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We study in this thesis the well-posedness and regularity of the Zakharov-Kuznetsov (ZK)
equation in the deterministic and stochastic cases, subjected to a rectangular domain in
space dimensions 2 and 3. Mainly we have established the existence, in 3D, and
uniqueness, in 2D, of the weak solutions, and the local and global existence of strong
solutions in 3D. Then we extend the results to the stochastic case and obtain in 3D the
existence of martingale solutions, and in 2D the pathwise uniqueness and existence of
pathwise solutions. The main focus is on the mixed features of the partial hyperbolicity,
nonlinearity, nonconventional boundary conditions, anisotropicity and stochasticity, which
requires methods quite different than those of the classical models of fluid dynamics, such

as the Navier-Stokes equation, Primitive Equation and related equations.
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Chapter 1

Introduction

The Zakharov-Kuznetsov (ZK) equation

ou ou ou ou

where u = u(z, 24, t), - =y or - = (

y, z), describes the propagation of nonlinear ionic-
sonic waves in a plasma submitted to a magnetic field directed along the z-axis. It has been
derived formally in a long wave, weakly nonlinear regime from the Euler-Poisson system
in [45], [27] and [29] (see also [4] and [5] for more general physical backgrounds). When «
depends only on x and ¢, the ZK equation reduces to the classical Korteweg-de Vries (KdV)
equation. But it is quite different from the Kadomtsev-Petviashivili equation, where e.g.
the ZK equation is not completely integrable but has a hamiltonian structure (see [29]).

Recently the ZK equation has caught considerable attention (see e.g. [15], [16], [28], [13],
[1], [40]), not only because it is closely related with the physical phenomena but also the start
to explore more general problems that are partially hyperbolic (such as the inviscid primitive
equations). Moreover, the study of the stochastic hyperbolic equations is meaningful as
general stochastic random waves have gathered interests nowadays to capture phenomena
similar to those of more realistic fluid systems.

More specifically, on the one hand, for the Cauchy-problem for the ZK equation, it has
1

been proven to be globally well posed in the two-dimensional case (z— = y) for data in

H'(R?) (see [14]), and locally well-posed in the three-dimensional case for data in H*(R?),



s > 3 (see [30]), and recently in H*(R®), s > 1 (see [38]). Then for both numerical
purposes and problems of controllability, people have turned to the initial-boundary value
problem (IBVP) for the ZK equation. The well-posedness have been studied in the half
space {(z,y) : = > 0} (see [15]), on a strip like {(z,y) : = € R,y € (0,L)} (see [1])
or {(z,2t) : x € (0,1), 2t € R% d = 1,2} (see [16] and [40]). On the other hand, as
for the regularity of solutions, the global existence of strong solutions in space dimension
2 has been proven in a half strip {(z,y) : = > 0,y € (0,L)} in [28]. The existence
and exponential decay of regular solutions to the linearized ZK equation in a rectangle
{(z,y) : x € (0,L), y € (0,B)} has been studied in [13]. Finally, for the stochastic case,
the stochastic KAV equation has been studied extensively (see [10], [20] and [12])), where
the main focus are on Wick-type SPDEs (see [46] and [33]) and exact solutions under the
additive noise (see [24]).

To conclude, the problem of the well-posedness of the (deterministic and stochastic) ZK
equation in a bounded domain and regularity of solutions (in space dimension 3) have not
yet been thoroughly explored. Hence here we aim to systematically analyse these problems

in the rectangular domain
M= {(z,z1), z € (0,1), 2t € (=n/2,7/2)%, d =1,2}. (1.2)

Firstly for the deterministic case, we establish, for arbitrary large initial data, the existence
of global weak solutions in space dimensions 2 and 3 (d = 1 and 2 respectively) and a result
concerning the uniqueness of such solutions in the two-dimensional case (Chapter 3). Then
we prove the short and then global time existence of strong solutions in space dimension
3 (Chapters 4 and 5). Finally we extend the results of existence and uniqueness of weak
solutions to the stochastic case (Chapter 6).

The proof adopts new ideas other than those of the classical models in fluid dynamics,

such as the Navier-Stokes equation, Primitive Equation and related equations. This is



mainly because as a partial differential equation with mixed features (partial hyperbolicity,
nonlinearity, nonconventional boundary conditions, anisotropicity and stochasticity), the
ZK equation sits at the interface between probability theory, mathematical analysis and
theory of parabolic and hyperbolic partial differential equations, and hence requires novel

methods, which will be elaborated below.

1.1 Existence and Uniqueness of the Weak Solution to the Zakharov-

Kuznetsov (ZK) Equation

We consider a limited domain M as in (1.2). We assume the boundary conditions on
x=20,1 to be

u(0, zt, t) = u(l, zt, t) = u.(1, zt, t) =0,

In the y and z directions, we will choose either the Dirichlet boundary conditions or the
periodic boundary conditions.

We first establish in Chapter 2 various results concerning basic functional spaces and
their traces and regularity results. Proceeding in steps we first introduce a functional space
X(M) = {u € L>(M) : Auy + cu, € L*(M)}, for which traces on the y, z boundaries
can not be defined (Section 2.1), then a subspace X3(M) = {u € X(M),u = 0at z =
0,1, and u, = 0 at x = 1}, for which such traces are defined (Section 2.2), and finally the
spaces D(A) = {u € Xy(M),u=0at y = % (and z = £5)}, and D(Ape,)={uc X1 (M),
u is periodic with the first order derivatives periodic in y, z, with period 7}, covering all
the boundary conditions in the Dirichlet and space periodic cases (Sections 2.3, 2.4).

We then study in Section 2.5 the linear ZK equation, which will be applied to prove for
the uniqueness of solutions for the nonlinear equation.

In Chapter 3 we establish for the full nonlinear problem the following well-posedness

result:



Theorem 1.1.1. We are given the initial data ug € L*(M) and f € L (Ry; LE2(M)),
M=(0,1), x (—7/2,7/2)%, d =1,2. Then:

(1) The initial and boundary-value problem for the ZK equation has a weak solution u,

w e L¥(0,T; L*(M)) N L*(0,T; Hy(M)),
/ / |ux0x t)2 dat dt < oo,

(ii) If d = 1, then the solution u is unique. Moreover, u € C([0,T]; L>(M)) and the

for all T > 0.

flow map ug — u(-,t) is continuous from L?>(M) to L*(M).

The proof is carried out mainly using the following parabolic regularization and a com-

pactness argument:

ou® ou® ou® ou¢ ot 0t 0tue
+A At tu o te(mgt+ a5t o)
Oz oy 0z (1.3)

ot ox ox ox

u(0) = uo.
1.2 Local and Global Existence of Strong Solutions in 3D

In chapter 4 we establish the short time existence of strong solutions in a 3D rectangular

domain.

Theorem 1.2.1. We assume suitable regularity on the data and compatibility conditions.
Then there exists a local strong solution to the ZK equation on some time interval [0,T}),

T, > 0 depending only on the data, such that
Vo, Uy, Uz, U € LOO(O,T*;LQ(M)),

u € L*(0,T,; D(A) NEN H3(I,; L*(I,1)) N H3(I,1; L* (1)),

ug € L2(0, Ty; HY(M)).



Moreover, we have for every t € (0,T%),

uyy(t)’y:i% = uzz(t)|zzi% =0.

The proof is different from e.g. that of the Navier-Stokes equation, due to the partial
hyperbolicity of the model. We again use the parabolic regularization (1.3) and the key
observation of the comparison between |ug (t)|r2(aq) and [ug(t)|r2aq) (see Lemma 4.1.2).

Next in Chapter 5, we prove, with different assumptions on the boundary conditions on
x = 0 and 1, the global existence of strong solutions in 3D. That is, we assume periodic

boundary conditions on u, u; and uz; on z = 0 and 1. Then the main result is the following:

Theorem 1.2.2. We assume suitably reqular data. Then the initial and boundary value

problem for the ZK equation possesses at least a solution u:
ue C([0,T); HY (M) N W33/2(I; H7H0,T; H4(I,.))).

For the proof we again use the parabolic regularization (1.3).

The main obstacle is the estimates of the nonlinear term as in the case of 3D Navier-
Stokes equation. To overcome this difficulty we utilize the anisotropic resonance of the term
Upee and the nonlinear term wu, to cancel wug, which leads to a bound for the H' norm
over (0,7) of u. Also with the assumption of periodic boundary conditions for v and wu,,
at x =0, 1, j = 1,2, the trace Um‘zz(l) now vanishes for our convenience in estimation.

However the uniqueness of solutions is still open in both 2D and 3D, even with such a

regularity and all the periodic boundary conditions satisfied.

1.3 Martingale and Pathwise Solutions to the Stochastic ZK Equation

In Chapter 6, we consider the stochastic Zakharov-Kuznetsov equation subject to multi-

plicative random noise

du + (Auy + cuy + uug) dt = fdt 4+ o(u) dW(t), (1.4)



posed in the same rectangular domain M as in (1.2). Then we extend the results of Theorem
1.1.1 to the stochastic case. Note that here we have different notions of solutions, namely,
the martingale and pathwise solutions. In the former notion, the stochastic basis is not
specified in the beginning and is viewed as part of the unknown, while in the latter case,
the stochastic basis is fixed in advance as part of the assumptions.

The main results are as follows:

Theorem 1.3.1. In dimensions 2 or 3, we suppose suitable conditions on the measure of the
initial data, o and f. Then there exists a global martingale solution (3,1]) to the stochastic

ZK equation.

Theorem 1.3.2. In dimension 2, we assume, relative to a fixed stochastic basis S, suitable
conditions on the initial data, o and f. Then there exists a unique global pathwise solution

u to the stochastic ZK equation.

One of the main novelties of the proof is the treatment of the boundary conditions,
which are more complicated than the usual Dirichlet or periodic ones. Firstly, it is not
clear whether all the boundary conditions are still preserved after the application of the
Skorokhod embedding theorem (Theorem 2.4 in [9]) since the underlying stochastic basis
has been changed. To solve this problem, a measurability result concerning Hilbert spaces is
developed (Lemma 7.3.1). Secondly, we have extended the trace results in the deterministic
to stochastic setting by establishing the trace properties of the linearized ZK equation
depending on the probabilistic parameters (Lemma 7.2.2 and Lemma 7.2.3).

A further novelty is contained in the proof of the pathwise uniqueness (Section 6.3.2).
Difficulties arise with the derivation of the energy inequality for the difference of the so-
lutions due to the lack of regularity. Moreover, the method in the deterministic case can
not be adapted to the stochastic case by the application of the stochastic version of the

Gronwall lemma established in [21] (see also [34]), as issues would arise in passage to the



limit on the terms involving stopping times. We overcome this difficulty by establishing
a variant of the stochastic Gronwall lemma (Lemma 7.7.2), where we find that in certain

situations we can weaken the hypotheses so as to avoid the stopping times.



Chapter 2

Functional Spaces and the Linearized ZK Equation

We consider the linearized Zakharov-Kuznetsov equation in a rectangular or parallelepiped

domain, namely,

ou ou ou
a%—c%%—A% =f, (2.1)

considered in M = (0,1), x (—7/2,7/2)4, with d = 1,2, Au = ugzy + Atu, Atu = uy, or
Uyy + Uz, We will use the notations I, = (0,1),, Iy = (-7 /2,7/2), and I, = (—7/2,7/2),
in the sequel. As in the previous work [40], we assume the boundary conditions on x = 0,1
to be

u(0, 2, t) = u(l, zF, t) = uy(1, zt, t) =0, (2.2)
and the initial condition reads:
u(z, zt, 0) = ug(z, z1). (2.3)

We also need suitable boundary conditions in the y and z directions. As mentioned

before, we will choose either the Dirichlet boundary conditions

u=0aty= :I:g (and z = :tg), (2.4)

or the periodic boundary conditions

Y= z=Z jus
u‘ I = uy‘ 73% =0 (and u‘z:ig = U, 725 = 0)_ (2_5)



We will study in each case the initial and boundary value problem (2.1)-(2.3) supplemented
with the boundary conditions (2.4) or (2.5). We will recast the linear system in the form

of an abstract evolution equation

A
dt (2.6)
u(0) = uo,

and prove that —A is the infinitesimal generator of a contraction semigroup which will
provide existence and uniqueness of solutions to (2.6) using the linear semi-group theory.
In order to define and characterize A and its domain D(A), we first introduce the auxiliary
spaces X' (M) and X; (M) in Sections 2.1 and 2.2, and then proceed in Section 2.3 with the

definition of D(A).

2.1 Density and Trace Results for the Space X' (M).

We consider the space X = X(M) = {u € L*(M) : Auy, + cu, € L?>(M)}, endowed with
its natural Hilbert norm: |u|y v = (|u|%2(M) + |Auy, + cuz\%2(M))1/2.
As a preparation for the trace theorem, Theorem 2.1.1, we first prove the following

density result.
3 cof ™ Tiay . -
Lemma 2.1.1. H>(I,; C [—5, 5] ) is dense in X(M).

Proof. Fix u € X (M), and assume that d = 2 (similar proof for d = 1). We aim to

™

approximate u by a sequence {uy} C H2(I; C™| 5

s
, §]d), such that uy — u in X(M).
Step 1. We construct a sequence of approximations uy. By Fourier series expansion in

L, we write

U = Zak‘(l‘)wk’l (y) Wiy (2)7 k= (kla kQ)v (27)
k

where the wy, are the eigenfunctions of the operators d? /dy® on I, (sine and cosine functions)

which form an orthonormal basis of L?(I,) , and the wg, are the eigenfunctions of the



operators d?/dz? on I, which form an orthonormal basis of L?(I,).! Since u € L*(M),
these expansions converge in L%(M), and |u|%2(M) = Cd2k|ak|%2(1x), with Cy a constant
depending only on d.

We set

Aug 4 cuy = g € LA(M). (2.8)

According to Lemma 7.1.1 in the Appendix, Au, + cu, being in L?(M) makes sense in the

space of distributions ¥/(M) defined in that lemma. Hence by Corollary 7.1.1,

I

g — (M — )U, = G, (2.9)

holds in L?(I,), with gi(x) the Fourier coefficients of g as in (2.7).

Now we define the sequence of approximations

UN = Z ﬂk(x)wkl(y)w;@(z), N eN. (210)
|[k[<N
By (7.7), we have \uNmmﬁz( Z ay! QLQ < 00. Hence
|kl
uy € H3(I,; ¢°[-Z ;r]d). (2.11)

Step 2. We show that uy — w in X(M) as N — oo, that is

uy — u in L2(M),
(2.12)
Aung + cunz — Aug + cug in L2(M).

It is easy to obtain (2.12);.

Multiplying (2.9) by wg, (v) wg,(z) and summing up in k for |k| < N, we find that

Aung + cunz = gn, (2.13)

"We will only use that wy, form an orthonormal basis of L?(I,) (and L*(1,)), and satisfy wy, +

A wg; = 0, for some Ag,, i =1,2.

10



holds in L?(M), where

gn = Y Gr(@)wk, (1) wiy (). (2.14)

LIS

Since gy — g in L?(M), (2.13) implies that Auy, + cuy, — ¢ in L?(M). Hence with
(2.8), we obtain (2.12)s.
The conclusions of Lemma 2.1.1 follow. O

Now we are in position to prove the following trace theorem.

Theorem 2.1.1. For u € X(M), we can define the traces, on the lines x =0 and z = 1,

of U, Uy, Uz, and of their y and z derivatives:

Vi, Vilg and YUz, belong to H_g((*ga g)d)a (215)
1 50T T\d
Villyy, Vilbzz, and VA~ belong to H ((_57 5) ) (2.16)

where ~y; is the trace on x = i, i = 0,1. Furthermore, the trace operators are continuous

from X (M) into the corresponding spaces.

Remark 2.1.1. i) The spaces for the traces may not be “optimal”, but, for the sequel, it is
sufficient to know that the traces are well defined and that they depend continuously on u
in X(M).

ii) Since the derivatives 0, = 0/9y and 0, = 0/9z are continuous from H=*((—Z,2)9)
into H_k_l((—g, %)d), the traces of the y and z derivatives of arbitrary orders of the func-
tions in (2.15) can also be well defined, with continuity in the natural spaces; (2.16) provides

some examples of such cases.

Proof. Let u € X(M). Then by Fourier series expansion as in (2.7), we find that (2.9)
implies

i | 221,y < Gkl 2y + Ak — el ] r2(r,)- (2.17)

11



2/3
L2(1,

1/3

Applying the interpolation theorem, |u}[z2(;,) < Cluy| )m%/|L2(II)’ with C a constant

independent of k, we obtain
P~ ~ 2 3/2 3/2| L
Uy | 221,y < 19klz2(1,) + 3¢ M — | “[uk] 21,y + g’uk |L2(1,)-
Hence
@ |21,y < |Gkl r2(r,) + Pk — 18k L2, (2.18)

where < means < up to a multiplicative constant independent of k. Summing up (2.18) in

k for |k| < N, we obtain

S NI a0 SN0k ) + D Nkl T2
k k k
Thus

Uzza € LP(Lo; H*(—m/2,7/2)7). (2.19)

Since u € L2(M) = L?(I; L?*(—=/2,7/2)%), by the intermediate derivative theory, u, and

Uz, belong to at least the same space as in (2.19). Hence we obtain (2.15). O

Remark 2.1.2. Note that one cannot define the traces on y = /2 or z = £7/2 yet. A
counterexample is the following:
When d = 1, let u(z,y) = 1/(y+r/2)Y4, (x,y) € I x I,. Thenu € X(M), but u — oo

asy — —m/2.

However, certain subspaces of X' (M) may have traces defined on the y and z boundaries.

As an example, Theorem 2.2 below gives such a result for the space
X(M)={ue XM),u=0at z=0,1, and u, =0 at x = 1}. (2.20)

Note that this space can be defined thanks to Theorem 2.1.1.

12



2.2 Density and Trace Results for the Space X;(M).

Before we state and prove the trace theorem, Theorem 2.2.1, we establish the following
preliminary results for & (M).

Firstly, we have a density result for &;(M) similar to Lemma 2.1.1.
Lemma 2.2.1. X;(M) N H3(I,; COO[—%, g]d) is dense in X1 (M).

Proof. Fix u € X1(M), and define uy as in (2.10). By a similar proof as for Lemma 2.1.1,

we have

uy = uin X(M), (2.21)
and

uy € H(Li €=, 51%. (2.22)

Now we show that uy € X (M). By (2.20), u(0,2%) = 0. Hence
ﬁk(O) = <u(0,xj‘), Wy (y) wk2(z)> =0.

Similarly we have

W(0) = (1) = T (1) = 0. (2.23)

Multiplying (2.23) by wi, (¥) wg,(z) and summing up in k for |k| < N, we obtain
uy=0at z=0,1, and uny, =0 at z = 1. (2.24)

Thus uy € X1 (M) as desired and (2.21) now holds in X;(M). O

Secondly we introduce two results concerning the regularity of functions in X (M).
Lemma 2.2.2. For u € X;(M), the traces

ul“xzo and Ugg | | belong to LQ((—E7 ), (2.25)

r= 272
and the trace operators are continuous from X;(M) into the corresponding spaces.

13



Proof. Let u € X1(M). Assume first that u € X3 (M) N H2(1,; COO[—%, g]d); then (2.9)

and (2.23) hold in L?(I,). We successively multiply (2.9) by @, =7 and z, integrate
between 0 and 1 and integrate by parts.

Multiplying (2.9) by g, we obtain with (2.23)

1 1 1
A P ~211 ~ o~
—/ Uy, dx + kuk’() 2(/\k — c)uk’[) = / gLy dx;
0 0

1 1. 1, .
5(%(0))2 < i\gk!é(h) + i\uk\;(m. (2.26)
Summing (2.26) up in k,
2
‘ux‘x:o‘m(m) S ‘9‘%2(/\4) + ‘u|%2(/\/[)7 (2.27)

which implies (2.25).

Multiplying (2.9) by xuy, we obtain
1 1 1 1
—/ Uy do — / upy dr + = ()\k — c)]uk]L2 L) = / JrupT dx;
0 0 0

1/t 1 1 v
2/ (u%)zdx —I—/ (1 ) dr + - ()\k — c)]uk]Lg = / Jrupxdr;
0 0 0

)\k

1
| |72 (1) ‘uk‘LQ(Iz) |ak|%2(lz)+/ iUk dr; (2.28)
0

Ak
\uk\m(m < 2!uk!L2 (1) + Gkl L2, [kl L2 (1)

Dividing both sides by [tik|z2(s,), we find

Ak ~ ~
\Uk\m(f ) < |Uk|L2(11.) + 19kl 22(1,)3
)‘i ~ 12 P 2 ~ 12
2,y < 1kl + 210kl ) (2.29)

Multiplying (2.9) by x, we see that

1 1 1
—/ updr + ﬂzx‘é — (e — c)/ Uprdr = / grxdr;
0 0 0

1 1 1
ﬁg(l):—ﬂﬁg(O)—/\k/o ﬂkdac+c/(] ﬂkdx—i-/o grx dx.
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Thus
(@(1))° S (@0 + (OF + ) arl2aqr,) + G321, (2.30)

From (2.30), (2.29) and (2.26) we infer that
(@ (1)* < laxl e, + [Geli2r,)- (2.31)

Summing (2.31) up in k, we obtain

‘U:px‘x:1|i2(M) 5 02’U|%2(M) + |g|%2(M), (2,32)

which implies (2.25).
Hence the conclusions of Lemma 2.2.2 follow for functions smooth enough. For u non-

smooth we proceed by approximation using Lemma 2.2.1. ]

Proposition 2.2.1. When d = 1,2, if u € X1(M), we have
At and Au belong to LE(M). (2.33)

Moreover,

X (M) C HE N H*(I;; L*((—7/2,7/2)%))), (2.34)

with a continuous embedding. Furthermore, when d =1, we actually have
X1 (M) € Hi N H?*(I;; H*(L)). (2.35)

Proof. Integrating (2.8) in z from z to 1, we find
1

Au = um‘le —cu— / 9(z,xt) di. (2.36)

T

Together with (2.25), we find that Au € L?(M).
For u smooth enough, integrating (2.9) from x to 1, we obtain with (2.23)
1

() = M) + () + A1) + / G (7) di:

T

15



‘ A~/

\LQ(, ) S )\2|uk|L2 + ¢ |uk|L2 )+ (Tr(1)) + |§k\%2(lz). (2.37)

From (2.37), (2.29) and (2.30) we obtain

[F: 12(1) S \Uk‘m(lz) + |9k’L2 : (2.38)
Summing (2.38) up in k,
oz Fa oy S lulfz + 1917200
Thus
Uy € L2(M). (2.39)

By the intermediate derivatives theorem, u, € L?(M), and hence we obtain (2.34). Since
Au € L?(M) as is proven, we infer (2.33) from (2.39).

When d = 1, (2.33) implies that u,, € L?(M). By the intermediate derivatives theorem,
uy € L?>(M). Hence with (2.34) we obtain (2.35).

The conclusions of Proposition 2.2.1 follow for functions smooth enough. For u non-

smooth, we proceed by approximation using Lemma 2.2.1. ]
Remark 2.2.1. Integrating (2.8) in x from 0 to x, we also find (compare with (2.25)),
um‘ belong to L?((— g, g)d). (2.40)

Remark 2.2.2. In (2.35), we do not know if u € H?*(I, x I,), because ug, does not

necessarily belong to L?(M) due to the lack of information at the y boundary.
Now we are in position to prove the following trace theorem.

Theorem 2.2.1. For u € X1(M), we can define more traces, in particular, at y = +7/2

and z = +m /2, namely,

u‘y:ig and uy‘y:i% belong to H™%(I, x I,);

u‘zzi% and uz‘z:ig belong to H™*(I,, x I,,).
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Furthermore, the trace operators are continuous from X;(M) into the corresponding

spaces.

