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Chapter 1

Introduction

The Zakharov-Kuznetsov (ZK) equation

∂u

∂t
+ c

∂u

∂x
+ ∆

∂u

∂x
+ u

∂u

∂x
= f, (1.1)

where u = u(x, x⊥, t), x⊥ = y or x⊥ = (y, z), describes the propagation of nonlinear ionic-

sonic waves in a plasma submitted to a magnetic field directed along the x-axis. It has been

derived formally in a long wave, weakly nonlinear regime from the Euler-Poisson system

in [45], [27] and [29] (see also [4] and [5] for more general physical backgrounds). When u

depends only on x and t, the ZK equation reduces to the classical Korteweg-de Vries (KdV)

equation. But it is quite different from the Kadomtsev-Petviashivili equation, where e.g.

the ZK equation is not completely integrable but has a hamiltonian structure (see [29]).

Recently the ZK equation has caught considerable attention (see e.g. [15], [16], [28], [13],

[1], [40]), not only because it is closely related with the physical phenomena but also the start

to explore more general problems that are partially hyperbolic (such as the inviscid primitive

equations). Moreover, the study of the stochastic hyperbolic equations is meaningful as

general stochastic random waves have gathered interests nowadays to capture phenomena

similar to those of more realistic fluid systems.

More specifically, on the one hand, for the Cauchy-problem for the ZK equation, it has

been proven to be globally well posed in the two-dimensional case (x⊥ = y) for data in

H1(R2) (see [14]), and locally well-posed in the three-dimensional case for data in Hs(R3),
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s > 3
2 (see [30]), and recently in Hs(R3), s > 1 (see [38]). Then for both numerical

purposes and problems of controllability, people have turned to the initial-boundary value

problem (IBVP) for the ZK equation. The well-posedness have been studied in the half

space {(x, y) : x > 0} (see [15]), on a strip like {(x, y) : x ∈ R, y ∈ (0, L)} (see [1])

or {(x, x⊥) : x ∈ (0, 1), x⊥ ∈ Rd, d = 1, 2} (see [16] and [40]). On the other hand, as

for the regularity of solutions, the global existence of strong solutions in space dimension

2 has been proven in a half strip {(x, y) : x > 0, y ∈ (0, L)} in [28]. The existence

and exponential decay of regular solutions to the linearized ZK equation in a rectangle

{(x, y) : x ∈ (0, L), y ∈ (0, B)} has been studied in [13]. Finally, for the stochastic case,

the stochastic KdV equation has been studied extensively (see [10], [20] and [12])), where

the main focus are on Wick-type SPDEs (see [46] and [33]) and exact solutions under the

additive noise (see [24]).

To conclude, the problem of the well-posedness of the (deterministic and stochastic) ZK

equation in a bounded domain and regularity of solutions (in space dimension 3) have not

yet been thoroughly explored. Hence here we aim to systematically analyse these problems

in the rectangular domain

M := {(x, x⊥), x ∈ (0, 1), x⊥ ∈ (−π/2, π/2)d, d = 1, 2}. (1.2)

Firstly for the deterministic case, we establish, for arbitrary large initial data, the existence

of global weak solutions in space dimensions 2 and 3 (d = 1 and 2 respectively) and a result

concerning the uniqueness of such solutions in the two-dimensional case (Chapter 3). Then

we prove the short and then global time existence of strong solutions in space dimension

3 (Chapters 4 and 5). Finally we extend the results of existence and uniqueness of weak

solutions to the stochastic case (Chapter 6).

The proof adopts new ideas other than those of the classical models in fluid dynamics,

such as the Navier-Stokes equation, Primitive Equation and related equations. This is
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mainly because as a partial differential equation with mixed features (partial hyperbolicity,

nonlinearity, nonconventional boundary conditions, anisotropicity and stochasticity), the

ZK equation sits at the interface between probability theory, mathematical analysis and

theory of parabolic and hyperbolic partial differential equations, and hence requires novel

methods, which will be elaborated below.

1.1 Existence and Uniqueness of the Weak Solution to the Zakharov-

Kuznetsov (ZK) Equation

We consider a limited domain M as in (1.2). We assume the boundary conditions on

x = 0, 1 to be

u(0, x⊥, t) = u(1, x⊥, t) = ux(1, x⊥, t) = 0,

In the y and z directions, we will choose either the Dirichlet boundary conditions or the

periodic boundary conditions.

We first establish in Chapter 2 various results concerning basic functional spaces and

their traces and regularity results. Proceeding in steps we first introduce a functional space

X (M) = {u ∈ L2(M) : ∆ux + cux ∈ L2(M)}, for which traces on the y, z boundaries

can not be defined (Section 2.1), then a subspace X1(M) = {u ∈ X (M), u = 0 at x =

0, 1, and ux = 0 at x = 1}, for which such traces are defined (Section 2.2), and finally the

spaces D(A) = {u ∈ X1(M), u = 0 at y = ±π
2 (and z = ±π

2 )}, and D(Aper)={u∈ X1(M),

u is periodic with the first order derivatives periodic in y, z, with period π}, covering all

the boundary conditions in the Dirichlet and space periodic cases (Sections 2.3, 2.4).

We then study in Section 2.5 the linear ZK equation, which will be applied to prove for

the uniqueness of solutions for the nonlinear equation.

In Chapter 3 we establish for the full nonlinear problem the following well-posedness

result:

3



Theorem 1.1.1. We are given the initial data u0 ∈ L2(M) and f ∈ L2
loc(R+; L2(M)),

M = (0, 1)x × (−π/2, π/2)d, d = 1, 2. Then:

(i) The initial and boundary-value problem for the ZK equation has a weak solution u,

u ∈ L∞(0, T ; L2(M)) ∩ L2(0, T ; H1
0 (M)),

∫ T

0

∫
(−π

2
,π
2

)d
|ux(0, x⊥, t)|2 dx⊥ dt <∞,

for all T > 0.

(ii) If d = 1, then the solution u is unique. Moreover, u ∈ C([0, T ]; L2(M)) and the

flow map u0 → u(·, t) is continuous from L2(M) to L2(M).

The proof is carried out mainly using the following parabolic regularization and a com-

pactness argument:
∂uε

∂t
+ ∆

∂uε

∂x
+ c

∂uε

∂x
+ uε

∂uε

∂x
+ ε (

∂4uε

∂x4
+
∂4uε

∂y4
+
∂4uε

∂z4
) = f,

uε(0) = u0.

(1.3)

1.2 Local and Global Existence of Strong Solutions in 3D

In chapter 4 we establish the short time existence of strong solutions in a 3D rectangular

domain.

Theorem 1.2.1. We assume suitable regularity on the data and compatibility conditions.

Then there exists a local strong solution to the ZK equation on some time interval [0, T∗),

T∗ > 0 depending only on the data, such that

∇u, uyy, uzz, ut ∈ L∞(0, T∗;L
2(M)),

u ∈ L2(0, T∗;D(A) ∩ Ξ ∩H3(Ix;L2(Ix⊥)) ∩H3(Ix⊥ ;L2(Ix))),

ut ∈ L2(0, T∗;H
1(M)).
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Moreover, we have for every t ∈ (0, T∗),

uyy(t)
∣∣
y=±π

2
= uzz(t)

∣∣
z=±π

2
= 0.

The proof is different from e.g. that of the Navier-Stokes equation, due to the partial

hyperbolicity of the model. We again use the parabolic regularization (1.3) and the key

observation of the comparison between |uεx(t)|L2(M) and |uεt(t)|L2(M) (see Lemma 4.1.2).

Next in Chapter 5, we prove, with different assumptions on the boundary conditions on

x = 0 and 1, the global existence of strong solutions in 3D. That is, we assume periodic

boundary conditions on u, ux and uxx on x = 0 and 1. Then the main result is the following:

Theorem 1.2.2. We assume suitably regular data. Then the initial and boundary value

problem for the ZK equation possesses at least a solution u:

u ∈ C([0, T ];H1(M)) ∩W 3, 3/2(Ix;H−1
t (0, T ; H−4(Ix⊥))).

For the proof we again use the parabolic regularization (1.3).

The main obstacle is the estimates of the nonlinear term as in the case of 3D Navier-

Stokes equation. To overcome this difficulty we utilize the anisotropic resonance of the term

uxxx and the nonlinear term uux to cancel uux, which leads to a bound for the H1 norm

over (0, T ) of u. Also with the assumption of periodic boundary conditions for u and uxj

at x = 0, 1, j = 1, 2, the trace uxx
∣∣x=1

x=0
now vanishes for our convenience in estimation.

However the uniqueness of solutions is still open in both 2D and 3D, even with such a

regularity and all the periodic boundary conditions satisfied.

1.3 Martingale and Pathwise Solutions to the Stochastic ZK Equation

In Chapter 6, we consider the stochastic Zakharov-Kuznetsov equation subject to multi-

plicative random noise

du+ (∆ux + cux + uux) dt = f dt+ σ(u) dW (t), (1.4)

5



posed in the same rectangular domainM as in (1.2). Then we extend the results of Theorem

1.1.1 to the stochastic case. Note that here we have different notions of solutions, namely,

the martingale and pathwise solutions. In the former notion, the stochastic basis is not

specified in the beginning and is viewed as part of the unknown, while in the latter case,

the stochastic basis is fixed in advance as part of the assumptions.

The main results are as follows:

Theorem 1.3.1. In dimensions 2 or 3, we suppose suitable conditions on the measure of the

initial data, σ and f . Then there exists a global martingale solution (S̃, ũ) to the stochastic

ZK equation.

Theorem 1.3.2. In dimension 2, we assume, relative to a fixed stochastic basis S, suitable

conditions on the initial data, σ and f . Then there exists a unique global pathwise solution

u to the stochastic ZK equation.

One of the main novelties of the proof is the treatment of the boundary conditions,

which are more complicated than the usual Dirichlet or periodic ones. Firstly, it is not

clear whether all the boundary conditions are still preserved after the application of the

Skorokhod embedding theorem (Theorem 2.4 in [9]) since the underlying stochastic basis

has been changed. To solve this problem, a measurability result concerning Hilbert spaces is

developed (Lemma 7.3.1). Secondly, we have extended the trace results in the deterministic

to stochastic setting by establishing the trace properties of the linearized ZK equation

depending on the probabilistic parameters (Lemma 7.2.2 and Lemma 7.2.3).

A further novelty is contained in the proof of the pathwise uniqueness (Section 6.3.2).

Difficulties arise with the derivation of the energy inequality for the difference of the so-

lutions due to the lack of regularity. Moreover, the method in the deterministic case can

not be adapted to the stochastic case by the application of the stochastic version of the

Gronwall lemma established in [21] (see also [34]), as issues would arise in passage to the

6



limit on the terms involving stopping times. We overcome this difficulty by establishing

a variant of the stochastic Gronwall lemma (Lemma 7.7.2), where we find that in certain

situations we can weaken the hypotheses so as to avoid the stopping times.
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Chapter 2

Functional Spaces and the Linearized ZK Equation

We consider the linearized Zakharov-Kuznetsov equation in a rectangular or parallelepiped

domain, namely,

∂u

∂t
+ c

∂u

∂x
+ ∆

∂u

∂x
= f, (2.1)

considered in M = (0, 1)x × (−π/2, π/2)d, with d = 1, 2, ∆u = uxx + ∆⊥u, ∆⊥u = uyy or

uyy + uzz. We will use the notations Ix = (0, 1)x, Iy = (−π/2, π/2)y and Iz = (−π/2, π/2)z

in the sequel. As in the previous work [40], we assume the boundary conditions on x = 0, 1

to be

u(0, x⊥, t) = u(1, x⊥, t) = ux(1, x⊥, t) = 0, (2.2)

and the initial condition reads:

u(x, x⊥, 0) = u0(x, x⊥). (2.3)

We also need suitable boundary conditions in the y and z directions. As mentioned

before, we will choose either the Dirichlet boundary conditions

u = 0 at y = ±π
2

(and z = ±π
2

), (2.4)

or the periodic boundary conditions

u
∣∣y=π

2

y=−π
2

= uy
∣∣y=π

2

y=−π
2

= 0 (and u
∣∣z=π

2

z=−π
2

= uz
∣∣z=π

2

z=−π
2

= 0). (2.5)

8



We will study in each case the initial and boundary value problem (2.1)-(2.3) supplemented

with the boundary conditions (2.4) or (2.5). We will recast the linear system in the form

of an abstract evolution equation 
du

dt
+Au = f,

u(0) = u0,

(2.6)

and prove that −A is the infinitesimal generator of a contraction semigroup which will

provide existence and uniqueness of solutions to (2.6) using the linear semi-group theory.

In order to define and characterize A and its domain D(A), we first introduce the auxiliary

spaces X (M) and X1(M) in Sections 2.1 and 2.2, and then proceed in Section 2.3 with the

definition of D(A).

2.1 Density and Trace Results for the Space X (M).

We consider the space X = X (M) = {u ∈ L2(M) : ∆ux + cux ∈ L2(M)}, endowed with

its natural Hilbert norm: |u|X (M) = (|u|2L2(M) + |∆ux + cux|2L2(M))
1/2.

As a preparation for the trace theorem, Theorem 2.1.1, we first prove the following

density result.

Lemma 2.1.1. H3
x(Ix; C∞[−π

2
,
π

2
]d) is dense in X (M).

Proof . Fix u ∈ X (M), and assume that d = 2 (similar proof for d = 1). We aim to

approximate u by a sequence {uN} ⊆ H3
x(Ix; C∞[−π

2
,
π

2
]d), such that uN → u in X (M).

Step 1. We construct a sequence of approximations uN . By Fourier series expansion in

x⊥, we write

u =
∑
k

ûk(x)ωk1(y)ωk2(z), k = (k1, k2), (2.7)

where the ωk1 are the eigenfunctions of the operators d2/dy2 on Iy (sine and cosine functions)

which form an orthonormal basis of L2(Iy) , and the ωk2 are the eigenfunctions of the

9



operators d2/dz2 on Iz which form an orthonormal basis of L2(Iz).
1 Since u ∈ L2(M),

these expansions converge in L2(M), and |u|2L2(M) = CdΣk|ûk|2L2(Ix), with Cd a constant

depending only on d.

We set

∆ux + cux = g ∈ L2(M). (2.8)

According to Lemma 7.1.1 in the Appendix, ∆ux + cux being in L2(M) makes sense in the

space of distributions Σ′(M) defined in that lemma. Hence by Corollary 7.1.1,

û′′′k − (λk − c)û′k = ĝk, (2.9)

holds in L2(Ix), with ĝk(x) the Fourier coefficients of g as in (2.7).

Now we define the sequence of approximations

uN =
∑
|k|6N

ûk(x)ωk1(y)ωk2(z), N ∈ N. (2.10)

By (7.7), we have |uNxxx|2L2(M) =
∑
|k|6N

|û′′′k |2L2(Ix) <∞. Hence

uN ∈ H3
x(Ix; C∞[−π

2
,
π

2
]d). (2.11)

Step 2. We show that uN → u in X (M) as N →∞, that is
uN → u in L2(M),

∆uNx + cuNx → ∆ux + cux in L
2(M).

(2.12)

It is easy to obtain (2.12)1.

Multiplying (2.9) by ωk1(y)ωk2(z) and summing up in k for |k| ≤ N , we find that

∆uNx + cuNx = gN , (2.13)

1We will only use that ωki form an orthonormal basis of L2(Iy) (and L2(Iz)), and satisfy ω′′
ki

+

λkiωki = 0, for some λki , i = 1, 2.

10



holds in L2(M), where

gN =
∑
|k|6N

ĝk(x)ωk1(y)ωk2(z). (2.14)

Since gN → g in L2(M), (2.13) implies that ∆uNx + cuNx → g in L2(M). Hence with

(2.8), we obtain (2.12)2.

The conclusions of Lemma 2.1.1 follow.

Now we are in position to prove the following trace theorem.

Theorem 2.1.1. For u ∈ X (M), we can define the traces, on the lines x = 0 and x = 1,

of u, ux, uxx, and of their y and z derivatives:

γiu, γiux and γiuxx belong to H
−3((−π

2
,
π

2
)d), (2.15)

γiuyy, γiuzz, and γi∆
⊥u belong to H−5((−π

2
,
π

2
)d), (2.16)

where γi is the trace on x = i, i = 0, 1. Furthermore, the trace operators are continuous

from X (M) into the corresponding spaces.

Remark 2.1.1. i) The spaces for the traces may not be “optimal”, but, for the sequel, it is

sufficient to know that the traces are well defined and that they depend continuously on u

in X (M).

ii) Since the derivatives ∂y = ∂/∂y and ∂z = ∂/∂z are continuous from H−k((−π
2 ,

π
2 )d)

into H−k−1((−π
2 ,

π
2 )d), the traces of the y and z derivatives of arbitrary orders of the func-

tions in (2.15) can also be well defined, with continuity in the natural spaces; (2.16) provides

some examples of such cases.

Proof . Let u ∈ X (M). Then by Fourier series expansion as in (2.7), we find that (2.9)

implies

|û′′′k |L2(Ix) ≤ |ĝk|L2(Ix) + |λk − c||û′k|L2(Ix). (2.17)
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Applying the interpolation theorem, |û′k|L2(Ix) ≤ C|ûk|
2/3
L2(Ix)

|û′′′k |
1/3
L2(Ix)

, with C a constant

independent of k, we obtain

|û′′′k |L2(Ix) ≤ |ĝk|L2(Ix) +
2

3
C3/2|λk − c|3/2|ûk|L2(Ix) +

1

3
|û′′′k |L2(Ix).

Hence

|û′′′k |L2(Ix) . |ĝk|L2(Ix) + |λk − c|3/2|ûk|L2(Ix), (2.18)

where . means ≤ up to a multiplicative constant independent of k. Summing up (2.18) in

k for |k| ≤ N , we obtain

∑
k

λ−3
k |û

′′′
k |2L2(Ix) .

∑
k

λ−3
k |ĝk|

2
L2(Ix) +

∑
k

|ûk|2L2(Ix).

Thus

uxxx ∈ L2(Ix; H−3(−π/2, π/2)d). (2.19)

Since u ∈ L2(M) = L2(Ix; L2(−π/2, π/2)d), by the intermediate derivative theory, ux and

uxx belong to at least the same space as in (2.19). Hence we obtain (2.15).

Remark 2.1.2. Note that one cannot define the traces on y = ±π/2 or z = ±π/2 yet. A

counterexample is the following:

When d = 1, let u(x, y) = 1/(y+π/2)1/4, (x, y) ∈ Ix×Iy. Then u ∈ X (M), but u→∞

as y → −π/2.

However, certain subspaces of X (M) may have traces defined on the y and z boundaries.

As an example, Theorem 2.2 below gives such a result for the space

X1(M) = {u ∈ X (M), u = 0 at x = 0, 1, and ux = 0 at x = 1}. (2.20)

Note that this space can be defined thanks to Theorem 2.1.1.
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2.2 Density and Trace Results for the Space X1(M).

Before we state and prove the trace theorem, Theorem 2.2.1, we establish the following

preliminary results for X1(M).

Firstly, we have a density result for X1(M) similar to Lemma 2.1.1.

Lemma 2.2.1. X1(M) ∩H3
x(Ix; C∞[−π

2
,
π

2
]d) is dense in X1(M).

Proof . Fix u ∈ X1(M), and define uN as in (2.10). By a similar proof as for Lemma 2.1.1,

we have

uN → u in X (M), (2.21)

and

uN ∈ H3
x(Ix; C∞[−π

2
,
π

2
]d). (2.22)

Now we show that uN ∈ X1(M). By (2.20), u(0, x⊥) = 0. Hence

ûk(0) = 〈u(0, x⊥), ωk1(y)ωk2(z)〉 = 0.

Similarly we have

ûk(0) = ûk(1) = û′k(1) = 0. (2.23)

Multiplying (2.23) by ωk1(y)ωk2(z) and summing up in k for |k| ≤ N , we obtain

uN = 0 at x = 0, 1, and uNx = 0 at x = 1. (2.24)

Thus uN ∈ X1(M) as desired and (2.21) now holds in X1(M).

Secondly we introduce two results concerning the regularity of functions in X1(M).

Lemma 2.2.2. For u ∈ X1(M), the traces

ux
∣∣
x=0

and uxx
∣∣
x=1

belong to L2((−π
2
,
π

2
)d), (2.25)

and the trace operators are continuous from X1(M) into the corresponding spaces.
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Proof . Let u ∈ X1(M). Assume first that u ∈ X1(M) ∩H3
x(Ix; C∞[−π

2
,
π

2
]d); then (2.9)

and (2.23) hold in L2(Ix). We successively multiply (2.9) by ûk, xûk and x, integrate

between 0 and 1 and integrate by parts.

Multiplying (2.9) by ûk, we obtain with (2.23)

−
∫ 1

0
û′′kû

′
k dx+ û′′kûk

∣∣1
0
− 1

2
(λk − c)û2

k

∣∣1
0

=

∫ 1

0
ĝkûk dx;

1

2
(û′k(0))2 ≤ 1

2
|ĝk|2L2(Ix) +

1

2
|ûk|2L2(Ix). (2.26)

Summing (2.26) up in k,

∣∣ux∣∣x=0

∣∣2
L2(M)

. |g|2L2(M) + |u|2L2(M), (2.27)

which implies (2.25).

Multiplying (2.9) by xûk, we obtain

−
∫ 1

0
û′′kû

′
kx dx−

∫ 1

0
û′′kûk dx+

1

2
(λk − c)|ûk|2L2(Ix) =

∫ 1

0
ĝkûkx dx;

1

2

∫ 1

0
(û′k)

2dx+

∫ 1

0
(û′k)

2dx+
1

2
(λk − c)|ûk|2L2(Ix) =

∫ 1

0
ĝkûkxdx;

3

2
|û′k|2L2(Ix) +

λk
2
|ûk|2L2(Ix) =

c

2
|ûk|2L2(Ix) +

∫ 1

0
ĝkûkx dx; (2.28)

λk
2
|ûk|2L2(Ix) ≤

c

2
|ûk|2L2(Ix) + |ĝk|L2(Ix)|ûk|L2(Ix).

Dividing both sides by |ûk|L2(Ix), we find

λk
2
|ûk|L2(Ix) ≤

c

2
|ûk|L2(Ix) + |ĝk|L2(Ix);

λ2
k

4
|ûk|2L2(Ix) ≤

c2

2
|ûk|2L2(Ix) + 2|ĝk|2L2(Ix). (2.29)

Multiplying (2.9) by x, we see that

−
∫ 1

0
û′′kdx+ û′′kx

∣∣1
0
− (λk − c)

∫ 1

0
û′kxdx =

∫ 1

0
ĝkxdx;

û′′k(1) = −û′k(0)− λk
∫ 1

0
ûk dx+ c

∫ 1

0
ûk dx+

∫ 1

0
ĝkx dx.

14



Thus

(û′′k(1))2 . (û′k(0))2 + (λ2
k + c2)|ûk|2L2(Ix) + |ĝk|2L2(Ix). (2.30)

From (2.30), (2.29) and (2.26) we infer that

(û′′k(1))2 . c2|ûk|2L2(Ix) + |ĝk|2L2(Ix). (2.31)

Summing (2.31) up in k, we obtain

|uxx
∣∣
x=1
|2L2(M) . c2|u|2L2(M) + |g|2L2(M), (2.32)

which implies (2.25).

Hence the conclusions of Lemma 2.2.2 follow for functions smooth enough. For u non-

smooth we proceed by approximation using Lemma 2.2.1.

Proposition 2.2.1. When d = 1, 2, if u ∈ X1(M), we have

∆⊥u and ∆u belong to L2(M). (2.33)

Moreover,

X1(M) ⊂ H1
0 ∩H2(Ix; L2((−π/2, π/2)d))), (2.34)

with a continuous embedding. Furthermore, when d = 1, we actually have

X1(M) ⊂ H1
0 ∩H2(Ix; H2(Iy)). (2.35)

Proof . Integrating (2.8) in x from x to 1, we find

∆u = uxx
∣∣
x=1
− cu−

∫ 1

x
g(x̃, x⊥) dx̃. (2.36)

Together with (2.25), we find that ∆u ∈ L2(M).

For u smooth enough, integrating (2.9) from x to 1, we obtain with (2.23)

û′′k(x) = −λkûk(x) + cûk(x) + û′′k(1) +

∫ 1

x
ĝk(x̃) dx̃;
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|û′′k|2L2(Ix) . λ2
k|ûk|2L2(Ix) + c2|ûk|2L2(Ix) + (û′′k(1))2 + |ĝk|2L2(Ix). (2.37)

From (2.37), (2.29) and (2.30) we obtain

|û′′k|2L2(Ix) . c2|ûk|2L2(Ix) + |ĝk|2L2(Ix). (2.38)

Summing (2.38) up in k,

|uxx|2L2(M) . c2|u|2L2(M) + |g|2L2(M).

Thus

uxx ∈ L2(M). (2.39)

By the intermediate derivatives theorem, ux ∈ L2(M), and hence we obtain (2.34). Since

∆u ∈ L2(M) as is proven, we infer (2.33) from (2.39).

When d = 1, (2.33) implies that uyy ∈ L2(M). By the intermediate derivatives theorem,

uy ∈ L2(M). Hence with (2.34) we obtain (2.35).

The conclusions of Proposition 2.2.1 follow for functions smooth enough. For u non-

smooth, we proceed by approximation using Lemma 2.2.1.

Remark 2.2.1. Integrating (2.8) in x from 0 to x, we also find (compare with (2.25)),

uxx
∣∣
x=0

belong to L2((−π
2
,
π

2
)d). (2.40)

Remark 2.2.2. In (2.35), we do not know if u ∈ H2(Ix × Iy), because uxy does not

necessarily belong to L2(M) due to the lack of information at the y boundary.

Now we are in position to prove the following trace theorem.

Theorem 2.2.1. For u ∈ X1(M), we can define more traces, in particular, at y = ±π/2

and z = ±π/2, namely,

u
∣∣
y=±π

2
and uy

∣∣
y=±π

2
belong to H−2(Ix × Iz);

u
∣∣
z=±π

2
and uz

∣∣
z=±π

2
belong to H−2(Ix × Iy).
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Furthermore, the trace operators are continuous from X1(M) into the corresponding

spaces.

Remark 2.2.3. As mentioned in Remark 2.1.1, we can similarly define the traces on the

y and z boundaries of the x derivatives of arbitrary orders of these functions. For example,

ux
∣∣
y=±π

2
and uxy

∣∣
y=±π

2
belong to H−3(Ix × Iz). (2.41)

Proof . Assume first u is smooth. Then by Fourier series expansion in y⊥, we write

u =
∑
k

ûk(y)ek1(x)wk2(z), k = (k1, k2), (2.42)

with {ek1} ⊆ D(Ix) an orthonormal basis of L2(Ix); setting h = ∆⊥u ∈ L2(M), (2.33)

implies

−λk2 ûk(y) + û′′k(y) = ĥk(y), (2.43)

with ĥk(y) the Fourier coefficients of h as in (2.42). Hence

λ−2
k2
|û′′k|2L2(Iy) . λ−2

k2
|ĥk|2L2(Iy) + |ûk|2L2(Iy).

Summing it up in k, we obtain

∑
k

λ−2
k2
|û′′k|2L2(Iy) .

∑
k

λ−2
k2
|ĥk|2L2(Iy) +

∑
k

|ûk|2L2(Iy).

Hence uyy ∈ L2(Iy; H
−2(Ix × Iz)). By the intermediate derivative theorem, uy belongs to

at least the same space as uyy, and we can define the traces of u and uy at the y boundary.

Similarly, we can prove the trace results for the z boundary. Hence the conclusions follow

for u smooth.

For u non-smooth, since u ∈ L2(M) and ∆u ∈ L2(M) by (2.33), we can use Theorem

5.1 in [32], which says that with ∂M satisfying the cone condition, C∞(M̄) is dense in the

space {u ∈ L2(M); ∆u ∈ L2(M)}. Hence we can proceed by approximation.
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Remark 2.2.4. In Proposition 2.2.1, because of the lack of information about the trace of

u on the y and z boundaries, (2.33) does not imply that uyy ∈ L2(M) when d = 2. Here

is a counterexample entailing this reasoning: Let u = w(x)v(y, z), where w ∈ C∞c (Ix), and

v = ln[(y + π/2)2 + (z + π/2)2]. We can show that

v ∈ L2(Iy × Iz), vyy = −vzz /∈ L2(Iy × Iz). (2.44)

Indeed by the change of variables ỹ = y + π/2 and z̃ = z + π/2, we are led to consider the

function ṽ(ỹ, z̃) = ln(ỹ2 + z̃2) in Ĩỹ × Ĩz̃, where Ĩỹ = (0, π)ỹ, Ĩz̃ = (0, π)z̃. The analogue of

(2.44) is easy to check by direct calculation. Then (2.44) implies

u ∈ L2(M), ux = w′v ∈ L2(M); (2.45)

and

∆ux = uxxx + uxyy + uxzz = w′′′v + w′(vyy + vzz) = w′′′v ∈ L2(M).

Hence u ∈ X (M).

Since w ∈ C∞c (Ix), it is easy to see that

u = 0 at x = 0, 1, and ux = 0 at x = 1.

Finally, u ∈ X1(M). But (2.44) also implies that neither uyy = wvyy nor uzz = wvzz

belongs to L2(M), and hence u /∈ H2(M).

