
I.J. Information Technology and Computer Science, 2012, 8, 63-70
Published Online July 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijitcs.2012.08.08

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 8, 63-70

Using Negative Binomial Regression Analysis to
Predict Software Faults: A Study of Apache Ant

Liguo Yu

Computer Science and Informatics, Indiana University South Bend, South Bend, IN, USA
Email: ligyu@iusb.edu

Abstract—Negative binomial regression has been
proposed as an approach to predicting fault-prone
software modules. However, little work has been
reported to study the strength, weakness, and
applicability of this method. In this paper, we present a
deep study to investigate the effectiveness of using
negative binomial regression to predict fault-prone
software modules under two different conditions, self-
assessment and forward assessment. The performance
of negative binomial regression model is also compared
with another popular fault prediction model—binary
logistic regression method. The study is performed on
six versions of an open-source objected-oriented project,
Apache Ant. The study shows (1) the performance of
forward assessment is better than or at least as same as
the performance of self-assessment; (2) in predicting
fault-prone modules, negative binomial regression
model could not outperform binary logistic regression
model; and (3) negative binomial regression is effective
in predicting multiple errors in one module.

Index Terms—Complexity Metrics, Software Faults,
Negative Binomial Regression Analysis

I. Introduction

Software testing is one of the most important
activities in software development and maintenance. It
consumes considerable amount of time and resources.
Because the distribution of bugs among software
modules is not uniform, it would be inefficient to spend
the same amount of testing time and testing effort on
every module. Therefore, software defect prediction is
an important technique used in software quality
assurance: based on the bug history of a same or similar
product, we can predict the fault-prone modules in
current project. Accordingly, more testing efforts can be
spent on software modules with positive predictions,
which indicate the high possibilities of having bugs; and
less effort can be allocated to modules with negative
predictions, which indicate the low possibilities of
having bugs. Considerable research has been performed
in this area in recent years [1-11].

Among the many methods in predicting fault-prone
software modules, negative binomial regression has

been recently proposed and studied [12-15]. However, to
the best of our knowledge, none of them provided
detailed analysis about the performance of the
prediction models, such as recall rate. Using negative
binomial regression to predict software bugs is still
under the stage of research, investigation, and validation.
More experience and knowledge should be collected
and disseminated before this method can be widely used
in software industry.

In this paper, we present a case study of using class
complexity metrics and product bug history to build
negative binomial regression models to predict faults in
software modules. Comparing with previous studies,
this paper make the following contributions: (1) we
present a comprehensive study of using negative
binomial regression in predicting fault-prone modules
and the possibility of multiple faults in a single module;
(2) we compare the performance of negative binomial
regression method with another popular and mature
prediction meth—binary logistic regression method, in
predicting fault-prone software modules; (3) we
examine the performance of negative binomial
regression model under two different conditions, self-
assessment and forward assessment; and (4) we
investigate the possibility of concept drift, which
represents the changing relation between class
complexity metric (explanatory variable) and software
bugs (response variable), in Apache Ant.

The rest of this paper is organized as follows. Section
2 describes related work. Section 3 reviews negative
binomial regression analysis. Section 4 describes the
data source and data selection process. Section 5
presents the results and the analysis of this study.
Conclusions are presented in Section 6.

II. Related Work

Using negative binomial regression analysis to
predict fault-prone modules is first introduced by
Ostrand et al. [15] [12]. In their studies, a negative
binomial regression model was developed and used to
predict the expected number of faults in every module
of the next release of a system. The predictions were
based on the code of the module in the current release,
and fault and modification history of the module from

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUScholarWorks

https://core.ac.uk/display/213844750?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

64 Using Negative Binomial Regression Analysis to Predict Software Faults: A Study of Apache Ant

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 8, 63-70

previous releases. The predictions were applied to two
large industrial systems, where they found the 20
percent of the modules with the highest predicted
number of faults contained 83 percent of the faults that
were actually detected. Continuous effort was spent by
the same group to further investigate their prediction
method [14]. In this latest study, they compared the use
of three versions of the negative binomial regression
model, as well as a simple lines-of-code based model, to
make predictions. They also discussed the prediction
differences between this study and their earlier studies.
They found the best version of the prediction model was
able to identify 20 percent of the system’s faulty
modules, which contained nearly three quarters of the
total faults.