Remark 2.2.3. As mentioned in Remark 2.1.1, we can similarly define the traces on the

y and z boundaries of the x derivatives of arbitrary orders of these functions. For example,
ux‘y:i% and uxy’y:i% belong to H3(I, x L,). (2.41)

Proof. Assume first u is smooth. Then by Fourier series expansion in y*, we write

U= Zak(y)elﬂ (1‘) ka(Z), k= (klﬂ k2), (2'42)
k

with {eg,} € D(I;) an orthonormal basis of L%(I,); setting h = Atu € L?(M), (2.33)
implies
AUk (y) + Uk (y) = h(y), (2.43)

with hz(y) the Fourier coefficients of & as in (2.42). Hence
2150112 —2/7 12 ~ 12
Moo [Uklz2(1,) S My 1Pklz2r,) + [nl72(1,)-
Summing it up in k, we obtain

> Nl ey S Y )\222|ﬁk|%2(1y) + D [uliag,)-
k k k
Hence wuy, € L?(I,; H (I, x I,)). By the intermediate derivative theorem, u, belongs to
at least the same space as u,,, and we can define the traces of u and u, at the y boundary.
Similarly, we can prove the trace results for the z boundary. Hence the conclusions follow
for w smooth.
For u non-smooth, since u € L?(M) and Au € L?(M) by (2.33), we can use Theorem

5.1 in [32], which says that with M satisfying the cone condition, C*°(M) is dense in the

space {u € L?(M); Au € L?*(M)}. Hence we can proceed by approximation. O
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Remark 2.2.4. In Proposition 2.2.1, because of the lack of information about the trace of
u on the y and z boundaries, (2.33) does not imply that u,, € L*(M) when d = 2. Here
is a counterexample entailing this reasoning: Let u = w(z)v(y, z), where w € C°(1), and

v=In[(y+7/2)%2+ (2 +7/2)%]. We can show that
v € L*(I, x L), vy =—v,. ¢ L*(I, x I,). (2.44)

Indeed by the change of variables §y = y+ 7/2 and Z = z + /2, we are led to consider the
function (3, 2) = In(§? 4 22) in I; x Iz, where I; = (0,7)y, Iz = (0,7)s. The analogue of

(2.44) is easy to check by direct calculation. Then (2.44) implies
u € L*(M), uy, =w've L2(M); (2.45)
and
AUy = Ugzy + Ugyy + Ugzz = W0 + W' (vyy + v22) = w"'v € LA (M).

Hence u € X(M).

Since w € C°(1,), it is easy to see that
u=0atx=0,1, and u, =0 at z = 1.

Finally, w € X1(M). But (2.44) also implies that neither uy, = wWuyy NOT Uy = WV,
belongs to L*(M), and hence u ¢ H*(M).

In fact, the regularity of u in the y and z directions is even worse. We can see that
vy ¢ L*(I; x I3). Hence v, ¢ L*(I, x I,). Thus u, = wuv, ¢ L*(M), which implies that u
does not even belong to H'(M). To conclude, while having H?-regularity in the z-direction,
u may be much less regular in the y, z directions.

However, certain subspaces of X1(M) may have better regularity properties. For in-
stance, adding suitable boundary conditions on y and z boundaries can lead to stromger

regularity in these directions; we show this in the next section. Ol
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2.3 Operator A in the Dirichlet Case.

As mentioned before, we can assume either the Dirichlet or the periodic boundary condition
on the y, z boundaries. We first study the Dirichlet case, that is we assume (2.4). We rewrite
(2.7) in the form

U= Z U () cos k1y cos koz, (2.46)
k

where k1, ko € 2N + 1, and \, = k2 + k3 = k2. We also rewrite (2.10) as

uy = Z ug(z) cosk1y coskoz, N € N. (2.47)
|k|<N

2.3.1 Density and Regularity Results for D(A).

Thanks to Theorems 2.1.1, 2.2.1, we can define the operator A and its domain D(A):

D(A)={ue X;(M),u=0 atyz:l:g (andz::tg)}, (2.48)

and for u € D(A),

Au = Aug + cuy.

Firstly, as mentioned before, we have a regularity result for D(A):
Proposition 2.3.1. D(A) C H}(M) N H?(M) with a continuous imbedding, d = 1,2.

Proof. Since u € D(A), then v € L?(M) and u = 0 on dM; furthermore, by (2.33),
Au € L?*(M); from OM being Lipschitz, we infer that u € H*(M), thanks to [22]. O

Secondly, we have a density result for D(A) similar to Lemma 2.1.1:
Lemma 2.3.1. D(A) N H3(I; Cm[—g, g]d) is dense in D(A).
Proof. Fix u € D(A), and define uy as in (2.47). Since u € X1(M), Lemma 2.2.1 implies

uy — u in Xy (M),
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and

™ T

un € Xy (M) N H (I =5, E}d) (2.49)
Moreover, from (2.47) we obtain
uy=0aty= ig (and z = :tg) (2.50)

By (2.50) and (2.49), uy € D(A) N H3(I,; C”[—g, g]d) as desired. Thus the conclusions

of Lemma 2.3.1 follow. OJ

Remark 2.3.1. Note that by Proposition 2.3.1 and Lemma 2.5.1, (2.28) implies

(Au, zu) = / (21@ + %|Vlu|2 - gu2> dM, ue D(A). (2.51)
M

2.3.2 Characterization of A* and D(A*).

In order to study the linearized Z-K equation (2.1)-(2.4), as mentioned before, we need to
prove that —A in (2.6) is the infinitesimal generator of a contraction semigroup in view of
applying the Hille-Yoshida theorem. For that purpose we first need to define and charac-
terize the adjoint A* and its domain D(A*).

Let H = L?(M). Assume that u € D(A) and % € H are smooth functions; then
(Au,u)g = / (Aug + cug)udM = 1) + Iz + I3, (2.52)
M

where

I = —/ w(Aty + cliy) dM,
M
and

=1 -
I, = /( y umuﬁzo + “w“ft‘x:o dzt;

s
2

(ME]

y=35 1 z=3 1
I3 =/ uwy“‘y:iﬂ dy +/ “zzu‘z:il dz™.
I xI. 2 I x1Iy 2

According to [39], D(A*) consists of the 4 in H such that the mapping u — (Au, @)y is

continuous on D(A) for the norm of H.
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Step 1. Fix @ in H and consider the u’s in D(A) NC°(M). For such u’s,
(Au,0)g = I = — < u, Aty + ¢ty >,

and if u — (Au, @)y is continuous for the norm of H for such u’s, then necessarily we have
Adi, + ciiy € L*(M). Hence

i€ X(M). (2.53)

Step 2. Now consider the u’s in D(A)NH3(I,; C°((—%, 3))). For such u’s, since (2.53)
implies that the traces of 4 at x = 0 and 1 are well defined as in Theorem 2.1.1, the following

calculations are valid:

(Au,a)g = I + Io.
Hence the mapping v — (Au, @)y can only be continuous for the the norm of H if
u=0atz=0,1, and iy =0 at x =0. (2.54)
From (2.54) and (2.53) we deduce that @ € X; (M), where
X (M)={acXM),u=0at z=0,1, 4, =0 at x = 0}. (2.55)

Step 3. Now consider the u’s in D(A) N H2(I,; C®[—7/2,7/2]%). By (2.55), the traces
of 4 can be defined at both the  boundary and the y, z boundaries (same reasoning as in

Theorems 2.1.1 and 2.2.1 for X;(M)). Hence the following calculations are valid:
(Au,0)g = I + I3, (2.56)

where I, vanishes because of (2.54). Thus the mapping u — (Au, @)y can only be continuous
for the norm of H if

ﬂ:Oaty::tg and z = g (2.57)

D(A) ={ie X(M), & =0 on dM, iy =0 at z = 0}. (2.58)
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Finally, if & € D(A), then it can be approximated in D(A) by functions belong-
ing to D(A) N H3(I,; C°[-7/2,7/2]%) (same reasoning as for D(A) in Lemma 2.3.1).
Also any function u € D(A) can be approximated in D(A) by functions belonging to
D(A) N H2(I; C®°[—7/2,7/2]%) by Lemma 2.3.1. The integration by parts of (2.56) are
then justified by approximation, and by (2.57), I3 = 0. This shows that @ € D(A*) and,
finally,

D(A*) = D(A). (2.59)
For u € D(A¥),

A* = —(Adig + cliy). (2.60)

2.4 Operator A, in the Space Periodic Case.

As mentioned at the end of Section 2.2, we can also consider periodic boundary conditions
on the y and z boundaries, all the well defined derivatives being periodic with period 7. We

rewrite (2.7) in the form
u= Zﬂk(x)eiklyeik”, (2.61)
k

where k1, ko € 2N, and Ay = k? + k3 := k2. We also rewrite (2.10) as

uy = Y Tp(x)e® e N eN, (2.62)
|k|<N

2.4.1 Density and Regularity Results for D(A,;).

Thanks to Theorems 2.1.1, 2.2.1, (2.5) is legitimate, and hence we can define A, and its

domain D(Aper):

D(Aper) = {u € X1 (M), u is periodic with the first order derivatives periodic in y and z,

with period 7},
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and equivalently

D(Aper) ={fue X(M),u=0atz=0,1, up =0 at x = 1;

2=z

_ pT
u‘ = uy‘ 2. =0, u‘szz = uz‘ 2. =0}.
-2 - 2 2

Yy=—75 zZ=

For u € D(Aper),

Aperu = Aug + cuy.

It is worth noting that when d = 1, we can define v := u — u!y:% =u— u|y:7g. Then
v € D(A). Hence each function in D(A,,) corresponds to a function in D(A) up to a
constant, and they should share the same properties.

Thus the more interesting case will be d = 2. Firstly, we have the same regularity result

as in Proposition 2.3.1.
Proposition 2.4.1. D(Ape,) C HY(M) N H*(M), d = 1,2, with a continuous imbedding.

Proof. Let u € D(Ape). Since u € D(Aper), then u € L2(M) and u = 0 on the z
boundary, and is periodic on the y and z boundaries. Hence we can prove Proposition 2.4.1
in the same way as Proposition 2.3.1. O

Secondly, we also have the same density result as Lemma 2.1.1:
Lemma 2.4.1. D(Ap.,) N H3(I; Coo[—g, g]d) is dense in D(Aper).

Proof. The proof is similar with Lemma 2.1.1, noting that (2.62) implies that uxy and its

first order derivatives are periodic in y and z with period . O

2.4.2 Characterization of A% . and D(A4},,).

per per

Let H = L?>(M). Assume that u € D(Ape,) and @ € H are smooth functions. We calculate
(Aperu, @) fr, and the result is the same as that of (2.52). The reason is that when integrating

by parts in y and z, whenever the boundary terms get canceled by the Dirichlet boundary
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condition, they also get canceled by the periodic boundary condition. Hence by a similar

reasoning, we obtain

ﬁ(A;eT):{fLEX(M),u:Oatx:(),l, Uy =0 at x = 0;

~1Y=% - |1Y=%
u‘ 72 :Uy‘ 72
y=- Y=

us
2

vl

and for u € D(A},,),

per

2.5 Linear Evolution ZK Equation

We are now in position to study the linear evolution equation in the Dirichlet case, that is

(2.1)-(2.4). The results for the periodic case, which we will not present, are very similar.

2.5.1 Well-posedness of the Evolution Equation

We want to apply the Phillips version of the Hille-Yoshida theorem to deduce the existence
and uniqueness of strong solutions to (2.6). As indicated before, we only need to show that
—A is the infinitesimal generator of a semigroup of contractions in H. According to [25]
and [36], it suffices to show that

i) A and A* are closed operators and their domains D(A) and D(A*) are dense in H,
and

ii) A and A* are positive:

(Au, u)g >0, Yue€ D(A),
(2.64)

(A*@, @)y >0, Vi€ D(A*).

The proof of i) is direct.
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To show (2.64)1, we can assume that v € D(A) N H3(I,; C®°[—7/2,7/2]%). Replacing @
by w in (2.52), we see that all the integration by parts are legitimate for such a u and we

obtain (2.52) with

Hence

(Au, u)g = ;/( y u2 (0, z1) det >0, (2.65)

[SIE

)

[VE]

for such a u and by continuity for all u € D(A). Similarly, we have

mﬁgmH:;/) (1, zt)dzt >0, Ve D(AY). (2.66)
(,

Thus — A is the infinitesimal generator of a semigroup of contractions in H denoted by
{S(t)}t>0. By the Hille-Phillips-Yoshida theorem, we then obtain the existence of strong

solutions to the initial-value problem (2.6).

Theorem 2.5.1. Assume that ug is given in D(A) and f is given in L} (Ry; H), with

f'=df/dt in L} (Ry; H). Then the initial and boundary value problem (2.6) possesses a

loc

unique solution u such that

u € C([0,T]; D(A)), us € L*=(0,T; H) for any T > 0. (2.67)

1
loc

Furthermore, If ug is given in H and f € L; (Ry; H), then (2.6) possesses a unique

mild solution u € C(Ry; H) given by

w(t) = S(Euo + /O "S(t — 5)f(s)ds. (2.68)

Thanks to the corresponding regularity results for the stationary equation, we have the

following regularity properties for the evolution equation:
Corollary 2.5.1. Under the hypotheses of Theorem 2.5.1, the solution u of (2.67) satisfies

u € L®((0,T); H}(M)n H*(M)), d=1,2, (2.69)
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and

|

T
and um’ 0.1 belong to L>((0,7); L2((—§, E)d)) (2.70)

x=0 xr=

Proof. By (2.67), u € L*>(0,T; D(A)) and us € L*>(0,7; H). Then we obtain (2.69) by

Proposition 2.3.1, and obtain (2.70) by (2.25), (2.40). O
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Chapter 3

Nonlinear ZK Equation: Existence and Uniqueness of the Weak Solution

We now proceed and consider the initial and boundary-value problem for the full (nonlinear)
ZK equation in the limited domain M in the Dirichlet case, that is, (1.1) and (2.2)-(2.4).

Our main result in this chapter is as follows.

Theorem 3.0.2. We are given ug € L*(M) and f € L} (Ry; L2(M)), M = (0,1), x
(—7/2,7/2)¢, d =1,2. Then:
(i) The initial and boundary-value problem for the ZK equation, that is, (1.1) and (2.2)-

(2.4), possesses a weak solution u,
u € L¥(0,T; L*(M)) N L*(0,T; Hg(M)), (3.1)

/ / |uw (0,25, )| dt dt < oo, (3.2)
(=3

E
2

for all T > 0.
(ii) If d = 1, then the solution u is unique. Moreover, u € C([0,T]; L>(M)) and the

flow map ug — u(-,t) is continuous from L?>(M) to L*(M).

Remark 3.0.1. Note that the boundary condition uw = 0 on OM makes sense since u €
L2(0,T; HY(M)?)). The boundary condition u, o1 = 0 makes sense in H=2((0,T) x

1
(_

. 5)%) as explained in Lemma 3.1.1 below.

ol
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3.1 Existence of Weak Solutions in Dimension 3

Proof of Theorem 3.0.2. i) We start with the proof of existence. The existence is proven

by parabolic regularization as in [40]; that is, for € > 0 “small”, we consider the parabolic

equation
N -
u(0) = uyp,
where
Tt e otuc ot s

Ox? + oyt + 04"’
supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-
ditions

= ug| =0, (3.4)

€
Uy }y::l:g PR

;l’}m:() =

u 0. (3.5)

Note that since ug, = uf, =0 at x =0 (and z = 1), (3.5) is equivalent to

AuG‘xZO =0.

The following a priori estimates classically guarantee the existence of a solution u¢ for
€ > 0 fixed and then allow us to pass to the limit ¢ — 0, thus providing the existence of a
solution for the ZK equation.

As for the linear ZK equation these a priori estimates are obtained by multiplying (3.3)
by u€, then by xu€, integrating and integrating by parts in each case. The contributions of
the linear terms Au and cu$, have already been studied, and we thus concentrate on the
contributions of the other terms. Note that the solutions u€ to the parabolic problem are
sufficiently regular for the following calculations to be fully legitimate without any need of

further regularization.
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We drop the super index € and start by multiplying (3.3); with v = u¢. We find

ou
* It ud M= idtwLQW

° / ut, ud M =0,
M

1 1
. /M fud M < §\f|i2(M) + 5’“\%2(/\4)7

otu  otu Ot
”/M<aw4+ay4+a4> n

Pul® |92’ 9%
—6/M(W 22| Tlaz )d/\/l—e[]
Hence with (2.65), we find
d . . .
272

Using the Gronwall lemma we classically infer from (3.6) (and the fact that ug € L?(M))
the following bounds independent of e:

u€ is bounded in L>(0,T; L?(M)),

Veut is bounded in L2(0,T; HE N H?(M)), (3.7)

us(0,,-) is bounded in L2(0,T; L*((—5,3)%)).

\

For (3.7)2, note that [u]s is a norm on H¢ N H*(M) equivalent to the H2-norm, since

|Au|2( ) is equivalent to the H?-norm and

’AU|L2 ) < 2(’uacas|L2 (M) T |“yy|L2 (M) T |UZZ|L2(M )-

We now multiply (3.3); by zu (= zuc), integrate and integrate by parts:

ou

/uuggxudM’S/ lul®d M
M 3Jm

< (by interpolation, H?(M) C L3(M) in dimension 3)
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3/2 3/2
< ealulYat o [Vl 357 0 < |Vu|L2  + calul§a g,

/f=TUdM< |f|L2M)‘|‘ ]fu|L2

2

u 9 02u 0%
¢ zudM =¢e|VrT—"%5 +e|lVrT=—s ,
/ (c’)y oy 4) dy? L2(M) 0z° L2(M)
Loty L o3 ou
; @xuda@:— ; ﬁ(u%—x%)d:n

1 1
:/0 (2ugptiy + zul,) dz = —|ug (0, ~)|2-|-/0 zu? dr,

Hence, together with (2.51), we arrive at

d 1
a’\/ﬁﬂiz(/m + §\VUE|%2(M) + 2|U§‘%2(M)
+ 2e[Vrug, [ Fa gy + 26[VTuy T2 00 + 26[VEUL 2 00

< |f|i2(M) + |\/5UE|%2(M) + C’UE’%%M)

+202|u€|6L2(M) + 26/ ) |l (0, 21, t)|? dat.

jus
2

ISIE

independent of e:

Vus, Vexul,, verus, , erus, are bounded in L?(0,T; L?(M)).

vy’

4
e/M g;imu de det = €|\/§u:r:x|%2(M) - 6/( v ’U:c(o’gcj_vt)deL‘

(3.9)

Taking into account the previous estimates (3.7) we obtain the following estimates, also

(3.10)

From (3.7) and (3.10) we infer a bound on u‘u$ on which we now elaborate because of

our needs below. We write (dropping momentarily the ¢):

OO\OJ

16’1%‘8 dM

/ g[8 d M = /

3 24
< (with H'(M) ¢ L°(M) in dimension 3) < [l f2 )Vl 1% (04

that is,

2 4
’ueu;’LWS(M) < IUGIEQ(M)|VUE|22(M).
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The function on the right-hand-side of (3.11) is bounded in L%/%(0, T); that is,
uu, is bounded in L3/2(0,T; LY®(M)) in dimension 3, (3.12)

and hence it is bounded in L%8(0,T; L%8(M)). Since L° is the dual of L%/® and Hs (M) C

LY(M) in space dimension 3, we also have
wtuS is bounded in L3(0,T; H™6(M)) in dimension 3. (3.13)

Thanks to (3.7), (3.10), (3.13), equation (3.3) now implies

out
Ot

is bounded (independently of €) in L%/%(0,T; H=3(M)). (3.14)

Although the estimate (3.14) is a very poor one, it allows us to show that the family
u€ is relatively compact in L2(0,T; L?(M)). As we have said, the estimates above are then
sufficient to obtain the existence of u¢ for € > 0 fixed, and they permit also, in a second
step, to pass to the limit € — 0, using a compactness argument for the nonlinear term.

ii) Having shown that the limit u of (a subsequence extracted from) u€ is a solution of
(1.1), we want now to address the question of the boundary and initial conditions. The
+)

initial condition u(z,z",0) = ug(z,z") is satisfied because, due in particular to (3.14), u¢

converges to u in C([0,T]; H,3(f2)), where H_3 is H~3 equipped with the weak topology.
Similarly the Dirichlet boundary condition v = 0 on OM is satisfied since it is satisfied

by u€ and since u¢ converges to u weakly in L?(0,T; Hg(M)).

Hence for the existence, there remains to show that the boundary condition
uE _
ug(1,2—,t) =0, (3.15)

is satisfied. This boundary condition is the object of Lemma 3.1.1 below where we show
that us(1,-,-) is defined when u € L*(0,T; L(M)) N L*(0,T; Hi(M)) and u satisfies
an equation like (1.1) and furthermore this trace depends continuously on « in a suitable

topology, so that uS(1,-,-) = 0 gives, at the limit, uz(1,-,-) = 0.
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We now pursue the proof of (3.15) and start with the following lemma which shows that
whenever u € L>(0,T; L*(M)) N L*(0,T; H}(M)) satisfies equation (1.1) then u(1,-,)

makes sense (as well as other traces).
Lemma 3.1.1. Ifu € L®(0,T; L*(M)) N L*(0,T; H}(M)) satisfies equation (1.1), then
Ugy Uzz € Co(Iy; Y), Y = H7((0,T) x (_57 5) ) (3.16)

and, in particular,
uw‘zzo,v umx‘m:O,l (3.17)

are well defined in'Y . Furthermore these traces depend continuously on u in a sense made

precise in the proof.
Proof. We write equation (1.1) in the form
Uggr = [ — Clg — Aty — uug — uy, (3.18)
and we observe that, since
wug € L2(0, T3 L (M) = L2 (Lss L2(0,7) x (=5, 5)"), (3.19)
it follows that

ug € L2(Ip; HH0,T; L2((—

Atug € L2(1,; L*(0,T; H2((—
Also according to (3.12),
wuy € L3 (L LY3(0.T) x (=5, 5)) € L3 (L H2((0.7) x (5. 5)D). (3:20)
Thus u,., belongs (at least) to the largest of these spaces, that is

gz € LY8 (I, H2((0,T) x (—g, g)d))). (3.21)
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Then (3.16), (3.17) follow.
Furthermore, if a sequence of functions wu,, satisfies (1.1) with f = f,,, and u,, — u
in L°°(0,T; L*(M)) N L*(0,T; H}(M)) and fm, — f in L*(0,T; L*(M)) (strongly), then

umgc‘x:m, umm‘zzo’l converge respectively to ux‘zzo’l, um‘ in Y. If the convergence

z=0,1
of u,, and f,, are weak (weak-star for L°°), then the convergences hold in C,(I,; Y,,) and
Y.,. These convergences use a compactness argument based on the analog of (3.14) , which
is used to show that u,,um,, converges to uuy. O

iii) We now need to show that the boundary condition u.(1,-,-) = 0, which is satisfied
in a strong sense for € > 0, “passes to the limit” to imply (3.15). It suffices here to use

Lemma 7.2.1 in the appendix. Let u¢ be a solution of (3.3), (2.2)-(2.4), (3.4) and (3.5), with

p= %, Y = H2((0,T) x (-3, g)d), as in Lemma 3.1.1 and

€ . € € _ € € 1 € €, € €
g = uxmc—i_euxzxa:*f_ut_cua:_A Uy — U Uy — €U CUsrzs-

.~ (3.22)

We observe that, since u¢ remains bounded in L>(0,T; L?(M))NL2(0,T; H}(M)) as e — 0,

the following functions remain bounded in the indicated spaces:

ul in L2(I; L?(0,T; L*((—

o3
NN
S—
Qu
N—
S—
S—

u§ in L2(Iy; H7Y0,T; L2 ((—

in L3(Ly; L0, T; H™?((—

(CHIE I G G
NMERYIERVIE
=

u, +u;xa:a: in Lz;(lﬂ L?(OvTv H_4((_

We have thus shown that u¢u, remains bounded in L%/8(0,T; LY8(M)) = Ly® (Ip; LO3((0,T)x

(=5:5))-

Finally ¢¢ remains bounded in the reflexive Banach space Lg/ 8(I;,;; Y'), where

™ T T

Y = Hy (0,75 L2((= 5, 5)) + IR0, T3 HH (=5, 5)) + 150,75 L3 (= 5, 5)%).

