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Andrew Frederick Barrett 

FACILITATING VARIABLE-LENGTH COMPUTERIZED CLASSIFICATION TESTING 

VIA AUTOMATIC RACING CALIBRATION HEURISTICS 

Computer Adaptive Tests (CATs) have been used successfully with standardized tests.  

However, CATs are rarely practical for assessment in instructional contexts, because large 

numbers of examinees are required a priori to calibrate items using item response theory (IRT).  

Computerized Classification Tests (CCTs) provide a practical alternative to IRT-based CATs.  

CCTs show promise for instructional contexts, since many fewer examinees are required for item 

parameter estimation.  However, there is a paucity of clear guidelines indicating when items are 

sufficiently calibrated in CCTs.   

Is there an efficient and accurate CCT algorithm which can estimate item parameters 

adaptively?  Automatic Racing Calibration Heuristics (ARCH) was invented as a new CCT 

method and was empirically evaluated in two studies. 

Monte Carlo simulations were run on previous administrations of a computer literacy 

test, consisting of 85 items answered by 104 examinees.  Simulations resulted in determination 

of thresholds needed by the ARCH method for parameter estimates.  These thresholds were 

subsequently used in 50 sets of computer simulations in order to compare accuracy and 

efficiency of ARCH with the sequential probability ratio test (SPRT) and with an enhanced 

method called EXSPRT.  In the second study, 5,729 examinees took an online plagiarism test, 

where ARCH was implemented in parallel with SPRT and EXSPRT for comparison.   

Results indicated that new statistics were needed by ARCH to establish thresholds and to 

determine when ARCH could begin.  The ARCH method resulted in test lengths significantly 
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shorter than SPRT, and slightly longer than EXSPRT without sacrificing accuracy of 

classification of examinees as masters and nonmasters.  

This research was the first of its kind in evaluating the ARCH method.  ARCH appears to 

be a viable CCT method, which could be particularly useful in massively open online courses 

(MOOCs).  Additional studies with different test content and contexts are needed. 
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CHAPTER I. INTRODUCTION 

1.1 Background 

Pressure is mounting on educators to better prepare learners to succeed in an 

increasingly knowledge driven economy (Gardner et al., 1983; Mourshed et al., 2010). A 

fundamental component common to many proposed strategies for improving the 

effectiveness of education (e.g. Reigeluth et al., 2008; Christensen et al. 2008; Collins & 

Halverson, 2009) involves ensuring information about the current state of an individual 

learner’s knowledge informs and shapes educational decision-making. A lack of information 

about learner knowledge can hinder associated educational improvement efforts (Popham, 

2003). Consequently, the extent to which an educator may access timely and accurate 

information about an individual learner’s knowledge is a critical component of many efforts 

to improve the effectiveness of education. 

Educator access to information about learner knowledge depends on the availability 

of two, often scarce, resources: time and quality assessments. Attempting to locate an 

appropriate assessment, its administration, and associated grading takes precious time. If a 

suitable assessment is not available then a choice must be made between creating one and 

abandoning the assessment effort. Given that educators often have neither the time nor the 

knowledge required to create quality assessments (Crooks, 1988; Black, 1993; Black & 

Wiliam, 1998), the choice between no and poor assessment represents a no-win situation. 

Educators need easy access to existing quality assessments that minimize time demands 

placed on both learners and educators in order to facilitate educator access to information 

about learner knowledge and to support associated efforts to improve education. 
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Trends in three areas may contribute to making high quality and efficient assessments 

increasingly available to educators in the not too distant future: Open Educational Resources 

(OERs), Computer Adaptive Testing (CAT), and mobile computing. OERs are defined as 

“digitised materials offered freely and openly for educators, students and self-learners to use 

and reuse for teaching, learning and research” (Hylén & Schuller, 2007). The OER 

movement provides the paradigm for increased creation, distribution, and use of educational 

resources such as digital assessments. However, access is only part of the problem – 

assessments must also be high quality and efficient.  

CAT is a set of approaches whose primary aim is to dramatically improve test 

efficiency without compromising test validity and reliability (Thompson, 2007). Use of CAT 

by educators could reduce the class time necessary to administer an assessment. CAT 

approaches typically include procedures for examining the quality and validity of test items 

to address test quality. CAT depends on automating scoring of examinee responses and, 

therefore, is only appropriate for assessing specific types of learning. However, when CAT is 

appropriate, it could further reduce time demands placed on educators by automating 

grading. 

The computing resources required for CAT, both from the perspective of the test 

administrator and that of examinees, is increasing available due to the growing access to 

computing resources, particularly due to advances in mobile computing (Triantafillou, 

Georgiadou, & Economides, 2008). Mobile computing involves new types of devices and a 

different approaches to software. Devices such as net-books, tablet computers, and 

smartphones can provide Internet access and substantial computing resources at a fraction of 

the cost of traditional desktops or laptops making them particularly attractive for use in 
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educational contexts. Free or low cost applications available to a variety of devices via a web 

browser (e.g. Google Docs) or app stores are increasingly competing with often-expensive 

software (e.g. Microsoft Office). While the application logic of CAT can be far from simple, 

it is not too complex to be delivered via this new approach to software on mobile devices. 

1.2 Problem 

Unfortunately, educators currently do not have open access to a wide range of 

assessments that apply CAT approaches to efficiently and accurately reveal what learners 

know. Furthermore, it is unlikely that they will have this access in the near future unless a 

critical problem is dealt with. If this problem is not addressed then an educator’s lack of 

information about what their learners know will threaten the success of many efforts to 

improve education and better prepare learners to succeed in an increasingly knowledge 

driven economy. The following will first detail the general problem before explaining the 

specific problem that was the focus of this research. 

The general problem is that heavy resources requirements associated with creating 

assessments that use CAT approaches, particularly item calibration, makes CAT impractical 

in all but a few large-scale, high-stakes, and/or highly profitable contexts. CAT depends on 

the availability of software and hardware for test administration, a bank of test items, and 

specific information about items established during item calibration. While CAT software 

can be reused across many testing contexts, test items are far less versatile. Often test items 

are only applicable to a narrow set of learning objectives.  

To make matters worse, arduous item calibration approaches yield results whose 

value may be questionable and always degrade with use. While only one individual may be 

able to create an item, item calibration can involve gathering responses from hundreds or 



 

 4

thousands of examinees before the item can be used in CAT. Further, large motivational 

differences have been shown to exist between examinees who participate in item calibration, 

an often low or no stakes context, and the examinees for which tests are being designed for, 

which raise questions about the validity of item calibration data collected (Wise & DeMars, 

2005; Makransky, 2008). Finally, items and associated calibration data degrade with use. 

Item exposure to examinees via testing serves to increase the odds of the item becoming 

compromised and, therefore, less effective for assessing examinee ability.  

Item calibration need not be quite so involved. CAT approaches that make 

classification decisions about examinee knowledge, called Variable-Length Computerized 

Classification Testing (VL-CCT), have been shown to be highly efficient and accurate while 

requiring a substantially less arduous calibration phase. Application of Wald’s () Sequential 

Ratio Probability Test (SPRT) requires little, if any, item calibration and has been shown to 

make accurate classification decisions while cutting average test lengths to a fourth of the 

traditional full length tests (Frick, 1989). Frick (1992) demonstrated that a calibration phase 

involving as few as 25 examinees from each classification group responding to all items in an 

item-bank and a modified version of SPRT that incorporated expert systems reasoning 

(EXSPRT) enabled even more efficient classification testing without compromising 

accuracy.  

However, it cannot be assumed that the 25 examinees per classification group 

guideline is always appropriate for sufficiently calibrating an item-bank to enable VL-CCT 

testing. The guideline is based on only two sets of test data and does not factor in key details 

about the items being calibrated (e.g. item discrimination and difficulty) that may impact 

how many responses must be collected during item calibration. Practical and specific 
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guidelines regarding when sufficient information has been collected during Classical Test 

Theory item calibration are not available. 

Due to the lack of specific and practical item calibration guidelines, the burden of 

item calibration is unlikely to be appropriate for calibrating items to enable accurate 

classification decisions. Instead, item calibration is likely too heavy or too light. Faced with 

uncertainty about how much information to collect, test administrators and researchers 

(Rudner, 2002a; 2009) understandably take the safe approach of basing item parameter 

estimates on large calibration sample sizes. However, the safe approach, involving hundreds 

or thousands of examinees, is not feasible in most educational contexts. As such, adoption of 

VL-CCT and availability of quality information about learner knowledge remains sparse. 

 In addition, there are several issues with the current state of VL-CCT research. First, 

studies involving the simulation of VL-CCT methods (Rudner, 2002a; 2009) use item 

information gathered during a simulated calibration phase involving a factor of ten more 

examinees than the number of examinees suggested by Frick (1992), casting into doubt the 

applicability of study findings to many real-world settings where a calibration sample of such 

size is impractical. Second, few studies (e.g. Tao et al., 2008) have been found that report on 

VL-CCT methods that have been used in real-world settings since the handful of studies 

conducted in the nineties (Welch & Frick, 1993; Welch, 1997) and these studies have 

limitations, recognized by the authors, including: the lack of a performance incentives for test 

takers, relatively small N's impacting agreement calculations, clustering of scores around the 

cut-off, and possible violation of the assumption that the test measured a single 

unidimensional learning objective. 
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 While VL-CCT approaches represent a promising approach for addressing the general 

problem of high resource requirements limiting application of CAT in instructional contexts, 

a specific problem must be addressed before the promise of VL-CCT can be realized – When 

has sufficient item calibration data been gathered to enable efficient and accurate VL-CCT?  

1.3 Purpose 

This research developed and evaluated a process for determining when sufficient item 

calibration data has been gathered to enable efficient and accurate VL-CCT. This dissertation 

presents a new VL-CCT calibration approach and an associated modification of the EXSPRT 

algorithm. The new VL-CCT calibration approach is labeled Automatic Racing Calibration 

Heuristics (ARCH). The modification of the EXSPRT algorithm involves the measured use 

of item-level parameter estimates only once they have become sufficiently calibrated. 

The advantage of the ARCH approach is that with no or a very small initial item 

calibration phase CAT can begin and, through the course of testing, increasingly efficient 

VL-CCT approaches may be deployed that typically require a larger more laborious item 

calibration phase. ARCH places two VL-CCT approaches in a race to classify an examinee 

in as few items as possible. ARCH is automatic because item parameter estimates are 

continuously updated through the course of live testing after a small initial item calibration 

phase. Initially, availability of limited item calibration data would allow the SPRT VL-CCT 

approach to win the classification race because it would be the only approach with the data 

available to make a classification decision. However, the collection of additional item 

calibration data via live testing leads to increasingly precise item-level parameter estimates 

and makes the more efficient VL-CCT approaches that use item-level parameter estimates 
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and require more calibration data (i.e. EXSPRT) more competitive in the examinee 

classification race.  

Specifically, this study: 

(1) Examines how specific item characteristic measures can be leveraged to decide 

when an item-level parameter estimate has been sufficiently calibrated for use 

with EXSPRT without exceeding a priori established classification error rates, 

(2) Compares the decisions reached by a joint application of SPRT and EXSPRT 

calibrated via ARCH to decisions reached by the total test and traditionally 

calibrated SPRT and EXSPRT, 

(3) Compares the efficiency of a joint application of SPRT and EXSPRT calibrated 

via ARCH to traditionally calibrated SPRT and EXSPRT, and 

(4) Tests the ARCH approach in both simulated and real-world testing environments.  

1.4 Research Questions 

1. When is an item sufficiently calibrated for use with the EXSPRT based component of 

ARCH? It was expected that item characteristic measures based on hypothesis testing 

techniques would indicate the discrimination and precision of item parameter 

estimates. Furthermore, it was expected that threshold values of these measures 

would indicate that sufficient information has been collected for an item such that use 

of the item parameters with EXSPRT would be unlikely to contribute to increasing 

classification error rates above those established a priori. However, since no previous 

studies have examined the use of hypothesis testing techniques to address item 

calibration issues in VL-CCT it could not be predicted which specific item 
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characteristic measures or values of item characteristic measures would best indicate 

that sufficient calibration data has been collected. 

2. How accurate is ARCH in comparison to a priori error rates, SPRT, and EXSPRT? It 

was expected that ARCH, like traditionally calibrated SPRT and EXSPRT, would 

make classification decisions within error rates established a priori. 

3. How efficient is ARCH in comparison to SPRT and EXSPRT? It was expected that 

before ARCH was using item-level parameters for all the items in the item-bank the 

proposed approach would be more efficient than SPRT but less efficient than 

EXSPRT. However, once ARCH uses item-level parameters for all the items in the 

item-bank, it was expected that the proposed approach would be more efficient than 

SPRT and as efficient as EXSPRT. 

 

1.5 Significance 

 In general, this research helps to reduce barriers associated with item calibration that 

hinder adoption of VL-CCT methods in educational contexts in order to increase the quality 

of classroom assessment practice and provide educators and researchers with better and more 

timely information about learner knowledge. The potential of computers to enable more 

efficient classroom assessment has long been recognized. For example, with respect to using 

computers in classroom assessment Ferguson states “During the course of a school year, 

large numbers of hours now spent in testing could be invested in instructional activities or in 

supplementary diagnostic testing” (Ferguson, 1969, p. 15). Despite the recognition of the 

potential of computers to positively impact classroom assessment and the exponential 

advances in computing power since Ferguson’s statement, their use remains rare. 
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The significance of this study can be further explained by highlighting specific 

contributions it can make to: (1) the development of information-age learning management 

systems (LMS); (2) the evaluation of the effectiveness of instructional interventions 

particularly those involving classroom technology integration; (3) the establishment of a 

bridge (or arch) between national and international large-scale assessment and classroom 

assessment practice. 

 VL-CCT is a technology well suited to contribute valuable functionality to major 

roles in an information-age LMS. According to Reigeluth and colleagues (2008) the four 

primary roles for an information-age LMS are: record keeping, planning, instruction, and 

assessment. On first glance it may seem that VL-CCT only relates to assessment, however, 

the authors make it clear that the four roles are interconnected in an information-age LMS. 

Assessment produces information about learner knowledge that is the focus of record 

keeping and necessary for making evidence based decisions related to planning and 

providing learner-centered instruction. In turn, assessment data from the implementation of a 

personal learning plan (Watson & Reigeluth, 2008) and associated instruction are fed back 

into the LMS’s record keeping system. Key decisions an information-age LMS are meant to 

support include determining if attainment of a specific standard is within the reach of a 

particular learner and if the standard has been met. Both are examples of classification 

decisions that VL-CCT can serve to inform. A LMS not able to promote efficient, valid, and 

reliable classification decisions about learner knowledge may not meet the definition of a 

truly information-age LMS given how critical revealing the state of learner knowledge 

before, during, and after instruction is to providing learner-centered instruction. 
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 Computerized classification tests may be particularly appropriate for evaluating the 

effectiveness of classroom technology integration. The effectiveness of classroom technology 

integration can be measured in terms of the impact it has on promoting student learning 

(Brush, Glazewski, & Hew, 2008). However, integrating technology into classrooms pose 

challenges for the assessment of learning. If students are gaining knowledge and skills that 

take place in technology-enhanced environments (e.g. use of spreadsheet software to analyze 

data or evaluating if an online source is trustworthy) then assessment of student ability to 

perform technology-supported tasks may be difficult or impossible with traditional paper and 

pencil assessments. VL-CCT may be especially useful in assessing abilities that include a 

technological component for two reasons. First, test items, particularly those that include the 

use of innovative items (Parshall & Harmes, 2007), can be presented in a way that closely 

mimic or are indistinguishable from the authentic task to be accomplished with the aid of 

technology. Second, in VL-CCT examinee responses are provided in digital form and, as 

such, may be able to be automatically assessed without human involvement thus increasing 

efficiency and reducing the grading burden for educators. Furthermore, the need to assess 

abilities that include a technological component does not apply to K-12 students alone. 

Existing survey measures of teacher educational technology beliefs (e.g. Brush, 2008), 

technological pedagogical knowledge (e.g. Barrett, 2010), and technological pedagogical and 

content knowledge (e.g. Schmidt et al., 2009) demonstrate the considerable interest 

researchers have in determining the technology related skills of teachers as well as students. 

 VL-CCT is uniquely positioned to play a key role in balanced assessment frameworks 

designed to systematically serve complimentary but unique assessment functions. In a 

balanced assessment framework different levels of assessments align with each other in terms 
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of their learning objectives but their forms differ to meet competing formative and 

summative functions (Hickey et al., 2006). Hickey states that close level assessments focus 

on promoting student learning through the generation of formative information about a 

students’ authentic practice often via discourse. Examples of discourse-based assessment 

include Duschl and Gitomer’s assessment conversations (1997) and online formative peer 

assessment activities (e.g. Barrett & Howard, 2010). At the other end of the spectrum are 

distal assessments focused on the generation of standardized summative information (e.g. 

international large-scale assessment) that are primarily used to compare academic 

achievement among groups and typically apply IRT approaches to precisely place learner 

ability on a continuum (Hickey et al., 2006). Between distal and close assessments are 

proximal assessments that provide a blend of formative and summative information. 

The three central ideas of the balanced assessment framework are: (1) different levels 

of assessment are needed to serve different functions and meet different stakeholder needs; 

(2) performance at one assessment level should reflect performance at other levels of 

assessment; and (3) if performance at one level is not reflective of performance at other 

levels then assessments in the framework are not sufficiently aligned and need adjustment 

(Hickey et al., 2006). The goal of an aligned balanced assessment framework is to enable 

educators to focus more on activities that promote student learning and less on test 

preparation while still positively impacting student performance on large-scale standardized 

tests. 

 VL-CCT have a unique and important role to play in balanced assessment 

frameworks. Classification tests are like norm-referenced large-scale standardized 

assessments in that they provide summative information about learner ability. However, 
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classification tests provide specific information about learner ability better suited for serving 

formative assessment functions aimed at promoting learning – specific feedback can be given 

to learners about what they know and aid selection of learning experiences to address 

particular gaps. For example, a large-scale standardized test may suggest that a student is in 

the seventieth percentile of fourth graders in terms of mathematical reasoning but what is an 

educator, parent, or student to do with such information if they want to improve the student’s 

mathematical reasoning ability? On the other hand, information from a VL-CCT that 

indicates that the same student has mastered word problems that required single digit 

multiplication but has not mastered those involving single digit division helps to focus where 

the student does or does not require additional instruction and points the way to improving 

subsequent large-scale standardized test scores. 

