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Abstract. Using Traizet’s regeneration method, we prove the existence of many new 3-dimensional
families of embedded, doubly periodic minimal surfaces. All these families have a foliation of R

3

by vertical planes as a limit. In the quotient, these limits can be realized conformally as noded Rie-
mann surfaces, whose components are copies of C∗ with finitely many nodes. We derive the balance
equations for the location of the nodes and exhibit solutions that allow for surfaces of arbitrarily large
genus and number of ends in the quotient.

1. Introduction. A minimal surface M is called doubly periodic if it is
invariant under two linearly independent orientation-preserving translations in eu-
clidean space, which we can assume to be horizontal. The first such example was
discovered by Scherk [11].

We denote the 2-dimensional lattice generated by the maximal group of such
translations by Λ. If the quotient M/Λ is complete, properly embedded, and of
finite topology, Meeks and Rosenberg [8] have shown that the quotient has a finite
number of annular top and bottom ends which are asymptotic to flat annuli.

There are two cases to consider: either the top and bottom ends are parallel,
or not. By results of Hauswirth and Traizet [3], a non-degenerate such surface is
a smooth point of a moduli space of dimensions 1 in the non-parallel and 3 in the
parallel case.

Moreover, Meeks and Rosenberg [8] have shown that in the parallel case, the
number of top and bottom ends is equal to the same even number.

Lazard-Holly and Meeks [6] have shown that the doubly periodic Scherk sur-
faces are the only embedded doubly periodic surfaces of genus 0. In particular, the
case of parallel ends does not occur for this genus.

For genus 1, there is an example of Karcher with orthogonal ends as well as
a 3-dimensional family of such surfaces with parallel ends by Karcher [5] and
Meeks-Rosenberg [7]. Moreover, Pérez, Rodriguez and Traizet [9] have shown
that any doubly periodic minimal surface of genus one with parallel ends belongs
to this family.

Douglas [2] and independently Baginsky and Batista [1] have shown that the
Karcher example can be deformed to a 1-parameter family by changing the angle
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Figure 1. Scherk’s surface and a Karcher-Meeks-Rosenberg surface.

between the ends. The family limits in the translation invariant helicoid with han-
dles [4, 13]

For higher genus, only a few examples and families have been known so far:
In the non-parallel case, Weber and Wolf [14] have constructed examples of

arbitrary genus, generalizing Karcher’s example of genus 1.
Wei found a 1-parameter family of examples of genus 2 with parallel ends [15].

This family has been generalized considerably by Rossman, Thayer and Wohlge-
muth [10] to allow for more ends. Rossman, Thayer, and Wohlgemuth did also
construct an example with genus 3.

Figure 2. Genus two Wei surface and genus two RTW surface.

Our goal is to prove:

THEOREM 1.1. For any genus g ≥ 1 and any even number N ≥ 2, there are
3-dimensional families of complete, embedded, doubly periodic minimal surfaces
with parallel ends in euclidean space of genus g and N top and N bottom ends in
the quotient by the maximal group of translations.
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Thus all topological types permitted by the results of Meeks and Rosenberg
actually occur.

Figure 3 shows two translational copies in each direction of an example of
genus 7.

Figure 3. Two views of a genus 7 surface.

The methods used in this paper are an adaptation of Traizet’s techniques de-
veloped in [12]. There, Traizet constructs singly periodic minimal surfaces akin
to Rieman’s examples which limit in a foliation of euclidean space by horizontal
planes. Near the limit, the surfaces look like a collection of parallel planes joined
by catenoidal necks. In the limit, these necks develop into nodes so that the quotient
surface becomes a noded Riemann surface. The components of the smooth part are
punctured spheres, where the punctures have to satisfy Traizet’s balance equations.
Vice versa, given a finite collection of punctured spheres where the punctures sat-
isfy the balance equations and are non-degenerate in a suitable sense, Traizet con-
structs a moduli space of Riemann surfaces which forms an open neighborhood of
the noded surface. On these Rieman surfaces, he constructs Weierstrass data and
solves the period problem using the implicit function theorem.

We will closely follow Traizet’s paper, indicating all differences.
The paper is organized as follows: in Section 2, we state the results. In Section

3, we give examples. The main theorem is proven in sections 4 through 8. We
prove the embeddedness of our surfaces and show they satisfy certain properties in
Section 8.

Acknowledgment. We would like to thank the referee for many helpful com-
ments.
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2. Results. In this section, we will state precise formulations of our main
theorems and introduce the relevant notation.

2.1. Description of the surfaces and its properties. Our goal is to con-
struct three-dimensional families of embedded doubly periodic minimal surfaces
M of arbitrary genus and with an even number N pairs of parallel annular ends in
the quotient. The surfaces will depend on a small real parameter t (produced by the
implicit function theorem) and a complex parameter T explained below.

In contrast to the introduction, we will choose the ends to be horizontal: This
allows us to follow the notation and set-up of [12] more closely.

Denote the maximal group of orientation preserving translations of M by Λ.
This group will contain a cyclic subgroup of horizontal translations. Denote one of
its generators by T .

By rotating and scaling the surface, we can assume that T = (0,2π,0). We will
identify the horizontal (x1,x2)-plane with the complex plane C using z = x1+ ix2.
Note that the horizontal planar ends become flat annular ends in the quotient. Label
a non-horizontal generator of Λ by Tt. For t→ 0, Tt will converge to a horizontal
vector T̄ , where T is an arbitrary complex parameter. The conjugation is due to
orientation issues that will become clear later on.

Also, order the ends by height and label them 0k and ∞k, with k ∈ Z. Most of
our work takes place on the quotient surfaces. There, the ends will be labeled 0k
and ∞k as well, with k = 1, . . . ,N for some even integer N .

Our surfaces will have two additional properties.

Property 2.1. The quotient surface M̃t = Mt/Λ is a union of the following
types of domains: for each pair of ends Ek = {0k,∞k}, k = 1, . . . ,N , there is an
unbounded domain Ek,t ⊂ M̃t containing the ends 0k and ∞k that is a graph over
a domain in C/(2πiZ) with nk+nk−1 topological disks removed.

M̃t − (Ek,t ∪Ek+1,t) consists of nk bounded annular components Ck,i,t on
which the Gauss map is one-to-one, called catenoidal necks.

CK+1,1,t

Ck,1,t Ck,2,t

Ck-1,1,t

Ek+1,t

Ek,t

Figure 4. Annular regions and catenoid-shaped necks.
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Property 2.2. There is a non-horizontal period Tt such that as t→ 0:
(1) The nonhorizontal period Tt converges to a (possibly 0) horizontal vector

T̄ .
(2) The surfaces limit in a foliation of R3 by parallel planes.
(3) The necksize of each annular component Ck,i,t shrinks to 0, and the center

of the neck Ck,i,t converges to a point p̃k,i.
(4) The underlying Riemann surfaces limit in a noded Riemann surface con-

sisting of N copies of C/(2πiZ), with nodes at points p̃k,i.