Then we can apply Lemma 7.2.1 with this space Y.
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Remark 3.1.1. As in the stationary and the linear cases, the traces in (3.17) are defined
in a weak sense (in a large space). We did not try to refine these trace results, as we only

need to know that these traces exist and depend continuously on u.

Remark 3.1.2. Another way to estimate the term u‘uS, was pointed out to one of us by

Laure Saint-Raymond, namely, we have

T T e
/ [uug |7 ) dtﬁ/ [u 2l Z2 (a4 < ( sop |“E(t)|L2(M)> / Wiy
0 0 te(0,T) 0

and we infer from (3.7) and (3.10) that
u‘u is bounded in L*(0,T; L*(M)) in dimension 3. (3.23)

Since HE(M) C L>(M) in space dimension 3, L'(M) is included in H=2(M), and hence
we also have

u‘u is bounded in L?(0,T; H 2(M)) in dimension 3. (3.24)

Thanks to (3.7), (3.10), (3.24), equation (3.3) now implies

ou

5 is bounded (independently of €) in L*(0,T; H 3(M)). (3.25)

With these bounds, we can also infer the weak convergence of uS(1l,-,-) = 0 by apply-
ing Lemma 7.2.1 in a smaller space Y, observing that g¢ remains bounded in the Ba-
nach space Ly(I;Y), where Y = Hy;H(0,T; L2 (=5, 5)4) + L0, T; H*((=3,5)%) +

L (0,75 LY (=5, 5)7)-

3.2 Uniqueness of Weak Solutions in Dimension 2

Finally we conclude the proof of Theorem 3.0.2 by proving the uniqueness and the strong

continuity properties, when d = 1. This will follow from the following lemma.
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Lemma 3.2.1. Assume that wy € H := L*(M) and g € L?(0,T; LY(M)) are given, such

that 1 < p,q < 0o, and
L(0,T; L*(M)) N L*(0,T; Hy(M)) € L (0,T; LY (M), (3.26)

with 1/p+1/p' =1/q+1/q¢ = 1, the last injection (inclusion) being continuous. Then when

d =1, there exists a unique function w € L>(0,T; L>(M)) N L?(0,T; HL(M)) satisfying

6711] Aaﬂ + aﬂ —
ot " "oz Cox Y (3.27)
w(0) = wo,

and the boundary conditions (2.2), (2.4). This function w satisfies also the energy inequality
(3.28)

d 2 2 2
o7 VIt zwliang + [Vwlizg — cdwlizg <2 Mg(l +z)wd M.
Proof. By parabolic regularization as in the nonlinear case, we can construct a solution of

(3.27), (2.2) and (2.4) satisfying the energy type inequality (3.28). Indeed we consider the

parabolic equation
twe twc e
) =9,

8w6+A8w6+66w6+6( n n
ot Ox Ox ozt oy* 024 (3.29)
we(0) = wy,

supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-

ditions (3.4), (3.5).
Multiplying (3.29); by w® and then zw¢, integrating over M and integrating by parts,

we can apply the same calculations as in the nonlinear case and obtain the analogues of

(3.6) and (3.9) without the terms due to the nonlinearity. We can deduce the same uniform

bounds as in (3.7) and (3.10), from which we infer that (compare to (3.14))
Ow is bounded (independently of €) in L*(0,7; H 3(M)) (3.30)

ot
Hence w® converges up to a subsequence to w weakly in L>(0,T; L*(M))NL?(0,T; H (M)

and strongly in L2(0, T; L?(M)). By a similar argument as in the nonlinear case, we obtain
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the existence of a solution to the linear equation (3.27) with the boundary conditions (2.2),
(2.4).
Summing up the analogues of (3.6) and (3.9), dropping the nonnegative terms, we obtain

that when say e < 1/2,
d
Vit T o ag) + IV T2 (a0 < clw[Taiag + 2//\4 g(1 + z)w d M. (3.31)

Since w€ converges weakly to w in L*(0,T; L?*(M)) N L*(0,T; H}(M)) and strongly in
L?(0,T; L?(M)), we can pass to the lower limit on the left-hand-side of (3.31) and pass
to the limit on the term |w® %Q(M). By (3.26), we obtain that w® converges weakly in
LY (0,T; LY (M)), which is the dual of LP(0,T; LY(M)). Hence we can pass to the limit
on the term [, g(1+ x)w®d M. To conclude, we can pass to the limit in (3.31) and obtain
(3.28).

We finally observe that for such a function g, the solution w belonging to the space
L2(0,T; H}(M))NL>®(0,T; L?(M)) to the linear equation (3.27) with boundary conditions
(2.2), (2.4) is necessarily unique. Indeed, if w;,ws are two such solutions, setting w =
w1 — wg and W(t) = fotw(s)ds, we see that

oW ow oW
BN + A 3 +c 3 =0,
r r (3.32)

and W satisfies the same boundary conditions (2.2), (2.4). Since W € L?(0,T; H}(M)),
and W; = w € L%(0,T; L?(M)), we see from (3.32); that W (t) € D(A) for almost every ¢
and more precisely W € L?(0,T; D(A)), and (3.32) reads

oW
T AW =
5 0,

W (0) = 0.
By the uniqueness in Theorem 2.5.1 (linear case), W (t) = 0 for all ¢ > 0, and then W; =

w=0 for all t > 0. OJ
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Now let u and v be two weak solutions of (1.1), (2.2)-(2.4), Then u — v satisfies
w
— + A— + c— = —uuy + vy, (3.33)
x

together with the boundary and initial conditions (2.2)-(2.4) (with initial data ug —vo = 0).
Hence we can regard u — v as a solution in the space L>(0,T; L*(M))NL?(0,T; Hi(M))
of (3.33) written as (3.27), with g = —uuy + vv,.

Of course, u satisfies the boundary conditions (2.2), (2.4). We can prove that

1/2 1/2
Jutte| /s aey < C” ulpau e 20ty < C”ul ot gy | Vel o [t 220

Hence we find (compare to (3.12))
uu, € L¥3(0,T; L*?) in dimension 2, (3.34)

so that g € L¥/3(0,T; LY/3).

When d = 1, we see that L?(0,T; H}(M))NL>(0,T; L*(M)) C L*(0,T; L*(M)), which
is the dual of LY/ 3(0, T LY 3). Hence we can apply Lemma 3.2.1 and by the uniqueness of
solutions to (3.27) with the boundary and initial conditions (2.2)-(2.4) (with initial data
ug —vg = 0), we deduce that v —v = w. Thus from (3.28) we can derive another energy

estimate:

d
£(|w|i2(/\4) + |\/5w|%2(/\/1)) + |Vw|%2(/\/()

< —/ w?vy d — 2zw?u + zw*vd M + vw? + cw? d M
M
< (with o(t) = |va ()| z2(m) + [uz ()| L2 + [0(E) 22 (M)
< Cla(t)|w\%4(M) + c/ w? d M
M
< (by interpolation H'/? ¢ L* in dimension 2)
< C'o(t) w2 ng Vw2 + c/ w?d M
M

< SIVwlia g + C'(0?(t) + Dwl7z -

N
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Hence,

d
%(Wl + xw|%2(M)) < C'(o*(t) + 1)|w|%2(M). (3.35)

Since w(0) = 0 and o2 is an integrable function (€ L'(0,T)), (3.35) implies, using the
Gronwall lemma, that w(t) = 0 for every ¢t € (0,7"). The uniqueness follows in dimension 2.

Now to prove the strong continuity in time and the continuity of the flow map, we use
the classical Bona-Smith technique (see [6]) which we now adapt to this context.

Let u be the solution of (1.1) and (2.2)-(2.4). Then we have u € L*°(0,T; H) and by
(3.14), we see that u € C([0,T]; Hy), where H,, is H equipped with the weak topology
(see [42]). Hence for every 0 < s < T', we can define vg = u(s) € H. Then given vy as the
initial data, we see that u(t 4+ s) serves as a solution of (1.1), (2.2)-(2.4) with the forcing
term being replaced by F(t) := f(t + s), which belongs to L?(0,T — s; L?(M)). By the
uniqueness of solution as proved before, v(t) = u(t 4+ s). Using (3.35) and the Gronwall

lemma, we find

VI + 2 (ul() = o())]720m)
t
<exp(C' [ (0%(r) + 1)dr) VT2 (uo — w0 /\F (P32 I
0
VI (ut + 5) = ut) |72 )
t t
<exp (C’/O (@®(r) + 1) dr) [V1+z (u(s) — uo)\%g(M) + /0 |f(r+s)— f(r)|%2(M) dr,
where o(t) = [ve(t)L20m) + e () L2m) + [0(E)] [2(Mm), £ < T — s. Since 02 is an integrable
function (€ L'(0,T — s)), and f € L?(0,T; L?>(M)), in order to show that u is continuous

in H at time ¢ > 0, it now suffices to prove that u is strongly continuous in H at ¢ = 0,

namely, that

u(s) = ug in L*(M) as s — 0. (3.36)

We have already observed that u is weakly continuous in H on [0, 7] and hence at t = 0,
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that is,

u(s) — ug weakly in L*(M) as s — 0. (3.37)
Having proved (3.37), in order to show (3.36), it now suffices to prove the following
[u(s)|r2(am) = |uolrz(vy as s — 0. (3.38)

By uniqueness of solution, u must be the limit of u¢ constructed in (3.3). Hence passing to

the limit in the sum of (3.6) and (3.9), we find (in both cases d = 1, 2)
V1+xu‘L2(M < ‘f|L2(M) + |V1+5L’U‘L2(M +C|“’L2 +262|U‘L2(M (3.39)

Integrating from 0 to s, we find

[V1+ xu(3)|i2(/\4) - V1i+ xu(0)|%2(M)

g/o |f|§2(M)dt+(1+c)/0 02000 dt + 2005l 12 n) (340)

Since f € L(0,T; LM fo |fI? T2 (M) dt is absolutely continuous with respect to s. Hence
it converges to 0 as s — 0. Similarly we can deduce that each term on the right-hand-side

of (3.40) converges to 0 as s — 0. Thus

lim sup |\/mu(3)|%2(/\4) < |\/1+7$U0|%2(M

s—0

By (3.37) and lower semicontinuity of the L?-norm, we also have

linLiélf V1 + xu(s)]%Q(M) > |V1+ xuolig(M

Hence /1 + zu(s) = 1+ zug in L*(M) as s — 0 and this is equivalent to (3.36).

This concludes the proof of Theorem 3.0.2. 0

Remark 3.2.1. Note that although (3.39) is true for both d = 1,2, (3.36) is only true for

d = 1. This is because we need the uniqueness of solution to deduce (3.39).
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Remark 3.2.2. The results in Theorem 3.0.2 display the remarkable properties of the ZK
equation posed in a limited domain I, x (-3, %)d, d = 1,2, in contrast with the Cauchy
problem posed in the whole space (see [14], [30]). In particular it is not known whether the

Cauchy problem is well-posed for initial data in L*(R¥1), d =1,2.

Remark 3.2.3. Theorem 3.0.2 implies obviously a global well-posedness of the initial-
boundary-value problem for the ZK equation on a “rectangle” (0, L1); x (0, L2)y % (0, L3).,
the estimates on the solution depending of course on the L;. It would be interesting (for
instance for numerical purposes) to obtain estimates independent of some L;, allowing thus
to pass to the limit as L; — oo in order to obtain a solution of an initial-boundary-
value problem in the infinite “rectangle”, say (0,400), x (0, L2)y x (0, L3).. Such a result
has been obtained in [8] for the KdV equation, under the boundary conditions u(0,t) = 0,

Uy (L, t) = uge(L,t) = 0.

Remark 3.2.4. As for the periodic case, that is, (1.1) and the boundary and initial con-
ditions (2.2), (2.3), (2.5), the results will be the same with the Dirichlet case as discussed

above. The reasoning will be similar.

Remark 3.2.5. We have only treated the case of homogeneous boundary conditions. The
case of monhomogeneous boundary conditions will be treated in a separate work. Indeed
there are two possibilities for the treatment of nonhomogeneous boundary conditions: one
possibility is that the boundary data (u and uy at © =1 and v at x =0, u at y, z = +m/2
in the case of Dirichlet boundary conditions in y, z) are given as traces of a sufficiently
reqular function ®. In this case setting classically v = u — ®, we obtain a homogeneous
problem for v which is very similar to the problem that we studied and which can be treated
m a similar way if ® is sufficiently reqular. However if we want to consider less reqular
boundary values, then we need to study more carefully the properties of the traces of the

functions that we consider.
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Chapter 4

Local Existence of Strong Solutions in 3D

Now we turn to establish the local existence of strong solutions in 3D.

For the purpose, we also consider the space
E={uec H*M)NHjM), uz| _, =0}, (4.1)
and endow this space, as in Section 3.1 with the scalar product and norm [-, -] and []2,
(U, V]2 = (Ugz, Vaz) + (Uyy, Vyy) + (Uszz, V2z),

[u]% = ’uz’z|2 + ’uyy’2 + IUZZ‘Z ) (4.2)

which make it a Hilbert space. Furthermore by Proposition 2.3.1, we have

D(A) C E. (4.3)

4.1 Parabolic Regularization

For the sake of simplicity we will only treat the more complicated case when d = 2; the
case when d = 1 is easier. To begin with, we recall the parabolic regularization introduced

in Section 3.1, that is, for ¢ > 0 “small”, we consider the parabolic equation,

ou +A8u +C(9u +u68u VelLut =,
ot ox ox ox (4.4)

u(0) = uyp,
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where
s 0tuE 0*us

Luf :=
“ Oxt * oy* + 0z%’

supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-

ditions (3.4), (3.5).

4.1.1 Global Bounds Independent of ¢

Firstly, we recall the following global bounds derived from (3.7) and (3.10) previously:

Lemma 4.1.1. We assume that

up € L*(M), (4.5)
f e L?0,T;L*(M)), (4.6)

then, for every T > 0 the following estimates independent of € hold:

;

u® is bounded in L>=(0,T; L*(M)),
u¢ is bounded in L?(0,T; HE(M)), (4.7)

uS(0,-,+) is bounded in L*(0,T; L*(I,1)).

4.1.2 Local Bounds Independent of ¢

We first introduce a useful result:
Lemma 4.1.2. Under the same assumptions as in Lemma 4.1.1, if we further suppose that
f e L¥(0,T; L*(M)), (4.8)

then we have

s () < lu (D) +5, 0<t<T, (4.9)

where k is a constant depending only on |ug|, |f|reo,r:r2(M)) and T
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Proof. We rewrite (4.4); as

ouf n C@uE n u68u6 4o Luf = _Ouf

A ox ox ox ot

+ f. (4.10)

We multiply (4.10) by (1 + x)u€, integrate over M, integrate by parts, and follow the same

calculations as in Section 3.1; we find when € < %,

P < — / il (14 2)us dM 4+ [ + (1 + 2)uP + efu? + Juc[f
M (4.11)

S S
Here and below ¢’ indicates an absolute constant which may be different at each occurrence.

Hence if we call v a bound of |u|pe(o,7;22(A1)) as in (4.7)1, we can set
k= flEo0rnzmy + YV + V0 fuoel; (4.12)

and by (4.8) we obtain (4.9). Thus we have completed the proof of Lemma 4.1.2. O
Now we are ready to prove the following result giving the local bounds on u€ independent

of e

Proposition 4.1.1. Under the same assumptions as in Lemma 4.1.2, if we further suppose

that
fr € L>=(0,T; L*(M)), (4.13)
f e L*0,T; L*(I,;; H*(I,.))), (4.14)
Lug € L*(M), (4.15)
Aug, + ugtoy + cugg — f(0) € L*(M), (4.16)
V4t ug, uoyy, toz. € L2(M), (4.17)

then there exists T, = min(T,T}),

C3

_,u,47

T (4.18)

= p(k, | fel oo 0,152 (M) s [ Ltto]s | Aoy + uouoz + cuos — f(0)]),

43



such that for every t, 0 <t < T,
lut ()] S s
T
| uopds <
0

[Vus(t)] < Clp),

Ty T
| vuePds <o, [ vate)P ds < o,
0 0

|uyy (D) < Cp), us- (0] < Cp),

Ty T
[P ds < . [ IVas (o) ds < O,
0 0

T, T,
: /0 S 3 ds < C(u), e /0 .3 ds < C(u),

(4.19)
(4.20)
(4.21)
(4.22)
(4.23)

(4.24)

(4.25)

where < means < up to a multiplicative constant independent of €, the constant c3 depends

only on the data, and the constant C(u) depends only on p and the data and may be different

at each occurrence.

Proof. We differentiate (4.4) in ¢, write u§ = v and we find:

ov® ove ov®  Ov°  Ous .
ot +A8x +C(93: tu Ozx Tt oz +elvt=fi,

ve(0) = ufy = —eLug — Augy — Utz — oz + f(0).
Thus when € < 1,

luso| < |Lug| + |Augy + wouos + cugr — f(0)].

From (4.15) and (4.16), we obtain

ufy is bounded independently of € in L*(M).

(4.26)

(4.27)

(4.28)

Multiplying (4.26) by (1 + z)v¢, integrating over M and integrating by parts, dropping e

44



for the moment we find

ov

at(l—l—:):)vd./\/l =—-— \/1+xv]2

2dt

ov 1 9 . L
A%Ud./\/l = Q/I‘l(UmLCO) dr=,

0 1
Aa—v zvd M = f|vx|2 + §|VLU|2,

/cvx(l—l—z‘)vd./\/l:—c/ v? dM,
M 2./m

/uvx(1+:z:)vd/\/l:—l/ (1—|—:L")uxv2d./\/l—1/ uv?® dM,
M 2 Jm 2 Jm

/qu(l—l—a:)vd./\/l / 14 z)uzv? dM,

1
/ AL+ 2o dM < AP+ 511+ 2ol < SIAP + ol

4
° 07w 4(1+x)vdxdx —6]\/1+:cvm|2—6/ (vx‘x_0)2dazl,
3:E IIJ_ -
84 84
. G/M<ay S 1+ apdM = e ([VTFzu,[ + |[VFow.]).

Hence we arrive, when e < i, at

d € € 1 €
2!V Lt zug|* + Vg + 1‘“m|x=0|i2(1“)
+2¢ (V1 + zuf,, > + VI +zug, | + V1 + zuf,,|?) (4.29)
<| [ o w0 i + e+ 2l 5P
M
For the first term on the right-hand-side of (4.29), we have
(@ ) 62 M| £ Ol
where o¢(t) := |uS| + |[u¢|. Then with H3/* ¢ L* in 3D we have
‘/ 14 z)us — u) (uf) d/\/l‘ DI RENRE
/(€ 4, €12 1 €2
< ¢(0°(t)) ugl +§|Vut|

(4.30)
< (by (4.9))

1
¢ (Juil® + w2 + fu[ug?) + o[Vl
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Applying (4.30) to (4.29), we obtain

d 7 1
— VT zug]? + 2| Vg + S[ugle=olZ2r )
dt 8 4 @
+2¢ (V1 + zul,, >+ [VI+zul,, |+ V1+zu,,|?)
(4.31)
< er(jug? +1)° + | fif?
<a(VI+zuf]?+1)° +[f°.

where ¢; depends only on x. Setting /1 + zu§|? + 1 := V¢, then (4.31) implies that
d € €\3
-V < (V) (4.32)
dt

with ¢cp :=c] + \ft\QLm(OVT;LQ(M)). Thus

3
Ye@t) <2pp, 0<t< —j, (4.33)
8cafyg

where pg is a bound of 1/Y¢(0) independent of € as provided by (4.28). Now (4.33) implies

that
€ 3
lug(t)] S po, 0<t < —. (4.34)
8ea g
Then by (4.34) and (4.9) we deduce that
lug Spy, 0<t < T (4.35)
with p:= po + /£, and T, = min(7,T1),
C3 3
Thh=—73<-— 4.36
PToA 8capl (4.36)

By (4.34), (4.36) and (4.31) we obtain (4.20).

We multiply (4.4) by (1 + x)uy,, integrate over M and integrate by parts, dropping e
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for the moment, we find

o/ ug (14 2)uyy dM = th \/1+xuy|2
M

3., 1

Uzzz (1 + x)uyy dM = _5 u:vy| B 9 uxy‘x:O|L2(Iy) ’

1
Ugyy (14 T)uyy dM = _i‘uiy‘7

cuz (14 x)uyy dM = C/ uZ dM,
2 Jm

/.
/.
1
° / Uzzs (14 x)uyy dM = —§]u2y!,
M
/.
/.

1
uty (14 x)uyy dM = 2/ ui (u— (14 z)uy) dM,
M

° e/ Ugzze (1 + T)Uyy AM = —e/ Uzzaay (1 + T)uy dM
M M

= e/ Ugzaylly M + 6/ Uzzay (1 + ) Ugy AM
M amM

= 25/ Uy UgydM — e/ (1+ x)uixyd/\/l
M M
2 2
=e [ ui,| _dM—e [ (1+x)ui,, dM,
/M y|z_0 ™ y
. e/ Uszzz (14 )y dM = —6/ (1+ Ji)ugzy dM,
M M
. e/ Uyyyy (1 + )y dAM = —e/ (1 + 2)uy,, dM,
M M

1 1
hd f(1 4 z) uyy dM = _/ fy (L + 2)uy dM < S[(1 —|—a:)uy]2 + *‘fy|2'
M M 2 2
Hence when e < %, we have

d
£|Vl+xu§|2+|Vu§|2 }uwy‘x 0‘L2 (Iy)
+2¢ (V14 zul,,” + V1+zul,, |+ V1 +zu,.|?)

‘/ (14 2)ul, —u®) dM +(C+2)’UZ,‘2+‘fy’2'
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For the first term on the right-hand-side of (4.37), we find
‘/ (1 +2)ul, —u) dM| < (with o°(t) := |ug| + |u)
< o (0)luglTa
€ € 1 €
< (o (1) g2 + 51V (4.38)
< (by (4.3%))
1
(A Juc ) Jug)* + g\VUZIQ, 0<t<T..
Applying (4.38) to (4.37), we find
d / €2 7 €2 1 € 2
at L+ @™+ §|v“y‘ T ’u$y|z:0’L2(Iy)

+ 26 (V1 +mu,, >+ VI+zu,, |+ V1I+zu,,|?)

(4.39)
<t lug? + | £y
<PVt zug) +[f,,  0<t<T.
We can then close the Gronwall inequality on the time interval (0,7%), and obtain
T*
VIF 0P < C) (VT 2w+ [ 156Rds)
0
C(u, lwoyl, | fylr20m2my)), 0 <t < T,
which implies
luy ()| < C(p), 0=t < T (4.40)
By (4.40) and (4.39) we obtain
T
/ ]VuZ(s)]st < CO(p). (4.41)
0
Similarly, we can obtain the same kind of estimates for u, Vu¢, that is
us(t) < Cp), 0<t<Ti, (4.42)
T*
|1 as < o (1.43)
0



From (4.35), (4.40) and (4.42) we obtain (4.21).

We then multiply (4.4) by (1+x)us integrate over M and integrate by parts, to find

yyyy’

ug (14 x)uyyyy dM = V1 +zuy,l?

