2;5) 

a. Word-final stop devoicing 

 [b̥ɛt] „bed‟  [ɡ̊uːp] „cube‟ [ɛk] „egg‟ 

 [d̥ɛt] „red‟  [wʌp] „rub‟ [ɡ̊ɛk] „leg‟ 

 

b. Fricative stopping 

 [b̥ʌt] „bus‟  [d̥ʌn] „sun‟ [d̥u] „zoo‟ 

 [b̥ʌt] „brush‟  [d̥əːt] „shirt‟ [d̥ɛ] „there‟ 

 [b̥aːt] „bath‟  [d̥əːd̥iː] „thirsty‟   

 

c. Word-final voiced fricatives delete 

 [nɔiː]
2
 „noise‟ [d̥iː] „cheese‟ [b̥iː] „please‟ 

 [nuː] „nose‟ [ɡ̊aːɡiː] „glasses‟ [d̥idə] „scissors‟ 

 [b̥aiə] „pliers‟ [nuː] „news‟ 

 

                                                 
1 These are Smith‟s Stages 1-4 of Amahl‟s acquisition, which occurred between the 60th 

and 137th days of his second year. 
2 Amahl frequently, but not consistently, lengthens the vowel before an underlyingly 

voiced obstruent, whether it is deleted or devoiced. The lengthening of a vowel before a 

deleted obstruent produces a counterbleeding opacity effect. As counterbleeding is not 

the focus of this analysis, this effect will be ignored here. For two different methods for 

dealing with counterbleeding in optimality theory, see McCarthy (1999, 2007). 



  

The constraints necessary to account for Amahl‟s CFE are listed in (2). The 

markedness constraints ban fricatives and voiced coda obstruents. Faithfulness 

constraints militating against change in voice or manner, as well as deletion, are 

also relevant. 

 

(2) Constraints relevant for Amahl‟s CFE 

 *FRIC: Fricatives are banned 

 *VOICODA: Voiced obstruents are banned in coda position 

 IDENT[voice]: Input and output correspondents have the same value for the 

feature [voice] 

 IDENT[continuant]: Input and output correspondents have the same value 

for the feature [continuant] 

 MAX: Input segments have output correspondents 

 

A ranking paradox, shown in (3), occurs in a standard OT account of 

Amahl‟s CFE. Because voiced obstruents never appear in coda position and 

fricatives never occur at all in Amahl‟s outputs, it is clear that the markedness 

constraints against them must be high-ranked. The ranking paradox occurs 

among the faithfulness constraints, however. MAX must be ranked above 

IDENT[voice] and IDENT[continuant] to compel preservation of the final 

obstruents in words like bed and bus, respectively, as in (3a,b). The high ranking 

of MAX, however, would eliminate the attested deletion candidate in (3c), [nɔiː] 

for input noise, in favor of the doubly-unfaithful output, [nɔit]. 

 

(3) Standard OT fails to account for Amahl‟s CFE 

a. MAX >> IDENT[voice] 

/bɛd/ „bed‟ *VOICODA *FRIC MAX ID[voice] ID[cont] 

a.  b̥ɛd *!     

b.   b̥ɛt    *  

c.  b̥ɛ   *!   

 

b. MAX >> IDENT[continuant] 

/bʌs/ „bus‟ *VOICODA *FRIC MAX ID[voice] ID[cont] 

a.  b̥ʌs  *!    

b.   b̥ʌt     * 

c. b̥ʌ   *!   

 

 

 

 



  

c. Ranking paradox 

/nɔiz/ „noise‟ *VOICODA *FRIC MAX ID[voice] ID[cont] 

a.  nɔiːz *! *    

b.  nɔis  *!  *  

c.  nɔiːd *!    * 

d.  nɔit    * * 

e.  nɔiː   *!   

 

In Amahl‟s grammar, the change from input /s/ or /d/ to output [t] is 

allowed, but the change from /z/ to [t] is not. The problem with the change from 

target /z/ to output [t] is not one of markedness, as [t] is a completely unmarked 

segment and an acceptable substitute for /s/ and /d/. Rather, the trouble with 

substituting [t] for /z/ is that it is too unfaithful. Amahl‟s grammar must choose 

between two equally unmarked outputs for a word like noise: [nɔit] and [nɔiː]. 

