
Sustained Software for Cyberinfrastructure – Analyses of
Successful Efforts with a Focus on NSF-funded Software

Craig A. Stewart
Indiana University Pervasive

Technology Institute
stewart@iu.edu

William K. Barnett
IUPTI

wkbarnett@iu.edu

Eric A. Wernert
IUPTI

ewernert@iu.edu

Julie A. Wernert
IUPTI

jwernert@iu.edu

Von Welch
Center for Applied Cybersecurity

Research, IUPTI
vwelch@iu.edu

Richard Knepper
IUPTI

rknepper@iu.edu

ABSTRACT
Reliable software that provides needed functionality is clearly
essential for an effective distributed cyberinfrastructure (CI) that
supports comprehensive, balanced, and flexible distributed CI.
Effective distributed cyberinfrastructure, in turn, supports science
and engineering applications. The purpose of this study was to
understand what factors lead to software projects being well
sustained over the long run, focusing on software created with
funding from the US National Science Foundation (NSF) and/or
used by researchers funded by the NSF. We surveyed NSF-funded
researchers and performed in-depth studies of software projects
that have been sustained over many years. Successful projects
generally used open-source software licenses and employed good
software engineering practices and test practices. However, many
projects that have not been well sustained over time also met these
criteria. The features that stood out about successful projects
included deeply committed leadership and some sort of user
forum or conference at least annually. In some cases, software
project leaders have employed multiple financial strategies over
the course of a decades-old software project. Such well-sustained
software is used in major distributed CI projects that support
thousands of users, and this software is critical to the operation of
major distributed CI facilities in the US. The findings of our
study identify some characteristics of software that is relevant to
the NSF-supported research community, and that has been
sustained over many years.

Categories and Subject Descriptors
D.2.0 [Software Engineering]

General Terms
Management, Economics, Reliability, Experimentation

Keywords
Cyberinfrastructure software; sustainability; reusability; software
sustainability; open-source business models

1. INTRODUCTION
Cyberinfrastructure may be defined as consisting of
“computational systems, data and information management,
advanced instruments, visualization environments, and people, all
linked together by software and advanced networks to improve
scholarly productivity and enable knowledge breakthroughs and
discoveries not otherwise possible” [1]. Software is a core element
of cyberinfrastructure and clearly essential for an effective
distributed cyberinfrastructure that supports science and
engineering research. However, cyberinfrastructure software can
be an area of challenge for open (nonclassified) research. A 2011
National Science Foundation task force report included a finding
about software, as follows [2]:

The current state of cyberinfrastructure software and
current levels of expert support for use of
cyberinfrastructure create barriers in use of the many and
varied campus and national cyberinfrastructure facilities.
These barriers prevent the US open science and
engineering research community from using the existing,
open US cyberinfrastructure as effectively and efficiently
as possible.

The report goes on to highlight key shortcomings in the state of
US cyberinfrastructure software as of 2011, when that report was
completed, including limitations in software robustness, lack of
features, and lack of support.

The National Science Foundation (NSF) supports the creation
of many open-source scientific software packages. Perusal of
NSF solicitations will reveal more opportunities to fund the
creation of new software than to maintain existing software,
consistent with the elements of the NSF mission that focus on
innovation. Several NSF solicitations for the creation of new
software call for including a model for sustainability after the
end of NSF funding. The licensing of software created with
NSF funds as open source is often a requirement of NSF grant
awards. This approach works well in terms of maintaining
availability of software and a cost that lowers barriers to
adoption.

Our initial hypothesis was that the use of good software
engineering methodologies would play a strong role in the
sustainability of software, and that objective metrics such as
NASA’s Reuse Readiness Levels [3] would be informative in
distinguishing software that was successfully sustained over a
long period of time.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SCREAM’15, June 16, 2015, Portland, Oregon, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3566-9/15/06…$15.00.
http://dx.doi.org/10.1145/2753524.2753533

63

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUScholarWorks

https://core.ac.uk/display/213844858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Business models for open-source software are often
challenging to implement. This is demonstrated in part by the
fate of open-source software studied in a 2007 analysis of
open-source business models, many of which have been
discontinued since the publication of that study [4]. We
became interested in cyberinfrastructure software sustainability
as creators, implementers, and supporters of such software.
Our interest was driven in part by a desire for sustainability of
our own activities and software developed by the Indiana
University Pervasive Technology Institute.

Our goal in studying sustainability in cyberinfrastructure was
to discover answers to the following questions, particularly as
regards software that has received NSF funding or is used by
researchers who have received NSF funding:

 What software testing and hardening methodologies have
proved effective in enabling software to be widely used by
the NSF research community?

 What are best practices in building and testing that
contribute to software that is perceived to be highly
useful and reliable to the NSF open research community?

 What administrative structures, governance processes,
and operational infrastructure enable software to be
sustainable in the long term?

 What financial models provide for long-term sustainability
of software as well as supported infrastructure?

 What community engagement activities (e.g.
requirements gathering, prototyping) demonstrate
relevance to the software’s eventual success?

Katz and Proctor [5] recently developed a framework for
understanding e-Research Infrastructure, which includes axes
of temporal duration, scale (extent of adoption), and purpose
(specific within a discipline or general across multiple
disciplines). We were specifically interested in middleware and
software frameworks. That is, software that is very general in
its purpose because of its role as part of distributed
cyberinfrastructure. Our primary interests were temporal
sustainability, in part because software tends to last longer than
hardware as noted by Katz & Proctor, and thus temporal
stability is critical to creation of effective distributed
cyberinfrastructure.

We adopted a two-stage approach to studying software
sustainability. We began with a survey of the community of
NSF-funded researchers to determine what they thought were
the characteristics of well-sustained cyberinfrastructure
software. We went on to conduct a series of in-depth case
studies of particular well-sustained cyberinfrastructure
software.