Note that when we draw a model of M̃t, the Ek,t components should have
the shape of an infinite annulus. As this is impossible to draw, we model the Ek,t
components with infinite flat cylinders.

After rotating the KMR and Wei’s surfaces so that the ends are horizontal, the
behavior of both families near one of their limits fits the description given above.

2.2. Forces and balance equations. The location of the nodes p̃k,i intro-
duced above is not arbitrary but governed by a system of algebraic equations. For
convenience, we will identify C/(2πiZ) with C

∗ via the exponential function and
work with the latter. In particular, the nodes p̃k,i from the previous section will be
determined as p̃k,i = log(pk,i).

Consider N copies of C∗, labeled C
∗
k for k = 1, . . . ,N . On each C

∗
k, place nk

points pk,1, . . . ,pk,nk
. Extend this definition of pk,i for any integer k by making it

periodic with respect to a horizontal vector T in the sense that pk+N,i = pk,ie
T for

k = 1, . . . ,N and i = 1, . . . ,nk, with nk+N = nk. The difference between our pk,i
terms and the ones in [12] is that the periodic condition in [12] is given by p̃k+N,i=

p̃k,i+T . This is being consolidated by using the quotient map exp : C �→C
∗. Thus,

when we look at pictures of our surfaces, the nodes are really located at p̃k,i and
are subject to the period vector T .

This set of points must satisfy a balancing condition given in terms of the
following force equations.

Definition 2.1. The force exerted on pk,i by the other points in {pk,i} is defined
by

Fk,i :=
∑

j 	=i

pk,i+pk,j

n2
k

(
pk,i−pk,j

) −
nk+1∑

j=1

pk,i+pk+1,j

2nknk+1
(
pk,i−pk+1,j

)

−
nk−1∑

j=1

pk,i+pk−1,j

2nknk−1
(
pk,i−pk−1,j

) .

Definition 2.2. The configuration {pk,i} is called a balanced configuration if
Fk,i = 0 for k = 1, . . . ,N and i= 1, . . . ,nk.
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Note that while the force equations do not seem to contain the parameter T , it
enters the picture implicitly as the pk,i are assumed to form a T -periodic set.

Definition 2.3. Let m =
∑N

i=1nk and F and p be the vectors in C
m = R

2m

whose components are made up of the Fk,i and pk,i respectively. The balanced
configuration {pk,i} is said to be non-degenerate if the differential of the map p �→
F has rank 2(m−1).

The differential of the map p �→ F cannot have full rank 2m because

N∑

k=1

nk∑

i=1

Fk,i = 0.

This holds whether or not the configuration {pk,i} is balanced.
Observe also that whenever we have a solution p for the balance equations, λp

will also be a solution for any λ ∈ C
∗.

Now, we can state our main result.

THEOREM 2.1. If {pk,i} is a non-degenerate balanced configuration then there
exists a corresponding three-dimensional family of embedded doubly periodic min-
imal surfaces satisfying Properties 2.1 and 2.2, with genus

g = 1+
N∑

k=1

(
nk−1

)
,

and with 2N horizontal ends.

Our Main Theorem 1.1 will follow from this theorem and the non-degeneracy
of the balance configurations of Proposition 3.2.

3. Examples. In this section, we will discuss examples of non-degenerate
balanced configurations.

3.1. Adding handles to Wei’s genus two examples. In all known in-
stances of Traizet’s regeneration technique, the simplest non-trivial configurations
are given as the roots of special polynomials that satisfy a hypergeometric dif-
ferential equation. So far, there is no explanation of this phenomenon, neither a
general understanding of the more complicated solutions of the balance equations.
In the case at hand, the crucial polynomials are

pn(z) =

n∑

k=0

(
n

k

)2

zk.
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They are related to the classical Legendre polynomials Ln(z) by

pn(z) = (1− z)nLn

(
1+ z

1− z

)
,

as can be seen by comparing the differential equations for these polynomials. As
Ln(z) has n distinct roots in the interval (−1,1), our polynomials pn(z) have n

distinct real roots ak < 0.

PROPOSITION 3.1. Let n ∈N and a1,a2, . . . ,an be the roots of the polynomial
pn(z). Then the following configuration is balanced and non-degenerate: N = 2,
n1 = 1, n2 = n, p1,1 = 1, p2,i = ai for i= 1, . . . ,n, and T = 0.

Figure 5. Genus 8 surface. The locations of the six small necks correspond to the roots of
the polynomial p8(z) = z8+64z7+784z6+3136z5+4900z4+3136z3+784z2+64z+1.

Proof. In this case, the balance equations are given by the following equations.

F1,1 =−
n∑

j=1

1+aj

n
(
1−aj

)

F2,i =
∑

j 	=i

ai+aj

n2
(
ai−aj

) +
1+ai

n
(
1−ai

)

Observe first that the polynomials pn satisfy the hypergeometric differential equa-
tion

z(1− z)p′′n(z)+
(
1+(2n−1)z

)
p′n(z)−n2pn(z) = 0.

Furthermore,

pn(z) = znpn(1/z)

Thus, for n = 2k, the roots will be a1, . . . ,ak,1/a1, . . . ,1/ak and for n = 2k+ 1,
the roots will be a1, . . . ,ak,1/a1, . . . ,1/ak,−1. Hence, F1,1 = 0 by symmetry.
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Since pn only has simple zeroes, for each zero ak we get the following equa-
tion.

p′′n(ak) = 2p′n(ak)
∑

j 	=k

1
ak−aj

.

Plugging this into the hypergeometric differential equation for pn, we get that

0 = 2ak(1−ak)
∑

j 	=k

1
ak−aj

+1+(2n−1)ak.

This implies easily that F2,k = 0 for 1 ≤ k ≤ n, and so the given configuration is
balanced ∀n ∈N.

To show that the configuration is non-degenerate, let M be the matrix with
entries

Mi,j =
∂F2,i

∂p2,j
.

Then

Mi,i =
∑

k 	=i

−2ak

n2
(
ai−ak

)2 +
2

n
(
1−ai

)2

and, if i 	= j,

Mi,j =
2ai

n2
(
ai−aj

)2 .