Another study of using negative binomial regression
analysis to predict fault-prone modules is reported by
Janes et al. [13]. In their study, they investigated the
relation between object-oriented metrics and class
defects in a real-time telecommunication system.
Different prediction models were built, assessed, and
compared. The zero-inflated negative binomial
regression model was found to be the most accurate.
They further suggested applying negative binomial
regression in real-world software development to
predict defect-prone classes.

To summarize, comparing with other fault prediction
methods, such as linear regression, binary logistic
regression, and ordinary least squares, there are too
little of research in predicting fault-prone modules using
negative binomial regression analysis. The study
reported in this paper intends to provide more
experience and evidence in assessing the effectiveness
of using this method to assist software quality assurance.

III. Method Description

Negative binomial regression analysis is a method to
predicting the value of a count variable from a set of
predictor variables. In this study, it is used to analyze
the relations between software module attributes
(complexity metrics) and the number of defects in a
module. More specifically, the predicted dependent
variable has a non-negative integer value, representing
the number of defects in a module. The independent
variables are module attributes (complexity metrics)
which have continuous numerical values.

Assume Y is the dependent variable and its value is k
∈ {0, 1, 2, 3, …}, representing the corresponding
module has k faults. Also assume X1, X2, …, Xn are
independent variables and
represents the probability that Y=k when X1=x1,
X2=x2, …, Xn=xn. Accordingly, negative binomial
regression analysis can generate the following model [16]:

(

)

(

)

 (1)

In Equation 1, r is the dispersion parameter, is the
gamma function, and λ is the variance of Y.

 (2)

 (3)

Using negative binomial regression, we can estimate
the value of dispersion parameter r and the parameters a,
b1, b2, …, bn of variance λ by maximum likelihood
method. Accordingly, Equation 1 can be used to predict
the possibilities that certain number of bugs might exist
in a module.

IV. Data Source

The data used in this study is obtained from online
public repository PROMISE [17]. The original data is
donated by Marian Jureczko, Institute of Computer
Engineering, Control and Robotics, Wroclaw University
of Technology [18]. Datasets of five versions of an open-
source project, Apache Ant are utilized. They are Ant
1.3, Ant 1.4, Ant 1.5, Ant 1.6, and Ant 1.7. Each dataset
contains the measurements of twenty static code
attributes (complexity metrics) and one defect
information (number of bugs) of each module (class).
The detailed descriptions of these metrics can be found
in CKJM web site [20]. Apache Ant is written in Java.
Therefore, most of the twenty code attributes are
objected-oriented class metrics, such as those defined in
Chidamber and Kemerer’s metrics suite [19].

For each dataset (Ant 1.3 through Ant 1.7), we
performed Spearman’s rank correlation test to
determine whether each of the twenty attributes would
be significant predictors in the negative binomial
regression analysis. The results of the correlation tests
are summarized in Table 1, where it shows the
correlations between the measures of a module
attributes and the number of bugs detected in that
module.

Two criteria are used to select independent variables
(predicting metrics): (1) In all five datasets/versions,
there should be no negative correlation between the
metric and the number of bugs; (2) In all five
datasets/versions, there should be at least four positive
correlations significant at the 0.05 level or above,
between the metric and the number of bugs. Based on
these two criteria, nine metrics are selected and they are
bolded in Table 1. Accordingly, Equation 3 can be
refined as the Equation 4, where x1, x2, …, and x9 are
the measurements of the of nine metrics: X1, X2, …, and
X9 (wmc, cbo, rfc, lcom, ce, npm, loc, amc, and
max_cc). These nine metrics (independent variables)
are briefly described in Table 2.