The projects selected for case studies were drawn in part from
the results of this survey, and in part from our knowledge of
interesting projects related to cyberinfrastructure that were
operating with potentially interesting business models. In our
case studies we focused on software projects that were
successful, believing we could learn more from a few model
success stories than from many examples of software that had
not been sustained. We also thought it difficult for us, as
members of the scientific community, to ask our intellectual
collaborators and competitors to explain why projects had been
discontinued when that question could easily be interpreted as
“Whose fault was it that your project lost funding?” We did,

however, draw comparisons with some of our own projects
that have not turned out to be well sustained and our own
informal observations of other unsuccessful software efforts.

Here we present our final analysis and conclusions from this
work carried out in 2013 and 2014, supplemented by
observations on two projects (Globus Online and Kuali) that
have expanded or changed sustainability models since the
initial case studies.

Given that sustainability strategies are heavily affected by
national funding strategies, our focus in particular was on
software that is important to the US open (nonclassified)
research community. From the perspective of federal funding
agencies in the US, research on software sustainability should
inform federal strategies for enhancing US research
productivity, innovation, and global competitiveness. In this
report, we are particularly concerned with scientific and
cyberinfrastructure software in the sense of middleware and
software frameworks, as this is the area of concern identified in
2011 by a task force of the National Science Foundation
Advisory Committee for Cyberinfrastructure (ACCI). We are
not focused on operating systems, or attempting to study the
business model of Linux, which is now responsible for billions
of dollars of commerce per year. Our goal in preparing this
report is to provide insights based on practical experience that
will aid research communities in developing software for
distributed cyberinfrastructure software and in ways that will
enable it to be effective and well sustained over time. Such
insights should aid software developers in creating distributed
cyberinfrastructure that aids the research community generally
in advancing and applying knowledge engineering and science.

2. SURVEY OF NSF-FUNDED PRINCIPAL
INVESTIGATORS
Of all US federal agencies that support research, the National
Science Foundation has the broadest and most general mandate to
support open research. To understand the views and needs of the
community of researchers supported by the NSF, we conducted
surveys of Principal Investigators funded by the NSF, asking their
views on cyberinfrastructure software. We surveyed a random
sample of 5,000 individuals drawn from a list of 34,901
individuals who were funded by the NSF in the five-year period
2007-2011. Names were obtained from the NSF publicly available
award search feature [6]. The data from the survey are available
online at [7]. The Indiana University Center for Survey Research
(CSR) administered the study to ensure confidentiality of the data.
A total of 685 individuals, or 17% of the people invited,
completed the full survey. Most questions were a standard 1-5
Likert scale, with 1 being generally unimportant or bad, and 5
being generally important or good.

2.1 Results of Survey
Respondents. Most respondents identified their primary role as
“software user” rather than “software developer” or “other
technical role.” Thus, this survey reflects the views primarily of
the potential adopters of new CI software.

Criteria used by scientists in selecting software. The first
survey question asked what factors were important to researchers
in selecting a software package. Respondents were asked to rate
importance on a scale of 1 (not at all important) to 5 (extremely
important). The most important factors – as judged by the average

64

scores – were as follows (means shown + 95% confidence
intervals):

1) Capabilities and features of a software product are the most
important factors to consider when adopting a software
package, with a mean score of 4.54 (+ 0.05). Respondents
overwhelmingly (94%) reported identifying this factor as
“important” or “very important.”

2) Total cost of ownership: 4.22 (+0.06)
3) Long-term availability: 4.18 (+0.06)
4) Reliability/maturity: 4.16 (+0.05)
5) Initial purchase cost: 4.00 (+0.06)

What criteria make software sustainable, and what software
meets those criteria? When asked to evaluate the factors that
made a software product sustainable, responses contrasted to
those required for adoption. Cited most often were compatibility,
availability of support resources, and an active development
process. Only 18% of respondents identified software capabilities
as key to sustainability. Cost factors ranked near the bottom.

Asked to identify products that met these sustainability
requirements, a majority of respondents cited commercial
products. The 10 most frequently identified, well-sustained
software products were as follows (open-source products are
marked with an asterisk):

1) MATLAB
2) Microsoft Office
3) R-project*
4) TeX & La TeX*
5) Mathematica
6) SPSS
7) Adobe Acrobat
8) Linux*
9) Python*
10) EndNote.

Of the top 50 most-cited, commercial products were mentioned
roughly twice as often as their open-source counterparts. The
most-cited open-source projects include R, TeX/LaTeX, Linux,
and Python.

Governance models. Respondents were asked to consider the
relative success of some common governance models in open
software initiatives in creating an environment for long-term
sustainability. There was no clear single frontrunner. The five
most frequently indicated items, ranked by average importance
score in a range of 1 to 5, were:

1) Hybrid license (commercial/noncommercial users pay
different prices) – 441 responses, 3.78 (+0.10) mean score

2) Contributed effort, organizationally supported model (often
a corporation supporting an open-source software tool) –
422 responses, 3.65 (+0.10) mean score

3) Meritocracy/volunteer-driven model – 388 responses, 3.41
(+0.11) mean score

4) Membership/foundation model – 355 responses, 3.35
(+0.12) mean score

5) Benevolent/enlightened dictator model – 417 responses,
3.29 (+0.12) mean score.

When asked to cite examples of open software products (or
associated companies/consortia/organizations) with governance
models that aid the sustainability of their software products,
respondents cited a wide range of products with varying
governance models. The top tools identified were:

1) Linux
2) R-project
3) Apache
4) Mozilla
5) TeX & LaTeX
6) Python
7) GNU
8) Eclipse
9) OpenOffice
10) ImageJ

2.2 Discussion of Survey Results
The survey response rate was quite reasonable, particularly for an
unsolicited email survey with no incentive offered to the potential
respondents. Conclusions drawn from the survey represent the
opinion of researchers recently funded by the NSF as principal
investigators, often leading labs and research groups.

Whether or not a software product was available under an open-
source license per se was far less a concern for most respondents
than were its capabilities, cost, and reliability. However, three of
the top five most important selection criteria identified relate to
characteristics of open source software – total cost of ownership,
long-term availability, and initial purchase cost.