In fact, the regularity of u in the y and z directions is even worse. We can see that

ṽỹ /∈ L2(Ĩỹ × Ĩz̃). Hence vy /∈ L2(Iy × Iz). Thus uy = wvy /∈ L2(M), which implies that u

does not even belong to H1(M). To conclude, while having H2-regularity in the x-direction,

u may be much less regular in the y, z directions.

However, certain subspaces of X1(M) may have better regularity properties. For in-

stance, adding suitable boundary conditions on y and z boundaries can lead to stronger

regularity in these directions; we show this in the next section.
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2.3 Operator A in the Dirichlet Case.

As mentioned before, we can assume either the Dirichlet or the periodic boundary condition

on the y, z boundaries. We first study the Dirichlet case, that is we assume (2.4). We rewrite

(2.7) in the form

u =
∑
k

ûk(x) cos k1y cos k2z, (2.46)

where k1, k2 ∈ 2N + 1, and λk = k2
1 + k2

2 = k2. We also rewrite (2.10) as

uN =
∑
|k|6N

ûk(x) cos k1y cos k2z, N ∈ N. (2.47)

2.3.1 Density and Regularity Results for D(A).

Thanks to Theorems 2.1.1, 2.2.1, we can define the operator A and its domain D(A):

D(A) = {u ∈ X1(M), u = 0 at y = ±π
2

(and z = ±π
2

)}, (2.48)

and for u ∈ D(A),

Au = ∆ux + cux.

Firstly, as mentioned before, we have a regularity result for D(A):

Proposition 2.3.1. D(A) ⊂ H1
0 (M) ∩H2(M) with a continuous imbedding, d = 1, 2.

Proof . Since u ∈ D(A), then u ∈ L2(M) and u = 0 on ∂M; furthermore, by (2.33),

∆u ∈ L2(M); from ∂M being Lipschitz, we infer that u ∈ H2(M), thanks to [22].

Secondly, we have a density result for D(A) similar to Lemma 2.1.1:

Lemma 2.3.1. D(A) ∩H3
x(Ix; C∞[−π

2
,
π

2
]d) is dense in D(A).

Proof . Fix u ∈ D(A), and define uN as in (2.47). Since u ∈ X1(M), Lemma 2.2.1 implies

uN → u in X1(M),
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and

uN ∈ X1(M) ∩H3
x(Ix; C∞[−π

2
,
π

2
]d). (2.49)

Moreover, from (2.47) we obtain

uN = 0 at y = ±π
2

(and z = ±π
2

). (2.50)

By (2.50) and (2.49), uN ∈ D(A) ∩H3
x(Ix; C∞[−π

2
,
π

2
]d) as desired. Thus the conclusions

of Lemma 2.3.1 follow.

Remark 2.3.1. Note that by Proposition 2.3.1 and Lemma 2.3.1, (2.28) implies

(Au, xu) =

∫
M

(
3

2
u2
x +

1

2
|∇⊥u|2 − c

2
u2

)
dM, u ∈ D(A). (2.51)

2.3.2 Characterization of A∗ and D(A∗).

In order to study the linearized Z-K equation (2.1)-(2.4), as mentioned before, we need to

prove that −A in (2.6) is the infinitesimal generator of a contraction semigroup in view of

applying the Hille-Yoshida theorem. For that purpose we first need to define and charac-

terize the adjoint A∗ and its domain D(A∗).

Let H = L2(M). Assume that u ∈ D(A) and ũ ∈ H are smooth functions; then

(Au, ũ)H =

∫
M

(∆ux + cux)ũ dM = I1 + I2 + I3, (2.52)

where

I1 = −
∫
M
u(∆ũx + cũx) dM,

and

I2 =

∫
(−π

2
,π
2

)d
uxxũ

∣∣x=1

x=0
+ uxũx

∣∣
x=0

dx⊥;

I3 =

∫
Ix×Iz

uxyũ
∣∣y=π

2

y=−π
2
dy⊥ +

∫
Ix×Iy

uxzũ
∣∣z=π

2

z=−π
2
dz⊥.

According to [39], D(A∗) consists of the ũ in H such that the mapping u→ (Au, ũ)H is

continuous on D(A) for the norm of H.
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Step 1. Fix ũ in H and consider the u’s in D(A) ∩ C∞c (M). For such u’s,

(Au, ũ)H = I1 = − < u,∆ũx + cũx >,

and if u→ (Au, ũ)H is continuous for the norm of H for such u’s, then necessarily we have

∆ũx + cũx ∈ L2(M). Hence

ũ ∈ X (M). (2.53)

Step 2. Now consider the u’s in D(A)∩H3
x(Ix; C∞c ((−π

2 ,
π
2 )d)). For such u’s, since (2.53)

implies that the traces of ũ at x = 0 and 1 are well defined as in Theorem 2.1.1, the following

calculations are valid:

(Au, ũ)H = I1 + I2.

Hence the mapping u→ (Au, ũ)H can only be continuous for the the norm of H if

ũ = 0 at x = 0, 1, and ũx = 0 at x = 0. (2.54)

From (2.54) and (2.53) we deduce that ũ ∈ X̃1(M), where

X̃1(M) = {ũ ∈ X (M), ũ = 0 at x = 0, 1, ũx = 0 at x = 0}. (2.55)

Step 3. Now consider the u’s in D(A) ∩H3
x(Ix; C∞[−π/2, π/2]d). By (2.55), the traces

of ũ can be defined at both the x boundary and the y, z boundaries (same reasoning as in

Theorems 2.1.1 and 2.2.1 for X1(M)). Hence the following calculations are valid:

(Au, ũ)H = I1 + I3, (2.56)

where I2 vanishes because of (2.54). Thus the mapping u→ (Au, ũ)H can only be continuous

for the norm of H if

ũ = 0 at y = ±π
2
and z = ±π

2
. (2.57)

From (2.57) and (2.55), we infer that ũ ∈ D̃(A), where

D̃(A) = {ũ ∈ X (M), ũ = 0 on ∂M, ũx = 0 at x = 0}. (2.58)
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Finally, if ũ ∈ D̃(A), then it can be approximated in D̃(A) by functions belong-

ing to D̃(A) ∩ H3
x(Ix; C∞[−π/2, π/2]d) (same reasoning as for D(A) in Lemma 2.3.1).

Also any function u ∈ D(A) can be approximated in D(A) by functions belonging to

D(A) ∩ H3
x(Ix; C∞[−π/2, π/2]d) by Lemma 2.3.1. The integration by parts of (2.56) are

then justified by approximation, and by (2.57), I3 = 0. This shows that ũ ∈ D(A∗) and,

finally,

D(A∗) = D̃(A). (2.59)

For ũ ∈ D(A∗),

A∗ũ = −(∆ũx + cũx). (2.60)

2.4 Operator Aper in the Space Periodic Case.

As mentioned at the end of Section 2.2, we can also consider periodic boundary conditions

on the y and z boundaries, all the well defined derivatives being periodic with period π. We

rewrite (2.7) in the form

u =
∑
k

ûk(x)eik1yeik2z, (2.61)

where k1, k2 ∈ 2N, and λk = k2
1 + k2

2 := k2. We also rewrite (2.10) as

uN =
∑
|k|6N

ûk(x)eik1yeik2z, N ∈ N. (2.62)

2.4.1 Density and Regularity Results for D(Aper).

Thanks to Theorems 2.1.1, 2.2.1, (2.5) is legitimate, and hence we can define Aper and its

domain D(Aper):

D(Aper) = {u ∈ X1(M), u is periodic with the first order derivatives periodic in y and z,

with period π},
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and equivalently

D(Aper) = {u ∈ X (M), u = 0 at x = 0, 1, ux = 0 at x = 1;

u
∣∣y=π

2

y=−π
2

= uy
∣∣y=π

2

y=−π
2

= 0, u
∣∣z=π

2

z=−π
2

= uz
∣∣z=π

2

z=−π
2

= 0}.

For u ∈ D(Aper),

Aperu = ∆ux + cux.

It is worth noting that when d = 1, we can define v := u− u
∣∣
y=π

2
= u− u

∣∣
y=−π

2
. Then

v ∈ D(A). Hence each function in D(Aper) corresponds to a function in D(A) up to a

constant, and they should share the same properties.

Thus the more interesting case will be d = 2. Firstly, we have the same regularity result

as in Proposition 2.3.1.

Proposition 2.4.1. D(Aper) ⊂ H1
0 (M) ∩H2(M), d = 1, 2, with a continuous imbedding.

Proof . Let u ∈ D(Aper). Since u ∈ D(Aper), then u ∈ L2(M) and u = 0 on the x

boundary, and is periodic on the y and z boundaries. Hence we can prove Proposition 2.4.1

in the same way as Proposition 2.3.1.

Secondly, we also have the same density result as Lemma 2.1.1:

Lemma 2.4.1. D(Aper) ∩H3
x(Ix; C∞[−π

2
,
π

2
]d) is dense in D(Aper).

Proof . The proof is similar with Lemma 2.1.1, noting that (2.62) implies that uN and its

first order derivatives are periodic in y and z with period π.

2.4.2 Characterization of A∗per and D(A∗per).

Let H = L2(M). Assume that u ∈ D(Aper) and ũ ∈ H are smooth functions. We calculate

(Aperu, ũ)H , and the result is the same as that of (2.52). The reason is that when integrating

by parts in y and z, whenever the boundary terms get canceled by the Dirichlet boundary
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condition, they also get canceled by the periodic boundary condition. Hence by a similar

reasoning, we obtain

D̃(A∗per) = {ũ ∈ X (M), u = 0 at x = 0, 1, ũx = 0 at x = 0;

ũ
∣∣y=π

2

y=−π
2

= ũy
∣∣y=π

2

y=−π
2

= 0, ũ
∣∣z=π

2

z=−π
2

= ũz
∣∣z=π

2

z=−π
2

= 0},

and for ũ ∈ D(A∗per),

A∗perũ = −(∆ũx + cũx). (2.63)

2.5 Linear Evolution ZK Equation

We are now in position to study the linear evolution equation in the Dirichlet case, that is

(2.1)-(2.4). The results for the periodic case, which we will not present, are very similar.

2.5.1 Well-posedness of the Evolution Equation

We want to apply the Phillips version of the Hille-Yoshida theorem to deduce the existence

and uniqueness of strong solutions to (2.6). As indicated before, we only need to show that

−A is the infinitesimal generator of a semigroup of contractions in H. According to [25]

and [36], it suffices to show that

i) A and A∗ are closed operators and their domains D(A) and D(A∗) are dense in H,

and

ii) A and A∗ are positive:


(Au, u)H ≥ 0, ∀u ∈ D(A),

(A∗ũ, ũ)H ≥ 0, ∀ũ ∈ D(A∗).

(2.64)

The proof of i) is direct.
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To show (2.64)1, we can assume that u ∈ D(A)∩H3
x(Ix; C∞[−π/2, π/2]d). Replacing ũ

by u in (2.52), we see that all the integration by parts are legitimate for such a u and we

obtain (2.52) with

I1 = −(Au, u)H ; I2 =

∫
(−π

2
,π
2

)d
u2
x(0, x⊥) dx⊥; I3 = 0.

Hence

(Au, u)H =
1

2

∫
(−π

2
,π
2

)d
u2
x(0, x⊥) dx⊥ ≥ 0, (2.65)

for such a u and by continuity for all u ∈ D(A). Similarly, we have

(A∗ũ, ũ)H =
1

2

∫
(−π

2
,π
2

)d
ũ2
x(1, x⊥) dx⊥ ≥ 0, ∀ũ ∈ D(A∗). (2.66)

Thus −A is the infinitesimal generator of a semigroup of contractions in H denoted by

{S(t)}t≥0. By the Hille-Phillips-Yoshida theorem, we then obtain the existence of strong

solutions to the initial-value problem (2.6).

Theorem 2.5.1. Assume that u0 is given in D(A) and f is given in L1
loc(R+; H), with

f ′ = df/dt in L1
loc(R+; H). Then the initial and boundary value problem (2.6) possesses a

unique solution u such that

u ∈ C([0, T ];D(A)), ut ∈ L∞(0, T ;H) for any T > 0. (2.67)

Furthermore, If u0 is given in H and f ∈ L1
loc(R+; H), then (2.6) possesses a unique

mild solution u ∈ C(R+; H) given by

u(t) = S(t)u0 +

∫ t

0
S(t− s)f(s)ds. (2.68)

Thanks to the corresponding regularity results for the stationary equation, we have the

following regularity properties for the evolution equation:

Corollary 2.5.1. Under the hypotheses of Theorem 2.5.1, the solution u of (2.67) satisfies

u ∈ L∞((0, T ); H1
0 (M) ∩H2(M)), d = 1, 2, (2.69)
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and

ux
∣∣
x=0

and uxx
∣∣
x=0,1

belong to L∞((0, T ); L2((−π
2
,
π

2
)d)). (2.70)

Proof . By (2.67), u ∈ L∞(0, T ; D(A)) and ut ∈ L∞(0, T ;H). Then we obtain (2.69) by

Proposition 2.3.1, and obtain (2.70) by (2.25), (2.40).
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Chapter 3

Nonlinear ZK Equation: Existence and Uniqueness of the Weak Solution

We now proceed and consider the initial and boundary-value problem for the full (nonlinear)

ZK equation in the limited domain M in the Dirichlet case, that is, (1.1) and (2.2)-(2.4).

Our main result in this chapter is as follows.

Theorem 3.0.2. We are given u0 ∈ L2(M) and f ∈ L2
loc(R+; L2(M)), M = (0, 1)x ×

(−π/2, π/2)d, d = 1, 2. Then:

(i) The initial and boundary-value problem for the ZK equation, that is, (1.1) and (2.2)-

(2.4), possesses a weak solution u,

u ∈ L∞(0, T ; L2(M)) ∩ L2(0, T ; H1
0 (M)), (3.1)

∫ T

0

∫
(−π

2
,π
2

)d
|ux(0, x⊥, t)|2 dx⊥ dt <∞, (3.2)

for all T > 0.

(ii) If d = 1, then the solution u is unique. Moreover, u ∈ C([0, T ]; L2(M)) and the

flow map u0 → u(·, t) is continuous from L2(M) to L2(M).

Remark 3.0.1. Note that the boundary condition u = 0 on ∂M makes sense since u ∈

L2(0, T ; H1
0 (M)d)). The boundary condition ux

∣∣
x=1

= 0 makes sense in H−2((0, T ) ×

(−π
2 ,

π
2 )d) as explained in Lemma 3.1.1 below.
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3.1 Existence of Weak Solutions in Dimension 3

Proof of Theorem 3.0.2. i) We start with the proof of existence. The existence is proven

by parabolic regularization as in [40]; that is, for ε > 0 “small”, we consider the parabolic

equation 
∂uε

∂t
+ ∆

∂uε

∂x
+ c

∂uε

∂x
+ uε

∂uε

∂x
+ ε Luε = f,

uε(0) = u0,

(3.3)

where

Luε :=
∂4uε

∂x4
+
∂4uε

∂y4
+
∂4uε

∂z4
,

supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-

ditions

uεy
∣∣
y=±π

2
= uεz

∣∣
z=±π

2
= 0, (3.4)

uεxx
∣∣
x=0

= 0. (3.5)

Note that since uεyy = uεzz = 0 at x = 0 (and x = 1), (3.5) is equivalent to

∆uε
∣∣
x=0

= 0.

The following a priori estimates classically guarantee the existence of a solution uε for

ε > 0 fixed and then allow us to pass to the limit ε → 0, thus providing the existence of a

solution for the ZK equation.

As for the linear ZK equation these a priori estimates are obtained by multiplying (3.3)

by uε, then by xuε, integrating and integrating by parts in each case. The contributions of

the linear terms ∆uεx and cuεx have already been studied, and we thus concentrate on the

contributions of the other terms. Note that the solutions uε to the parabolic problem are

sufficiently regular for the following calculations to be fully legitimate without any need of

further regularization.
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We drop the super index ε and start by multiplying (3.3)1 with u = uε. We find

•
∫
M

∂u

∂t
u dM =

1

2

d

dt
|u|2L2(M),

•
∫
M
uux u dM = 0,

•
∫
M
fu dM≤ 1

2
|f |2L2(M) +

1

2
|u|2L2(M),

• ε
∫
M

(
∂4u

∂x4
+
∂4u

∂y4
+
∂4u

∂z4
)u dM

= ε

∫
M

(

∣∣∣∣∂2u

∂x2

∣∣∣∣2 +

∣∣∣∣∂2u

∂y2

∣∣∣∣2 +

∣∣∣∣∂2u

∂z2

∣∣∣∣2) dM =: ε[u]22.

Hence with (2.65), we find

d

dt
|uε|2L2(M) +

∫
(−π

2
,π
2

)d
|uεx(0, x⊥, t)|2 dx⊥ + 2ε[uε]22 ≤ |f |2L2(M) + |uε|2L2(M). (3.6)

Using the Gronwall lemma we classically infer from (3.6) (and the fact that u0 ∈ L2(M))

the following bounds independent of ε:

uε is bounded in L∞(0, T ; L2(M)),

√
εuε is bounded in L2(0, T ; H1

0 ∩H2(M)),

uεx(0, ·, ·) is bounded in L2(0, T ; L2((−π
2 ,

π
2 )d)).

(3.7)

For (3.7)2, note that [u]2 is a norm on H1
0 ∩ H2(M) equivalent to the H2-norm, since

|∆u|L2(M) is equivalent to the H2-norm and

|∆u|L2(M) ≤ 2(|uxx|L2(M) + |uyy|L2(M) + |uzz|L2(M)).

We now multiply (3.3)1 by xu (= xuε), integrate and integrate by parts:

•
∫
M

∂u

∂t
xu dM =

1

2

d

dt
|
√
xu|2L2(Ω),

•
∣∣∣∣∫
M
uuxxu dM

∣∣∣∣ ≤ 1

3

∫
M
|u|3 dM

≤ (by interpolation, H1/2(M) ⊂ L3(M) in dimension 3)
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≤ c1|u|3/2L2(M)
|∇u|3/2

L2(M)
≤ 1

4
|∇u|2L2(M) + c2|u|6L2(M), (3.8)

•
∫
M
fxu dM≤ 1

2
|f |2L2(M) +

1

2
|
√
xu|2L2(M),

• ε
∫
M

(
∂4u

∂y4
+
∂4u

∂y4
)xu dM = ε

∣∣∣∣√x∂2u

∂y2

∣∣∣∣2
L2(M)

+ ε

∣∣∣∣√x∂2u

∂z2

∣∣∣∣2
L2(M)

,

•
∫ 1

0

∂4u

∂x4
xu dx = −

∫ 1

0

∂3u

∂x3
(u+ x

∂u

∂x
) dx

=

∫ 1

0
(2uxxux + xu2

xx) dx = −|ux(0, ·, ·)|2 +

∫ 1

0
xu2

xxdx,

• ε
∫
M

∂4u

∂x4
xu dx dx⊥ = ε|

√
xuxx|2L2(M) − ε

∫
(−π

2
,π
2

)d
|ux(0, x⊥, t)|2 dx⊥.

Hence, together with (2.51), we arrive at

d

dt
|
√
xuε|2L2(M) +

1

2
|∇uε|2L2(M) + 2|uεx|2L2(M)

+ 2ε|
√
xuεxx|2L2(M) + 2ε|

√
xuεyy|2L2(M) + 2ε|

√
xuεzz|2L2(M)

≤ |f |2L2(M) + |
√
xuε|2L2(M) + c|uε|2L2(M)

+2c2|uε|6L2(M) + 2ε

∫
(−π

2
,π
2

)d
|uεx(0, x⊥, t)|2 dx⊥. (3.9)

Taking into account the previous estimates (3.7) we obtain the following estimates, also

independent of ε:

∇uε,
√
εxuεxx,

√
εxuεyy,

√
εxuεzz are bounded in L2(0, T ; L2(M)). (3.10)

From (3.7) and (3.10) we infer a bound on uεuεx on which we now elaborate because of

our needs below. We write (dropping momentarily the ε):

∫
M
|uux|9/8 dM =

∫
M

(u2)
3
8 (u6)

1
16 |ux|

9
8 dM

≤ (with H1(M) ⊂ L6(M) in dimension 3) ≤ |u|
3
4

L2(M)
|∇u|

24
16

L2(M)
;

that is,

|uεuεx|L9/8(M) ≤ |u
ε|

2
3

L2(M)
|∇uε|

4
3

L2(M)
. (3.11)
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The function on the right-hand-side of (3.11) is bounded in L3/2(0, T ); that is,

uεuεx is bounded in L3/2(0, T ; L9/8(M)) in dimension 3, (3.12)

and hence it is bounded in L9/8(0, T ; L9/8(M)). Since L9 is the dual of L9/8 and H
7
6 (M) ⊂

L9(M) in space dimension 3, we also have

uεuεx is bounded in L9/8(0, T ; H−
7
6 (M)) in dimension 3. (3.13)

Thanks to (3.7), (3.10), (3.13), equation (3.3) now implies

∂uε

∂t
is bounded (independently of ε) in L9/8(0, T ; H−3(M)). (3.14)

Although the estimate (3.14) is a very poor one, it allows us to show that the family

uε is relatively compact in L2(0, T ; L2(M)). As we have said, the estimates above are then

sufficient to obtain the existence of uε for ε > 0 fixed, and they permit also, in a second

step, to pass to the limit ε→ 0, using a compactness argument for the nonlinear term.

ii) Having shown that the limit u of (a subsequence extracted from) uε is a solution of

(1.1), we want now to address the question of the boundary and initial conditions. The

initial condition u(x, x⊥, 0) = u0(x, x⊥) is satisfied because, due in particular to (3.14), uε

converges to u in C([0, T ]; H−3
w (Ω)), where H−3

w is H−3 equipped with the weak topology.

Similarly the Dirichlet boundary condition u = 0 on ∂M is satisfied since it is satisfied

by uε and since uε converges to u weakly in L2(0, T ; H1
0 (M)).

Hence for the existence, there remains to show that the boundary condition

ux(1, x⊥, t) = 0, (3.15)

is satisfied. This boundary condition is the object of Lemma 3.1.1 below where we show

that ux(1, ·, ·) is defined when u ∈ L∞(0, T ; L2(M)) ∩ L2(0, T ; H1
0 (M)) and u satisfies

an equation like (1.1) and furthermore this trace depends continuously on u in a suitable

topology, so that uεx(1, ·, ·) = 0 gives, at the limit, ux(1, ·, ·) = 0.
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We now pursue the proof of (3.15) and start with the following lemma which shows that

whenever u ∈ L∞(0, T ; L2(M)) ∩ L2(0, T ; H1
0 (M)) satisfies equation (1.1) then ux(1, ·, ·)

makes sense (as well as other traces).

Lemma 3.1.1. If u ∈ L∞(0, T ; L2(M)) ∩ L2(0, T ; H1
0 (M)) satisfies equation (1.1), then

ux, uxx ∈ Cx(Ix; Y ), Y = H−2((0, T )× (−π
2
,
π

2
)d)), (3.16)

and, in particular,

ux
∣∣
x=0,1

, uxx
∣∣
x=0,1

(3.17)

are well defined in Y . Furthermore these traces depend continuously on u in a sense made

precise in the proof.

Proof . We write equation (1.1) in the form

uxxx = f − cux −∆⊥ux − uux − ut, (3.18)

and we observe that, since

u, ux ∈ L2(0, T ; L2(M)) = L2
x(Ix; L2(0, T )× (−π

2
,
π

2
)d)), (3.19)

it follows that

ut ∈ L2
x(Ix; H−1(0, T ; L2((−π

2
,
π

2
)d))),

∆⊥ux ∈ L2
x(Ix; L2(0, T ; H−2((−π

2
,
π

2
)d))).

Also according to (3.12),

uux ∈ L9/8
x (Ix; L9/8

x ((0, T )× (−π
2
,
π

2
)d))) ⊂ L9/8

x (Ix; H−2((0, T )× (−π
2
,
π

2
)d))). (3.20)

Thus uxxx belongs (at least) to the largest of these spaces, that is

uxxx ∈ L9/8
x (Ix; H−2((0, T )× (−π

2
,
π

2
)d))). (3.21)
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Then (3.16), (3.17) follow.

Furthermore, if a sequence of functions um satisfies (1.1) with f = fm, and um → u

in L∞(0, T ; L2(M)) ∩ L2(0, T ; H1
0 (M)) and fm → f in L2(0, T ; L2(M)) (strongly), then

umx
∣∣
x=0,1

, umxx
∣∣
x=0,1

converge respectively to ux
∣∣
x=0,1

, uxx
∣∣
x=0,1

in Y . If the convergence

of um and fm are weak (weak-star for L∞), then the convergences hold in Cx(Ix; Yw) and

Yw. These convergences use a compactness argument based on the analog of (3.14) , which

is used to show that umumx converges to uux.

iii) We now need to show that the boundary condition ux(1, ·, ·) = 0, which is satisfied

in a strong sense for ε > 0, “passes to the limit” to imply (3.15). It suffices here to use

Lemma 7.2.1 in the appendix. Let uε be a solution of (3.3), (2.2)-(2.4), (3.4) and (3.5), with

p = 9
8 , Y = H−2((0, T )× (−π

2 ,
π
2 )d), as in Lemma 3.1.1 and

gε := uεxxx + εuεxxxx = f − uεt − cuεx −∆⊥uεx − uεuεx − εuεyyyy − εuεzzzz. (3.22)

We observe that, since uε remains bounded in L∞(0, T ; L2(M))∩L2(0, T ; H1
0 (M)) as ε→ 0,

the following functions remain bounded in the indicated spaces:

uεx in L2
x(Ix; L2

t (0, T ; L2((−π
2
,
π

2
)d))),

uεt in L2
x(Ix; H−1

t (0, T ; L2((−π
2
,
π

2
)d))),

∆⊥uεx in L2
x(Ix; L2

t (0, T ; H−2((−π
2
,
π

2
)d))),

uεyyyy + uεxxxx in L2
x(Ix; L2

t (0, T ; H−4((−π
2
,
π

2
)d))).

We have thus shown that uεuεx remains bounded in L9/8(0, T ; L9/8(M)) = L
9/8
x (Ix; L9/8((0, T )×

(−π
2 ,

π
2 )d)).

Finally gε remains bounded in the reflexive Banach space L
9/8
x (Ix; Y ), where

Y = H−1
t (0, T ; L2((−π

2
,
π

2
)d)) + L2

t (0, T ; H−4((−π
2
,
π

2
)d)) + L

9/8
t (0, T ; L9/8((−π

2
,
π

2
)d)).

Then we can apply Lemma 7.2.1 with this space Y .
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Remark 3.1.1. As in the stationary and the linear cases, the traces in (3.17) are defined

in a weak sense (in a large space). We did not try to refine these trace results, as we only

need to know that these traces exist and depend continuously on u.

Remark 3.1.2. Another way to estimate the term uεuεx was pointed out to one of us by

Laure Saint-Raymond, namely, we have

∫ T

0
|uεuεx|2L1(M) dt ≤

∫ T

0
|uε|2L2(M)|u

ε
x|2L2(M) dt ≤

(
sup

t∈(0,T )
|uε(t)|L2(M)

)2 ∫ T

0
|uε(t)|2H1

0 (M) dt,

and we infer from (3.7) and (3.10) that

uεuεx is bounded in L2(0, T ; L1(M)) in dimension 3. (3.23)

Since H2
0 (M) ⊂ L∞(M) in space dimension 3, L1(M) is included in H−2(M), and hence

we also have

uεuεx is bounded in L2(0, T ; H−2(M)) in dimension 3. (3.24)

Thanks to (3.7), (3.10), (3.24), equation (3.3) now implies

∂uε

∂t
is bounded (independently of ε) in L2(0, T ; H−3(M)). (3.25)

With these bounds, we can also infer the weak convergence of uεx(1, ·, ·) = 0 by apply-

ing Lemma 7.2.1 in a smaller space Y , observing that gε remains bounded in the Ba-

nach space L1
x(Ix;Y ), where Y = H−1

t (0, T ; L2((−π
2 ,

π
2 )d)) + L2

t (0, T ; H−4((−π
2 ,

π
2 )d)) +

L2
t (0, T ; L1((−π

2 ,
π
2 )d)).

3.2 Uniqueness of Weak Solutions in Dimension 2

Finally we conclude the proof of Theorem 3.0.2 by proving the uniqueness and the strong

continuity properties, when d = 1. This will follow from the following lemma.
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Lemma 3.2.1. Assume that w0 ∈ H := L2(M) and g ∈ Lp(0, T ; Lq(M)) are given, such

that 1 ≤ p, q ≤ ∞, and

L∞(0, T ; L2(M)) ∩ L2(0, T ; H1
0 (M)) ⊂ Lp′(0, T ; Lq

′
(M)), (3.26)

with 1/p+1/p′ = 1/q+1/q′ = 1, the last injection (inclusion) being continuous. Then when

d = 1, there exists a unique function w ∈ L∞(0, T ; L2(M)) ∩ L2(0, T ; H1
0 (M)) satisfying

∂w

∂t
+ ∆

∂w

∂x
+ c

∂w

∂x
= g,

w(0) = w0,

(3.27)

and the boundary conditions (2.2), (2.4). This function w satisfies also the energy inequality

d

dt
|
√

1 + xw|2L2(M) + |∇w|2L2(M) − c|w|
2
L2(M) ≤ 2

∫
M
g(1 + x)w dM. (3.28)

Proof . By parabolic regularization as in the nonlinear case, we can construct a solution of

(3.27), (2.2) and (2.4) satisfying the energy type inequality (3.28). Indeed we consider the

parabolic equation
∂wε

∂t
+ ∆

∂wε

∂x
+ c

∂wε

∂x
+ ε (

∂4wε

∂x4
+
∂4wε

∂y4
+
∂4wε

∂z4
) = g,

wε(0) = w0,

(3.29)

supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-

ditions (3.4), (3.5).