The output [nɔit] violates two relatively low-ranked faithfulness constraints, 

IDENT[voice] and IDENT[continuant], but the output [nɔiː] violates one relatively 

high-ranked constraint, MAX. Amahl‟s grammar chooses the candidate that 

violates only a single faithfulness constraint, even though it is higher-ranked, but 

OT has no way of allowing this mapping. 

Harmonic Grammar (HG; Legendre, Miyata & Smolensky, 1990a,b; 

Smolensky & Legendre, 2006) is an alternative constraint-based theory. HG was 

a precursor to OT and was originally intended to model connectionist networks. 

Each phonological input and output can be thought of as a node in the grammar, 

with links between them symbolizing input-output pairs. Each link has a weight; 

the cumulative weight of all the links between an input and an output determines 

its activation. If heavier weights are given to more likely outputs, or more likely 

input-output pairs, then the resulting candidates are more likely to be activated 

in the grammar. HG was originally rejected in favor of OT because HG was 

argued to predict some grammars that do not seem to occur in the linguistic 

typology. More recently, though, Pater, Bhatt, and Potts (2007) have shown that 

HG actually predicts a limited range of languages, particularly if restrictions are 

placed on the domain of evaluation of certain constraints, and HG has had a 

resurgence (e.g., Jesney & Tessier, 2007; Pater, Bhatt & Potts, 2007; Pater, 

Jesney & Tessier, 2007; Goldrick & Daland, in press). 

HG differs from OT in that constraints are weighted rather than ranked. 

Constraints with greater weights would translate into higher-ranked constraints 

in OT, while low-weight constraints are similar to low-ranked constraints.  

Moreover, a candidate‟s violations are summed across the entire constraint set, 

so that even low-weight constraints make a contribution to the candidate‟s 

harmony (the sum of the candidate‟s violations). The resulting crucial difference 

between the two models is that strict domination is a key feature of OT but not 



  

of HG. Because of the symbolic nature of OT‟s constraints, a higher-ranked 

constraint strictly dominates a lower-ranked one—no number of violations of 

the lower-ranked constraint can overcome the violation of a higher-ranked 

constraint (McCarthy, 2002). On the other hand, in HG, multiple violations of 

low-weight constraints may, when added together, “gang up” on a higher-weight 

constraint, allowing low-weight HG constraints to have more power than low-

ranked constraints in OT. 

Amahl‟s CFE can be obtained in an HG account by weighting the 

faithfulness constraints such that a single violation of MAX outweighs a single 

violation of either of the IDENT constraints, but the cumulative violation of both 

IDENT constraints outweighs MAX. In other words, the violations of 

IDENT[voice] and IDENT[continuant] trade off for a violation of MAX. Relevant 

weighting arguments are given in (4), where the ≻ symbol in the right-hand 

column indicates “more harmonic than.” 

 

(4) Constraint weightings necessary for Amahl 

Weighting     Result 

W*VOICODA > WID[voice] /bɛd/ bɛt ≻ bɛd 

W*FRICATIVE > WID[cont] /bʌs/ bʌt ≻ bʌs 

WMAX > WID[voice] /bɛd/ bɛt ≻ bɛ 

WMAX > WID[cont] /bʌs/ bʌt ≻ bʌ 

WMAX < WID[voice] + W ID[cont] /nɔiz/ nɔi ≻ nɔit 

 

For space considerations, the tableaux in (5) only show the faithfulness 

constraints and unfaithful candidates; as shown above, the marked candidates 

are eliminated by the high weight of the markedness constraints. The importance 

of the weight of MAX relative to each of the IDENT constraints is shown in 

(5a,b), where the weight of MAX is 1.5 and the weight of each of the IDENT 

constraints is 1. In (5c), however, the cumulative harmony of candidate d., the 

doubly-unfaithful candidate, is -2 (the sum of the weights of each of the IDENT 

constraints; note that because harmony values are negative, smaller absolute 

values correspond to higher harmony values). Candidate d. is less harmonic than 

candidate e., which incurs only a single violation of MAX and thus wins. 