 Finally, VL-CCTs could be extremely valuable in massively open online contexts (e.g 

MOOCs) that have been criticized as frequently providing “very little timely and informative 

feedback on learner performance” (Spector, 2014, p. 389). Efficient and accurate summative 

assessment is a key strength of VL-CCTs. Furthermore, limiting the number of items on a 

test exposes fewer items in the item bank to a given examinee, which serves to improve test 

security. If credentials awarded via MOOCs have value, some individuals will invariably 

attempt to cheat to earn the credentials. Use of VL-CCTs, particularly methods that use 

random item selection, can hinder cheating by making answer keys difficult develop through 

nefarious methods.  

1.6 Definition of Key Terms Used 

 The following briefly defines key terms used and directs the reader to where 

additional information can be found. Here, a bottom-up approach is used to present the key 
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terms associated with items, tests, and finally key theories related to assessment to provide 

the reader with definitions of central assessment terms and concepts that are frequently 

referenced in the rest of the study. 

1.6.1 Item Terms 

 Item. An item is the fundamental unit of a test and contains two distinct components: 

the stem and alternative of response actions (Burton et al., 1991). Traditional multiple-choice 

items are typically textual and contain a stem that poses a problem and alternative response 

actions (e.g. true/false or a set of alternatives labeled for easy identification). In the case of 

dichotomous scoring of items, which are evaluated as either correct or incorrect, there is a 

unique correct response action or answer with the remaining representing distractors. 

According to Burton (1991, p. 3) “The purpose of the distractors is to appear as plausible 

solutions to the problem for those students who have not achieved the objective being 

measured by the test item.” Partial-credit or polytomous scoring, on the other hand, enables 

each alternative response action to be evaluated at a more granular level with a measure of 

the degree of correctness replacing a binary correct/incorrect evaluation.  

 Items, particularly when delivered via computers, need not be limited to text. 

However, a key restriction is that after presenting the item and allowing the examinee to 

respond that the response be sufficiently captured to enable, in the case of computerized 

testing, the response to be evaluated immediately (Parshall & Harmes, 2007). This restriction 

leaves room for a wide range of innovative item types that are discussed in detail by Parshall 

and Harmes (2007).  

 Item Parameter Estimates. Item parameter estimates are a set of measures that 

represent the probability of an examinee with specific characteristics providing a particular 
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response to an item. Item parameter estimates may take the form of a bounded set of 

probabilities or may be represented by a mathematical function that provides the probability 

of a correct answer associated with a continuous range of examinee ability values. In both 

cases, the item parameter estimates are typically established during item calibration and are 

used during testing to estimate an examinee’s ability (either in the form of a classification 

decision or a point estimate of ability). 

 Item-bank. An item-bank is a set of items that can be selected for administration to an 

examinee during a test. Item-banks can be unidimensional or multidimensional. A 

unidimensional item-bank only includes items that measure the same construct whereas a 

multidimensional item-bank includes items that measure two or more constructs. Items may 

be selected from an item-bank randomly or using well-defined algorithms that use a variety 

of factors (e.g. current examinee ability estimate, item exposure rate, length of test, etc.) to 

decide which item to select next. 

1.6.2 Test Terms 

 Test. The term test refers to a set of items that are presented to an examinee for the 

purpose of achieving a goal related to assessing examinee knowledge. A test may be fixed or 

variable in length. A test can always present the same items in the same order or present 

different items in different sequence. Tests may be delivered via computing resources, on 

paper, observation and assessment of a person’s performance in a simulated or real context 

that requires application of knowledge or skills, or through some other method of 

communication (e.g. an oral test). 

 Test Administration. The term test administration refers to giving the test to a single 

examinee. While test length may refer either to the number of items presented in a specific 
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test administration or the length of time a specific test administration took, the prior is more 

common and will be the definition used in this text. Test duration refers to the time taken to 

complete a particular test administration. A test can be norm or criterion-referenced.  

Norm-referenced Testing. Norm-referenced testing is when a test precisely estimates 

an examinee’s ability typically for ranking or sorting purposes.  

Criterion-referenced Testing. Criterion-referenced testing, on the other hand, places 

an examinee into one of two or more mutually exclusive groups (e.g. master or nonmaster; 

basic, proficient, or advanced ability, etc.) based on an "absolute standard of quality" (Glaser, 

1963, p. 519). 

1.6.3 Testing Theory Terms 

Classical Test Theory and Item Response Theory (IRT) are two central theoretical 

approaches to testing.  

Classical Test Theory. A key tenet of Classical Test Theory is that an examinee’s 

score on a test (e.g. 85 correct out of 100) is based on two components: their true score and 

test measurement error. Test measurement error includes all the aspects of the test that may 

increase or decrease an examinee’s score that have nothing to do with the examinee’s ability 

with respect to the constructs that the test is supposed to measure. Cheating, guessing the 

correct answer, and poor item construction are examples of factors that increase test error. 

The true score is the score an examinee would get if measurement error had been entirely 

eliminated. 

Item Response Theory. IRT, also known as latent trait theory, was developed by 

Frederic Lord and is the focus of the bulk of current testing research. Central to IRT is the 
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idea that the probability of an examinee with a particular ability providing a specific response 

can be modeled with a mathematical function. IRT can be applied in both criterion and norm-

referenced testing context but requires that items be calibrated with a calibration sample that 

traditionally involves hundreds or thousands of examinees. 
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CHAPTER II. LITERATURE REVIEW 

2.1 Overview 

 The literature review will first define Variable-Length Computerized Classification 

Testing (VL-CCT) and outline the specific goals and focus of the literature review. VL-CCT 

will then be situated within the larger context of approaches to testing and decision-making 

before getting into the specific design components of VL-CCT, which are used to narrow the 

scope of the literature review. Early research relevant to VL-CCT based on Classical Test 

Theory will be reviewed before delving more deeply into recent relevant research. 

2.1.1 Definition of VL-CCT 

 Computerized Classification Testing (CCT) are tests that use computing technology 

to place examinees into two or more mutually exclusive groups (Spray & Reckase, 1996). 

Thompson (2007) distinguishes CCT approaches as being fixed-length (FL) or variable-

length (VL) and suggests that the term computerized classification testing be reserved for 

“the broader topic of classification exams administered by computer” (Thompson, 2007, p. 

1). VL-CCT uses information about examinees, their responses to items, and the test items 

themselves to administer items until specific termination criteria related to making a 

classification decision are met thus, unlike FL-CCT, allowing test length to vary. The goal of 

VL-CCT, the classification of an examinee into one or more mutually exclusive groups, is 

different from other testing goals such as precise estimation of an examinee’s ability or 

determining an examinee’s rank within a larger population.  

2.1.2 Goals and Focus 

 The general goal of this literature review is to identify studies that examine VL-CCT 

approaches based on Classical Test Theory, subsequently referred to as classical VL-CCT. 
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Specifically, the literature review is focused on supporting two assertions that provide the 

impetus for the current study: (1) Classical VL-CCT approaches are viable for use in 

instructional contexts; (2) Lack of specific guidelines regarding the calibration of items for 

use with classical VL-CCT approaches hinder their application and adoption in instructional 

contexts. 

A top-down approach is taken to first outline where VL-CCT fits within the larger 

context of testing and decision-making before presenting the five design components of VL-

CCT in order to contrast classical VL-CCT with other approaches. The literature reviewed 

falls into two broad categories: historical studies that detail the development of classical VL-

CCT and recent research that supports the viability of classical VL-CCT or helps to define 

the gap in our understanding of item calibration in classical VL-CCT. 

2.2 Approaches to Testing and Decision Making 

 Understanding where VL-CCT based on the Classical Test Theory psychometric 

model fits into the larger context of testing requires that the associated nomenclature used be 

crystal clear. The lack of a standardized nomenclature in testing literature has been 

recognized (Thompson, 2007) and the use of acronyms that have common letters is frequent 

(e.g. CAT, CBT, and CCT), consequently, distinguishing among different types of test 

approaches can be challenging. Table 1 presents a proposed extended version of the 

nomenclature suggested by Thompson (2007) whose purpose is twofold: (1) to clarify test 

nomenclature for use in the remainder of the proposal and (2) to provide a framework for 

understanding what falls under the scope of the literature review, VL-CCT, and what does 

not. 
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2.2.1 Testing Attributes, Options, and Abbreviations 

 Commonly used terms such as computer adaptive testing (CAT) and computer based 

testing (CBT) have been criticized (Thompson, 2007; Rudner, 2009) for their lack the 

precision which has contributed to difficulties in distinguishing amongst different types of 

testing approaches and associated research. Every test has specific testing attributes with 

respect to length, deployment method, and goal. Each of these three attributes will be 

discussed in turn below. 

Table 1. Testing Attributes, Options, and Abbreviations Framework 

Testing Attribute Available Options Abbreviation 

Length Fixed-Length FL 

Variable-Length VL 

Deployment Method Computerized C 

Traditional T 

Goal Ability Classification C 

Ability Estimation E 

 

The length of a test can be fixed or variable. A variable-length test, frequently 

referred to as an adaptive test, is any test whose length varies according to a pre-established 

set of rules that typically define the conditions under which the test terminates (e.g. 

confidence in a classification decision or precision of an ability estimate) (Thompson, 2007). 

The goal of variable-length testing is to achieve the purpose of the test (e.g. a classification 

decision or point estimate of ability) more efficiently than fixed-length tests without 

compromising reliability or validity. With fixed-length tests all examinees receive tests with 

the same number of items. 
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Table 2. Example Tests Associated with Combinations of Testing Attributes 

 Length 

 Fixed Variable 

 Deployment Method Deployment Method 

Goal Computerized Traditional Computerized Traditional 

Ability 

Classification 

Current test 

associated with 

Indiana University 

plagiarism tutorial  

Connecticut 

Mastery Test 

National Council 

Licensure 

Examination – 

Registered Nurses 

(NCLEX-RN) 

Many job 

interviews 

Ability 

Estimation 

Graduate Record 

Examination 

(GRE) 

Trends in 

International 

Mathematics 

and Science 

Study (TIMSS) 

Graduate Record 

Examination 

(GRE) 

Binet IQ test 

(Binet & 

Simon, 1905) 

 

 There is an issue with focusing on test-length instead of whether the test is adaptive 

or not – it is possible for a fixed-length test to be adaptive. For example, a test that selects 

items from an item-bank based on previous examinee responses but always presents the same 

number of items would be considered both fixed-length and adaptive. 

Fixed branching approaches to adaptive testing (e.g. Linn et al., 1969) provide tests 

where every examinee responds to the same number of items but selection of items is 

dependent on examinee responses and the location of items in a pyramid or tree structure. 

Given that adapting a test is typically associated with increasing test efficiency (i.e. enabling 

tests to terminate once specific conditions are met) the negatives associated with the 

increased complexity of adding an additional testing attribute to the framework in Table 1 
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(e.g. adding an item selection attribute with two options: flexible and inflexible) is viewed as 

greater than possible benefits that such an addition would provide. 

 Two primary methods for deploying a test are via computer resources or using 

traditional approaches (e.g. orally or using paper and pencil). Thompson (2007), in his effort 

to clarify nomenclature related to testing, suggests that variable-length testing requires the 

use of computing resources (Thompson, 2007). However, Thompson’s suggestion could 

confuse rather than clarify since examples of variable-lengths tests that have not used 

computers to vary test length do exist. Early research on variable-length testing by both Binet 

(1905) and Hutt (1947) deployed variable-length tests where a human examiner took the 

place of the computer in selection of items to present to the examinee. The complexity of 

providing a variable-length test using traditional methods may make non-computerized 

deployment seem unreasonable. However, many job interviews and live performance tests 

are both variable in length and adaptive with on-the-spot human judgment applied to make 

decisions about what task or question the examinee should do next and when the test should 

end. Table 1 treats length and deployment method as two unique test attributes to avoid 

confusion and to leave room for the possibility of a variable-length test deployed via 

traditional methods. 

 The two primary goals of testing are classification or estimation of examinee ability 

(Rudner, 2009). Recall, classification decisions place an examinee into one of two or more 

mutually exclusive groups (e.g. master or nonmaster; basic, proficient, or advanced ability, 

etc.) based on an "absolute standard of quality" (Glaser, 1963, p. 519). A point estimate of 

ability, on the other hand, is based "upon a relative standard" (Glaser, 1963, p. 519) and 
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typically takes the form of a numerical score on a continuous scale (e.g. a score of 600 on the 

verbal component of the GRE). 

  The value of the framework presented in Table 1 can be illustrated by how it can be 

used clear-up confusion over the use of the term Computer Adaptive Testing. Welch (1997) 

asserts “Since adaptive tests are usually mastery-type tests, they are criterion-referenced as 

opposed to norm-referenced” (p. 9). Parshall and colleges (2002), on the other hand, contrast 

computerized adaptive testing (CAT) with computerized classification testing (CCT) by 

indicating that the former is focused on determining a point estimate of ability whereas the 

later classifies examinee ability into two or more categories. Thompson (2007) supports 

Parshall’s perspective when he associates CAT with point estimates of ability that are 

typically applied in norm-referenced testing. 

 Using the term computerized adaptive testing to refer to tests whose goal is a point 

estimate of examinee ability is common practice (e.g. Chang & Lu, 2010) but may cause 

confusion since no mention is made in the term to estimation of ability. A computerized 

adaptive test with classification of ability as the goal can be reasonably viewed as a CAT. In 

contrast, Table 1 abbreviations clearly delineates between tests with different goals: VL-CCT 

approaches have the goal of classification and can easily be distinguished from VL-CET 

approaches whose goal is estimation of ability.  

2.2.2 VL-CCT Focus 

The focus of the literature review and the subsequent two studies are on variable-

length computerized classification testing (VL-CCT) approaches because they enable 

efficient classification decisions about learner knowledge that educators frequently must 

make. A focus on VL-CCT removes all but one of the eight combinations of length, delivery 
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methods, and goal options presented in Table 2 from the scope of this review. However, 

design choices amongst various components for the construction of tests that apply VL-CCT 

approaches provide an additional opportunity for narrowing the focus particularly with 

respect to the psychometric model and item bank. 

2.3 Design Components of VL-CCT  

 Thompson (2007) outlines five required design components (Table 3) that have much 

in common with components of computerized adaptive testing (Weiss & Kingsbury, 1984). 

Each of these five components is addressed below. Three of the components, psychometric 

model, item bank, and termination criteria, will receive the bulk of the attention given their 

important role in distinguishing VL-CCT based on Classical Test Theory or Item Response 

Theory (IRT) from other approaches. 
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Table 3. Design Components of VL-CCT (adapted from Thompson et al., 2007) 

Design Component Available Options Example References 

Psychometric Model Classical Test Theory Linn, Rock, & Cleary, 1972; 

Frick, 1992; Rudner, 2002 

Item Response Theory Reckase, 1983; Kingsbury & 

Weiss, 1983; Lau & Wang, 

1998; Eggen & Straetmans, 

2000 

Item Bank (kurtosis not 

always reported) 

Peaked Xiao, 1999 

Not Peaked Kingsbury & Weiss, 1983; 

Finkelman, 2003; Yang, 

Poggio, & Glasnapp, 2006 

Starting Point Default (PR = 1 or θ = 0.0) Most extant research 

Previous information Yang, Poggio, & Glasnapp, 

2006 

Item Selection Random  Frick, 1989 

Estimate-based Reckase, 1983; Kingsbury & 

Weiss, 1983; Eggen, 1999 

Cutscore-based Spray & Reckase, 1994, 

1996; Eggen, 1999 

Global (Mutual) Weissman, 2004 

Termination Criterion SPRT Reckase, 1983; Frick, 1989; 

Frick, 1992; Welch & Frick, 

1993; Eggen, 1999; Eggen & 

Straetmans, 2000 

IRT Confidence Interval Kingsbury & Weiss, 1983; 

Eggen & Straetmans, 2000; 

Change, 2006 

Bayesian decision theory Vos, 2000; Glas & Vos, 2006 
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2.3.1 Psychometric Model 

Classical Test Theory and IRT are the two dominate psychometric models that 

undergird testing research and practice. While both can be applied in VL-CCT and require a 

calibration phase to obtain item parameter estimates, each comes with unique constraints that 

must be considered when developing a VL-CCT for a specific context (Thompson, 2007). 

According to Thompson (2007, p. 3), “The first step in the technical development of a VL-

CCT is the selection of a psychometric model that will be used as a basis for the remaining 

components.” 

The key idea of Classical Test Theory is that an observed test score is comprised of 

the examinee’s true score and error (Novick, 1966). The true score is an error-free 

measurement of the desired examinee trait that cannot be directly observed. Error is the 

portion of the observed test score that can be contributed to factors not related to the trait 

being measured (e.g. guessing correct answers or poorly constructed test items). The 

relationship between the observed score, the true score, and error form the basis for 

examining the quality, specifically the reliability, of tests (Allan & Yen, 2002). 

Item level statistics are also a key component of Classical Test Theory. The 

proportion of correct responses from examinees belonging to specific classification groups 

are used to establish difficulty and discrimination estimates for items and, less commonly, 

entire item-banks. For example, responses from known nonmasters to a specific item or a set 

of items making up a traditional test can be used to calculate how difficult the item or test is 

for nonmasters. Known masters would likely respond correctly more frequently to the same 

item(s) and, consequently, would have a unique difficulty estimate. The item-level 

application of Classical Test Theory form the basis for two related VL-CCT approaches: 
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Frick’s modification of the sequential probability ratio test using expert systems reasoning 

labeled EXSPRT (1992) and Rudner’s Measurement Decision Theory (2002). 

 The group (e.g. masters versus nonmasters) dependent nature of item difficulty and 

discrimination estimates has been identified as a key drawback of Classical Test Theory 

(Weiss & Yoes, 1991; Jacobs-Cassuto, 2005). With Classical Test Theory it cannot be 

assumed that the difficulty estimate of an item for any two groups will be the same. 