2dt’

1 2
Ugzr (1 + ﬂf)uyyyy dM = 5’“ery‘2 + 9 ‘uxyy‘xZO‘Lz(Iy) ’

1
Ugyy (14 T)Uyyyy M = ‘ yyy’Q

/.
/.
J.
[ e (Lt Dy M = G,
M
/ Uy (1 + ) uyyyy dM = —E|uyy|2,
M 2
/ Wty (1 4 x)uyyyy dM
M

= —/ Uyt (1 + 2)Uyyy dM — / Uy (1 + ) Uyyy dM

M M
uiyux(l +x)dM + 2/ UyUgy (1 + )1y, dM + / Ullgyy (1 + )y dM
(up(1+ ) — uyy dM — / u? o Uyy AM — / (14 2)ugyy dM
. e/ Uggaz (1 + ) Uyyyy M = —6/ Uggzzy (1 + T)Uyyy dM

M M
= _6/ UggayUyyy AM + 6/ Ugzzy (1 + T)Ugyyy AM

M M
2

= —¢ us dlxl—i—e/ (1 + x)u?,,, dM,

/I A yylo=o ™ vy

T

Uyyyy (1 + T)Uyyyy M = €|[V1 + x“yyyy‘{

®c

®c

T

Uzzzz (1 + x)uyyyy dM = €| vV1+ xuzzyy‘27

1 1
’/ f(L 4 2)uyyyy dM = _/ fyy (1 + @)uyy dM < §|(1 +x)“yy‘2 + §|fyy‘2-
M M
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Hence when e < %,

SIVIF @5, P+ [V P+ sy gl
+2e (|\/muzym|2 + ’\/muzjyyy‘z + |\/m“2yzz|2)
S'J/ ((1+-$)U§-u€)ﬁéw)2dﬂ4‘*‘2‘]/ ui“yydﬂA‘ (4.44)
M M
s ' [ w04 2y dM] T (e Dy + [ fl?

= 1§ + I+ I + (c + D), |* + | fyy*-

For If, by the similar calculations in (4.38) we deduce

1
I < (ut+ uflh) \uzy\Q + §|Vu§y]2, 0<t<T.. (4.45)

For I5 we have

I5 < 2‘“;‘%4(M)|u2y’

<l |29y P2, )
< (by (4.40))

< O()|Vus P2, 2 + C ()| Va2, 0 <t < T.

For I§ we have

2
I5 < 2|uZ‘L4(M)’u;yy‘

Y ARG ATARG

1

< gl + ¢ ||V P (447)
€

1
< Sy ® + ¢ lup Jugy 1P + ¢ [Juy, [P + ¢ [ug,. [

8

1
::ﬁ%ﬁ+ﬁ+ﬁ+ﬁ

We now estimate J;. We observe that since ug, = 0 at y = £7,
2
Jug,|* = /M (us,)” dM = — /M uS s, dM < g |[us,, |- (4.48)
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Thus we have

Ji < luglug 2, P2

< CI|VUE’5/2‘U§yy‘3/2

< (by (4.21) already proven)) (4.49)

< C(p)* gy, [*?

1
<O + glugy,l*, 0<t<T.

Similarly for J§, since u{ = 0 at y = £7, we can apply the intermediate derivative

29

theorem to ug, and deduce that |uS,[* < [uf[|u,,|. Hence by estimates similar as in
(4.49) we have
€ 1 €
JE< O™ + g|uzyy\2, 0<t<T.. (4.50)
To estimate J§, by (4.40) we have
JS < Cp)us,)®,  0<t<T. (4.51)

Collecting the estimates in (4.49), (4.51) and (4.50), along with (4.47) we obtain

3
I§ < 2IVup, [ + Cp) + Cu)lug, ', 0<t<T. (4.52)
Collecting the estimates in (4.45), (4.46) and (4.52), along with (4.44) we obtain
d 1 — — —
% \/muzyF * §\Vu§y\2 +2€ (’ 1+ xul&/yxv"f‘2 + ‘ 1+ x“z?yny + | 1+ xuge/yzz‘Q)
< (| + O () [T P2 + Clp)ufy | + e+ 1) [,

+ O(W)|VUG P2 + C(u) + [ fyl®, 0<t < T

(4.53)
In particular, setting n°(t) = ¢ (u* + Juf|* + C(,u)|Vu?j|3/2 + C(p)|ufy, | 4+ ¢+ 1), from (4.53)

we infer that

d € € € €
o VItzug,|? <n )V +zul,|* + Cu)|Vus P2 + C(u) + | fyy?, 0<t < Ty (4.54)
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Since |Vu§|3/2 < |Vu§|? + ¢, along with (4.41) we deduce
T
A 7 (s)ds < C(p).
We can then close the Gronwall inequality on the time interval (0,7%) in (4.53), and obtain
V14 xu;y(t” < C(p, ‘u0yy|7 ’fyy|L2(0,T;L2(M)))a 0<t<Ts,

which implies

s, ()] < C(p), 0<t<T. (4.55)

By (4.55) and (4.44) we obtain

T*
| i) ds < (4.56)
0
T
e/ [u$,)3 ds < C(n), 0<t<T. (4.57)
0

2

<., Vug, and €[ul,]5.

Similarly we can obtain the same kind of estimates for u{,,

Combining all the previous local bounds, we obtain (4.19)-(4.25). Hence we have com-

pleted the proof of Proposition 4.1.1. O

4.1.3 A Singular Perturbation Argument

We are now ready to show the local estimates for u$, and u®ug by singular perturbation.

Proposition 4.1.2. Under the same assumptions as in Proposition 4.1.1, we have
ul, is bounded independently of € in L*(0, Ty, L*(M)), (4.58)
u‘ul, is bounded independently of € in L*(0,Ty; L*(M)). (4.59)

Remark 4.1.1. Note that by (5.85) and (4.23) we deduce that

u is bounded independently of € in L*(0, Ty, Z). (4.60)
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Remark 4.1.2. We know that

/M(ueu;)3/2 dM < (/M(ue)ng>1/4 (/M(u;)QdeM

g lus*?

= |u LS (M

< (by HY(M) C L5(M) in 3D)
< | Va3

Hence

sup [uul(t)|pseng S sup [Vu ()] S (by (4-21)) S C(w)°, aet,
te(0,Ty) te(0,Ty)

which implies that
uu, is bounded independently of e in L>®(0,Ty; L3/2(M)),
and hence in L3/?(I; L3/%((0,Ty) x I,1)).

Thus we can apply Lemma 7.2.1 in the Appendiz with p = 3/2 and Y = L32((0,T,) x I,..),

and obtain

us,, is bounded independently of € in L= (I; L¥/*((0,T,) x I,1)). (4.61)

xrx

However, to obtain more useful estimates as in (5.35) and (4.59), we need to use the

following proof which provides a stronger result.

Proof of Proposition 5.2.2. We rewrite the regularized equation (4.4) as follows:

€ €,,€ € — €
uxxx+u um+6umxxa: =g,

(4.62)

where ¢¢ := —u§ — AtuS — cul, — eu eus,,, + f. Hence by (4.19), (4.24) and (4.25),

€ _ €
YYyyy 2222

we know that each term in ¢¢ is bounded independently of € in L?(0, T, L?>(M)), and thus
¢¢ is bounded independently of € in L?(0, T, L*(M)). (4.63)
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Multiplying (4.62) by x and integrating in = from 0 to 1, we find

1 1
r=1
® / LUz dr = — / Uzz dx + umxm}a::[) = ux‘w:O + Uza ‘x:l’
0 0
1 L g /w2 1t )
) TUUy dT = — = dx =—= u“ dzx,
0 0 6:6 2 2 0
1 1 )
r=
. e/ TUgppe AT = —e/ Ugza AT + 6u$$$x‘$:0 = —€Ugg|, | + €Uzazz|, -
0 0

Hence

. 1

1 1
“m}x:o + uix‘le — 2/0 (ue)2 dr — eus,, oot T eu;mb:l = /o gz dx. (4.64)

Integrating (4.62) in x from Z to 1, we obtain

1
./ Ugze AT = Uxa:‘z:l — Uz,
z
1
1
o/ Uy dr = —qu,
# 2
1
b E/ Ugzar AT = €Ugry o=1  Uzzz-
z
Hence
1
ugmlmzl —uS, — f(ue)Q + U | py — Uy = X g¢dx. (4.65)
z
Then (4.64) and (4.65) imply
€ 1 ! €\2 € € €\2 € ! € ! €
uﬂ?‘x:() B 5 0 (u ) dx — euxﬂc‘le + Uy + 5(“ ) T €Uy = 0 g'wdr — _ g dz,

which we rewrite as

€

Ugy + €Uy, = €ufy| |+ B, (4.66)

where
€ € 1 ! €\2 1 €\2 ! € ! €
he = —ug| o+ 5 (u€)*dx — §(u )+ | gxder— | ¢“dx. (4.67)
0 0 z

Now we estimate the term (u€)? in (4.67). Since
22 < [u b pg S (by HYAM) € LA(M) in 3D) < V],

o4



we have
T. T.
[l as s [ vl ds < (by (120) 5 O
0 0
Thus
(u€)? is bounded independently of € in L*(0,T,; L*(M)). (4.68)
Applying (4.7)4, (4.63) and (4.68) to (4.67) we find

h¢ is bounded independently of € in L%(0, T}, L*(M)). (4.69)

Multiplying (4.66) by u,, integrating in  from 0 to 1, we obtain

X

1
dz = Su?
oc Uszallzs AT = Sl |,
0
1 1

hence we arrive at

1 1
€
/0 (Uix)Q dx + §(UZZ’)2’x:1 = _Eugx‘leug‘l«:o + /0 Ufm h* dZL‘,

€ 2 2, 1 2 1 2
< Z(u;‘$|x:1) + Cle(ug‘x:(]) + §|ufc$|L2(Iz) + §|hE|L2(Iz)'

Thus

1 ! € \2 €/ € 2 / € 2 1 €2

5 0 (uazx) dx + Z(uIiU':c:l) < Ce(ux‘wzo) + §’h ’LQ(II)' (4'70)
We integrate both sides of (4.70) in I,. and then in time from 0 to T}; by (4.69) and (4.7)4

we obtain (5.35). As in Remark 4.1.1, we thus have (4.60).

Now since

uug|[* < \Ue\%4(M)|U§‘%4(M)
< (by H3*(M) C L4(M) in 3D)
< 2V PR 2 T3

S TPV + [u]3,
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hence we obtain

T. . T.
/ lucus|? ds ,S/ ]u6]2|Vu6|4ds+/ [u]3 ds.
0 0 0

This together with (4.21) and (4.60) implies (4.59). O

4.2 Passage to the Limit

Using a compactness argument, we can pass to the limit in (4.4). Hence we obtain (1.1),

with a function u € C1([0, T.]; L2(M)) N L%(0,T; HY(M)). Then we rewrite (1.1) as
Uggr = —Ut — ALU;E — CUug — UUy — f. (471)

From (4.19), (4.24) and (4.59), we infer that each term in the right-hand-side of (4.71)

belongs to L?(0, Ty; L?(M)), and hence
Upee € L2(0,T,; L2(M)). (4.72)
Now we are ready to state the main result: the local existence of strong solutions.

Theorem 4.2.1. The assumptions are the same as in Proposition 4.1.1, that is (4.5), (4.6),

(4.8) and (4.13)-(4.17). We suppose also that the following compatibility conditions hold:

ug =0 on OM, UOx’mzl =0, uOyy|y:ig = UDzz‘Z:ig =0, (4.73)
0 on oM, 20 AL ‘ O uio 0 (4.74)
up = 0 on —_— = = = )
0 "0z lz=1 ’ 63/2 y=%7 072 2=%7 ’
where uyy = —Augg — ugupy — cupg + f(0). Then there exists a local strong solution to (1.1)-

(2.4) on some time interval [0,Ty), T > 0 depending only on the data as in Proposition
4.1.1, such that

YV, Uy, szt € L0, Ty; LA (M), (4.75)

u € L*(0,T,; D(A)NEN H3(I,; LA(1,.)) N H3(1,.; L*(1,))), (4.76)
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up € L2(0,Ty; HY(M)). (4.77)

Moreover, we have for every t € (0,T),

uyy(t)’y:i% = uzz(tﬂzzi% =0. (478)

Remark 4.2.1. We have proven that all the spatial derivatives of the third order of u are

in L?(0,Ty; L>(M)), except for uyzy and tyys.

Proof. We rewrite (1.1) as

Au = —uy — uugy — f; (4.79)

from (4.19) and (4.59) we know that each term on the right-hand side of (4.79) belongs to
L?(0,Ty; L?(M)). Hence Au belongs to the same space. We also know that u,(1, 2+, t) = 0,
t € [0,7] as prove in Proposition 2.3.1. Hence we obtain that u € L?(0,Ty; D(A)). This
together with (4.3), we deduce that u € L?(0,T; =).

By (4.22), we know that gy, u,., both belong to L?(0,Ty; L*(M)). Hence we can
apply the trace theorem and pass to the limit on the boundary conditions in (3.4) to obtain
(4.78).

The other results can be deduced directly from (4.19)-(4.24) and (4.72). O

Remark 4.2.2. As for the periodic case, that is, (1.1) and the boundary and initial con-
ditions (2.2), (2.3) and (2.5), the results are exactly the same as in the Dirichlet case

discussed above. The reasoning is totally the same and therefore we skip it.
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Chapter 5

Global Existence of Strong Solutions in 3D

We now establish the global existence of strong solutions in 3D. First we need to assume

different boundary conditions at x boundaries, that is, we suppose

u(0, 2, t) = u(l, 2+, t), (5.1)

ug (0, 2t 1) = up (1, 21, 1), uge(0, zh, t) = uge(1, 2, 1). (5.2)

For the boundary conditions in the y and z directions, we will choose the same boundary
conditions as before, that is, either the Dirichlet boundary conditions in (2.4) or the periodic
boundary conditions in (2.5).

Similarly, we will focus on the initial and boundary value problem (1.1), (5.1), (5.2) and
(2.3) supplemented with the boundary condition (2.4), that is, the Dirichlet case on the
x1 boundaries, and we will make some remarks on the extension to the periodic boundary
condition case.

We recall the notations |- | and (-, -) for the norm and the inner product of L?(M), and

by [-]2 the following seminorm which will be useful in the sequel:
1/2
</ U, + g, + ugydM) =:[u]s, uwe H*M). (5.3)
M

To establish the existence of strong solutions in dimensions 2 and 3, we use the parabolic
regularization as in Chapter 3, but with different boundary conditions. For the sake of

simplicity we only treat the more complicated case when d = 2.
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5.1 Parabolic Regularization

To begin with, we recall the parabolic regularization (4.4) in Section 4.1 supplemented with

the boundary conditions (5.1), (5.2) and (2.4) and the additional boundary conditions

ous ou’ ous ouf .
En +A8x +63:c +u o +eLut = f,
u(0) = uyp,
where
Lt otus n otus n otus
oozt oyt 0247
and

U, (0, 25, 1) = ul,, (1, 25, 1),

rxrxr Txrxr

u;y:()anty:j:I

T
5’ uZ,Z:()atz::ti.

Note that from (5.2) and (5.5) we infer

us; (0, 2, t) =1,z 1), j=1,2, 3.

xJ x)

0, (5.7) is equivalent to

. e |z=1 e |[T=1
We also note that since uyy‘x:@ = uZZ‘a::O =

A=

5.2 Estimates Independent of ¢

We establish the estimates independent of € for various norms of the solutions.

5.2.1 L? Estimate Independent of ¢

We first show a bound independent of ¢ for u€ in L>(0,T; L?(M)).

Lemma 5.2.1. We assume that

Uy € Lz(M),
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f € L*(0,T; L*(M)). (5.10)

Then for every T > 0 the following estimates independent of € hold:
u is bounded in L°°(0,T; L*(M)), (5.11)
Veus is bounded in L?(0,T; HX(M)). (5.12)

Proof. As in Section 3.1, we multiply (5.4) with u, integrate over M and integrate by parts,

dropping the superscript € for the moment we find:

o/ Augud M +/ cug ud M = (thanks to (5.1))
M M

= —/ Vu, Vud M
M

1 =
= —/ (Vu)2|m_(l) dat (5.13)
2 I;ci -

= (thanks to (5.1) and (5.7))

=0,

3
. / uumud/\/l—/ 8(u> d M = (thanks to (5.1)) =0,

o e/ Ugzar Wd M = (thanks to (5.1) and (5.7))
M

= —e/ Uz Uz A M
M

= (thanks to (5.7))

= 6/ uZ, dM,
M

® € /M (uzxx:c + Uyyyy + uzzzz) udM=e ™ uix + uiy + uzy dM
= (thanks to (5.3))

= 6[”]27

1 1
. / fudM < = |f* + =|u)?.
™ 2 2
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Hence we find

d € € €
prl (O + 2e[u3 < [f1* + Ju.

Using the Gronwall lemma we classically infer

T
sup |u(t)]? + ¢ / [u]3 dt < const := p, (5.14)
t€(0,T) 0

where p; indicates a constant depending only on the data ug, f, etc, whereas C’ below is
an absolute constant. These constants may be different at each occurrence. Let us admit

for the moment the following:

Lemma 5.2.2.
oy < C ([0 + Ju?). (5.15)

By the previous lemma, we have

T T T
6/0 R dt < C (6/0 [UE]gdHe/o qudt)

T
<’ (e/ [u)3dt +eT sup |u6(t)|2>
0

te(0,7)

< (thanks to (5.14))
< const := g,
which implies (5.12). Thus Lemma 5.2.1 is proven once we have proven Lemma (5.2.2).

Proof of Lemma 5.2.2. We first observe that using the generalized Poincaré inequality

(see [44]) we have
|ug — /01 ug del 2,y < C'us,| r2(r,)- (5.16)
Thanks to (5.1), we have fol ul, dz = uf|*=} = 0, and hence (5.16) implies
luglr2(r,) < C'uselr2(r,)-
Squaring both sides and integrating both sides on 1,1, we find
0] < Ol . (5.17)
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Similarly we can show that [ug| < C'|luf, | and |ug| < C'|ug, |, which implies
(Vue| < C'[ufs. (5.18)
Next we see that, for smooth functions
]u;y|2 = (thanks to (5.1) and (5.7))
=— /M Upy UGy AM
= (thanks to (2.4)) (5.19)
= /M Ugyy U3, MM
< JuSyl + iy P < [
Similarly we can prove that |ug,| < [u]2 and |ug,| < [u]2, and hence
Jugy [* + Jug.|* + |uy.[* < C'[ucT3. (5.20)

Then inequality (5.19) and (5.20) extend by continuity to all H? function periodic in = and

satisfying (2.4) and (5.6). Finally from (5.20) and (5.18) we deduce (5.15). O

5.2.2 H' Estimate Independent of ¢

Now we establish the key observation, a bound independent of € for Vu¢ in L>(0, T; L?(M)).

Proposition 5.2.1. Under the same assumptions as in Lemma 5.2.1, we further suppose
that

ug € HY (M) N L3 (M), (5.21)
f e L?0,T; H*(I;; H* N HN(I,1))) NL*(0,T; L°(M)), (5.22)

and f and f; assume the periodic boundary conditions on x =0, 1. Then for every T > 0,

the following estimates independent of € hold:
u is bounded in L>(0,T; HY(M)), (5.23)
VeVug,, VeVuy,, VeVu, are bounded in L0, T; LA (M)). (5.24)
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Proof. We multiply (5.4) with —Au® — %(ue)Q, integrate over M and integrate by parts.
Firstly we show the calculation details of the multiplication by Au€, integration over M

and integration by parts (dropping the super index of € for the moment):

o/ utAud./\/l:—/ VutVudM—l—/ ut@da/\/l
M M om  On

= (thanks to (5.1) and (5.7)) = —/ Vuy VudM
M

. / Auy AudM = ;/ (Aw?[*= d 1. = (thanks to (5.8)) =0,
M

I

° / Uy AudM = / Uy Ugy + Uy ATudM = (thanks to (5.1))
M M

2
_ / 9 ()™ g / Viu, V3iudm

= (thanks to (5.7) and (5.1)) =0,

o / Uggze Uze d M = (thanks to (5.7)) = —/ ut,, dM,
M M
° / Uzzaa Uyy d M = (thanks to (5.1)-(2.4) and (5.7)) = —/ uimyd/\/l,
M M
o / Uyyyy Aud M = (thanks to (2.4) and (5.6)) = / Uyyy Aty d M
M M
= (thanks to (5.6)) = / Uyy Ay d M
M
= _/ (vuyy)2 dM,
M

o / f AudM = (thanks to (5.22)) :/ AfudM,
M M

Hence we find after changing the sign,

1
1d |Vu€2—/ ucul Aut dM + e[Vuf)3 = —/ AfuSdM. (5.25)

Next we show the calculation details of the multiplication by (u€)27 integrating over M

63



and integrating by parts:

Q/Mutu dM = /8t<3>dM—;5</udM>,

o/ Auqud./\/l——2/ Au uug, dM + AUUQ‘ii(l)dIIL
M M o

I..

= (thanks to (5.8) and (5.1))

:—2/ Avuu, dM,
M
o [u? 1 1
2 _ I e S r= = =
. /Muxu dM-/Max<3)dM 3/]“ u?|7Z d I = (by (5.1)) =0,
o/uuu2/\/l:/ 8<4> M_/ }xldlL—(bY(’él)):O
M v Max 4 IZL ’ ’

° / Upppe U2 AM = (thanks to (5.1) and (5.7)) = —2/ Ugge Uz W d M,
M

<

. /M Uyyyy U2 d M = (thanks to (2.4)) = —2 /M Uyyy Uy U d M,

Hence we find

1d
3T (/ (u€)? d./\/l> - 2/ Auf utul dM
M M (5.26)
_25/ U Wy U+ Uy Uy U+ UG, U U d./\/l+/ f(u®)” dM.
M

Adding (5.25) to (5.26) multiplied by —1/2, we see that the term [, Aufuug dM get

canceled, which yields

1d € li €\3
2dt]Vu\ + €[Vu)3 T </M(u) d/\/l)

_E/Mummuxu + gy, Uy U+ U, ug ucd M

—/MAqudM—;/Mf(u 2
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Integrating both sides in time from 0 to ¢, we obtain for every t € (0,7,

1 t
VU + 6/0 (V2 ds
1

=/ (u(£))? dM + o
(5.27)

/ / U Uy U+ Uy Uy U+ g, ui u® dMds

—/0 /MAqudes—;/ot/Mf(ue)Z dM ds,

1w 1 [ o
= — |Vuyg| —/ uy dM.
2 6 Sy °

where

We estimate each term on the right-hand-side of (5.27); we will use here the interpolation
space H'/2(M) as defined in [31] where it is shown that H'/2(M) C L3(M) in dimension

3 with a continuous embedding. Dropping the superscript € for the moment we then find:

1 1

= C/|U(t)‘?;{1/2(/\/1)
< C'[u(®)[? [Vu(t)|*?

1
< )+ § IVu(t)l?,

€

M
€
< C'elugul® + E\ume

€
< CelulZa g lualgamy + E|“wm|2 (5.28)
< (by H3/4(M) C L4(M) in 3D)

< Cle‘u|1/2’VU|3/2’1L$‘1/2|U$‘3/2 m i 10‘szz’2

< Clelul 2 [Vul*ul 3 0y 1—0|um\2,

€

/ Uyyy T Uy ud M| < (by similar estimates as above)
M
< Cleful 2| Vullul33 vy

2
TO|Uyyy| )
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€

/ Uszpy T Uy ud./\/l‘ < (by similar estimates as above)
M

3/2 €
< Celul | Vuluff3 ) + 75lussl’,

’/ Afud/\/l‘§|Af2+\u|2,
M

\ /M f? dM\ < |l < 12 + ul*

Collecting the above estimates, along with (5.27) we observe that the terms with third-order
derivatives in the RHS of (5.28) and the following two inequalities can be canceled by a

term on the LHS of (5.27). Thus (5.27) now yields
1
Z|Vu€(7§)|2 10/ (V)3 d8§/0 (1—|—C'e|u5|1/2\u6\%22M)) |Vus(s)* ds
SOWOF ot [ 1057 ds
0

t t
+/ ’U€’2+‘u€‘4d8+/ |f‘%°°(/\/l) ds
0 0

<(thanks to (5.14))

t
g/o (1+c’eu}/4\u€\3/2 )) IVus(s)[2 ds

(5.29)

+ OB + ko + ‘f’%Z(O,T;Hg(M))

+ (1 4 )T + | 1220 1:L00 (M)

1/4

In particular, setting o¢(t) :== 1+ C’epy’ " |u

€|3/2( from (5.29) we deduce

)7

€

10/ [Vuls dSS/Otaf(s)!Vu%s)Pds

+ C'1d + ko + |f‘%2(0,T;H§(M))

VP +

(5.30)

+ (1 4+ 1DT + | F122(0.1:L00 (M)
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Since |u€|%§(M) < ’UE’%p(M) + C’, we find

r € / 1/4 r €12 /
o°(s)ds < T+ C'epy (|u |H2(M)+C)ds
0 0
< (thanks to (5.12))
< const := ug.