 

(5) HG account of Amahl‟s CFE  

 

a. WMAX > WID[voice] 

/bɛd/ „bed‟ 
MAX 

w=1.5 

ID[voice] 

w=1 

ID[cont] 

w=1 
H 

a.   b̥ɛt  -1  -1 

b.  b̥ɛ -1   -1.5 



  

b. WMAX > WID[continuant] 

/bʌs/ „bus‟ 
MAX 

w=1.5 

ID[voice] 

w=1 

ID[cont] 

w=1 
H 

a.   b̥ʌt   -1 -1 

b.  b̥ʌ -1   -1.5 

 

c. WMAX < WID[voice] + WID[continuant] 

/nɔiz/ „noise‟ 
MAX 

w=1.5 

ID[voice] 

w=1 

ID[cont] 

w=1 
H 

a.  nɔit  -1 -1 -2 

b.   nɔiː -1   -1.5 

 

The next section turns to the question of how Amahl acquired his CFE. 

 

3. The weight of MAX 

 

One of the most important issues in dealing with any acquisition-related 

phenomenon is determining how the child arrived at his grammar. How did 

Amahl acquire a grammar in which multiple faithfulness violations were 

dispreferred? In this section, we examine Jesney and Tessier‟s (2007) adaptation 

of the Gradual Learning Algorithm to HG, henceforth HG-GLA. We use a 

simulated learner to show that HG-GLA predicts a stage at which CFEs will 

arise, while also predicting eventual acquisition of the target language. 

The Gradual Learning Algorithm (GLA; Boersma, 1998) is a computational 

algorithm proposed to account for the gradual reranking of constraints during 

the course of acquisition. The GLA has been modified to account for the 

reweighting of constraints in HG (e.g., Jesney & Tessier, 2007; Pater, Bhatt & 

Potts, 2007; Pater, 2008). In the algorithm, the gradual change in constraint 

weights is a result of mismatch between the child‟s (incorrect) output and the 

adult target (the learning datum). The recognition of a mismatch spurs the 

grammar to slightly increase the weight of every constraint violated by the 

child‟s incorrect output, while also decreasing the weight of every constraint 

violated by the observed learning datum. The amount by which the weight of a 

constraint is increased or decreased is known as the plasticity. A small amount 

of noise is introduced into the algorithm at each learning step to allow for 

stochastic evaluation. In this way, constraint weights are changed by some small 

increment every time the child perceives a mismatch; over time, the weights 

become adult-like. 

The HG-GLA requires a number of assumptions, both broad and narrow. 

Any error-driven learning algorithm must assume that the child can recognize a 

mismatch between her output and the adult target, and that the child knows the 



  

constraint relevant to the mismatch. More specifically, the computational 

instantiation of the HG-GLA used here assumes that outputs with equal weights 

occur in free variation, and that the learning data are essentially an even 

distribution of word types. Some other proposals are also considered here: first, 

that output-oriented (that is, markedness and output-to-output faithfulness) 

constraints have an initial-state weight that is greater than the weight of the 

input-output constraints, and second, that the plasticity of markedness 

constraints is greater than the plasticity of faithfulness constraints (Jesney & 

Tessier, 2007). 

Amahl‟s learning was implemented in the HG-GLA using Praat (Boersma 

& Weenink, 2008). Markedness constraints were assigned an initial weight of 

100
3
 and faithfulness constraints an initial weight of 0. The plasticity was set at 

0.1. The learning data were generated from an adult grammar such that the 

simulation received an equal number of exemplars of bed, bus, and noise. The 

algorithm was presented with 1200 learning trials, and the simulation was 

repeated in ten blocks. Results reported here are averaged across all ten blocks. 

Figure 1 shows the trajectories of constraint weights over the 1200 learning 

trials. The solid line represents the two markedness constraints; because the 

grammar received the same number of words with fricatives as it did words with 

voiced codas, *FRICATIVE and *VOICODA follow the same trajectory, as do 

IDENT[cont] and IDENT[voice], which are represented by the larger dashed line. 

The small dotted line represents MAX, and the double line represents the 

cumulative weight of the two IDENT constraints. The markedness constraints 

begin with a weight of 100, while the faithfulness constraints begin with a 

weight of 0. In order to result in a CFE, it is necessary for the weight of each of 

the individual IDENT constraints to have a weight less than MAX, but for their 

sum to be greater than the weight of MAX. That is exactly what we see in Figure 

1. Soon after the start of learning, the faithfulness constraints begin to diverge, 

with the weight of MAX increasing faster than that of either of the IDENT 

constraints but slower than their sum. Before long, MAX has a weight greater 

than either of the IDENT constraints, but smaller than the sum of the IDENT 

constraints. This is exactly the relative weighting necessary for a CFE. This 

instantiation of the HG-GLA goes through a CFE stage while resulting in an 

adultlike output at the final stages. 