Thus,

∑

i	=j
|Mi,j|=

∑

i	=j

−2ai

n2
(
ai−aj

)2

=
∑

i	=j

−2ai

n2
(
aj−ai

)2

=Mj,j− 2

n
(
1−aj

)2

<Mj,j

for j = 1, . . . ,n. Hence, M is invertible and the differential of F has rank n. Thus,
this configuration is non-degenerate. �

Remark 3.1. In the case n = 1 we obtain a1 = −1. This balance configura-
tion corresponds to the Karcher-Meeks-Rosenberg family [5, 7] of genus 1 doubly
periodic minimal surfaces with parallel ends.



DOUBLY PERIODIC MINIMAL SURFACES BY GLUING 1283

3.2. Combining non-degenerate balanced configurations. The next
proposition requires two new definitions. They are adjustments on similar terms
from [12]. Let F+

k,i be the sum of the forces exerted by the pk+1,j terms on pk,i and
F−k,i be the sum of the forces exerted by the pk−1,j terms on pk,i, i.e.,

F+
k,i =

nk+1∑

j=1

pk,i+pk+1,j

2nknk+1
(
pk,i−pk+1,j

) − (−1)k

2nk

and

F−k,i =
nk−1∑

j=1

pk,i+pk−1,j

2nknk−1
(
pk,i−pk−1,j

) − (−1)k+1

2nk
.

PROPOSITION 3.2. Let pk,i and p′k,i be two balanced configurations. Assume
that:

(1) n1 = n′1 = 1,
(2) p1,1 = p′1,1 = 1,
(3) F+

1,1 = F ′+1,1 	= 0.
Define p′′k,i as follows:

∀k ∈ {1, . . . ,N}, n′′k = nk and p′′k,i = pk,i

∀k ∈ {1, . . . ,N ′}, n′′k+N = n′k and p′′k+N,i = p′k,ie
T

∀k ∈ Z, p′′k+N+N ′,i = p′′k,ie
T+T ′ .

The configuration p′′k,i is periodic with N ′′ =N +N ′ and T ′′ = T +T ′. Then:
(1) The configuration p′′k,i is balanced.
(2) Suppose pk,i and p′k,i are non-degenerate and that T = T ′ = 0. Then p′′k,i

is non-degenerate.

Figure 6. Surface corresponding to non-degenerate balanced configuration with n= 2, and
n′ = 3.
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We can use Proposition 3.2 to inductively construct non-degenerate balanced
configurations for any positive even integer N , with nk = 1 when k is odd. In fact,
pk,1 = 1 when k is odd. When k is even, the pk,i will correspond to the roots of the
polynomial pnk

(z) from Proposition 3.1.

Proof. The proof of part one of this proposition is exactly the same as the proof
of part one of Proposition 3 in [12].

As for the proof of part two, suppose that there is a variation p′′k,i(t) of (not
necessarily balanced) configurations with p′′k,i(0) = p′′k,i and T ′′(t) = 0 such that

d

dt
F
(
p′′(t)

)|t=0 = 0.

By scaling, we can assume that p′′11(t) = p11 = 1. This removes the trivial part
of the kernel of dF . We thus have to show that

d

dt
p′′(t)|t=0 = 0.

Define pk,i(t) = p′′k,i(t) for k = 1, . . . ,N . We make the pk,i(t) periodic by in-
sisting on pk+N,i(t) = pk,i(t) for all k ∈ Z .

Then, for k = 2, . . . ,N ,

d

dt
Fk,i(p(t))|t=0 = 0.

As the sum of all forces is = 0 and n1 = 1, this holds in fact for all k.
Now, pk,i(t) and pk,i are periodic with the same period T = 0 and both sat-

isfy the balance equations (for t = 0). Furthermore, for t = 0, pk,i(0) = pk,i and
p11(0) = p11 = 1. Since pk,i is nondegenerate, it follows that d

dtpk,i(t)|t=0 = 0 and
thus d

dtp
′′
k,i(t)|t=0 = 0 for k = 1, . . . ,N . Similarly, using the non-degeneracy of the

p′k,i one shows that d
dtp
′′
k,i(t)|t=0 = 0 for k = N + 1, . . . ,N +N ′. This establishes

the non-degeneracy of the p′′k,i. �

3.3. Other examples and non-examples.

Example 3.2. There exists a non-degenerate balanced configuration {pk,i}with
N = 2,n1 =n2 = 2, and T = 0. However, the corresponding surface is a scaled ver-
sion of the surface corresponding to the balanced configuration with N = 2,n1 =

n2 = 1 and T = 0. Instead of a horizontal period of 2πi, these surfaces have a
horizontal period of πi.

Example 3.3. There exist at least two distinct non-degenerate balanced config-
urations {pk,i} with N = 2,n1 = 2,n2 = 3, and T = 0.
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Figure 7. Side and top views of a genus four surface with N = 2,n1 = 2,n2 = 3.

The force equations corresponding to this setup are

F1,i = (−1)i
p1,1 +p1,2

4
(
p1,2−p1,1

) −
3∑

j=1

p1,i+p2,j

6
(
p1,i−p2,j

)

for i= 1,2 and

F2,i =
∑

j 	=i

p2,i+p2,j

9
(
p2,i−p2,j

) −
2∑

j=1

p2,i+p1,j

6
(
p2,i−p1,j

)

for i= 1,2,3.

(1) Let a1 = 4 + 2
√

5 +
√

35+16
√

5 and a2 = 1
2

(
− 17 − 9

√
5 −

√
690+306

√
5
)

, and let p1,1 = a1,p1,2 = 1/a1,p2,1 = a2,p2,2 = −1, and

p2,3 = 1/a2. Then Fk,i = 0 for k = 1,2 and i = 1, . . . ,nk, and so {pk,i} is a
balanced configuration.

(2) Let b1 = 4 − 2
√

5 − i
√
−35+16

√
5 and b2 = 1

2

(
− 17 + 9

√
5 −

√
690−306

√
5
)

, and let p1,1 = b1,p1,2 = 1/b1,p2,1 = b2,p2,2 = −1, and

p2,3 = 1/b2. Then Fk,i = 0 for k = 1,2 and i = 1, . . . ,nk, and so {pk,i} is a
balanced configuration.

In both cases, the configurations are non-degenerate by a numerical computa-
tion.

Numerical evidence suggests:

CONJECTURE 3.3. There exists a non-degenerate balanced configuration
{pk,i} with N = 2,n1 = 2,n2 = 2k−1, and T = 0 for k ∈ N.

Remark 3.4. In contrast to [12], all our examples of balance configurations
above have horizontal period T = 0. It is possible to solve the balance equations
also for T 	= 0. However, the solutions become much more complicated and we
have not been able to use them to construct surface families that are provably dis-
tinct from the ones we obtain for T = 0.
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4. Weierstrass Data. We begin the proof of Theorem 1 by parametrizing
a set of Riemann surfaces and Weierstrass data that are candidates for the minimal
surfaces we want to construct. The construction is almost exactly the same as in
[12]. The main difference is our definition of the Gauss map G. We repeat the
details for the convenience of the reader.