Furthermore, classical VL-CCT (VL-CCT that uses Classical Test Theory as the 

psychometric model) depends on the ability to able to distinguish between classification 

groups, ideally via a method independent of the specific test (e.g. a separate test, expert 

judgment, etc.) (Frick, 1992; Rudner, 2002; Thompson, 2007). However, distinguishing 

between classification groups may or may not be feasible in a particular testing context. Even 

with a clear method for distinguishing groups, two unique samples drawn from the same 

group are unlikely to result in identical item difficulty and discrimination estimates. 

Fan (1998) explains that the possibility for a circular dependency is frequently cited 

as a major weakness of Classical Test Theory: “(a) The person statistic (i.e., observed score) 

is (item) sample dependent, and (b) the item statistics (i.e., item difficulty and item 

discrimination) are (examinee) sample dependent.” (p. 1). However, this circular dependency 

may be broken if items statistics are not (examinee) sample dependent. For example, Frick 

(1989) set item-bank level statics for use with SPRT without the use of sampling of 

examinees and instead applied established A through F grade cutoffs to define nonmastery 

and mastery groups.  

IRT based methods aim to establish a precise measure of examinee ability that is then 

used to place an examinee into a classification group. Unlike Classical Test Theory, IRT 
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purports not to require an independent method for distinguishing between classification 

groups and it has been argued that it is not group dependent. Fan (1998) explains that, 

theoretically, IRT models are said to generate item statistics that are independent of examinee 

samples and this invariance property of IRT is the cornerstone of arguments that favor IRT 

over Classical Test Theory and used this to justify the complexity of IRT models. However, 

empirical investigation of the invariance property of IRT and Classical Test Theory based 

item and examinee statistics has brought into question the validity of the invariance property 

advantage of IRT over Classical Test Theory (Fan, 1998; Macdonald & Paunonen, 2002; Xu 

& Stone, 2012). Beyond the questionability of the invariance property, IRT comes with it’s 

own set of drawbacks, restrictions, and assumptions that impact it’s viability for use with 

VL-CCT.  

According to Thompson (2007), the main drawback of using IRT in VL-CCT is the 

large calibration sample required for establishing item parameters – often ten times more 

examinees than those required for calibration with classical VL-CCT.  Details of the item-

bank calibration requirements for IRT will be discussed in the next section on the item-bank. 

IRT has more restrictive assumptions than does Classical Test Theory. IRT is based on three 

assumptions: (1) a unidimensional construct is being measured; (2) the local independence of 

items; (3) that the item response function selected reasonably models how examinees actually 

respond to items. Choice of the model used for the item response function may add additional 

constraints. In comparison, Classical Test Theory is based on only the assumption of the 

independence of items (Rudner, 2002), which makes ensuring that underlying assumptions of 

the psychometric are not violated an easier task. 
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The less restrictive assumptions associated with Classical Test Theory has been 

identified as a key advantage over IRT. In regard to measurement decision theory that is 

based on Classical Test Theory Rudner (2009) states:  

Thus, the tested domain does not need to be unidimensional, examinee ability does 

not need to be normally distributed, and one doesn’t need to be as concerned, with the 

fit of the data to a theoretical model as is the case with IRT or in most latent class 

models. 

Rudner, 2009, p. 1 

 In addition, the validity of approaches for estimating item discrimination and lower 

asymptotes used with the two- and three-parameter IRT models have been questioned by 

advocates of the one-parameter IRT model (Wright, 1977). 

2.3.2 Item-Bank 

 The item-bank is the pool from which the VL-CCT draws items. Important 

characteristics of an item-bank include size, the type of information known about items in the 

bank, and kurtosis of either individual items or the entire item-bank. The size of an item-bank 

is simply the number of individual items that it contains. Factors that impact item-bank size 

include the stakes involved in the test and the underlying psychometric model with higher 

stakes tests requiring more items and IRT enabling fewer items to be used if the items are 

highly informative (Thompson, 2007). Weiss (1985) suggests that an item bank in the range 

of 150 to 200 items typically provides reasonable results.   

Both the type of information needed about items in the item-bank and the associated 

calibration requirements depend on the underlying psychometric model. Use of Classical 
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Test Theory will require either test-level or item-level parameter estimates be established. 

However, the bulk of the literature on item calibration requirements focuses on IRT. In fact, 

when outlining the major steps for calibration of an item bank Eggen (2007, p. 7) assumes 

IRT as the psychometric model and makes no reference to Classical Test Theory. 

During the calibration phase for IRT data is collected about each test item that is then 

used to develop a theoretical model, the item response function, for the probability of a 

correct response to the item from an examinee with a given ability level. The choice of the 

IRT model (1PL-, 2PL-, or 3PL-) has implications on item calibration in terms of the sample 

size needed and to what extent the data must fit the model (Eggen, 2007) – larger sample 

sizes are required for models with more parameters. Simpler IRT models require hundreds of 

examinees in the calibration sample and more complex IRT models require a calibration 

sample of thousands (Wainer & Mislevy, 2000; Weiss & Kingsbury, 1984; Welch & Frick, 

1993).  

Kurtosis is an attribute of an item or test when IRT is the psychometric model. 

Kurtosis refers to the examinee ability level at which point an item or a set of items provides 

the most information about the examinee.  Kurtosis is used in intelligent item selection 

algorithms (discussed further below), such as the maximum information search and selection 

method (Kingsbury & Weiss, 1983), to select items that will provide the most data about an 

examinee given the current estimate of their ability (Rudner, 2002). 

2.3.3 Starting Point 

The starting is the best guess regarding the probability of an examinee belonging to a 

specific classification group before the test has begun. In the absence of information, the 

examinee is assumed to have an equal probability of belonging to each of the possible 
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classification groups. However, if information is available (e.g. the score an examinee has 

obtained on a previous related test), then this information may be used to modify the starting 

point (Thompson, 2007; Weiss & Kingsbury, 1984; Yang, Poggio, & Glasnapp, 2006). 

2.3.4 Item Selection 

 Items can be either selected from the item-bank randomly or intelligently. With 

random item selection all items in the item-bank have an equal chance of getting selected for 

administration next. Intelligent-item selection purposely selects items based on what is 

known about the examinee and the items in the item-bank. Detailing the plethora of 

intelligent item selection algorithms available for use with VL-CCT is beyond the scope of 

this review. Interested readers are directed to reviews of intelligent item selection procedures 

(Thompson, 2007; Rudner, 2009). 

While many of the item selection procedures are based on using IRT as the 

psychometric model, use of Classical Test Theory does not preclude using information about 

items to intelligently select items for presentation to the examinee. For example, EXSPRT-I 

(Plew, 1989; Frick 1992) uses Classical Test Theory item parameter estimates to intelligently 

select items “that best discriminates between masters and nonmasters and is least 

incompatible with the current estimate of the examinee's achievement level” (Welch, 1997). 

Rudner (2009) details three intelligent item selection methods for use with Classical Test 

Theory: minimum expected cost, information gain, and maximum information.  

2.3.5 Termination Criterion 

Termination criteria define when a VL-CCT can make a classification decision about 

an examinee. According to Thompson (2007), three types of termination criteria are used 

with VL-CCT: IRT-based confidence intervals, a Bayesian decision theory framework 
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(Lewis & Sheehan, 1990; Sheehan & Lewis, 1992), and Wald’s (1947) sequential probability 

ratio test (SPRT). 

Termination criteria based on confidence intervals continue testing until confidence in 

the estimate of the examinee’s ability reaches a point where the confidence interval lies 

completely within the range of ability associated with one of the classification groups (Eggen 

& Straetmans, 2000; Thompson, 2007). Since the confidence interval approach depends on a 

point estimate of examinee ability it is inappropriate for use with classical VL-CCT. 

 Application of a Bayesian decision theory framework for determining when a test 

can end enables the inclusion of costs structures associated with making specific 

classification mistakes and of administering an additional item (Thompson, 2007). For 

example, consider the costs of misclassifying two true nonmasters A and B as masters where 

A is very close to being a master and B is very far from being a master. The potential 

negative impact that B could cause as an incorrectly labeled a master in the real-world would 

likely be substantial greater than A and use of a Bayesian decision framework enables these 

potential costs to be factored into termination criteria (Vos, 1999). 

With sequential probability ratio test (SPRT) choice among classification options is 

treated as a statistical hypothesis-testing problem (Eggen & Straetmans, 2000; Thompson, 

2007). SPRT was originally developed by Wald (1947) for use in manufacturing to determine 

if the quality of a batch of goods (e.g. ammunition) warranted their rejection or not. The 

advantage of SPRT over other statistical approaches associated with fixed sample sizes is the 

efficiency of decision-making (Frick, 1989). Applying SPRT after each observation (e.g. is a 

given bomb in a shipment a dud?) enables decisions to be reached in a way that minimizes 
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the observations necessary, an important factor when there are costs associated with 

observing (e.g. destruction of a bomb or exposure of an item). 

The SPRT originally only applied to making decisions between two alternative 

hypothesis. However, Armitage (1950) asserted that Wald’s theory of sequential tests for 

deciding between two alternative simple hypotheses could be extended to deciding between 

several alternative simple hypotheses where decision error can be controlled.  Using 

mathematical argument and inspection diagrams, Armitage demonstrates a procedure for 

making decision between k alternative hypotheses. An “arbitrary constant” A is used that 

seems to be related to type I or type II errors in choosing one hypothesis over the other but 

the nature of this relationship is not clearly explained. 

2.4 Classical VL-CCT Research 

2.4.1 Focus on Classical VL-CCT 

The rest of the literature review and the subsequent studies are focused on classical 

VL-CCT since use of IRT as the psychometric model requires a calibration sample that is 

impractical most instructional contexts.  In comparison to research on IRT based VL-CCT, 

there has been relatively little research focused on classical VL-CCT. Thompson (2007) 

provides three example references of classical VL-CCT studies: Linn, 1972; Frick, 1992; 

Rudner, 2002. Rudner (2009) identifies an additional three articles that illustrate the item-

level application of what he refers to as measurement decision theory:  Macready and 

Dayton, 1992; Vos, 1997; Welch and Frick, 1993.  

The following will review a number of the foundational studies that focus on classical 

VL-CCT and summarize relevant findings. The argument that classical VL-CCT is a viable 

approach for use in instructional contexts is supported by research that shows that relatively 
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small calibration sample sizes enable classical VL-CCT approaches to efficiently make 

classification decisions within acceptable error rates. Early research relevant to classical VL-

CCT focused on application of the SPRT using test-level item parameters either using 

traditional deployment methods or early computers. Use of item-level parameters occurred 

with Frick’s later application of expert systems reasoning to the SPRT.  

2.4.2 Early Research Relevant to Classical VL-CCT  

 The first reported application of the Wald’s (1947) SPRT in the context of making 

classification decisions about examinees comes from Cowden (1946). Cowden’s aim was to 

determine if the SPRT could be used to assign A through F grades on a test of elementary 

statistics.  The test consisted of 100 true/false items that were administered to ten examinees 

in batches of 20 items. At the end of each batch the number of errors made by an examinee 

was compared to a table that outlined the termination criteria associated with passing and 

failing based on a pre-established sequential sampling plan.  

When a pass/fail decision could be made the examinee was given the option of 

continuing with another batch or accepting the grade they had been assigned. The differences 

between the consequences of passing or failing on the ultimate grade assigned grew less 

pronounced as additional batches of 20 items were given. For example, passing after the first 

batch earned an A but failing resulted in an F. However, after four batches a pass earned a C 

and a fail still resulted in an F. 

Results of Cowden’s study demonstrated that SPRT could be used to shorten test 

length from 100 items to 63 items on average. However, it is unclear if the increased 

efficiency came at the cost of accuracy since the accuracy of the classification decisions was 

not evaluated. Also, the administration of items in batches in Cowden’s study may violate the 
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assumption of the independence of items since examinees could have used information in 

one item to modify their responses to another item. The mapping between scores at various 

stages and grades imply that some type of test-level parameter estimates were being applied 

but the details of which are not explained. Finally, it seems that no attempt was made to 

identify items that could possibly be problematic (i.e. those that participants with higher 

grades found more difficult than did participants with lower grades). 

 A study by Moonan (1950) is noteworthy because it was the first to apply SPRT 

retroactively to examinee response data and simulate both random item selection and the 

application of SPRT after each item administration. The test used in Moonan’s study 

consisted of 75 multiple-choice items each having five response options. 39 examinees took 

the complete test and their responses were then used in simulating five different SPRT tests 

that each had unique cutoff scores and error criteria. Correlations between the simulated 

SPRT tests and the total scores indicated a high degree of consistency in classification 

decisions. Furthermore, the average number of items administered before a SPRT decision 

could be made was around 40 representing a considerable efficiency gain. Again, no attempt 

was made to evaluate if items were problematic nor were test level item parameter estimates 

based on empirical data. 

The first application what could truly be considered classical VL-CCT to improve test 

efficiency is from Ferguson (1969) since testing involved the use of computing resources. 

This research developed and field-tested a model for computer-assisted testing that uses an 

examinee’s previous responses, entered via a “teletypewriter”, to branch them to objectives 

and associated items that were “tailored to the competencies of the examinee” (Ferguson, 

1969, p. 1).  
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Ferguson’s study involved 75 elementary students in grades one to six that were 

placed into low, middle, and high proficiency groups by a coordinator. Participants had 

achieved different states of progress through associated math instruction (none to complete). 

All were given a computer adaptive test of basic math proficiency twice with no instruction 

in between. The math proficiency tested was based on the math problems that would 

typically be taught in grades three and four.  

Each test focused on 18 objectives associated with addition and subtraction that were 

placed in a hierarchy based on hypothesized prerequisite dependencies between objectives. 

Several sequences of objectives were derived from the hierarchy that all ended in an 

objective that was not a prerequisite for any other objective. Items associated with each 

objective were generated on the fly by computer via selecting specific numbers to insert into 

the item stem and calculating the corresponding correct answer so that the examinee response 

could be evaluated. 

All examinees started on testing with the same objective in the middle of the 

objective hierarchy. After an examinee response to an item associated with the objective, 

Wald’s (1947) sequential probability ratio test was used to determine if the examinee 

responses warranted a classification decision regarding the objective. If a classification could 

be made regarding mastery of the objective, the next objective they would face would be 

lower in the particular objective sequence if they had not mastered the objective or higher in 

the sequence if they had mastered the objective. The process of generating items associated 

with the objective, evaluating mastery, and selecting a higher or lower level objective in the 

sequence would continue until one of two conditions were met: (1) the examinee did not 

master the current objective and no more untested objectives lower in the sequences remain; 
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(2) the examinee did master the current objective and no more untested objectives higher in 

the sequence remain. After completing the computer adaptive test examinees responded to a 

150-item paper and pencil test that evaluated performance on all 18 objectives. 

Ferguson found minimal inconsistencies in the results, that is, cases where objective 

A had not mastered when objective A is prerequisite to objective B and objective B had been 

mastered. Results also demonstrated that the computer adaptive testing approach had 

predictive validity: CAT performance was predictive of performance on the paper and pencil 

test. A high correlation was found between the two tests in terms of objectives mastered 

providing evidence of reliability and decision accuracy. The key finding was that the 

computer adaptive version of the test required nearly one-third the number of items as the 

full test and less than half the time. Also, fewer items were required to make nonmastery 

decision versus mastery decisions. 

Several criticisms can be made about Ferguson’s study. The exact procedure used to 

make routing decisions about examinees during testing and the criteria was used to place 

participants into the low, middle, and high proficiency groups lacked detail that would enable 

the study to be replicated. Furthermore, having 1st through 6th grade students take a test 

designed for 3rd and 4th graders raises questions regarding the appropriateness of the sample 

selected for the study. The choices of the probabilities of a correct response from a master or 

nonmaster and the error rates are not based on empirical data. Again, no attempt was made to 

identify problematic items and the test-level probability estimates are not justified in 

empirical data. However, Ferguson’s research does provide an early example of the power of 

classical VL-CCT approaches to impact test efficiency while maintaining classification 

accuracy. 



 

 37

Linn (1972) used actual examinee response data to test theoretical assertions by 

Green (1970) that sequential testing could yield 50 percent shorter tests without 

compromising classification accuracy. Responses from nearly 5,000 examinees on General 

Examinations of the College Board’s College Level Examination Program (CLEP) were split 

randomly into two groups: half for item level calibration and half for “cross-validation”. A 

cut-score was established that divided the group into approximately half: a higher scoring 

group and a lower scoring group.  

Two sequential procedures were developed based on work conducted by Armitage 

(1950) for applying Wald’s sequential ratio probability test to classification decisions. The 

first sequential procedure treated dimensions (Math, English Composition, and Natural 

Sciences) separately and the other used Math score in estimating other scores. The 

experiment was repeated for increasingly lower probabilities of classification error and for 

conventional tests of twelve different lengths (5, 10, … , 55, 60). The assignment of 

examinees to classification groups by the sequential procedures was compared to 

assignments made using the results from conventional tests. 

The findings supported the theoretical assertion that approximately half as many 

items are required with sequential testing to achieve same accuracy as conventional testing. 

Taking one dimension into account (e.g. Math) when testing another dimension was only 

useful when there is a strong correlation between the two (e.g. Math and Natural Sciences). 

One issue with Linn’s study was that cut-scores used were not based on achievement 

of an absolute standard. Instead the sample was just divided in two. Also, using over two 

thousand examinees for item calibration is not practical in many contexts and reasons were 
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not provided for setting sixty as the maximum number of items or the size of calibration 

sample size. It is not clear if any attempt was made to identify items that were problematic. A 

further criticism is that the types of possible error were not distinguished from each other but 

the author recognized this issue. 

Kingsbury and Weiss (1983) compared the SPRT to IRT based approaches for 

making mastery decisions. Monte Carlo simulations were used to generate items, examinees, 

and examinee responses. Results showed SPRT was the most efficient approach but was also 

the least accurate. A major issue with this study is that incorrect equations for SPRT were 

used (Frick, 1990; Welch, 1997). Also, use of Monte Carlo simulations to generate data 

depends on an underlying model for the relationship between items, examinees, and 

examinee responses (e.g. examinee abilities theta values that are normally distributed) that 

may or may not reflect real world data. 

2.4.3 DAL and COM Studies 

A series of studies by Frick, Plew, and Welch represents a major step in classical VL-

CCT: application of item-level parameter estimates to make additional efficiency gains. 

Research conducted by Frick (1989) found that the SPRT was a viable option for efficiently 

and accurately make mastery decisions despite variations in item difficulty and 

discrimination power and, consequently, could be leveraged to individualize learning 

experiences. Frick found that SPRT had high predictive validity. 