 (4)

 Using Negative Binomial Regression Analysis to Predict Software Faults: A Study of Apache Ant 65

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 8, 63-70

Table 1: Spearman’s rank correlations between class metrics and number of bugs in that class

 Versions
Metrcis 1.3 1.4 1.5 1.6 1.7

wmc 0.377* 0.046 0.304* 0.465* 0.431*
dit -0.031 0.156* 0.131* -0.010 0.049

noc 0.082 0.099 0.071 0.067 0.103*

cbo 0.347* 0.168* 0.236* 0.378* 0.351*

rfc 0.426* 0.130 0.356* 0.547* 0.491*

lcom 0.316* 0.074 0.268* 0.443* 0.413*
ca 0.261* -0.135 -0.050 0.122* 0.117*

ce 0.317* 0.365* 0.308* 0.423* 0.368*

npm 0.253* 0.027 0.270* 0.424* 0.369*
lcom3 0.064 0.129 0.018 0.037 -0.016

loc 0.401* 0.107 0.313* 0.538* 0.492*
dam 0.092 -0.033 0.119* 0.143* 0.146*
moa 0.163 0.128 0.205* 0.313* 0.337*

mfa -0.105 0.133 0.028 -0.143* -0.073*

cam -0.406* -0.001 -0.266* -0.462* -0.395*

ic -0.010 0.042 0.156* 0.125* 0.128*

cbm -0.010 0.023 0.127* 0.114* 0.130*

amc 0.203* 0.102 0.211* 0.370* 0.347*

max_cc 0.265* 0.080 0.144* 0.352* 0.380*
avg_cc 0.238* 0.052 0.102 0.277* 0.305*
*. Correlation is significant at the 0.05 level (2-tailed).

Table 2: The nine independent variables used in the prediction models

Name Description
wmc Number of methods defined in a class
cbo Number of classes to which a class is coupled
rfc Number of methods in a class plus number of remote methods directly called by methods of the class
lcom Number of disjoint sets of methods in a class.
ce Number of other classes that is used by a class
npm Number of public methods defined in a class
loc Lines of code in a class
amc The average method size of a class
max_cc The maximum value of McCabe’s Cyclomatic complexity of methods in a class

V. Results and Analysis

Figure 1 illustrates the distribution of the number
of faults in modules of Ant version 1.3 through version
1.7, in which frequency represents the number of
modules. It can be seen that in all five versions, number
of bug-free modules (modules with zero bugs) accounts
over 50% of all modules. Also, the frequency of classes
decreases with the number of bugs. The maximum
number of bugs found in one module is also different
from versions to versions. For example, in version 1.5, a
maximum of two bugs are found in one module,
whereas in version 1.7, a maximum of ten bugs are
found in one module.

A. Predictions description

Negative binomial regression analysis is applied
on all five versions of Apache Ant. dispersion
parameter r in Equation 1 and parameters a, b1, b2, …,

b9 of variance λ in Equation 4 are estimated. It turns out
that in all these five models (versions), dispersion
parameter r is estimated having value 1. Therefore,
Equation 1 can be further simplified as Equation 5,
where k represents the number of faults in a module,
and λ can be obtained from Equation 4.

(a)

(b)

66 Using Negative Binomial Regression Analysis to Predict Software Faults: A Study of Apache Ant

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 8, 63-70

(c)

(d)

(e)

Fig 1: Distributions of bugs in modules of
(a) Ant 1.3; (b) Ant 1.4; (c) Ant 1.5; (d) Ant 1.6, and (e) Ant 1.7

 (

) (

)

 (5)

A module is said to be fault-prone if it is predicted to

have at least one defect. In determining fault-prone
modules, we combine the probabilities that a module
has one or more bugs. Accordingly, we can derive the
following two equations, where represents
the probability that a module is bug free and
represents the probability that a module is fault prone
(has at least one bug).