Multiplying (3.29)1 by wε and then xwε, integrating over M and integrating by parts,

we can apply the same calculations as in the nonlinear case and obtain the analogues of

(3.6) and (3.9) without the terms due to the nonlinearity. We can deduce the same uniform

bounds as in (3.7) and (3.10), from which we infer that (compare to (3.14))

∂wε

∂t
is bounded (independently of ε) in L2(0, T ; H−3(M)). (3.30)

Hence wε converges up to a subsequence to w weakly in L∞(0, T ; L2(M))∩L2(0, T ;H1
0 (M))

and strongly in L2(0, T ;L2(M)). By a similar argument as in the nonlinear case, we obtain
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the existence of a solution to the linear equation (3.27) with the boundary conditions (2.2),

(2.4).

Summing up the analogues of (3.6) and (3.9), dropping the nonnegative terms, we obtain

that when say ε < 1/2,

d

dt
|
√

1 + xwε|2L2(M) + |∇wε|2L2(M) ≤ c|w
ε|2L2(M) + 2

∫
M
g(1 + x)wε dM. (3.31)

Since wε converges weakly to w in L∞(0, T ;L2(M)) ∩ L2(0, T ;H1
0 (M)) and strongly in

L2(0, T ;L2(M)), we can pass to the lower limit on the left-hand-side of (3.31) and pass

to the limit on the term |wε|2L2(M). By (3.26), we obtain that wε converges weakly in

Lp
′
(0, T ; Lq

′
(M)), which is the dual of Lp(0, T ; Lq(M)). Hence we can pass to the limit

on the term
∫
M g(1 + x)wε dM. To conclude, we can pass to the limit in (3.31) and obtain

(3.28).

We finally observe that for such a function g, the solution w belonging to the space

L2(0, T ; H1
0 (M))∩L∞(0, T ; L2(M)) to the linear equation (3.27) with boundary conditions

(2.2), (2.4) is necessarily unique. Indeed, if w1, w2 are two such solutions, setting w =

w1 − w2 and W (t) =
∫ t

0 w(s)ds, we see that
∂W

∂t
+ ∆

∂W

∂x
+ c

∂W

∂x
= 0,

W (0) = 0,

(3.32)

and W satisfies the same boundary conditions (2.2), (2.4). Since W ∈ L2(0, T ; H1
0 (M)),

and Wt = w ∈ L2(0, T ;L2(M)), we see from (3.32)1 that W (t) ∈ D(A) for almost every t

and more precisely W ∈ L2(0, T ; D(A)), and (3.32) reads
∂W

∂t
+AW = 0,

W (0) = 0.

By the uniqueness in Theorem 2.5.1 (linear case), W (t) = 0 for all t ≥ 0, and then Wt =

w = 0 for all t ≥ 0.
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Now let u and v be two weak solutions of (1.1), (2.2)-(2.4), Then u− v satisfies

∂w

∂t
+ ∆

∂w

∂x
+ c

∂w

∂x
= −uux + vvx, (3.33)

together with the boundary and initial conditions (2.2)-(2.4) (with initial data u0−v0 = 0).

Hence we can regard u− v as a solution in the space L∞(0, T ; L2(M))∩L2(0, T ; H1
0 (M))

of (3.33) written as (3.27), with g = −uux + vvx.

Of course, u satisfies the boundary conditions (2.2), (2.4). We can prove that

|uux|L4/3(M) ≤ C
′′|u|L4(M)|ux|L2(M) ≤ C ′′|u|

1/2
L2(M)

|∇u|1/2
L2(M)

|ux|L2(M).

Hence we find (compare to (3.12))

uux ∈ L4/3(0, T ;L4/3) in dimension 2, (3.34)

so that g ∈ L4/3(0, T ;L4/3).

When d = 1, we see that L2(0, T ; H1
0 (M))∩L∞(0, T ; L2(M)) ⊂ L4(0, T ;L4(M)), which

is the dual of L4/3(0, T ;L4/3). Hence we can apply Lemma 3.2.1 and by the uniqueness of

solutions to (3.27) with the boundary and initial conditions (2.2)-(2.4) (with initial data

u0 − v0 = 0), we deduce that u − v = w. Thus from (3.28) we can derive another energy

estimate:

d

dt
(|w|2L2(M) + |

√
xw|2L2(M)) + |∇w|2L2(M)

≤ −
∫
M
w2vx d− 2xw2u+ xw2v dM+ vw2 + cw2 dM

≤ (with σ(t) = |vx(t)|L2(M) + |ux(t)|L2(M) + |v(t)|L2(M))

≤ C ′σ(t)|w|2L4(M) + c

∫
M
w2 dM

≤ (by interpolation H1/2 ⊂ L4 in dimension 2)

≤ C ′σ(t)|w|L2(M)|∇w|L2(M) + c

∫
M
w2 dM

≤ 1

2
|∇w|2L2(M) + C ′(σ2(t) + 1)|w|2L2(M).
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Hence,

d

dt
(|
√

1 + xw|2L2(M)) ≤ C
′(σ2(t) + 1)|w|2L2(M). (3.35)

Since w(0) = 0 and σ2 is an integrable function (∈ L1(0, T )), (3.35) implies, using the

Gronwall lemma, that w(t) = 0 for every t ∈ (0, T ). The uniqueness follows in dimension 2.

Now to prove the strong continuity in time and the continuity of the flow map, we use

the classical Bona-Smith technique (see [6]) which we now adapt to this context.

Let u be the solution of (1.1) and (2.2)-(2.4). Then we have u ∈ L∞(0, T ; H) and by

(3.14), we see that u ∈ C([0, T ]; Hw), where Hw is H equipped with the weak topology

(see [42]). Hence for every 0 < s < T , we can define v0 = u(s) ∈ H. Then given v0 as the

initial data, we see that u(t + s) serves as a solution of (1.1), (2.2)-(2.4) with the forcing

term being replaced by F (t) := f(t + s), which belongs to L2(0, T − s; L2(M)). By the

uniqueness of solution as proved before, v(t) = u(t + s). Using (3.35) and the Gronwall

lemma, we find

|
√

1 + x (u(t)− v(t))|2L2(M)

≤ exp (C ′
∫ t

0
(σ2(r) + 1) dr) |

√
1 + x (u0 − v0)|2L2(M) +

∫ t

0
|F (r)− f(r)|2L2(M) d r;

|
√

1 + x (u(t+ s)− u(t))|2L2(M)

≤ exp (C ′
∫ t

0
(σ2(r) + 1) dr) |

√
1 + x (u(s)− u0)|2L2(M) +

∫ t

0
|f(r + s)− f(r)|2L2(M) d r,

where σ(t) = |vx(t)|L2(M) + |ux(t)|L2(M) + |v(t)|L2(M), t ≤ T − s. Since σ2 is an integrable

function (∈ L1(0, T − s)), and f ∈ L2(0, T ;L2(M)), in order to show that u is continuous

in H at time t ≥ 0, it now suffices to prove that u is strongly continuous in H at t = 0,

namely, that

u(s)→ u0 in L
2(M) as s→ 0. (3.36)

We have already observed that u is weakly continuous in H on [0, T ] and hence at t = 0,
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that is,

u(s) ⇀ u0 weakly in L
2(M) as s→ 0. (3.37)

Having proved (3.37), in order to show (3.36), it now suffices to prove the following

|u(s)|L2(M) → |u0|L2(M) as s→ 0. (3.38)

By uniqueness of solution, u must be the limit of uε constructed in (3.3). Hence passing to

the limit in the sum of (3.6) and (3.9), we find (in both cases d = 1, 2)

d

dt
|
√

1 + xu|2L2(M) ≤ |f |
2
L2(M) + |

√
1 + xu|2L2(M) + c|u|2L2(M) + 2c2|u|6L2(M). (3.39)

Integrating from 0 to s, we find

|
√

1 + xu(s)|2L2(M) − |
√

1 + xu(0)|2L2(M)

≤
∫ s

0
|f |2L2(M) dt+ (1 + c)

∫ s

0
|u|2L2(M) dt+ 2c2s|u|6L∞(0,s;L2(M)). (3.40)

Since f ∈ L2(0, T ; L2(M)),
∫ s

0 |f |
2
L2(M) dt is absolutely continuous with respect to s. Hence

it converges to 0 as s→ 0. Similarly we can deduce that each term on the right-hand-side

of (3.40) converges to 0 as s→ 0. Thus

lim sup
s→0

|
√

1 + xu(s)|2L2(M) ≤ |
√

1 + xu0|2L2(M).

By (3.37) and lower semicontinuity of the L2-norm, we also have

lim inf
s→0

|
√

1 + xu(s)|2L2(M) ≥ |
√

1 + xu0|2L2(M).

Hence
√

1 + xu(s)→
√

1 + xu0 in L
2(M) as s→ 0 and this is equivalent to (3.36).

This concludes the proof of Theorem 3.0.2.

Remark 3.2.1. Note that although (3.39) is true for both d = 1, 2, (3.36) is only true for

d = 1. This is because we need the uniqueness of solution to deduce (3.39).
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Remark 3.2.2. The results in Theorem 3.0.2 display the remarkable properties of the ZK

equation posed in a limited domain Ix × (−π
2 ,

π
2 )d, d = 1, 2, in contrast with the Cauchy

problem posed in the whole space (see [14], [30]). In particular it is not known whether the

Cauchy problem is well-posed for initial data in L2(Rd+1), d = 1, 2.

Remark 3.2.3. Theorem 3.0.2 implies obviously a global well-posedness of the initial-

boundary-value problem for the ZK equation on a “rectangle” (0, L1)x × (0, L2)y × (0, L3)z,

the estimates on the solution depending of course on the Li. It would be interesting (for

instance for numerical purposes) to obtain estimates independent of some Li, allowing thus

to pass to the limit as Li → +∞ in order to obtain a solution of an initial-boundary-

value problem in the infinite “rectangle”, say (0,+∞)x × (0, L2)y × (0, L3)z. Such a result

has been obtained in [8] for the KdV equation, under the boundary conditions u(0, t) = 0,

ux(L, t) = uxx(L, t) = 0.

Remark 3.2.4. As for the periodic case, that is, (1.1) and the boundary and initial con-

ditions (2.2), (2.3), (2.5), the results will be the same with the Dirichlet case as discussed

above. The reasoning will be similar.

Remark 3.2.5. We have only treated the case of homogeneous boundary conditions. The

case of nonhomogeneous boundary conditions will be treated in a separate work. Indeed

there are two possibilities for the treatment of nonhomogeneous boundary conditions: one

possibility is that the boundary data (u and ux at x = 1 and u at x = 0, u at y, z = ±π/2

in the case of Dirichlet boundary conditions in y, z) are given as traces of a sufficiently

regular function Φ. In this case setting classically v = u − Φ, we obtain a homogeneous

problem for v which is very similar to the problem that we studied and which can be treated

in a similar way if Φ is sufficiently regular. However if we want to consider less regular

boundary values, then we need to study more carefully the properties of the traces of the

functions that we consider.
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Chapter 4

Local Existence of Strong Solutions in 3D

Now we turn to establish the local existence of strong solutions in 3D.

For the purpose, we also consider the space

Ξ =
{
u ∈ H2(M) ∩H1

0 (M), ux
∣∣
x=1

= 0
}
, (4.1)

and endow this space, as in Section 3.1 with the scalar product and norm [·, ·]2 and [·]2,

[u, v]2 = (uxx, vxx) + (uyy, vyy) + (uzz, vzz),

[u]22 = |uxx|2 + |uyy|2 + |uzz|2 , (4.2)

which make it a Hilbert space. Furthermore by Proposition 2.3.1, we have

D(A) ⊂ Ξ. (4.3)

4.1 Parabolic Regularization

For the sake of simplicity we will only treat the more complicated case when d = 2; the

case when d = 1 is easier. To begin with, we recall the parabolic regularization introduced

in Section 3.1, that is, for ε > 0 “small”, we consider the parabolic equation,
∂uε

∂t
+ ∆

∂uε

∂x
+ c

∂uε

∂x
+ uε

∂uε

∂x
+ ε Luε = f,

uε(0) = u0,

(4.4)
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where

Luε :=
∂4uε

∂x4
+
∂4uε

∂y4
+
∂4uε

∂z4
,

supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-

ditions (3.4), (3.5).

4.1.1 Global Bounds Independent of ε

Firstly, we recall the following global bounds derived from (3.7) and (3.10) previously:

Lemma 4.1.1. We assume that

u0 ∈ L2(M), (4.5)

f ∈ L2(0, T ;L2(M)), (4.6)

then, for every T > 0 the following estimates independent of ε hold:

uε is bounded in L∞(0, T ; L2(M)),

uε is bounded in L2(0, T ; H1
0 (M)),

uεx(0, ·, ·) is bounded in L2(0, T ; L2(Ix⊥)).

(4.7)

4.1.2 Local Bounds Independent of ε

We first introduce a useful result:

Lemma 4.1.2. Under the same assumptions as in Lemma 4.1.1, if we further suppose that

f ∈ L∞(0, T ;L2(M)), (4.8)

then we have

|uεx(t)|2 ≤ |uεt(t)|2 + κ, 0 ≤ t ≤ T, (4.9)

where κ is a constant depending only on |u0|, |f |L∞(0,T ;L2(M)) and T .
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Proof. We rewrite (4.4)1 as

∆
∂uε

∂x
+ c

∂uε

∂x
+ uε

∂uε

∂x
+ ε Luε = −∂u

ε

∂t
+ f. (4.10)

We multiply (4.10) by (1 + x)uε, integrate overM, integrate by parts, and follow the same

calculations as in Section 3.1; we find when ε ≤ 1
4 ,

|uεx|2 ≤ −
∫
M
uεt (1 + x)uε dM+ |f |2 + |(1 + x)uε|2 + c|uε|2 + c′|uε|6

≤ |uεt|2 + |f |2 + c′|uε|2 + c′|uε|6,
(4.11)

Here and below c′ indicates an absolute constant which may be different at each occurrence.

Hence if we call ν a bound of |uε|L∞(0,T ;L2(M)) as in (4.7)1, we can set

κ = |f |2L∞(0,T ;L2(M)) + c′ν2 + c′ν6 + |u0x|2; (4.12)

and by (4.8) we obtain (4.9). Thus we have completed the proof of Lemma 4.1.2.

Now we are ready to prove the following result giving the local bounds on uε independent

of ε:

Proposition 4.1.1. Under the same assumptions as in Lemma 4.1.2, if we further suppose

that

ft ∈ L∞(0, T ;L2(M)), (4.13)

f ∈ L2(0, T ;L2(Ix;H2(Ix⊥))), (4.14)

Lu0 ∈ L2(M), (4.15)

∆u0x + u0u0x + cu0x − f(0) ∈ L2(M), (4.16)

∇⊥u0, u0yy, u0zz ∈ L2(M), (4.17)

then there exists T∗ = min(T, T1),

T1 =
c3

µ4
, (4.18)

µ = µ(κ, |ft|L∞(0,T ;L2(M)), |Lu0|, |∆u0x + u0u0x + cu0x − f(0)|),

43



such that for every t, 0 ≤ t ≤ T∗,

|uεt(t)| . µ, (4.19)∫ T∗

0
|∇uεt(s)|2 ds . µ, (4.20)

|∇uε(t)| ≤ C(µ), (4.21)∫ T∗

0
|∇uεy(s)|2 ds ≤ C(µ),

∫ T∗

0
|∇uεz(s)|2 ds ≤ C(µ), (4.22)

|uεyy(t)| ≤ C(µ), |uεzz(t)| ≤ C(µ), (4.23)∫ T∗

0
|∇uεyy(s)|2 ds ≤ C(µ),

∫ T∗

0
|∇uεzz(s)|2 ds ≤ C(µ), (4.24)

ε

∫ T∗

0
[uεyy]

2
2 ds ≤ C(µ), ε

∫ T∗

0
[uεzz]

2
2 ds ≤ C(µ), (4.25)

where . means ≤ up to a multiplicative constant independent of ε, the constant c3 depends

only on the data, and the constant C(µ) depends only on µ and the data and may be different

at each occurrence.

Proof. We differentiate (4.4) in t, write uεt = vε and we find:
∂vε

∂t
+ ∆

∂vε

∂x
+ c

∂vε

∂x
+ uε

∂vε

∂x
+ vε

∂uε

∂x
+ ε Lvε = ft,

vε(0) = uεt0 = −εLu0 −∆u0x − u0u0x − cu0x + f(0).

(4.26)

Thus when ε ≤ 1,

|uεt0| ≤ |Lu0|+ |∆u0x + u0u0x + cu0x − f(0)|. (4.27)

From (4.15) and (4.16), we obtain

uεt0 is bounded independently of ε in L2(M). (4.28)

Multiplying (4.26) by (1 + x)vε, integrating over M and integrating by parts, dropping ε
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for the moment we find

•
∫
M

∂v

∂t
(1 + x)v dM =

1

2

d

dt
|
√

1 + x v|2,

•
∫
M

∆
∂v

∂x
v dM =

1

2

∫
I
x⊥

(vx
∣∣
x=0

)2 dx⊥,

•
∫
M

∆
∂v

∂x
xv dM =

3

2
|vx|2 +

1

2
|∇⊥v|2,

•
∫
M
cvx(1 + x)v dM = − c

2

∫
M
v2 dM,

•
∫
M
uvx (1 + x)v dM = −1

2

∫
M

(1 + x)uxv
2 dM− 1

2

∫
M
uv2 dM,

•
∫
M
vux (1 + x)v dM =

∫
M

(1 + x)uxv
2 dM,

•
∫
M
ft(1 + x)v dM≤ 1

2
|ft|2 +

1

2
|(1 + x)v|2 ≤ 1

2
|ft|2 + |v|2,

• ε
∫
M

∂4v

∂x4
(1 + x)v dx dx⊥ = ε|

√
1 + x vxx|2 − ε

∫
I
x⊥

(vx
∣∣
x=0

)2 dx⊥,

• ε
∫
M

(
∂4v

∂y4
+
∂4v

∂z4
) (1 + x)v dM = ε

(∣∣√1 + x vyy
∣∣2 +

∣∣√1 + x vzz
∣∣2) .

Hence we arrive, when ε ≤ 1
4 , at

d

dt
|
√

1 + xuεt|2 + |∇uεt|2 +
1

4
|uεtx|x=0|2L2(I

x⊥ )

+ 2ε
(
|
√

1 + xuεtxx|2 + |
√

1 + xuεtyy|2 + |
√

1 + xuεtzz|2
)

≤
∣∣∣∣∫
M

((1 + x)uεx − uε) (uεt)
2 dM

∣∣∣∣+ (c+ 2)|uεt|2 + |ft|2.

(4.29)

For the first term on the right-hand-side of (4.29), we have∣∣∣∣∫
M

((1 + x)uεx − uε) (uεt)
2 dM

∣∣∣∣ . σε(t)|uεt|2L4(M),

where σε(t) := |uεx|+ |uε|. Then with H3/4 ⊂ L4 in 3D we have∣∣∣∣∫
M

((1 + x)uεx − uε) (uεt)
2 dM

∣∣∣∣ . σε(t)|uεt|1/2|∇uεt|3/2

≤ c′(σε(t))4|uεt|2 +
1

8
|∇uεt|2

≤ (by (4.9))

≤ c′
(
|uεt|6 + κ2|uεt|2 + |uε|4|uεt|2

)
+

1

8
|∇uεt|2.

(4.30)
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Applying (4.30) to (4.29), we obtain

d

dt
|
√

1 + xuεt|2 +
7

8
|∇uεt|2 +

1

4
|uεtx|x=0|2L2(I

x⊥ )

+ 2ε
(
|
√

1 + xuεyxx|2 + |
√

1 + xuεyyy|2 + |
√

1 + xuεyzz|2
)

≤ c1(|uεt|2 + 1)3 + |ft|2

≤ c1(|
√

1 + xuεt|2 + 1)3 + |ft|2.

(4.31)

where c1 depends only on κ. Setting |
√

1 + xuεt|2 + 1 := Yε, then (4.31) implies that

d

dt
Yε ≤ c2(Yε)3, (4.32)

with c2 := c1 + |ft|2L∞(0,T ;L2(M)). Thus

Yε(t) ≤ 2µ2
0, 0 ≤ t ≤ 3

8c2µ4
0

, (4.33)

where µ0 is a bound of
√
Yε(0) independent of ε as provided by (4.28). Now (4.33) implies

that

|uεt(t)| . µ0, 0 ≤ t ≤ 3

8c2µ4
0

. (4.34)

Then by (4.34) and (4.9) we deduce that

|uεx(t)| . µ, 0 ≤ t ≤ T∗. (4.35)

with µ := µ0 +
√
κ, and T∗ = min(T, T1),

T1 =
c3

µ4
≤ 3

8c2µ4
0

. (4.36)

By (4.34), (4.36) and (4.31) we obtain (4.20).

We multiply (4.4) by (1 + x)uεyy, integrate over M and integrate by parts, dropping ε
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for the moment, we find

•
∫
M
ut (1 + x)uyy dM = −1

2

d

dt
|
√

1 + xuy|2,

•
∫
M
uxxx (1 + x)uyy dM = −3

2
|u2
xy| −

1

2

∣∣u2
xy

∣∣
x=0

∣∣
L2(Iy)

,

•
∫
M
uxyy (1 + x)uyy dM = −1

2
|u2
yy|,

•
∫
M
uxzz (1 + x)uyy dM = −1

2
|u2
zy|,

•
∫
M
cux(1 + x)uyy dM =

c

2

∫
M
u2
y dM,

•
∫
M
uux (1 + x)uyy dM =

1

2

∫
M
u2
y (u− (1 + x)ux) dM,

• ε
∫
M
uxxxx (1 + x)uyy dM = −ε

∫
M
uxxxxy(1 + x)uy dM

= ε

∫
M
uxxxyuy dM+ ε

∫
dM

uxxxy(1 + x)uxy dM

= −2ε

∫
M
uxxyuxydM− ε

∫
M

(1 + x)u2
xxydM

= ε

∫
M
u2
xy

∣∣
x=0

dM− ε
∫
M

(1 + x)u2
xxy dM,

• ε
∫
M
uzzzz (1 + x)uyy dM = −ε

∫
M

(1 + x)u2
zzy dM,

• ε
∫
M
uyyyy (1 + x)uyy dM = −ε

∫
M

(1 + x)uεyyy dM,

•
∫
M
f(1 + x)uyy dM = −

∫
M
fy (1 + x)uy dM≤

1

2
|(1 + x)uy|2 +

1

2
|fy|2.

Hence when ε ≤ 1
4 , we have

d

dt
|
√

1 + xuεy|2 + |∇uεy|2 +
1

4

∣∣uεxy∣∣x=0

∣∣2
L2(Iy)

+ 2ε
(
|
√

1 + xuεyxx|2 + |
√

1 + xuεyyy|2 + |
√

1 + xuεyzz|2
)

≤
∣∣∣∣∫
M

(uεy)
2 ((1 + x)uεx − uε) dM

∣∣∣∣+ (c+ 2)|uεy|2 + |fy|2.

(4.37)
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For the first term on the right-hand-side of (4.37), we find∣∣∣∣∫
M

(uεy)
2 ((1 + x)uεx − uε) dM

∣∣∣∣ . (with σε(t) := |uεx|+ |uε|)

. σε(t)|uεy|2L4(M)

≤ c′(σε(t))4|uεy|2 +
1

8
|∇uεy|2

≤ (by (4.35))

≤ c′
(
µ4 + |uε|4

)
|uεy|2 +

1

8
|∇uεy|2, 0 ≤ t ≤ T∗.

(4.38)

Applying (4.38) to (4.37), we find

d

dt
|
√

1 + xuεy|2 +
7

8
|∇uεy|2 +

1

4

∣∣uεxy∣∣x=0

∣∣2
L2(Iy)

+ 2ε
(
|
√

1 + xuεyxx|2 + |
√

1 + xuεyyy|2 + |
√

1 + xuεyzz|2
)

≤ c′µ4|uεy|2 + |fy|2

≤ c′µ4|
√

1 + xuεy|2 + |fy|2, 0 ≤ t ≤ T∗.

(4.39)

We can then close the Gronwall inequality on the time interval (0, T∗), and obtain

|
√

1 + xuεy(t)|2 ≤ C(µ)

(
|
√

1 + xu0y|2 +

∫ T∗

0
|fy(s)|2 ds

)
≤ C(µ, |u0y|, |fy|L2(0,T ;L2(M))), 0 ≤ t ≤ T∗,

which implies

|uεy(t)| ≤ C(µ), 0 ≤ t ≤ T∗. (4.40)

By (4.40) and (4.39) we obtain

∫ T∗

0
|∇uεy(s)|2 ds ≤ C(µ). (4.41)

Similarly, we can obtain the same kind of estimates for uεz, ∇uεz, that is

|uεz(t)| ≤ C(µ), 0 ≤ t ≤ T∗, (4.42)

∫ T∗

0
|∇uεz(s)|2 ds ≤ C(µ). (4.43)
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From (4.35), (4.40) and (4.42) we obtain (4.21).

We then multiply (4.4) by (1+x)uεyyyy, integrate overM and integrate by parts, to find

•
∫
M
ut (1 + x)uyyyy dM =

1

2

d

dt
|
√

1 + xuyy|2,

•
∫
M
uxxx (1 + x)uyyyy dM =

3

2
|uxyy|2 +

1

2

∣∣uxyy∣∣x=0

∣∣2
L2(Iy)

,

•
∫
M
uxyy (1 + x)uyyyy dM =

1

2
|u2
yyy|2,

•
∫
M
uxzz (1 + x)uyyyy dM =

1

2
|u2
zyy|2,

•
∫
M
cux (1 + x)uyyyy dM = − c

2
|uyy|2,

•
∫
M
uux (1 + x)uyyyy dM

= −
∫
M
uyux(1 + x)uyyy dM−

∫
M
uuxy(1 + x)uyyy dM

=

∫
M
u2
yyux(1 + x) dM+ 2

∫
M
uyuxy(1 + x)uyy dM+

∫
M
uuxyy(1 + x)uyy dM

=
1

2

∫
M

(ux(1 + x)− u)u2
yy dM−

∫
M
u2
yuyy dM−

∫
M
u2
y(1 + x)uxyy dM

• ε
∫
M
uxxxx (1 + x)uyyyy dM = −ε

∫
M
uxxxxy(1 + x)uyyy dM

= −ε
∫
M
uxxxyuyyy dM+ ε

∫
M
uxxxy(1 + x)uxyyy dM

= −ε
∫
I
x⊥

u2
xyy

∣∣
x=0

d Ix⊥ + ε

∫
M

(1 + x)u2
xxyy dM,

• ε
∫
M
uyyyy (1 + x)uyyyy dM = ε|

√
1 + xuyyyy|2,

• ε
∫
M
uzzzz (1 + x)uyyyy dM = ε|

√
1 + xuzzyy|2,

•
∫
M
f(1 + x)uyyyy dM = −

∫
M
fyy (1 + x)uyy dM≤

1

2
|(1 + x)uyy|2 +

1

2
|fyy|2.
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Hence when ε ≤ 1
4 ,

d

dt
|
√

1 + xuεyy|2 + |∇uεyy|2 +
1

4
|uεxyy

∣∣2
x=0
|L2(Iy)

+ 2ε
(
|
√

1 + xuεyyxx|2 + |
√

1 + xuεyyyy|2 + |
√

1 + xuεyyzz|2
)

≤
∣∣∣∣∫
M

((1 + x)uεx − uε) (uεyy)
2 dM

∣∣∣∣+ 2

∣∣∣∣∫
M
u2
yuyy dM

∣∣∣∣
+ 2

∣∣∣∣∫
M
u2
y(1 + x)uxyy dM

∣∣∣∣+ (c+ 1)|uεyy|2 + |fyy|2

:= Iε1 + Iε2 + Iε3 + (c+ 1)|uεyy|2 + |fyy|2.

(4.44)

For Iε1, by the similar calculations in (4.38) we deduce

Iε1 ≤ c′
(
µ4 + |uε|4

)
|uεyy|2 +

1

8
|∇uεyy|2, 0 ≤ t ≤ T∗. (4.45)

For Iε2 we have

Iε2 ≤ 2|uεy|2L4(M)|u
ε
yy|

. |uεy|1/2|∇uεy|3/2|uεyy|

≤ (by (4.40))

≤ C(µ)|∇uεy|3/2|uεyy|2 + C(µ)|∇uεy|3/2, 0 ≤ t ≤ T∗.

(4.46)

For Iε3 we have

Iε3 ≤ 2|uεy|2L4(M)|u
ε
xyy|

. |uεy|1/2|∇uεy|3/2|uεxyy|

≤ 1

8
|uεxyy|2 + c′|uεy||∇uεy|3

≤ 1

8
|uεxyy|2 + c′|uεy||uεxy|3 + c′|uεy||uεyy|3 + c′|uεy||uεyz|3

:=
1

8
|uεxyy|2 + J ε4 + J ε5 + J ε6.