One important piece of information from this survey has to do
with the way researchers think about the phrase
“cyberinfrastructure software.” The letter sent to the 5,000
randomly selected NSF-funded PIs began with the following:

I am writing to ask for your help in a landmark NSF study
that is being conducted by Indiana University to identify
best practices in the development, deployment, and
support of robust cyberinfrastructure software.

When researchers funded by the Division of Advanced
Cyberinfrastructure (part of the NSF Computer and Information
Science and Engineering Directorate) speak of cyberinfrastructure
software, our consistent experience is that cyberinfrastructure
software is taken to be middleware and software frameworks –
infrastructure building blocks such as Globus Online [8, 9] and
software frameworks such as science gateways [10]. The bulk of
the respondents seemed to interpret cyberinfrastructure software
as end-user applications with scientific uses, such as MATLAB,
Microsoft Office, or SPSS. One very strong conclusion from the
survey results is that NSF-funded PIs, in general, have a different
interpretation of the term cyberinfrastructure software than the
substantially smaller community that develops cyberinfrastructure
software under funding from CISE. All of the software packages
identified as well sustained were viewed as serving purposes
sufficiently general that the software was changed over time in
response to changing needs, rather than becoming obsolete.

The results of queries about governance models resulted in a set
of five most-highly-rated models, all of which are now
successfully in use.

This survey helped us identify features that researchers used to
select software for their own research, and gather opinions about
governance models. It was somewhat less useful in addressing our
initial purpose for performing the survey, largely because the way
we intended the term cyberinfrastructure software to be used
differed from the way many of the respondents understood it. This
survey was thus less useful in identifying characteristics of
success for the sort of middleware software that was identified as
a challenge in the 2011 NSF ACCI Campus Bridging Taskforce.
A more extensive analysis of the survey responses is available in
[6].

65

Table 1. Software project case studies – basic info

Project Description Year
Founded

Primary
funding

Primarily end-user applications
VTK,
ITK,
CMake,
ParaView

Four different but related
visualization applications

1998 Initially US Air
Force SBIR,
now NIH, NSF,
DOD, DOE

R project1 Statistics and analytics
software

1993 Mix of grants,
donations,
related
commercial
entities

Galaxy Scientific workflow
system, focused on
bioinformatics

2005 NSF, NIH

LAPACK High performance linear
algebra solvers

1985 NSF, DOE,
DARPA

Unidata Data services, tools,
support, and training for
atmospheric sciences

1982 NSF

Primarily middleware (may deliver end-user applications)

HUBzero Web-based scientific
workflows (started as
NanoHUB)

1995 NSF initially,
now contracts
and foundation
memberships

Kuali University mission-critical
processes (human
resources, research
administration)

2004 University
members of
Kuali
Foundation

Globus
Online

Fast and secure file
transfer, data discovery,
other cloud services

1997 NIH, NSF,
DOE,
subscriptions
from cloud
service users

HTCondor Distributed high
throughput computing

1985 NSF

3. CASE STUDIES

3.1 Case Study Selection of Projects and
Methods
We found our survey results less informative than we had hoped
in providing information about opinions regarding
cyberinfrastructure software in the sense of middleware and
software frameworks. We thus selected for detailed case studies a
set of software projects that had been well sustained over a
number of years or decades, some of which had been ranked
highly in the survey responses. Other projects were selected based
on our understanding of US software efforts and our initial
interests in cyberinfrastructure in the sense of middleware and
software frameworks. We attempted to include some diversity in
governance models among the projects studied. For example, R
was included because it appeared as one of the 10 most widely
used open-source tools on our initial survey. HUBZero and
Globus Online are included as exemplars of successful software
projects, because of their level of adoption in the community and

1 Information on R was gathered from R project web pages!

success in creating sustained financial models from a start with
NSF funding. Kuali was included because of interest in its
business model and its origins without NSF funding. Kitware
products were included because of the novelty of their hybrid
public / private sustainability model. In our view, all projects
qualify as well sustained because they have been in existence for
years to decades, and have thousands to hundreds of thousands of
users. Unidata was included as an example of a very long-lived CI
project. The projects selected for detailed case study were split
roughly evenly between middleware and end-user application
software. The software projects we studied are listed in Table 1.

We began our case studies with structured questions, then
continued with unstructured discussion led by the leaders of
software projects. The case studies are thus essentially self-
reports from a number of highly successful software projects. We
present the key results of case studies as summaries of answers to
some of the most critical questions asked of each project in Table
2, shown on the next page.

3.2 Case Studies Results
One aspect of studying software that has been successfully
sustained over many years is that the software projects all have
relatively general and flexible capabilities. Such software must
either have a sufficiently broad suite of functionality that it
remains relevant over a long period of time, can be adapted to
changing scientific community needs over time, or both.

3.2.1 What licensing terms are preferred?
The software projects we studied involved software released
under open-source licenses that are permissive in terms of reuse,
most allowing re-use for commercial purposes. Use of an open-
source license per se was not a distinguishing factor. The many
open-source software packages available from SourceForge [11,
12] demonstrate that an open-source license does not
automatically mean success. And interestingly, some
representatives of successfully sustained projects argued against
open source as a basic principle for sustained CI software. In
particular, interviewed representatives of some projects described
the importance of keeping some core components of a distributed
cyberinfrastructure software package held under some other sort
of license as a way to ensure the overall sustainability of a
software project. For example, the core software that operates
tools available from globus.org is not open source, even though
the endpoint software is. Similarly, the R project encompasses
software such as R Studio, which is licensed, not open source
[13].

3.2.2 What administrative structures, governance
processes, and operational infrastructure enable
software to be sustainable in the long term?
The strongest signal from all our data was that strong, committed,
visionary leadership is central to the development of sustained
software initiatives. A common characteristic of the projects we
studied was the presence of a trusted cohort of operational
leadership supporting the vision of one or a small group of project
leaders. A geographically centralized core leadership team was
another common characteristic.

66

Table 2. Case studies – governance & user information

Project Governance # Users Annual user
meeting?