Let C̄k =C for k = 1, . . . ,N , and for each k ∈ {1, . . . ,N} let Gk : C̄k :�→ C̄ be
the meromorphic function defined by

Gk(z) = δkz

(
nk∑

i=1

αk,i
z−ak,i

−
nk−1∑

i=1

βk,i
z− bk,i

)

where δk ∈ (0,∞), the poles ak,i and bk,i are distinct non-zero complex numbers,
and the αk,i and βk,i are non-zero complex numbers such that

nk∑

i=1

αk,i =

nk−1∑

i=1

βk,i = 1.

The first equality ensures that Gk(z) has a zero at ∞. The zeroes at 0 and ∞ are
needed to ensure that the Gauss map is vertical at the annular ends. The δk terms
will be used to ensure that the periods at the ends are the same. In [12], the corre-
sponding map is gk(z) =

Gk(z)
δkz

.
Let αk = (αk,1, . . . ,αk,nk

) and α = (α1, . . . ,αN ), and define β,γ,a and b in
the same way. Let δ = (δ1, . . . ,δN ) and X = (α,β,δ,γ,a,b). The set X is our set
of parameters used to construct the Riemann surfaces and Weierstrass data.

The surfaces we are constructing have nk catenoid-shaped necks between the k
and k+1 levels. In order to achieve this, we use the functions Gk to create coordi-
nates near each pole and identify an annulus centered at ak,i ∈ C̄k with an annulus
centered at bk+1,i ∈ C̄k+1 for k = 1 . . . ,N and i = 1, . . . ,nk using the following
procedure.

The function vk,i = 1/Gk has a simple zero at ak,i. Thus, there exists ε > 0
such that vk,i is a biholomorphic map from a neighborhood of ak,i ∈ C̄k to the disk
Dε(0). In this manner, v = vk,i is a complex coordinate in a neighborhood of ak,i.
Similarly, w = wk+1,i = 1/Gk+1 is a biholomorphic map from a neighborhood of
bk+1,i ∈ C̄k+1 to the disk Dε(0). Thus, for each pair ak,i and bk+1,i we get the pair
of coordinates v = vk,i and w = wk+1,i.

Choose a positive real number r with r ∈ (0, ε2) and remove the disks |v| ≤ r
ε

and |w| ≤ r
ε from C̄k and C̄k+1, respectively. Then, we create a conformal model

of the catenoid-shaped neck by identifying the points in C̄k satisfying

r

ε
< |v|< ε
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Figure 8. Gluing construction.

with points in C̄k+1 satisfying

r

ε
< |w|< ε

by the equation

vw = r.

Let Σ be the compact Riemann surface created by repeating this procedure for
each k = 1, . . . ,N and i= 1, . . . ,nk. Note that the index k is modulo N . Thus, the
gluing between CN and CN+1 is really a gluing between CN and C1.

Denote by Σ∗ the surface obtained by removing the points 0k and ∞k from Σ

for all k. When r= 0, define Σ as the disjoint union C̄1∪ C̄2∪·· ·∪ C̄N . This is the
underlying Riemann surface for our minimal surface candidates.

Next, the Gauss map G : Σ→ C̄ is defined by

G(z) =

⎧
⎪⎨

⎪⎩

√
rGk(z) if z ∈ C̄k, k even,

1√
rGk(z)

if z ∈ C̄k, k odd.
(1)

If k is even, then G=
√
r/v on C̄k and G= w/

√
r on C̄k+1. If k is odd, then

G= v/
√
r on C̄k and G=

√
r/w on C̄k+1. Therefore, the relation vw = r implies

that G is well-defined on Σ.
Before defining our height differential η, we need to choose a basis of the

homology of Σ. Define Ak,i to be the circle |vk,i|= ε in C̄k oriented positively. The
construction of Σ implies that this is homotopic to the circle |wk+1,i| = ε oriented
negatively. Choose Bk,i, i≥ 2, to be a closed curve in Σ such that Ak,1 ·Bk,i=−1,
Ak,i ·Bk,i = 1, Am,n ·Bk,i = 0 if m 	= k, and Bk,i ·Bm,n = 0 if (m,n) 	= (k,i).
Finally, choose B1,1 to be a closed curve such that Ak,1 ·B1,1 = 1 for k = 1, . . . ,N
and it does not intersect any of the above curves. Then a basis of H1(Σ) is given by
the curves A1,1,B1,1,Ak,i, and Bk,i, with k = 1, . . . ,N and i= 2, . . . ,nk. Note that
if we replace the B1,i curves by B′1,i =B1,i+B1,1 then we get a canonical basis of
H1(Σ).
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Figure 9. Labeling the cycles.

PROPOSITION 4.1. [12] Consider numbers γk,i, k = 1, . . . ,N , i = 1, . . . ,nk
such that for any k,

nk∑

i=1

γk,i = 1.

Then there exists a unique holomorphic 1-form η on Σ such that for any k =

1, . . . ,N , i= 1, . . . ,nk,
∫

Ak,i

η = 2πiγk,i.

The proof is the same as in the proof of Proposition 5 from Section 3.3 in [12].
We now have a space of Riemann surfaces and Weierstrass data that are can-

didates for the surfaces we want to construct. The parameters are given by (r,X),
and we will look at what happens when r→ 0.

5. Constraints on the Weierstrass data and period conditions. We pa-
rametrize the surface as

ψ(z) = Re
∫ z

z0

(
φ1,φ2,φ3

)

where z0 ∈Σ is a base point, φ1 =
1
2

(
1
G −G

)
η, φ2 =

i
2

(
1
G +G

)
η, and φ3 = η. In

order that (Σ,G,η) are the Weierstrass data of a complete, doubly periodic minimal
surface with horizontal embedded ends, we need:
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(1) For any p ∈ Σ∗, η has a zero at p if and only of G has either a zero or pole at
p, with the same multiplicity. At each puncture 0k and ∞k, G has a zero or pole of
order n≥ 1 and η has a zero of order n−1.
(2) For any closed curve c on Σ∗, Re

∫
cφj is an integral linear combination of two

linearly independent vectors of R3. We denote the set of these linear combinations
by Λ.

As the zeroes and poles of G are the zeroes of the Gk, we can write condition
(1) equivalently as
(1′) The zeroes of η are the zeroes of Gkdz/z, k = 1, . . . ,N , with the same mul-
tiplicity.

If condition (1) is satisfied then the 1-forms φ1 and φ2 have poles only at the
punctures of Σ∗, and so condition (2) needs to be checked only for a canonical
basis of the homology of Σ and for small loops around the punctures. Therefore
we can rewrite the condition (2) as follows: Write φ= (φ1,φ2,φ3).