We can then apply the Gronwall inequality to (5.30) to obtain

T
sup |Vu(t)]® + 6/ [Vu)3 ds < const := puy. (5.31)
t€(0,T) 10 Jo
This together with (5.11) implies (5.23) and (5.24). O

5.2.3 Estimates Independent of ¢ for v}, and u‘u

For the sake of the passage to the limit on the boundary conditions and the compactness

€

argument, we now derive bounds independent of € for ug,,

and ufuf,. In particular, to

€

obtain the estimates for ug,., we first deduce a bound independent of e for eus,, ., in

TTIT)

L%(0,T; L*(M)).

Proposition 5.2.2. Under the same assumptions as in Proposition 5.2.1, we further sup-
pose that

Uozz € L*(M), (5.32)
feze € L*(0,T; L*(M)), (5.33)

and fro assume the periodic boundary condition on x = 0, 1. Then we have the following

bounds independent of €,

€ [ugz]o is bounded in L*(0,T; L*(M)), (5.34)
uul, is bounded in L>®(0,T; L3?(M)). (5.35)
u,,, is bounded in L3/*(I; H71(0,T; H*(I,1))), (5.36)
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Proof. For notational simplicity, we will drop the super index € in the calculations. Multi-

€

plying (5.4) by uS,,., integrating over M and integrating by parts we find:
. /M U Ugzze AM = (thanks to (5.1) and (5.7)) = = —|ugs|?,
. /M Aty tppps AM = (thanks to (5.1), (5.7) and (2.4)) = 0,
. /M Uptiaman AM = (thanks to (5.1), (5.7) and (2.4)) = 0,

o/ UlgpUppeadM = —/ uiumxd/\/l—/ UlggUpza dM = 5/ uxuimd./\/l,
M M M 2 Jm

. /M Uyyyytianes dM = (thanks to (5.1), (5.7) and (2.4)) = /M w2, dM

TTYYy )

2
L4 / UzzzzUpgre A M = / Ugrzz d M7
M M

M M

Hence we find

1d

5 2
ialufm 2 + E[ugx]% < 5 /M u; (u;x) dM + |fxacz|2 + |u;|2

Multiplying both sides by € we obtain
)
7*|ua:ac + 62[u;$]% < / u; (u;x)2 dM + €|f:mw‘2 + €|u§c|2- (5'37)
M
We estimate the first term on the right-hand side of (5.37) and find

€

/ uzuide’ < e|u$Hum]%4(M)
M
< C'e \ux|]um|1/2]Vum|3/2
< (the intermediate derivative theorem |tz,|?* < |ug||tee|)
< C/€|U:c‘5/4|Uxx:c‘1/4|vua:x|3/2
< C/€’u$‘5/4|vu$x‘7/4
< (thanks to (5.31))

< C”e,ui/8|Vum]7/4.
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This along with (5.37) implies

S, P+ E[us, 3 < Cle SV, | + €l fraa|? + g,

Integrating both sides in ¢ from 0 to 7', we find

T T
€
5 / [ 3 dt < Sluoss | + C'piy® / € Vito "1 dt + €l fazolfa(o rise(ay) + €T (5:38)
0 0

By (5.24) we see that fOT €|Vus

1‘$|

Mhar< ¢ fOTe (|Vus,|* + 1) dt < const := pg. This along
with (5.38) implies (5.34).

Now since

/ (w2 AM < C'Juf5{ w2 < (' (M) € (M) in 3D) < C'fuljp,
M

this along with (5.23) implies (5.35), and hence

uu, is bounded in L%?(I,; L¥2((0,T) x I,1)). (5.39)
Finally rewriting (5.4) we find

€
Txrxr

€

U TXxITIT

_ € 1 € € € € € €
= —uf — A~uf, —cul, —uul —eu — €Uy — €U, (5.40)

Thanks to (5.34), we see that euS,,, remains bounded in L?(0,T; L?(M)). Moreover since
u€ remains bounded in L>(0,T; H*(M)), we find that each term on the right-hand side of
(5.40) except for u€ uS, remains bounded at least in the space L?(I; H; *(0,T; H=*(I,.))).

This together with (5.39) implies that each term on the right-hand side of (5.40) remains

bounded at least in L32(I,; H;*(0,T; H=*(I,.))). Thus we obtain (5.36) from (5.40). [

5.3 The Main Result

Using a compactness argument, we can pass to the limit in (5.4) and obtain (1.1), with a

function u € C([0,T]; H'(M)). Moreover, from (5.36) we infer that u¢

¢ »z converges weakly in
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the space L% 2(I; H; *(0,T; H=*(I,.))), hence by the trace theorem and Mazur’s theorem,
we deduce that uS; (0,2%,¢) and uS, (1,2, ) converge weakly in H7Y0,T; H*(I,1)), j =
1, 2. Thus from (5.7) we obtain (5.2).

Now we are ready to state the main result of the article by collecting all the previous

estimates.

Theorem 5.3.1. The assumptions are the same as in Proposition 5.2.2, that is, (5.9),
(5.10), (5.21), (5.22), (5.32), (5.33), and f and f,; assume the periodic boundary conditions
onz=0,1,7=1,2. Then the initial and boundary value problem for the ZK equation,

that is, (1.1), (5.1), (5.2), (2.3) and (2.4), possesses at least a solution u:
u e C([0,T); HY(M)) nW33/2(I; H7H0,T; H4(I,1))). (5.41)

Remark 5.3.1. We can obtain stronger reqularity for u(x fo t)dx. Inte-

grating (1.1) in x from 0 to 1, we find by (5.1) and (5.2)

ou

5 =f. (5.42)

Thus w = 4 + v, where u satisfies (5.42), and v satisfies v =0 and (5.41).

5.4 Discussions about the Uniqueness of Solutions

Let u and v be two solutions of (1.1), (5.1), (5.2), (2.3), and (2.4) and let w = u—wv. Letting

w(zt,t) = f01 u(z, zt, t) do, we see that % = 0 and hence

w(t) =0, ¥ te[0,T]. (5.43)

However, it is not clear if we can further prove that w(t) = 0, V ¢t € [0,T]. Firstly, the
ideas in the proof of existence can not be extended to prove the uniqueness because the
structure of the nonlinear term is changed. Secondly, the methods in Chapter 3 are not

applicable due to the lack of assumptions on the boundary condition u, at £ = 1. For the
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same reason, the proof of the local existence in Chapter 4 fails as well, which prevents us
from using the methods in [7].
To conclude, the uniqueness of solutions in both dimensions 2 and 3 are still open due

to the partially hyperbolic feature of this model.

Remark 5.4.1. As for the periodic case, that is, (1.1) and the boundary and initial con-
ditions (5.1), (5.2), (2.5) and (2.3), the results are the same as in the Dirichlet case. We

skip the very similar reasoning.
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Chapter 6

Stochastic ZK Equation

We consider the stochastic ZK equation with multiplicative noise

du + (Auy + cuy + uug) dt = fdt 4+ o(u) dW(t), (6.1)

evolving in a rectangular or parallelepiped domain. We assume that f is a deterministic
function, and the white noise driven stochastic term o(u)dW (t) is in general state depen-
dent.
The boundary conditions are the same as in Chapter 3, that is, we assume (2.2)-(2.5).
Again for the simplicity of the presentation, we will mostly study the Dirichlet case (6.1),
(2.2)-(2.4). We will just make some remarks concerning the closely related space periodic

case when (2.4) is replaced by (2.5).

6.1 Stochastic Framework

In order to define the term o (u) dW (¢) in (6.1), we recall some basic notions and notations of
stochastic analysis from [11]. For further details and background, see e.g. [37], [18], [17], [2]
and [9].

To begin with we fix a stochastic basis

S = (0 F, {Fi}i>0, P, {Wi}r=1) , (6.2)
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that is a filtered probability space with {W}},>1 a sequence of independent standard one-
dimensional Brownian motions relative to {F;}+>0. In order to avoid unnecessary compli-
cations below we may assume that F; is complete and right continuous (see [9]).

We fix a separable Hilbert space { with an associated orthonormal basis {ej}r>1. We
may formally define W by taking W = > 72, Wieg. As such W is said to be a ‘cylindrical
Brownian motion’ evolving over il.

We next recall some basic definitions and properties of spaces of Hilbert-Schmidt opera-
tors. For this purpose we suppose that X is any separable Hilbert space with the associated

norm and inner product written as |- |x, (-,-)x. We denote by

Lo(8l, X) = {R €L, X): Y |Refy < oo},
k

the space of Hilbert-Schmidt operators from U4 to X. We know that the definition of
Ly (4, X) is independent of the choice of the orthonormal basis {ex}r>1 in X. By endow-
ing this space with the inner product (R,T),,  x) = >_j (Rek, Tex) x, we may consider
Lo (4, X)) as itself being a Hilbert space. Again this scalar product can be shown to be
independent of the orthonormal basis {ej}>1.

We also define the auxiliary space iy D 4 via

o = v:Zakek: ch<oo ,
k>0 k
endowed with the norm |v|1210 = > paz/k? v = Y, arex. Note that the embedding of
i C Yy is Hilbert-Schmidt. Moreover, using standard martingale arguments combined with
the fact that each W}, is almost surely continuous (see [9]) we obtain that, for almost every
w e Q, W(w) € C([0,T7], o).
Given an X-valued predictable process ¥ € L?(Q; L?((0,T), La(4, X)), one may define

the Ito stochastic integral

t t
M, ::/ \de:Z/ U, AW,
0 A 0
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as an element in M?%, that is the space of all X-valued square integrable martingales. In

the sequel we will use the Burkholder-Davis-Gundy inequality which takes the form

s r T /2
E( sup / TdW(t) ) <cE [(/ 1117, x) dt> ] : (6.3)
0<s<T X 0 ’

0
valid for any r > 1. Here c¢; is an absolute constant depending only on 7.

Conditions Imposed on o, f and ug. Given any pair of Banach spaces X} and X5, we

denote by Bnd, (X, X2), the collections of all continuous mappings

v Xl — XQ, (64)
such that
1P (u)llx, < (1 +[ullx,), we A, (6.5)
for some constant cg. In addition, if
1 (u) = ¥ ()|, < cvllu—vllx, Vu,ved, (6.6)

for some constant ¢y, we say that U € Lip, (X1, X2). In the sequel we will consider time
dependent families of such mappings ¥ = W(¢) and require that (6.5) and (6.6) hold for
a.e. t with the same constants cg, ¢y for all t’s under consideration.

We shall assume throughout the work that
0 :[0, 00) x L*(M) = Ly(4h, LE(M)). (6.7)
Here 8 and Ly (4, L2(M)) are as introduced above. Moreover we assume that for a.e. t,
o(t) € Bndy(L*(M), La(8h, L*(M))) N Bndy(Z1, La(4, E1)), (6.8)
and

o(t) € Lipy(L*(M), Ly(4, L*(M))), (6.9)
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where

E1:={u € H*M)NHy(M), ug| _, =0}. (6.10)

When proving pathwise uniqueness of martingale solutions and the existence of pathwise

solutions in Section 6.3.2, we will additionally suppose that for a.e. t,
o(t) € Lipy (LA (M), La(4, Z1)). (6.11)

Furthermore in the sequel o is a measurable function of ¢ and all the corresponding norms
of o(t) are essentially (a.e.) bounded in time.

Finally we state the assumptions for the initial condition ug and for f. On the one
hand, in Section 3.1, where we consider only the case of martingale solutions, since the
stochastic basis is an unknown of the problem, we will only be able to specify ug as an

initial probability measure i, on the space L?(M) such that
/ [l 2 ) d by (1) < 00, (6.12)
L2 (M)
and we assume that f is deterministic,
f=f(z,zt,t) € L5(0,T; L*(M)). (6.13)

On the other hand, for pathwise uniqueness and the existence of pathwise solutions in
Section 6.3.2, where the stochastic basis S is fixed in advance we assume that, relative to

this basis, ug is an L?(M)-valued random variable such that
ug € L7(€; L*(M)) and ug is Fo measurable, (6.14)

and f is deterministic,

f=f(z,z*,t) e L7(0,T; L2 (M)). (6.15)
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6.2 Regularized Stochastic ZK Equation

As indicated above we consider the Dirichlet case, i.e. (6.1), (2.2)-(2.4). The domain is
M =1, x (—7/2,7/2)%, in R with d = 1 or 2. In order to study this system, we will use
a parabolic regularization of equation (6.1), as in the previous chapters. That is, for € > 0

“small”, we consider the stochastic parabolic equation of the 4-th order in space:

du + [Aug + cul, + uul + € (%Z‘;f + aquf + %4;16)] dt = fedt + o(u) dW (t), (6.16)
ut(0) = uf,

supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-

ditions

€

= Ugz ‘z:i%

Upylysz =0, (6.17)

ix}x:[) =

0. (6.18)

u

In the case of martingale solutions in Section 3.1, observing that the space L?(£2; 1) N
L?/3(Q; L*(M)) is dense in L8(Q; L?(M)), we can use e.g. the Fourier series to construct

an approximate family {uf}e~o which is Fp measurable, such that, as e — 0:
uf € L2(Q; 21) N L¥2/3(Q; LA(M)), (6.19)
u§ — ug in L5(Q; LA(M)). (6.20)
Similarly there exists a family of deterministic functions { €}~ such that as e — 0:
fee L¥230,T; L2 (M), (6.21)
f¢— fin L°(0,T; L*(M)). (6.22)

In the case of pathwise solutions in Section 6.3.2, in the same way we can deduce
the existence of the approximate families {uf}c~0 and {f}eso satistying (6.19) and (6.21)

respectively, and such that as e — 0:
u§ — ug in L7(Q; L*(M)), (6.23)
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f¢— fin L7(0,T; L*(M)). (6.24)

For notational convenience, as in Chapter 3, we recast (6.16) in the form

du® = (—Au® — B(u®) — e Lu® + f€) dt + o(u) dW (1),

(6.25)
u(0) = ug,
where
Au = Aug + cug, Vu e D(A),
B(u,v) = uv, € H ' (M), VueL*(M), ve H{(M), (6.26)

Lu = Ugpgg + Uyyyy + Uszzz, Vuce H4(M).
with D(A) = {u € L*(M) : Au € L*(M), u=0on OM,u, =0 at x = 1}. Werecall The-
orem 2.2.1, which shows that if u € L?(M) and Au € L?(M) then the traces of u on OM

and of u, at x = 1 make sense.

Remark 6.2.1. As mentioned in the Introduction, although we can rewrite (6.1) as
du+ (Au+ B(u))dt = fdt + o(u)dW(t), (6.27)

which is similar to the equation studied in [11], the models are actually different. Indeed,
the operator A does not satisfy the assumptions in [11]; for example, A is not symmetric.

In fact, for the adjoint A* and its domain D(A*), we have

D(A*) ={a € L*(M): Au € L* (M), a=0on OM, i, =0 at x = 0},
(6.28)
A*u = —(Auy + cuy), u € D(AY).

For more details see Section 2.3.2.

6.2.1 Definition of Solutions

We first introduce the necessary operators and functional spaces. We will denote by (-, )

and |-| the inner product and the norm of L?(M). The space Z; defined in (6.10) is endowed
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with the scalar product and norm [-, |2, [-]o:
[U, U]Q = (uxxa Ux:c) + (uyy7 Uyy) + (uz27 Uzz)7

[U]% = ’U:c:r:|2 + |uyy|2 + ’uz2|2 ) (6.29)

which make it a Hilbert space. Note that since |Au| + |u| is a norm on Hi N H? equivalent
to the H?-norm, []z is a norm on Z; equivalent to the H2-norm. Thanks to the Riesz
theorem, we can associate to the scalar product [-, |2 the isomorphism £ from =; onto =1/,
where £ denotes the abstract operator corresponding to the differential operator L. Then
considering the Gelfand triple Z; C H := L*(M) C Zy’, we introduce £~(H) the domain

of £ in H, which is the space
E2 = {U € El N H4(M), uyy|y=:|:% = Ugzy ZZ:E% = uxx‘x:O = 0} . (630)

The operator £7! is self adjoint and compact in H. It possesses an orthonormal set of
eigenvectors which is complete in H, and which we denote by {¢;}i>1. Note that all the ¢;

belong to =9 which is the domain of £ in H. Hence we have
(Lu,v) = [u,v]2, u € Eg, v € Ej.
We now introduce the following definitions.

Definition 6.2.1. (Global martingale solutions for the reqularized ZK equation) Fiz an
€ > 0. For the case of martingale solutions, we only specify the measure pyg to be the

probability measure of uy on 21 which satisfies
/ 2213 1 () < oo, (6.31)
L2(M)

/_ Jul d g (1) < oo, (6.32)
=1

and f¢ and o satisfy (6.21), (6.8) and (6.9) respectively.

78



A pair (S,ff) is a global martingale solution to the regularized stochastic ZK equation
(6.16)-(6.18), (2.2) and (2.4) (in the Dirichlet case), if S = (0, F, {Fi}+>0, P, {W*}p>1) is

a stochastic basis, and @<(-) : Q x [0,00) = E; is an {]}t} adapted process such that:
ac € L#2/3(Q; L°°(0,T; LA(M))) N LA(Q; L*([0,T); E1) N L*(0, T; E»)), (6.33)
and
(-, w) € C([0,T]; L2(M))) P — a.s., (6.34)
where L2 (M) is L*(M) equipped with the weak topology, and the law of a€(0) is P, defined

as above, i.e. pys(E) = P(a€(0) € E), for all Borel subsets E of Z1, and finally @€ almost

surely satisfies
t t R
@ (t) +/ (A@® + B(i) + eLi — f€) ds = a(0) +/ o (i) dW (6.35)
0 0
as an equation in L?(M) for every 0 <t < T.

Definition 6.2.2. (Global pathwise solutions for the reqularized ZK equation; Uniqueness)
Let S == (0, F, {Fi }10, P, {W*}1>1) be a fized stochastic basis and assume that u§, o
and f€ satisfy (6.19), (6.8), (6.9) and (6.21).
(i) For any fized € > 0, a random process u is a global pathwise solution to (6.16)-
(6.18), (2.2) and (2.4) if u¢ is an F; adapted process in L*(M) so that (relative to the

fized-given-basis S) (6.33)-(6.35) hold.

(ii) Global pathwise solutions of (6.16)-(6.18), (2.2) and (2.4) are said to be global
(pathwise) unique if given any pair of pathwise solutions u¢, v¢ which coincide att =0 on

a subset Qg of Q, Qo = {u(0) =v(0)}, then
P{1g,(u(t) =v(t)} =1, 0<t<T. (6.36)

In the sequel, we will prove that there exists a unique global pathwise solution u¢ to

(6.16)-(6.18), (2.2) and (2.4), which is sufficiently regular for the calculations in Section 3.1
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to be fully legitimate without any need of further regularization. The existence of such a
solution is basically classical (see e.g. [9], [17], [18] and [11]) for a parabolic problem like
this, but we will make partly explicit the construction of u¢ because we need to see how the

estimates depend or not on e.

6.2.2 Pathwise Solutions in Dimensions 2 and 3

With the above definitions, we can state the main result of section 6.2:

Theorem 6.2.1. When d = 1,2, suppose that, relative to a fized given stochastic basis
S, uf satisfies (6.19), and that f¢ and o satisfy (6.21), (6.8) and (6.9), with € > 0 fized
arbitrary. Then there exists a unique global pathwise solution u® which satisfies (6.16) and

the boundary conditions (2.2), (2.4), (6.17) and (6.18).

To prove this theorem, we first use a Galerkin scheme to derive the estimates indicating
a compactness argument based on fractional Sobolev spaces and tightness properties of
the truncated sequence. Then by the Skorokhod embedding theorem (see Theorem 2.4
in [9], also [3] and [26]) we can pass to the limit in the Galerkin truncation and hence
obtain the global existence of martingale solutions. Finally we deduce the existence of
global pathwise solutions using pathwise uniqueness of martingale solutions and the Gyongy-
Krylov Theorem (Theorem 7.5.1 of the Appendix). Here we will only present in details the
derivation of the estimates, which will be utilized in the subsequent investigations of the
stochastic ZK equation in Section 6.3.1.

We start the proof of Theorem 6.2.1 by introducing the Galerkin system. We define
P" as the orthogonal projector from L2(M) onto H™, the space spanned by the first n

eigenfunctions of L, ¢1, ..., ¢,. We consider the Galerkin system as follows
du™ + (A"u" + B™(u™)) dt + eLu™ dt = f™dt + o™ (u™) dW (t),
(6.37)
u™(0) = Pyuo,
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where u™ maps Q x [0, T'| into H", A"u" := P"Au", B"(u") := P"B(u"), and ¢"(u") :=

P"(o(u™)). In (6.37), € being fixed, we write for simplicity u™ for u“™ and f" for <™.
Equation (6.37) is equivalent to a system of n stochastic differential equations for the

components of u™ and it is a classical result that there exists a unique regular pathwise

solution u™ = u™ such that

u" e L3(Q; C(0,T; H™)). (6.38)
Estimates Independent of ¢ and n

We first derive the following estimates on 4" independent of € and n.

Lemma 6.2.1. With the same assumptions as in Theorem 6.2.1, if u§ and f€ satisfy (6.20)

and (6.22) respectively, then the following estimates hold for u™ = u®™ independently of €

and n:
uij"‘xzo remains bounded in L?(Q; L*(0,T; L*(I,1))), (6.39)
Veu™ remains bounded in L*(Q; L*(0,T; Z1)), (6.40)
us™ remains bounded in L%(Q; L>(0,T; L*(M))). (6.41)

If we further assume that (6.23) and (6.24) hold, then
u™ remains bounded in L7 (Q; L>=(0,T; L*(M))), (6.42)
with the bounds in (6.39)-(6.42) independent of both € and n.
Proof. We start by applying the Ito formula to (6.37). This yields
dlu™? =2 (u", N"(u")) dt + 2 (u", o™ (u™) dW (t)) + ||U”(u")||i2(u’L2(M)) dt,  (6.43)
where N™(u") := —A"u"™ — B"(u") — e Lu"™ + f™, and
(u", N*(w")) = —(u", A"u") — (u", B"(u")) — €(u”, Lu") + (u", f")
(6.44)
= —(u", Au™) — (u", B(u")) — e(u", Lu™) 4+ (u", ™).
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To compute the right-hand side of (6.44) we remember that by (6.38), for every ¢, u"(t) €
H™ = span (¢1,...,¢n) € Za a.s., since all the ¢; belong to Z9. Hence in particular u"(t)
satisfies the boundary conditions in (6.30). We drop the super index n for the moment and

perform the following calculations a.s. exactly as in Chapter 3, then we find

d [u") 2+ <|ug‘z0@2(m) + 2e[un]§) dt (6.45)

= 2™, u) dt + [l (W2, ze a4+ 2 (W, o (@) V(1))
Integrating both sides from 0 to s with 0 < s <r < T, taking the supremum over [0, 7], we

have

n 2 " ny2
sup |u"(s U + 2¢|u dt
ogsgr‘ (s)] / (‘ ‘w O‘Lz ) [ ]2)

<|u0|2+2/ |(f", u™)] dt+/ l|o" (u ||L2£,(L2( M) dt (6.46)
+2 sup / (u", U”(u")dW(t))‘.
0<s<r [JO

Raising both sides to the power p/2 for p > 2, then taking expectations, we obtain with the

Minkowski inequality and Fubini’s Theorem

T
B swp () SERP +28 [ 17, w)p? ar

0<s<r
+E/ o™ (W) g o any (6.47)
S P/2
+2E<sup / (", a”(u")dW(t))) ,
0<s<r |JO

where < means < up to an absolute multiplicative constant. Here and below ¢’ indicates
an absolute constant, whereas 7, k, and the k; indicate constants depending on the data
ug, f, etc. These constants may be different at each occurrence. We estimate the terms on

the right-hand side of (6.47) a.s. and for a.e. t:
(s w2 < PR P < P (S

10" (W12, p gy < By (68) < (] + )P S [P + ¢
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for the stochastic term, we use the Burkholder-Davis-Gundy inequality (see (6.3)) and (6.8)

p/2
E < sup
0<s<r

/OS (", o™ (u™) dW(t))D

p/2
< E sup

e /0 (W™, o™ (u™) AW (2))

" 2 2 o/
<arle | ([ 1P 1o @I aaun )

T p/4
< sup ]u”]Q/ 14 |u™? dt)
0<s<r 0

1 T
< —-FE sup |u”|p+c/E/ |u"|P dt + ¢
2 o<s<r 0

SE

~

Applying the above estimates to (6.47), we obtain

1 T T
g sup [uns)P gE|ug|p+c’E/ |u”(t)|pdt—|—E/ rOPd+ L (648)
2 o<s<r 0 0

Since E [ [u™(t)|Pdt < [) E supg<i<; [u™(1)[P dt, setting E supg< o, [u"(s)[P =: U(r), with

(6.48) we deduce

U(r) <U(0) + ¢ /0 U(t)dt + /0 E|f"(t)P dt + ¢,

for every 0 < r < T. Hence applying the (deterministic) Gronwall lemma, we obtain for
p=2

T
E sup \un(r)ypgmug\uxa/ Pt + (6.49)
0<r<T 0

Letting p = 6, thanks to (6.20) and (6.22), we deduce that

E sup |u™(r)|® < xp, (6.50)
0<r<T

for a constant k1 depending only on ug, f, T and o, and independent of € and n; this implies
(6.41). Similarly, setting p = 7 in (6.49), we infer (6.42) from (6.23) and (6.24). Finally,

setting p = 2 in (6.48), along with (6.46) we obtain (6.39) and (6.40). O

'Note that here f*" is actually independent of w € Q and the symbol E in front of the corre-
sponding term is not needed. However in Section 6.3.2 we will use another version of this calculation
in which f&™ is replaced by ¢¢ which depends on w; hence we leave E in front of the term involving

f™ in view of the calculations in Section 6.3.2.
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Estimates Dependent on ¢

We now derive estimates independent of n only, that is, valid for fixed e.