Frick’s (1989) research conducted computer simulations based on historical test data 

from two tests, a Digital Authoring Language (DAL) test and a test of knowledge of how 

computers functionally work (COM test). Both tests were delivered via computer where 

items were randomly selected from the item-bank without replacement until all items were 
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used. Also, both tests contained a variety of item types where difficulty and power of 

discrimination varied considerably.  

The DAL test (97 items) was administered 53 times. Most DAL test examinees were 

graduate students taking a class with Frick that covered DAL programming. The remaining 

DAL test examinees were professional staff at Indiana University who claimed or did not 

claim to be experienced DAL programmers. Knowledge of the individual examinees 

previous experience with DAL enabled master and nonmaster groups to be defined 

independent of the examinee score on the DAL test. The DAL test (mean score 63%, SD = 

24.6) was considerably harder than the COM test (mean score 79%, SD =13.6).  

The COM test (85 items) was administered 104 times. Note that the original 

publication reporting on the COM test indicates that “There were 105 administrations of the 

COM test” (Frick, 1989, p. 102) but subsequent publications and the available historical data 

files show report the number to be 104 (Frick, 1992, p. 203). Current or former graduate 

students, representing two thirds of the COM test examinees, took the test twice at different 

points in a course and undergraduate students, representing the rest of the COM test 

examinees, took the test only once.  

SPRT parameters for both tests were set to P(C|M) = .85, P(C|N) = .60, false master 

= false nonmaster = .025. Choice of these particular SPRT parameters were based on 

obtaining a grade of B or higher (> .85) or D or lower (<.60). Simulated SPRT tests were 

conducted post-hoc based on historical data from the DAL and COM tests. SPRT mastery 

decisions were compared to mastery decisions based on total test scores. Total test scores 
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were converted into mastery decisions using the mid-point between mastery and nonmastery 

(72.5%) as the cut score. 

The 1989 study Frick found a high level of agreement between SPRT decisions and 

total score decisions: 96% agreement for DAL, 99% agreement for COM; 98% agreement 

across both tests. Fewer classification errors occurred than were expected (<5%). The 

mastery decisions were made via SPRT with mean test lengths that were less than one fourth 

of the total test length. On average, fewer items were required to make nonmastery decisions 

than mastery decisions. All SPRT classification errors were cases where it classified a master 

as a nonmaster. 

In a follow-up study using test re-enactments with the same historical data from the 

COM and DAL tests Frick (1992) examined the efficiency and accuracy of several classical 

and an IRT based VL-CCT approaches where items were calibrated using different sample 

sizes. Frick introduces the EXSPRT-R, which uses item level parameter estimates and 

random item selection to make classification decisions about an examinee. Also introduced is 

the EXSPRT-I, which uses item level parameter estimates but applies intelligent item 

selection to make classification decisions. EXSPRT-I was jointly developed by Frick and 

Plew (1989) and applies item selection reasoning based on item discrimination, the 

item/examinee incompatibility, and the utility of the item. 

While the focus of the study was on examining the accuracy and efficiency of the 

various VL-CCT approaches, an additional factor was also examined – the consequences of 

calibration sample size. For both the DAL and the COM test item parameter estimates were 

established using two different sample sizes: 25 and 50 randomly selected examinees with 
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the later included the former. The number of examinees who took the COM test also enabled 

calibration samples of 75 and 100 examinees to be used. 

Results from the 1992 study showed that calibration sample size did not substantially 

impact test efficiency but did impact accuracy. When only 25 examinees were used to 

calibrate items both the accuracy of the decisions reached by EXSPRT-I and the EXSPRT 

significantly departed from decisions made using the total test based on a Chi-squared 

goodness of fit test (p < .05) and were less accurate than expected. With 50 examinees in the 

calibration sample all the approaches, except AMT and EXSPRT-I with the COM test, had 

classification accuracies within expected error rates that did not significantly differ from 

decisions made using the total test. Calibration samples of 75 and 100 examinees enabled all 

but the AMT approach to make classification decisions within a priori error rates. 

Percent agreement numbers that were used in the study, unlike Proportion Reduction 

in Error (see Rudner, 2009, p. 7), do not explicitly address agreement due to chance. In 

addition, it is not clear if or how problematic items were handled. Welch (1997) points out 

that the SPRT tests in the Frick study were simulated rather than controlling the test in real-

time which provided the motivation for subsequent studies by Welch and Frick. 

Welch and Frick (1993) showed that SPRT and EXSPRT-R testing approaches can 

make accurate and efficient mastery decisions in real-time testing situations and are viable 

and practical alternatives to IRT based methods. Thirty-eight students from a graduate course 

on the use of computers in education were randomly assigned to two groups (20 given 

EXSPRT-R/SPRT and 18 given EXSPRT-I). Tests drew from an item-bank of 85 items that 

represented a variety of item types.  
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Examinees were told they would be taking two tests (adaptive and fixed length) but 

only one was truly given. Decisions were made at various points about examinee mastery 

using different algorithms but all examinees ended up taking all 85 items. Item parameters 

for SPRT, EXSPRT, and Rasch estimates were based on historical data from 185 

administrations from past studies (Frick, 1989; Powell, 1992).  For SPRT the probability of a 

correct response from a master was set at .90 and the probability of a correct response from a 

nonmaster was set at  .63. Equal prior probabilities of master and nonmastery were assumed 

and the acceptable rate of false mastery and false nonmastery were both set to .01. The 

Adaptive Mastery Testing (AMT) method (Weiss and Kingsbury, 1984) was used for the IRT 

approach. 

Results again showed that EXSPRT-I tests were significantly shorter than EXSPRT-R 

(half as long) but no significant differences were found among other tests. The conventional 

proportion correct with a confidence interval based on a standard error of measurement and 

the IRT theta estimation with a standard error of measurement based on test information at 

the given theta level made identical mastery decisions with both being unable to make 

decisions in nearly 40% of cases. EXSPRT-R procedures applied to the total test, on the 

other hand, made decisions in all but 13% of cases (one third of 40%). When compared to 

classification decisions made by applying EXSPRT-R procedures to the total test, EXSPRT-I 

disagreed in over 20% of cases and SPRT disagreed 10% of the time. Decisions made with 

AMT disagreed with EXSPRT-R procedures applied to the total test in over 20% of cases. 

SPRT performed about as well as other methods 

On critique of the Welch and Frick (1993) study is that SPRT is presented as 

requiring no historical data to for probabilities of a correct response from a classification 
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group. However, this is not necessarily true. Decision makers can set these values but 

without empirical data to support their decision the accuracy of their estimates cannot be 

determined. Furthermore, it is not clear why “a conventional proportion correct metric with a 

.85 cut-off score” (Welch & Frick, 1993, p. 58)  was used rather than the halfway point 

between the mastery and nonmaster SPRT probability of a correct answer as was done in 

earlier studies (e.g. Frick, 1989). 

Only two studies could be found that specifically focus on how the size of the 

calibration sample impacts subsequent classical VL-CCT efficiency and accuracy – Frick’s  

1992 study already described and a study from Rudner (2009) that will be reviewed next.  

2.4.4 Measurement Decision Theory 

Rudner (2009) provides evidence that VL-CCT based on measurement decision 

theory (MDT) are as good or better than IRT-based approaches in terms of both classification 

accuracy and test length.  

Rudner performed simulations using two simulated examinee datasets: randomly 

drawing an examinee ability level from N(0, 1) or U(-2.5, 2.5) and assigning individual to 

classification based on ability level and cut score for the particular test. Tests items 

parameters were based on historical data from 1999 Colorado State Assessment Program 

(CSAP) fifth-grade mathematics test (Colorado State Department of Education, 2000) and 

the 1996 National Assessment of Educational Progress (NAEP) State Eighth Grade 

Mathematics Assessment (Allen, Carlson, and Zelenak, 1999). 

Classification accuracy was measured in two ways: proportion of correct state 

classifications and Proportion Reduction in Error (PRE). Test length was varied from a 
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maximum of 3 items to the size of item-bank. For each combination of conditions (test 

length, test, examinee data set) 1,000 administrations were simulated 100 times. 

Rudner found that the PRE for MDT approaches were the same or higher than IRT 

approaches under all but one conditions (NAEP, U, max test length < 30). For item selection 

techniques “minimum cost and information gain decision theory approaches consistently out-

performed the first two IRT approaches, and out-performed the IRT cut score approach when 

20 or fewer items were administered” (Rudner, 2009) 

It is unclear why the 41st percentile was used as cut score for the CSAP test. Also, it 

was not clear on how item parameter estimates were estimated beyond stating that “The 

latent states and the response vectors were used to compute the conditional prior probabilities 

of each response zi given each mastery state mk, P(zi|mk).” (Rudner, 2009, p. 7). It would 

have been helpful to have details such as how a response was simulated for a given examinee 

and a given item. Furthermore, the calibration sample sizes used were not sufficiently clear. 

Lastly, no attempt was made to identify problematic items and the use of thousands of 

examinees to set classical VL-CCT item-parameter estimates seems like overkill given 

Frick’s (1992) demonstration that calibration sample sizes as small as twenty-five per 

classification group were sufficient. 

2.5 Conclusion 

The general goal of this literature review was to identify empirical studies that 

examine VL-CCT approaches based on Classical Test Theory. First, a top-down approach 

was taken to outline where VL-CCT fits within the larger context of testing and decision 

making before exploring the empirical research relevant to classical VL-CCT. Findings were 
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presented in the context of supporting two assertions that provides the impetus for the two 

studies conducted: (1) Classical VL-CCT approaches are viable for use in instructional 

contexts; (2) Lack of specific guidelines regarding the calibration of items for use with 

classical VL-CCT approaches hinder their application and adoption in instructional contexts. 
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CHAPTER III. EXPLICATING AUTOMATIC RACING CALIBRATION 

HEURISTICS 

 The Automatic Racing Calibration Heuristics (ARCH) approach is based on two 

existing VL-CCT approaches (SPRT and EXSPRT-R), a Bayesian statistics perspective on 

Classical Test Theory item calibration, and statistical approaches used in hypothesis testing. 

Each will be explained prior to introduction of the ARCH approach. The following will first 

illustrate, through examples, how SPRT and EXSPRT make classification decisions. 

3.1 Classical Test Theory Item-Bank Calibration 

 There are multiple levels of Classical Test Theory calibration available with each 

level representing a tradeoff between ease of calibration and test efficiency. Consider the 

hierarchy behind a standard multiple-choice test. At the top of the hierarchy is the item-bank 

and at the bottom is a specific response to an item. The item-bank contains many items and 

each item has multiple response options.  

Table 4 introduces a framework that reflects this hierarchy. At level one no 

probability calibration information has been gathered and instead decision-makers set cut-

scores between classification groups using one or more approaches recommended for 

criterion-referenced testing (CRT) (Shrock & Coscarelli, 2007) such as the Angoff method 

(Angoff, 1984) or the contrasting groups approach. Tests are fixed length at level one since 

cut-scores are defined by a fixed number of correct responses out of a fixed number of total 

items and thus provide no opportunities for decreasing test length. Level 2 of classical 

calibration introduces probability estimates for responses for each classification group but 

does so at the item-bank level. Level 3 establishes item-level probabilities. Level 4 

establishes response-level probabilities. 
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Table 4. Four Levels of Item Bank Calibration with Classical Test Theory 

Calibration 

Level 

Description Example 

Approaches 

Test Efficiency Ease of 

Calibration  

1. Cut-score Cut-scores 

between 

classification 

groups established 

by decision-

makers 

Angoff method 

(Angoff, 1984); 

CRT (Shrock & 

Coscarelli, 2007) 

Lowest Highest 

2. Item-bank Probability of 

classification 

group answering 

randomly selected 

item correctly 

established 

SPRT (Frick, 

1989) 

Low High 

3. Item 

(Dichotomous 

scoring) 

Probability of 

classification 

group answering 

specific item 

correctly 

established 

EXSPRT-R, 

EXPRT-I (Frick, 

1992; Welch & 

Frick, 1993); 

MDT (Rudner, 

2002; 2009) 

High Low 

4. Item 

Response 

(Polytomous 

scoring) 

Probability of 

classification 

group selecting a 

specific item 

response 

established 

None found Theoretically 

Highest 

Theoretically 

Lowest 

 

 Higher-level classical test calibration typically results in higher test efficiency. 

Research has shown that VL-CCT methods based on calibration at level 2, such as the 
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sequential probability ratio test (SPRT) (Frick, 1989) and level 3, such as an extension of 

SPRT that applies expert systems reasoning with random item selection (EXSPRT), have 

compared favorably with traditional fixed-length tests (level one) in terms of reliability and 

validity while substantially reducing test length (Frick, 1992). However, VL-CCT methods 

that apply level 3 calibration have been shown to be even more efficient (shorter mean test 

length) than VL-CCT methods that apply level 2 (Frick, 1992; Welch & Frick, 1993).  

Termination criterion used in level 3 VL-CCT methods leverage information about 

items and previous examinee responses to increase test efficiency. Some level 3 VL-CCT 

approaches, such as another extension of SPRT that applies expert systems reasoning and 

intelligent item selection (EXSPRT-I), use item information and examinee responses when 

selecting items to produce even more efficient tests (Frick, 1992). However, intelligent item 

selection can also make cheating easier if examinees can accurately predict which items they 

will face and memorize the relatively short sequence of correct answers necessary to produce 

the desired classification decision (Frick, 1992; Welch & Frick, 1993). 

 The increased efficiency of higher-level classical test calibration methods comes at 

the cost of increased effort dedicated to item calibration. In addition, the item calibration 

phase is made more difficult by the lack of clear guidelines on when calibration is sufficient 

to enable accurate classification decisions.  

3.1.1 Cut-Scores 

Cut-Scores can be established via expert opinion and or the gathering of empirical 

data from known masters and nonmasters. While there are a wide variety of techniques 

available for identifying one or more cut scores between classification groups none preclude 

the application of the judgment of test administrators (Shrock & Coscarelli, 2007). Of 
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particular concern are the consequences of making classification errors in establishing cut-

scores. 

3.1.2 Item-bank Level Probabilities 

The expected mean of a beta variable (equation 1) can be used to estimate the 

expected future probability of success given a previous set of observations that can be 

classified as successes (s) or failures (f). 

�[�����∗ |
, �
] = 
 + 1� + 2 (1) 

Where: 

E[beta( * | s, f)] = Expected mean of a beta variable with parameters s and f  

s = Number of successes 

N =  Number of observations (s + f) 

f = Number of failures 

 One application of the mean of a beta variable is to establish item-bank level 

probabilities. Equation 2 applies equation 1 in the context of establishing the probability of a 

master responding correctly to an item randomly drawn from the item-bank (P(C|M)). In 

equation 2 the number of correct responses by previous masters to item in the item-bank 

(#CM) takes the place of number of successes (s) and the number of incorrect responses by 

masters (#¬CM) takes the place of number of failures (f). Since the only two outcomes for 

evaluating the response of a master is correct or incorrect the probability of a correct 

response from a master plus the probability of an incorrect response from a master must 

equal one (equation 3). In the same way the probability of a correct response (equation 4) and 
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an incorrect response (equation 5) from a nonmaster may be established. Only the four 

probabilities associated with equations 2, 3, 4, and 5 are established at the item-bank level. 

���|�
 =  #�� + 1#�� + #¬�� + 2 (2) 

��¬�|�
 =  1 − ���|�
 (3) 

���|�
 =  #�� + 1#�� + #¬�� + 2 (4) 

��¬�|�
 =  1 − ���|�
 (5) 

Where: 

P(C|M) = Probability of a correct response given mastery 

P(¬C|M) = Probability of an incorrect response given mastery 

#CM =  Number correct responses from masters to items in the item-bank 

#¬CM = Number incorrect responses from masters to items in the item-bank  

P(C|N) = Probability of a correct response given nonmastery 

P(¬C|N) = Probability of an incorrect response given nonmastery 

#CN =  Number correct responses from nonmasters to items in the item-bank 

#¬CN = Number incorrect responses from nonmasters to items in the item-bank  

3.1.3 Item-Level Probabilities 

 The establishment of item-level probabilities is very similar to establishing item-bank 

level probabilities with the key difference being that probabilities are established at the item 

level rather than the item-bank level. This results in four probabilities per item in the item-

bank. Equations 6 through 9 are the item level equivalents to the item-bank level equations 2 

through 5 with the only difference being the inclusion of the i subscript to represent that the 

equations apply to a single item i. 
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����|�
 =  #��� + 1#��� + #¬��� + 2 (6) 

��¬��|�
 =  1 − ����|�
 (7) 

����|�
 =  #��� + 1#��� + #¬��� + 2 (8) 

��¬��|�
 =  1 − ����|�
 (9) 

Where: 

P(Ci|M) = Probability of a correct response to item i given mastery 

P(¬Ci|M) = Probability of an incorrect response to item i given mastery 

#CiM =  Number correct responses from masters to item i 

#¬CiM = Number incorrect responses from masters to item i 

P(Ci|N) = Probability of a correct response to item i given nonmastery 

P(¬Ci|N) = Probability of an incorrect response to item i given nonmastery 

#CiN =  Number correct responses from nonmasters to item i 

#¬CiN = Number incorrect responses from nonmasters to item i 

3.1.4 Item-Response Level Probabilities 

 Theoretically, the probability of a particular classification group selecting a specific 

item response could be established using the same equations described above. While a IRT 

approaches that apply polytomous scoring methods do predict the probability of specific 

item-responses being selected, they do so based on a continuous ability estimates rather than 

examinee classifications. However, such an item-response level application has not been 

found in the classification testing literature and will not be applied in this study. 
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Consequently, additional exploration of item-response level probabilities and their 

application will be saved for a future manuscript.  

3.2 Sequential Probability Ratio Test (SPRT) 

3.2.1 Overview 

The sequential probability ratio test (SPRT) uses item-bank level probabilities and 

examinee responses to randomly drawn items from the item-bank to make classification 

decisions about an examinee. The following outlines the rule base and equations behind the 

SPRT approach to making classification decisions. Given a bank of items that assess mastery 

of a single learning objective, item-bank level probabilities can be either established 

empirically or set by the test administrator to form the SPRT rule base presented in Table 5. 