(2′.1) For any k = 1, . . . ,N and i= 1, . . . ,nk,

Re
∫

Ak,i

φ= 0.

(2′.2) For any k = 1, . . . ,N and i= 2, . . . ,nk,

Re
∫

Bk,i

φ= 0,

(2′.3)

Re
∫

B1,1

φ ∈ Λ.

(2′.4) For any k = 1, . . . ,N ,

Re
∫

∂Dε(0k)
φ ∈ Λ.

(2′.5) For any k = 1, . . . ,N ,

Re
∫

∂Dε(∞k)
φ ∈ Λ.

If Re
∫
Ak,i

φ = 0 and Re
∫
∂Dε(0k)

φ ∈ Λ for each k,i then the period condition at
∞k is automatically satisfied by Cauchy’s theorem. Observe that the period vectors
Re
∫
∂Dε(0k)

φ and Re
∫
∂Dε(∞k)

φ are necessarily horizontal, as η = φ3 is holomor-
phic at 0k and ∞k.
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6. Height differential extends holomorphically to r = 0. The results of
this section follow precisely as in [12]. Recall that when r = 0, we defined Σ as
the disjoint union C̄1∪ C̄2∪ ·· · ∪ C̄N . The Gauss map is defined when r = 0 and
depends holomorphically on r. We need the same to be true for the height differ-
ential. When r = 0, define η by η = ηk on C̄k where ηk is the unique meromorphic
1-form on C̄k with simple poles at ak,i and bk,i with residues γk,i and −γk−1,i, i.e.,

ηk =

(
nk∑

i=1

γk,i
z−ak,i

−
nk−1∑

i=1

γk−1,i

z− bk,i

)

dz.

Observe that our conditions ensure that η is holomorphic at 0k and ∞k for each k.
The next two propositions are from Section 4 in [12]. As our height differential

is defined in the same way as in [12], the proofs of these propositions are the same.

PROPOSITION 6.1. [12] Let z ∈Ck, z 	= ak,i, z 	= bk,i. Then r �→ η(z) is holo-
morphic in a neighborhood of 0.

PROPOSITION 6.2. [12] Let v = vk,i. On the domain r
ε < |v|< ε of Σ, we have

the formula

η = f
(
v,

r

v

) dv
v

=−f
( r

w
,w
) dw

w

where f is a holomorphic function of two complex variables defined in a neighbor-
hood of (0,0).

We can use propositions 6.1 and 6.2 to estimate the integrals of η,Gη, and
1/Gη on the homology cycles and on cycles around the punctures. These are nec-
essary to solve the period problem when r = 0. As in [12], we will use a term
holo(r,X), meaning a holomorphic function in terms of (r,X) in a neighborhood
of (0,X0).

PROPOSITION 6.3. [12]

∫

Ak,i

G(−1)kη =
√
r
(
2πi resak,i Gkηk+ rholo(r,X)

)

∫

Ak,i

G(−1)k+1
η =
√
r
(−2πi resbk+1,i Gk+1ηk+1 + rholo(r,X)

)

∫

Bk,i

η =
(
γk,i−γk,1

)
log(r)+holo(r,X)

∫

Bk,i

G(−1)kη =
1√
r

(∫ bk+1,1

bk+1,i

G−1
k+1ηk+1 + r log(r)holo(r,X)+ rholo(r,X)

)
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∫

Bk,i

G(−1)k+1
η =

1√
r

(∫ ak,i

ak,1

G−1
k ηk+ r log(r)holo(r,X)+ rholo(r,X)

)

.

The proofs are the same as in [12, Section 5]. The following proposition takes care
of the different nature of our annular ends compared to the planar ends on [12].

PROPOSITION 6.4.

∫

∂Dε(0k)
G(−1)kη = 0

∫

∂Dε(0k)
G(−1)k+1

η =
1√
r

(
2πi res0

1
Gk

ηk+ rholo(r,X)

)
.

Proof. First,

∫

∂Dε(0k)
G(−1)kη =

√
r

∫

∂Dε(0k)
Gkη = 0

because Gkη has no poles in a neighborhood of 0k. Using proposition 6.1,

∫

∂Dε(0k)
G(−1)k+1

η =
1√
r

∫

∂Dε(0k)

1
Gk

(ηk+ rholo(r,X)dz)

=
1√
r

(
2πi res0k

1
Gk

ηk+ rholo(r,X)

)
.

�

7. Solving the period problem. We can attempt to solve the constraints on
the Weierstrass data and the period problem by adjusting the variables (r,X), and
we will express this with a map F . In fact, we will find solutions when r = 0. This
allows us to take advantage of the asymptotic expansion of each of the periods at
r = 0.

Let ζk,i be the zeroes of 1
δkz

Gkdz in Ck, i= 1, . . . ,nk+nk−1−2. Define

F1,k,i = η
(
ζk,i
)
.

Abbreviate F1,k =
(F1,k,1, . . . ,F1,k,nk+nk−1−2

)
and F1 = (F1,1, . . . ,F1,N ). The ze-

roes of 1
δkz

Gkdz can be thought of as the zeroes of a polynomial, and for now
let us assume that they are all simple zeroes. Section 9 in [12] takes care of the
case where 1

δkz
Gkdz may not only have simple zeroes, and applies here as well.

As argued in [12], the simple zeroes of a polynomial depend analytically on its
coefficients and, by Proposition 6.1, F1 depends analytically on (r,X).
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If F1 = 0 then η has at least a simple zero at each zero of Gk. All the zeroes of
1
δkz

Gkdz are assumed to be simple, and so G has

N∑

k=1

(nk+nk−1−2) = 2
N∑

k=1

nk−2N

zeroes and poles, counting multiplicity.
The number of zeroes of η is

2genus(Σ)−2 = 2

(

1+
N∑

k=1

(nk−1)

)

−2

= 2+2
N∑

k=1

nk−2N −2

= 2
N∑

k=1

nk−2N.

Thus, the zeroes of η are precisely the ζk,i.
The remaining components of the map F deal with the period problem. The

period condition Re
∫
Ak,i

η = 0 is taken care of by letting γk,i ∈ R. This is simply
due to how we defined η. From this moment on, assume that γk,i ∈ R. Recall that

Re
∫

φ1 + iRe
∫

φ2 =
1
2

(∫
G−1η−

∫
Gη

)
.