Primarily end user applications
VTK, ITK,
CMake,
ParaView
(Kitware)

Company leads, with
stakeholder and advisory
committee input on the
four products

>100,000 Yes

R project Foundation with
governing board, hosted
b i i

>1,000,000 Yes

Galaxy Two PIs as leads (one
biologist, one computer
scientist)

30,000 Yes

LAPACK 3-person mgmt. team –
PI and Co-PIs

Tens of
thousands

Yes

Unidata Director with strategic
advisory committee and
user committee

55,000 Yes

Primarily middleware (may deliver end-user applications)

HUBzero Foundation with board
oversees; CEO provides
operational leadership

>1,000,000 Yes

Kuali Foundation with
governing board

> 140
higher ed

institutions

Yes

Globus
Online

University of Chicago
owns non-profit company
led by PI, with advisory

> 14,000
registered

users

Yes

HTCondor Principal Investigator,
with input from key
stakeholders

> 100,000 Yes

Leaders of well-sustained projects strongly preferred a permissive
open-source license, but at the same time wanted to control
official code releases. The community view of any software
product depends on how well it functions. Project leaders who
control the official code release are adamant that their software,
and thus reputation and future funding success, will not be
hindered by badly functioning code. (A permissive open-source
license means that if bifurcations occur in community interests or
among software stakeholders, a code tree can be forked and
multiple interests pursued, as has been the case with BLAST [14].

All projects studied have access to good facilities for testing
software, high-quality web pages, and high-quality online
documentation or help, including web-based self-help. Many
provided a mechanism for web-based, community-mediated
assistance. This was a factor that was common across software
that can be viewed as end-user software or software that provides
frameworks accessed directly by end-users – e.g., Kitware
products, R, Galaxy, LAPACK, and Unidata, as well as more
middleware-oriented software.

3.2.3 What community engagement activities factor
into the software’s success?
Very proactive plans for engagement within the community of
software producers and software users stood out as a strong
feature of all software projects we studied. Three factors stood out
in particular across most or all of the software projects we studied
in depth:

 Developers engaged with users. A centralized
development team with regular contact with users and

leadership was an essential in well-sustained projects.
Developers were integrated into support mechanisms,
responding to help-desk inquiries; monitoring and
participating in listserv, wiki, or blog discussions; and
presenting workshops or training classes.

 Domain experts engaged with developers. Software
initiatives that pair subject-matter (domain) and
technological and engineering expertise have an
increased probability of broad adoption and
sustainability. They are more agile in adapting to
changing domain needs, technologies, and trends, and
their robust yet flexible products can be expanded or
modified, and possibly adopted outside the original
project or domain.

 Conferences or user meetings. All projects we studied
in depth hold an annual conference or user meeting and
other regular systematic opportunities for interaction
between the software producers and the user
community. These interactions among project leaders,
developers, and users seem important to the continuing
evolution of software to meet user needs.

Conferences and user meetings seem to be particularly important
for software that has a strong end-user component, and that is
focused on end-users, such as R and Galaxy.

3.2.4 What financial models provide for long-term
sustainability and well-supported infrastructure?
The leaders of most projects we studied benefitted from some
amount of NSF funding. They see NSF investments as essential in
“critical-path” scientific software. These leaders particularly
emphasized the value of NSF funding for the utilities, end-user
applications, and/or middleware essential to research, discovery,
and innovation as a key component of the national scientific
cyberinfrastructure. They also pointed out that much CI software
has a lifecycle many times longer than that of the individual
hardware systems on which the software runs – an observation
also made recently by Katz and Proctor [5]. Software project
leaders we interviewed generally agreed that it should be viewed
and funded as “infrastructure,” as critical to research, discovery,
and innovation as the more visible NSF investments in
supercomputers.

The sustainability plans for Globus Online, HUBzero, and
HTCondor all stem in part from use levels in the hundreds of
thousands of users. Globus Online and HUBzero have found ways
to turn utilization into cash flow. Several of the projects, such as
HTCondor and Globus Online, weave together funding from
multiple federal agencies as part of their sustainability strategy.
Galaxy has fewer users than some of the other projects studied.
However, the needs it meets and level of adoption by the scientific
community have generated funding and allowed for sustained
growth in its capabilities and user base.

Kitware is singular among the projects we studied. This novel
public/private partnership stands out for the extent to which a
private-sector company fosters the sustainability of open-source
software. The partnership depends so heavily on the expertise of
the private company leaders that it seems not easily replicable.
However, the idea of a company started with an SBIR (Small
Business Innovation Research) grant award, and operating largely
as a government contractor, seems efficient for the Federal
Government and useful for the software developers and
communities served.

67

Unidata was also distinctive among the projects we studied in
having a sustainability strategy based on ongoing NSF funding.
For Unidata this has been and likely can remain a viable financial
strategy because their core value proposition is the distribution of
data and tools to analyze those data – and the data are critical to
science and national civil security. The atmospheric data and tools
to analyze those data are essential to many areas of science
supported by the NSF. These data are central to our understanding
of atmospheric processes and the environment in general. They
are also very important in disaster prediction and response related
to severe weather conditions.

Kuali was founded with a grant from a private foundation, and has
never received direct NSF funding. With its focus on university
financial and business processes, it is an outlier in our study. What
is notable is that in the face of a significant shared challenge – the
cost of commercial enterprise software – universities and colleges
were able to band together and create commercial-quality
software for highly-regulated enterprise activities. Indiana
University is a participant in the Kuali project. As of October
2013, Kuali had saved Indiana University some $20 million [15].

3.3 Recent Changes in Software Projects
Since we completed these case studies there have been interesting
adaptations in the business models of two of the projects we
studied – Globus Online and Kuali. Globus Online is pursuing a
model that may prove very interesting: The Internet2 NET+
initiative, described as follows [16]:

Through Internet2 NET+, members collectively identify
and vet community and industry cloud solutions that are
(or could be) effective in meeting campus challenges, and
have the potential to scale to benefit all member
institutions’ teaching, learning and research needs.
…Those services that pass the rigorous evaluation are
made available to all member institutions. … and
aggregating the demand of the Internet2 membership
provides the best possible standard pricing and terms.