SPRT is based on the Classical Test Theory psychometric model and uses an item-bank 

where item-bank level probabilities have been established. In the absence of specific 

information about the probability that a given examinee belongs to a specific classification 

group equal prior probabilities are assumed. 
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Table 5. SPRT Rule Base (adapted from Welch, 1997, p. 39) 

Rule Description Conditional Probability 

1A If the examinee is a master (M), the probability (P) of 

selecting an item that will be answered correctly (C) is 

.85 

P(C|M) = .85 

1B If the examinee is a master (M), the probability (P) of 

selecting an item that will be answered incorrectly (¬C) 

is 1 - .85 or .15 

P(¬C|M) = .15 

2A If the examinee is a nonmaster (N), the probability (P) of 

selecting an item that will be answered correctly (C) is 

.40 

P(C|N) = .40 

2B If the examinee is a nonmaster (N), the probability (P) of 

selecting an item that will be answered incorrectly (¬C) 

is 1 - .40 or .60 

P(¬C|N) = .60 

 

 During testing using the SPRT approach, an examinee is randomly administered an 

item from the item-bank, their response is evaluated, and the SPRT rule base is used to 

evaluate the probability that they are a master or a nonmaster. The test continues until either 

the probability ratio of the examinee being a master versus a nonmaster goes above or below 

specific threshold values or the maximum number of items has been administered to the 

examinee.  

The probability that the examinee is a master is the product of the prior probability of 

mastery, the probability that a master would get the specific number of items correct, and the 

probability that a master would get the specific number of items incorrect (the numerator in 

equation 10). The probability that the examinee is a nonmaster is the product of the prior 

probability of nonmastery, the probability that a nonmaster would get the specific number of 
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items correct, and the probability that a master would get the specific number of items 

incorrect (the denominator in equation 10). The probability ratio that the examinee is a 

master versus a nonmaster can be calculated via equation 10. 

The probability ratio is then compared to two threshold values (see equation 11) that 

are based on the acceptable error rates for making either a false mastery decision (αFM) or a 

false nonmastery decision (βFN) set by test administers. If the probability ratio is between the 

two thresholds then no-decision can be made and testing must continue. If the probability 

ratio is less than both thresholds then a nonmastery decision can be made and if it is greater 

than both thresholds then a mastery decision can be made. 
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�� = �����|�
#���¬�|�
#¬�
�����|�
#���¬�|�
#¬�  (10) 

 !�1 − "!� < �� < 1 −  !�"!�  (11) 

Where: 

PR =  Probability ratio 

P(C|M) = Probability of a correct response given mastery 

P(¬C|M) = Probability of an incorrect response given mastery 

P(C|N) = Probability of a correct response given nonmastery 

P(¬C|N) = Probability of an incorrect response given nonmastery 

PM = Prior probability of mastery 

PN = Prior probability of nonmastery 

#C =  Number correct responses from examinee with unknown mastery status  

#¬C = Number incorrect responses from examinee with unknown mastery status  

αFM = Error rate established a priori for making false master decisions 

βFN = Error rate established a priori for making false nonmaster decisions 

 

3.2.2 An Example 

 The following example of a single test administration uses the SPRT rule base 

presented in Table 5 and equal probabilities of a false mastery decision and false mastery 

decision (αFM = βFN = .025) so that there is a 5% chance that SPRT will make an incorrect 

classification decision. Equation 11 is used to establish the threshold below which the 

probability ratio value would lead to a nonmastery decision (PR < 0.026) or above which the 

probability ratio would lead to a mastery decision (PR > 39). 
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Table 6. Example of SPRT 

 R 
Probability of R From: 

Probability 

Examinee Is A: PR 
Test 

Decision 
Master Nonmaster Master Nonmaster 

    .5 .5 1  

1 C .85 .40 .680 .320 2.125 Continue  

2 ¬C .15 .60 .347 .653 0.531 Continue  

3 C .85 .40 .530 .470 1.129 Continue  

4 C .85 .40 .706 .294 2.399 Continue  

5 C .85 .40 .836 .164 5.098 Continue  

6 C .85 .40 .915 .085 10.833 Continue  

7 C .85 .40 .958 .042 23.019 Continue  

8 C .85 .40 .980 .020 48.916 Master 

 

Table 6 summarizes eight repetitions of the procedure of administering a random 

item, evaluating the examinee response, and determining if mastery or nonmastery decision 

can be made. Each repetition and row in Table 6 corresponds to the administration of a new 

item. For every item administered, Table 6 details the probability of the response (correct or 

incorrect) from a master and a nonmaster from the SPRT rule base established during 

calibration, the subsequent probability that the examinee is a master or nonmaster, the 

probability ratio (PR) from equation 10, and associated test decision based on comparing the 

PR to the upper threshold (> 39) and lower threshold (< .026) detailed in equation 11. 

After administering eight questions the examinee has answered all but one item 

correctly and enough data has been collected to enable a mastery decision to be made so the 

test may terminate. Note that before any items have been administered the probability that 
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the examinee is a master is the same as the probability that the examinee is a nonmaster and 

that the probability ratio is 1. 

After the first item is administered and the examinee responds correctly equation 10 

is used to calculate the probability ratio with the number of correct responses equaling one 

and the number of incorrect responses equaling zero. The probably ratio after one item 

indicates that the examinee is over twice as likely to be a master versus a nonmaster but 

testing must continue since the probability ratio is less than the upper threshold. When the 

examinee responds incorrectly to the next question the probability ratio is updated and now 

the examinee is more likely to be a nonmaster than a master. Again, the probability ratio is 

still between the two threshold values so testing must continue. From this point on the 

examinee answers all the items administered correctly and, consequently, the probability 

ratio steady climbs until it passes the upper threshold and a classification decision of master 

can be made. 

3.3 Expert Systems Enhanced SPRT with Random Item Selection (EXSPRT-R) 

3.3.1 Overview 

 The EXSPRT-R is much like the SPRT in that (1) items are randomly selected from 

an item pool for administration and (2) the test terminates once the confidence in a 

classification decision reaches a specific threshold. The key difference is that EXSPRT-R 

applies expert systems thinking to apply item-level probabilities of a correct answer from 

specific classification groups in estimating the likelihood that an examinee belongs to a 

specific classification group. Table 7 presents the rule base for a specific fictional item 

number 63. The specific item parameter estimates for each item are applied in equation 12 to 

calculate the likelihood ratio of an examinee belonging to a particular classification group. 
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The test continues until so long as the likelihood ratio remains between the upper and lower 

thresholds defined in equation 13. 

Table 7. EXSPRT-R Rule Base for Item 63 (adapted from Welch, 1997, p. 47) 

Rule Description Conditional Probability 

1A If the examinee is a master (M) and item 63 is 

selected, the probability (P) of a correct response 

(C63) is .89 

P(C63|M) = .89 

1B If the examinee is a master (M) and item 63 is 

selected, the probability (P) of an incorrect response 

(¬C63) is 1 - .89 or .11 

P(¬C63|M) = .11 

2A If the examinee is a nonmaster (N) and item 63 is 

selected, the probability (P) of a correct response 

(C63) is .65 

P(C63|N) = .65 

2B If the examinee is a nonmaster (N) and item 63 is 

selected, the probability (P) of an incorrect response 

(¬C63) is 1 - .65 or .35 

P(¬C63|N) = .35 
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Where: 

PR =  Probability ratio 

P(Ci|M) = Probability of a correct response to item i given mastery 

P(¬Ci|M) = Probability of an incorrect response to item i given mastery 

P(Ci|N) = Probability of a correct response to item i given nonmastery 

P(¬Ci|N) = Probability of an incorrect response to item i given nonmastery 

PM = Prior probability of mastery 

PN = Prior probability of nonmastery 

αFM = Error rate established a priori for making false master decisions 

βFN = Error rate established a priori for making false nonmaster decisions 

And: 

C = 1, ¬C = 0 if item i is answered correctly by the examinee 

Or: 

 C = 0, ¬C = 1 if item i is answered incorrectly by the examinee 

3.3.2 An Example  

The following example of a single test administration uses the item-level probabilities 

required for EXSPRT-R and uses equal probabilities of a false mastery decision and false 

mastery decision (αFM = βFN = .025) so that there is a 5% chance that EXSPRT-R will make 
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an incorrect classification decision. Note that probability estimates are required for each item 

in the item bank for EXSPRT-R. Rather than list all probabilities associated with all possible 

items, Table 8 presents only the probabilities of specific responses to specific items. For 

example, the probability of a mastery responding incorrectly to item 63 is .11 and the 

probability of a nonmaster responding incorrectly to item 63 is .35. Equation 13 is used to 

establish the threshold below which the probability ratio value would lead to a nonmastery 

decision (PR < 0.026) or above which the probability ratio would lead to a mastery decision 

(PR > 39). 

Table 8. Example of EXSPRT-R 

 i R 

Probability of R To 

i From: 

Probability 

Examinee Is A: PR 
Test 

Decision 
Master Nonmaster Master Nonmaster 

     .5 .5 1  

1 63 ¬C .11 .35 .239 .761 .314 Continue  

2 23 C .81 .24 .515 .485 1.064 Continue  

3 1 ¬C .08 .53 .138 .862 0.160 Continue  

4 38 ¬C .02 .14 .024 .976 .025 Nonmaster 

 

After administering four questions the examinee has answered all but one item 

incorrectly and enough data has been collected to enable a nonmastery decision to be made 

so the test may end. Note that before any items have been administered the probability that 

the examinee is a master is the same as the probability that the examinee is a nonmaster and 

that the probability ratio is 1. 
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After the first item is administered and the examinee responds incorrectly equation 12 

is used to calculate the likelihood ratio. The likelihood ratio after one item indicates that the 

examinee is more likely to be a nonmaster versus a master but testing must continue since the 

likelihood ratio is greater than the lower threshold. When the examinee responds correctly to 

the next question the probability ratio is updated and now the examinee is slightly more 

likely to be a master than a nonmaster. Again, the probability ratio is still between the two 

threshold values so testing must continue. From this point on the examinee answers the two 

items administered incorrectly and, consequently, the probability ratio declines until it drops 

below the lower threshold and a classification decision of nonmaster can be made. 

3.4 A Bayesian Statistics Perspective on Classical Test Theory Item Calibration 

 Bayesian statistics provide useful tools for understanding the tradeoff between 

reducing the uncertainty in probability estimates and increasing the item calibration sample 

size. Estimated probabilities for use in variable-length computer classification testing (VL-

CCT) methods can be determined through the use of a beta distribution (Frick, 1989). The 

following introduces the basics of beta distributions drawing heavily on an introductory text 

by Schmitt (1969) and email correspondence with Dr. Theodore Frick. With few exceptions, 

terminology and abbreviations are from Schmitt. All abbreviations used are explained in 

appendix A. 

3.4.1 The Probability Density Function of the Beta Distribution 

 The number of correct and incorrect responses from members of a specific 

classification group during the item calibration phase forms a unique probability density 

function of the beta distribution. For example, beta ( * | 2, 3) is the probability density 
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function corresponding to two successes (correct responses) and three failures (incorrect 

responses) shown in Figure 1.  

 

Figure 1. Probability Density Function for Two Successes and Three Failures 

The horizontal axis represents the proportion of successes (P) with values ranging 

from zero to one. The vertical axis is the probability density (pd). The height of the 

probability density function represents the pd for a specific value of P and can be calculated 

using equation 14. For example, in beta ( * | 2, 3) a P of .5 corresponds to a pd of 1.875 or in 

mathematical notation beta ( .5 | 2, 3) = 1.88 (the large dot in Figure 1). Equation 1, 

introduced earlier, can be used to calculate the expected mean of a beta variable defined by s 

successes and f failures. The dashed line in Figure 1 represents the expected mean of the beta 

distribution in (.42).  
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 The area under a portion of a probability density function is the probability (p) that 

the true proportion of successes (P) lies within a particular range of P. The area under a beta 

distribution from zero to any P value is called the cumulative distribution function and can be 

determined via numerical integration1. In Figure 1 the area under beta ( * | 2, 3) from P=0 to 

P=.11 is filled with horizontal lines. Mathematical notation for the cumulative distribution 

function for P=.11 is BETA (0.0 to .11 | 2, 3) = .02. In other words, the p of the true P being 

between 0 and .11 in the probability density function defined by two successes and three 

failures is .02. The total area under the curve of a probability density function always equals 

one since zero and one bound all possible values of P and must correspond to a p of one. As 

such, the area under the probability density function curve to the right of any value of P is 

equal to one minus the value of the cumulative beta function at P. In Figure 1 the area under 

the function from P=.76 to P=1 filled with vertical lines equals a p of .03 (BETA ( .76 to 1.0 | 

2, 3) = .03). 

3.4.2 Probability Density Function Variance, SD, and HDR 

 Several measures exist that may be applied to evaluate the preciseness of the expected 

mean proportion of successes (P), otherwise know as the beta mean (equation 1), associated 

with a given probability density function. The beta variance (equation 15) and beta standard 

                                                 
1 Simpson’s Rule is a proven numerical integration approach described by Schmitt (1969) for 

accurately estimating the area under any curve  

������|
, �
 = �
 + � + 1
!
! �! �*�1 − �
+ (14) 
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deviation (SD) (equation 16) both provide measures of how spread out the associated 

probability density function is with SD being the more commonly reported. Both variance 

and standard deviation decrease as spread decreases and, as such, can be used as a measure of 

the precision of the estimated mean. It is important to note that both the variance and 

standard deviation equations are associated with the beta distribution not the normal 

distribution. While it is best practice to report SD values whenever means are provided, use 

of the beta mean in the VL-CCT literature has not included a pairing with the beta SD as a 

means of evaluating the uncertainty associated with estimated means. 

,��� -�./�01� = �
 + 1
�� + 1
�� + 2
2�� + 3
 (15) 

,��� 4��05�.5 6�7/��/80 = 9 �
 + 1
�� + 1
�� + 2
2�� + 3
 (16) 

 Where: 

s = Number of successes 

N =  Number of observations (s + f) 

f = Number of failures 

An alternative measure of variance is associated with the highest density region 

(HDR), also known as a Bayesian confidence interval or a credible interval (Lee, 2004). 

HDR is an interval of P values associated with a specific fraction of the total probability (the 

area under the curve) such that every P value inside the interval has a higher pd than every P 

value outside the interval. The previous use of P values of .11 and .76 to illustrate areas 

under the probability density function was not by chance: they also represent the lower and 

upper bounds of the 95% HDR for beta ( * | 2, 3). Recall, the area under the curve from a P 
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of 0 to .11 was .02 and .03 for area under the curve from a P of .76 to 1. Summing the two 

areas (.02 + .03) yields a p of .05, which is equal to the area outside the 95% HDR for beta ( 

* | 2, 3). The 95% HDR tells us that for beta ( * | 2, 3) the posterior probability that the true 

value of P is contained in the interval .11 to .76 is .95. The width of the HDR suggests how 

much confidence should be placed in an expected mean. In the case of beta ( * | 2, 3), the 

width of the 95% HDR is .65 (.76 - .11 = .65) telling us that there is a large amount of 

uncertainty about the true value of P. The expected mean of P is only slightly more likely to 

be the true P than other values, some of which are substantially higher or lower.  

Examining the SD leads to a similar conclusion regarding the confidence that should 

be placed in the mean. A SD of .175 is associated with beta ( * | 2, 3) and the mean of .42 

which means that we cannot have much certainty or confidence that the mean is a precise 

estimate. Fortunately, with additional observations the width of the 95% HDR can be 

narrowed, the SD decreased, and the uncertainty about true P reduced. 

3.4.3 Sample Size and Kurtosis 

 More observations (i.e. successes and failures) yield probability density functions that 

are more peaked (lower variance), which serves to increase the pd over a narrower range of 

P. In other words, as sample size increases, the width of the associated HDR and SD 

decreases and the expected mean of P becomes more likely to be closer to the true value of 

P. Figures 2 through 7 illustrate how probability density functions become increasingly 

leptokurtic with more observations. Each presents two probability density functions with the 

black line representing data gathered from masters with a higher probability of responding 

correctly than nonmasters represented by the grey line.  
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Figure 2. More Equal Ability Groups at 5 

Observations 

 

Figure 3. Less Equal Ability Groups at 5 

Observations 

 

Figure 4. More Equal Ability Groups at 50 

Observations 

 

Figure 5. Less Equal Ability Groups at 50 

Observations 

 

Figure 6. More Equal Ability Groups at 500 

Observations 

 

Figure 7. Less Equal Ability Groups at 500 

Observations 
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 Figures 2, 4, and 6 show probability density functions where masters respond 

correctly three times for every two incorrect responses and nonmasters respond correctly 

twice for every three incorrect responses. Similarly, Figures 3, 5, and 7 show probability 

density functions where masters respond correctly four times for every incorrect response 

and nonmasters respond correctly once for every four incorrect responses. While unlikely, 

consistent correct/incorrect response ratios are useful for showing how probability density 

functions differ when the sample size increases. Figures in the same row are based on the 

same sample size (5, 50, and 500 respectively). Note that the scale of the probability density 

axis changes to accommodate increasingly higher pd values associated with more 

observations. 

 Inspection of Figures 2 through 7 reveals three important points that have 

implications for item calibration. First, increasing the sample size results in more leptokurtic 

probability density functions with expected means of P that are more likely to be closer to the 

true P. The unsurprising implication is that larger calibration sample sizes will yield 

estimates of a probability of a correct response for a specific classification group that are 

more likely to be closer to the true value than estimates based on smaller calibration sample 

sizes. However, increasing the sample size comes at a cost: more examinees and more time 

both from examinees and administrators. Recall, Frick (1992) found that: (1) with 25 

examinees per classification group sufficient classification accuracy could be obtained; (2) 

having more than 25 examinees per classification group did not substantially increase 

classification accuracy. It may be tempting to answer the question “How much information 

must be collected during item calibration to facilitate accurate classification decisions?” with 
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“25 examinees per classification group”, however, a more nuanced answer is needed that 

accounts for differences in probability density functions associated with each classification 

group for reasons outlined next. Sample size is a coarse measure since it aggregates the 

number of correct and incorrect responses into a single number. 