With this equivalency in mind, we define

F2,k,i =
1

logr
Re
∫

Bk,i

η, i= 2, . . . ,nk,

F3,k,i =
√
r

(∫

Bk,i

G−1η−
∫

Bk,i

Gη

)

, i= 2, . . . ,nk,

F4,k,i =
(−1)k√

r

(∫

Ak,i

G−1η−
∫

Ak,i

Gη

)

, i= 1, . . . ,nk,

F5,k = 2
√
r

(∫

∂Dε(0k)
G−1η−

∫

∂Dε(0k)
Gη

)
+2πi.

Define the vectors F2, F3, and F4 as we defined F1. Let F5 = (F5,1,F5,2, . . . ,

F5,N ) and F = (F1,F2,F3,F4,F5). Note that the constraints of the Weierstrass
data and the period problem listed in Section 3.2 are equivalent to F = 0. Also,
there is no need for F5 in [12].

The logr terms that show up in F require us to express the variable r in terms
of the variable t using the equation r(t) = e−1/t2 if t ∈ R \ {0} and r(0) = 0.
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Otherwise, the map F won’t be differentiable at r = 0. Propositions 6.3 and 6.4
imply that F is differentiable at r = 0.

The next proposition is essentially the same as Proposition 9 in [12]. The key
difference is in the definition of ak,i and bk,i. This difference plays out in the rest of
the calculations of this section, which lead to the proof of the proposition. Recall
also that the pk,i form a periodic set of points with pk+N,i= pk,ie

T . This introduces
a similar, but more obfuscated periodicity of the ak,i and bk,i below.

Below, conj denotes the conjugation in C.

PROPOSITION 7.1. Let {pk,i} be a balanced configuration. Define Xo by:

⎧
⎪⎪⎨

⎪⎪⎩

αk,i = γk,i = βk+1,i = 1/nk,

ak,i =
(

conjk
(
pk,i
))(−1)k

,

bk,i =
(

conjk
(
pk−1,i

))(−1)k
.

(2)

Then F(0,Xo) = 0. Also, if X is a solution to F(0,X) = 0 then, up to some
identifications, X = Xo for some balanced configuration {pk,i}. In addition, if
{pk,i} is a non-degenerate balanced configuration then, up to some identifica-
tions, D2F(0,Xo) is an isomorphism. By the implicit function theorem, for t in
a neighborhood of 0, there exists a unique X(t) in a neighborhood of Xo such that
F(t,X(t)) = 0.

The Weierstrass data given by each unique X(t) is the map of an immersed
doubly periodic minimal surface with embedded planar ends. The rest of this sec-
tion contains the proof of Proposition 7.1.

7.1. Solving the equationF1 = 0. Assume r= 0.F1,k = 0 is equivalent to:
Gkdz and ηk have the same zeroes on C̄k. Since they already have the same poles
they are proportional. By normalization, ηk =

1
δkz

Gkdz. Thus, F1 = 0 is equivalent
to αk,i = γk,i and βk,i = γk−1,i.

From this moment on, assume that F1 = 0 so that r = 0⇒ ηk =
1
δkz

Gkdz.

7.2. Solving the equation F2 = 0. Using Proposition 6.3,

F2,k,i =
1

log(r)
Re
∫

Bk,i

η

=
1

log(r)
Re
((
γk,i−γk,1

)
log(r)+holo(r,X)

)

= γk,i−γk,1+
Re
(

holo(r,X)
)

log(r)
.

When r = 0, F2,k,i = γk,i−γk,1. Thus, F2 = 0⇒ γk,i = γk,1∀i⇒ γk,i =
1
nk
∀i.
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7.3. Solving the equation F3 = 0. Using Proposition 6.3,

F3,k,i =
√
r

(∫

Bk,i

G−1η−
∫

Bk,i

Gη

)

= (−1)k conjk
(∫ ak,1

ak,1

G−1
k ηk+ r log(r)holo(r,X)+ rholo(r,X)

)

+(−1)k conjk+1
(∫ bk+1,i

bk+1,1

G−1
k+1ηk+1+r log(r)holo(r,X)+rholo(r,X)

)
.

When r = 0,

F3,k,i = (−1)k conjk
(∫ ak,i

ak,1

G−1
k ηk

)

+(−1)k conjk+1

(∫ bk+1,i

bk+1

G−1
k+1ηk+1

)

= (−1)k conjk
(∫ ak,i

ak,1

1
δkz

dz

)

+(−1)k conjk+1

(∫ bk+1,i

bk+1,1

1
δk+1z

dz

)

= (−1)k conjk
(
δ−1
k log

(
ak,i
ak,1

))
+(−1)k conjk+1

(
δ−1
k+1 log

(
bk+1,i

bk+1,1

))
.

Thus, F3 = 0 and δk = 2 for k = 1,2, . . . ,N ⇒ bk+1,i
bk+1,1

= conj
(
ak,1
ak,i

)
.

7.4. Solving the equation F4 = 0. Using Proposition 6.3,

F4,k,i =
(−1)k√

r

(∫

Ak,i

G−1η−
∫

Ak,i

Gη

)

=
1√
r

[

conjk+1
∫

Ak,i

G(−1)k+1
η− conjk

∫

Ak,i

G(−1)kη

]

=
1√
r

conjk+1 [√r (−2πi resbk+1,i Gk+1ηk+1 + rholo(r,X)
)]

− 1√
r

conjk
[√

r
(
2πi resak,i Gkηk+ rholo(r,X)

)]

= conjk+1 [−2πi resbk+1,i Gk+1ηk+1 + rholo(r,X)
]

− conjk
[
2πi resak,i Gkηk+ rholo(r,X)

]
.
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Thus, when r = 0,

F4,k,i = conjk+1 [−2πi resbk+1,i Gk+1ηk+1
]− conjk

[
2πi resak,i Gkηk

]

= 2πi(−1)k
[
−conjk

(
resak,i Gkηk

)
+ conjk+1 (resbk+1,i Gk+1ηk+1

)]

=−4πδki(−1)k conjk
(

nk∑

j=1, 	=i

ak,i

n2
k

(
ak,i−ak,j

)−
nk−1∑

j=1

ak,i

nknk−1
(
ak,i− bk,j

)

)

+4πδk+1i(−1)k conjk+1

(

−
nk+1∑

j=1

bk+1,i

nknk+1
(
bk+1,i−ak+1,j

)

+

nk∑

j=1, 	=i

bk+1,i

n2
k

(
bk+1,i− bk+1,j

)

)

+
2πi(−1)k

n2
k

(− δk+ δk+1
)
.

We will deal with this equation further in Section 7.6 below.

7.5. Solving the Equation F5 = 0. Using proposition 6.4,

∫

∂Dε(0k)

1
G
η−

∫

∂Dε(0k)
Gη

=

(
(−1)k conjk+1

∫

∂Dε(0k)
G(−1)kη+(−1)k+1 conjk

∫

∂Dε(0k)
G(−1)k+1

η

)

=
1√
r
(−1)k+1 conjk

(
2πi res0

1
Gk

ηk+ rholo(r,X)

)
.