 (6)

 (7)

In Equations 6 and 7, dependent variable Y (number

of bugs in a module) has two values: positive (Y>0),
which indicates the module is fault-prone; and negative
(Y=0), which indicates the module is fault-free. The
cross-analysis of predictions against observations can
divide data into four categories, as shown in Table 3 [21].
A cut-off value (threshold) 0.5 is used in this study,
which means if value of a module is greater
than 0.5 or is less than or equal to 0.5, we
will consider the module fault-prone. Otherwise, we
will consider the module fault-free.

Table 3: Evaluation of prediction against observation [21]

 Predicted

 Positive (Y>0) Negative (Y=0)

Observed

Positive (Y>0) tp
(true positive)

fn
(false negative)

Negative (Y=0) fp
(false positive)

tn
(true negative)

Predication accuracy, prediction precision, and
recall rate are three commonly used criteria to
evaluating the prediction models. They are defined
below [21]. Prediction accuracy describes the general
prediction power of a model; prediction precision can
be used to evaluate the correctness of positive signal
predictions; recall rate can be used to evaluate the
prediction power of positive signals. In software quality
assurance, detecting fault is usually considered the most
important objective. Therefore, recall rate has been
used as the most important criterion in evaluating
prediction models [22].

 (8)

 (9)

 (10)

B. Self-assessment and forward-assessment

There are five datasets (versions) in this study. Two
scenarios can be designed to build and evaluate fault
prediction models: self-assessment and forward
assessment. Figure 2(a) illustrates the self-assessment
scenario, where one prediction model is built on each
dataset and is evaluated on the same dataset. For
example, the prediction model based on Version 1.3 is
evaluated on Version 1.3; the prediction model based on
Version 1.6 is evaluated on Version 1.6, and so on.
Figure 2(b) illustrates the forward assessment scenario,
where prediction models are built based on one or more
datasets and evaluated on a different dataset. For
example, the prediction model based on Version 1.3 is
evaluated on Version 1.4; the prediction model based on
Versions 1.3 and 1.4 is evaluated on Version 1.5, and so
forth. We note here that similar analysis has been used
in our previous study of binary logistic regression
models [22].

 Using Negative Binomial Regression Analysis to Predict Software Faults: A Study of Apache Ant 67

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 8, 63-70

Fig 2: (a) self-assessment scenario; and (b) forward assessment

scenario

Table 4 summarizes the results of self-assessment of

the prediction models, which means each prediction
model is evaluated on the same dataset used to build the
model. It can be seen that for all five models, the
prediction accuracy and prediction precision are all over
50 percent. Recall rate is relatively low for version 1.4,
8%, which means the model can predict 8% of the
faulty classes. In contrast, version 1.6 has a higher
recall rate, 42%, which means this model can predict 42%
of the faulty classes.

Table 4: Self-assessment of negative binomial regression models

Dataset (source and
evaluating) 1.3 1.4 1.5 1.6 1.7

Number of datasets 125 178 293 351 745
Prediction accuracy 87% 78% 91% 81% 81%
Prediction precision 83% 50% 100% 72% 78%
Recall rate 25% 8% 16% 42% 21%

Self-assessment is a popular method to evaluate

model performance. However, in practice, prediction
models are more useful if they are applied to predict
faulty modules of future products. Therefore, forward
assessment is used to evaluate the performance of our
prediction models. Two sets of experiments are
performed. The first set of experiments is to evaluate
Model 1.3, which is built on source data Version 1.3
and the model is used to predict faults in Version 1.3
through Version 1.7. The results are shown in Table 5.
The second set of experiments is to compare the
performance of Model 1.3 through Model 1.7 on
predicting faulty classes in Version 1.7. These models
are built on source data Version 1.3 through Version 1.7.
The results are shown in Table 6.