3.4.4 Beyond Sample Size 

 The second important point revealed by inspection of Figures 2 through 7 is that 

probability density functions based on the same sample size have different densities with 

those peaked nearer P=.5 being less dense than those peaked nearer P=0 or P=1. Probability 

density functions in Figures 3, 5, and 7 are all denser with higher peaks than their 

counterparts in Figures 2, 4, and 6 with the same sample size. The implication for item 

calibration is that after a fixed sample size items with a mean probability of a correct 

response near point five will be less likely to be close to the true probability than those items 

with a probability of a correct response closer to zero or one. In other words, item difficulty 

impacts accuracy of the estimated probability of a correct response and after a fixed sample 

size (e.g. 25) accuracy of estimates will vary according to item difficulty. 

 The third point to draw from Figures 2 through 7 is that the overlap between the 

nonmasters and masters probability density functions depends both on kurtosis and the 

difference in the proportion of successes. The area under both probability density functions 

decreases from Figure 2 to 4. The same tenfold increase in observations from Figure 3 to 5 

eliminates the overlapping area entirely due, in large part, to the greater difference in abilities 

between nonmasters and masters. To understand the implications of this third point requires 

placing item calibration in the context of hypothesis testing which will be done next but, 

before moving on, the key takeaway from Figures 2 through 7 is that it cannot be assumed 
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that with a fixed sample size any item or set of items with any combination of probability 

density functions will be equally calibrated to enable accurate classification decisions. 

Instead, an approach is needed that takes unique probability density functions into account. 

3.5 Item Calibration and Hypothesis Testing 

 The two probability density functions shown in each chart in Figures 2 through 7 are 

strikingly similar to representations used in statistical decision-making and suggest a 

framework for making decisions about when sufficient observations have been collected 

during item calibration that does account for the specific probability density functions. The 

following will first briefly review statistical decision-making and then present specific 

examples of how a statistical decision-making framework could be used to judge when 

enough observations have been made in the context of item calibration.  

3.5.1 Type I and Type II Error 

 Statistical decision-making involves testing a null hypothesis that is either accepted or 

rejected based on the information available and is associated with two types of error. Type I 

error is incorrectly rejecting the null hypothesis when it is true. Type II error is incorrectly 

accepting the null hypothesis when it is false. The four possible results of hypothesis testing, 

including the two types of errors, are summarized in Table 9. 

 The probability of making a type I error is often designated alpha (α). Likewise, the 

probability of making a type II error is often designated beta (β). The symbol β will be used 

instead of the word “beta” to avoid confusion with the beta distribution. The value of α is 

typically not calculated, rather, statistical significance criterion is used to set α. Commonly 

used values for α are .05 and .01. The critical value, also know as the decision threshold 

(Schmitt, 1969), is used to judge if an observed measure supports or contradicts the null 
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hypothesis, is dependent on α because α must equal the probability of an observed measure 

being larger than the critical value while the null hypothesis is true. In turn, the value of β is 

dependent on the critical value since β is equal to the probability of an observed measure 

being smaller than the critical value while the null hypothesis is false. In other words, the 

value of α impacts the critical value which subsequently impacts the value of β. 

Consequently, decreasing α results in an increase in β. Sample size also influences β. Power 

analysis can be used to determine the minimum sample size that will enable an acceptable β 

for a given α and effect size (Cohen, 1988). Power is equal to 1 - β with .8 commonly used 

as an adequate level of power. How the value of α may impact decisions regarding if enough 

information has been collected during item calibration is addressed next. 

Table 9. Four Results of Hypothesis Testing 

Reality 

Decision 

Accept Null Hypothesis Reject Null Hypothesis 

Null 

Hypothesis 

is true 

Correctly accept null hypothesis 

Probability = 1 - α 

Incorrectly reject null hypothesis 

Probability = α 

Type I Error 

Alternative 

Hypothesis 

is true 

Incorrectly accept null hypothesis 

Probability = β 

Type II Error 

Correctly reject null hypothesis 

Probability = 1 - β 

Power 
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3.5.2 Hypothesis Testing and Item Calibration Decisions 

 Two key decisions associated with item calibration can be informed through the 

application of the hypothesis testing approaches discussed above: (1) Does the item 

sufficiently discriminate between nonmasters and masters? (2) Are item parameter estimates 

sufficiently precise? The following will focus on the former. First, index of discrimination is 

introduced. Second, an example is provided to illustrate how calibration sample size can 

impact decision errors. Finally, a framework is presented based on hypothesis-testing for 

making decisions regarding if an item sufficiently discriminates between nonmasters and 

masters. 

 Index of discrimination, otherwise known as discrimination index, is an important 

measure of item quality. The index of discrimination for item i, represented by Di, can be 

calculated by subtracting the probability of a nonmaster responding correctly to item i from 

the probability of a master responding correctly to item i (equation 15). Since probabilities 

range from zero to one the index of discrimination ranges from negative one to one. Table 10 

presents guidelines on interpreting the index of discrimination put forward by Ebel (1972). 

 

6� = ����|�
 −  ����|�
 (17) 

Where: 

Di =  Index of discrimination for item i 

P(Ci|M) = Probability of a correct response to item i given mastery 

P(Ci|N) = Probability of a correct response to item i given nonmastery 
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Table 10. Categorization of discrimination values adapted from Ebel (1972) 

Index of Discrimination  Item Evaluation 

≥ .40 Very good items 

.30 to .39 Reasonably good but possibly subject to improvement 

.20 to .29 Marginal items, usually needing and being subject to improvement 

≤ .19 Poor items, to be rejected or improved by revision 

 

While it can be argued that the specific values of the index of discrimination 

associated with the very good, reasonably good, marginal, and poor items in Table 10 are 

somewhat arbitrary, two important points can be drawn from Ebel’s categorization 

framework. First, high indices of discrimination (e.g. above .4) are associated with high 

quality items. The reason is that when masters are much more likely than nonmasters to 

respond correctly to an item then a correct or incorrect response to the item by an examinee 

provides more information that can be used in estimating an examinee’s mastery status. 

Second, below a certain index of discrimination (e.g. below .19) items should either be 

rejected or revised. When masters are only slightly or not more likely than nonmasters to 

respond correctly to an item then a correct or incorrect response to the item by an examinee 

provides minimal information that can be used in estimating the examinee’s mastery status. 

Further, it is standard practice to identify negatively discriminating items (those items that 

nonmasters are more likely to respond correctly to than masters) as problematic and remove 

them from the item-bank (Ebel, 1972). However, use of the index of discrimination alone can 

be misleading. 
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An item’s index of discrimination is based on estimates of the probability of a correct 

answer from masters and nonmasters and the confidence in these probability estimates should 

influence the confidence in the associated index of discrimination. Consider Figures 2, 4, and 

6 that show mastery and nonmastery beta distributions for an item at five, 50, and five 500 

observations. Each of these is based on the same ratio of correct and incorrect responses from 

masters and nonmasters and their associated indices of discrimination (calculated using 

equations 6, 8, and 17) are all less than .2 thus qualifying them as poor items according to 

Table 10.  On the other hand, Figures 3, 5, and 7 are all associated with indices of 

discrimination greater than .4 thus qualifying them as very good items in Table 10. 

However, the index of discrimination hides the number of observations it is based on. 

Figures 6 and 7 are based on one hundred times more observations than Figures 2 and 3 and, 

as such, more confidence can be placed in the associated estimates of the probabilities of 

nonmasters and masters responding correctly to the item and the resulting index of 

discrimination. Making decisions regarding if an item sufficiently discriminates between 

nonmasters and masters with too few observations contributes to making two unique types of 

errors: (1) falsely identifying an item as problematic when in reality it is not and (2) falsely 

identifying an item as not problematic when in reality it is.  

The two types of errors just identified are examples of type I and type II errors 

presented in Table 9. If the null hypothesis is “the probability of a master responding 

correctly is less than or equal to the probability of a nonmaster responding correctly” then 

existing hypothesis testing approaches can be applied that test the null hypothesis under 

conditions where acceptable levels of error are defined a priori. The following presents two 
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examples of testing this null hypothesis with the same data but with different values for α 

(the probability of making a type I error). 

 

Figure 8. Difference between beta ( * | 15, 10) and beta ( * | 20, 5) at alpha = .05 

Figure 8 presents nonmaster and master, probability density functions, beta ( *, 15, 

10) and beta ( *, 20, 5), along with the critical value and β that would result from setting α to 

.05. When α is set to .05 then the critical value is the point where five percent of the area 

under the nonmaster probability density function lies to the right. Numerical integration 

using Simpson’s Rule determines the critical point to be at P=.74. Shading with vertical bars 

denotes the α area of .05 in Figure 8. Simpson’s rule establishes the area under the masters 

curve to the left of P=.74 to be β=.30 (represented in Figure 8 via shading with horizontal 

bars). If we use the expected mean of P for the masters probability density function as the 

observed value then via equation 2 the observed value equals .78. The observed value (.78) is 
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larger than the critical value (.74) so we could reject the null hypothesis and conclude that the 

probability of a master responding correctly is significantly larger (at the α = .05 level) than 

the estimated probability of a nonmaster responding correctly (.59). However, the power of 

this test (1 - β) is .70, below the value commonly identified as adequate (.8). 

 

Figure 9. Difference between ( * | 15, 10) and beta ( * | 20, 5) at alpha = .01 

 Figure 9 presents the same probability density functions for nonmasters and masters 

but illustrates how an α of .01 would result in the null hypothesis being accepted rather than 

rejected. When α is .01 the critical value of P increases to .79 and β increases to .36. 

Consequently, the expected mean of P for the masters probability density function (.78) is 

smaller that the critical value (.79) so the null hypothesis could be accepted: no significant 

differences (at the α = .01 level) in the estimated probability of a correct response from a 

master and a nonmaster. Setting α to .01 results in a different conclusion from that arrived at 
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by setting α to .05. Furthermore, decreasing α from .05 to .01 results in an increase in β from 

.30 to .36 and an increase in the risk of committing a type II error (lower power). 

Clearly, decisions regarding the thresholds of α and β have implications for reaching 

conclusions regarding when items sufficiently discriminate between nonmasters and masters. 

However, unlike other types of statistical decision-making, guidelines regarding what 

thresholds of α and β enable efficient and accurate decisions regarding if an item sufficiently 

discriminates between nonmasters and masters do not exist. Likewise, statistical methods for 

determining the degree that one beta distribution differs from another have not been 

established. Consequently, researchers and test administrators are left to rely on less precise 

guidelines based on sample size until practical recommendations are established. 

  Figures 8 and 9 are based on testing the null hypothesis “the probability of a master 

responding correctly is less than or equal to the probability of a nonmaster responding 

correctly”. Evidence that the probability of a master responding correctly is sufficiently 

greater than the probability of a nonmaster responding correctly supports (1) rejecting the 

null hypothesis and (2) the inclusion of the item in the item-bank. However, efficiently 

identifying poor items is also important. The same approach described above may be used to 

test a different but related null hypothesis, namely, “the probability of a master responding 

correctly is greater than or equal to the probability of a nonmaster responding correctly”. 

Evidence that the probability of a master responding correctly is sufficiently less than the 

probability of a nonmaster responding correctly supports (1) rejecting the null hypothesis and 

(2) the exclusion of the item from the item-bank. Efficient identification and removal or 

pruning of problematic items from the item-bank can prevent additional time and resources 

being wasted in a vain attempt to calibrate an item that is highly likely to be problematic. 
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 Before moving on to the proposed Automatic Racing Calibration Heuristics approach, 

the method for answering the second key question associated with item calibration must be 

addressed. When are item parameter estimates sufficiently precise? The previous discussion 

on highest density regions (HDR) and standard deviations of beta distributions suggests an 

answer: continue calibrating items until the variance of both the nonmaster and master beta 

distributions decreases to a point where it reaches a pre-established threshold that has been 

associated sufficient preciseness. However, much like the previous discussion about criteria 

for determining when one beta distribution mean is sufficiently different from another, 

criteria for determining when beta distribution means are sufficiently precise have not been 

established that lead subsequent testing to make classification decisions within pre-

established error rates.  

3.6 Automatic Racing Calibration Heuristics (ARCH) 

3.6.1 Overview 

 Automatic Racing Calibration Heuristics (ARCH) applies statistical hypothesis 

testing techniques to efficiently address item calibration questions during online testing. 

ARCH pits SPRT and a slightly modified version of EXSPRT-R, labeled M-EXSPRT-R, 

against each other in a race to make accurate classification decisions about examinees using 

the fewest number of items. The simultaneous application of multiple VL-CCT approaches to 

was inspired by methods applied by Welch & Frick (1993) to compare SPRT and EXSPRT-

R approaches during live testing. Initially, only item-bank level parameter estimates must be 

established for SPRT. Item level parameter estimates used by M-EXSPRT-R are not 

available at the outset. After each classification decision, ARCH: (1) automatically uses the 

additional response data gathered during the online test to update associated item calibration 
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parameter estimates and (2) applies a set of heuristics to determine if any items are 

sufficiently calibrated for use with M-EXSPRT-R. Through the course of online testing more 

items become sufficiently calibrated for use with M-EXSPRT-R, thus increasing the chances 

that M-EXSPRT-R will be able to make classification decisions more efficiently than SPRT. 

In short, tests become more efficient as testing progresses. 

3.6.2 Measured-EXSPRT-R (M-EXSPRT-R) 

 M-EXSPRT-R is a VL-CCT approach that operates in nearly the same way as the 

EXSPRT-R approach presented earlier. The key difference is that M-EXSPRT-R only uses 

item parameter estimates for items that are sufficiently calibrated. An item is sufficiently 

calibrated if it meets specific discrimination and precision criteria. The M in M-EXSPRT-R 

represents the measured use of item parameter estimates. During the initial stages of a test 

using the ARCH approach few if any items in the item-bank will be sufficiently calibrated. 

As such, M-EXSPRT-R will have little or no data on which to make decisions about mastery. 

However, SPRT, the competing VL-CCT approach, relies on item-bank level parameter 

estimates that are available and can make decisions about examinees. The SPRT decisions 

generate additional item calibration data that lead to more items that are sufficiently 

calibrated for use with M-EXSPRT-R.  

3.6.3 Design Components 

 ARCH requires a reasonably large item-bank calibrated at the item-bank level in 

order to start. The item-bank must be large enough to ensure desired item exposure rates are 

met. Only the four item-bank level parameter estimates used by SPRT (equations 6, 7, 8, and 

9) must be established before ARCH can begin. The item-bank level parameter estimates 
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used by SPRT can either be set by test administrators or based on empirical data from a 

calibration phase involving a fixed number of nonmasters and masters.   

3.6.4 Heuristics 

 ARCH applies a set of calibration heuristics every time a classification decision is 

made about an examinee by either SPRT or M-EXSPRT-R to evaluate any of the items that 

were used in making the classification decision can be accepted for use with M-EXSPRT-R. 

The heuristics are summarized in Table 11. For each item four yes or no questions are asked: 

(1) Is the number of times item i has been administered during calibration (ni) greater than or 

equal to the calibration administration maximum (nmax)? (2) For item i, is the probability of a 

correct response given mastery (P(Ci|M)) sufficiently less than the probability of a correct 

response given nonmastery (P(Ci|N))? (3) For item i, is the probability of a correct response 

given mastery (P(Ci|M)) sufficiently greater than the probability of a correct response given 

nonmastery (P(Ci|N))? (4) Are the estimates of the probability of a correct response from a 

nonmaster and the probability of a correct response from a master sufficiently precise? Note 

that while all but the first question can be stated as a hypothesis testing or statistical 

estimation problem, the word “sufficiently” has been intentionally used in the heuristic 

questions instead of “significantly” to keep the focus on establishing practical heuristic 

criteria that lead to accurate and efficient performance of M-EXSPRT-R. 
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Table 11. Item-Level Calibration Heuristics Decision Table for ARCH 

ni ≥ nmax? 

Yes  Reject i. Stop 

calibration on 

i. 

No 

Is P(Ci|M) 

Sufficiently 

Less Than  

P(Ci|N)? 

Yes  

No 

P(Ci|M) 

Sufficiently 

Greater 

Than  

P(Ci|N)? 

Yes 

P(Ci|M) & 

P(Ci|N) 

Sufficiently 

Precise? 

Yes 

Accept i. 

Stop 

calibration on 

i. 

No No Decision. 

Continue 

calibration on 

i. 

No  

 

Where: 

ni = Number of times item i has been administered during calibration 

nmax = Maximum administrations for any item during calibration 

P(Ci|M) = Probability of a correct response to item i given mastery 

P(Ci|N) = Probability of a correct response to item i given nonmastery 

 

The answers to each of these questions are used to select one of three possible 

outcomes for the given item: (1) Reject the item for use with M-EXSPRT-R and stop further 

calibration on the item; (2) Accept the item for use with M-EXSPRT-R and stop further 

calibration on the item; (3) Make no decision and continue calibration on the item. Initially 

no items will have been accepted for use with M-EXSPRT-R. However, as the ARCH 

approach continues calibrating, all items in the item-bank will be rejected or accepted for use 
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with M-EXSPRT-R. The answers to the yes or no questions and the outcome selected depend 

on: (1) what criteria are used to judge if the differences between P(Ci|M) and P(Ci|N) are 

sufficient and (2) what criteria are used to judge if estimates of P(Ci|M) and P(Ci|N) are 

sufficiently precise. The first of two studies of this dissertation, Monte Carlo ARCH 

operationalization and evaluation with historical COM test data, established specific ARCH 

heuristic criteria through identifying appropriate statistics and determining associated 

threshold values that enabled the M-EXSPRT-R component of the ARCH approach to make 

efficient classification decisions within a priori error rates. 

3.6.5 An Example 

 Let’s assume we start with an item-bank calibrated for use with SPRT and that the 

item-bank level parameter estimates are the same as those used in the example used to 

explain SPRT [P(C|M) = .85; P(C|N) = .40; P(¬C|M) = .15; P(¬C|N) = .60]. Suppose 

further, the ARCH approach has sufficiently calibrated a few items for use with M-EXSPRT-

R. As with the EXSPRT-R example the specific probabilities of specific responses to specific 

items are provided in Table 13 rather than listing all four probabilities for all possible items. 

Like the previous examples of SPRT and EXSPRT-R, Table 13 illustrates the administration 

of a test to a single examinee. However, Table 13 demonstrates how both SPRT and M-

EXSPRT-R approaches operate in parallel in a race to make a classification regarding the 

examinee using the data available to each approach. 