Thus, when r = 0,

F5,k = 2(−1)k+1conjk(2πiδ−1
k )+2πi=−2πi(2δ−1

k −1).

Thus, we need δk = 2 for k = 1,2, . . . ,N . This ensures that when the surfaces
are scaled by 2

√
r the horizontal period at each end 0k is −2πi and at each end

∞k is 2πi. Part 7 of Proposition 8.1 confirms that the periods at the ends have the
correct signs.

7.6. Uncovering the force equations and the non-horizontal period Tt.
Our force equations could just be given byF4,k,i for k= 1, . . . ,N and i= 1, . . . ,nk.
However, the non-horizontal period Tt whose limit is T0 = T does not have a clear
relationship to the points (a,b). Therefore, as done in [12], we will construct an
isomorphism (a,b) �→ (T,p,q).

Let m= n1+ · · ·+nN . Given pk,i ∈C, k = 1, . . . ,N , i= 1, . . . ,nk, let p ∈Cm
be the vector whose components are pk,i. Given (T,p,q) ∈ C×C

m×C
m, define
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(a,b) by
⎧
⎨

⎩
ak,i =

(
conjk pk,iqk,1

)(−1)k

bk,i =
(
conjk pk−1,iqk,i

)(−1)k(3)

where pk+N,i = pk,ie
T and qk+N,i = qk,i.

Note that the way (a,b) are defined is similar to how they were defined in
Proposition 7.1. We get the (a,b) in Proposition 7.1 if we let qk,i = 1 for k =

1, . . . ,N and i = 1, . . . ,nk. Also, our (a,b) is a multiplicative version of the (a,b)

in [12].
If δk = 2 for k = 1, . . . ,N then

F3,k,i =
(−1)k

2
conjk

(
log

(
ak,i
ak,1

))
+

(−1)k

2
conjk+1

(
log

(
bk+1,i

bk1,1

))

=
1
2

(
log

(
pk,i
pk,1

)
− log

(
pk,iqk+1,i

pk,1qk+1,1

))

=
1
2

(
logqk+1,i− logqk+1,1

)
.

If F3,k,i = 0 then logqk+1,i = logqk+1,1. Hence, qk,i = qk,1 for k = 1, . . . ,N
and i= 1, . . . ,nk. Thus, let qk = qk,1.

We finally deal with F4,k,i. Assume F2 = 0,F3 = 0, and F5 = 0. Then,

F4,k,i

−8πi
= (−1)k conjk

(
nk∑

j=1, 	=i

ak,i

n2
k

(
ak,i−ak,j

) −
nk−1∑

j=1

ak,i

nknk−1
(
ak,i− bk,j

)

)

− (−1)k conjk+1

(

−
nk+1∑

j=1

bk+1,i

nknk+1
(
bk+1,i−ak+1,j

)

+

nk∑

j=1, 	=i

bk+1,i

n2
k

(
bk+1,i− bk+1,j

)

)

= (−1)k
nk∑

j 	=i

(pk,iqk)
(−1)k

n2
k

(
(pk,iqk)(−1)k − (pk,jqk)(−1)k

)

− (−1)k
nk−1∑

j=1

(pk,iqk)
(−1)k

nknk−1
(
(pk,iqk)(−1)k − (pk−1,jqk)(−1)k

)

+(−1)k
nk+1∑

j=1

(pk,iqk+1)
(−1)k+1

nknk+1
(
(pk,iqk+1)(−1)k+1− (pk+1,jqk+1)(−1)k+1

)

+(−1)k+1
nk∑

j 	=i

(pk,iqk+1)
(−1)k+1

n2
k

(
(pk,iqk+1)(−1)k+1− (pk,jqk+1)(−1)k+1

)
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=
∑

j 	=i

pk,i+pk,j
n2
k(pk,i−pk,j)

+ (−1)k
(
nk+1∑

j=1

p
(−1)k

k+1,j

nknk+1

(
p
(−1)k

k+1,j−p
(−1)k

k,i

)

−
nk−1∑

j=1

p
(−1)k

k,i

nknk−1

(
p
(−1)k

k,i −p
(−1)k

k−1,j

)

)

=
∑

j 	=i

pk,i+pk,j

n2
k(pk,i−pk,j)

−
nk+1∑

j=1

pk,i+pk+1,j

2nknk+1
(
pk,i−pk+1,j

) +
(−1)k

2nk

−
nk−1∑

j=1

pk,i+pk−1,j

2nknk−1
(
pk,i−pk−1,j

) +
(−1)k+1

2nk

=
∑

j 	=i

pk,i+pk,j
n2
k(pk,i−pk,j)

−
nk+1∑

j=1

pk,i+pk+1,j

2nknk+1
(
pk,i−pk+1,j

)

−
nk−1∑

j=1

pk,i+pk−1,j

2nknk−1
(
pk,i−pk−1,j

) .

Thus, assuming F1 = F2 = F3 = F5 = 0, we get F4,k,i = −8πiFk,i. Now, if
{pk,i} is a balanced configuration then define Xo as in the statement of Proposi-
tion 7.1. Because of qk,i = 1, we get F(0,Xo) = 0, proving the first statement of
Proposition 7.1.

In order to prove the converse, assume that F(0,X) = 0. We need to find a
balanced configuration pk,i such that, up to some identifications, X =Xo as given
in Proposition 7.1. Now, F1 = F2 = 0⇒ αk,i = γk,i = βk+1,i =

1
nk

.
Choose (T,p,q) satisfying equation 3. ThenF3 = 0 implies that qk,i= qk,1 and

F4 = 0 implies that pk,i is a balanced configuration.
In order to have X =Xo we need qk,1 = 1, and this requires some identifica-

tions. Note that our identifications are multiplicative versions of the corresponding
identifications in Section 6.5 of [12].

Given complex numbers λk, let a′k,i = ak,iλk and b′k,i = bk,iλk, and let
(Σ′,G′,η′) be the Weierstrass data corresponding to a′k,i and b′k,i. Then the map

φ : Σ→ Σ′,z ∈ Ck �→ zλk is an isomorphism with φ∗G′dz = Gdz and φ∗η′ = η.
Thus, the Weierstrass data (Σ,G,η) and (Σ′,G′,η′) are isomorphic and define
equivalent minimal surfaces.

Hence, the following identification makes sense:

(a,b)∼ (a′, b′)⇐⇒∀k ∃λk such that ∀i, a′k,i = ak,iλk, b
′
k,i = bk,iλk.