(4.47)

We now estimate J ε4. We observe that since uεx = 0 at y = ±π
2 ,

|uεxy|2 =

∫
M

(
uεxy
)2
dM = −

∫
M
uεxu

ε
xyy dM≤ c′|uεx||uεxyy|. (4.48)
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Thus we have

J ε4 ≤ c′|uεy||uεx|3/2|uεxyy|3/2

≤ c′|∇uε|5/2|uεxyy|3/2

≤ (by (4.21) already proven))

≤ C(µ)5/2|uεxyy|3/2

≤ C(µ)10 +
1

8
|uεxyy|2, 0 ≤ t ≤ T∗.

(4.49)

Similarly for J ε6, since uεz = 0 at y = ±π
2 , we can apply the intermediate derivative

theorem to uεz, and deduce that |uεzy|2 ≤ c′|uεz||uεzyy|. Hence by estimates similar as in

(4.49) we have

J ε6 ≤ C(µ)10 +
1

8
|uεzyy|2, 0 ≤ t ≤ T∗. (4.50)

To estimate J ε5, by (4.40) we have

J ε5 ≤ C(µ)|uεyy|3, 0 ≤ t ≤ T∗. (4.51)

Collecting the estimates in (4.49), (4.51) and (4.50), along with (4.47) we obtain

Iε3 ≤
3

8
|∇uεyy|2 + C(µ) + C(µ)|uεyy|3, 0 ≤ t ≤ T∗. (4.52)

Collecting the estimates in (4.45), (4.46) and (4.52), along with (4.44) we obtain

d

dt
|
√

1 + xuεyy|2 +
1

2
|∇uεyy|2 + 2ε

(
|
√

1 + xuεyyxx|2 + |
√

1 + xuεyyyy|2 + |
√

1 + xuεyyzz|2
)

≤ c′
(
µ4 + |uε|4 + C(µ)|∇uεy|3/2 + C(µ)|uεyy|+ c+ 1

)
|uεyy|2

+ C(µ)|∇uεy|3/2 + C(µ) + |fyy|2, 0 ≤ t ≤ T∗.

(4.53)

In particular, setting ηε(t) = c′
(
µ4 + |uε|4 + C(µ)|∇uεy|3/2 + C(µ)|uεyy|+ c+ 1

)
, from (4.53)

we infer that

d

dt
|
√

1 + xuεyy|2 ≤ ηε(t)|
√

1 + xuεyy|2 + C(µ)|∇uεy|3/2 + C(µ) + |fyy|2, 0 ≤ t ≤ T∗. (4.54)
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Since |∇uεy|3/2 ≤ |∇uεy|2 + c′, along with (4.41) we deduce

∫ T∗

0
ηε(s) ds ≤ C(µ).

We can then close the Gronwall inequality on the time interval (0, T∗) in (4.53), and obtain

|
√

1 + xuεyy(t)| ≤ C(µ, |u0yy|, |fyy|L2(0,T ;L2(M))), 0 ≤ t ≤ T∗,

which implies

|uεyy(t)| ≤ C(µ), 0 ≤ t ≤ T∗. (4.55)

By (4.55) and (4.44) we obtain

∫ T∗

0
|∇uεyy(s)|2 ds ≤ C(µ), (4.56)

ε

∫ T∗

0
[uεyy]

2
2 ds ≤ C(µ), 0 ≤ t ≤ T∗. (4.57)

Similarly we can obtain the same kind of estimates for uεzz, ∇uεzz and ε[uεzz]
2
2.

Combining all the previous local bounds, we obtain (4.19)-(4.25). Hence we have com-

pleted the proof of Proposition 4.1.1.

4.1.3 A Singular Perturbation Argument

We are now ready to show the local estimates for uεxx and uε uεx by singular perturbation.

Proposition 4.1.2. Under the same assumptions as in Proposition 4.1.1, we have

uεxx is bounded independently of ε in L2(0, T∗, L
2(M)), (4.58)

uεuεx is bounded independently of ε in L2(0, T∗;L
2(M)). (4.59)

Remark 4.1.1. Note that by (5.35) and (4.23) we deduce that

uε is bounded independently of ε in L2(0, T∗, Ξ). (4.60)
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Remark 4.1.2. We know that∫
M

(uεuεx)3/2 dM≤
(∫
M

(uε)6 dM
)1/4(∫

M
(uεx)2 dM

)3/4

= |uε|3/2
L6(M)

|uεx|3/2

≤ (by H1(M) ⊂ L6(M) in 3D)

. |∇uε|3.

Hence

sup
t∈(0,T∗)

|uεuεx(t)|L3/2(M) . sup
t∈(0,T∗)

|∇uε(t)|2 . (by (4.21)) . C(µ)2, a.e.t,

which implies that

uεuεx is bounded independently of ε in L∞(0, T∗;L
3/2(M)),

and hence in L3/2(Ix;L3/2((0, T∗)× Ix⊥)).

Thus we can apply Lemma 7.2.1 in the Appendix with p = 3/2 and Y = L3/2((0, T∗)× Ix⊥),

and obtain

uεxx is bounded independently of ε in L∞(Ix;L3/2((0, T∗)× Ix⊥)). (4.61)

However, to obtain more useful estimates as in (5.35) and (4.59), we need to use the

following proof which provides a stronger result.

Proof of Proposition 5.2.2. We rewrite the regularized equation (4.4) as follows:
uεxxx + uεuεx + εuεxxxx = gε,

uε(0) = uε(1) = uεx(1) = uεxx(0) = 0,

(4.62)

where gε := −uεt −∆⊥uεx − cuεx − εuεyyyy − εuεzzzz + f . Hence by (4.19), (4.24) and (4.25),

we know that each term in gε is bounded independently of ε in L2(0, T∗, L
2(M)), and thus

gε is bounded independently of ε in L2(0, T∗, L
2(M)). (4.63)
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Multiplying (4.62) by x and integrating in x from 0 to 1, we find

•
∫ 1

0
xuxxx dx = −

∫ 1

0
uxx dx+ uxxx

∣∣x=1

x=0
= ux

∣∣
x=0

+ uxx
∣∣
x=1

,

•
∫ 1

0
xuux dx =

∫ 1

0

∂

∂x

(
u2

2

)
dx = −1

2

∫ 1

0
u2 dx,

• ε
∫ 1

0
xuxxxx dx = −ε

∫ 1

0
uxxx dx+ εuxxxx

∣∣x=1

x=0
= −εuxx

∣∣
x=1

+ εuxxx
∣∣
x=1

.

Hence

uεx
∣∣
x=0

+ uεxx
∣∣
x=1
− 1

2

∫ 1

0
(uε)2 dx− εuεxx

∣∣
x=1

+ εuεxxx
∣∣
x=1

=

∫ 1

0
gεx dx. (4.64)

Integrating (4.62) in x from x̃ to 1, we obtain

•
∫ 1

x̃
uxxx dx = uxx

∣∣
x=1
− uxx,

•
∫ 1

x̃
uux dx = −1

2
u2,

• ε
∫ 1

x̃
uxxxx dx = εuxxx

∣∣
x=1
− εuxxx.

Hence

uεxx
∣∣
x=1
− uεxx −

1

2
(uε)2 + εuεxxx

∣∣
x=1
− εuεxxx =

∫ 1

x̃
gε dx. (4.65)

Then (4.64) and (4.65) imply

uεx
∣∣
x=0
− 1

2

∫ 1

0
(uε)2 dx− εuεxx

∣∣
x=1

+ uεxx +
1

2
(uε)2 + εuεxxx =

∫ 1

0
gεx dx−

∫ 1

x̃
gε dx,

which we rewrite as

uεxx + εuεxxx = εuεxx
∣∣
x=1

+ hε, (4.66)

where

hε = −uεx
∣∣
x=0

+
1

2

∫ 1

0
(uε)2 dx− 1

2
(uε)2 +

∫ 1

0
gεx dx−

∫ 1

x̃
gε dx. (4.67)

Now we estimate the term (uε)2 in (4.67). Since

|(uε)2|2 ≤ |uε|4L4(M) . (by H3/4(M) ⊂ L4(M) in 3D) . |∇uε|3|uε|,
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we have ∫ T∗

0
|(uε)2|2 ds .

∫ T∗

0
|∇uε|3|uε| ds ≤ ( by (4.21)) . C(µ)4T∗.

Thus

(uε)2 is bounded independently of ε in L2(0, T∗;L
2(M)). (4.68)

Applying (4.7)4, (4.63) and (4.68) to (4.67) we find

hε is bounded independently of ε in L2(0, T∗, L
2(M)). (4.69)

Multiplying (4.66) by uεxx, integrating in x from 0 to 1, we obtain

• ε
∫ 1

0
uxxxuxx dx =

ε

2
u2
xx

∣∣
x=1

,

• ε
∫ 1

0
uxx
∣∣
x=1

uxx dx = εuxx
∣∣
x=1

∫ 1

0
uxx dx = −εuxx

∣∣
x=1

ux
∣∣
x=0

;

hence we arrive at∫ 1

0
(uεxx)2 dx+

ε

2
(uεxx)2

∣∣
x=1

= −εuεxx
∣∣
x=1

uεx
∣∣
x=0

+

∫ 1

0
uεxx h

ε dx,

≤ ε

4
(uεxx

∣∣
x=1

)2 + c′ε(uεx
∣∣
x=0

)2 +
1

2
|uεxx|2L2(Ix) +

1

2
|hε|2L2(Ix).

Thus

1

2

∫ 1

0
(uεxx)2 dx+

ε

4
(uεxx

∣∣
x=1

)2 ≤ c′ε(uεx
∣∣
x=0

)2 +
1

2
|hε|2L2(Ix). (4.70)

We integrate both sides of (4.70) in Ix⊥ and then in time from 0 to T∗; by (4.69) and (4.7)4

we obtain (5.35). As in Remark 4.1.1, we thus have (4.60).

Now since

|uεuεx|2 ≤ |uε|2L4(M)|u
ε
x|2L4(M)

. (by H3/4(M) ⊂ L4(M) in 3D)

. |uε|1/2|∇uε|3/2|uεx|1/2[uε]
3/2
2

. |uε|2|∇uε|4 + [uε]22,
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hence we obtain

∫ T∗

0
|uεuεx|2 ds .

∫ T∗

0
|uε|2|∇uε|4 ds+

∫ T∗

0
[u]22 ds.

This together with (4.21) and (4.60) implies (4.59).

4.2 Passage to the Limit

Using a compactness argument, we can pass to the limit in (4.4). Hence we obtain (1.1),

with a function u ∈ C1([0, T∗];L
2(M)) ∩ L2(0, T ;H1

0 (M)). Then we rewrite (1.1) as

uxxx = −ut −∆⊥ux − cux − uux − f. (4.71)

From (4.19), (4.24) and (4.59), we infer that each term in the right-hand-side of (4.71)

belongs to L2(0, T∗;L
2(M)), and hence

uxxx ∈ L2(0, T∗;L
2(M)). (4.72)

Now we are ready to state the main result: the local existence of strong solutions.

Theorem 4.2.1. The assumptions are the same as in Proposition 4.1.1, that is (4.5), (4.6),

(4.8) and (4.13)-(4.17). We suppose also that the following compatibility conditions hold:

u0 = 0 on ∂M, u0x

∣∣
x=1

= 0, u0yy

∣∣
y=±π

2
= u0zz

∣∣
z=±π

2
= 0, (4.73)

ut0 = 0 on ∂M,
∂ut0
∂x

∣∣∣
x=1

= 0,
∂2ut0
∂y2

∣∣∣
y=±π

2

=
∂2ut0
∂z2

∣∣∣
z=±π

2

= 0, (4.74)

where ut0 = −∆u0x−u0u0x−cu0x+f(0). Then there exists a local strong solution to (1.1)-

(2.4) on some time interval [0, T∗), T∗ > 0 depending only on the data as in Proposition

4.1.1, such that

∇u, uyy, uzz, ut ∈ L∞(0, T∗;L
2(M)), (4.75)

u ∈ L2(0, T∗;D(A) ∩ Ξ ∩H3(Ix;L2(Ix⊥)) ∩H3(Ix⊥ ;L2(Ix))), (4.76)
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ut ∈ L2(0, T∗;H
1(M)). (4.77)

Moreover, we have for every t ∈ (0, T∗),

uyy(t)
∣∣
y=±π

2
= uzz(t)

∣∣
z=±π

2
= 0. (4.78)

Remark 4.2.1. We have proven that all the spatial derivatives of the third order of u are

in L2(0, T∗;L
2(M)), except for uxxy and uxxz.

Proof. We rewrite (1.1) as

Au = −ut − uux − f ; (4.79)

from (4.19) and (4.59) we know that each term on the right-hand side of (4.79) belongs to

L2(0, T∗;L
2(M)). Hence Au belongs to the same space. We also know that ux(1, x⊥, t) = 0,

t ∈ [0, T ] as prove in Proposition 2.3.1. Hence we obtain that u ∈ L2(0, T∗;D(A)). This

together with (4.3), we deduce that u ∈ L2(0, T∗; Ξ).

By (4.22), we know that uyyy, uzzz both belong to L2(0, T∗;L
2(M)). Hence we can

apply the trace theorem and pass to the limit on the boundary conditions in (3.4) to obtain

(4.78).

The other results can be deduced directly from (4.19)-(4.24) and (4.72).

Remark 4.2.2. As for the periodic case, that is, (1.1) and the boundary and initial con-

ditions (2.2), (2.3) and (2.5), the results are exactly the same as in the Dirichlet case

discussed above. The reasoning is totally the same and therefore we skip it.
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Chapter 5

Global Existence of Strong Solutions in 3D

We now establish the global existence of strong solutions in 3D. First we need to assume

different boundary conditions at x boundaries, that is, we suppose

u(0, x⊥, t) = u(1, x⊥, t), (5.1)

ux(0, x⊥, t) = ux(1, x⊥, t), uxx(0, x⊥, t) = uxx(1, x⊥, t). (5.2)

For the boundary conditions in the y and z directions, we will choose the same boundary

conditions as before, that is, either the Dirichlet boundary conditions in (2.4) or the periodic

boundary conditions in (2.5).

Similarly, we will focus on the initial and boundary value problem (1.1), (5.1), (5.2) and

(2.3) supplemented with the boundary condition (2.4), that is, the Dirichlet case on the

x⊥ boundaries, and we will make some remarks on the extension to the periodic boundary

condition case.

We recall the notations | · | and (·, ·) for the norm and the inner product of L2(M), and

by [·]2 the following seminorm which will be useful in the sequel:(∫
M
u2
xx + u2

yy + u2
yy dM

)1/2

=: [u]2, u ∈ H2(M). (5.3)

To establish the existence of strong solutions in dimensions 2 and 3, we use the parabolic

regularization as in Chapter 3, but with different boundary conditions. For the sake of

simplicity we only treat the more complicated case when d = 2.
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5.1 Parabolic Regularization

To begin with, we recall the parabolic regularization (4.4) in Section 4.1 supplemented with

the boundary conditions (5.1), (5.2) and (2.4) and the additional boundary conditions
∂uε

∂t
+ ∆

∂uε

∂x
+ c

∂uε

∂x
+ uε

∂uε

∂x
+ εLuε = f,

uε(0) = u0,

(5.4)

where

Luε :=
∂4uε

∂x4
+
∂4uε

∂y4
+
∂4uε

∂z4
,

and

uεxxx(0, x⊥, t) = uεxxx(1, x⊥, t), (5.5)

uεyy = 0 at y = ±π
2
, uεzz = 0 at z = ±π

2
. (5.6)

Note that from (5.2) and (5.5) we infer

uεxj (0, x
⊥, t) = uεxj (1, x

⊥, t), j = 1, 2, 3. (5.7)

We also note that since uεyy
∣∣x=1

x=0
= uεzz

∣∣x=1

x=0
= 0, (5.7) is equivalent to

∆uε
∣∣x=1

x=0
= 0. (5.8)

5.2 Estimates Independent of ε

We establish the estimates independent of ε for various norms of the solutions.

5.2.1 L2 Estimate Independent of ε

We first show a bound independent of ε for uε in L∞(0, T ;L2(M)).

Lemma 5.2.1. We assume that

u0 ∈ L2(M), (5.9)
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f ∈ L2(0, T ;L2(M)). (5.10)

Then for every T > 0 the following estimates independent of ε hold:

uε is bounded in L∞(0, T ; L2(M)), (5.11)

√
ε uε is bounded in L2(0, T ; H2(M)). (5.12)

Proof. As in Section 3.1, we multiply (5.4) with u, integrate overM and integrate by parts,

dropping the superscript ε for the moment we find:

•
∫
M

∆ux u dM+

∫
M
cux u dM = (thanks to (5.1))

= −
∫
M
∇ux∇u dM

= −1

2

∫
I
x⊥

(∇u)2
∣∣x=1

x=0
dx⊥

= (thanks to (5.1) and (5.7))

= 0,

(5.13)

•
∫
M
uux u dM =

∫
M

∂

∂x

(
u3

3

)
dM = (thanks to (5.1)) = 0,

• ε
∫
M
uxxxx u dM = (thanks to (5.1) and (5.7))

= −ε
∫
M
uxxx ux dM

= (thanks to (5.7))

= ε

∫
M
u2
xx dM,

• ε
∫
M

(uxxxx + uyyyy + uzzzz) u dM = ε

∫
M
u2
xx + u2

yy + u2
yy dM

= (thanks to (5.3))

= ε[u]22,

•
∫
M
fu dM≤ 1

2
|f |2 +

1

2
|u|2.
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Hence we find

d

dt
|uε(t)|2 + 2ε[uε]22 ≤ |f |

2 + |uε|2.

Using the Gronwall lemma we classically infer

sup
t∈(0,T )

|uε(t)|2 + ε

∫ T

0
[uε]22 dt ≤ const := µ1, (5.14)

where µi indicates a constant depending only on the data u0, f , etc, whereas C ′ below is

an absolute constant. These constants may be different at each occurrence. Let us admit

for the moment the following:

Lemma 5.2.2.

|uε|2H2(M) ≤ C
′ ([uε]22 + |uε|2

)
. (5.15)

By the previous lemma, we have

ε

∫ T

0
|uε|2H2(M) dt ≤ C

′
(
ε

∫ T

0
[uε]22 dt+ ε

∫ T

0
|uε|2 dt

)
≤ C ′

(
ε

∫ T

0
[uε]22 dt+ ε T sup

t∈(0,T )
|uε(t)|2

)

≤ (thanks to (5.14))

≤ const := µ2,

which implies (5.12). Thus Lemma 5.2.1 is proven once we have proven Lemma (5.2.2).

Proof of Lemma 5.2.2. We first observe that using the generalized Poincaré inequality

(see [44]) we have

|uεx −
∫ 1

0
uεx dx|L2(Ix) ≤ C ′|uεxx|L2(Ix). (5.16)

Thanks to (5.1), we have
∫ 1

0 u
ε
x dx = uε|x=1

x=0 = 0, and hence (5.16) implies

|uεx|L2(Ix) ≤ C ′|uεxx|L2(Ix).

Squaring both sides and integrating both sides on Ix⊥ , we find

|uεx| ≤ C ′|uεxx|. (5.17)
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Similarly we can show that |uεy| ≤ C ′|uεyy| and |uεz| ≤ C ′|uεzz|, which implies

|∇uε| ≤ C ′[uε]2. (5.18)

Next we see that, for smooth functions

|uεxy|2 = (thanks to (5.1) and (5.7))

= −
∫
M

uεyu
ε
xxydM

= (thanks to (2.4))

=

∫
M

uεyyu
ε
xxdM

≤ |uεxx|2 + |uεyy|2 ≤ [uε]22.

(5.19)

Similarly we can prove that |uεxz| ≤ [uε]2 and |uεzy| ≤ [uε]2, and hence

|uεxy|2 + |uεxz|2 + |uεyz|2 ≤ C ′[uε]22. (5.20)

Then inequality (5.19) and (5.20) extend by continuity to all H2 function periodic in x and

satisfying (2.4) and (5.6). Finally from (5.20) and (5.18) we deduce (5.15).

5.2.2 H1 Estimate Independent of ε

Now we establish the key observation, a bound independent of ε for∇uε in L∞(0, T ;L2(M)).

Proposition 5.2.1. Under the same assumptions as in Lemma 5.2.1, we further suppose

that

u0 ∈ H1(M) ∩ L3(M), (5.21)

f ∈ L2(0, T ;H2(Ix; H2 ∩H1
0 (Ix⊥))) ∩ L2(0, T ;L∞(M)), (5.22)

and f and fx assume the periodic boundary conditions on x = 0, 1. Then for every T > 0,

the following estimates independent of ε hold:

uε is bounded in L∞(0, T ; H1(M)), (5.23)

√
ε∇uεxx,

√
ε∇uεyy,

√
ε∇uεzz are bounded in L2(0, T ;L2(M)). (5.24)
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Proof. We multiply (5.4) with −∆uε − 1
2 (uε)2, integrate over M and integrate by parts.

Firstly we show the calculation details of the multiplication by ∆uε, integration over M

and integration by parts (dropping the super index of ε for the moment):

•
∫
M
ut ∆u dM = −

∫
M
∇ut∇u dM+

∫
∂M

ut
∂u

∂n
d ∂M

= (thanks to (5.1) and (5.7)) = −
∫
M
∇ut∇u dM

= −1

2

d

dt
|∇u|2 ,

•
∫
M

∆ux ∆u dM =
1

2

∫
I
x⊥

(∆u)2
∣∣x=1

x=0
d Ix⊥ = (thanks to (5.8)) = 0,

•
∫
M
ux ∆u dM =

∫
M
ux uxx + ux ∆⊥u dM = (thanks to (5.1))

=

∫
M

∂

∂x

(
(ux)2

2

)
dM−

∫
M
∇⊥ux∇⊥u dM

= (thanks to (5.7) and (5.1)) = 0,

•
∫
M
uxxxx uxx dM = (thanks to (5.7)) = −

∫
M
u2
xxx dM,

•
∫
M
uxxxx uyy dM = (thanks to (5.1)-(2.4) and (5.7)) = −

∫
M
u2
xxy dM,

•
∫
M
uyyyy ∆u dM = (thanks to (2.4) and (5.6)) = −

∫
M
uyyy ∆uy dM

= (thanks to (5.6)) =

∫
M
uyy ∆uyy dM

= −
∫
M

(∇uyy)2 dM,

•
∫
M
f ∆u dM = (thanks to (5.22)) =

∫
M

∆f u dM,

Hence we find after changing the sign,

1

2

d

dt
|∇uε|2−

∫
M
uεuεx ∆uε dM+ ε[∇uε]22 = −

∫
M

∆f uε dM. (5.25)

Next we show the calculation details of the multiplication by (uε)2, integrating over M
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and integrating by parts:

•
∫
M
utu

2 dM =

∫
M

∂

∂t

(
u3

3

)
dM =

1

3

d

dt

(∫
M
u3 dM

)
,

•
∫
M

∆ux u
2 dM = −2

∫
M

∆uuux dM+

∫
I
x⊥

∆uu2
∣∣x=1

x=0
d Ix⊥

= (thanks to (5.8) and (5.1))

= −2

∫
M

∆uuux dM,

•
∫
M
ux u

2 dM =

∫
M

∂

∂x

(
u3

3

)
dM =

1

3

∫
I
x⊥

u3
∣∣x=1

x=0
d Ix⊥ = (by (5.1)) = 0,

•
∫
M
uux u

2M =

∫
M

∂

∂x

(
u4

4

)
dM =

1

4

∫
I
x⊥

u4
∣∣x=1

x=0
d Ix⊥ = (by (5.1)) = 0,

•
∫
M
uxxxx u

2 dM = (thanks to (5.1) and (5.7)) = −2

∫
M
uxxx ux u dM,

•
∫
M
uyyyy u

2 dM = (thanks to (2.4)) = −2

∫
M
uyyy uy u dM,

Hence we find

1

3

d

dt

(∫
M

(uε)3 dM
)
− 2

∫
M

∆uε uεuεx dM

=2ε

∫
M
uεxxx u

ε
x u

ε + uεyyy u
ε
y u

ε + uεzzz u
ε
z u

ε dM+

∫
M
f (uε)2 dM.

(5.26)

Adding (5.25) to (5.26) multiplied by −1/2, we see that the term
∫
M∆uε uεuεx dM get

canceled, which yields

1

2

d

dt
|∇uε|2 + ε[∇uε]22 =

1

6

d

dt

(∫
M

(uε)3 dM
)

− ε
∫
M
uεxxx u

ε
x u

ε + uεyyy u
ε
y u

ε + uεzzz u
ε
z u

ε dM

−
∫
M

∆fuε dM− 1

2

∫
M
f (uε)2 dM.

64



Integrating both sides in time from 0 to t, we obtain for every t ∈ (0, T ),

1

2
|∇uε(t)|2 + ε

∫ t

0
[∇uε]22 ds

=
1

6

∫
M

(uε(t))3 dM+ κ0

− ε
∫ t

0

∫
M
uεxxx u

ε
x u

ε + uεyyy u
ε
y u

ε + uεzzz u
ε
z u

ε dM ds

−
∫ t

0

∫
M

∆fuε dM ds− 1

2

∫ t

0

∫
M
f (uε)2 dM ds,

(5.27)

where

κ0 :=
1

2
|∇u0|2 −

1

6

∫
M
u3

0 dM.

We estimate each term on the right-hand-side of (5.27); we will use here the interpolation

space H1/2(M) as defined in [31] where it is shown that H1/2(M) ⊂ L3(M) in dimension

3 with a continuous embedding. Dropping the superscript ε for the moment we then find:∣∣∣∣16
∫
M
u3(t) dM

∣∣∣∣ ≤ 1

6
|u(t)|3L3(M)

≤ C ′|u(t)|3
H1/2(M)

≤ C ′|u(t)|3/2 |∇u(t)|3/2

≤ C ′|u(t)|6 +
1

4
|∇u(t)|2 ,

ε

∣∣∣∣∫
M
uxxx ux u dM

∣∣∣∣ ≤ ε |uxxx| |ux u|
≤ C ′ε |ux u|2 +

ε

10
|uxxx|2

≤ C ′ε|u|2L4(M)|ux|
2
L4(M) +

ε

10
|uxxx|2

≤ (by H3/4(M) ⊂ L4(M) in 3D)

≤ C ′ε|u|1/2|∇u|3/2|ux|1/2|ux|3/2H1(M)
+

ε

10
|uxxx|2

≤ C ′ε|u|1/2|∇u|2|u|3/2
H2(M)

+
ε

10
|uxxx|2,

(5.28)

ε

∣∣∣∣∫
M
uyyy xuy u dM

∣∣∣∣ ≤ (by similar estimates as above)

≤ C ′ε|u|1/2|∇u|2|u|3/2
H2(M)

+
ε

10
|uyyy|2,
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ε

∣∣∣∣∫
M
uzzz xuz u dM

∣∣∣∣ ≤ (by similar estimates as above)

≤ C ′ε|u|1/2|∇u|2|u|3/2
H2(M)

+
ε

10
|uzzz|2,

∣∣∣∣∫
M

∆f u dM
∣∣∣∣ ≤ |∆f |2 + |u|2 ,

∣∣∣∣∫
M
fu2 dM

∣∣∣∣ ≤ |f |L∞(M)|u|2 ≤ |f |2L∞(M) + |u|4.

Collecting the above estimates, along with (5.27) we observe that the terms with third-order

derivatives in the RHS of (5.28) and the following two inequalities can be canceled by a

term on the LHS of (5.27). Thus (5.27) now yields

1

4
|∇uε(t)|2 +

ε

10

∫ t

0
[∇uε]22 ds ≤

∫ t

0

(
1 + C ′ε|uε|1/2|uε|3/2

H2(M)

)
|∇uε(s)|2 ds

+ C ′|uε(t)|6 + κ0 +

∫ t

0
|∆f |2 ds

+

∫ t

0
|uε|2 + |uε|4 ds+

∫ t

0
|f |2L∞(M) ds

≤(thanks to (5.14))

≤
∫ t

0

(
1 + C ′εµ

1/4
1 |u

ε|3/2
H2(M)

)
|∇uε(s)|2 ds

+ C ′µ3
1 + κ0 + |f |2L2(0,T ;H2

0 (M))

+ (µ1 + µ2
1)T + |f |2L2(0,T ;L∞(M)).

(5.29)

In particular, setting σε(t) := 1 + C ′εµ
1/4
1 |uε|

3/2
H2(M)

, from (5.29) we deduce

1

4
|∇uε(t)|2 +

ε

10

∫ t

0
[∇uε]22 ds ≤

∫ t

0
σε(s)|∇uε(s)|2 ds

+ C ′µ3
1 + κ0 + |f |2L2(0,T ;H2

0 (M))

+ (µ1 + µ2
1)T + |f |2L2(0,T ;L∞(M)).

(5.30)
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Since |uε|3/2
H2(M)

≤ |uε|2H2(M) + C ′, we find

∫ T

0
σε(s) ds ≤ T + C ′εµ

1/4
1

∫ T

0

(
|uε|2H2(M) + C ′

)
ds

≤ (thanks to (5.12))

≤ const := µ3.