 After administering seven randomly selected items to the examinee only M-EXSPRT-

R is able to make a classification decision about the examinee despite not being able to use 

three of the seven responses in it’s decision making. Both SPRT and M-EXSPRT-R are able 

to use the responses to the first two items administered (items 63 and 23) to calculate 
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corresponding probability and likelihood ratios. When item 28 is administered only SPRT 

can use the examinee response to update the probability ratio. M-EXSPRT-R, on the other 

hand, does not yet know enough about item 28 to use the associated item-level parameter 

estimates to update the likelihood ratio that consequently remains at 1.064. 

Item 28 represents an item that has not yet met the criteria defined by the calibration 

heuristics in Table 11 – item 28 has been neither accepted nor rejected for use by M-

EXSPRT-R and is still in the process of being calibrated. Item 87 and 11 are also not 

sufficiently calibrated for use with M-EXSPRT-R so the examinee responses to these items 

are not incorporated into the M-EXSPRT-R likelihood ratio. However, since SPRT uses 

item-bank level parameter estimates, the examinee responses to all items are used to update 

the probability ratios.



Table 12. Example of Racing SPRT and M-EXSPRT-R 

 i R 

Probability of R From: 
SPRT 

PR 

SPRT Test 

Decision 

Probability of R To i From: M-

EXSPRT-R 

PR 

M-EXSPRT-

R Test 

Decision 
Master Nonmaster Master Nonmaster 

     1    1  

1 63 ¬C .15 .60 0.250 Continue .11 .35 .314 Continue 

2 23 C .85 .40 0.531 Continue .81 .24 1.064 Continue 

3 28* ¬C .15 .60 0.133 Continue - - 1.064 Continue 

4 1 ¬C .15 .60 0.033 Continue .08 .53 0.160 Continue 

5 87* C .85 .40 0.071 Continue - - 0.160 Continue 

6 11* C .85 .40 0.150 Continue - - 0.160 Continue 

7 38 ¬C .15 .60 0.037 Continue .02 .14 .025 
Stop: 

Nonmaster 

* Item level calibration is not complete so M-EXSPRT-R cannot use associated item parameter estimates 

  

 



CHAPTER IV. METHODS 

This dissertation is made up of two related studies. Both examine RQ2 and RQ3 

using the same analytical methods, however, they do so using different participants and data 

collection methods. Both studies evaluate the ARCH approach but only the first study had 

the additional purpose of operationalizing the ARCH concepts presented in the previous 

chapter and establishing the ARCH calibration criteria and thresholds that provide answers to 

RQ1. A one-page summary of the two studies, participants, research questions, and methods 

applied is presented in Table 13.  

The first study, Monte Carlo ARCH operationalization and evaluation with historical 

COM test data, provided preliminary answers to each of the three research questions: (RQ1) 

When is an item sufficiently calibrated? (RQ2) How accurate is ARCH? (RQ3) How 

efficient is ARCH? The second study, ARCH evaluation with new IU plagiarism test 

examinees, used the item calibration criteria established from the first study (RQ1) to 

determine if the preliminary answers RQ2 and RQ3 from the first study held true in the live 

online testing context associated with a new adaptive version of the Indiana University (IU) 

plagiarism test. 

The organization of this chapter is consistent with Table 13. The following elaborates 

on Table 13, row by row, from the top to the bottom. The two main sections of this chapter 

correspond to the two studies and the associated rows of Table 13. The structure of each 

section is the same – participants associated with the phase are described, followed by a 

discussion of the methods of data collection and analysis in the context of specific research 

questions. 



Table 13. Methods Summary 

Study Participants 

Research 

Questions  Data Collection Method  Analytic Method 

I: Monte Carlo 

ARCH 

operationalization 

and evaluation 

with historical 

COM test data 

 

Examinees (N=104) 

from a previous study 

(Frick, 1992) who 

responded to an 85-

item test. Participants 

came from 2 sections 

of a graduate course, 

one undergraduate 

course, and a few 

volunteer recruits from 

IU’s main library 

1. When is 

an item 

sufficiently 

calibrated? 

Monte Carlo simulations 

with historical COM test 

data: Historical Examinee 

item responses were used to 

simulate test administrations 

using a variety of ARCH 

criteria  

Repeated simulations to identify specific ARCH 

criteria that are likely to achieve sufficient test 

classification accuracy while hastening deployment of 

M-EXSPRT-R to improve efficiency 

2. How 

accurate is 

ARCH? 

Monte Carlo simulations 

with historical COM test 

data: Recording of resulting 

classification decisions and 

test lengths from simulated 

test administrations using 

established ARCH criteria. 

Tests to determine if ARCH classification decisions 

deviate significantly from total test classification 

decisions  

3. How 

efficient is 

ARCH? 

Friedman Test and Post Hoc Testing to determine if 

mean test lengths of ARCH, SPRT, and EXSPRT-R 

tests are significantly different 

II: ARCH 

evaluation with 

new IU 

plagiarism test 

examinees 

Volunteers (N=5,729) 

from the thousands 

who take the IU 

plagiarism test 

2. How 

accurate is 

ARCH? 

Live Testing: Examinee item 

responses were collected. For 

each examinee, the number 

of items required to make a 

classification decision and 

the decision itself were 

recorded for each testing 

method. 

Chi-squared Tests to determine if ARCH, calibrated 

using the ARCH criteria established in the first study 

makes classification decisions that deviate 

significantly from decisions made by EXSPRT-R 

calibrated with 50 masters and 50 nonmasters 

3. How 

efficient is 

ARCH? 

Friedman Test and Post Hoc Testing Repeated 

Measures One-Way ANOVA and Post Testing to 

determine if mean test lengths of ARCH, SPRT, and 

EXSPRT-R tests are significantly different 
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4.1 Monte Carlo ARCH Operationalization and Evaluation with Historical COM 

Test Data  

The first study, Monte Carlo ARCH operationalization and evaluation with 

historical COM test data, involves test re-enactments via Monte Carlo computer 

simulations using historical test data from a previous study (Frick, 1992) in order to both 

operationalize and evaluate ARCH. In addition to providing preliminary answers to each 

of the three research questions, the ARCH criteria necessary for accurate and efficient 

testing established in the first study were used for ARCH in the second study. 

Simulation Method 

Monte Carlo simulations were conducted to reenact tests. A combination of 

JavaScript and HTML was used to create the various types of simulations that are 

described in greater detail in the results chapter. Common to all Monte Carlo simulations 

is the method for how items were selected for administration and the examinee response 

determined. In all cases, random item selection without replacement was used. In other 

words, items were randomly selected for a given test for a particular examinee such that 

no item was administered more than once on a particular test. The examinee response to 

an item was always drawn from their actual response to the item in the historical data. 

This means that if examinee A responded to item 32 incorrectly in the historical data then 

an incorrect response would be recorded anytime a simulation involving examinee A 

involved administration of item 32.  
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The basis for the methods used in this study is the ability to use historical data of 

examinee responses to specific questions to simulate various testing approaches and 

record results including the test length, the classification decision, and if the classification 

decision agrees with the classification decision made using all the test items. Each of the 

testing approaches being examined uses random item selection, which is advantageous in 

terms of the large volume of different simulations possible. The same examinee can be 

tested multiple times using the same testing approach with random item selection since 

there are over 2.8 x 10128 or 85! different ways to select 85 test items. Consequently, 

multiple samples can be generated from the historical data for the purposes of addressing 

each of the research questions. 

Historical COM Test Data 

The historical test datum on which the first study, Monte Carlo ARCH 

operationalization and evaluation with historical COM test data, was based include 

responses from 104 participants on a computer literacy test, subsequently referred to as 

the COM test, comprised of 85 items. According to Frick (1992), the examinees came 

from three sources: (1) two sections of a graduate course on the use of computers in 

education accounted for nearly half of the examinees; (2) volunteers from an 

undergraduate course on how to use computers for non-education majors constituted the 

second largest source of examinees; and (3) only a few examinees were volunteers 

recruited at Indiana University’s main library.  

The test on the subject of how computers work was comprised of 85 items that 

included “about half multiple-choice, one-fourth binary choice, and one-fourth fill-in type 
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questions” (Frick, 1992, p. 203). Analysis of the responses enabled a cut score between 

nonmasters and masters of 72.5% to be established and resulted in dividing the 

examinees into 28 nonmasters (27%) who responded correctly to less than 72.5% of the 

items and 76 masters (73%) who responded correctly to 72.5% or more of the items. The 

Cronbach alpha for the test was .94 and the mean total correct for all examinees was 

79%. 

Familywise Error Rate 

 The familywise error rate for this study was set to the often used value of α = .05. 

As there were five hypothesis tests being performed, the p-value used for testing each of 

the hypotheses was set to p = .01. RQ2 included performing statistical analysis on three 

hypotheses tests: (1) Do overall error rates differ significantly across the four testing 

algorithms? (2) Do rates of false nonmastery differ significantly across the four testing 

algorithms? and (3) Do rates of false mastery differ significantly across the four testing 

algorithms? The remaining two hypothesis tests were associated with RQ3: (3) Do mean 

test lengths differ significantly across the four testing algorithms? and (4) Do no-decision 

rates differ significantly across the four testing algorithms? 

 Post-hoc testing associated with any of the four hypothesis tests listed above to 

look for pairwise differences between the four testing algorithms requires that the p = .01 

value be divided further. Four testing algorithms equate to the following six pairwise 

comparisons: (1) SPRT and ARCH pre-calibration; (2) SPRT and ARCH post-

calibration; (3) SPRT and EXSPRT; (4) ARCH pre-calibration and ARCH post-

calibration; (5) ARCH pre-calibration and EXSPRT; (6) ARCH post-calibration and 
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EXSPRT. Applying the Bonferroni correction results in dividing p = .01 by six, which 

yields the small value of p = .0017 that was used in post-hoc analysis. 

 Since ARCH pre-calibration uses the SPRT testing algorithm, it could be argued 

that comparing ARCH pre-calibration and SPRT is not warranted. However, test 

reenactments in this study enabled ARCH pre-calibration and SPRT to independently 

select items randomly for administration. In other words, an ARCH pre-calibration 

reenactment and a SPRT reenactment for the same examinee would be expected to differ 

slightly in both accuracy and efficiency due to the random selection of different items. 

These differences were not expected to be significant since they were due to random 

chance, so comparisons between ARCH pre-calibration and SPRT provided a way of 

confirming that ARCH pre-calibration performed as expected (i.e. does not differ 

significantly from SPRT). 

 Goodness-of-fit tests conducted in study 1 were not included in the overall 

familywise error rate and individual hypothesis testing p values. Unlike the other 

statistical tests of significance conducted in study 1, lack of a significant difference 

between the error rates observed with the ARCH algorithm and the expected a priori 

error rates represents a discovery. Consequently, keeping the p value at .05 is a 

conservative approach, as the probability of finding a significant result is greater than if p 

was decreased.  

4.1.1 ARCH Calibration Sufficiency (RQ1) Data Collection & Analytic Methods 

RQ1 sought to identify specific criteria that enable ARCH to reliably predict 

when an item has been sufficiently calibrated to enable testing to make classification 

decisions within a priori error rates. The data collection method used to answer RQ1 
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involved using the historical test data in the first stage of the computer simulations 

planned for the first study, Monte Carlo ARCH operationalization and evaluation with 

historical COM test data. 

ARCH item calibration and testing were simulated with a range of ARCH criteria 

to determine what specific combinations of measures and associated thresholds 

predictably led to sufficiently accurate testing while hastening the deployment of the 

more efficient M-EXSPRT-R testing algorithm via ARCH. Classification decisions made 

for each examinee for each simulation were compared to the true mastery classification 

status of an examinee to determine the frequency of correct and incorrect classification 

decisions. Comparison of the examinee total score on the COM test to the mastery cutoff 

indicated their mastery status. 

For example, recall that Frick’s (1992) study based on COM test data found that 

increasing the calibration sample from 25 examinees per classification group to 50 

examinees per classification group did not lead to substantial gains in either efficiency or 

classification accuracy. This finding informed the simulations in the first study, Monte 

Carlo ARCH operationalization and evaluation with historical COM test data, aimed at 

answering RQ1. Using the upper bound of 50 examinees per classification group enabled 

the upper bounds (most conservative or strict bounds) of various calibration criteria to be 

established.  

Once the baselines were established, the values of ARCH criteria were 

systematically adjusted in subsequent simulations of calibration and testing to establish 

what impact various criteria thresholds would have on the probability of obtaining a 

priori error rates. Extremely conservative ARCH criteria thresholds meant that resulting 
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testing based on ARCH calibration would meet a priori classification error rates; 

however, these ARCH conservative criteria also served to delay the deployment of the 

more efficient M-EXSPRT-R. The goal was to determine the ARCH heuristic criteria and 

associated thresholds that represent a good, not necessarily optimal, tradeoff between 

ensuring classification accuracy and the timely deployment of M-EXSPRT-R. 

Each set of possible ARCH calibration criteria was evaluated using 2,080 

simulated ARCH tests, which equates to giving each of the 104 examinees an ARCH test 

twenty times. Over the course of the 2,080 tests, ARCH switched from SPRT-based 

testing to the racing approach where SPRT and EXSPRT were used in parallel, with the 

first one able to make a classification decision winning the race. The timing of the switch 

from SPRT to the racing approach depended on the ARCH calibration criteria and the 

random selection of both examinees and items. Both items and examinees were selected 

without replacement to ensure even use of both during the simulations.  

 

4.1.2 ARCH Accuracy (RQ2) Data Collection & Analytic Methods 

The second research question addresses the accuracy of testing classification 

decisions that result from application of the ARCH approach. Again, the method for 

collecting the required data involved Monte Carlo computer simulations using historical 

COM test data. Historical COM test data were used to perform: (1) multiple rounds of 

ARCH calibration and testing using the ARCH criteria established during the earlier 

Monte Carlo computer simulations; (2) SPRT testing; and (3) EXSPRT calibration and 

testing. 

Data Generation Monte Carlo Simulations 
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To ensure independence of observations necessary for subsequent statistical 

analysis for both RQ2 and RQ3, the unit of analysis was the examinee. After conducting 

numerous simulations, each examinee was associated with test accuracy (RQ2) and test 

efficiency (RQ3) measures for four testing algorithms: SPRT, ARCH pre-calibration, 

ARCH post-calibration, and EXSPRT. All algorithms were permitted to continue test 

simulations until either a classification decision could be made or all the items in the 

item-pool had been deployed. The classification decisions made using each of the four 

testing algorithms were compared to classification decisions made using the total-test 

decision that served as the examinee’s true mastery state.   

Instead of limiting the data being analyzed to a single simulated test of each of the 

four testing algorithms, 50 simulated tests were conducted for each of the four testing 

algorithms, resulting in mean test accuracy and test efficiency statistics for each of the 

104 examinees. A single test can be prone to random variations, whereas 50 tests are 

more likely to provide stable results. For example, a single simulated SPRT test for a 

specific examinee ended after only four items but 50 simulations of the SPRT test with 

the same examinee reveals that, on average, the SPRT test length was over 31 items. 

Testing Algorithm Settings & Calibration 

Calibration requirements differed across each of the four algorithms used in each 

of the 50 test simulations per examinee, however, a priori error rates were all set to false 

nonmaster rate = false master rate = 2.5% for a total error rate of 5%, and the prior 

probability of mastery was set to .5 for all algorithms. SPRT does not rely on the 

collection of data to calibrate test items but instead relied on overall probability of a 
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correct answer from a master (.85) and a nonmaster (.60) to make classification decisions 

with specific values drawn from earlier studies of COM test data (Frick, 1989). EXSPRT 

was calibrated with all available test data from all 104 examinees (28 nonmasters and 76 

masters), where those who had a total score of greater than or equal to 72.5% were 

considered masters. ARCH calibration requirements are more complex. 

ARCH depends on calibration during testing and evaluation against specific 

calibration criteria established via answering RQ1. For RQ2 and RQ3 multiple rounds of 

ARCH simulations were conducted with sets of simulated tests being randomly drawn for 

each of the 104 examinees both before and after ARCH calibration criteria had been met. 

A total of seven rounds of ARCH simulations were conducted before 50 ARCH pre-

calibration and 50 ARCH post-calibration sets were available. ARCH reached the 

calibration criteria established as part of answering RQ1 at different points in each 

ARCH simulation. For example, ARCH shifted to the racing testing approach at tests 

726, 768, 753, 728, 710, 733, and 782 in the seven ARCH simulations used to generate 

data for this study. Post-calibration ARCH tests were randomly drawn from a set of tests 

after calibration criteria had been met that reflected the number of tests it took to reach 

calibration criteria. 

Analytic Methods 

Pearson’s chi-squared test, otherwise known as the chi-squared goodness-of-fit 

test, can be used to determine if an observed distribution of a categorical variable (e.g. 

test decision) into specific groups (e.g. correct or incorrect decision) follows an expected 

distribution established a priori. Two of the assumptions associated with Pearson’s chi-
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squared test have consequences on the type of analysis that can be done with the COM 

test data. First, the Pearson’s chi-squared test is based on the assumption of independence 

of observations, which means that it would be inappropriate for two observations (i.e., 

test simulation decisions) used in the same Pearson’s chi-squared test to be based on the 

same examinee, as this would violate independence of observations. 

A second assumption of the Pearson’s chi-squared test is that there must be a 

minimum of five expected frequencies in each categorical variable group. The a priori 

false nonmaster and false master error rates are both 2.5% so with 104 examinees the 

expected frequency of each would be 2.6, which is less than the five necessary to meet 

the assumption. Consequently, a nonasymptotic method was applied during chi-squared 

testing that involves 10,000 Monte Carlo simulations to compute an exact p value with a 

confidence of 99% that is reliable in situations where there are many cells with counts 

less than five (Mehta & Patel, 1989). 