Table 5: Forward-assessment of the performance of Model 1.3

Source dataset 1.3 1.3 1.3 1.3 1.3
Evaluating dataset 1.3 1.4 1.5 1.6 1.7
Prediction accuracy 87% 75% 90% 78% 80%
Prediction precision 83% 33% 56% 70% 65%

Recall rate 25% 10% 44% 28% 25%

Table 6: Forward-assessment of different models

Source dataset 1.3 1.4 1.5 1.6 1.7
Evaluating dataset 1.7 1.7 1.7 1.7 1.7
Prediction accuracy 80% 79% 80% 82% 81%
Prediction precision 65% 62% 78% 66% 78%

Recall rate 25% 17% 13% 42% 21%

From Table 5, we can see that Model 1.3 is a good

predictor of fault-prone classes of Versions 1.5, 1.6, and
1.7. These recall rates are higher than the recall rate of
its self-assessment. Relatively speaking, the recall rate
of Model 1.3 on Version 1.4 is not as good as the recall
rate of the self-assessment of Model 1.3, but is better
than the self-assessment of Model 1.4. From Table 6,
we can see that the recall rates of the five predictions
are in range 17% to 42%. Usually, self-assessment
should outperform forward assessment, which has been
observed in our study of binary logistic regression
models [22]. However, our study of negative binominal
regression of Apache Ant does not support previous
observations.

Another interesting finding is that the concept drift
phenomenon in not observed in our dataset. Concept
drift refers to unforeseen changes in time of a concept—
the dependency between class faults and complexity
metrics, in our case. If the relation between explanatory
variable (complexity metrics) and response variable
(class faults) changes with time (versions), the
prediction rules [23] should also change. In predicting
fault-prone modules, if concept drift exists, we should
see the aging of prediction models [24]. More
specifically, if concept drift exists in our negative
binominal regressions models, we should see (1) the
predicting performance of Model 1.3 decreases with
time (the release of new versions) in Table 5, as Version
1.4 through Version 1.7 might drift further away from
Version 1.3; and (2) the predicting performance of
Models 1.3 to 1.7 in Table 6 increases with versions as
the source dataset is more approaching the evaluating
dataset (Version 1.7). However, our analysis could not
find the evidence. According, we could not confirm the
existence of concept drift in our datasets.

C. Comparison with binary logistic regression

Following Equations 6 and 7, we can predict fault-
prone modules, where modules with one or more faults
are combined together and the specific number of faults
in each module is ignored. This is called binary analysis,
which means the predicted dependent variable only has
two values, faulty or fault-free. In contrast, binary
logistic regression is another commonly used technique
to predict fault-prone modules [25] [26] [27] [28] [29]
[30]. To evaluate the performance of our negative
binomial regression models, we use the same datasets to
build binary logistic regression models and compare
their performance against negative binomial regression
models. The results are summarized in Table 7, Table 8,
and Table 9.

68 Using Negative Binomial Regression Analysis to Predict Software Faults: A Study of Apache Ant

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 8, 63-70

Table 7: Comparisons of the recall rate of two regression models
(self-assessment)

Dataset (source and
evaluating) 1.3 1.4 1.5 1.6 1.7

Number of datasets 125 178 293 351 745
Negative binomial model 25% 8% 16% 42% 21%
Binary logistic model 55% 18% 44% 42% 39%

From Table 7 through Table 9, we can see that in

general, binary logistic regression models outperform
negative binomial regression models in the recall rate.
However, we should not be discouraged using negative
binomial regression models, because their strength is
predicting the number of faults in a specific module.