NET+ represents a fundamental shift in supporting activities of
the US research community. In the past, the NSF often paid
institutions to offer services to the US research community. In the
NET+ model, the US research community pays directly for
services offered to support its activities. As need for
computational resources expands, and the NSF budget expands
little if at all, the NET+ model may benefit the US research
community and US global competitiveness. One obstacle to
adopting NET+ tools is that most services require InCommon
membership, a hindrance for smaller schools. So far, Globus
Online remains in the “service validation” phase of Internet2
NET+.

Kuali has completely changed its business model since the initial
case studies were completed. Recognizing deficiencies in its
service model and in its ability to sustain itself in the long term,
the Kuali Foundation in summer 2014 created and invested
heavily in a new and completely independent for-profit,
professional open-source company, KualiCo. The Kuali
Foundation retains majority control of the new company, and is
the company’s largest investor. It maintains significant oversight
of how the company evolves, and ensures that it maintains its
focus on higher education needs and earns profits in a way
congruent with higher education ideals. The Kuali Foundation has
the right to designate a director on the KualiCo Board of Directors
and has an “exceptional” veto right to prevent the sale of the
company, an IPO of the company, or a change to the open-source

license agreement. This was designed to move Kuali from a
provider of products serving only a handful of institutions to an
entity that serves a full suite of products (including financial,
human resources, student information, research, and library
systems for higher education) for a large number of US
universities and colleges, thus creating a more sustainable
financial model with development costs distributed more evenly
across more institutions. A portion of KualiCo’s profits will be
returned to the Kuali Foundation, which will now turn some of its
resources to exploring other unmet needs in the higher education
market sector. In this regard, Kuali is maintaining higher
education control and open-source licenses, but trying to capture a
larger market share via a commercial entity. Kuali is an outlier
among the software products we studied because it began without
NSF funding, and because its business model is based largely on
US universities’ desire to avoid the cost of commercially-
developed solutions for mission-critical activities such as human
resources and grants management.

3.4 Comparison with Earlier Research on
Open-source Software
There have been a number of analyses of open-source software
methodologies and economies, including books by Eric Raymond
[17] and compendia of research such as [18]. Major open source
projects are described online, e.g.: the Open Source Initiative
(OSI) [19] and the Apache Foundation [20]. Our work looks at a
particular segment of the open-source community –
cyberinfrastructure software with an emphasis on projects that
have benefitted from NSF funding. We do not believe that
anything we have discovered contradicts other current research on
best practices for creation and sustainability of open-source
software. All projects we studied have some sensible form of
open-source or community license, use good coding practices, and
are coded in modern software languages. Some have lasted long
enough to have undergone a complete rewrite. Furthermore, our
characterization of licensing and governance models, while not
identical, is generally consistent with that of Katz and Proctor [5].

Within the niche of software funded in part by the NSF or used by
NSF-funded researchers, we have identified characteristics that
several well-sustained projects have in common:

 A utility and/or flexibility of use sufficiently broad that the
software remains relevant over many years

 A strong core of committed leaders, most often co-located
in one geographic area

 Control over the definitive software versions and effective
test and build processes

 Deep and effective engagement with users
 Use of business models that evolve over time.

There is some indication that governance models may also evolve
over time. For example, R started out as a project of two faculty
members, and is now operated by a strong community led by a
board of directors. While we did not do an in-depth case study of
iRods (Integrated Rule-Oriented Data System) [21] we note with
respect and admiration that Reagan Moore devoted a career to
developing this software, which now seems to have such a solid
group of leaders and strong user base that it will continue to be
widely used long after Dr. Moore’s retirement.

Comparing lists of characteristics with software projects in which
the authors were directly involved, and that were not successfully
sustained, the most common distinction was a narrow scope of
utility. We and our collaborators have created software that was
useful for a while, and then came to an end because the project

68

leaders or funding agencies found the software no longer worthy
of investment of time, money, or both. That said, even when
individual project leaders lose interest and/or funding and stop
leading a particular software project, it is possible with open-
source software for the core functionality to be picked up and
maintained by others. Such is the case with one particular set of
functionalities that were successfully maintained over decades,
but under different project leaders and with different software
names. The function in question is maximum likelihood inference
of phylogenetic trees, sustained over time by four different project
leaders. The first package in this family tree was Felsenstein’s
DNAml [22] through two versions of a package called
fastDNAml – projects led by Olsen [23] and then Stewart [24].
This same functionality is now available – along with many new
additions and optimizations – in Stamatakis’ package RAxML
[25]. This basic functionality was sufficiently useful that the core
functionality of maximum likelihood analysis was maintained and
expanded over more than 30 years, even as particular leaders
picked up work on the tool, and then went on to other things as
their interests changed.

4. BENEFITS OF WELL-SUSTAINED
SOFTWARE
In this section we address some of the benefits of well-sustained
cyberinfrastructure to the scientific communities supported by the
US National Science Foundation and US taxpayers — the
ultimate source of funds for government-supported research.

4.1 Open-source Software & Scientific
Reproducibility
Multiple articles, including Stodden [26] stress the importance of
reproducibility in research that makes use of scientific computing
tools. Use of open-source software enhances the chances that a
given analysis or cyberinfrastructure experiment can be replicated.
A former colleague, the late Richard Repasky, made a tar ball (tar
archive, or archive of files made with the Unix tar utility [27])
each time he completed a research project. It contained the
distribution of Linux, R, and all software in the computing
environment of the system he used for the analysis; the make
scripts used to install the system; his data sets; his R scripts; and
the output of his analyses. Theoretically, as long as someone has
access to enough software to unpack a tar archive and an x86
emulator, it should be possible to replicate and expand the
analysis of that data on into the future. Such an analysis has a
straightforward path to reproducibility in, say, 50 years. How one
finds a valid license key for today’s version of commercial
software such as SPSS or SAS in 50 years is less certain. This
example is focused on R – primarily an end-user application – but
the same principle holds true for scientific libraries and LAPACK
as compared to NAG, and for the ability to replicate any type of
computer analysis done with open-source software.