Lemma 6.2.2. With the same assumptions as in Theorem 6.2.1, the following estimates

hold for u™ = u®™, as n — oo and € > 0 remains fized:

us" remains bounded in L?/3(Q; L>(0,T; L*(M))), (6.51)
u®™ remains bounded in L*(Q; L>(0,T; Z1)), (6.52)
u™ remains bounded in L*(Q; L*(0,T; Zy)). (6.53)

Proof. Setting p = 22/3 in (6.49), we infer (6.51) from (6.19) and (6.21).
Returning to (6.37), we apply the It formula to (6.37) and obtain an evolution equation

for the =; norm:
du™3 =2 (Lu™, N'(u™)) dt + 2 (Lu™, o™ (u™) dW (t)) + ||0"(u”)\|%2(u7 =) dt, (6.54)
where N (u™) has been defined before. Similar to (6.44) we have a.s. and for a.e. t:
(Lu™, N™(u™)) = —(Lu", Au™) — (Lu", B(u™)) — €| Lu™|? + (Lu™, f™). (6.55)

By (6.54) and (6.55) we deduce

d[u"]3 + e|Lu™|? dt = — 2(Lu", Au™) dt — 2(Lu™, B(u")) dt + 2(Lu"™, f™) dt
(6.56)

+ 2 (Lun7 gn(u”) dW(t)) + ||gn(un)‘ |%2(ﬂ,:1) dt.
Integrating both sides from 0 to s with 0 < s < T, taking the supremum over [0, 7], then

taking expectations, we arrive at

T
E sup [u"]3+ EE/ | Lu™|? dt
0<s<T 0

T T T
gE\u3]2+2E/ (Lu™, Au™)| dt+2[E/ y(Lu",B(u"))|dt+2E/ (Lu™, f™)| dt
0 0 0
s T
+2E sup /(Lu”, a”(u”)dW(t))+E/ o™ (u)|[2 g =, dt- (6.57)
0 0

0<s<T
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We estimate a.s. each term on the right-hand side of (6.57); we emphasize that the estimates

depend on € but not on n or on w € €2:
(L™, Au™)| < || s oy < D"l 2

n 4 € n n
< L)y < L ()™,

where 7(e) depends on e. For the term |[(Lu", B(u™))|, we first estimate a.s. |B(u")| in
dimension three:
3/2

n, n nil/2
] < [ e 2

< (by interpolation in dimension three, |u"|Hé( S |u”|3/4]1ﬁ|1/4 M)
and [u”[ g2y S [ V20" 7 ) (6.58)
9/8 3/8 1/4 1/4
S |u| / ’un|H4(M)|un‘ / ]u”]H4(M)
< |un|11/8‘Lun’5/8.

Hence
(Lu™, B(u™)| < |B(u™)||Lu"| < (by (6.58)) < [u"["/8|Lum['3/8 < EILU”F +n(e)lu"*3,

where 7(e) depends on e.

For the stochastic term, we have

E sup
0<s<T

/ (Lu", o™ (u™) dW(t))‘ < (by the Burkholder-Davis-Gundy inequality (6.3))
0

. 1/2
<cE !(/0 L2 ||o™ (™) 7, .22y dt) ]
. 1/2
<cihE [(/ |Lu™? (1 + [u™?) dt)
0

T
<n(e)E sup |u”|2—|—ZE/ |Lu™ % dt + n(e),
0

0<s<T

where 7(¢e) depends on e.

T :
For the term E [; ||0”(u”)|]%2(u751) dt, we infer from (6.8) that

T T
E /0 o™ (W) 12, .2, At S E /0 (1+ [u"3) dr.
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Collecting all the above estimates, along with (6.57) we deduce

1 9 € T 9
—E sup [u"(s)]5+ — E/ | Lu™|* dt
0<s<T 4 Jo

T T
BB +nOE [ WroBd B [ WroFta (659

T

+n()E sup [u"|* +1n(e) E/ @O dt + n(e).
0<s<T 0

Hence we can apply (6.51) and (6.40) to (6.59), and we obtain (6.52) and (6.53). Thus we

have completed the proof of Lemma 6.2.2. O

Estimates in Fractional Sobolev Spaces.

We will apply the compactness result based on fractional Sobolev spaces in Lemma 7.3.1

(of the Appendix) with

1
Y= L*0,T; HY(M)) nW*%(0,T; =), 0<a<g, (6.60)

where Z is the dual of =y relative to L?(M). For that purpose we will need the following

estimates on fractional derivatives of u©™.

Lemma 6.2.3. With the same assumptions as in Theorem 6.2.1, we have

E‘Ue’n’y < /432(6), (6.61)
t 2
E |uen () — / o™ (U™ AW (s) < ks, (6.62)
0 H'(0.T;E))
t 2 1
E / o (uE™) AW (s) <k Ya<i, (6.63)
0 W6 (0,15 L2 (M) 2

where ky(€) is independent of n (but may depend on € and other data), while k3 and Ky

depend only on ug, f, T and o, and are independent of € and n.
Proof. We can rewrite (6.37) as
t ¢
u"(t) =uf — / A"u"ds — / B"™(u")ds
0 0
¢ ¢ ¢
- 6/ Lu"ds —l—/ flds —l—/ o (u")dW (s) (6.64)
0 0 0
S L (R T N (R

86



For J&, fixing u* € D(A*) we have a.s. and for a.e. ¢

)(Anu”, uﬂ)( - ‘(un, A*Pnuﬂ)] < |u"|

P”uﬁ’D(A*) < (since Bz C D(A*)) < [u[uf]=,.

Hence

A", S . (6.65)

With (6.65) and (6.41) we obtain
E |J§|€V1,6(0,T; =) 15 bounded independently of n and e. (6.66)

For J¥, firstly we observe that ¥V u® € Z5 (dropping the super index n for the moment),

‘(B(u), uﬁ)] - ‘/ 6(“2)uﬁdM’ _1 ’/ UQUQdM‘
MOz 2 2| Jm

< gl |z v
< (with H*(M) C L*°(M) in dimension 3) (6.67)
S lulPluf | s )
S lulP ez,

hence

|(B™ ("), wh)| = |(B(u"), P"uf)| S [u" PP |z, < [u"Pluflz,, (6.68)

which implies that [B"(u")|z;, < |u™|?. This along with (6.41) implies that

E|B”(u”)|ig(07T; =) I8 bounded independently of n and e, (6.69)
and hence
E|J§|%11(O’T; z;) is bounded independently of n and e. (6.70)
For JJ, we have, V u* € Zy, |(Lu", u*)| = |(u", Lu*)| < |u"||Lu*|. Hence [Lu"z, S
|u"|. Thus

T T
E/ |Lu™Z, dt < 2E/ [u™|3 dt.
0 2 0
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Multiplying both sides by €2, we obtain with (6.41)
E\Jﬂ%{l(O’T; =;) is bounded independently of n and e. (6.71)

1
For Jg', Lemma 7.4.2 implies that, V o < 2

6 t

t
/ o™ (™ (s)) dW (s) SE [ o™ ()], 0200 45
0 wesor 2 Jo

E

This together with (6.41) implies that
E \Jgﬁw,gwm £2(my) s bounded independently of n and €, V o < % (6.72)
Hence we obtain (6.63). Collecting the estimates (6.66) and (6.70)-(6.72), we obtain
E[u"waz2(,7;=;) is bounded independently of n and €, «a < % (6.73)
By (6.52) we deduce
Elu"| 2007, HE(M)) is bounded independently of n, (6.74)

but the bounds may depend on €. From (6.73) and (6.74) we obtain (6.61).

Observing from (6.64) that u"(t) — Ota”(u”) dW(s) = J + J3 + J§ + Jp + JP, and
applying (6.66), (6.70) and (6.71), we obtain (6.62) as desired. O
Remark 6.2.2. See Lemma 6.3.3 below for a variant of the proof of Lemma 6.2.3 leading
to the analogue of bounds in (6.61)-(6.63) but independent of €. Note however that the proof

in Lemma 6.3.3 for u® can not be applied here to u®™, because multiplication by /1 + x does

not commute with P", which prevents us from deducing for now the estimates derived from

(6.84) below.
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Proof of Theorem 6.2.1. The rest of the proof of Theorem 6.2.1 is classical (see e.g. [18]
and [11]). Applying Lemma 7.3.1 (of the Appendix) and Chebychev’s inequality to the esti-
mates (6.61)-(6.63), we can use the same technic as that for the proof of Lemma 4.1 in [11]
to derive the compactness and tightness properties of the sequences (u“"(t), W(t)) in n for
fixed e. Then we apply the Skorokhod embedding theorem to construct some subsequence
{(u®™(t),W(t))} that converges strongly as ny — oo, upon shifting the underlying prob-
ability basis. Then we pass to the limit on the Galerkin truncation (6.37) as ny — oo (€
fixed). Note that we do not need to worry about passing to the limit on the boundary con-
ditions, because they are all well-defined (and conserved) thanks to (6.53). Thus, we have
established the existence of martingale solutions to the regularized stochastic ZK equation
(6.16)-(6.18), (2.2) and (2.4) in the sense of Definition 6.2.1.

As for the pathwise solutions, we first prove the pathwise uniqueness of martingale solu-
tions, and then by the Gyongy-Krylov Theorem we obtain the global existence of pathwise
solutions in the sense of Definition 6.2.2.

To conclude, we have completed the proof of Theorem 6.2.1. O

We will develop these steps below in more details in the more complicated case when

e — 0.

6.3 Passage to the Limit as ¢ — 0

We now aim to study the stochastic solutions to the ZK equation basically by passing to

the limit as € — 0 in (6.16) and the boundary conditions (2.2), (2.4), (6.17) and (6.18).

Definition of solutions of the stochastic ZK equation. The definition of the martingale and
pathwise solutions for the stochastic ZK equation are essentially the same as that for the
regularized equation, with the necessary changes in the assumptions, equations and the

function spaces.
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Definition 6.3.1. (Global Martingale Solutions) Let ju,, be the probability measure of ug
given as in (6.12) on L?>(M) and assume that (6.8), (6.9) and (6.13) hold.
A global martingale solution to the stochastic ZK equation (6.1), (2.2)-(2.4) (in the

Dirichlet case) is defined as in Definition 6.2.1 as a pair (S,1), such that
@€ L(; L®(0,T; L*(M))) N L*(Q; L*(0,T; Hy(M))), (6.75)

(-, w) € C([0,T); L2 (M))) P — a.s., (6.76)

and U satisfying almost surely

t ¢ t
() + / (Ady + ¢ty + i) ds — 5(0) + / fds+ / o(@) dW(s)  (6.77)

0 0 0
the equality in (6.77) is understood in the sense of distributions on D(M ) for everyt € [0,T].
Moreover i vanishes on OM (since @ € L*(Q; L*(0,T; H(M)))) and &x’ , =0. For

r=

the latter, we observe that according to Lemma 6.3.5 below, ﬂm} = 0 makes sense in a

r=1

suitable space for any @ satisfying (6.75) and (6.77).

Definition 6.3.2. (Global Pathwise Solutions; Uniqueness)
Let S := (Q, F,{Fi}t>0,P, {Wk}kzl) be a fized stochastic basis and suppose that ug is
an L?(M)-valued random variable (relative to S) satisfying (6.14). We suppose that o and

f satisfy (6.8), (6.9), (6.11) and (6.15).

(i) A global pathwise solution u of (6.1) and (2.2)-(2.4) is defined as in Definition 6.2.2
with (6.33)-(6.35) replaced by (6.75)-(6.77). Also note that u vanishes on OM (because u

€ L2( L2((0,T); HY(M))) and ug| = 0 which makes sense for the same reasons as

r=1

for the martingale solution.

(i) Global pathwise uniqueness is defined in the same way as in Definition 6.2.2.

The strategy is the same as that in the case of the regularized stochastic ZK equation

in Section 6.2.2: we first derive the global existence of martingale solutions, then prove
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the pathwise uniqueness of martingale solutions and hence deduce the existence of global

pathwise solutions.

6.3.1 Martingale Solutions in Dimensions 2 and 3

All the subsequent proofs are valid for d = 1 or 2, except for (6.81) and (6.83), and for the

uniqueness in Section 6.3.2, which are only valid for d = 1 (space dimension two).

Theorem 6.3.1. When d =1 or 2, suppose that pg satisfies (6.12), that o and f maintain

(6.8), (6.9) and (6.13). Then there exists a global martingale solution (S,u) of (6.1) and

(2.2)-(2.4) in the sense of Definition 6.3.1.

Furthermore, when d = 1, and if additionally f and o satisfy (6.15) and (6.11), then the
martingale solution is pathwise unique (see Proposition 6.3.3 below).

To prove Theorem 6.3.1, similar to the case of the regularized stochastic ZK equation, we
first derive the estimates leading to weak convergence, then using the Skorokhod embedding
theorem we upgrade the weak convergence into the strong convergence, with the probability

basis shifted. Special measures will be taken to pass to the limit in the boundary conditions.

Estimates and Developments Independent of e.

We begin the proof of Theorem 6.3.1 by deriving the estimates on u¢ valid as ¢ — 0. We
observe that we can prove the estimates in (6.39)-(6.42) under the new assumptions in

Theorem 6.3.1.

Lemma 6.3.1. With the assumptions of Theorem 6.3.1, when d = 1,2, we have the follow-

ing estimates valid as € — 0:

u§|x:0 remains bounded in L*(Q; L*(0,T; L* (I,1))), (6.78)
Veu remains bounded in L*(Q; L*(0,T; Z1)), (6.79)
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u® remains bounded in L°(Q; L>(0,T; L*(M))), (6.80)

If we additionally assume that ug and f satisfy (6.14) and (6.15), then we have
u® remains bounded in L7(Q; L>(0,T; L*(M))). (6.81)

Proof. The estimates follow from (6.39)-(6.41) (or (6.42)) by passing to the lower limit first
in n and then in € using the lower semicontinuity of the norms; indeed e.g. to show (6.80),
with (6.41) we obtain ‘UG‘L6(Q;LOO(O’T; L2(M))) < lim infn ”LI/G’”’LG(Q;LOO(O’T; LQ(M)))SHID for a

constant ) independent of e. O

Lemma 6.3.2. The assumptions are those of Theorem 6.5.1 with d =1 or 2. We have the

following estimates valid as € — 0:
u® remains bounded in L?(Q; L*(0,T; H(M))). (6.82)

If furthermore we suppose that ug and f satisfy (6.14) and (6.15), and d = 1, then we
have

u€ remains bounded in L7/?(Q; L?(0,T; HL(M))). (6.83)

Remark 6.3.1. We will use (6.81) and (6.83) only when dealing with the pathwise unique-

ness (see the calculations leading to (6.156) below).

Proof of Lemma 6.3.2. The proof does not follow promptly from the estimates on u“" as
that of (6.78)-(6.81), but they are derived directly from the solutions u¢ of the regularized
equations; this is in fact the reason for which we introduced this regularization. Note that
the solutions u€ are sufficiently regular for the following calculations to be valid.

We start by multiplying (6.25) with /1 + z, to find

dV14+zu) =V14+azNw)dt+ V1 +zo(u)dW(t), (6.84)
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where again N (u€) := —Au® — B(uf) — e Lu® + f¢. Applying the Ito formula to (6.84), we

obtain

dAV1+zu? =2 (VI+zu, VI+aN(u)) dt
+2(V1+azu, V1i+azo(u)dW(t)) (6.85)

€\[2
+ VL4 2 o)L, 5 r20my) 92-
With exactly the same calculations as in the deterministic case (see Section 3.1), performed

a.s. and for a.e. t, we have:

2 (V1I+zu, V14 azN(u))

2
= —|VUE|2 - 2‘u€x|2 - (1 - 26) |u;‘x:0‘L2(I 1)

(6.86)
— 2¢ (\\/1 + :qum\? + V14 xugylz + V14 wuZZIQ))
2
+2(f, T+ x)uf) + / (u)® d M + cluc|?.
3 Jm
Integrating both sides of (6.85) in ¢ from 0 to s, 0 < s < T, we find with (6.86) that when

say € < 1/4,

S S 2 S
/0 |Vus|? dt < |\/1+xu8|2+2/0 (f€, (1+x)u6)dt+3/0 \uﬁ\ig(M) dt

+c/ |u€|2dt+/ VT + o (u)[7, w.r2 ) (6.87)
0 0

S
2 [ (o o) W ().
0
For the first term on the right-hand side, using H'/?(M) C L3(M) in dimension three, we
1
have \ue\ig(M) < PRV P2 < 1|Vu5|2 + '|u€|%; hence taking expectations on both

sides of (6.87) and using Holder’s inequality, we obtain

1 S S S
QE/ |vu6|2dt52E|ug|2+E/ \fﬁPdHc’E/ |u€|® dt 4 ¢
0 0 0

) (6.88)
+B [ IVTFR o) 2
Here the stochastic term vanishes. We find with (6.80) and (6.88)
T
IE/ |V |? dt < ks, (6.89)
0

93



for a constant k5 depending only on wug, f, T and o, and independent of ¢; this implies
(6.82).

Returning to (6.87), when d = 1, we have

/ |u€|?i3(M)dt < (H1/3(M) C L3<M) in dimension 2)
0

g/yMWVMMMA4 (6.90)
0
1/ [ 2
< sup |uc(®))* + = </ |Vu6]dt> .
0<t<s 3 \Jo

Hence (6.87) implies

1 S S S
/ |Vu5]2dt<2|u8\2+/ ]f€|2dt+c’/ w2 dt + ¢ sup |[uc(t)|* + ¢
2.Jo 0 0 0<t<s

) (6.91)
+ 2/0 (L4 z)u, o(u®)dW(t)).

Taking the supremum over [0, 7], raising both sides to the power 7/4, then taking expecta-
tions, we obtain with Minkowski’s inequality and Fubini’s Theorem:

1 r €12
—-E |Vu|” dt
2 0

7/4 T
SEWW”+E/|fWMt
0

T
-HE/ |2 dt +E sup |u(s)|” + ¢ (6.92)
0 0<s<T

. 7/4
+2E | sup /0 (14 x)uf, o(u) dW(t))] .

0<s<T

For the stochastic term, we have

. 7/4
E [ sup /0 |((1+ z)us, a(u€)dW(t))|]

0<s<T
7/4

<E sup
0<s<T

/Os(u b, o () dW (1)

< (by the Burkholder-Davis-Gundy inequality (6.3))

N 7/8

(/0 |u€|2IIU(UE)||%2(u,L2(M))dt> ]
. 7/8

SEK/ Iuﬁl“dt)
0
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This together with (6.92) implies

1 T 7/4 T T
21@(/ \Vuf\zdt> §E1u5|7/2+E/ yf€y7/2dt+1[«:/ u€|/2 dt
0 0 0

) (6.93)
+E sup |u(s)|” + E/ lu[* dt + ¢
0<s<T 0
Hence (6.93) and (6.81) imply
T 7/4
E </ |vu6|2dt> < ke, (6.94)
0

for a constant kg depending only on ug, f, T and o, and independent of €; this implies

(6.83). The proof of Lemma 6.3.2 is complete. O
Estimates in fractional Sobolev spaces.

Lemma 6.3.3. With the same assumptions as in Theorem 6.53.1 and d = 1,2, we have

Blu‘f} < ) (6.95)
t 2
E |u(¢) / o (u) dW (s) < ks, (6.96)
0 HY(0,T;2))
t 2 1
E / o (u) dW (s) <ko Va<o (6.97)
0 We6(0,T; L2(M)) 2

where Y is defined as in (6.60), and k7, kg and kg are independent of €.

Proof. By repeating the proof of Lemma 6.2.3 (see Remark 6.2.2), we see that we can
obtain for u¢ the estimates analog to (6.61)-(6.63) independent of e. The only point is
to derive the estimate of E|u[2( 1, gi(my) being bounded independently of e (see (6.74)
correspondingly). For that we just need the estimate (6.82). Hence Lemma 6.3.3 is proven.

O

Compactness Arguments for {(u®, W)}eso

With these estimates independent of ¢ in hand, we can establish the compactness of the

family (u(¢), W(t)). For this purpose we consider the following phase spaces:
X, = L*(0,T; LA(M))NC(0,T; H>(M)), Xw =C(0,T; ), X =X, x Xw. (6.98)
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We then define the probability laws of uf(t) and W(t) respectively in the corresponding
phase spaces:

He() = P(uf € ), (6.99)

and
i () = iy () = BOW € ). (6.100)

This defines a family of probability measures u® := p;, x pj;, on the phase space X'. We now

show that this family is tight in e. More precisely:

Lemma 6.3.4. We suppose that d = 1,2, and the hypotheses of Theorem 6.5.1 hold. Con-
sider the measures € on X defined according to (6.99) and (6.100). Then the family {u€}eso

is tight and therefore weakly compact over the phase space X.

Proof. We can use the same technic as in the proof of Lemma 4.1 in [11]. The main idea is

to apply Lemma 7.3.1 (of the Appendix) and Chebychev’s inequality to (6.95)-(6.97). [

Strong convergence as € — 0. Since the family of measures {u¢} associated with the family
(us(t), W(t)) is weakly compact on X, we deduce that u¢ converges weakly to a probability
measure g on X up to a subsequence. We can apply the Skorokhod embedding theorem
(see Theorem 2.4 in [9], also [3] and [26]?) to deduce the strong convergence of a further

subsequence, that is :

Proposition 6.3.1. Suppose that pg is a probability measure on L?(M) that satisfies (6.12).
Then there exists a probability space (Q,]}, }f”), and a subsequence €, of random vectors
(@, W) with values in X (X defined in (6.98)) such that

(i) (@, W) have the same probability distributions as (u, W),

*particularly in [26], the theorem applies to X as a Polish space, that is, a separable completely

metrizable topological space.
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(ii) (@, W) converges almost surely as e, — 0, in the topology of X, to an element

(@, W) € X, i.ec.
U — @ strongly in L*(0,T; L*(M))) N C([0,T); H>(M)) a.s., (6.101)

W€ — W strongly in C([0,T]; o) a.s., (6.102)

where (@, W) has the probability distribution .