 

                                                 
3 Note that in §2, the HG tableaux have shown weightings in the small digits (e.g. 1, 2.5, 

etc.). The switch to larger numbers in this section (e.g., a range from 0-100) is simply a 

shift in perspective. In all cases, what is crucial is the relative weights among the 

constraints, along with the degree of change in weighting brought about by error-driven 

learning. The larger numbers here reflect the fact that the child may have to recognize 

many examples of a given error before the relevant weightings change enough to change 

the child‟s productions. 

 



  

 
Figure 1. Trajectory of constraints learned by the HG-GLA. The single 

solid black line represents the average weight of the two markedness 

constraints, while the small dotted line represents the weight of MAX. The 

larger dashed line represents the average weight of the two IDENT 

constraints, and the double line represents their cumulative weight. 

 

It is clear that a learner learning with the HG-GLA can acquire a CFE, but 

why does this happen? Free variation in the early stages of learning is crucial to 

the problem. Remember that outputs with equal weights are assumed to occur in 

free variation. At the earliest points of learning, when all of the faithfulness 

constraints have weights of 0, then multiple unmarked, unfaithful outputs are 

competing, and Amahl is producing different unmarked, unfaithful outputs. For 

the adult target bed, about half the time we would expect him to produce [b̥ɛt], 

and the other half of the time we would expect him to produce [b̥ɛ]. Imagine 

Amahl as a learner, shifting his constraint weights as he recognizes mismatches 

between his outputs and the adult target. When Amahl hears a word like bed and 

compares it to his own output, half the time he would increase the weight of 

IDENT[voice] by some small amount, and the other half of the time he would 

increase the weight of MAX by some small amount. The same is true for the 

word bus: when Amahl compares the adult target to his output [b̥ʌt], he would 

increase the weight of IDENT[continuant], but when he compares the target to his 

output [b̥ʌ], he would increase the weight of MAX. And upon hearing noise, 

Amahl would increase the weight of all three faithfulness constraints: 

IDENT[voice] and IDENT[continuant] when comparing the adult target to his 

output [nɔit], and MAX when comparing the adult target to his output [nɔi:]. 

If we add up all those increases, the reason for the CFE becomes clear. 

When Amahl hears bed, he increases the weight of IDENT[voice] and MAX. 

When he hears bus, he increases the weight of IDENT[cont] and MAX. And when 

he hears noise, he increases the weight of all three. The weight of MAX increases 

at 1.5 times the weight of either of the IDENT constraints. In essence, deletion is 

a possible repair for any of the marked structures in Amahl‟s grammar. That is, 

Amahl can delete a voiced coda, or a fricative, or a voiced coda fricative—thus 

when he hears any of the three relevant learning data, he must increase the 
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weight of MAX. The same is not true of the IDENT constraints—a change in 

voice quality is irrelevant if the target is a voiceless fricative, just as a change in 

continuancy is irrelevant if the input is a voiced coda stop. The learner thus gets 

more evidence that the target grammar does not delete segments than evidence 

that features are not changed. This type of learning could not occur without the 

free variation in the early stages. It is while Amahl‟s outputs are unstable that he 

receives evidence about MAX and the IDENT constraints at about a 3:2 ratio, the 

ratio that leads to the CFE. 

Thus far we have determined that the presence of a CFE depends in part on 

early variation. What other assumptions are crucial? Following previous claims 

related to the subset problem (Jesney & Tessier, 2007), we assigned the 

markedness constraints higher initial weights than the faithfulness constraints. It 

has been shown, however, that even when all constraints begin with identical 

initial weights, the HG-GLA will converge on a set of weightings that is 

appropriate for the target grammar (e.g., Boersma & Pater, 2008). However, it is 

important that a realistic learning model not only converge on the target, but also 

go through realistic learning stages on the way to convergence. The question is, 

then, whether the initial weighting bias used in the above simulation is necessary 

to achieving the CFE. In order to answer this question, the same simulation was 

run, but with an initial weight of 10 for all the constraints. Figure 2 shows the 

resulting constraint trajectories. 