We can then apply the Gronwall inequality to (5.30) to obtain

sup
t∈(0,T )

|∇uε(t)|2 +
ε

10

∫ T

0
[∇uε]22 ds ≤ const := µ4. (5.31)

This together with (5.11) implies (5.23) and (5.24).

5.2.3 Estimates Independent of ε for uεxxx and uεuεx

For the sake of the passage to the limit on the boundary conditions and the compactness

argument, we now derive bounds independent of ε for uεxxx and uε uεx. In particular, to

obtain the estimates for uεxxx, we first deduce a bound independent of ε for ε uεxxxx in

L2(0, T ;L2(M)).

Proposition 5.2.2. Under the same assumptions as in Proposition 5.2.1, we further sup-

pose that

u0xx ∈ L2(M), (5.32)

fxxx ∈ L2(0, T ;L2(M)), (5.33)

and fxx assume the periodic boundary condition on x = 0, 1. Then we have the following

bounds independent of ε,

ε [uxx]2 is bounded in L2(0, T ;L2(M)), (5.34)

uεuεx is bounded in L∞(0, T ;L3/2(M)). (5.35)

uεxxx is bounded in L3/2(Ix;H−1
t (0, T ; H−4(Ix⊥))), (5.36)
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Proof. For notational simplicity, we will drop the super index ε in the calculations. Multi-

plying (5.4) by uεxxxx, integrating over M and integrating by parts we find:

•
∫
M
ut uxxxx dM = (thanks to (5.1) and (5.7)) =

1

2

d

dt
|uxx|2,

•
∫
M

∆ux uxxxx dM = (thanks to (5.1), (5.7) and (2.4)) = 0,

•
∫
M
uxuxxxx dM = (thanks to (5.1), (5.7) and (2.4)) = 0,

•
∫
M
uuxuxxxxdM = −

∫
M
u2
xuxxxdM−

∫
M
uuxxuxxxdM =

5

2

∫
M
uxu

2
xxdM,

•
∫
M
uyyyyuxxxx dM = (thanks to (5.1), (5.7) and (2.4)) =

∫
M
u2
xxyy dM,

•
∫
M
uzzzzuxxxx dM =

∫
M
u2
xxzz dM,

•
∫
M
fuxxxx dM = −

∫
M
fxxx ux dM≤ |fxxx|2 + |ux|2.

Hence we find

1

2

d

dt
|uεxx|2 + ε[uεxx]22 ≤

5

2

∫
M
uεx (uεxx)2 dM+ |fxxx|2 + |uεx|2.

Multiplying both sides by ε we obtain

ε

2

d

dt
|uεxx|2 + ε2[uεxx]22 ≤

5ε

2

∫
M
uεx (uεxx)2 dM+ ε|fxxx|2 + ε|uεx|2. (5.37)

We estimate the first term on the right-hand side of (5.37) and find

ε

∣∣∣∣∫
M
uxu

2
xxdM

∣∣∣∣ ≤ ε |ux||uxx|2L4(M)

≤ C ′ε |ux||uxx|1/2|∇uxx|3/2

≤ (the intermediate derivative theorem |uxx|2 ≤ |ux||uxxx|)

≤ C ′ε|ux|5/4|uxxx|1/4|∇uxx|3/2

≤ C ′ε|ux|5/4|∇uxx|7/4

≤ (thanks to (5.31))

≤ C ′εµ5/8
4 |∇uxx|

7/4.
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This along with (5.37) implies

ε

2

d

dt
|uεxx|2 + ε2[uεxx]22 ≤ C ′ε µ

5/8
4 |∇u

ε
xx|7/4 + ε|fxxx|2 + εµ4.

Integrating both sides in t from 0 to T , we find

ε2
∫ T

0
[uεxx]22 dt ≤

ε

2
|u0xx|2 + C ′µ

5/8
4

∫ T

0
ε|∇uεxx|7/4 dt+ ε|fxxx|2L2(0,T ;L2(M)) + εµ4T. (5.38)

By (5.24) we see that
∫ T

0 ε |∇uεxx|
7/4 dt ≤ C ′

∫ T
0 ε
(
|∇uεxx|2 + 1

)
dt ≤ const := µ6. This along

with (5.38) implies (5.34).

Now since

∫
M

(uux)3/2 dM≤ C ′|u|3/2
L6(M)

|ux|3/2 ≤ (H1(M) ⊂ L6(M) in 3D) ≤ C ′|u|3H1 ,

this along with (5.23) implies (5.35), and hence

uεuεx is bounded in L3/2(Ix;L3/2((0, T )× Ix⊥)). (5.39)

Finally rewriting (5.4) we find

uεxxx = −uεt −∆⊥uεx − cuεx − uε uεx − ε uεxxxx − ε uεyyyy − ε uεzzzz. (5.40)

Thanks to (5.34), we see that εuεxxxx remains bounded in L2(0, T ; L2(M)). Moreover since

uε remains bounded in L∞(0, T ;H1(M)), we find that each term on the right-hand side of

(5.40) except for uε uεx remains bounded at least in the space L2(Ix;H−1
t (0, T ; H−4(Ix⊥))).

This together with (5.39) implies that each term on the right-hand side of (5.40) remains

bounded at least in L3/2(Ix;H−1
t (0, T ; H−4(Ix⊥))). Thus we obtain (5.36) from (5.40).

5.3 The Main Result

Using a compactness argument, we can pass to the limit in (5.4) and obtain (1.1), with a

function u ∈ C([0, T ];H1(M)). Moreover, from (5.36) we infer that uεxxx converges weakly in
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the space L3/2(Ix;H−1
t (0, T ; H−4(Ix⊥))), hence by the trace theorem and Mazur’s theorem,

we deduce that uε
xj

(0, x⊥, t) and uε
xj

(1, x⊥, t) converge weakly in H−1
t (0, T ; H−4(Ix⊥)), j =

1, 2. Thus from (5.7) we obtain (5.2).

Now we are ready to state the main result of the article by collecting all the previous

estimates.

Theorem 5.3.1. The assumptions are the same as in Proposition 5.2.2, that is, (5.9),

(5.10), (5.21), (5.22), (5.32), (5.33), and f and fxj assume the periodic boundary conditions

on x = 0, 1, j = 1, 2. Then the initial and boundary value problem for the ZK equation,

that is, (1.1), (5.1), (5.2), (2.3) and (2.4), possesses at least a solution u:

u ∈ C([0, T ];H1(M)) ∩W 3, 3/2(Ix;H−1
t (0, T ; H−4(Ix⊥))). (5.41)

Remark 5.3.1. We can obtain stronger regularity for ū(x⊥, t) :=
∫ 1

0 u(x, x⊥, t) dx. Inte-

grating (1.1) in x from 0 to 1, we find by (5.1) and (5.2)

∂ū

∂t
= f̄ . (5.42)

Thus u = ū+ v, where ū satisfies (5.42), and v satisfies v̄ = 0 and (5.41).

5.4 Discussions about the Uniqueness of Solutions

Let u and v be two solutions of (1.1), (5.1), (5.2), (2.3), and (2.4) and let w = u−v. Letting

w̄(x⊥, t) :=
∫ 1

0 u(x, x⊥, t) dx, we see that
∂w̄

∂t
= 0 and hence

w̄(t) = 0, ∀ t ∈ [0, T ]. (5.43)

However, it is not clear if we can further prove that w(t) = 0, ∀ t ∈ [0, T ]. Firstly, the

ideas in the proof of existence can not be extended to prove the uniqueness because the

structure of the nonlinear term is changed. Secondly, the methods in Chapter 3 are not

applicable due to the lack of assumptions on the boundary condition ux at x = 1. For the

70



same reason, the proof of the local existence in Chapter 4 fails as well, which prevents us

from using the methods in [7].

To conclude, the uniqueness of solutions in both dimensions 2 and 3 are still open due

to the partially hyperbolic feature of this model.

Remark 5.4.1. As for the periodic case, that is, (1.1) and the boundary and initial con-

ditions (5.1), (5.2), (2.5) and (2.3), the results are the same as in the Dirichlet case. We

skip the very similar reasoning.
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Chapter 6

Stochastic ZK Equation

We consider the stochastic ZK equation with multiplicative noise

du+ (∆ux + cux + uux) dt = f dt+ σ(u) dW (t), (6.1)

evolving in a rectangular or parallelepiped domain. We assume that f is a deterministic

function, and the white noise driven stochastic term σ(u) dW (t) is in general state depen-

dent.

The boundary conditions are the same as in Chapter 3, that is, we assume (2.2)-(2.5).

Again for the simplicity of the presentation, we will mostly study the Dirichlet case (6.1),

(2.2)-(2.4). We will just make some remarks concerning the closely related space periodic

case when (2.4) is replaced by (2.5).

6.1 Stochastic Framework

In order to define the term σ(u) dW (t) in (6.1), we recall some basic notions and notations of

stochastic analysis from [11]. For further details and background, see e.g. [37], [18], [17], [2]

and [9].

To begin with we fix a stochastic basis

S := (Ω,F , {Ft}t≥0,P, {Wk}k≥1) , (6.2)
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that is a filtered probability space with {Wk}k≥1 a sequence of independent standard one-

dimensional Brownian motions relative to {Ft}t≥0. In order to avoid unnecessary compli-

cations below we may assume that Ft is complete and right continuous (see [9]).

We fix a separable Hilbert space U with an associated orthonormal basis {ek}k≥1. We

may formally define W by taking W =
∑∞

k=1Wkek. As such W is said to be a ‘cylindrical

Brownian motion’ evolving over U.

We next recall some basic definitions and properties of spaces of Hilbert-Schmidt opera-

tors. For this purpose we suppose that X is any separable Hilbert space with the associated

norm and inner product written as | · |X , (·, ·)X . We denote by

L2(U, X) =

{
R ∈ L(U, X) :

∑
k

|Rek|2X <∞

}
,

the space of Hilbert-Schmidt operators from U to X. We know that the definition of

L2(U, X) is independent of the choice of the orthonormal basis {ek}k≥1 in X. By endow-

ing this space with the inner product 〈R, T 〉L2(U,X) =
∑

k 〈Rek, T ek〉X , we may consider

L2(U, X) as itself being a Hilbert space. Again this scalar product can be shown to be

independent of the orthonormal basis {ek}k≥1.

We also define the auxiliary space U0 ⊃ U via

U0 :=

v =
∑
k≥0

akek :
∑
k

a2
k

k2
<∞

 ,

endowed with the norm |v|2U0
:=
∑

k a
2
k/k

2, v =
∑

k akek. Note that the embedding of

U ⊂ U0 is Hilbert-Schmidt. Moreover, using standard martingale arguments combined with

the fact that each Wk is almost surely continuous (see [9]) we obtain that, for almost every

ω ∈ Ω, W (ω) ∈ C([0, T ],U0).

Given an X-valued predictable process Ψ ∈ L2(Ω; L2((0, T ), L2(U, X)), one may define

the Itō stochastic integral

Mt :=

∫ t

0
Ψ dW =

∑
k

∫ t

0
Ψk dWk,
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as an element in M2
X , that is the space of all X-valued square integrable martingales. In

the sequel we will use the Burkholder-Davis-Gundy inequality which takes the form

E

(
sup

0≤s≤T

∣∣∣∣∫ s

0
ΨdW (t)

∣∣∣∣r
X

)
≤ c1 E

[(∫ T

0
||Ψ||2L2(U, X) dt

)r/2]
, (6.3)

valid for any r ≥ 1. Here c1 is an absolute constant depending only on r.

Conditions Imposed on σ, f and u0. Given any pair of Banach spaces X1 and X2, we

denote by Bndu(X1, X2), the collections of all continuous mappings

Ψ : X1 → X2, (6.4)

such that

||Ψ(u)||X2 ≤ cB(1 + ||u||X1), u ∈ X1, (6.5)

for some constant cB. In addition, if

||Ψ(u)−Ψ(v)||X2 ≤ cU ||u− v||X1 , ∀u, v ∈ X1, (6.6)

for some constant cU , we say that Ψ ∈ Lipu(X1, X2). In the sequel we will consider time

dependent families of such mappings Ψ = Ψ(t) and require that (6.5) and (6.6) hold for

a.e. t with the same constants cB, cU for all t’s under consideration.

We shall assume throughout the work that

σ : [0, ∞)× L2(M)→ L2(U, L2(M)). (6.7)

Here U and L2(U, L2(M)) are as introduced above. Moreover we assume that for a.e. t,

σ(t) ∈ Bndu(L2(M), L2(U, L2(M))) ∩Bndu(Ξ1, L2(U, Ξ1)), (6.8)

and

σ(t) ∈ Lipu(L2(M), L2(U, L2(M))), (6.9)
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where

Ξ1 :=
{
u ∈ H2(M) ∩H1

0 (M), ux
∣∣
x=1

= 0
}
. (6.10)

When proving pathwise uniqueness of martingale solutions and the existence of pathwise

solutions in Section 6.3.2, we will additionally suppose that for a.e. t,

σ(t) ∈ Lipu(L2(M), L2(U, Ξ1)). (6.11)

Furthermore in the sequel σ is a measurable function of t and all the corresponding norms

of σ(t) are essentially (a.e.) bounded in time.

Finally we state the assumptions for the initial condition u0 and for f . On the one

hand, in Section 3.1, where we consider only the case of martingale solutions, since the

stochastic basis is an unknown of the problem, we will only be able to specify u0 as an

initial probability measure µu0 on the space L2(M) such that

∫
L2(M)

|u|6L2(M) dµu0(u) <∞, (6.12)

and we assume that f is deterministic,

f = f(x, x⊥, t) ∈ L6(0, T ; L2(M)). (6.13)

On the other hand, for pathwise uniqueness and the existence of pathwise solutions in

Section 6.3.2, where the stochastic basis S is fixed in advance we assume that, relative to

this basis, u0 is an L2(M)-valued random variable such that

u0 ∈ L7(Ω; L2(M)) and u0 is F0 measurable, (6.14)

and f is deterministic,

f = f(x, x⊥, t) ∈ L7(0, T ; L2(M)). (6.15)
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6.2 Regularized Stochastic ZK Equation

As indicated above we consider the Dirichlet case, i.e. (6.1), (2.2)-(2.4). The domain is

M = Ix× (−π/2, π/2)d, in Rd+1 with d = 1 or 2. In order to study this system, we will use

a parabolic regularization of equation (6.1), as in the previous chapters. That is, for ε > 0

“small”, we consider the stochastic parabolic equation of the 4-th order in space:
duε +

[
∆uεx + cuεx + uεuεx + ε

(
∂4uε

∂x4
+ ∂4uε

∂y4
+ ∂4uε

∂z4

)]
dt = f ε dt+ σ(uε) dW (t),

uε(0) = uε0,

(6.16)

supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-

ditions

uεyy
∣∣
y=±π

2
= uεzz

∣∣
z=±π

2
= 0, (6.17)

uεxx
∣∣
x=0

= 0. (6.18)

In the case of martingale solutions in Section 3.1, observing that the space L2(Ω; Ξ1) ∩

L22/3(Ω; L2(M)) is dense in L6(Ω; L2(M)), we can use e.g. the Fourier series to construct

an approximate family {uε0}ε>0 which is F0 measurable, such that, as ε→ 0:

uε0 ∈ L2(Ω; Ξ1) ∩ L22/3(Ω; L2(M)), (6.19)

uε0 → u0 in L6(Ω; L2(M)). (6.20)

Similarly there exists a family of deterministic functions {f ε}ε>0 such that as ε→ 0:

f ε ∈ L22/3(0, T ; L2(M)), (6.21)

f ε → f in L6(0, T ; L2(M)). (6.22)

In the case of pathwise solutions in Section 6.3.2, in the same way we can deduce

the existence of the approximate families {uε0}ε>0 and {f ε}ε>0 satisfying (6.19) and (6.21)

respectively, and such that as ε→ 0:

uε0 → u0 in L7(Ω; L2(M)), (6.23)
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f ε → f in L7(0, T ; L2(M)). (6.24)

For notational convenience, as in Chapter 3, we recast (6.16) in the form
duε = (−Auε −B(uε)− ε Luε + f ε) dt+ σ(uε) dW (t),

uε(0) = uε0,

(6.25)

where

Au = ∆ux + cux, ∀ u ∈ D(A),

B(u, v) = uvx ∈ H−1(M), ∀ u ∈ L2(M), v ∈ H1(M),

Lu = uxxxx + uyyyy + uzzzz, ∀ u ∈ H4(M).

(6.26)

withD(A) =
{
u ∈ L2(M) : Au ∈ L2(M), u = 0 on ∂M, ux = 0 at x = 1

}
. We recall The-

orem 2.2.1, which shows that if u ∈ L2(M) and Au ∈ L2(M) then the traces of u on ∂M

and of ux at x = 1 make sense.

Remark 6.2.1. As mentioned in the Introduction, although we can rewrite (6.1) as

du+ (Au+B(u)) dt = f dt+ σ(u) dW (t), (6.27)

which is similar to the equation studied in [11], the models are actually different. Indeed,

the operator A does not satisfy the assumptions in [11]; for example, A is not symmetric.

In fact, for the adjoint A∗ and its domain D(A∗), we have

D(A∗) = {ū ∈ L2(M) : Aū ∈ L2(M), ū = 0 on ∂M, ūx = 0 at x = 0},

A∗ū = −(∆ūx + cūx), ū ∈ D(A∗).

(6.28)

For more details see Section 2.3.2.

6.2.1 Definition of Solutions

We first introduce the necessary operators and functional spaces. We will denote by (·, ·)

and |·| the inner product and the norm of L2(M). The space Ξ1 defined in (6.10) is endowed
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with the scalar product and norm [·, ·]2, [·]2:

[u, v]2 = (uxx, vxx) + (uyy, vyy) + (uzz, vzz),

[u]22 = |uxx|2 + |uyy|2 + |uzz|2 , (6.29)

which make it a Hilbert space. Note that since |∆u|+ |u| is a norm on H1
0 ∩H2 equivalent

to the H2-norm, [·]2 is a norm on Ξ1 equivalent to the H2-norm. Thanks to the Riesz

theorem, we can associate to the scalar product [·, ·]2 the isomorphism L from Ξ1 onto Ξ1
′,

where L denotes the abstract operator corresponding to the differential operator L. Then

considering the Gelfand triple Ξ1 ⊂ H := L2(M) ⊂ Ξ1
′, we introduce L−1(H) the domain

of L in H, which is the space

Ξ2 =
{
u ∈ Ξ1 ∩H4(M), uyy

∣∣
y=±π

2
= uzz

∣∣
z=±π

2
= uxx

∣∣
x=0

= 0
}
. (6.30)

The operator L−1 is self adjoint and compact in H. It possesses an orthonormal set of

eigenvectors which is complete in H, and which we denote by {φi}i≥1. Note that all the φi

belong to Ξ2 which is the domain of L in H. Hence we have

(Lu, v) = [u, v]2, u ∈ Ξ2, v ∈ Ξ1.

We now introduce the following definitions.

Definition 6.2.1. (Global martingale solutions for the regularized ZK equation) Fix an

ε > 0. For the case of martingale solutions, we only specify the measure µuε0 to be the

probability measure of uε0 on Ξ1 which satisfies

∫
L2(M)

|u|22/3 dµuε0(u) <∞, (6.31)

∫
Ξ1

|u|2 dµuε0(u) <∞, (6.32)

and f ε and σ satisfy (6.21), (6.8) and (6.9) respectively.
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A pair (S̃, ũε) is a global martingale solution to the regularized stochastic ZK equation

(6.16)-(6.18), (2.2) and (2.4) (in the Dirichlet case), if S̃ = (Ω̃, F̃ , {F̃t}t≥0, P̃, {W̃ k}k≥1) is

a stochastic basis, and ũε(·) : Ω̃× [0,∞)→ Ξ1 is an {F̃t} adapted process such that:

ũε ∈ L22/3(Ω̃; L∞(0, T ; L2(M))) ∩ L2(Ω̃; L∞([0, T ]; Ξ1) ∩ L2(0, T ; Ξ2)), (6.33)

and

ũε(·, ω) ∈ C([0, T ]; L2
w(M))) P̃− a.s., (6.34)

where L2
w(M) is L2(M) equipped with the weak topology, and the law of ũε(0) is µuε0, defined

as above, i.e. µuε0(E) = P̃(ũε(0) ∈ E), for all Borel subsets E of Ξ1, and finally ũε almost

surely satisfies

ũε(t) +

∫ t

0
(Aũε +B(ũε) + εLũε − f ε) ds = ũε(0) +

∫ t

0
σ(ũε) dW̃ , (6.35)

as an equation in L2(M) for every 0 ≤ t ≤ T .

Definition 6.2.2. (Global pathwise solutions for the regularized ZK equation; Uniqueness)

Let S := (Ω,F , {Ft}t≥0,P, {W k}k≥1) be a fixed stochastic basis and assume that uε0, σ

and f ε satisfy (6.19), (6.8), (6.9) and (6.21).

(i) For any fixed ε > 0, a random process uε is a global pathwise solution to (6.16)-

(6.18), (2.2) and (2.4) if uε is an Ft adapted process in L2(M) so that (relative to the

fixed-given-basis S) (6.33)-(6.35) hold.

(ii) Global pathwise solutions of (6.16)-(6.18), (2.2) and (2.4) are said to be global

(pathwise) unique if given any pair of pathwise solutions uε, vε which coincide at t = 0 on

a subset Ω0 of Ω, Ω0 = {uε(0) = vε(0)}, then

P{1Ω0(uε(t) = vε(t))} = 1, 0 ≤ t ≤ T. (6.36)

In the sequel, we will prove that there exists a unique global pathwise solution uε to

(6.16)-(6.18), (2.2) and (2.4), which is sufficiently regular for the calculations in Section 3.1
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to be fully legitimate without any need of further regularization. The existence of such a

solution is basically classical (see e.g. [9], [17], [18] and [11]) for a parabolic problem like

this, but we will make partly explicit the construction of uε because we need to see how the

estimates depend or not on ε.

6.2.2 Pathwise Solutions in Dimensions 2 and 3

With the above definitions, we can state the main result of section 6.2:

Theorem 6.2.1. When d = 1, 2, suppose that, relative to a fixed given stochastic basis

S, uε0 satisfies (6.19), and that f ε and σ satisfy (6.21), (6.8) and (6.9), with ε > 0 fixed

arbitrary. Then there exists a unique global pathwise solution uε which satisfies (6.16) and

the boundary conditions (2.2), (2.4), (6.17) and (6.18).

To prove this theorem, we first use a Galerkin scheme to derive the estimates indicating

a compactness argument based on fractional Sobolev spaces and tightness properties of

the truncated sequence. Then by the Skorokhod embedding theorem (see Theorem 2.4

in [9], also [3] and [26]) we can pass to the limit in the Galerkin truncation and hence

obtain the global existence of martingale solutions. Finally we deduce the existence of

global pathwise solutions using pathwise uniqueness of martingale solutions and the Gyöngy-

Krylov Theorem (Theorem 7.5.1 of the Appendix). Here we will only present in details the

derivation of the estimates, which will be utilized in the subsequent investigations of the

stochastic ZK equation in Section 6.3.1.

We start the proof of Theorem 6.2.1 by introducing the Galerkin system. We define

Pn as the orthogonal projector from L2(M) onto Hn, the space spanned by the first n

eigenfunctions of L, φ1, ..., φn. We consider the Galerkin system as follows
dun + (Anun +Bn(un)) dt+ εLun dt = fn dt+ σn(un) dW (t),

un(0) = Pnu0,

(6.37)
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where un maps Ω × [0, T ] into Hn, Anun := PnAun, Bn(un) := PnB(un), and σn(un) :=

Pn(σ(un)). In (6.37), ε being fixed, we write for simplicity un for uε,n and fn for f ε,n.

Equation (6.37) is equivalent to a system of n stochastic differential equations for the

components of un and it is a classical result that there exists a unique regular pathwise

solution un = uε,n such that

un ∈ L2(Ω; C(0, T ; Hn)). (6.38)

Estimates Independent of ε and n

We first derive the following estimates on uε,n independent of ε and n.

Lemma 6.2.1. With the same assumptions as in Theorem 6.2.1, if uε0 and f ε satisfy (6.20)

and (6.22) respectively, then the following estimates hold for un = uε,n independently of ε

and n:

uε,nx
∣∣
x=0

remains bounded in L2(Ω; L2(0, T ; L2(Ix⊥))), (6.39)

√
εuε,n remains bounded in L2(Ω; L2(0, T ; Ξ1)), (6.40)

uε,n remains bounded in L6(Ω; L∞(0, T ; L2(M))). (6.41)

If we further assume that (6.23) and (6.24) hold, then

uε,n remains bounded in L7(Ω; L∞(0, T ; L2(M))), (6.42)

with the bounds in (6.39)-(6.42) independent of both ε and n.

Proof. We start by applying the Itō formula to (6.37). This yields

d|un|2 = 2 (un, N n(un)) dt+ 2 (un, σn(un) dW (t)) + ||σn(un)||2L2(U,L2(M)) dt, (6.43)

where N n(un) := −Anun −Bn(un)− ε Lun + fn, and

(un, N n(un)) = −(un, Anun)− (un, Bn(un))− ε(un, Lun) + (un, fn)

= −(un, Aun)− (un, B(un))− ε(un, Lun) + (un, fn).

(6.44)
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To compute the right-hand side of (6.44) we remember that by (6.38), for every t, un(t) ∈

Hn = span (φ1, ..., φn) ∈ Ξ2 a.s., since all the φi belong to Ξ2. Hence in particular un(t)

satisfies the boundary conditions in (6.30). We drop the super index n for the moment and

perform the following calculations a.s. exactly as in Chapter 3, then we find

d |un|2+

(∣∣unx∣∣x=0

∣∣2
L2(Ix⊥)

+ 2ε[un]22

)
dt

= 2(fn, un) dt+ ||σn(un)||2L2(U,L2(M)) dt+ 2 (un, σn(un) dW (t)) .

(6.45)

Integrating both sides from 0 to s with 0 ≤ s ≤ r ≤ T , taking the supremum over [0, r], we

have

sup
0≤s≤r

|un(s)|2+

∫ r

0

(∣∣unx∣∣x=0

∣∣2
L2(Ix⊥)

+ 2ε[un]22

)
dt

≤ |un0 |2 + 2

∫ r

0
|(fn, un)| dt+

∫ r

0
||σn(un)||2L2(U,L2(M)) dt

+ 2 sup
0≤s≤r

∣∣∣∣∫ s

0
(un, σn(un) dW (t))

∣∣∣∣ .
(6.46)

Raising both sides to the power p/2 for p ≥ 2, then taking expectations, we obtain with the

Minkowski inequality and Fubini’s Theorem

E sup
0≤s≤r

|un(s)|p .E|un0 |p + 2E
∫ r

0
|(fn, un)|p/2 dt

+ E
∫ r

0
||σn(un)||p

L2(U,L2(M))
dt

+ 2E
(

sup
0≤s≤r

∣∣∣∣∫ s

0
(un, σn(un) dW (t))

∣∣∣∣)p/2 ,
(6.47)

where . means ≤ up to an absolute multiplicative constant. Here and below c′ indicates

an absolute constant, whereas η, κ, and the κi indicate constants depending on the data

u0, f , etc. These constants may be different at each occurrence. We estimate the terms on

the right-hand side of (6.47) a.s. and for a.e. t:

|(fn, un)|p/2 ≤ |fn|p/2|un|p/2 ≤ |un|p + |fn|p,

||σn(un)||p
L2(U,L2(M))

≤ by (6.8) ≤ cpB(|un|+ c′)p . |un|p + c′;
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for the stochastic term, we use the Burkholder-Davis-Gundy inequality (see (6.3)) and (6.8)

E
(

sup
0≤s≤r

∣∣∣∣∫ s

0
(un, σn(un) dW (t))

∣∣∣∣)p/2
≤ E sup

0≤s≤r

∣∣∣∣∫ s

0
(un, σn(un) dW (t))

∣∣∣∣p/2
≤ c1 E

[(∫ r

0
|un|2 ||σn(un)||2L2(U,L2(M)) dt

)p/4]

. E

[(
sup

0≤s≤r
|un|2

∫ r

0
1 + |un|2 dt

)p/4]

≤ 1

2
E sup

0≤s≤r
|un|p + c′ E

∫ r

0
|un|p dt+ c′.

Applying the above estimates to (6.47), we obtain

1

2
E sup

0≤s≤r
|un(s)|p ≤ E |un0 |p + c′ E

∫ r

0
|un(t)|p dt+ E

∫ r

0
|fn(t)|p dt+ c′.1 (6.48)

Since E
∫ r

0 |u
n(t)|p dt ≤

∫ r
0 E sup0≤l≤t |un(l)|p dt, setting E sup0≤s≤r |un(s)|p =: U(r), with

(6.48) we deduce

U(r) ≤ U(0) + c′
∫ r

0
U(t)dt+

∫ r

0
E |fn(t)|p dt+ c′,

for every 0 ≤ r ≤ T . Hence applying the (deterministic) Gronwall lemma, we obtain for

p ≥ 2,

E sup
0≤r≤T

|un(r)|p . E|un0 |p + E
∫ T

0
|fn(t)|p dt+ c′. (6.49)

Letting p = 6, thanks to (6.20) and (6.22), we deduce that

E sup
0≤r≤T

|un(r)|6 ≤ κ1, (6.50)

for a constant κ1 depending only on u0, f , T and σ, and independent of ε and n; this implies

(6.41). Similarly, setting p = 7 in (6.49), we infer (6.42) from (6.23) and (6.24). Finally,

setting p = 2 in (6.48), along with (6.46) we obtain (6.39) and (6.40).