(iii) We is a cylindrical Wiener process, relative to the filtration ffk, giwen by the
completion of the o-algebra generated by {(u*(s), W< (s)); s < t}.

(iv) For each fived e, u € L*(Q; L?(0,T; Zy)). Moreover, all the statistical estimates
on u* are valid for u*, in particular, (6.80) and (6.82) hold.

(v) Each pair (i, W) satisfies (6.16) as an equation in L*(M) a.s., and satisfies the
boundary conditions (2.2), (2.4), (6.17) and (6.18) thanks to (iv), that is, u*(t) is adapted

to Fi*, and
dut = (— AUk — B(a*) — e LA + f) dt + o (ac) dWe(t),

@t =0 ondOM, a| _ =0, a| = az@bzi% = f‘??z‘z:ig =0, (6.103)

i (0) = gk,
\
Proof. (i) and (ii) follow directly from the Skorokhod embedding theorem.

To prove (iv), we first observe that thanks to Lemma 7.6.2 (of the Appendix), the space

L?(0,T; =) is a Borel set in the space X,, and hence the integration fL2(0 T.5,) |u|? d pusk (u)

makes sense, and by (i) we have for each ¢,

Elu*[F2 07,2, = /L o [ul? d pit (w) = Ela* T2 1., < (by (6.33)) < oc.
4522

In the same way we would prove that all estimates on u¢ are valid for a, particularly (6.80)

and (6.82).
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To prove (v), we define

i
T t + _ 2
= / a* (t) —1—/ Au* 4+ B(u*) + e Lu* — f*ds — a*(0) — / o(a)dW*(s)| dt,
0 0 0
- M€k

then we can use the exact same technique in [2] to prove E T e 0. Hence we obtain
+ Me*

(6.103). O

Passage to the Limit

Now equipped with the strong convergences in (6.101), we can consider passing to the limit
on the regularized equation (6.103); as €, — 0. Note that (6.103); is the version of (6.16)
provided by the Skorokhod embedding theorem.

Thanks to (6.80) and (6.82), we deduce the existence of an element
i e LO(Q; L°°(0,T; L*(M))) N L3(€; L0, T; HE(M))), (6.104)
and a subsequence still denoted as € such that
@ — @ weak-star in L°(Q; L>(0,T; L*(M))), (6.105)

and

@ — @ weakly in L*(Q; L*(0,T; HY(M))). (6.106)

Fixing u® € Zy, by (6.106) and (6.105) we can pass to the limit in the linear terms.
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For the nonlinear term, for every u? € =y, we write a.s. and for a.e. t:

‘/Ot (B(ffk) —B(ﬂ),uﬁ> ds
1 /t ((m — @) (@ +a),u§c> ds

0
t
|

2
1
2

IN

a — @l |a%* + af [uh| oo () ds
0 (6.107)
(by the same calculations as in (6.67))

IN

IN

1 t
2/ i — @] [ + | [uf|z, ds
0

1 T 1/2 T
< ~|uflz, / |ak — a|? ds / @ + a|* ds
2 0 0

Thus with (6.101) and (6.80), we deduce that

1/2

/Ot (B(ﬂq“),un) ds — /Ot (B(ﬁ),uﬂ) ds for a.e. (&, t) € Q x (0,T). (6.108)

We next establish the convergence for the nonlinear term in the space L'(Q x (0,T)). We

calculate as in (6.68),

E/OT /Ot (B(ﬂ%),uﬁ) ds

Thus by (6.80), we have

2 T T
dt,gE/ s |2, ds < W@;@/ ([ ds.
0 0

t
{/ <B(€L€’“),uﬁ) ds} is uniformly integrable for all e in L*(£2 x (0,7)).
0 x>0
Hence thanks to the Vitali convergence theorem, we conclude that
t t B
/ <B(a€k),uﬂ> ds—>/ <B(@),uﬁ> ds in L'(Q) x (0,T). (6.109)
0 0
For the stochastic term, by (6.101) we obtain
[a% —a|> = 0, for a.e. (0,t) € 2 x (0,T). (6.110)
Thus, along with (6.9) we deduce

|o(@%) — o(@)|Lym) — 0, for ae. (@,1) € Q2 x (0,7T).
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On the other hand, we observe that

T T
sup E (/ |U(a€k)|6L2(u,H) ds> <supE </ (1 + |ac+|%) ds> ,
€k 0 €k 0

where we made use of (6.8). We therefore infer from (6.41) that |o(@*)| 1,y ) is uniformly
integrable for €, in LI(Q x (0, 7)) for any ¢ € [1,6). With the Vitali convergence theorem

we deduce that, for all such ¢ € [1,6),
o (@) — o(a) in LY(Q; LI((0,T), La(8h, H))). (6.111)

Particularly (6.111) implies the convergence in probability of o (%) in L?((0,T), La(, H)).
Thus, along with the assumption (6.102), we apply Lemma 7.4.1 (of the Appendix) and

deduce that
t B t -
/ o(u*) dWe* —>/ o (@) dW, in probability in L?((0,T); L*(M)). (6.112)
0 0

By the Vitali convergence theorem using the estimates involving (6.3) and (6.111), from

(6.112) we infer a stronger convergence result:
t B t ~ ~
/ o (a) AW — / o(@)dW, in L*(S; L*((0,T); L*(M)). (6.113)
0 0

Hence we can pass to the limit in (6.16), and obtain (6.77) as an equation in =

For the initial condition, since (6.101) and (6.104) imply that @€ € L>(0,T; L*(M))
N C([0,T); H>(M)) a.s., hence € is weakly continuous with values in L?(M) a.s.; then
(6.76) follows.

Having shown that the limit @ almost surely satisfies (6.77) in the sense of distributions
on D(M), we want now to address the question of the boundary conditions. We need to be

more careful because of the lack of regularity (see Lemma 6.3.5 below).

Passage to the limit on the boundary conditions. Since @ € L?(0,T; Hi(M)) a.s. (see

(6.106)), we deduce that @ satisfies the Dirichlet boundary conditions. Hence there remains
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to show that the boundary condition
=0, (6.114)

is satisfied almost surely. This boundary condition is the object of Lemma 6.3.5 be-

is well defined when @ € L5(Q; L*°(0,T; L*(M))) N

low where we show that ﬁx’le

L2(Q; L?(0,T; H'(M))), and satisfies an equation like (6.77).

Lemma 6.3.5. We assume that & € LS(Q; L=°(0,T; L*(M))) N L3(Q; L2(0,T; HY(M)))
satisfies (6.77) almost surely in the sense of distributions on D(M ), for every 0 <t < T.
Then

Gy, lige € Co(Iy; B), where B=L>*(Q; H™3((0,T) x I,1), (6.115)

and, in particular,

and Ugy

(6.116)

z=0,1 z=0,1"

are well defined in B.

Proof. If & almost surely satisfies (6.77), then U := fg uds satisfies

ou ou U
N A% Cor = F a.s., (6.117)

where F —uo—fo ds+f0fds+f0 @) dW (s).

For the term fo @) ds, we note that by (4.10) in [40],
W] o8 ag) < |a|?>3|va|*/3, for a.e. t and a.s..

Hence we have a.s.

T
~ .~ 5/4
:/0 |uux]L/9/8(M)dt

< /OT (Ial5/6)6 - (Iva!5/3)6/5 dt (6.118)

T
5/ |@]® + |Val|* dt.
0

L°/4 0,T; LY/8(M))
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Since @ € L8(€; L®(0,T; L*(M)))NL*(S; L*(0,T; H'(M))), taking expectations on both
sides of (6.118) we have

5/4
< 00,
LO/4(0,T; L/3(M))

/Ot B(a) ds

that is

t
/ B(@) ds belongs to L4(Q; L¥*(0,T; LY8(M))),
0 (6.119)

and hence belongs to L>*(I,; L>/*(Q x (0,T) x I,1)).
For the term fota(ﬂ) dW (s), from (6.113) we deduce that fot o(@) dW (s) belongs to
L2(Q; L2(0,T; L2(M)).

Applying the above estimates, we obtain that

F belongs to L>*(Q; L>*(0,T; LY¥(M))),
(6.120)
and hence belongs to L>/*(I; L/ x (0,T) x I,1))).

Hence Lemma 7.2.2 (of the Appendix) applies with p = 5/4 and & = L>*(Q x (0,T) x I,.1),

and from (7.13) we have

U, and Uy, belong to Cy(I; L>*(Q; H2((0,T) x (I,1))). (6.121)
Since U, (t) = f(f Uy ds, we have % = U,(t); differentiation in time maps continuously
H=2(0,T) into H=3(0,T) and from (6.121) we thus infer (6.115) and (6.116). O

We now need to show that the boundary condition %Sk }le = 0, “passes to the limit” to
imply (6.114). The idea is to apply Lemma 7.2.3 (of the Appendix) to U (t) := fot Uk ds.

Rewriting (6.103) in an integral form and rearranging, we obtain a.s.

t t t
a(t) + / ATk ds + c/ sk ds + ek/ Lac* ds
’ ’ ‘ (6.122)

t t t
_agk—/o B(m)ds+/0 fe ds+/0 o () AT (s).
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Hence for almost every &, U satisfies the linearized parabolic regularized equation:

Tek Tek Tek N
ou —|—A8U —l—caU + € LU = F*,

U], o= U],y = Ut|,y = Ughl,o = 0,
where F :=af — [ B(a)ds + [} & ds + [o o(a) dWe (s).

For the term fg B(u*)ds, by the same calculations as those leading to (6.118), we infer

from (6.80) and (6.82) that

/Ot B(a*) ds

By (6.113) we deduce that f @) dWe* (s) remains bounded in L2(€; L2((0,T); L3(M)).

5/4

E is bounded independently of €. (6.124)

L3/4(0,T; L8 (M))

5/4

L5/4(0,T;5 LY/$(M)) is bounded

Collecting all the previous estimates we conclude that E|F€*|

independently of €, and hence

F< is bounded independently of ey, in L5/*(I,; L>*( x (0,T) x I,.)).
Applying Lemma 7.2.3 (of the Appendix) with p = 5/4, & = L5/4(Q x (0,T) x I,.) and
B = 12 Hy (0, L2(1,0))) + L@ L0, T: H(L,0))) + I/ (@ x (0,T) x (I,1)), we

deduce that ﬁ;k‘ converges to 0%":(::1 weakly in B. Hence

=1
Us| _,(t) =0, (6.125)
a.s. and for a.e. t € (0,7). Since Uw‘z:1(t) = [y @ix|,_, ds, thanks to the Lebesgue

differentiation theorem, we infer from (6.125) that &x‘le(t) =0 a.s. and for a.e. t € (0,7).

Thus we have finished the proof of Theorem 6.3.1. O
6.3.2 Pathwise Solutions in Dimension 2

We aim to establish the existence of pathwise solutions when d = 1, that is:

Theorem 6.3.2. When d = 1, assume that, relative to a fixed stochastic basis S, ug

satisfies (6.14), and that o and f satisfy (6.8), (6.9), (6.11) and (6.15) respectively. Then
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there exists a unique global pathwise solution u which satisfies (6.1) and (2.2)-(2.4) in the

sense of Definition 6.3.2.

To prove this theorem, we first establish the pathwise uniqueness of martingale solu-
tions and then apply the Gyongy-Krylov Theorem (Theorem 7.5.1 of the Appendix). The
difficulty lies in deducing the pathwise uniqueness due to a lack of regularity of the mar-
tingale solutions (see (6.75) and (6.76)). Adapting the idea from the deterministic case
(see Chapter 3), we introduce a preliminary result concerning the existence and uniqueness
of global pathwise solutions to the linearized stochastic ZK equation with additive noise.
More importantly, we establish an energy inequality, which leads to a suitable estimate of
the difference of the solutions for the application of the version of the stochastic Gronwall

lemma given in Lemma 7.7.2 below.

Linearized Stochastic ZK Equation with Additive Noise (d = 1)

Proposition 6.3.2. When d =1, let S be a fixed stochastic basis, that is
S = (U F AFihiz0, P AW 1)

We consider the linearized stochastic ZK equation (c =0),

dR + AR, dt = gdt + hdW (t),

(6.126)
R(0) = Ry,
with the boundary conditions (2.2) and (2.4) for R. We assume that
Ro € L*(Q; L*(M)), (6.127)

and h and g are given predictable processes relative to the stochastic basis S, such that

g € L*(; LY*(0,T; LY*(M))) N L*(©; L*(0,T; E3)), (6.128)
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and

h e L*(; L*(0,T; Ly(4, L2(M))) N L2(; L*(0,T; Lo (4, Z1)). (6.129)

Then there ezists a unique global pathwise solution R to (6.126) which satisfies (2.2) and

(2.4), and such that
R € L*(Q; L®(0,T; L*(M))) N L*(2; L*(0,T; Hy(M))), (6.130)

and

R(-,w) € C([0,T]; L2 (M)) a.s.. (6.131)

Furthermore R satisfies the following energy inequality for any stopping time 1, with 0 <

Tb§T7

1 ™
—E sup |R(s)? +E/ |VR|? dt
2 ogszn, 0 (6.132)

T

<BROP+2E [ l(g, 1+ 2)R) dt+ B [ Il 0200

Proof. We will first show the existence of the solutions, which is similar to that of the
nonlinear case, but only easier because the use of a compactness argument and the derivation
of strong convergence are not necessary for the linearized model. Then we will verify the
uniqueness of the solutions, which is direct since the noise is additive. More precisely, the
difference of two solutions satisfies a deterministic equation depending on the parameters
w € Q. Finally, we will deduce the energy inequality (6.132) utilizing the duality between
the spaces to which g and R each belongs.

We start by proving the existence of pathwise solutions with application of the parabolic

regularization:

dRE + (ARS + eLRE) dt = g dt + hdW (1),
(6.133)

R(0) = Ry,
supplemented with the boundary conditions (2.2), (2.4) and the additional boundary con-

ditions (6.17), (6.18). As in Section 6.2, there exist {R§}e>0, a family of elements in the
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space L2(Q; 21) N L?/3(Q; L?(M)) which are Fy measurable, and such that, as ¢ — 0,
R§ — Ro in L*(Q; L*(M)) strongly; (6.134)

and there exist {¢¢}¢>0, a family of predictable processes relative to the stochastic basis S,
so that

g° € L®(; LP/3(0,T; L*(M))), (6.135)
g¢ — g in L2(Q; L*3(0,T; LY3(M))) strongly as € — 0. (6.136)

Since (6.129) corresponds to (6.8) and (6.9), we can use a proof similar to that of
Theorem 6.2.1 to deduce the existence and uniqueness of the global pathwise solution R¢
for each fixed e. Note that for the proof of existence, although ¢¢ depends on w, it will not
be a problem for us; this is essentially because we can prove the existence of a pathwise
solution without referring to any compactness argument.

In the sequel, we will derive the estimates independent of ¢, then pass to the limit on
the parabolic regularization, where again we need to pay special attention to the boundary

conditions.

(i) Preliminary estimates independent of e. We will prove the following bounds on R€ as
e—0:
R€ remains bounded in L2(Q; L*°(0,T; L}(M))), (6.137)

R remains bounded in L*(Q; L?(0,T; H}(M))). (6.138)

We start by multiplying both sides of (6.133) by /1 + x and applying the It6 formula,

we find

AdVI+zRP =2(V1+ 2R, V1+2Q(RY))dt
(6.139)
+2(V1+ 2R VI+ahdW () + V1 + 2 hl[7, 4 120my 4t

where Q(R€) := —ARS — e LR + ¢°.
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Let some stopping times 7,, 7, be given so that 0 < 7, < 7, < T'; we integrate (6.139)
from 7, to s and take the supremum over [7,, 7. After taking expected values, and by the

1
same calculations as those leading to (6.87), we obtain that when e < T

Tb Th
E sup ny(s)PHE/ |VR€\2dt§2E]R6(Ta)|2+2IE/ (g%, (14 2)RY)| dt

Ta<s<Tp Ta

+2E sup /S((1+m)Re,de(t)) (6.140)

Ta SSSTI) Ta
Tp
+2E [ 11hl 0 120

For the stochastic term, we have

E sup

Ta<s<Tp

/ (1+z)R, h dW(t))‘ < (by the Burkholder-Davis-Gundy inequality)

- 1/2
SE [(/ IR A2, w220 dt) ]

1 ™
< 1 E sup |R*+ C/E/ Hh“%z(u,L?(M)) dt.
Ta

Ta<s<Tp

Hence (6.140) implies

1 To
Lg sup |Rf(s)|2+ﬂz/ VR dt < 2B R (7.)[?

2 r.<s<n Ta

Tb
+2E/ (g6, (1 +2)RE)| dt (6.141)

T
+ C/E/ B2, 0 2y

To estimate the term Ef:; (g%, (1 + x)R)| dt, we observe that a.s.

(9%, (1 4+ 2)R) < 19 pars (| (1 +2)RE (v
< (by Sobolev embedding in dimension 2)

< ’96‘L4/3(M)’VRGP/Q’RGWQ

4/3

€ € 1 €
< g s ) R + I VRP

4/3

€ € 1 €
< C/|g ‘L4/3(M) (‘R |2 + 1) + ZIVR |2'
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Applying the above estimates to (6.141) we obtain

1 1 o
SE sup \Rf(s)12+21@/ VR dt

Ta<s<Tp Ta

Tb
2B R )P+ 2B [ g1} IR (6.142)

4/3
+E/T 20 ‘g ‘L/4/3 ) +c/|’h‘|%2(ﬂ,L2(M)) dt
Thanks to (6.135) and (6.129), we can apply the stochastic Gronwall lemma (Lemma 7.7.1

below) to (6.142) to find

1 , 1 T )
g sup [RE(s) +2IE/ VR dt
0

2
0=t (6.143)
2 g €4/3 2
<MR|+E/|gmeﬁWmhmmW»ﬁ
Thanks to (6136), we have |96’L2(Q; L4/3(O T; L4/3( S |g|L2(Q;L4/3(0,T; L4/3(M))) +Cl. Hence

3/2
c4/3 T 4/3
Efo g |LCL/3 M) [fo g |L{‘/3(M) dt} +c < |g|L2(Q LA/3(0,T; LA/3(M))) +¢’; thus (6.143)

implies that

1 1 T
—E sup |R€(s)|2+E/ |VRE|? dt
2 o<s<T 2 Jo

SEIRo + 190720, 1assoz; parsoyy + ¢+ 1AL z2ay 2t

Hence along with (6.128) and (6.129), we obtain (6.137) and (6.138).

(ii) Estimates in fractional Sobolev spaces. By the same proof as for Lemma 6.3.3, with )

defined as in (6.60), we derive the following estimates independent of e.

E[R[3 < ks, (6.144)
with kg independent of €. This estimate will be useful to prove the continuity in time in
(6.131).

(i1i) Passage to the limit as e, — 0. With (6.137), (6.138) and (6.144), we deduce the

following weak convergences, for a subsequence €, — 0:

R — R weakly in L*(Q; L?(0,T; H}(M))) N L3(; W*2(0,T; 55)), (6.145)
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R% — R weak star in L?(Q; L>(0,T; L*(M))). (6.146)

We can thus pass to the weak limit in (6.133) and obtain

<R(t),7eﬂ> n /t <ARI —g,Rﬂ> ds = <R0,Rﬂ> + /t <h,7zﬁ> aw, (6.147)
0 0

for almost every (w,t) € Q x (0,T) and every R € =s.

To pass to the limit on the boundary conditions (2.2) and (2.4), we use the same idea
as in Section 6.3.1. Firstly, we can prove an analogue of Lemma 6.3.5; that is, Rx}m:l is
well defined if R € L?(Q; L*(0,T; L?*(M))) N L*(Q; L*(0,T; H'(M))), and satisfies an
equation like (6.147). To show this, we just need to observe that thanks to (6.128), Lemma
7.2.2 applies with p = 4/3 and € = L*3(Qx (0,T) x I,1). Secondly, we can pass to the limit
on the boundary conditions applying Lemma 7.2.3 (of the Appendix) with p = 4/3, € =
LY3(Q % (0,T) x I,1) and B = L*(Q; H;71(0,T; L*(1,1))) + L*(; L0, T; H-*(I,1))) +
LY3(Q x (0,T) x (I1)).

To prove (6.131), we infer from (6.145) that R € W*2(0,T; Z5)NL>(0,T; L*(M)) a.s.,
and hence R € C(0,T; H=3(M))) N L>(0,T; L?>(M)) a.s.. Thus R is weakly continuous
with values in L2(M) almost surely, which implies (6.131).

To conclude, we have proven the existence of a global pathwise solution R which satisfies

(6.126), (2.2) and (2.4).

(iv) Global pathwise uniqueness. We assume that R, Ro are two solutions of (6.126); setting
R = R1 — Ra, we subtract the equation (6.126) for Ry from that for Ry; we obtain that

almost surely

T rr, o
t (6.148)
Ro = 0.

With (6.130), we have R € L>(0,T; L*(M)) N L*(0,T; Hi(M)) a.s.. Hence we can apply

Lemma 3.2.1 and deduce that %IRP <0 for a.e. w € Q and t > 0; thus R(w) = 0 follows
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whenever Ro(w) = 0.

(v) Passage to the limit to obtain energy inequality (6.132). From (6.141), we obtain when
7o = 0,

1 Tb T
—E sup |R€(s)|2+E/ |VRfy2dtg2JE|Rg|2+2E/ (g, (14 z)R)| dt

)
+c’]E/0 1117 5,22ty -

We infer from (6.145) and (6.146) that for any 7, with 0 < 7, < T,
R%1y<r, — Rli<y, weakly in L2(Q; L2(0,T; Hy(M))),
R%1i<r, — R1li<s, weak star in L*(Q; L>=(0,T; L*(M))),

and hence we can pass to the lower limit on the left-hand-side of (6.149). To pass to the
limit on the term E|R§|?, we use (6.134).

For the term E [ (g%, (14 2)R)| dt, we first note that in dimension 2,

T A 1/4 T ) )
(A ‘RE|L4(M) d5> </(; |R€‘ |VR€| dS)

T 1/4
sup |R(s)|"/? </0 |VR6|2ds)

0<s<T

T
<2 sup |R€(s)|+2</ |VRE|2ds>
0

0<s<T

1/4

IN

IN

1/2

Squaring both sides and taking the expectations we can use (6.137) and (6.138) to obtain
that, as € — 0,

R remains bounded in L3(Q; L*(0,T; L*(M))), (6.150)

and hence a subsequence of R¢ converges weakly in the space L2?(2; L*(0,T; L*(M))),

which is the dual of L*(Q; L*3(0,T; L*3(M))). Since

T

Tb T
E / (g, (1 +2)R)|dt = E / Lien (g, (1 +2)R)|dt = E / (g Lo, (14 2)RE)| dt,
0 0 0

we see that with (6.136), ¢“1j<r, — gli<s, strongly in L?(Q; L*3(0,T; L*3(M))), and

hence the convergence of E [* |(¢¢, (14 z)R¢)| dt follows.
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Thus we can pass to the lower limit on the left-hand side of (6.149) and to the limit on
the right-hand side of (6.149), and thus deduce (6.132). Hence we have completed the proof

of Proposition 6.3.2. O

Global Pathwise Uniqueness for the Full Stochastic ZK Equation (d = 1)

The following result establishes the pathwise uniqueness of martingale solutions to (6.1)

and (2.2)-(2.4).