4.2 Well-sustained Software and
Cybersecurity
The scientific / engineering community strives to produce perfect
software that functions flawlessly. If the software is used in
certain contexts, these flaws become vulnerabilities eroding the
cybersecurity of the systems in which they are deployed. These
flaws pose a barrier to sustainability of developing and releasing
corrective patches. Last year’s examples, e.g. Heartbleed and
Shellshock, show that even in software that has been around for a
number of years, new vulnerabilities may still be found. In an
environment of changing cybersecurity threats, sustainability

becomes complicated. It requires clear policies on what software
is supported and will be patched, technical processes for
producing and distributing patches, and processes for
communicating to the community of software users.

Efforts are underway to reduce the frequency of security flaws in
open-source cyberinfrastructure software by integrating
continuous software testing with the software development
process, so-called continuous integration or, when addressing
vulnerabilities, continuous assurance. Examples include Jenkins
[28] and BaTLab [29] for continuous integration, and the
Software Assurance Marketplace (SWAMP) [30] for continuous
assurance. A strong argument can be made for continuous and
ongoing investment in open-source cyberinfrastructure so as to
enable the ongoing maintenance of expertise in the code base and
enable updates and enhancements to ensure security of software in
the face of ever-changing threats and attacks on software.

4.3 Examples of Well-sustained
Cyberinfrastructure & Large-scale,
Distributed CI Implementations: OSG and
XSEDE
The Open Science Grid [31] operates the largest distributed high-
throughput computing (HTC) facility in the world, based on
reusing and / or adapting existing open-source software [32,33].
OSG was immensely successful in its initial purpose of analyzing
data from the Large Hadron Collider. OSG has packaged
HTCondor and associated software such that many campuses
could add their own resources to the Open Science Grid, or create
their own Virtual Organizations that operate within the Open
Science Grid. An example of the OSG scale of resources is the
fact that during a 12-month period prior to the submission of this
paper, it completed more than 200,000,000 computer jobs,
consuming more than 800,000,000 CPU hours. OSG will create
its own software when needed, but as a matter of organizational
strategy, does that only when necessary.

XSEDE, the eXtreme Science and Engineering Discovery
Environment [34] is a major NSF-funded organization supporting
the NSF XD (eXtreme Digital) program cyberinfrastructure
resources and one of the largest US distributed cyberinfrastructure
facilities. Through digital services and support it supports more
than a dozen supercomputers, storage systems, and advanced
visualization systems throughout the US [35-37]. XSEDE focuses
on hardening and implementing pre-existing software, and does
little software implementation of its own. In other words, an
aggregate investment by the NSF of well over $100M in CI
system deployment used by the US research community is
operated with software that comprises largely noncommercial,
open-source software. The importance of maintaining software
that is integral and essential to the operation of such large
distributed cyberinfrastructure efforts is self-evident.

4.4 Well-sustained CI Software and Research
Education
For decades, researchers carefully managed laboratory notebooks.
Today, knowing how to use research software is as basic to
research as good laboratory data management practices. The
ability to conduct good software management practices is a
prerequisite for developing sustained software and making
research replicable. Well-sustained open-source software provides
students with resources for learning the craft of research using the
same software used by leading US scientists. It enables such
programs as the Software Carpentry project [38], which teaches

69

basic Unix and software engineering tool skills. With a decreased
emphasis on such material in computer science classes, such
programs create otherwise hard-to-find and important training
tools for the scientists and engineers of tomorrow.

4.5 But is it Transformative?
In an effort to encourage a focus on cutting-edge ideas, the NSF
review criteria for grant proposal solicitations often include the
potential transformative impact of the proposed research. The
NSF explains “transformative research” as follows:
“Transformative research involves ideas, discoveries, or tools that
radically change our understanding of an important existing
scientific or engineering concept or educational practice or leads
to the creation of a new paradigm or field of science, engineering,
or education” [39].

That a software package works well one year, and does so three
years later, is hardly transformative by this definition. The NSF,
however, explains further: “Other potentially transformative
research proposals may request support for key incremental or
threshold advances (e.g., new methods or analytical techniques)
that, if successful, could put a discipline on a new scientific
trajectory, provide tools that allow unprecedented insights, or
radically accelerate the rate of data collection.” Viewed in this
light, sustained cyberinfrastructure can enable transformative
research. For example, verifying of the existence of the Higgs
boson is unquestionably a transformative research outcome.
HTCondor and the Open Science Grid enabled the data analysis
that confirmed the existence of the Higgs boson.

5. CONCLUSIONS
We analyzed software funded by the National Science Foundation
or used by researchers funded by the NSF, using largely social
science approaches (surveys and case studies).

A survey sent to NSF-funded principal investigators about
software that was sustained revealed several interesting pieces of
useful information. First, the word “cyberinfrastructure” is still
interpreted differently within the computational science
community than by the community of scientists and engineers
supported by the NSF as a whole. In a survey on
cyberinfrastructure software of NSF-funded PIs across all NSF-
supported areas, a very large number of responses included
software that the computational science community would more
likely consider “end-user applications” than “cyberinfrastructure.”
Community adoption and use of the term cyberinfrastructure
remains a work in progress [10].

The survey of NSF PIs indicated that they select software first on
the basis of functionality. The next most important factors, in
order of importance, indicated by NSF PIs were:

 Total cost of ownership
 Long-term availability
 Reliability/maturity
 Initial purchase cost

Even though software being open source per se was not one of the
five most important factors in this survey, these criteria are
addressed or met by high-quality, open-source software. Among
producers there is a strong interest in open-source software for the
sake of allowing community-driven processes and because of NSF
guidelines that often specify that software developed with NSF
funds be open source. An interesting variant on this opinion came
from a small number of software projects we studied that had
either “commercial / open-source” variants of the software, or
open-source software endpoints as part of a distributed computing

system, and maintained rights and control over central organizing
software. This latter approach is taken by the University of
Chicago Computation Institute with Globus Online tools. This is
partly because of the need to maintain control over the code to
ensure that the core management portion of the online services
functions properly, and partly related to funding and sustainability
strategies.