1Note that here f ε,n is actually independent of ω ∈ Ω and the symbol E in front of the corre-

sponding term is not needed. However in Section 6.3.2 we will use another version of this calculation

in which f ε,n is replaced by gε which depends on ω; hence we leave E in front of the term involving

f ε,n in view of the calculations in Section 6.3.2.
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Estimates Dependent on ε

We now derive estimates independent of n only, that is, valid for fixed ε.

Lemma 6.2.2. With the same assumptions as in Theorem 6.2.1, the following estimates

hold for un = uε,n, as n→∞ and ε > 0 remains fixed:

uε,n remains bounded in L22/3(Ω; L∞(0, T ; L2(M))), (6.51)

uε,n remains bounded in L2(Ω; L∞(0, T ; Ξ1)), (6.52)

uε,n remains bounded in L2(Ω; L2(0, T ; Ξ2)). (6.53)

Proof. Setting p = 22/3 in (6.49), we infer (6.51) from (6.19) and (6.21).

Returning to (6.37), we apply the Itō formula to (6.37) and obtain an evolution equation

for the Ξ1 norm:

d[un]22 = 2 (Lun, N (un)) dt+ 2 (Lun, σn(un) dW (t)) + ||σn(un)||2L2(U,Ξ1) dt, (6.54)

where N n(un) has been defined before. Similar to (6.44) we have a.s. and for a.e. t:

(Lun, N n(un)) = −(Lun, Aun)− (Lun, B(un))− ε|Lun|2 + (Lun, fn). (6.55)

By (6.54) and (6.55) we deduce

d[un]22 + ε|Lun|2 dt =− 2(Lun, Aun) dt− 2(Lun, B(un)) dt+ 2(Lun, fn) dt

+ 2 (Lun, σn(un) dW (t)) + ||σn(un)||2L2(U,Ξ1) dt.

(6.56)

Integrating both sides from 0 to s with 0 ≤ s ≤ T , taking the supremum over [0, T ], then

taking expectations, we arrive at

E sup
0≤s≤T

[un]22 + εE
∫ T

0
|Lun|2 dt

≤E |un0 |2 + 2E
∫ T

0
|(Lun, Aun)| dt+ 2E

∫ T

0
|(Lun, B(un))| dt+ 2E

∫ T

0
|(Lun, fn)| dt

+ 2E sup
0≤s≤T

∫ s

0
(Lun, σn(un) dW (t)) + E

∫ T

0
||σn(un)||2L2(U,Ξ1) dt. (6.57)
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We estimate a.s. each term on the right-hand side of (6.57); we emphasize that the estimates

depend on ε but not on n or on ω ∈ Ω:

|(Lun, Aun)| ≤ |Lun||un|H3(M) ≤ |Lun||un|
1/4
H2 |un|

3/4
H4

≤ |Lun|7/4[un]
1/4
2 ≤ ε

4
|Lun|2 + η(ε)[un]22,

where η(ε) depends on ε. For the term |(Lun, B(un))|, we first estimate a.s. |B(un)| in

dimension three:

|ununx| ≤ |un|
3/2

H1
0 (M)

|un|1/2
H2(M)

≤ (by interpolation in dimension three, |un|H1
0 (M) . |un|3/4|un|

1/4
H4(M)

,

and |un|H2(M) . |un|1/2|un|
1/2
H4(M)

)

. |un|9/8|un|3/8
H4(M)

|un|1/4|un|1/4
H4(M)

. |un|11/8|Lun|5/8.

(6.58)

Hence

|(Lun, B(un))| ≤ |B(un)| |Lun| ≤ (by (6.58)) . |un|11/8|Lun|13/8 .
ε

4
|Lun|2 + η(ε)|un|22/3,

where η(ε) depends on ε.

For the stochastic term, we have

E sup
0≤s≤T

∣∣∣∣∫ s

0
(Lun, σn(un) dW (t))

∣∣∣∣ ≤ (by the Burkholder-Davis-Gundy inequality (6.3))

≤ c1 E

[(∫ T

0
|Lun|2 ||σn(un)||2L2(U,L2(M)) dt

)1/2
]

≤ c1c
2
B E

[(∫ T

0
|Lun|2 (1 + |un|2) dt

)1/2
]

≤ η(ε)E sup
0≤s≤T

|un|2 +
ε

4
E
∫ T

0
|Lun|2 dt+ η(ε),

where η(ε) depends on ε.

For the term E
∫ T

0 ||σ
n(un)||2L2(U,Ξ1) dt, we infer from (6.8) that

E
∫ T

0
||σn(un)||2L2(U,Ξ1) dt . E

∫ T

0

(
1 + [un]22

)
dt.
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Collecting all the above estimates, along with (6.57) we deduce

1

2
E sup

0≤s≤T
[un(s)]22 +

ε

4
E
∫ T

0
|Lun|2 dt

≤ E [un0 ]22 + η(ε)E
∫ T

0
[un(t)]22 dt+ η(ε)E

∫ T

0
|un(t)|22/3 dt

+ η(ε)E sup
0≤s≤T

|un|2 + η(ε)E
∫ T

0
|fn(t)|2 dt+ η(ε).

(6.59)

Hence we can apply (6.51) and (6.40) to (6.59), and we obtain (6.52) and (6.53). Thus we

have completed the proof of Lemma 6.2.2.

Estimates in Fractional Sobolev Spaces.

We will apply the compactness result based on fractional Sobolev spaces in Lemma 7.3.1

(of the Appendix) with

Y := L2(0, T ; H1
0 (M)) ∩Wα,2(0, T ; Ξ′2), 0 < α <

1

2
, (6.60)

where Ξ′2 is the dual of Ξ2 relative to L2(M). For that purpose we will need the following

estimates on fractional derivatives of uε,n.

Lemma 6.2.3. With the same assumptions as in Theorem 6.2.1, we have

E|uε,n|Y ≤ κ2(ε), (6.61)

E
∣∣∣∣uε,n(t)−

∫ t

0
σn(uε,n) dW (s)

∣∣∣∣2
H1(0,T ; Ξ′2)

≤ κ3, (6.62)

E
∣∣∣∣∫ t

0
σ(uε,n) dW (s)

∣∣∣∣2
Wα,6(0,T ;L2(M))

≤ κ4, ∀ α < 1

2
, (6.63)

where κ2(ε) is independent of n (but may depend on ε and other data), while κ3 and κ4

depend only on u0, f , T and σ, and are independent of ε and n.

Proof. We can rewrite (6.37) as

un(t) =un0 −
∫ t

0
Anunds−

∫ t

0
Bn(un)ds

− ε
∫ t

0
Lunds+

∫ t

0
fnds+

∫ t

0
σn(un)dW (s)

:=Jn1 + Jn2 + Jn3 + Jn4 + Jn5 + Jn6 .

(6.64)
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For Jn2 , fixing u] ∈ D(A∗) we have a.s. and for a.e. t

∣∣∣(Anun, u])∣∣∣ =
∣∣∣(un, A∗Pnu])∣∣∣ ≤ |un| ∣∣∣Pnu]∣∣∣

D(A∗)
≤ (since Ξ2 ⊆ D(A∗)) ≤ |un||u]|Ξ2 .

Hence

|Anun|Ξ′2 . |un|. (6.65)

With (6.65) and (6.41) we obtain

E |Jn2 |6W 1,6(0,T ; Ξ′2) is bounded independently of n and ε. (6.66)

For Jn3 , firstly we observe that ∀ u] ∈ Ξ2 (dropping the super index n for the moment),∣∣∣(B(u), u])
∣∣∣ =

∣∣∣∣∫
M

∂

∂x
(
u2

2
)u] dM

∣∣∣∣ =
1

2

∣∣∣∣∫
M
u2u]x dM

∣∣∣∣
≤ 1

2
|u|2|u]x|L∞(M)

≤ (with H3(M) ⊂ L∞(M) in dimension 3)

. |u|2|u]x|H3(M)

. |u|2|u]|Ξ2 ;

(6.67)

hence

|(Bn(un), u])| = |(B(un), Pnu])| . |un|2|Pnu]|Ξ2 ≤ |un|2|u]|Ξ2 , (6.68)

which implies that |Bn(un)|Ξ′2 . |un|2. This along with (6.41) implies that

E|Bn(un)|2L2(0,T ; Ξ′2) is bounded independently of n and ε, (6.69)

and hence

E|Jn3 |2H1(0,T ; Ξ′2) is bounded independently of n and ε. (6.70)

For Jn4 , we have, ∀ u] ∈ Ξ2,
∣∣(Lun, u])∣∣ =

∣∣(un, Lu])∣∣ ≤ |un||Lu]|. Hence |Lun|Ξ′2 .

|un|. Thus

E
∫ T

0
|Lun|2Ξ′2 dt ≤ 2E

∫ T

0
|un|22 dt.
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Multiplying both sides by ε2, we obtain with (6.41)

E|Jn4 |2H1(0,T ; Ξ′2) is bounded independently of n and ε. (6.71)

For Jn6 , Lemma 7.4.2 implies that, ∀ α < 1

2
,

E
∣∣∣∣∫ t

0
σn(un(s)) dW (s)

∣∣∣∣6
Wα,6(0,T ;L2(M))

. E
∫ t

0
|σn(un(s))|6L2(U,L2(M)) ds

.E
∫ t

0
|σ(un(s))|6L2(U,L2(M)) ds

≤ (by (6.8))

≤ c′ c6
B E

∫ t

0
(1 + |un|)6ds.

This together with (6.41) implies that

E |Jn6 |
2
Wα,6(0,T ;L2(M)) is bounded independently of n and ε, ∀ α < 1

2
. (6.72)

Hence we obtain (6.63). Collecting the estimates (6.66) and (6.70)-(6.72), we obtain

E|un|Wα,2(0,T ; Ξ′2) is bounded independently of n and ε, α <
1

2
. (6.73)

By (6.52) we deduce

E|un|L2(0,T ;H1
0 (M)) is bounded independently of n, (6.74)

but the bounds may depend on ε. From (6.73) and (6.74) we obtain (6.61).

Observing from (6.64) that un(t) −
∫ t

0 σ
n(un) dW (s) = Jn1 + Jn2 + Jn3 + Jn4 + Jn5 , and

applying (6.66), (6.70) and (6.71), we obtain (6.62) as desired.

Remark 6.2.2. See Lemma 6.3.3 below for a variant of the proof of Lemma 6.2.3 leading

to the analogue of bounds in (6.61)-(6.63) but independent of ε. Note however that the proof

in Lemma 6.3.3 for uε can not be applied here to uε,n, because multiplication by
√

1 + x does

not commute with Pn, which prevents us from deducing for now the estimates derived from

(6.84) below.
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Proof of Theorem 6.2.1. The rest of the proof of Theorem 6.2.1 is classical (see e.g. [18]

and [11]). Applying Lemma 7.3.1 (of the Appendix) and Chebychev’s inequality to the esti-

mates (6.61)-(6.63), we can use the same technic as that for the proof of Lemma 4.1 in [11]

to derive the compactness and tightness properties of the sequences (uε,n(t),W (t)) in n for

fixed ε. Then we apply the Skorokhod embedding theorem to construct some subsequence

{(uε,nk(t),W (t))} that converges strongly as nk → ∞, upon shifting the underlying prob-

ability basis. Then we pass to the limit on the Galerkin truncation (6.37) as nk → ∞ (ε

fixed). Note that we do not need to worry about passing to the limit on the boundary con-

ditions, because they are all well-defined (and conserved) thanks to (6.53). Thus, we have

established the existence of martingale solutions to the regularized stochastic ZK equation

(6.16)-(6.18), (2.2) and (2.4) in the sense of Definition 6.2.1.

As for the pathwise solutions, we first prove the pathwise uniqueness of martingale solu-

tions, and then by the Gyöngy-Krylov Theorem we obtain the global existence of pathwise

solutions in the sense of Definition 6.2.2.

To conclude, we have completed the proof of Theorem 6.2.1.

We will develop these steps below in more details in the more complicated case when

ε→ 0.

6.3 Passage to the Limit as ε→ 0

We now aim to study the stochastic solutions to the ZK equation basically by passing to

the limit as ε→ 0 in (6.16) and the boundary conditions (2.2), (2.4), (6.17) and (6.18).

Definition of solutions of the stochastic ZK equation. The definition of the martingale and

pathwise solutions for the stochastic ZK equation are essentially the same as that for the

regularized equation, with the necessary changes in the assumptions, equations and the

function spaces.
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Definition 6.3.1. (Global Martingale Solutions) Let µu0 be the probability measure of u0

given as in (6.12) on L2(M) and assume that (6.8), (6.9) and (6.13) hold.

A global martingale solution to the stochastic ZK equation (6.1), (2.2)-(2.4) (in the

Dirichlet case) is defined as in Definition 6.2.1 as a pair (S̃, ũ), such that

ũ ∈ L6(Ω̃; L∞(0, T ; L2(M))) ∩ L2(Ω̃; L2(0, T ; H1
0 (M))), (6.75)

ũ(·, ω) ∈ C([0, T ]; L2
w(M))) P̃− a.s., (6.76)

and ũ satisfying almost surely

ũ(t) +

∫ t

0
(∆ũx + cũx + ũũx)ds = ũ(0) +

∫ t

0
f ds+

∫ t

0
σ(ũ) dW̃ (s); (6.77)

the equality in (6.77) is understood in the sense of distributions on D(M) for every t ∈ [0, T ].

Moreover ũ vanishes on ∂M (since ũ ∈ L2(Ω̃; L2(0, T ; H1
0 (M)))) and ũx

∣∣
x=1

= 0. For

the latter, we observe that according to Lemma 6.3.5 below, ũx
∣∣
x=1

= 0 makes sense in a

suitable space for any ũ satisfying (6.75) and (6.77).

Definition 6.3.2. (Global Pathwise Solutions; Uniqueness)

Let S := (Ω,F , {Ft}t≥0,P, {W k}k≥1) be a fixed stochastic basis and suppose that u0 is

an L2(M)-valued random variable (relative to S) satisfying (6.14). We suppose that σ and

f satisfy (6.8), (6.9), (6.11) and (6.15).

(i) A global pathwise solution u of (6.1) and (2.2)-(2.4) is defined as in Definition 6.2.2

with (6.33)-(6.35) replaced by (6.75)-(6.77). Also note that u vanishes on ∂M (because u

∈ L2(Ω; L2((0, T ); H1
0 (M))) and ux

∣∣
x=1

= 0 which makes sense for the same reasons as

for the martingale solution.

(ii) Global pathwise uniqueness is defined in the same way as in Definition 6.2.2.

The strategy is the same as that in the case of the regularized stochastic ZK equation

in Section 6.2.2: we first derive the global existence of martingale solutions, then prove
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the pathwise uniqueness of martingale solutions and hence deduce the existence of global

pathwise solutions.

6.3.1 Martingale Solutions in Dimensions 2 and 3

All the subsequent proofs are valid for d = 1 or 2, except for (6.81) and (6.83), and for the

uniqueness in Section 6.3.2, which are only valid for d = 1 (space dimension two).

Theorem 6.3.1. When d = 1 or 2, suppose that µ0 satisfies (6.12), that σ and f maintain

(6.8), (6.9) and (6.13). Then there exists a global martingale solution (S̃, ũ) of (6.1) and

(2.2)-(2.4) in the sense of Definition 6.3.1.

Furthermore, when d = 1, and if additionally f and σ satisfy (6.15) and (6.11), then the

martingale solution is pathwise unique (see Proposition 6.3.3 below).

To prove Theorem 6.3.1, similar to the case of the regularized stochastic ZK equation, we

first derive the estimates leading to weak convergence, then using the Skorokhod embedding

theorem we upgrade the weak convergence into the strong convergence, with the probability

basis shifted. Special measures will be taken to pass to the limit in the boundary conditions.

Estimates and Developments Independent of ε.

We begin the proof of Theorem 6.3.1 by deriving the estimates on uε valid as ε → 0. We

observe that we can prove the estimates in (6.39)-(6.42) under the new assumptions in

Theorem 6.3.1.

Lemma 6.3.1. With the assumptions of Theorem 6.3.1, when d = 1, 2, we have the follow-

ing estimates valid as ε→ 0:

uεx
∣∣
x=0

remains bounded in L2(Ω; L2(0, T ; L2 (Ix⊥))), (6.78)

√
εuε remains bounded in L2(Ω; L2(0, T ; Ξ1)), (6.79)
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uε remains bounded in L6(Ω; L∞(0, T ; L2(M))), (6.80)

If we additionally assume that u0 and f satisfy (6.14) and (6.15), then we have

uε remains bounded in L7(Ω; L∞(0, T ; L2(M))). (6.81)

Proof. The estimates follow from (6.39)-(6.41) (or (6.42)) by passing to the lower limit first

in n and then in ε using the lower semicontinuity of the norms; indeed e.g. to show (6.80),

with (6.41) we obtain |uε|L6(Ω;L∞(0,T ;L2(M))) ≤ lim infn |uε,n|L6(Ω;L∞(0,T ;L2(M)))≤κ′1, for a

constant κ′1 independent of ε.

Lemma 6.3.2. The assumptions are those of Theorem 6.3.1 with d = 1 or 2. We have the

following estimates valid as ε→ 0:

uε remains bounded in L2(Ω; L2(0, T ; H1
0 (M))). (6.82)

If furthermore we suppose that u0 and f satisfy (6.14) and (6.15), and d = 1, then we

have

uε remains bounded in L7/2(Ω; L2(0, T ; H1
0 (M))). (6.83)

Remark 6.3.1. We will use (6.81) and (6.83) only when dealing with the pathwise unique-

ness (see the calculations leading to (6.156) below).

Proof of Lemma 6.3.2. The proof does not follow promptly from the estimates on uε,n as

that of (6.78)-(6.81), but they are derived directly from the solutions uε of the regularized

equations; this is in fact the reason for which we introduced this regularization. Note that

the solutions uε are sufficiently regular for the following calculations to be valid.

We start by multiplying (6.25) with
√

1 + x, to find

d(
√

1 + xuε) =
√

1 + xN (uε) dt+
√

1 + xσ(uε) dW (t), (6.84)
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where again N (uε) := −Auε − B(uε) − ε Luε + f ε. Applying the Itō formula to (6.84), we

obtain

d|
√

1 + xuε|2 = 2
(√

1 + xuε,
√

1 + xN (uε)
)
dt

+ 2
(√

1 + xuε,
√

1 + xσ(uε) dW (t)
)

+ ||
√

1 + xσ(uε)||2L2(U,L2(M)) dt.

(6.85)

With exactly the same calculations as in the deterministic case (see Section 3.1), performed

a.s. and for a.e. t, we have:

2
(√

1 + xuε,
√

1 + xN (uε)
)

= −|∇uε|2 − 2|uεx|2 − (1− 2ε)
∣∣uεx∣∣x=0

∣∣2
L2(I

x⊥ )

− 2ε
(
|
√

1 + xuεxx|2 + |
√

1 + xuεyy|2 + |
√

1 + xuεzz|2)
)

+ 2(f, (1 + x)uε) +
2

3

∫
M

(uε)3 dM+ c|uε|2.

(6.86)

Integrating both sides of (6.85) in t from 0 to s, 0 ≤ s ≤ T , we find with (6.86) that when

say ε ≤ 1/4,∫ s

0
|∇uε|2 dt ≤ |

√
1 + xuε0|2 + 2

∫ s

0
(f ε, (1 + x)uε) dt+

2

3

∫ s

0
|uε|3L3(M) dt

+ c

∫ s

0
|uε|2 dt+

∫ s

0
||
√

1 + xσ(uε)||2L2(U,L2(M)) dt

+ 2

∫ s

0
((1 + x)uε, σ(uε) dW (t)) .

(6.87)

For the first term on the right-hand side, using H1/2(M) ⊂ L3(M) in dimension three, we

have |uε|3L3(M) ≤ c′|uε|3/2|∇uε|3/2 ≤ 1

4
|∇uε|2 + c′|uε|6; hence taking expectations on both

sides of (6.87) and using Hölder’s inequality, we obtain

1

2
E
∫ s

0
|∇uε|2 dt . 2E|uε0|2 + E

∫ s

0
|f ε|2 dt+ c′ E

∫ s

0
|uε|6 dt+ c′

+ E
∫ s

0
||
√

1 + xσ(uε)||2L2(U,L2(M)) dt.

(6.88)

Here the stochastic term vanishes. We find with (6.80) and (6.88)

E
∫ T

0
|∇uε|2 dt ≤ κ5, (6.89)
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for a constant κ5 depending only on u0, f , T and σ, and independent of ε; this implies

(6.82).

Returning to (6.87), when d = 1, we have∫ s

0
|uε|3L3(M)dt ≤ (H1/3(M) ⊂ L3(M) in dimension 2)

≤
∫ s

0
|uε|2|∇uε|dt dM

≤ c′ sup
0≤t≤s

|uε(t)|4 +
1

3

(∫ s

0
|∇uε|dt

)2

.

(6.90)

Hence (6.87) implies

1

2

∫ s

0
|∇uε|2 dt ≤ 2|uε0|2 +

∫ s

0
|f ε|2 dt+ c′

∫ s

0
|uε|2 dt+ c′ sup

0≤t≤s
|uε(t)|4 + c′

+ 2

∫ s

0
((1 + x)uε, σ(uε) dW (t)) .

(6.91)

Taking the supremum over [0, T ], raising both sides to the power 7/4, then taking expecta-

tions, we obtain with Minkowski’s inequality and Fubini’s Theorem:

1

2
E
(∫ T

0
|∇uε|2 dt

)7/4

. E|uε0|7/2 + E
∫ T

0
|f ε|7/2 dt

+ E
∫ T

0
|uε|7/2 dt+ E sup

0≤s≤T
|uε(s)|7 + c′

+ 2E

[
sup

0≤s≤T

∫ s

0
|((1 + x)uε, σ(uε) dW (t))|

]7/4

.

(6.92)

For the stochastic term, we have

E

[
sup

0≤s≤T

∫ s

0
|((1 + x)uε, σ(uε) dW (t))|

]7/4

≤ E sup
0≤s≤T

∣∣∣∣∫ s

0
((1 + x)uε, σ(uε) dW (t))

∣∣∣∣7/4
≤ (by the Burkholder-Davis-Gundy inequality (6.3))

≤ c1 E

[(∫ T

0
|uε|2 ||σ(uε)||2L2(U,L2(M)) dt

)7/8
]

. E

[(∫ T

0
|uε|4 dt

)7/8
]

+ c′.
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This together with (6.92) implies

1

2
E
(∫ T

0
|∇uε|2 dt

)7/4

. E|uε0|7/2 + E
∫ T

0
|f ε|7/2 dt+ E

∫ T

0
|uε|7/2 dt

+ E sup
0≤s≤T

|uε(s)|7 + E
∫ r

0
|uε|4 dt+ c′.

(6.93)

Hence (6.93) and (6.81) imply

E
(∫ T

0
|∇uε|2 dt

)7/4

≤ κ6, (6.94)

for a constant κ6 depending only on u0, f , T and σ, and independent of ε; this implies

(6.83). The proof of Lemma 6.3.2 is complete.

Estimates in fractional Sobolev spaces.

Lemma 6.3.3. With the same assumptions as in Theorem 6.3.1 and d = 1, 2, we have

E|uε|2Y ≤ κ7, (6.95)

E
∣∣∣∣uε(t)− ∫ t

0
σ(uε) dW (s)

∣∣∣∣2
H1(0,T ; Ξ′2)

≤ κ8, (6.96)

E
∣∣∣∣∫ t

0
σ(uε) dW (s)

∣∣∣∣2
Wα,6(0,T ;L2(M))

≤ κ9, ∀ α < 1

2
, (6.97)

where Y is defined as in (6.60), and κ7, κ8 and κ9 are independent of ε.

Proof. By repeating the proof of Lemma 6.2.3 (see Remark 6.2.2), we see that we can

obtain for uε the estimates analog to (6.61)-(6.63) independent of ε. The only point is

to derive the estimate of E|uε|L2(0,T ;H1
0 (M)) being bounded independently of ε (see (6.74)

correspondingly). For that we just need the estimate (6.82). Hence Lemma 6.3.3 is proven.

Compactness Arguments for {(uε,W )}ε>0

With these estimates independent of ε in hand, we can establish the compactness of the

family (uε(t),W (t)). For this purpose we consider the following phase spaces:

Xu = L2(0, T ; L2(M)) ∩ C(0, T ; H−5(M)), XW = C(0, T ; U0), X = Xu ×XW . (6.98)
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We then define the probability laws of uε(t) and W (t) respectively in the corresponding

phase spaces:

µεu(·) = P(uε ∈ ·), (6.99)

and

µW (·) = µεW (·) = P(W ∈ ·). (6.100)

This defines a family of probability measures µε := µεu×µεW on the phase space X . We now

show that this family is tight in ε. More precisely:

Lemma 6.3.4. We suppose that d = 1, 2, and the hypotheses of Theorem 6.3.1 hold. Con-

sider the measures µε on X defined according to (6.99) and (6.100). Then the family {µε}ε>0

is tight and therefore weakly compact over the phase space X .

Proof . We can use the same technic as in the proof of Lemma 4.1 in [11]. The main idea is

to apply Lemma 7.3.1 (of the Appendix) and Chebychev’s inequality to (6.95)-(6.97).

Strong convergence as ε→ 0. Since the family of measures {µε} associated with the family

(uε(t),W (t)) is weakly compact on X , we deduce that µε converges weakly to a probability

measure µ on X up to a subsequence. We can apply the Skorokhod embedding theorem

(see Theorem 2.4 in [9], also [3] and [26]2) to deduce the strong convergence of a further

subsequence, that is :

Proposition 6.3.1. Suppose that µ0 is a probability measure on L2(M) that satisfies (6.12).

Then there exists a probability space (Ω̃, F̃ , P̃), and a subsequence εk of random vectors

(ũεk , W̃ εk) with values in X (X defined in (6.98)) such that

(i) (ũεk , W̃ εk) have the same probability distributions as (uεk ,W εk).

2particularly in [26], the theorem applies to X as a Polish space, that is, a separable completely

metrizable topological space.
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(ii) (ũεk , W̃ εk) converges almost surely as εk → 0, in the topology of X , to an element

(ũ, W̃ ) ∈ X , i.e.

ũεk → ũ strongly in L2(0, T ; L2(M))) ∩ C([0, T ]; H−5(M)) a.s., (6.101)

W̃ εk → W̃ strongly in C([0, T ]; U0) a.s., (6.102)

where (ũ, W̃ ) has the probability distribution µ.

(iii) W̃ εk is a cylindrical Wiener process, relative to the filtration F̃ εkt , given by the

completion of the σ-algebra generated by {(ũεk(s), W̃ εk(s)); s ≤ t}.

(iv) For each fixed εk, ũεk ∈ L2(Ω̃; L2(0, T ; Ξ2)). Moreover, all the statistical estimates

on uεk are valid for ũεk , in particular, (6.80) and (6.82) hold.

(v) Each pair (ũεk , W̃ εk) satisfies (6.16) as an equation in L2(M) a.s., and satisfies the

boundary conditions (2.2), (2.4), (6.17) and (6.18) thanks to (iv), that is, ũεk(t) is adapted

to F̃ εkt , and

dũεk = (−Aũεk −B(ũεk)− εk Lũεk + f εk) dt+ σ(ũεk) dW̃ εk(t),

ũεk = 0 on ∂M, ũεkx
∣∣
x=1

= 0, ũεkxx
∣∣
x=0

= ũεkyy
∣∣
y=±π

2
= ũεkzz

∣∣
z=±π

2
= 0,

ũεk(0) = ũεk0 .

(6.103)

Proof. (i) and (ii) follow directly from the Skorokhod embedding theorem.

To prove (iv), we first observe that thanks to Lemma 7.6.2 (of the Appendix), the space

L2(0, T ; Ξ2) is a Borel set in the space Xu, and hence the integration
∫
L2(0,T ; Ξ2) |u|

2 dµεku (u)

makes sense, and by (i) we have for each εk,

E|uεk |2L2(0,T ; Ξ2) =

∫
L2(0,T ; Ξ2)

|u|2 dµεku (u) = Ẽ|ũεk |2L2(0,T ; Ξ2) < (by (6.33)) <∞.

In the same way we would prove that all estimates on uε are valid for ũεk , particularly (6.80)

and (6.82).
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To prove (v), we define

M̃ εk

:=

∫ T

0

∣∣∣∣ũεk(t) +

∫ t

0
Aũεk +B(ũεk) + εkLũ

εk − f εkds− ũεk(0)−
∫ t

0
σ(ũεk) dW̃ εk(s)

∣∣∣∣2 dt;
then we can use the exact same technique in [2] to prove Ẽ

M̃ εk

1 + M̃ εk
= 0. Hence we obtain

(6.103).

Passage to the Limit

Now equipped with the strong convergences in (6.101), we can consider passing to the limit

on the regularized equation (6.103)1 as εk → 0. Note that (6.103)1 is the version of (6.16)

provided by the Skorokhod embedding theorem.