Proposition 6.3.3. When d = 1, suppose that (S,u) and (5’,17) are two global martingale
solutions of (6.1), (2.2)-(2.4), relative to the same stochastic basis. We assume that the

conditions imposed in Definition 6.53.2 hold. We define

Qo = {a(0) = 9(0)}.
Then 4, v are indistinguishable on £y in the sense that
P(1q,(a(t) =o(t)) =1, Y0O<t<T. (6.151)

Proof. We will mainly use (6.132) from Proposition 6.3.2 and the version of the stochastic
Gronwall lemma given in Lemma 7.7.2 below. We define R = @ — 9. Due to the bilinear
term B(u), when attempting to estimate R, the terms that involve only @ or © will arise.

To deal with this issue we define the stopping times

t20 | sgf0,9) s€[0,t]

t
(M = inf{ sup ]1124-/ \Vu]st—i— sup ‘”’2 / \V@]st > m}
0

(6.152)
t>0 | s€[0,4] s€(0,¢]

t
= sup{ sup |a|? + / \Vi|?ds + sup |0 +/ Vo2 ds < m} .
0

We deduce from (6.104) that lim,, o 7(Mm) = 50, Define R = 19,R, and the result will

follow once we show that for any m,

fE( sup |R|2> = 0. (6.153)

[0,7(M)AT]
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Subtracting the equation (6.1) for ¢ from that for @, multiplying both sides by 1q,, we

arrive at the following equation for R,

AR + AR, dt = (—cRy + 1, (B(3) — B(@))) dt + Lo, (o(a) — o(3)) dW (),
(6.154)

R(0) =0.
Hence together with the stochastic basis S, we can regard R as a global pathwise solu-
tion to (6.154) written as (6.126) with the boundary conditions (2.2) and (2.4) , where
g=—CR;+1q,(B(%) — B(@)) and h = 1, (o(#) — (9)). To apply Proposition 6.3.2, now
we only need to show that (6.128) and (6.129) are satisfied. We infer from (6.69) that g €
L2(Q; L?(0,T; 25)). To show that g also belongs to the space L*(Q; L*/3(0,T; L*3(M))),
we first note that R, € L2(Q; L2((0,T); L2(M))). Next we estimate B(u). By the Sobolev
embedding theorem in dimension 2, we deduce that |B(@)| a5 < |U]paagltal <

d|a|'2|Va|'/? iy, and hence almost surely

T 3/2 T 3/2
~\(4/3 _ _
</0 |B(u)’Li/3(M) dt) <c </0 a3 va? dt)
T
<d | sup |&|2/3/ |V dt
t€[0,T] 0

T 3/2
= sup |1 </ |Vﬂ\2dt>
te[0,7 0

T 7/4
<d sup |a|"+ </ Vi) dt) :
0

te[0,7

3/2

(6.155)

Since (6.81) and (6.83) imply that @ and @ both belong to the space L7(€; L>((0,T); Hi(M)))N

L72(Q; L*((0,T); H(M))), taking expectations on both sides of (6.155) we obtain
B(@) belong to L2(Q; LY3(0,T; LY3(M))). (6.156)
To conclude we infer that g € L2(Q; L*3(0,T; L*3(M))). We infer from (6.11) that

1Al Loz = [lo(@) = o (@)]|Lywz) < cvlR,

112



which implies that h € L2(Q; L?(0,T; La(4, Z1)). Similarly, By (6.9) we can deduce that
h e L2(Q; L2(0,T; Ly(44, L2(M))). Thus we have proven that h satisfies (6.129).

Now Proposition 6.3.2 applies, and we obtain (6.132) for any 7, with 0 < 7, < 7™ AT,
7(m) defined as in (6.152) (for notation simplicity, we will write 7(™) := 7(™) AT from now

on). We then estimate the right-hand side of (6.132). Thanks to (6.152), we see that
R(- A7) € L(Q; L((0,T); LX(M))) N L=(; L*((0,T); Hy(M)),  (6.157)

and hence the following calculations are all legitimate for ¢ € (0,7(™)). We observe that

a.s. and for a.e. t:

(g, 1+ 2)R)| = |—c(Rq, (1 +2)R) + (B(0) — B(1)), (14 z)R)|
:';|R|2+<R2, (1 + ), —%(v—i— 1+ x) vx>‘

< (with y(t) = |ue ()] + [0(0)] + [02()])

IN

C. — _
SIRE + A (B)R Ry (6.158)

IN

(by interpolation H /2 = L* in dimension 2)
< SIRP +d(1)R|[VR]
1 _ _
< 5|VR|2 + V2 ()R
Applying (6.158) to (6.132), with R(0) = 0 we obtain

1= _ 1 (™ [T _
—E sup |R(s)|2+E/ |[VR?dt < C/E/ Y2 ()| R dt, (6.159)
2 o0<s<m, 2 Jo 0

for any stopping time 7 with 0 < 7, < 7(™. Along with (6.157), the version of the
stochastic Gronwall Lemma given in Lemma 7.7.2 below applies. Hence we obtain (6.153).
This completes the proof of Proposition 6.3.3. O

Thanks to the pathwise uniqueness of martingale solutions, we can apply the Gyongy-

Krylov Theorem to prove the existence of the pathwise solutions (for more details, see [11]).

Proof of Theorem 6.3.2. We consider the families (ue,uEI,W), where u¢ and u¢ are

pathwise solutions to the parabolic regularization (6.16)-(6.18), (2.2) and (2.4). Then by

113



(6.99) and (6.100), we can define the joint distributions of (u€, u¢, W) as vo¢ = pu x &, X py
on the phase space Xy, x Xy, x Xy (X, and Xy defined in (6.98)). With the same argument as
for Lemma 6.3.4, we can show that the family {V“/} is tight in € and €. By the Skorokhod
embedding theorem, we deduce the existence of a family (af, a W) defined on a different
probability space which converges almost surely to an element (, a, W) By the same proof
as for Proposition of 6.3.1, we can show that (@€, W) and (a¢, W) both satisfy (i)-(v). In
particular, (a€, @) have the same probability distributions, s, X uz’, as (uE,uel), and the
family {uS, x u5}€7€/>0 is tight and hence converges weakly to a probability measure pu;,

defined by p1(-) = P(@, @ € -). It is clear that @ and @ are both martingale solutions to (6.1)

and (2.2)-(2.4), hence by the pathwise uniqueness (Proposition 6.3.3), % = @ a.s.. Thus
w1 ({(u,v) € Xy x Xy :u=0}) =P(a=uin X,) = 1.

We can apply the Gyongy-Krylov Theorem (Theorem 7.5.1 of the Appendix) and deduce
that the original family u¢ defined on the initial probability space converges in probability,
and hence converges almost surely up to a subsequence, to an element u in the topology
of X,. Thus we can pass to the limit on the regularized equation as explained in details
in Section 6.3.1. To conclude we have established the existence of a pathwise solutions to

(6.1), (2.2)-(2.4), and we have completed the proof of Theorem 6.3.2. O

Remark 6.3.2. For the space periodic case, that is, (6.1) and the boundary and initial
conditions (2.2), (2.3) and (2.5), the results will be the same with the Dirichlet case. The

reasoning will be similar as in Chapter 3.
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Chapter 7

Appendix

7.1 Space (M) and its Dual ¥'(M)

To derive and justify equation (2.9) we need to introduce the concept of distributions on

M =1, xRy xR, (7.1)

which are periodic in y and z (and usual distributions in z). This concept combines the
concept of distributions on an open set (see [41]) with that of periodic distributions (see [41]
and [19]).

We consider the space (M) of functions which are C* in M, periodic in the y and =z
directions, periodic with all the derivatives, with period 27, and which are compactly sup-
ported in I;. This space is equipped with the (metrizable) topology of uniform convergence
on any compact set of M of the functions and all its derivatives. The dual X'(M) of %(M)
is the desired space of distributions. One can define derivatives on this space and perform
the usual operations performed on distributions. Also, as in the case of D(M), we can
show that the space spanned by ¢ wyg, (y) wk, (2) with ¢ € D(I) is dense in (M), where
{wk, (y)} is an orthonormal basis of L?(,) and a smooth periodic functions with period 2,
and the same thing for {wg,(2)} in L?(I,). We will also assume below that the wy, are
the eigenfunctions of the operators d?/dy? on I, (sine and cosine functions) which form an

orthonormal basis of L?(I,) , and the wg, are the eigenfunctions of the operators d?/dz? on

115



I, which form an orthonormal basis of L?(I).
If a function u belongs to L?(M), let @ be its extension to M by periodicity in y and z

and let
w="> () i, (y) wk, () (7.2)
k

be its expansion in Lz(Iy x I.). This expansion being convergent in L?(M) as observed

before, it also converges to u in ¥'(M) , which simply means that

/ / UN(x7y7Z) w(xvyvz) dCCdyClZ

I, JI,xI,

converges to
/ / w(@,y, 2) Y (x,y, 2) dedydz, Vi € E(M),
I JIyx1I,

where

un(2,y,2) = Y G(x) wi, () wi, (2), N €N. (7.3)
k<N

With these in mind we can state the following:

Lemma 7.1.1. For u € L*(M) as in (7.2), we have

(Aug + ctia, ik, (y) wiy (2)) = =Ca (9" = (A — )¢’ T), Ve € D(I),

where A\, = Ak, + Aiy, and Cy is a constant depending only on the dimension.

Hence
(Aug + cua, wiy (y) wiy (2)) = Ca(Uy (z) — (A — o)t (2)), (7.4)
in the sense of distributions on D(I;).
Proof. We observe that, for ¢ € D(I,), ¢ wg, (y) wk, (2) € E(M) and then classically
(Aug + cug, pwiy wiy) = —(u, (A+¢)0x(pwp, wiy))
= —(u, (¢ = N\ — )¢ wiy wis)
= —Ca(tk, ¢"" = (M —0)¢')

= Cylay — (M — o)y, »),
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and the conclusion follows. O

Corollary 7.1.1. Under the hypothesis of Lemma 7.1.1, if we further assume that Aug, +
cuy € L*(M), then
uy, — (Mg — ¢)tj, = G, (7.5)

holds in L*(M), where g := Aug + cug, and Gi(x) are the Fourier coefficients of g as in

(1.2).

Proof. Since g € L2(M), (g9, Wi, Wk,) = Cqgr. Hence by (7.4), we obtain that (7.5) holds
in the sense of distributions on D(I,).

Define
Yi = @ — (A — o) — /0 G (€)de. (7.6)

Then (7.5) implies Y, = 0. Hence Y, = C(k) a.e., with C(k) a constant independent of
x. Thus 1) € L*(I,). By the intermediate derivatives theorem, @} € L?(I,). Hence (7.5)
implies

ay € L*(1,). (7.7)
Thus (7.5) holds in L?(I,).

Remark 7.1.1. Note that we will also briefly use the space ¥'((0,T) x Q) corresponding to

distributions that are reqular distributions in x and t, and periodic in y ory and z.

7.2 Trace Results

The following is a slight generalization used in the article of a trace result from [40] allowing

the value p = 1.

Lemma 7.2.1. Let Y be a reflexive Banach space and let p > 1. Assume that two sequences
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of functions u¢, g¢ € LE(I;Y) satisfy

(7.8)

with g¢ bounded in LE(I;Y) as € — 0. Then ut, (and hence ut, and u) is bounded in
L°(1,;Y) as € — 0. Furthermore, for any subsequences u® — wu converging (strongly or
weakly) in LE(1;Y), 1 < q < 0o, u,(1) converges to u,(1) in Y (weakly at least), and hence

ug(1) = 0.

Proof. Firstly, by the same proof as in [40], we obtain

U5 () ly < g1y, (7.9)

which shows that uS, remains bounded in L>°(0,1;Y) as € — 0.

Secondly, we prove the weak convergence of u$(1). Since u$, is bounded in L°(I;;Y) as
e — 0, applying the Banach-Alaugu theorem to the reflexive Banach space L% (I,;Y), 1<
r < 00, we deduce that uz, — v weakly in L7, (I,;Y) for some function v € L7 (I;;Y). Since
we know that u¢ — u strongly or weakly in L%([,;Y), it is easy to see that v = uy, €

LI(I;Y). Hence we have

€

umac

— Uy weakly in LI(I,;Y). (7.10)

By the trace theorem and Mazur’s theorem, u,(1) converges to u,(1) weakly in Y.

Remark 7.2.1. Note that in (7.10), q can not be oo, and hence we can not pass to the
limit on the boundary term uS,(0) based on the argument above. This is fine because we
do not care about passing to the limit on this boundary term as we do not necessarily have

Uz (0) = 0 in the Z-K equation.
The following trace result is an extension of the linear case of Lemma 3.1.1.
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Lemma 7.2.2. Let u be a random process defined on a probability space (2, F,P). F is a

given function such that
F e LP(I; €), where E=LP(QAx (0,T) x I,1), p> 1. (7.11)

We assume that v € L?(Q; L?(0,T; H'(M))) satisfies almost surely the following linear
equation

up + Aug + cuy = F, (7.12)

that s, almost surely we have
t t
u(t) —I—/ (Aug + cug)ds = u(0) —|—/ Fds,
0 0
in the sense of distributions on D(M) for every 0 <t <T . Then
Ug, Uzy € Co(I; B), B=L*(Q; H2((0,T) x I,.))NE. (7.13)

and, in particular,

Uz|,_q, ond um}x:m, (7.14)
are well defined in B.
Proof. We write equation (7.12) in the form
Ugge = F — cuy — Aluw — U
Then clearly we have
Upgw € LB (Ipy L2(Q; H2((0,T) x L)) NE), p>1, (7.15)
which implies that (7.13) holds. O

We use Lemma 7.2.2 in the proof of Lemma 6.3.5 with p = 5/4 and € = L5/4(Qx (0, T) x
I..), and in the proof of Proposition 6.3.2 with p = 4/3 and £ = L*3(Q x (0,7) x I,.).
We are now ready to prove the following trace result generalized from the argument in

Lemma 7.2.1.
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Lemma 7.2.3. Let {u}eso be a family of random processes, all defined on the same prob-

ability space (Q, F,P). We consider the following linearized reqularized equation

uy + Aul, + cul, + eLu® = F€,
(7.16)

€ — €
T |r=1 = Ugy

la=0 = 0;

u€’x=0 = uE’x:l =u =0 "~
where F€ remains bounded in the reflexive Banach space LP(I,, &), with € == LP(Qx (0,T) x
I,1), p> 1. We suppose that u® almost surely satisfies (7.16), that is, almost surely we

have

t
u(t) + / (Aug, + cul, + eLu® — F€) ds = u®(0),
0

in the sense of distributions on D(M) for every 0 <t <T . We assume that u® converges

weakly to some wu in L?(; L*(0,T; HY(M))) as € — 0, then uS(1) converges to uz(1) in B

specified below, and hence ug(1) = 0.

Proof. By (7.16) we have

€
Txrxr

€

€
yyyy — €U

€ _ 1€ € € 1 e
Ugy + €US 0 = FC —uy —cul, — A~us, — eu S s

We call the right hand side g¢. It is easy to observe that, since u® remains bounded in
L3(I;; L3(Q2 x (0,T) x I,1) as € — 0, then g¢ remains bounded in the reflexive Banach

space LE"*(I,; B), p > 1, where
B=L*Q; H7Y0,T; L*(I,.))) + L*(Q; L?(0,T; H*(I,.))) + €. (7.17)

Thus we can apply Lemma 7.2.1 with this space B and obtain the convergence of the
boundary term u$(1). O

Lemma 7.2.3 is applied in Section 6.3.1 with p = 5/4 and £ = L5/4(Q x (0,T) x I,1)
and in the proof of Proposition 6.3.2, with p = 4/3, £ = L*3(Q x (0,T) x I,.) and

B=L*Q; H7Y0,T; L*(I,.))) + L*(Q; L7(0,T; H*(I,1))) + L*3(Q x (0,T) x (I,1)).
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7.3 Compact Embedding Theorems

We recall the theorems from [18] and [17] (see also [43] for Lemma 7.3.1).

Definition 7.3.1. (The Fractional Derivative Space) We assume that H is a separable
Hilbert space. Given p > 2, a € (0,1), W*P(0,T; H) denotes the Sobolev space of all

h € LP(0,T; H) such that
T (T h(t) — h(s)[5;
—72 78 ard 7.18
/o /o ¢ s[trap s <00 (7.18)

which is endowed with the Banach norm

5 1/p
T T () — hs);
|h|W0‘715(0,T; H) = (A |h(t) |II){ dt +/0 /0 WHO@H dt dS < Q. (719)

Lemma 7.3.1. (i) Let & C € C &1 be Banach spaces, & and & reflexive, with continuous
injections and a compact embedding of &y in E. Let 1 < p < oo and a € (0,1) be given. Let
Y be the space
Y :=LP(0,T; &) NWP(0,T; &), (7.20)
endowed with the natural norm. Then the embedding of Y in LP(0,T; &) is compact.
(ii) If £ C € are two Banach spaces with & compactly embedded in € , 1 < p < oo and
a € (0,1) satisfy

ap > 1,
then the space WP(0,T; &) is compactly embedded into C([0,T); &).
7.4 Convergence Theorem for the Noise Term

The following convergence theorem for the stochastic integrals is used to facilitate the
passage to the limit in the parabolic regularization approximation. The statements and

proofs can be found in [2], [23] and [11].
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Lemma 7.4.1. Let {Q, F,P} be a fized probability space, and X a separable Hilbert space.
Consider a sequence of stochastic bases S, = (Q, F,{F}' }+>0,P, W), such that each W™
is a cylindrical Brownian motion (over ) with respect to {F{'}i>0. We suppose that the
{G™}n>1 are a sequence of X -valued F7* predictable processes so that G™ € L*((0,T); La(8, X))
a.s.. Finally consider S := (Q, F,{Fi }1>0,P, W) and a function G € L*((0,T); La(4, X)),

which is F; predictable. If
W™ — W in probability in C([0,T]; ),

G™ — G in probability in L*((0,T); La(4, X)),

then

t t
/ G dW™ — / G dW in probability in L*((0,T); X).
0 0

Then we have the following lemma based on the Burkholder-Davis-Gundy inequality and

the notion of fractional derivatives in Definition 7.3.1 (whose proof can be found in [18]).

1
Lemma 7.4.2. Let ¢ > 2, a > 3 be given so that qoe > 1. Then for any predictable process

h e L1 x (0,T); La(Mh, H)), we have
/t h(s)dW (s) € LY(Q; W*1(0,T; H)),
0

and there exists a constant ¢ = c/(q, ) > 0 independent of h such that

q

E /0 h(s) dW (s)

t
< d(q,a) E/ |h(s) %2(M7H) ds. (7.21)
Wea (0,7 H) 0

7.5 Some Probability Tools

We recall the Gyongy-Krylov Theorem from [23], which is used in proving the existence of

pathwise solutions.
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Theorem 7.5.1. Let X be a Polish space. Suppose that {Y;,} is a sequence of X-valued
random variables on a probability space (0, F,IP). Let {figm}km>1 be the sequence of joint

laws of {Ym}tm>1, that is

fem(E) = (Y4, Yy) € E), E € B(X x X).

Then {Yy} converges in probability if and only if for every subsequence of joint probabil-
ity measures, {fig, m,}i>0, there exists a further subsequence which converges weakly to a

probability measure v such that

p({(u,v) € X x X :u=v}) =1. (7.22)

7.6 The Jakubowski-Skorokhod Representation Theorem

We recall the following result from [35].

Lemma 7.6.1. Let A; be a topological space such that there exists a sequence {fn} of
continuous functions fn,, : A1 — R that separate points of Ai1. Let Ay be a Polish space,
that is, a separable completely metrizable topological space, and let I : Ay — Ay be a

continuous injection. Then I(B) is a Borel set in A1 whenever B is Borel in A,.
The following result is a special case of Lemma 7.6.1.

Lemma 7.6.2. Let Ay be a separable Hilbert space. Assume that Ao is a separable Hilbert

space continuously injected into Ay. Then As is a Borel set of Aj.

Proof. Firstly, it is clear that any separable Hilbert space A; satisfies the hypotheses of
Lemma 7.6.1. Since As is a separable Hilbert space, hence it is a Polish space. Now in
Lemma 7.6.1, let B be Ay, which of course is a Borel set of Az. Then I(B) = I(A2) = As
is a Borel set in A7 thanks to Lemma 7.6.1. ]

We use Lemma 7.6.2 in the proof of Proposition 6.3.1.
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7.7 An Adapted Stochastic Gronwall Lemma

We first recall the stochastic Gronwall lemma from [21] (see also [34]), then we present a

variant result which is used in the proof of Proposition 6.3.3.

Lemma 7.7.1. Fiz T > 0. We assume that
X,Y,Z, M :[0,T) x Q — R,
are real valued, non-negative stochastic processes. Let 0 < 7 < T be a stopping time so that
E/ (MX + Z)ds < 0. (7.23)
0
We suppose, moreover that for some fixed constant s,
T
/ Mds <k, a.s.. (7.24)
0

Suppose that for all stopping times 7o, 7, with 0 < 7, < 71, < 7 we have

L€ [7a, 7]

E ( sup X + /:b Yds) < GE (X(Ta) + /:b(MX +2) ds> )

where Cy is a constant independent of the choice of 1,, 7. Then

E( sup X+/ Y ds <C]E<X(O)—|—/ st), (7.26)
te[10,7] 70 70

where C' = C(Cy, T, k).

When X (0) =0 and Z = 0 we can weaken the hypotheses by requiring that (7.25) only

holds for 7, = 0 and all 7, 0 < 7, < 7. We then obtain

Lemma 7.7.2. We assume that X(0) =0 and Z = 0 in Lemma 7.7.1 and that (7.25) holds

only for 7, =0 and all 7, 0 < 1, < 7, that is:

T T
E( sup X+/ Yds) §00E<X(0)+/ Mde), (7.27)
0 0

tE[O,Tb]
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where Cy is a constant independent of the choice of T,. Then the calculation (7.26) holds

true and reduces to

Esup X=E [ Yds=0. (7.28)
Proof. Step 1. We first show how to construct a finite sequence of stopping times
0<<..<TN<TN41 =T a.s.,

so that

Tj+1 1
MdS<TCb a.s., \V/j:].,,N (729)

7j

We construct the sequence inductively. We start with time 0. We assume that 7;_1 is

gﬁ{/] Md8<2co}

and 7; > 0 is well-defined since M > 0 and it satisfies (7.24). Hence we have

found. Then define

T]' 1
Mds > —-, Vj>1such that 7; <7. (7.30)
L 2C)y
Now we claim that there exists a finite integer N such that 7y = 7, and

N <2Cok+1, a.s.. (7.31)

We show this by contradiction; suppose that (7.31) is not true, then N — 1 > 2Cyk, and

hence
TN+1 N-1 Tj+1 T 1
/ Mds="" Mds+/ M ds > with (7.30) > (N — 1)— > &.

But this contradicts with (7.24). Hence (7.31) is proven, and we can choose the integer
N ="2Cok + 1"

Step 2. Letting 7, = 7 in (7.27), we have

T1 T1
E( sup X+/ Yds> < C’O]E/ MX ds; (7.32)
0 0

tE[O,Tﬂ

125



from (7.32), (7.23) and (7.29) we infer
1 m
E[= sup X+/ Yds | =0.
2 te[0,7m1] 0
Thanks to (7.33), for every 7, > 71 a.s., we find that

E sup X=FE sup X,
t€(0,7)] t€[r1,7)

To To
E/ Yds:E/ Y ds,
0 T1

Th Th
E/ Mde:IE/ MX ds.
0 T1

Thus from (7.34) and (7.27), we infer that for every 7, > 7 a.s.,

Tb To
E| sup X+/ Y ds SC’OE(/ Mde).
te[r1,m) (ol (!

Setting 7, = 72 in (7.35), we have

T2 T2
E| sup X+/ Y ds SC’OE</ Mde);
te[Tl,’TQ] T1 T1

with (7.36), (7.23) and (7.29) we deduce

T2
E L sup X+/ Yds| =0.
2t€[T1,T2] T1

Hence by finite induction up to N we obtain (7.28).
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