Table 8: Comparisons of the recall rate of two regression models:
forward-assessment (1)

Source dataset 1.3 1.3 1.3 1.3 1.3
Evaluating dataset 1.3 1.4 1.5 1.6 1.7
Negative binomial model 25% 10% 44% 28% 25%
Binary logistic model 55% 23% 56% 38% 36%

Table 9: Comparisons of the recall rate of two regression models:
forward-assessment (2)

Source dataset 1.3 1.4 1.5 1.6 1.7
Evaluating dataset 1.7 1.7 1.7 1.7 1.7
Negative binomial model 25% 17% 13% 42% 21%
Binary logistic model 36% 14% 33% 43% 39%

Another interesting observation in Table 8 and Table

9 is that the concept drift is not detected by the binary
logistic models either. It validates the same
observations using negative binomial regression models.
These observations confirm no concept drift exist in our
datasets.

Generally speaking, if concept drift exists in a
software system, it will be harder to build long-lasting
accurate prediction models; the prediction models have
to be adjusted to the new releases and new bug reports.
Without concept drift to worry about, negative
binominal regression analysis could be relatively easily
applied in real-world software development.

D. Multiple bug predictions

Using Equation 5, we can predict the possibilities of
multiple bugs in one module. The possibilities that a
module has two or more bugs, three or more bugs, and
four or more bugs are calculated using the following
formulas.

 ∑ (

) (

)

 (11)

 ∑ (

) (

)

 (12)

 ∑ (

) (

)

 (13)

Again, cut-off value 0.5 is used in these predictions.
If value of a module is greater than 0.5, we
will consider the module has n or more faults, where n
equals 2, 3, or 4. Otherwise, we will consider the
module does not have n or more faults.

In this experiment, first we examine the prediction
power of Model 1.3, which is based on Version 1.3. It is
used to predict the possibilities of multiple bugs in
Version 1.4 through Version 1.7. The result is
summarized in Table 10, where vivj indicates that vi
is the source dataset and vj is the evaluating dataset.
Next, we examine the prediction power of Model 1.3
through Model 1.6, which are based on Version 1.3
through Version 1.6. These models are used to predict
the possibilities of multiple bugs in Version 1.7. The
results are shown in Table 11, where vivj indicates
that vi is the source dataset and vj is the evaluating
dataset.

Table 10: Recall rate of multiple bug prediction: evaluation of Model
1.3

Number of bugs ≥ 2 ≥ 3 ≥ 4
1.31.4 0% 0% 0%
1.31.5 14% 0% 0%
1.31.6 50% 38% 20%
1.31.7 59% 54% 50%

Table 11: Recall rate of multiple bug prediction: evaluating on
Version 1.7

Number of bugs ≥ 2 ≥ 3 ≥ 4
1.31.7 59% 54% 50%
1.41.7 44% 45% 50%
1.51.7 77% 86% 100%

1.61.7 62% 55% 52%

We can see in Table 10 that Model 1.3 could not

detect any classes with multiple bugs in Version 1.4.
However, the performance of Model 1.3 gets better
when it is used on Versions 1.5, 1.6, and 1.7: higher
percentages of classes with multiple bugs are detected.
Based on the information we have, we could not explain
this behavior. We speculate it might be due to the
increasing of number of bugs from Version 1.4 to
Version 1.7. Or, it could also be due to the development
differences among these versions, which are unknown
to us.

In Table 11, all the models perform well on
predicting classes with multiple bugs in Version 1.7.
Specifically, Model 1.5 can accurately predict all the
classes that have 4 or more faults. If we compare these
results with bug distributions in Figure 1, the results
seem encouraging. For example, in Version 1.7, 27 out
of 745 (3.62%) modules have 4 or more faults, and
Model 1.5 can predict all of them.

We should note here, in these predictions, although
the recall rates are high, the prediction accuracy and
prediction precision are usually low, which indicates the

 Using Negative Binomial Regression Analysis to Predict Software Faults: A Study of Apache Ant 69

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 8, 63-70

high number of false positive predictions. This
accordingly might result in high cost and more effort in
software testing. However, in some specific domains,
such as mission critical software products, it is more
important to detect faults than reducing the testing
effort and testing cost. Therefore, negative binomial
regression could be a powerful approach in predicting
multiple bugs in a software module.