Thanks to (6.80) and (6.82), we deduce the existence of an element

ũ ∈ L6(Ω̃; L∞(0, T ; L2(M))) ∩ L2(Ω̃; L2(0, T ; H1
0 (M))), (6.104)

and a subsequence still denoted as εk such that

ũεk ⇀ ũ weak-star in L6(Ω̃; L∞(0, T ; L2(M))), (6.105)

and

ũεk ⇀ ũ weakly in L2(Ω̃; L2(0, T ; H1
0 (M))). (6.106)

Fixing u] ∈ Ξ2, by (6.106) and (6.105) we can pass to the limit in the linear terms.
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For the nonlinear term, for every u] ∈ Ξ2, we write a.s. and for a.e. t:∣∣∣∣ ∫ t

0

(
B(ũεk)−B(ũ), u]

)
ds

∣∣∣∣
=

1

2

∣∣∣∣∫ t

0

(
(ũεk − ũ)(ũεk + ũ), u]x

)
ds

∣∣∣∣
≤ 1

2

∫ t

0
|ũεk − ũ| |ũεk + ũ| |u]x|L∞(M) ds

≤ (by the same calculations as in (6.67))

≤ 1

2

∫ t

0
|ũεk − ũ| |ũεk + ũ| |u]|Ξ2 ds

≤ 1

2
|u]|Ξ2

(∫ T

0
|ũεk − ũ|2 ds

)1/2(∫ T

0
|ũεk + ũ|2 ds

)1/2

.

(6.107)

Thus with (6.101) and (6.80), we deduce that

∫ t

0

(
B(ũεk), u]

)
ds→

∫ t

0

(
B(ũ), u]

)
ds for a.e. (ω̃, t) ∈ Ω̃× (0, T ). (6.108)

We next establish the convergence for the nonlinear term in the space L1(Ω̃× (0, T )). We

calculate as in (6.68),

E
∫ T

0

∣∣∣∣∫ t

0

(
B(ũεk), u]

)
ds

∣∣∣∣2 dt . E
∫ T

0
|ũεk |4|u]|2Ξ2

ds . |u]|2Ξ2
E
∫ T

0
|ũεk |4 ds.

Thus by (6.80), we have{∫ t

0

(
B(ũεk), u]

)
ds

}
εk>0

is uniformly integrable for all εk in L1(Ω̃× (0, T )).

Hence thanks to the Vitali convergence theorem, we conclude that

∫ t

0

〈
B(ũεk), u]

〉
ds→

∫ t

0

〈
B(ũ), u]

〉
ds in L1(Ω̃)× (0, T ). (6.109)

For the stochastic term, by (6.101) we obtain

|ũεk − ũ|2 → 0, for a.e. (ω̃, t) ∈ Ω̃× (0, T ). (6.110)

Thus, along with (6.9) we deduce

|σ(ũεk)− σ(ũ)|L2(U,H) → 0, for a.e. (ω̃, t) ∈ Ω̃× (0, T ).
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On the other hand, we observe that

sup
εk

E
(∫ T

0
|σ(ũεk)|6L2(U,H) ds

)
. sup

εk

E
(∫ T

0
(1 + |ũεk |6) ds

)
,

where we made use of (6.8). We therefore infer from (6.41) that |σ(ũεk)|L2(U,H) is uniformly

integrable for εk in Lq(Ω̃× (0, T )) for any q ∈ [1, 6). With the Vitali convergence theorem

we deduce that, for all such q ∈ [1, 6),

σ(ũεk)→ σ(ũ) in Lq(Ω̃; Lq((0, T ), L2(U, H))). (6.111)

Particularly (6.111) implies the convergence in probability of σ(ũεk) in L2((0, T ), L2(U, H)).

Thus, along with the assumption (6.102), we apply Lemma 7.4.1 (of the Appendix) and

deduce that

∫ t

0
σ(ũεk) dW̃ εk →

∫ t

0
σ(ũ) dW̃ , in probability in L2((0, T ); L2(M)). (6.112)

By the Vitali convergence theorem using the estimates involving (6.3) and (6.111), from

(6.112) we infer a stronger convergence result:

∫ t

0
σ(ũεk) dW̃ εk →

∫ t

0
σ(ũ) dW̃ , in L2(Ω̃; L2((0, T );L2(M)). (6.113)

Hence we can pass to the limit in (6.16), and obtain (6.77) as an equation in Ξ′2

For the initial condition, since (6.101) and (6.104) imply that ũε ∈ L∞(0, T ; L2(M))

∩ C([0, T ]; H−5(M)) a.s., hence ũε is weakly continuous with values in L2(M) a.s.; then

(6.76) follows.

Having shown that the limit ũ almost surely satisfies (6.77) in the sense of distributions

on D(M), we want now to address the question of the boundary conditions. We need to be

more careful because of the lack of regularity (see Lemma 6.3.5 below).

Passage to the limit on the boundary conditions. Since ũ ∈ L2(0, T ; H1
0 (M)) a.s. (see

(6.106)), we deduce that ũ satisfies the Dirichlet boundary conditions. Hence there remains
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to show that the boundary condition

ũx
∣∣
x=1

= 0, (6.114)

is satisfied almost surely. This boundary condition is the object of Lemma 6.3.5 be-

low where we show that ũx
∣∣
x=1

is well defined when ũ ∈ L6(Ω̃; L∞(0, T ; L2(M))) ∩

L2(Ω̃; L2(0, T ; H1(M))), and satisfies an equation like (6.77).

Lemma 6.3.5. We assume that ũ ∈ L6(Ω̃; L∞(0, T ; L2(M))) ∩ L2(Ω̃; L2(0, T ; H1(M)))

satisfies (6.77) almost surely in the sense of distributions on D(M), for every 0 ≤ t ≤ T .

Then

ũx, ũxx ∈ Cx(Ix; B), where B = L5/4(Ω̃; H−3((0, T )× Ix⊥), (6.115)

and, in particular,

ũx
∣∣
x=0,1

and ũxx
∣∣
x=0,1

, (6.116)

are well defined in B.

Proof . If ũ almost surely satisfies (6.77), then Ũ :=
∫ t

0 ũ ds satisfies

∂Ũ

∂t
+ ∆

∂Ũ

∂x
+ c

∂Ũ

∂x
= F a.s., (6.117)

where F := ũ0 −
∫ t

0 B(ũ) ds+
∫ t

0 f ds+
∫ t

0 σ(ũ) dW̃ (s).

For the term
∫ t

0 B(ũ) ds, we note that by (4.10) in [40],

|ũũx|L9/8(M) ≤ |ũ|
2/3|∇ũ|4/3, for a.e. t and a.s..

Hence we have a.s.∣∣∣∣∫ t

0
B(ũ) ds

∣∣∣∣5/4
L5/4(0,T ;L9/8(M))

=

∫ T

0
|ũũx|5/4L9/8(M)

dt

.
∫ T

0

(
|ũ|5/6

)6
+
(
|∇ũ|5/3

)6/5
dt

.
∫ T

0
|ũ|5 + |∇ũ|2 dt.

(6.118)
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Since ũ ∈ L6(Ω̃; L∞(0, T ; L2(M)))∩L2(Ω̃; L2(0, T ; H1(M))), taking expectations on both

sides of (6.118) we have

Ẽ
∣∣∣∣∫ t

0
B(ũ) ds

∣∣∣∣5/4
L5/4(0,T ;L9/8(M))

<∞,

that is ∫ t

0
B(ũ) ds belongs to L5/4(Ω̃; L5/4(0, T ; L9/8(M))),

and hence belongs to L5/4(Ix; L5/4(Ω̃× (0, T )× Ix⊥)).

(6.119)

For the term
∫ t

0 σ(ũ) dW̃ (s), from (6.113) we deduce that
∫ t

0 σ(ũ) dW̃ (s) belongs to

L2(Ω̃; L2(0, T ; L2(M)).

Applying the above estimates, we obtain that

F belongs to L5/4(Ω̃; L5/4(0, T ; L9/8(M))),

and hence belongs to L5/4(Ix; L5/4(Ω̃× (0, T )× Ix⊥))).

(6.120)

Hence Lemma 7.2.2 (of the Appendix) applies with p = 5/4 and E = L5/4(Ω̃× (0, T )× Ix⊥),

and from (7.13) we have

Ũx and Ũxx belong to Cx(Ix; L5/4(Ω̃; H−2((0, T )× (Ix⊥))). (6.121)

Since Ũx(t) =
∫ t

0 ũx ds, we have d Ũx(t)
d t = ũx(t); differentiation in time maps continuously

H−2(0, T ) into H−3(0, T ) and from (6.121) we thus infer (6.115) and (6.116).

We now need to show that the boundary condition ũεkx
∣∣
x=1

= 0, “passes to the limit” to

imply (6.114). The idea is to apply Lemma 7.2.3 (of the Appendix) to Ũ εk(t) :=
∫ t

0 ũ
εk ds.

Rewriting (6.103) in an integral form and rearranging, we obtain a.s.

ũεk(t) +

∫ t

0
∆ũεkx ds+ c

∫ t

0
ũεkx ds+ εk

∫ t

0
Lũεk ds

= ũεk0 −
∫ t

0
B(ũεk) ds+

∫ t

0
f εk ds+

∫ t

0
σ(ũεk) dW̃ εk(s).

(6.122)
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Hence for almost every ω̃, Ũ εk satisfies the linearized parabolic regularized equation:
∂Ũ εk

∂t
+ ∆

∂Ũ εk

∂x
+ c

∂Ũ εk

∂x
+ εk LŨ

εk = F εk ,

Ũ εk
∣∣
x=0

= Ũ εk
∣∣
x=1

= Ũ εkx
∣∣
x=1

= Ũ εkxx
∣∣
x=0

= 0,

(6.123)

where F εk := ũεk0 −
∫ t

0 B(ũεk) ds+
∫ t

0 f
εk ds+

∫ t
0 σ(ũεk) dW̃ εk(s).

For the term
∫ t

0 B(ũεk) ds, by the same calculations as those leading to (6.118), we infer

from (6.80) and (6.82) that

Ẽ
∣∣∣∣∫ t

0
B(ũεk) ds

∣∣∣∣5/4
L5/4(0,T ;L9/8(M))

is bounded independently of εk. (6.124)

By (6.113) we deduce that
∫ t

0 σ(ũεk) dW̃ εk(s) remains bounded in L2(Ω̃; L2((0, T ); L2(M)).

Collecting all the previous estimates we conclude that Ẽ|F εk |5/4
L5/4(0,T ;L9/8(M))

is bounded

independently of εk, and hence

F εk is bounded independently of εk in L5/4(Ix; L5/4(Ω̃× (0, T )× Ix⊥)).

Applying Lemma 7.2.3 (of the Appendix) with p = 5/4, Ẽ = L5/4(Ω̃ × (0, T ) × Ix⊥) and

B̃ = L2(Ω̃; H−1
t (0, T ; L2(Ix⊥))) +L2(Ω̃; L2

t (0, T ; H−4(Ix⊥))) +L5/4(Ω̃× (0, T )× (Ix⊥)), we

deduce that Ũ εkx
∣∣
x=1

converges to Ũx
∣∣
x=1

weakly in B̃. Hence

Ũx
∣∣
x=1

(t) = 0, (6.125)

a.s. and for a.e. t ∈ (0, T ). Since Ũx
∣∣
x=1

(t) =
∫ t

0 ũx
∣∣
x=1

ds, thanks to the Lebesgue

differentiation theorem, we infer from (6.125) that ũx
∣∣
x=1

(t) = 0 a.s. and for a.e. t ∈ (0, T ).

Thus we have finished the proof of Theorem 6.3.1.

6.3.2 Pathwise Solutions in Dimension 2

We aim to establish the existence of pathwise solutions when d = 1, that is:

Theorem 6.3.2. When d = 1, assume that, relative to a fixed stochastic basis S, u0

satisfies (6.14), and that σ and f satisfy (6.8), (6.9), (6.11) and (6.15) respectively. Then
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there exists a unique global pathwise solution u which satisfies (6.1) and (2.2)-(2.4) in the

sense of Definition 6.3.2.

To prove this theorem, we first establish the pathwise uniqueness of martingale solu-

tions and then apply the Gyöngy-Krylov Theorem (Theorem 7.5.1 of the Appendix). The

difficulty lies in deducing the pathwise uniqueness due to a lack of regularity of the mar-

tingale solutions (see (6.75) and (6.76)). Adapting the idea from the deterministic case

(see Chapter 3), we introduce a preliminary result concerning the existence and uniqueness

of global pathwise solutions to the linearized stochastic ZK equation with additive noise.

More importantly, we establish an energy inequality, which leads to a suitable estimate of

the difference of the solutions for the application of the version of the stochastic Gronwall

lemma given in Lemma 7.7.2 below.

Linearized Stochastic ZK Equation with Additive Noise (d = 1)

Proposition 6.3.2. When d = 1, let S be a fixed stochastic basis, that is

S := (Ω,F , {Ft}t≥0,P, {W k}k≥1).

We consider the linearized stochastic ZK equation (c = 0),
dR+ ∆Rx dt = g dt+ h dW (t),

R(0) = R0,

(6.126)

with the boundary conditions (2.2) and (2.4) for R. We assume that

R0 ∈ L2(Ω; L2(M)), (6.127)

and h and g are given predictable processes relative to the stochastic basis S, such that

g ∈ L2(Ω; L4/3(0, T ; L4/3(M))) ∩ L2(Ω; L2(0, T ; Ξ′2)), (6.128)
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and

h ∈ L2(Ω; L2(0, T ; L2(U, L2(M))) ∩ L2(Ω; L2(0, T ; L2(U, Ξ1)). (6.129)

Then there exists a unique global pathwise solution R to (6.126) which satisfies (2.2) and

(2.4), and such that

R ∈ L2(Ω; L∞(0, T ; L2(M))) ∩ L2(Ω; L2(0, T ; H1
0 (M))), (6.130)

and

R(·, ω) ∈ C([0, T ]; L2
w(M)) a.s.. (6.131)

Furthermore R satisfies the following energy inequality for any stopping time τb with 0 ≤

τb ≤ T ,

1

2
E sup

0≤s≤τb
|R(s)|2 + E

∫ τb

0
|∇R|2 dt

≤ E|R(0)|2 + 2E
∫ τb

0
|(g, (1 + x)R)| dt+ c′ E

∫ τb

0
||h||2L2(U,L2(M)) dt.

(6.132)

Proof. We will first show the existence of the solutions, which is similar to that of the

nonlinear case, but only easier because the use of a compactness argument and the derivation

of strong convergence are not necessary for the linearized model. Then we will verify the

uniqueness of the solutions, which is direct since the noise is additive. More precisely, the

difference of two solutions satisfies a deterministic equation depending on the parameters

ω ∈ Ω. Finally, we will deduce the energy inequality (6.132) utilizing the duality between

the spaces to which g and R each belongs.

We start by proving the existence of pathwise solutions with application of the parabolic

regularization: 
dRε + (∆Rεx + εLRε) dt = gε dt+ h dW (t),

Rε(0) = Rε0,

(6.133)

supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-

ditions (6.17), (6.18). As in Section 6.2, there exist {Rε0}ε>0, a family of elements in the
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space L2(Ω; Ξ1) ∩ L22/3(Ω; L2(M)) which are F0 measurable, and such that, as ε→ 0,

Rε0 → R0 in L2(Ω; L2(M)) strongly; (6.134)

and there exist {gε}ε>0, a family of predictable processes relative to the stochastic basis S,

so that

gε ∈ L∞(Ω; L22/3(0, T ; L2(M))), (6.135)

gε → g in L2(Ω; L4/3(0, T ; L4/3(M))) strongly as ε→ 0. (6.136)

Since (6.129) corresponds to (6.8) and (6.9), we can use a proof similar to that of

Theorem 6.2.1 to deduce the existence and uniqueness of the global pathwise solution Rε

for each fixed ε. Note that for the proof of existence, although gε depends on ω, it will not

be a problem for us; this is essentially because we can prove the existence of a pathwise

solution without referring to any compactness argument.

In the sequel, we will derive the estimates independent of ε, then pass to the limit on

the parabolic regularization, where again we need to pay special attention to the boundary

conditions.

(i) Preliminary estimates independent of ε. We will prove the following bounds on Rε as

ε→ 0:

Rε remains bounded in L2(Ω; L∞(0, T ; L2(M))), (6.137)

Rε remains bounded in L2(Ω; L2(0, T ; H1
0 (M))). (6.138)

We start by multiplying both sides of (6.133) by
√

1 + x and applying the Itō formula,

we find

d|
√

1 + xRε|2 = 2 (
√

1 + xRε,
√

1 + xQ(Rε)) dt

+ 2(
√

1 + xRε,
√

1 + xh dW (t)) + ||
√

1 + xh||2L2(U,L2(M)) dt,

(6.139)

where Q(Rε) := −∆Rεx − ε LRε + gε.
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Let some stopping times τa, τb be given so that 0 ≤ τa ≤ τb ≤ T ; we integrate (6.139)

from τa to s and take the supremum over [τa, τb]. After taking expected values, and by the

same calculations as those leading to (6.87), we obtain that when ε ≤ 1

4
,

E sup
τa≤s≤τb

|Rε(s)|2 + E
∫ τb

τa

|∇Rε|2dt ≤ 2E |Rε(τa)|2 + 2E
∫ τb

τa

|(gε, (1 + x)Rε)| dt

+ 2E sup
τa≤s≤τb

∫ s

τa

((1 + x)Rε, h dW (t))

+ 2E
∫ τb

τa

||h||2L2(U,L2(M)) dt.

(6.140)

For the stochastic term, we have

E sup
τa≤s≤τb

∣∣∣∣∫ s

τa

((1 + x)Rε, h dW (t))

∣∣∣∣ . (by the Burkholder-Davis-Gundy inequality)

. E

[(∫ τb

τa

|Rε|2 ||h||2L2(U,L2(M)) dt

)1/2
]

≤ 1

4
E sup
τa≤s≤τb

|Rε|2 + c′ E
∫ τb

τa

||h||2L2(U,L2(M)) dt.

Hence (6.140) implies

1

2
E sup
τa≤s≤τb

|Rε(s)|2 + E
∫ τb

τa

|∇Rε|2 dt ≤ 2E |Rε(τa)|2

+ 2E
∫ τb

τa

|(gε, (1 + x)Rε)| dt

+ c′ E
∫ τb

τa

||h||2L2(U,L2(M)) dt.

(6.141)

To estimate the term E
∫ τb
τa
|(gε, (1 + x)Rε)| dt, we observe that a.s.

|(gε, (1 + x)Rε)| ≤ |gε|L4/3(M)|(1 + x)Rε|L4(M)

≤ (by Sobolev embedding in dimension 2)

≤ |gε|L4/3(M)|∇R
ε|1/2|Rε|1/2

≤ c′|gε|4/3
L4/3(M)

|Rε|2/3 +
1

4
|∇Rε|2

≤ c′|gε|4/3
L4/3(M)

(
|Rε|2 + 1

)
+

1

4
|∇Rε|2.
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Applying the above estimates to (6.141) we obtain

1

2
E sup
τa≤s≤τb

|Rε(s)|2 +
1

2
E
∫ τb

τa

|∇Rε|2 dt

≤ 2E |Rε(τa)|2 + 2c′ E
∫ τb

τa

|gε|4/3
L4/3(M)

|Rε|2 dt

+ E
∫ τb

τa

2c′|gε|4/3
L4/3(M)

+ c′||h||2L2(U,L2(M)) dt.

(6.142)

Thanks to (6.135) and (6.129), we can apply the stochastic Gronwall lemma (Lemma 7.7.1

below) to (6.142) to find

1

2
E sup

0≤s≤T
|Rε(s)|2 +

1

2
E
∫ T

0
|∇Rε|2 dt

. E |Rε0|2 + E
∫ T

0
|gε|4/3

L4/3(M)
+ ||h||2L2(U,L2(M)) dt.

(6.143)

Thanks to (6.136), we have |gε|L2(Ω;L4/3(0,T ;L4/3(M))) ≤ |g|L2(Ω;L4/3(0,T ;L4/3(M))) + c′. Hence

E
∫ T

0 |g
ε|4/3
L4/3(M)

. E
[∫ T

0 |g
ε|4/3
L4/3(M)

dt
]3/2

+ c′ ≤ |g|2
L2(Ω;L4/3(0,T ;L4/3(M)))

+ c′; thus (6.143)

implies that

1

2
E sup

0≤s≤T
|Rε(s)|2 +

1

2
E
∫ T

0
|∇Rε|2 dt

. E |R0|2 + |g|2
L2(Ω;L4/3(0,T ;L4/3(M)))

+ c′ + ||h||2L2(U,L2(M)) dt.

Hence along with (6.128) and (6.129), we obtain (6.137) and (6.138).

(ii) Estimates in fractional Sobolev spaces. By the same proof as for Lemma 6.3.3, with Y

defined as in (6.60), we derive the following estimates independent of ε.

E|Rε|2Y < κ8, (6.144)

with κ8 independent of ε. This estimate will be useful to prove the continuity in time in

(6.131).

(iii) Passage to the limit as εk → 0. With (6.137), (6.138) and (6.144), we deduce the

following weak convergences, for a subsequence εk → 0:

Rεk ⇀ R weakly in L2(Ω; L2(0, T ; H1
0 (M))) ∩ L2(Ω; Wα,2(0, T ; Ξ′2)), (6.145)
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Rεk ⇀ R weak star in L2(Ω; L∞(0, T ; L2(M))). (6.146)

We can thus pass to the weak limit in (6.133) and obtain

〈
R(t),R]

〉
+

∫ t

0

〈
∆Rx − g,R]

〉
ds =

〈
R0,R]

〉
+

∫ t

0

〈
h,R]

〉
dW, (6.147)

for almost every (ω, t) ∈ Ω× (0, T ) and every R] ∈ Ξ2.

To pass to the limit on the boundary conditions (2.2) and (2.4), we use the same idea

as in Section 6.3.1. Firstly, we can prove an analogue of Lemma 6.3.5; that is, Rx
∣∣
x=1

is

well defined if R ∈ L2(Ω; L∞(0, T ; L2(M))) ∩ L2(Ω; L2(0, T ; H1(M))), and satisfies an

equation like (6.147). To show this, we just need to observe that thanks to (6.128), Lemma

7.2.2 applies with p = 4/3 and E = L4/3(Ω×(0, T )×Ix⊥). Secondly, we can pass to the limit

on the boundary conditions applying Lemma 7.2.3 (of the Appendix) with p = 4/3, Ẽ =

L4/3(Ω× (0, T )× Ix⊥) and B̃ = L2(Ω; H−1
t (0, T ; L2(Ix⊥))) + L2(Ω; L2

t (0, T ; H−4(Ix⊥))) +

L4/3(Ω× (0, T )× (Ix⊥)).

To prove (6.131), we infer from (6.145) that R ∈Wα,2(0, T ; Ξ′2)∩L∞(0, T ; L2(M)) a.s.,

and hence R ∈ C(0, T ; H−5(M))) ∩ L∞(0, T ; L2(M)) a.s.. Thus R is weakly continuous

with values in L2(M) almost surely, which implies (6.131).

To conclude, we have proven the existence of a global pathwise solution R which satisfies

(6.126), (2.2) and (2.4).

(iv) Global pathwise uniqueness. We assume thatR1,R2 are two solutions of (6.126); setting

R = R1 − R2, we subtract the equation (6.126) for R1 from that for R2; we obtain that

almost surely 
∂R
∂t

+ ∆Rx = 0,

R0 = 0.

(6.148)

With (6.130), we have R ∈ L∞(0, T ; L2(M)) ∩ L2(0, T ; H1
0 (M)) a.s.. Hence we can apply

Lemma 3.2.1 and deduce that d
dt |R|

2 ≤ 0 for a.e. ω ∈ Ω and t ≥ 0; thus R(ω) = 0 follows
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whenever R0(ω) = 0.

(v) Passage to the limit to obtain energy inequality (6.132). From (6.141), we obtain when

τa = 0,

1

2
E sup

0≤s≤τb
|Rε(s)|2 + E

∫ τb

0
|∇Rε|2 dt ≤ 2E |Rε0|2 + 2E

∫ τb

0
|(gε, (1 + x)Rε)| dt

+ c′ E
∫ τb

0
||h||2L2(U,L2(M)) dt.

(6.149)

We infer from (6.145) and (6.146) that for any τb with 0 ≤ τb ≤ T ,

Rεk1t≤τb ⇀ R1t≤τb weakly in L2(Ω; L2(0, T ; H1
0 (M))),

Rεk1t≤τb ⇀ R1t≤τb weak star in L2(Ω; L∞(0, T ; L2(M))),

and hence we can pass to the lower limit on the left-hand-side of (6.149). To pass to the

limit on the term E |Rε0|2, we use (6.134).

For the term E
∫ τb

0 |(g
ε, (1 + x)Rε)| dt, we first note that in dimension 2,(∫ T

0
|Rε|4L4(M) ds

)1/4

≤
(∫ T

0
|Rε|2|∇Rε|2 ds

)1/4

≤ sup
0≤s≤T

|Rε(s)|1/2
(∫ T

0
|∇Rε|2 ds

)1/4

≤ 2 sup
0≤s≤T

|Rε(s)|+ 2

(∫ T

0
|∇Rε|2 ds

)1/2

.

Squaring both sides and taking the expectations we can use (6.137) and (6.138) to obtain

that, as ε→ 0,

Rε remains bounded in L2(Ω; L4(0, T ; L4(M))), (6.150)

and hence a subsequence of Rε converges weakly in the space L2(Ω; L4(0, T ; L4(M))),

which is the dual of L2(Ω; L4/3(0, T ; L4/3(M))). Since

E
∫ τb

0
|(gε, (1 + x)Rε)| dt = E

∫ T

0
|1t≤τb(g

ε, (1 + x)Rε)| dt = E
∫ T

0
|(gε1t≤τb , (1 + x)Rε)| dt,

we see that with (6.136), gε1t≤τb → g1t≤τb strongly in L2(Ω; L4/3(0, T ; L4/3(M))), and

hence the convergence of E
∫ τb

0 |(g
ε, (1 + x)Rε)| dt follows.
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Thus we can pass to the lower limit on the left-hand side of (6.149) and to the limit on

the right-hand side of (6.149), and thus deduce (6.132). Hence we have completed the proof

of Proposition 6.3.2.

Global Pathwise Uniqueness for the Full Stochastic ZK Equation (d = 1)

The following result establishes the pathwise uniqueness of martingale solutions to (6.1)

and (2.2)-(2.4).

Proposition 6.3.3. When d = 1, suppose that (S̃, ũ) and (S̃, ṽ) are two global martingale

solutions of (6.1), (2.2)-(2.4), relative to the same stochastic basis. We assume that the

conditions imposed in Definition 6.3.2 hold. We define

Ω0 = {ũ(0) = ṽ(0)}.

Then ũ, ṽ are indistinguishable on Ω0 in the sense that

P̃(1Ω0(ũ(t) = ṽ(t))) = 1, ∀ 0 ≤ t ≤ T. (6.151)

Proof. We will mainly use (6.132) from Proposition 6.3.2 and the version of the stochastic

Gronwall lemma given in Lemma 7.7.2 below. We define R = ũ − ṽ. Due to the bilinear

term B(ũ), when attempting to estimate R, the terms that involve only ũ or ṽ will arise.

To deal with this issue we define the stopping times

τ (m) = inf
t≥0

{
sup
s∈[0,t]

|ũ|2 +

∫ t

0
|∇ũ|2 ds+ sup

s∈[0,t]
|ṽ|2 +

∫ t

0
|∇ṽ|2 ds ≥ m

}

= sup
t≥0

{
sup
s∈[0,t]

|ũ|2 +

∫ t

0
|∇ũ|2 ds+ sup

s∈[0,t]
|ṽ|2 +

∫ t

0
|∇ṽ|2 ds ≤ m

}
.

(6.152)

We deduce from (6.104) that limm→∞ τ
(m) = ∞. Define R̄ = 1Ω0R, and the result will

follow once we show that for any m,

Ẽ

(
sup

[0,τ (m)∧T ]

|R̄|2
)

= 0. (6.153)
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Subtracting the equation (6.1) for ṽ from that for ũ, multiplying both sides by 1Ω0 , we

arrive at the following equation for R̄,
dR̄+ ∆R̄x dt =

(
−cR̄x + 1Ω0(B(ṽ)−B(ũ))

)
dt+ 1Ω0(σ(ũ)− σ(ṽ)) dW̃ (t),

R̄(0) = 0.

(6.154)

Hence together with the stochastic basis S̃, we can regard R̄ as a global pathwise solu-

tion to (6.154) written as (6.126) with the boundary conditions (2.2) and (2.4) , where

g = −cR̄x + 1Ω0(B(ṽ)−B(ũ)) and h = 1Ω0 (σ(ũ)− σ(ṽ)). To apply Proposition 6.3.2, now

we only need to show that (6.128) and (6.129) are satisfied. We infer from (6.69) that g ∈

L2(Ω̃; L2(0, T ; Ξ′2)). To show that g also belongs to the space L2(Ω̃; L4/3(0, T ; L4/3(M))),

we first note that Rx ∈ L2(Ω̃; L2((0, T ); L2(M))). Next we estimate B(u). By the Sobolev

embedding theorem in dimension 2, we deduce that |B(ũ)|L4/3(M) ≤ c′|ũ|L4(M)|ũx| ≤

c′|ũ|1/2|∇ũ|1/2|ũx|, and hence almost surely(∫ T

0
|B(ũ)|4/3

L4/3(M)
dt

)3/2

≤ c2

(∫ T

0
|ũ|2/3|∇ũ|2 dt

)3/2

≤ c′
(

sup
t∈[0,T ]

|ũ|2/3
∫ T

0
|∇ũ|2 dt

)3/2

= c′ sup
t∈[0,T ]

|ũ|
(∫ T

0
|∇ũ|2 dt

)3/2

≤ c′ sup
t∈[0,T ]

|ũ|7 +

(∫ T

0
|∇ũ|2 dt

)7/4

.