We can create similar identifications for p and q:

p′ ∼ p⇐⇒∃λ such that ∀k,i, p′k,i = pk,iλ

q′ ∼ q⇐⇒∀k ∃λk such that ∀i, q′k,i = qk,iλk.
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As simple computations yield:

LEMMA 7.2. The map (T,p,q) �→ (a,b) is an isomorphism.

Using the identifications on (a,b), p, and q, we get that F3 = 0⇒ qk,1 ∼ 1.
This proves the second part of Proposition 7.1.

7.7. D2F(0,X0) is an isomorphism. The next three lemmas are from [12].
Lemmas 7.3 and 7.4 are the same as Propositions 10 and 11 in [12]. Our lemma
7.5 is partly proven in Section 6.5 of [12].

LEMMA 7.3. [12] Let E = {(α′k,β′k) ∈ C
nk+nk−1|∑α′k,i =

∑
β′k,i = 0}. The

partial differential of F1,k with respect to (αk,βk) is an isomorphism from E onto
C
nk+nk−1−2.

Proof. See Proposition 10 in Section 6.2 of [12]. �

LEMMA 7.4. [12]

N∑

k=1

nk∑

i=1

F4,k,i(t,X) = 0 ∀(t,X).

Proof. See Proposition 11 in Section 6.5 of [12]. �

LEMMA 7.5. [12] The partial differential of F evaluated at (0,X0) with re-
spect to the variables (α,β),γ,q,p,δ has the form

⎡

⎢
⎢⎢
⎢
⎣

I1 · 0 0 0
0 I2 0 0 0
· · I3 0 ·
· · · I4 ·
· · 0 0 I5

⎤

⎥
⎥⎥
⎥
⎦

with Ik an invertible linear operator for k = 1,2,3,4,5, and so it is invertible.

Proof. The arguments explaining the first four entries of the top four rows are
explained in Section 6.5 of [12]. We repeat those arguments. The key difference is
that there is no fifth row or column in [12].

In the first row, I1 is invertible by Lemma 7.3. If αk = γk and βk = γk−1 then
ηk =

1
δkz

Gkdz, and so F1 = 0 independent of q,p, and δ. Hence, there are zeroes
in the last three entries of the first row.

The second row is clear because F2,k,i = γk,i− γk,1 when r = 0 and is inde-
pendent of α,β,q,p, and δ.

The identification on q makes I3 invertible. The zero in the third row is because
F3 is independent of p.
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By Lemma 7.4, we can think of F4 as a map into the subspace
∑F4,k,i = 0.

Also,

I4 = 4πi(−1)k+1 ∂

∂p
F.

Thus, the non-degeneracy of the force equations implies that I4 is onto. The iden-
tification on p implies that I4 is invertible.

When r = 0,αk = γk, and βk = γk−1, we get F5,k = −2πi(2δ−1
k − 1). Thus,

I5 is invertible. The zeroes in row five are due to the fact that F5 is independent of
p and q when r = 0,αk = γk, and βk = γk−1. �

Finally, we have shown that D2F (0,X0) is an isomorphism, completing the
proof of Proposition 7.1. There are the two free parameters t ∈R and T ∈C. Thus,
the implicit function theorems provides a three-dimensional space of solutions to
the equation F(t,X) = 0. As discussed in [3], this is the expected size of our space
of minimal surfaces. Note that in [12], the surfaces are made up of domains Ck. The
balance configurations can be changed by complex linear transformation that do
not affect the minimal surface. In our case, the domains are punctured planes C

∗
k,

and the balance configurations can only be changed by complex multiplications.
This explains the difference in the dimensions of the moduli spaces.

8. Embeddedness and Properties 2.1 and 2.2. The embeddedness proof
used in [12] can be used to prove that our surfaces are embedded. The only variation
is that our surfaces have pairs of ends at each level. The final detail left is showing
that our surfaces satisfy Properties 2.1 and 2.2.

Let (Σ,G,η) be the Weierstrass data given by Proposition 7.1 for some small
positive t. In this section, it is convenient to express ψ as

ψ(z) = (horiz(z),height(z)) ∈ C×R.

The following proposition is essentially the same as Proposition 12 in Section
7 of [12].

PROPOSITION 8.1. There exists a constant C , not depending on t, such that:
(1) For any point z ∈ C̄k such that ∀i, |vk,i|> ε, |wk,i|> ε,

|height(z)−height(∞k)| ≤ C.

(2) For any point z ∈ C̄k such that rε < |vk,i|< ε,

|height(z)−height(∞k)− 1
nk

log |vk,i(z)|| ≤C.
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(3)

|height(∞k+1)−height(∞k)− 1
nk

logr| ≤ C.

(4) Choose Pk,i ∈ Σ such that vk,i(Pk,i) =
√
r. Note that G(Pk,i) = 1. Then

2
√
r
(
horiz(Pk,j)−horiz(Pk,i)

)

−→ (−1)k conjk+1(ak,j−ak,i) = logpk,j− logpk,i

and

2
√
r
(
horiz(Pk,j)−horiz(Pk−1,i)

)

−→ (−1)k conjk+1(ak,j− bk,i) = logpk,j− logpk−1,i.

Thus, we can translate the surface such that 2
√
rhoriz(Pk,i)→ logpk,i ∀k,i.

(5) Let 0 < σ < 1
2 . The image of the domain r1−σ < |vk,i| < rσ converges to

a catenoid with necksize 2π
nk

, and it is contained in a vertical cylinder with radius
5rσ−1/2

nk
.

(6) The non-horizontal period of ψ is

T = Re
∫

B1,1

φ�
(

T

2
√
r
,

(
N∑

k=1

1
nk

)

logr

)

.

(7) For each k = 1, . . . ,N ,

2
√
rRe(horiz(0k))−→ (−1)k+1∞

and

2
√
rRe(horiz(∞k))−→ (−1)k∞.

Proof. The proof of this proposition uses the same techniques used in the proof
of Proposition 8 in Section 5 of [12]. �

In [12], Traizet splits R3 into the horizontal slabs

height(∞k+1)+
σ

nk+1
|logr| ≤ x3 ≤ height(∞k)− σ

nk
|logr| .

and

height(∞k)− σ

nk
|logr| ≤ x3 ≤ height(∞k)+

σ

nk
|logr|.

Traizet shows that the intersection of the first slab with ψ(Σ) is the nk disjoint
components Ck,i,t, each one converging to a catenoid. Then, he shows that the
intersection of the second slab with ψ(Σ) is the region Ek,t, which is a graph over
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the plane. The difference here is that Ek,t is a graph over C/(2πiZ). Thus, our
surfaces satisfy Property 2.1.

Proposition 8.1 shows that our surfaces, after scaled by 2
√
r, satisfy Property

2.2.
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