Among the software projects we studied in depth, three factors
stood out as distinctive: governance and leadership models,
control over the definitive code tree, and community processes.
The governance and leadership of most of the successful projects
we studied can be described as having a strong core of committed
leaders that are geographically co-located. This strong leadership
and control over the definitive code tree were common across
almost all of the projects we studied that had been well sustained
over time. The third factor that stood out among highly successful
projects was a systematic mechanism for regular, ongoing
interaction between software creators and their user community –
including an annual user meeting. Project leaders stated that user
meetings in particular enable sharing of expertise, and enable
leaders of software projects to understand what new interests and
challenges are perceived by their user community.

We found overall that software projects persist in part because
they meet an important need, and in part because they are led by a
group of leaders who are deeply committed to the continuity of
those projects. This dedication to persistence has in some cases
led to experimentation and evolution of funding models over time.
The Globus Project, for example, has experimented with three
different funding models since its inception.

Globus Online and HUBzero demonstrate a shift in funding
strategies for delivering services to the national research
community. In the past, the NSF or other federal funding agencies
have paid an institution (or group of institutions) to deliver
services to the national research community without direct cost to
the community for using those services. The NSF supercomputer
centers of the ’80s and ’90s, the TeraGrid, and XSEDE are
examples. Globus Online and HUBzero are experimenting with
models that charge for use of services (though not full
chargeback). This reflects a notable and qualitative change in
provisioning services to the national community.

There are important scientific and societal benefits to sustaining
cyberinfrastructure software projects such as the Open Science
Grid and XSEDE. Each has supported research that resulted in a
Nobel Prize – criteria for which include changing scientific
paradigms and discoveries of great importance to mankind. The
Open Science Grid and XSEDE have supported hundreds of other
research projects with demonstrated or potential societal benefit,
and great inherent scientific value. Sustained cyberinfrastructure
software projects are essential to the success of distributed
cyberinfrastructure systems. The two largest open (nonclassified)
research distributed CI systems in the US – XSEDE and OSG –
are dependent upon sustained, open-source software, and could
not operate without it. Sustained, open-source software is critical
to the cybersecurity of distributed CI systems and to the
reproducibility of scientific and engineering analyses.

There are no obvious blueprints for project leaders to follow in
enabling a software project to be well sustained over time. Our
findings are that open-source licenses, good software engineering
practices, and strong testing practices and quality control are
necessary but not sufficient conditions for cyberinfrastructure
projects to be sustained over time. One common distinguishing
factor – dedicated, committed, and visionary leadership – echoes

70

the traditional wisdom among venture capital firms: that the
leadership of an endeavor is more important than anything else. In
some cases particularly successful projects have grown from
leadership of one or two scientists to be led by a larger group or
board of directors.

Strong software quality control and control of the definitive
software distribution were also consistent among the well
sustained software projects we studied. Another factor that stood
out as common to the successful projects we studied was the
importance of annual user meetings or conferences. In addition,
several of the sustained software projects we studied had a
financial model based on a hybrid of grant award funding and
commercial services.

There is no doubt about the importance of sustaining
cyberinfrastructure software projects to the development and
operation of distributed cyberinfrastructure systems, particularly
US NSF-funded cyberinfrastructure. The model “federal funding
agencies support it year after year” is untenable in general in the
foreseeable future. This approach is unsustainable given the rise in
demand for cyberinfrastructure software brought about by the
growth in creation of digital data combined with the generally
stagnant levels of federal support for science and engineering. The
growth in cyber attacks makes well-managed software all the
more critical to US research endeavors.

Our study focused on a particular segment of the software
development community, where most software development
efforts are wholly or largely open source and the user community
is largely researchers funded by or doing work relevant to the
mission of the US National Science Foundation. Our findings are
generally consistent with earlier studies of open-source software
and add detail as regards this particular community. We hope that
these findings are useful to those who develop and use
cyberinfrastructure, and that this paper contributes to community
understanding of the strategies and tactics required to create an
effective distributed cyberinfrastructure supporting scientific
innovation and discovery.

6. ACKNOWLEDGMENTS
This research is based upon work supported in part by the
National Science Foundation under Award No. 1147606 and
builds on work supported by NSF awards 1002526 & 0829462.
This work was also supported by the Indiana University Pervasive
Technology Institute, which was initiated with major funding
from the Lilly Endowment, Inc. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the National Science Foundation (NSF) or other supporting
organizations. We thank the many personnel affiliated with the
projects we studied for spending hours with us as part of our case
studies. Thanks to anonymous reviewers for very helpful and
insightful comments that improved this paper. Thanks to Jan
Holloway and Jeremy Fischer for editorial assistance. Thanks to
Scott Michael for assistance with statistical analyses.

7. REFERENCES
1. Dreher, P., V. Agarwala, S. Ahalt, G. Almes, S. Fratkin, T.

Hauser, J. Odegard, J. Pepin, and C.A. Stewart. 2009.
Developing a Coherent Cyberinfrastructure from Local
Campuses to National Facilities: Challenges and Strategies.
Available from: http://hdl.handle.net/2022/5122.

2. NSF Advisory Committee for Cyberinfrastructure Task
Force on Campus Bridging. 2011. Final Report. Available

from:
http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_Ca
mpusBridging.pdf.

3. NASA Earth Science Data Systems - Software Reuse
Working Group. 2010. Reuse Readiness Levels (RRLs),
Version 1.0. Available from:
https://earthdata.nasa.gov/sites/default/files/esdswg/reuse/Re
sources/rrls/RRLs_v1.0.pdf

4. Chang, V., H. Mills, and S. Newhouse. 2007. From Open
Source to long-term sustainability: Review of Business
Models and Case studies. All Hands Meeting 2007, OMII-
UK Workshop 2007; Available from:
http://eprints.soton.ac.uk/263925/.

5. Katz, D.S. and D. Proctor. 2014. A Framework for
Discussing e-Research Infrastructure Sustainability.
Available from: http://dx.doi.org/10.5334/jors.av.