(6.155)

Since (6.81) and (6.83) imply that ũ and ṽ both belong to the space L7(Ω̃; L∞((0, T ); H1
0 (M)))∩

L7/2(Ω̃; L2((0, T ); H1
0 (M))), taking expectations on both sides of (6.155) we obtain

B(ũ) belong to L2(Ω̃; L4/3(0, T ; L4/3(M))). (6.156)

To conclude we infer that g ∈ L2(Ω̃; L4/3(0, T ; L4/3(M))). We infer from (6.11) that

||h||L2(U; Ξ1) = ||σ(ũ)− σ(ṽ)||L2(U; Ξ1) ≤ cU |R|,
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which implies that h ∈ L2(Ω̃; L2(0, T ; L2(U,Ξ1)). Similarly, By (6.9) we can deduce that

h ∈ L2(Ω̃; L2(0, T ; L2(U, L2(M))). Thus we have proven that h satisfies (6.129).

Now Proposition 6.3.2 applies, and we obtain (6.132) for any τb with 0 ≤ τb ≤ τ (m) ∧ T ,

τ (m) defined as in (6.152) (for notation simplicity, we will write τ (m) := τ (m) ∧ T from now

on). We then estimate the right-hand side of (6.132). Thanks to (6.152), we see that

R(· ∧ τ (m)) ∈ L∞(Ω̃; L∞((0, T ); L2(M))) ∩ L∞(Ω̃; L2((0, T ); H1
0 (M))), (6.157)

and hence the following calculations are all legitimate for t ∈ (0, τ (m)). We observe that

a.s. and for a.e. t:∣∣(g, (1 + x)R̄)
∣∣ =

∣∣−c(R̄x, (1 + x)R̄) + (B(ṽ)−B(ũ)), (1 + x)R̄)
∣∣

=

∣∣∣∣ c2 |R̄|2 +

(
R̄2, (1 + x)ũx −

1

2
(ṽ + (1 + x)ṽx)

)∣∣∣∣
≤ (with γ(t) = |ũx(t)|+ |ṽ(t)|+ |ṽx(t)|)

≤ c

2
|R̄|2 + c′γ(t)|R̄|2L4(M)

≤ (by interpolation H1/2 ⊂ L4 in dimension 2)

≤ c

2
|R̄|2 + c′γ(t)|R̄||∇R̄|

≤ 1

2
|∇R̄|2 + c′γ2(t)|R̄|2.

(6.158)

Applying (6.158) to (6.132), with R̄(0) = 0 we obtain

1

2
Ẽ sup

0≤s≤τb
|R̄(s)|2 +

1

2
E
∫ τb

0
|∇R̄|2 dt ≤ c′ Ẽ

∫ τb

0
γ2(t)|R̄|2 dt, (6.159)

for any stopping time τb with 0 ≤ τb ≤ τ (m). Along with (6.157), the version of the

stochastic Gronwall Lemma given in Lemma 7.7.2 below applies. Hence we obtain (6.153).

This completes the proof of Proposition 6.3.3.

Thanks to the pathwise uniqueness of martingale solutions, we can apply the Gyöngy-

Krylov Theorem to prove the existence of the pathwise solutions (for more details, see [11]).

Proof of Theorem 6.3.2. We consider the families (uε, uε
′
,W ), where uε and uε

′
are

pathwise solutions to the parabolic regularization (6.16)-(6.18), (2.2) and (2.4). Then by
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(6.99) and (6.100), we can define the joint distributions of (uε, uε
′
,W ) as νε,ε

′
= µεu×µε

′
u×µW

on the phase space Xu×Xu×XW (Xu and XW defined in (6.98)). With the same argument as

for Lemma 6.3.4, we can show that the family {νε,ε′} is tight in ε and ε′. By the Skorokhod

embedding theorem, we deduce the existence of a family (ũε, ˜̃uε
′
, W̃ ) defined on a different

probability space which converges almost surely to an element (ũ, ˜̃u, W̃ ). By the same proof

as for Proposition of 6.3.1, we can show that (ũε, W̃ ) and (˜̃uε
′
, W̃ ) both satisfy (i)-(v). In

particular, (ũε, ˜̃uε
′
) have the same probability distributions, µεu × µε

′
u , as (uε, uε

′
), and the

family {µεu × µε
′
u }ε,ε′>0 is tight and hence converges weakly to a probability measure µ1,

defined by µ1(·) = P(ũ, ˜̃u ∈ ·). It is clear that ũ and ˜̃u are both martingale solutions to (6.1)

and (2.2)-(2.4), hence by the pathwise uniqueness (Proposition 6.3.3), ũ = ˜̃u a.s.. Thus

µ1({(u, v) ∈ Xu ×Xu : u = v}) = P(ũ = ˜̃u in Xu) = 1.

We can apply the Gyöngy-Krylov Theorem (Theorem 7.5.1 of the Appendix) and deduce

that the original family uε defined on the initial probability space converges in probability,

and hence converges almost surely up to a subsequence, to an element u in the topology

of Xu. Thus we can pass to the limit on the regularized equation as explained in details

in Section 6.3.1. To conclude we have established the existence of a pathwise solutions to

(6.1), (2.2)-(2.4), and we have completed the proof of Theorem 6.3.2.

Remark 6.3.2. For the space periodic case, that is, (6.1) and the boundary and initial

conditions (2.2), (2.3) and (2.5), the results will be the same with the Dirichlet case. The

reasoning will be similar as in Chapter 3.
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Chapter 7

Appendix

7.1 Space Σ(M) and its Dual Σ′(M)

To derive and justify equation (2.9) we need to introduce the concept of distributions on

M̃ = Ix × Ry × Rz, (7.1)

which are periodic in y and z (and usual distributions in x). This concept combines the

concept of distributions on an open set (see [41]) with that of periodic distributions (see [41]

and [19]).

We consider the space Σ(M) of functions which are C∞ in M̃, periodic in the y and z

directions, periodic with all the derivatives, with period 2π, and which are compactly sup-

ported in Ix. This space is equipped with the (metrizable) topology of uniform convergence

on any compact set of M̃ of the functions and all its derivatives. The dual Σ′(M) of Σ(M)

is the desired space of distributions. One can define derivatives on this space and perform

the usual operations performed on distributions. Also, as in the case of D(M), we can

show that the space spanned by ϕωk1(y)ωk2(z) with ϕ ∈ D(Ix) is dense in Σ(M), where

{ωk1(y)} is an orthonormal basis of L2(Iy) and a smooth periodic functions with period 2π,

and the same thing for {ωk2(z)} in L2(Iz). We will also assume below that the ωk1 are

the eigenfunctions of the operators d2/dy2 on Iy (sine and cosine functions) which form an

orthonormal basis of L2(Iy) , and the ωk2 are the eigenfunctions of the operators d2/dz2 on
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Iz which form an orthonormal basis of L2(Iz).

If a function u belongs to L2(M), let ū be its extension to M̃ by periodicity in y and z

and let

u =
∑
k

ûk(x)ωk1(y)ωk2(z) (7.2)

be its expansion in L2(Iy × Iz). This expansion being convergent in L2(M) as observed

before, it also converges to u in Σ′(M) , which simply means that∫
Ix

∫
Iy×Iz

uN (x, y, z)ψ(x, y, z) dxdydz

converges to ∫
Ix

∫
Iy×Iz

u(x, y, z)ψ(x, y, z) dxdydz, ∀ψ ∈ Σ(M),

where

uN (x, y, z) =
∑
|k|≤N

ûk(x)ωk1(y)ωk1(z), N ∈ N. (7.3)

With these in mind we can state the following:

Lemma 7.1.1. For u ∈ L2(M) as in (7.2), we have

〈∆ux + cux, ϕ ωk1(y)ωk2(z)〉 = −Cd 〈ϕ′′′ − (λk − c)ϕ′, ûk〉, ∀ϕ ∈ D(Ix),

where λk = λk1 + λk2, and Cd is a constant depending only on the dimension.

Hence

〈∆ux + cux, ωk1(y)ωk2(z)〉 = Cd(û
′′′
k (x)− (λk − c)û′k(x)), (7.4)

in the sense of distributions on D(Ix).

Proof. We observe that, for ϕ ∈ D(Ix), ϕωk1(y)ωk2(z) ∈ Σ(M) and then classically

〈∆ux + cux, ϕ ωk1 ωk2〉 = −〈u, (∆ + c)∂x(ϕωk1 ωk2)〉

= −〈u, (ϕ′′′ − (λk − c)ϕ′)ωk1 ωk2〉

= −Cd〈ûk, ϕ′′′ − (λk − c)ϕ′〉

= Cd〈û′′′k − (λk − c)û′k, ϕ〉,
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and the conclusion follows.

Corollary 7.1.1. Under the hypothesis of Lemma 7.1.1, if we further assume that ∆ux +

cux ∈ L2(M), then

û′′′k − (λk − c)û′k = ĝk, (7.5)

holds in L2(M), where g := ∆ux + cux, and ĝk(x) are the Fourier coefficients of g as in

(7.2).

Proof . Since g ∈ L2(M), 〈g, ωk1 ωk2〉 = Cd ĝk. Hence by (7.4), we obtain that (7.5) holds

in the sense of distributions on D(Ix).

Define

Yk = û′′k − (λk − c)ûk −
∫ x

0
ĝk(ξ)dξ. (7.6)

Then (7.5) implies Y ′k = 0. Hence Yk = C(k) a.e., with C(k) a constant independent of

x. Thus û′′k ∈ L2(Ix). By the intermediate derivatives theorem, û′k ∈ L2(Ix). Hence (7.5)

implies

û′′′k ∈ L2(Ix). (7.7)

Thus (7.5) holds in L2(Ix).

Remark 7.1.1. Note that we will also briefly use the space Σ′((0, T )×Ω) corresponding to

distributions that are regular distributions in x and t, and periodic in y or y and z.

7.2 Trace Results

The following is a slight generalization used in the article of a trace result from [40] allowing

the value p = 1.

Lemma 7.2.1. Let Y be a reflexive Banach space and let p ≥ 1. Assume that two sequences
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of functions uε, gε ∈ Lpx(Ix;Y ) satisfy
uεxxx + εuεxxxx = gε,

uε(0) = uε(1) = uεx(1) = uεxx(0) = 0,

(7.8)

with gε bounded in Lpx(Ix;Y ) as ε → 0. Then uεxx (and hence uεx, and uε) is bounded in

L∞x (Ix;Y ) as ε → 0. Furthermore, for any subsequences uε → u converging (strongly or

weakly) in Lqx(Ix;Y ), 1 ≤ q <∞, uεx(1) converges to ux(1) in Y (weakly at least), and hence

ux(1) = 0.

Proof . Firstly, by the same proof as in [40], we obtain

|uεxx(x)|Y ≤ c′|gε|L1(Y ), (7.9)

which shows that uεxx remains bounded in L∞(0, 1;Y ) as ε→ 0.

Secondly, we prove the weak convergence of uεx(1). Since uεxx is bounded in L∞x (Ix;Y ) as

ε→ 0, applying the Banach-Alaugu theorem to the reflexive Banach space Lrx(Ix;Y ), 1 <

r <∞, we deduce that uxx ⇀ v weakly in Lrx(Ix;Y ) for some function v ∈ Lrx(Ix;Y ). Since

we know that uε → u strongly or weakly in Lqx(Ix;Y ), it is easy to see that v = uxx ∈

Lqx(Ix;Y ). Hence we have

uεxx ⇀ uxx weakly in Lqx(Ix;Y ). (7.10)

By the trace theorem and Mazur’s theorem, ux(1) converges to ux(1) weakly in Y .

Remark 7.2.1. Note that in (7.10), q can not be ∞, and hence we can not pass to the

limit on the boundary term uεxx(0) based on the argument above. This is fine because we

do not care about passing to the limit on this boundary term as we do not necessarily have

uxx(0) = 0 in the Z-K equation.

The following trace result is an extension of the linear case of Lemma 3.1.1.
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Lemma 7.2.2. Let u be a random process defined on a probability space (Ω,F ,P). F is a

given function such that

F ∈ Lp(Ix; E), where E = Lp(Ω× (0, T )× Ix⊥), p > 1. (7.11)

We assume that u ∈ L2(Ω; L2(0, T ; H1(M))) satisfies almost surely the following linear

equation

ut + ∆ux + cux = F, (7.12)

that is, almost surely we have

u(t) +

∫ t

0
(∆ux + cux)ds = u(0) +

∫ t

0
F ds,

in the sense of distributions on D(M) for every 0 ≤ t ≤ T . Then

ux, uxx ∈ Cx(Ix; B), B = L2(Ω; H−2((0, T )× Ix⊥)) ∩ E . (7.13)

and, in particular,

ux
∣∣
x=0,1

and uxx
∣∣
x=0,1

, (7.14)

are well defined in B.

Proof . We write equation (7.12) in the form

uxxx = F − cux −∆⊥ux − ut.

Then clearly we have

uxxx ∈ Lp∧2
x (Ix; L2(Ω; H−2((0, T )× Ix⊥)) ∩ E), p ≥ 1, (7.15)

which implies that (7.13) holds.

We use Lemma 7.2.2 in the proof of Lemma 6.3.5 with p = 5/4 and E = L5/4(Ω̃×(0, T )×

Ix⊥), and in the proof of Proposition 6.3.2 with p = 4/3 and E = L4/3(Ω× (0, T )× Ix⊥).

We are now ready to prove the following trace result generalized from the argument in

Lemma 7.2.1.
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Lemma 7.2.3. Let {uε}ε>0 be a family of random processes, all defined on the same prob-

ability space (Ω,F ,P). We consider the following linearized regularized equation
uεt + ∆uεx + cuεx + εLuε = F ε,

uε
∣∣
x=0

= uε
∣∣
x=1

= uεx
∣∣
x=1

= uεxx
∣∣
x=0

= 0,

(7.16)

where F ε remains bounded in the reflexive Banach space Lp(Ix, Ẽ), with Ẽ := Lp(Ω×(0, T )×

Ix⊥), p > 1. We suppose that uε almost surely satisfies (7.16), that is, almost surely we

have

uε(t) +

∫ t

0
(∆uεx + cuεx + εLuε − F ε) ds = uε(0),

in the sense of distributions on D(M) for every 0 ≤ t ≤ T . We assume that uε converges

weakly to some u in L2(Ω; L2(0, T ; H1
0 (M))) as ε→ 0, then uεx(1) converges to ux(1) in B̃

specified below, and hence ux(1) = 0.

Proof . By (7.16) we have

uεxxx + εuεxxxx = F ε − uεt − cuεx −∆⊥uεx − εuεyyyy − εuεzzzz.

We call the right hand side gε. It is easy to observe that, since uε remains bounded in

L2(Ix; L2(Ω × (0, T ) × Ix⊥) as ε → 0, then gε remains bounded in the reflexive Banach

space Lp∧2
x (Ix; B̃), p > 1, where

B̃ = L2(Ω; H−1
t (0, T ; L2(Ix⊥))) + L2(Ω; L2

t (0, T ; H−4(Ix⊥))) + Ẽ . (7.17)

Thus we can apply Lemma 7.2.1 with this space B̃ and obtain the convergence of the

boundary term uεx(1).

Lemma 7.2.3 is applied in Section 6.3.1 with p = 5/4 and Ẽ = L5/4(Ω̃ × (0, T ) × Ix⊥)

and in the proof of Proposition 6.3.2, with p = 4/3, Ẽ = L4/3(Ω × (0, T ) × Ix⊥) and

B̃ = L2(Ω; H−1
t (0, T ; L2(Ix⊥))) + L2(Ω; L2

t (0, T ; H−4(Ix⊥))) + L4/3(Ω× (0, T )× (Ix⊥)).
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7.3 Compact Embedding Theorems

We recall the theorems from [18] and [17] (see also [43] for Lemma 7.3.1).

Definition 7.3.1. (The Fractional Derivative Space) We assume that H is a separable

Hilbert space. Given p̃ ≥ 2, α ∈ (0, 1), Wα,p̃(0, T ; H) denotes the Sobolev space of all

h ∈ Lp̃(0, T ; H) such that

∫ T

0

∫ T

0

|h(t)− h(s)|p̃H
|t− s|1+αp̃

dt ds <∞, (7.18)

which is endowed with the Banach norm

|h|Wα,p̃(0,T ;H) =

(∫ T

0
|h(t)|p̃H dt+

∫ T

0

∫ T

0

|h(t)− h(s)|p̃H
|t− s|1+αp̃

dt ds

)1/p̃

<∞. (7.19)

Lemma 7.3.1. (i) Let E0 ⊂ E ⊂ E1 be Banach spaces, E0 and E1 reflexive, with continuous

injections and a compact embedding of E0 in E. Let 1 < p <∞ and α ∈ (0, 1) be given. Let

Y be the space

Y := Lp(0, T ; E0) ∩Wα,p(0, T ; E1), (7.20)

endowed with the natural norm. Then the embedding of Y in Lp(0, T ; E) is compact.

(ii) If E ⊂ Ē are two Banach spaces with E compactly embedded in Ē , 1 < p < ∞ and

α ∈ (0, 1) satisfy

αp > 1,

then the space Wα,p(0, T ; E) is compactly embedded into C([0, T ]; Ē).

7.4 Convergence Theorem for the Noise Term

The following convergence theorem for the stochastic integrals is used to facilitate the

passage to the limit in the parabolic regularization approximation. The statements and

proofs can be found in [2], [23] and [11].
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Lemma 7.4.1. Let {Ω,F ,P} be a fixed probability space, and X a separable Hilbert space.

Consider a sequence of stochastic bases Sn := (Ω,F , {Fnt }t≥0,P,Wn), such that each Wn

is a cylindrical Brownian motion (over U) with respect to {Fnt }t≥0. We suppose that the

{Gn}n≥1 are a sequence of X -valued Fnt predictable processes so that Gn ∈ L2((0, T ); L2(U,X ))

a.s.. Finally consider S := (Ω,F , {Ft}t≥0,P,W ) and a function G ∈ L2((0, T ); L2(U, X )),

which is Ft predictable. If

Wn →W in probability in C([0, T ]; U0),

Gn → G in probability in L2((0, T ); L2(U,X )),

then ∫ t

0
Gn dWn →

∫ t

0
GdW in probability in L2((0, T ); X ).

Then we have the following lemma based on the Burkholder-Davis-Gundy inequality and

the notion of fractional derivatives in Definition 7.3.1 (whose proof can be found in [18]).

Lemma 7.4.2. Let q ≥ 2, α >
1

2
be given so that qα > 1. Then for any predictable process

h ∈ Lq(Ω× (0, T ); L2(U, H)), we have

∫ t

0
h(s) dW (s) ∈ Lq(Ω; Wα,q(0, T ; H)),

and there exists a constant c′ = c′(q, α) ≥ 0 independent of h such that

E
∣∣∣∣∫ t

0
h(s) dW (s)

∣∣∣∣q
Wα,q(0,T ;H)

≤ c′(q, α)E
∫ t

0
|h(s)|qL2(U,H) ds. (7.21)

7.5 Some Probability Tools

We recall the Gyöngy-Krylov Theorem from [23], which is used in proving the existence of

pathwise solutions.
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Theorem 7.5.1. Let X be a Polish space. Suppose that {Ym} is a sequence of X -valued

random variables on a probability space (Ω,F ,P). Let {µk,m}k,m≥1 be the sequence of joint

laws of {Ym}m≥1, that is

µk,m(E) := ((Yk, Ym) ∈ E), E ∈ B(X × X ).

Then {Ym} converges in probability if and only if for every subsequence of joint probabil-

ity measures, {µkl,ml}l≥0, there exists a further subsequence which converges weakly to a

probability measure µ such that

µ({(u, v) ∈ X × X : u = v}) = 1. (7.22)

7.6 The Jakubowski-Skorokhod Representation Theorem

We recall the following result from [35].

Lemma 7.6.1. Let A1 be a topological space such that there exists a sequence {fm} of

continuous functions fm : A1 → R that separate points of A1. Let A2 be a Polish space,

that is, a separable completely metrizable topological space, and let I : A2 → A1 be a

continuous injection. Then I(B) is a Borel set in A1 whenever B is Borel in A2.

The following result is a special case of Lemma 7.6.1.

Lemma 7.6.2. Let A1 be a separable Hilbert space. Assume that A2 is a separable Hilbert

space continuously injected into A1. Then A2 is a Borel set of A1.

Proof. Firstly, it is clear that any separable Hilbert space A1 satisfies the hypotheses of

Lemma 7.6.1. Since A2 is a separable Hilbert space, hence it is a Polish space. Now in

Lemma 7.6.1, let B be A2, which of course is a Borel set of A2. Then I(B) = I(A2) = A2

is a Borel set in A1 thanks to Lemma 7.6.1.

We use Lemma 7.6.2 in the proof of Proposition 6.3.1.
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7.7 An Adapted Stochastic Gronwall Lemma

We first recall the stochastic Gronwall lemma from [21] (see also [34]), then we present a

variant result which is used in the proof of Proposition 6.3.3.

Lemma 7.7.1. Fix T > 0. We assume that

X,Y, Z,M : [0, T )× Ω→ R,

are real valued, non-negative stochastic processes. Let 0 ≤ τ < T be a stopping time so that

E
∫ τ

0
(MX + Z) ds <∞. (7.23)

We suppose, moreover that for some fixed constant κ,

∫ τ

0
M ds < κ, a.s.. (7.24)

Suppose that for all stopping times τa, τb with 0 ≤ τa ≤ τb ≤ τ we have

E

(
sup

t∈[τa,τb]
X +

∫ τb

τa

Y ds

)
≤ C0 E

(
X(τa) +

∫ τb

τa

(MX + Z) ds

)
, (7.25)

where C0 is a constant independent of the choice of τa, τb. Then

E

(
sup

t∈[τ0,τ ]
X +

∫ τ

τ0

Y ds

)
≤ C E

(
X(0) +

∫ τ

τ0

Z ds

)
, (7.26)

where C = C(C0, T, κ).

When X(0) = 0 and Z = 0 we can weaken the hypotheses by requiring that (7.25) only

holds for τa = 0 and all τb, 0 ≤ τb ≤ τ . We then obtain

Lemma 7.7.2. We assume that X(0) = 0 and Z = 0 in Lemma 7.7.1 and that (7.25) holds

only for τa = 0 and all τb, 0 ≤ τb ≤ τ , that is:

E

(
sup

t∈[0,τb]
X +

∫ τb

0
Y ds

)
≤ C0 E

(
X(0) +

∫ τb

0
MX ds

)
, (7.27)

124



where C0 is a constant independent of the choice of τb. Then the calculation (7.26) holds

true and reduces to

E sup
t∈[0,τ ]

X = E
∫ τ

0
Y ds = 0. (7.28)

Proof. Step 1. We first show how to construct a finite sequence of stopping times

0 < τ1 < ... < τN < τN+1 = τ a.s.,

so that ∫ τj+1

τj

M ds <
1

2C0
a.s., ∀ j = 1, ..., N. (7.29)

We construct the sequence inductively. We start with time 0. We assume that τj−1 is

found. Then define

τj := inf
t≥0

{∫ t

τj−1

M ds <
1

2C0

}
∧ τ,

and τj > 0 is well-defined since M > 0 and it satisfies (7.24). Hence we have

∫ τj

τj−1

M ds ≥ 1

2C0
, ∀ j ≥ 1 such that τj < τ. (7.30)

Now we claim that there exists a finite integer N such that τN = τ , and

N ≤ 2C0κ+ 1, a.s.. (7.31)

We show this by contradiction; suppose that (7.31) is not true, then N − 1 > 2C0κ, and

hence

∫ τN+1

0
M ds =

N−1∑
j=1

∫ τj+1

τj

M ds+

∫ τ

τN

M ds ≥ with (7.30) ≥ (N − 1)
1

2C0
> κ.

But this contradicts with (7.24). Hence (7.31) is proven, and we can choose the integer

N = p2C0κ+ 1q.

Step 2. Letting τb = τ1 in (7.27), we have

E

(
sup

t∈[0,τ1]
X +

∫ τ1

0
Y ds

)
≤ C0 E

∫ τ1

0
MX ds; (7.32)
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from (7.32), (7.23) and (7.29) we infer

E

(
1

2
sup

t∈[0,τ1]
X +

∫ τ1

0
Y ds

)
= 0. (7.33)

Thanks to (7.33), for every τb ≥ τ1 a.s., we find that

E sup
t∈[0,τb]

X = E sup
t∈[τ1,τb]

X,

E
∫ τb

0
Y ds = E

∫ τb

τ1

Y ds,

E
∫ τb

0
MX ds = E

∫ τb

τ1

MX ds.

(7.34)

Thus from (7.34) and (7.27), we infer that for every τb ≥ τ1 a.s.,

E

(
sup

t∈[τ1,τb]
X +

∫ τb

τ1

Y ds

)
≤ C0 E

(∫ τb

τ1

MX ds

)
. (7.35)

Setting τb = τ2 in (7.35), we have

E

(
sup

t∈[τ1,τ2]
X +

∫ τ2

τ1

Y ds

)
≤ C0 E

(∫ τ2

τ1

MX ds

)
; (7.36)

with (7.36), (7.23) and (7.29) we deduce

E

(
1

2
sup

t∈[τ1,τ2]
X +

∫ τ2

τ1

Y ds

)
= 0. (7.37)

Hence by finite induction up to N we obtain (7.28).
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via approximations. Probab. Theory Related Fields, 105(2):143–158, 1996.

[24] Russell L. Herman and Andrew Rose. Numerical realizations of solutions of the stochas-

tic KdV equation. Math. Comput. Simulation, 80(1):164–172, 2009.

[25] Einar Hille and Ralph S. Phillips. Functional analysis and semi-groups. American

Mathematical Society, Providence, R. I., 1974. Third printing of the revised edition of

1957, American Mathematical Society Colloquium Publications, Vol. XXXI.

129



[26] A. Jakubowski. The almost sure Skorokhod representation for subsequences in non-

metric spaces. Teor. Veroyatnost. i Primenen., 42(1):209–216, 1997.

[27] E.W. Laedke and K.H. Spatschek. Growth rates of bending solitons. J. Plasma Phys.,

26(3):469–484, 1982.

[28] Nikolai A. Larkin and Eduardo Tronco. Regular solutions of the 2D Zakharov-

Kuznetsov equation on a half-strip. J. Differential Equations, 254(1):81–101, 2013.

[29] F. Linares, D. Lannes, and Jean-Claude Saut. The Cauchy problem for the Euler-

Poisson system and derivation of the Zakharov-Kuznetsov equation. Progress in Non-

linear Differential Equations and their Applications, M. Cicognani, FL. Colombini

and D. Del Santo Eds., Vol 84:183–215, 2013.

[30] Felipe Linares and Jean-Claude Saut. The Cauchy problem for the 3D Zakharov-

Kuznetsov equation. Discrete Contin. Dyn. Syst., 24(2):547–565, 2009.

[31] J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and appli-

cations. Vol. I. Springer-Verlag, New York, 1972. Translated from the French by P.

Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.
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sectional meeting, University of California, Riverside, Nov. 2013

“Some recent results of the 3D Zakharov-Kuznetsov equation in a bounded domain”, the AMS
sectional meeting, University of Louisville, Oct. 2013

“An initial and boundary-value problem for the Zakharov-Kuznetsov equation in a bounded do-
main”, the AMS sectional meeting, University of Arizona, Oct. 2012

Conferences and workshops (Attendance only)

“Heidelberg Laureate Forum (HLF)”, Heidelberg, Germany, Sept. 2014, total expense supported
by the HLF foundation and ORAU (19 people for all of Math and Computer Science for all the US
and 200 internationally)

“IPAM Workshop: Mathematical Analysis of Turbulence”, Institute for Pure and Applied Math-
ematics, Oct. 2014

“MSRI Summer Graduate School: Stochastic Partial Differential Equations”, Mathematical Sci-
ences Research Institute, July 2014 (selected for participation nationally)

“IMA Workshop: Theory and Applications of Stochastic PDEs”, Institute for Mathematics and
its Applications, Jan. 2013

“AIM Workshop: Stochastic in Geophysical Fluid Dynamics”, The American Institute of Mathe-
matics, Feb. 2013

“The 9th AIMS Conference on Dynamical Systems, Differential Equations and Applications”,
Orlando, Florida, July 2012

“Interdisciplinary Session on Deterministic and Stochastic Partial Differential Equations”, the
AMS sectional meeting, University of Notre Dame, Nov. 2010

Teaching Experiences

Indiana University (Fall 2009 - present):

Lecturing (Precalculus (M025), Spring 2014)

Main Lecturer (seminar classes “Stochastic Partial Differential Equations” (M741), Fall 2013)

Assisting (Finite Mathematics)
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