VI. Conclusions

In this paper, we studied the performance of negative
binomial regression models in predicting fault-prone
software modules. The study is performed on six
versions of an open-source objected-oriented project,
Apache Ant. Our study shows that negative binomial
regression is not as effective as binary logistic
regression in predicting fault-prone modules. However,
negative binomial regression is effective in predicting
multiple bugs in one module, which makes it superior to
binary logistic regression in this aspect.

Using negative binomial regression analysis, we
found no concept drift in our dataset. Concept drift
represents a changing relation between class complexity
metrics and the possibility a class having bugs. This
observation is further confirmed by binary logistic
regression analysis.

Through this study, we wish to enrich the literature of
using negative binomial regression analysis in
predicting fault-prone software modules. To apply this
approach in real world software quality assurance, more
studies should be performed and more knowledge and
experience should be collected and disseminated.

Acknowledgement

This study is partially supported by the Faculty
Research Grant of Indiana University South Bend.

References

[1] Kastro Y, Bener A. A defect prediction method for
software versioning. Software Quality Journal, 16
(4), 2008, pp. 543–562.

[2] Nagappan N, Ball T, Zeller A. Mining metrics to
predict component failures. Proceedings of the
28th International Conference on Software
Engineering, Shanghai, China, May 2006, pp.
452–461.

[3] Tosun A, Bener A B, Turhan B, Menzies T.
Practical considerations in deploying statistical
methods for defect prediction: a case study within
the Turkish telecommunications industry.
Information & Software Technology 52 (11), 2010,
pp. 1242–1257.

[4] Williams C C, Hollingsworth J K. Automatic
mining of source code repositories to improve bug

finding techniques. IEEE Transactions on
Software Engineering, 31 (6), 2005, pp. 466–480.

[5] Turhan B, Bener A. Analysis of Naive Bayes’
assumptions on software fault data: an empirical
study. Data and Knowledge Engineering Journal,
68 (2), 2009, pp. 278–290.

[6] Turhan B, Bener A, Kocak G. Data mining source
code for locating software bugs: a case study in
telecommunication industry. Expert Systems with
Applications, 36 (6), 2009, pp. 9986–9990.

[7] Kanmani S, Uthariaraj V R, Sankaranarayanan V,
Thambidurai P. Object oriented software fault
prediction using neural networks. Information and
Software Technology 49 (5), 2007, pp. 483–492.

[8] Tosun A, Turhan B, Bener A. Ensemble of
software defect predictors: a case study.
Proceedings of the 2nd International Symposium
on Empirical Software Engineering and
Measurement, Bolzano/Bozen, Italy, September
16-17, 2010, pp. 318–320.

[9] Turhan B, Menzies T, Bener A B, Di Stefano J S.
On the relative value of cross-company and
within-company data for defect prediction.
Empirical Software Engineering 14(5), 2009,
pp.540–578.

[10] Pai G J, Dugan J B. Empirical analysis of software
fault content and fault proneness using Bayesian
methods. IEEE Transactions on Software
Engineering, 33 (10), 2007, pp. 675–686.

[11] Jureczko M, Spinellis D. Using object-oriented
design metrics to predict software defects. Models
and Methodology of System Dependability—
Proceedings of RELCOMEX 2010: Fifth
International Conference on Dependability of
Computer Systems DepCoS, Monographs of
System Dependability, Wroclaw, Poland, 2010, pp.
69–81.

[12] Ostrand T J, Weyuker E J, Bell R M. Predicting
the location and number of faults in large software
systems. IEEE Transactions on Software
Engineering, 31 (4), 2005, pp. 340–355.

[13] Janes A, Scotto M, Pedrycz W, Russo B,
Stefanovic M, Succi G. Identification of defect-
prone classes in telecommunication software
systems using design metrics. Information
Sciences 176 (24), 2006, pp. 3711–3734.