6. National Science Foundation. 2015. Award Search.
Available from: http://www.nsf.gov/awardsearch/.

7. Wernert, J., E Wernert, J. Fischer, H. Terhune, A. Bowers, T.
Miller, C.A. Stewart. 2014. Best Practices and Models for
Sustainability for Robust Cyberinfrastructure Software -
Survey Dataset and Analyses. Indiana University. Available
from http://hdl.handle.net/2022/17312

8. University of Chicago Computation Institute. 2015. Home
Page. Available from: https://www.ci.uchicago.edu/.

9. Globus Project. 2015. Home Page. Available from:
https://www.globus.org/.

10. Stewart, C.A., Richard Knepper, Matthew R. Link, Marlon
Pierce, Eric Wernert, Nancy Wilkins-Diehr. 2014.
Cyberinfrastructure, Science Gateways, Campus Bridging,
and Cloud Computing. In: Encyclopedia of Information
Science and Technology, Third Edition (10 Volumes) 2014;
pp 6562-6572]. Available from:
http://hdl.handle.net/2022/18608.

11. Slashdot Media. 2015. Home page. Available from:
http://slashdotmedia.com/.

12. SourceForge. 2015. Home page. Available from:
http://sourceforge.net/.

13. R Studio. 2015. R Studio Pricing. Available from:
http://www.rstudio.com/pricing/.

14. National Center for Biotechnology Information. 2015.
BLAST® Basic Alignment Search Tool. Available from:
http://blast.ncbi.nlm.nih.gov/Blast.cgi.

15. Rivard, R. 2014. Kuali Tries to Compete
https://www.insidehighered.com/news/2013/10/15/colleges-
prepare-major-software-upgrades-kuali-tries-woo-them-
corporate-vendors

16. Internet2. 2015. Internet2 NET+. Available from:
http://www.internet2.edu/netplus/.

17. Raymond, E.S. 2010. The Cathedral and the Bazaar.
http://www.catb.org/esr/writings/cathedral-bazaar/.

18. Stewart, C.A., Knepper, R. D., Link, M. R., Pierce, M.,
Wernert, E. A., Wilkins-Diehr, N. 2014. Cyberinfrastructure,
Science Gateways, Campus Bridging, and Cloud Computing.
In: Encyclopedia of Information Science and Technology,
Third Edition. IGI Global. Hershey. PA. Available from:
http://hdl.handle.net/2022/18608

19. Open Source Initiative. 2015. Home page. Available from:
http://www.opensource.org.

71

20. Apache Foundation. 2015. Home Page. Available from:
https://www.apache.org.

21. iRODS. 2015. Home page. Available from:
https://www.irods.org/.

22. Felsenstein, J., Evolutionary trees from DNA sequences: a
maximum likelihood approach. J Mol Evol, 1981. 17(6): p.
368-76.

23. Olsen, G. J., H. Matsuda, R. Hagstrom, and R. Overbeek.
1994. fastDNAml: A tool for construction of phylogenetic
trees of DNA sequences using maximum likelihood. Comput.
Appl. Biosci. 10: 41-48.

24. Stewart, C.A., D. Hart, D. K. Berry, G. J. Olsen, E. Wernert,
W. Fischer. 2001. Parallel implementation and performance
of fastDNAml - a program for maximum likelihood
phylogenetic inference. Proceedings of SC2001, Denver, CO,
November 2001.
http://portal.acm.org/citation.cfm?id=582054

25. Stamatakis, A. 2014. RAxML Version 8: A tool for
Phylogenetic Analysis and Post-Analysis of Large
Phylogenies. Bioinformatics (open access). Available from:
doi:10.1093/bioinformatics/btu033.

26. Stodden, V. 2012. Reproducible research for scientific
computing: Tools and strategies for changing the culture.
Computing in Science & Engineering, vol.14, no. 4, pp. 13-
17, July/August 2012, doi:10.1109/MCSE.2012.38.

27. The Open Group. Tar File Archiver. Available from:
http://pubs.opengroup.org/onlinepubs/7990989799/xcu/tar.ht
ml.

28. Jenkins. Home Page. Available from: http://jenkins-ci.org/.

29. BaTLab. 2015. Home Page. Available from:
https://www.batlab.org/.

30. SWAMP (Software Assurance Marketplace). 2015. Home
page. Available from: https://continuousassurance.org/.

31. Open Science Grid. 2015. Home page. Available from:
http://www.opensciencegrid.org/.

32. Pordes, R. 2008. Challenges Facing Production Grids. In:
High Performance Computing and Grids in Action.
Advances in Parallel Computing, 16th ed. IOS Press:
Amsterdam. p. 506-521.

33. Pordes, R., W. Kramer, M. Livny, P. Avery, K. Blackburn,
T. Wenaus, F. Würthwein, I. Foster, R. Gardner, M. Wilde,
A. Blatecky, J. McGee, R. Quick. 2007. The Open Science
Grid--Its Status and Implementation Architecture. In:
International Conference on Computing in High Energy and
Nuclear Physics (CHEP 07). Available from:
http://tinyurl.com/pun3vbj

34. XSEDE. 2015. Home page. Available from:
https://www.xsede.org/.

35. XSEDE. 2015. XSEDE Resources Overview. Available from:
https://www.xsede.org/web/guest/resources.

36. Towns, J., T.Cockerill, M. Dahan, I. Foster, K. Gaither, A.
Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G.D.
Peterson, R. Roskies, J.R. Scott, N. Wilkins-Diehr, XSEDE:
Accelerating Scientific Discovery. Computing in Science &
Engineering. 16:62-74. Available from:
doi:10.1109/MCSE.2014.80

37. XSEDE. 2015.What We Do. Available from:
https://www.xsede.org/what-we-do.

38. Software Carpentry. Home page. Available from:
http://software-carpentry.org/.

39. National Science Foundation. Characteristics of Potentially
Transformative Research. 2010 31 Jan 2011]; Available
from: http://tinyurl.com/q9s6tln.

All web citations active as of 20 April 2015.

8. Postal Address of Authors
The postal address of all authors except Von Welch is: Indiana
University, 2709 E. 10th Street, Bloomington, IN 47408. The
Postal address for Welch is: Indiana University, 2719 E 10th
Street, Bloomington, IN 47408.

72