 

 
Figure 2. Trajectory of constraints when all constraints have an initial 

starting weight of 10. The solid black line represents the average weight of 

the two markedness constraints, the larger dashed line represents the 

average weight of the two IDENT constraints, and the small dotted line 

represents the weight of MAX. 
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When all the constraints begin with the same weight, as in Figure 2, they 

diverge rather quickly, and the target grammar is achieved in very few learning 

trials. The learner represented by Figure 2 thus converges on the target grammar, 

but without going through a CFE stage first. Instead, MAX (represented by the 

gray line) and the IDENT constraints (represented by the dotted line) quickly 

achieve higher weights than the markedness constraints (represented by the 

black line). For the CFE to occur, then, it seems that the markedness constraints 

must begin with a weight that is enough higher than the faithfulness constraints 

that the faithfulness constraints have room to diverge before overtaking the 

weight of the markedness constraints. In other words, the child must produce 

unmarked outputs long enough to go through the different unfaithful stages that 

are determined by the relative weighting of the faithfulness constraints. 

Another assumption made by Jesney and Tessier (2007) is that, in order to 

solve an unrelated problem arising from morphological concatenation and 

learning, markedness constraints must be demoted at a faster rate than 

faithfulness constraints are promoted. If this assumption is true, it has 

implications for learning a CFE. To test this assumption, we ran the same 

simulation that produced a CFE, but the plasticity of the markedness constraints 

was set at 20 times the plasticity of the faithfulness constraints (an extreme 

value in order to prove the point). The result is shown in Figure 3. It is clear in 

that figure that the markedness constraints decline at a steep rate, such that their 

weights fall lower than those of the faithfulness constraints by about the 80
th

 

learning trial. When the markedness constraints decrease so rapidly, the 

faithfulness constraints do not have time to diverge before the target grammar is 

achieved. The grammar in Figure 3 thus converges on the target without having 

  

 
Figure 3. Trajectory of constraints when the markedness constraints have a 

plasticity 20 times greater than that of the faithfulness constraints. The 

solid black line represents the average weight of the two markedness 

constraints, the larger dashed line represents the average weight of the two 

IDENT constraints, and the small dotted line represents the weight of MAX. 
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gone through a CFE stage. Of course, the rate of decline of the markedness 

constraints in this example is extreme, but the point still holds: if the markedness 

constraints are assumed to decline too rapidly, the CFE stage will not emerge or 

will be cut short. 

A final crucial assumption of the simulation shown in Figure 1 is that the 

learner encounters different word types with approximately equal frequency. 

That is, the learner hears words with voiced codas, words with fricatives, and 

words with voiced coda fricatives at equal rates. This is not realistic. In general, 

more marked sounds occur less frequently in a language sample (Greenberg, 

1966; Croft, 2003; Haspelmath, 2006). We would expect, then, that Amahl 

would have heard words with coda [z] less frequently than words with coda [s] 

or [d] (though the fact that the English plural morpheme is typically realized as a 

coda [z] is encouraging). In order to make the simulation better match Amahl‟s 

language input, it would be important to give the model learning data that 

approximate the frequency of the input sounds in the speech that the child 

actually hears. This may change the rate at which the CFE is acquired. Even 

without this assumption of perfectly equal learning data, though, the fact 

remains that Amahl will have more opportunities to increase the weight of MAX 

than of either of the IDENT constraints, because of the simple fact that deletion 

can be used as a repair for a broader subset of the marked structures than either 

of the IDENT constraints (for instance, Amahl also uses segmental deletion as a 

repair for NC clusters). We can thus expect the weight of MAX to increase at a 

greater rate than that of the IDENT constraints, and, for some period of time, we 

can also expect that the weight of MAX will not yet overtake the sum of the 

IDENT constraints. 

 

4. Summary and conclusion 

 

We have shown that CFEs can be acquired even as a child is learning a 

target grammar in which no CFE exists. Such a CFE can be accounted for by 

appealing to weighted constraints like those in HG. Moreover, the acquisition of 

a CFE can be modeled in an HG-GLA learning simulation as long as several key 

assumptions are observed: that markedness constraints outweigh faithfulness 

constraints by the point at which this learning stage begins, that the weight of 

markedness constraints does not decline too rapidly, and that the learner hears 

forms with roughly equal representation of the different marked structures. The 

next step in this line of research is to test (and modify as necessary) these 

assumptions in order to determine the most realistic model of CFE acquisition. 
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