[14] Bell R M, Ostrand T J, Weyuker E J. Looking for
bugs in all the right places. Proceedings of 2006
International Symposium on Software Testing and
Analysis, Portland, Maine, USA, 2006, pp. 61–72.

[15] Ostrand T J, Weyuker E J, Bell R M. Where the
bugs are. Proceedings of 2004 International
Symposium on Software Testing and Analysis,
Boston, MA, pp. 86–96.

[16] Hilbe J. Negative Binomial Regression,
Cambridge University Press; 1 edition (July 29,
2007)

70 Using Negative Binomial Regression Analysis to Predict Software Faults: A Study of Apache Ant

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 8, 63-70

[17] Boetticher G, Menzies T, Ostrand T. PROMISE
Repository of empirical software engineering data
http://promisedata.org/ repository, West Virginia
University, Department of Computer Science,
2007.

[18] Chidamber S, Kemerer C. A metrics suite for
object-oriented design, IEEE Transactions on
Software Engineering 20 (6) (1994) pp. 476–493.

[19] CKJM metrics description.
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.ht
ml

[20] http://snow.iiar.pwr.wroc.pl:8080/MetricsRepo/
[21] http://en.wikipedia.org/wiki/Precision_and_recall
[22] Yu L, Mishra A. Experience in predicting fault-

prone software modules using complexity metrics,
Quality Technology & Quantitative Management
(ISSN 1684-3703), to appear.

[23] Tsymbal A. The problem of concept drift:
definitions and related work, Technical report,
TCD-CS-2004-15, Computer Science Department,
Trinity College Dublin, 2004. Available at:
https://www.cs.tcd.ie/publications/tech-
reports/reports.04/TCD-CS-2004-15.pdf.

[24] Yu L, Schach S R. Applying association mining to
change propagation. International Journal of
Software Engineering and Knowledge Engineering,
18 (8), 2008, pp. 1043–1061.

[25] Olague H M, Etzkorn L H, Messimer S L,
Delugach H S. An empirical validation of object-
oriented class complexity metrics and their ability
to predict error-prone classes in highly iterative, or
agile, software: a case study. Journal of Software
Maintenance and Evolution: Research and Practice,
20 (3), 2008, 171–197.

[26] Olague H M, Etzkorn L H, Gholston S,
Quattlebaum S. Empirical validation of three
software metrics suites to predict fault-proneness
of object-oriented classes developed using highly
iterative or agile software development processes.
IEEE Transactions on Software Engineering, 33
(6), 2007, pp. 402–419.

[27] Zhou Y, Leung H Empirical analysis of object-
oriented design metrics for predicting high and
low severity faults. IEEE Transactions on
Software Engineering, 32 (10), 2006, pp. 771–789.

[28] Menzies T, Turhan B, Bener A, Gay G, Cukic B,
Jiang Y. Implications of ceiling effects in defect
predictors. Proceedings of the 4th International
Workshop on Predictor Models in Software
Engineering, Leipzig, Germany, May 10-18, 2008,
pp. 47–54.

[29] Zhou Y, Xu B, Leung H. On the ability of
complexity metrics to predict fault-prone classes in
object-oriented systems. Journal of Systems and
Software, 83 (4), 2010, pp. 660–674.

[30] Shatnawi R, Li W. The effectiveness of software
metrics in identifying error-prone classes in post-
release software evolution process. Journal of

Systems and Software, 81 (11), 2008, pp. 1868–
1882.

Liguo Yu: An associate professor at Computer Science
and Informatics, Indiana University South Bend. He
received his PHD degree from Vanderbilt University.
His research area is in software engineering.

http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html
http://snow.iiar.pwr.wroc.pl:8080/MetricsRepo/
https://www.cs.tcd.ie/publications/tech-reports/reports.04/TCD-CS-2004-15.pdf
https://www.cs.tcd.ie/publications/tech-reports/reports.04/TCD-CS-2004-15.pdf