All 100 chi-squared tests were conducted with p ≤ .05, indicating a significant 

lack of fit between observed error rate in the given set of 104 tests and the expected a 

priori error rate. The chances of making a type I error – incorrectly finding a significant 

result – goes up with the number of hypothesis tests conducted. With 100 chi-squared 

tests and p ≤ .05 indicating a significant lack of fit, the chances are very high (1 - 0.95100 

= 0.99) of finding at least one significant lack of fit when, in fact, the fit is not 

significantly different. However, since the desired result is to not find a significant lack of 

fit, keeping the p value at .05 instead of lowering it represents a conservative approach. 
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Power analysis, using the software application G*Power (Faul et al., 2007) 

indicated that the 104 examinees in the historical COM test data were sufficient to 

conduct the goodness of fit tests able to detect large effect sizes. Power analysis using an 

effect size of .37, a chance of making a type I error of .025, a power of .8, and two 

degrees of freedom indicates that a sample size of only 93 is required for the goodness of 

fit tests, meaning that the 104 examinees in the existing sample were adequate. An effect 

size of .37 is considered a large effect based on guidelines for the social sciences 

provided by Cohen (1988). The use of two degrees of freedom reflects that classification 

decisions were constrained to three options: mastery, nonmastery, and no decision. 

Friedman Tests and Wilcoxon Signed-Rank Post-Hoc Testing 

The nonparametric Friedman Test was used to see if overall, false nonmaster, and 

false master rates differed significantly according to the testing algorithm used with post 

hoc analyses via Wilcoxon signed-rank tests used to determine which specific pairwise 

comparisons were significant. 

Proportion Reduction in Error 

Analysis included calculation of the proportion reduction in error. The Proportion 

Reduction in Error (see Rudner, 2009, p. 7) is a useful method for comparing accuracy of 

classification decisions since it takes into account the probability that a decision could be 

accurate simply by chance, which goes down as the number of possible classifications 

increases. Accounting for percent accurate by chance is important to allow for 

comparisons between approaches that have different classification numbers; otherwise 

those with only two classifications would seem overly accurate. In the context of the two 
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studies that make up this dissertation, there are only two possible classification decisions, 

mastery or nonmastery, so the percent accurate by chance is 50%.  

��� =  �% �11;.��� 1<�

/�/1��/80 − % �11;.��� �= 1ℎ�01�
�100% − % �11;.��� �= 1ℎ�01�
  

 

(18) 

 

4.1.3 ARCH Efficiency (RQ3) Data Collection & Analytic Methods 

The third research question addresses the efficiency of testing that results from 

application of the ARCH approach. The Monte Carlo computer simulations described in 

the previous section on research question two also collected the test lengths and no-

decision rates for SPRT, ARCH pre-calibration, ARCH post-calibration, and EXSPRT 

based tests that were required to answer research question three. 

The initial analytic method proposed for answering research question three was a 

repeated measures one-way analysis of variance (RM-ANOVA) and subsequent post hoc 

testing to determine if mean test lengths of ARCH, SPRT, and EXSPRT-R tests were 

significantly different. A Mauchly's Test of Sphericity would test the homogeneity of 

covariance (sphericity) assumption on which the RM-ANOVA test is based. Power 

analysis, using the software application G*Power (Faul et al., 2007) indicated that the 

104 examinees in the historical COM test data were sufficient to conduct the planned 

RM-ANOVA tests able to detect large effect sizes. 

However, when the resulting data from the Monte Carlo simulations were 

examined, the RM-ANOVA analytical method could not be used, as the study data 

consistently violated the RM-ANOVA assumption of normality. Consequently, the 
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nonparametric Friedman Test was conducted to see if test length or no-decision rates 

differed significantly according to the testing algorithm used with post hoc analysis via 

Wilcoxon signed-rank tests used to determine which specific pairwise comparisons were 

significant. 

4.2 ARCH Evaluation with New IU Plagiarism Test Examinees  

The second study of this dissertation, ARCH evaluation with new IU plagiarism 

test examinees, builds on ARCH operationalization conducted as part of the first study 

and addresses the three research questions in the context of live testing associated with a 

new adaptive version of the Indiana University (IU) plagiarism test, which was also 

created as part of the second study. 

Hundreds of universities and colleges direct their students to the plagiarism 

tutorial and request that their students provide them with the confirmation certificate 

generated as evidence that they know how to recognize plagiarism. Most of those who 

take the plagiarism tutorial are early in their post-secondary education. Participants were 

not offered an incentive for participation in the study. Those who elected to participate 

and those who declined to participate received exactly the same test with the only 

difference being the data that were collected behind the scenes. Solicitation of 

participants took the form of messages with links added to the HTML pages of the 

current plagiarism tutorial and test that inform users of the option to participate in the 

study. 

With the version of the test in place at the outset of this study, confirmation 

certificates were generated if an examinee correctly responded to all ten items on the test 
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associated with the plagiarism tutorial. In each of the ten items, a section of original 

source material was presented beside a student version that drew on the original source 

material. Examinees then had to decide if the student version was an example of word-

for-word plagiarism, paraphrasing plagiarism, or not an example of plagiarism. Appendix 

B lists all ten items included in an earlier version of the plagiarism test. 

 The test associated with the plagiarism tutorial was modified for the purposes of 

this study and to address two existing issues with the test. The version of the test in place 

at the outset of this study and included in the plagiarism tutorial always presented the 

same ten items in the same order, which made cheating easier (e.g. examinees doing the 

test together or repeatedly to determine correct answers by a process of elimination). 

Furthermore, after an examinee passed the plagiarism test, they were presented with a 

confirmation certificate in the form of an HTML page that they could print and hand in to 

their instructor as evidence that they understood plagiarism. However, examinees could 

easily create multiple copies of the confirmation certificate by simply printing the HTML 

page or saving the HTML page digitally and sharing the copies with their peers. 

Response data from participants were collected by deploying the new adaptive 

version of the IU plagiarism test alongside the version of the test in place at the outset of 

this study. The new adaptive version of the IU plagiarism test was different from the 

original version in several ways. First, items were now randomly drawn from a large 

item-bank, thus making it harder for an examinee to cheat. 

Second, VL-CCT approaches, specifically SPRT, ARCH, and EXSPRT, were 

now used to end the test once a mastery or nonmastery classification decision was made 

by all three approaches. Administration of tests continued until all the algorithms had 
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made a classification decision or 20 items had been deployed. The 20-item test limit was 

used to restrict the time it took to take a given test and to reduce item exposure.  

Third, the nature of the certificate that confirmed that an examinee understood 

how to recognize plagiarism was modified to both make it easier for examinees to share 

the certificate with their instructor and make it much harder to forge certificates. Forth, 

the implementation of the associated test was updated to improve the user experience on 

a variety of devices and make the code easier to maintain going forward. 

The IU plagiarism test provided an ideal context for addressing the research 

questions in this study for practical rather than test subject matter specific reasons. The 

practical need to address issues with cheating on the test also provided an opportunity to 

make changes to the test that enabled data associated with the research questions to be 

collected. Furthermore, The high volume of examinees that take the IU plagiarism test 

meant that data collection would complete quickly. Through my collaboration with the 

lead creator and maintainer of the IU plagiarism test, Dr. Theodore Frick, I had the ability 

to make modifications necessary to address the research questions and make other 

enhancements to the test. The research questions and the ARCH approach are not limited 

to the specific subject matter of recognizing plagiarism or the context of the IU 

plagiarism test. Any large-scale computer based test could have been used for this 

research but the IU plagiarism test was the context that I had access to and required 

modification to address existing issues.  
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A large item-bank was created for the new adaptive version of the plagiarism test. 

In addressing the question of item-bank size for use in Computer Adaptive Testing 

(CAT), Weiss (1985) states: 

CAT operates most effectively from an item-bank with a large number of items 

that are highly discriminating and are equally represented across the difficulty-

trait level continuum. Satisfactory implementations of CAT have been obtained 

with item-banks that meet these qualifications with as few as 100 items; however, 

properly structured item-banks in the range of 150 to 200 items will provide better 

results. (p. 786) 

Based on Weiss’s guidelines regarding item-bank size, item creation, pilot testing, 

and calibration of items continued until the item-bank grew to an appropriately large 

number of items. The specific number of items is not provided for the sake of test 

security. Items took the same basic form as those in the current version of the test (see 

Appendix B). The source material from which the original source text was drawn is the 

type of material that an undergraduate student would likely make reference to in their 

class papers. 

In order for the proposed ARCH approach to be compared to tradition calibration 

methods, enough calibration data needed to be collected to satisfy the requirements of the 

traditional calibration methods. Calibration data takes the form of the number of correct 

and incorrect responses to each item from examinees that are masters and nonmasters. 

For the purposes of this study, masters and nonmasters were identified using SPRT set to 

P(C|M) = .85, P(C|NM) = .50, false master = false nonmaster = .05. Note two deviations 
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from SPRT settings used in earlier studies: (1) the false master and false nonmaster error 

rates were set to .05 instead of .025 and (2) the P(C|NM) was set to .50 instead of .60. 

These deviations reflect the lower stakes of the new adaptive IU plagiarism test and 

enable the test to be passed with fewer items. Traditional and stricter error rates of .025 

and P(C|NM) of .60 were piloted and found to result in adaptive tests that were overly 

difficult for examinees.   

Responses from at least 50 masters and 50 nonmasters were used to establish item 

parameter estimates for use with EXSPRT. Recall that Frick (1992) found that calibration 

sample sizes of 25 masters and 25 nonmasters was sufficient to enable subsequent testing 

that applied EXSPRT to make classification decisions within classification error rates 

established a priori. However, this research is based in part on questioning the 25 

examinees per classification group guidelines for item calibration and posits that different 

numbers of examinees may be required to sufficiently calibrate items in different item-

banks. Consequently, double the number of responses from nonmasters and masters were 

used during item calibration for the EXSPRT-R portion of the revised version of the 

plagiarism test. Collecting response data from 50 nonmasters and 50 masters for every 

item in the item-bank served to increase the chances that the test was sufficiently 

calibrated to enable subsequent EXSPRT-R testing within classification error rates 

established a priori. Given that the results of EXSPRT-R testing using items calibrated 

with a fixed number of masters and nonmasters was the primary means of identifying 

masters and nonmasters for use in evaluating ARCH accuracy (RQ2), it was important 

that the conservative 50 responses from each classification group be used to calibrate the 

items. 
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The ARCH approach calibrates items until they meet specific calibration criteria 

(see section 3.6.4 Heuristics). However, defining the specific ARCH calibration criteria 

was conducted in the first study, Monte Carlo ARCH operationalization and evaluation 

with historical COM test data. Consequently, it could not be known beforehand precisely 

how many participants would be involved in calibration of the IU plagiarism test items 

using the ARCH approach.  

The second study achieved a 53% participation rate. During the phase between 

December 17th, 2013 and January 26th, 2014 when data were collected for the baseline 

item calibration for use with EXSPRT, test data from nearly 15,000 unique examinees 

was used to gather 50 responses from nonmasters and 50 responses from masters to every 

item in pool.  

In addition, 5,729 unique examinees volunteered to participate in the second study 

during the phase between January 26th, 2014 and January 31st, 2014 when data were 

collected to evaluate ARCH. Unique email addresses provided the method for identifying 

unique examinees. This brought the total number of participants in the second study to 

over 20,000 individuals. Examinees took the test over five times on average, with most 

stopping once they had earned the confirmation certificate. In order to maintain 

independence of observations, only one test could be used per examinee. Random 

numbers were associated with every test, and only the test with the smallest random 

number was selected for inclusion in the study. 

A total of 4,641 test administrations were required before 83% of the item bank 

was calibrated and the EXSPRT component of ARCH could be deployed. This 
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calibration phase of ARCH took place during a 25-hour period on January 26 and 27, 

2014, which illustrates how heavily the IU Plagiarism Test is typically used near the 

beginnings of college semesters.  

 Given that power analysis for the first study, Monte Carlo ARCH 

operationalization and evaluation with historical COM test data, revealed that the 104 

examinees would be adequate to conduct both tests, the involvement of thousands of 

participants in the second study indicated that the sample was more than sufficient to 

enable subsequent statistical testing. 

Familywise Error Rate 

 The familywise error rate for this study was also set to the often used value of α = 

.05. As five hypothesis tests were performed for ARCH pre-calibration and the same five 

for ARCH post-calibration, the p-value used for testing each of the hypotheses was set to 

p = .005. RQ2 entailed performing statistical analysis on three hypothesis tests: (1) Do 

overall error rates differ significantly across the two testing algorithms? (2) Do rates of 

false nonmastery differ significantly across the two testing algorithms? and (3) Do rates 

of false mastery differ significantly across the two testing algorithms? The remaining two 

hypothesis tests were associated with RQ3: (3) Do mean test lengths differ significantly 

across the three testing algorithms? and (4) Do no-decision rates differ significantly 

across the two testing algorithms? Note that EXSPRT is excluded from the hypothesis 

tested involving error and no-decisions rates since EXSPRT served as the indicator of the 

examinee true mastery status. 
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 Post-hoc testing associated with any of the four hypothesis tests listed above – to 

look for pairwise differences between the four testing algorithms – requires that the p = 

.005 value be divided again further. Three testing algorithms equated to the following 

three pairwise comparisons: (1) SPRT and ARCH; (2) SPRT and EXSPRT; (3) ARCH 

and EXSPRT. Applying the Bonferroni correction resulted in dividing p = .005 by three, 

which yielded the small value of p = .0017 that was used in post-hoc analyses. 

 As in study 1, goodness-of-fit tests conducted in study 2 were not included in the 

overall familywise error rate and individual hypothesis testing p values. Unlike the other 

statistical tests of significance conducted in study 2, lack of a significant difference 

between the error rates observed with the ARCH algorithm and the expected a priori 

error rates represents a discovery. Consequently, keeping the p value at .05 is a 

conservative approach, as the probability of finding a significant result is greater than if p 

was decreased.  

4.2.1 Calibration Sufficiency (RQ1) Addressed by Implication 

RQ1 seeks to identify specific ARCH criteria that enable ARCH to reliably 

predict when an item has been sufficiently calibrated to enable subsequent testing to 

efficiently make classification within a priori error rates. The second study, ARCH 

evaluation with new IU plagiarism test examinees, unlike the first study, took place in the 

context of live testing. Therefore, methods of conducting a large number of simulations 

in order to examine the impact that various ARCH criteria have on classification 

accuracy were not available as they had been in the context of the first study. With the 

COM test in the first study, examinee responses to all the items in the test were used to 

establish the mastery or nonmastery classification of the examinee; however, in the live 
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testing context of the second study, such a means of establishing “true” classifications 

would not be available, since examinees only responded to a small subset of the test items 

in the pool. Consequently, the second study applied the ARCH criteria established in the 

first study, Monte Carlo ARCH operationalization and evaluation with historical COM 

test data.  If ARCH worked well via use of these established thresholds, and answers to 

RQ2 and RQ3 were satisfactory in the second study, then by implication the thresholds 

would be good enough in practice. 

4.2.2 ARCH Accuracy (RQ2) Analytic Methods 

The second research question addresses the accuracy of testing classification 

decisions that result from application of the ARCH approach. The classification decisions 

made using the ARCH approach collected during live testing were compared to 

classification decisions made using the EXSPRT-R (50) through agreement tables and 

chi-squared goodness of fit tests. In addition, the nonparametric Wilcoxon signed-rank 

tests were used to determine if ARCH overall error, false nonmaster, and false master 

error rates differed significantly from SPRT. 

4.2.3 ARCH Efficiency (RQ3) Analytic Methods 

The third research question addresses the efficiency of testing that results from 

application of the ARCH approach. Again, data collected during live testing provided the 

basis for answering this question. 

The nonparametric Friedman Test was used to see if mean test lengths differed 

significantly according to the testing algorithm used with post hoc analysis via Wilcoxon 

signed-rank tests, which were used to determine which specific pairwise comparisons 
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were significant. In addition, the Wilcoxon signed-rank test was used to determine if 

SPRT and ARCH had significantly different no-decision rates. 
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CHAPTER V. RESULTS 

5.1 ARCH Calibration Sufficiency (RQ1) Results 

RQ1 – When is an item sufficiently calibrated? – was answered during the first 

study, Monte Carlo ARCH operationalization and evaluation with historical COM test 

data. Recall that the first study involved a series of computer simulations using data 

collected from examinees (n=104) in a previous study (Frick, 1992) who responded to an 

85-item test of knowledge of how computers functionally work (COM test). 

The examinee’s actual results on the original complete 85-item test served as their 

true mastery status and enabled adaptive test results to be evaluated for accuracy against 

this benchmark. Of the 104 examinees, 28 qualified as true nonmasters due to a total 

score that was less than the cutoff of 72.5%, and 76 qualified as true masters by reaching 

or exceeding the cutoff. Table 15 provides examinee and response statistics by nonmaster 

and master classification. The number of correct and incorrect responses by nonmasters 

and masters enabled the probability of a correct response from a nonmaster, P(C|NM), 

and master, P(C|M), to be calculated for the entire item pool. 
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Table 14. COM Test Examinee and Response Statistics By Classification 

Examinees 

Nonmaster (NM) Master (M) 

# #��� #¬��� P(C|NM) # #�� #¬�� P(C|M) 

104 28 1338 1042 0.56 76 5656 804 0.88 

 

The process of addressing RQ1 brought challenges whose resolution required 

deviating from the methods and ARCH criteria initially proposed and a near complete 

rewrite of the first computer program that was developed to conduct the computer 

simulations. Ultimately, RQ1 was answered, but the challenges faced and the means of 

overcoming them also revealed findings of note. The following describes the process that 

was followed to answer RQ1, the major challenges that occurred, how these challenges 

were addressed, noteworthy findings associated with overcoming these challenges, and, 

finally, the answers established for RQ1. The first step taken to address RQ1 was the 

development of the first version of a web-based computer program to conduct the test 

simulations. 

5.1.1 Version 1 of Web-based Computer Program for Simulations 

Version 1 of a web-based computer program was written using several thousand 

lines of custom HTML and JavaScript code to re-administer simulated adaptive tests 

using the historical COM test data based on specific input values outlined in more detail 

below. The output of the simulation was displayed in HTML tables that were then copied 

to Excel and SPSS for analysis. 

The web-based computer program developed allowed calibration, SPRT and 

EXSPRT settings, and ARCH criteria to be entered as input values prior to running the 
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simulations (see figure 10). The calibration settings specified the percentage of correct 

answers on the total test needed to qualify as a master with 72.5% representing the cut-

score used in previous COM test studies. The remaining calibration settings dictated how 

the simulation would execute and when the simulation would terminate. 
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Figure 10. Screenshot of sample input settings for version 1 of the web based Monte 

Carlo COM Test Simulation program. 

For example, the calibration settings values in figure 10 resulted in the following 

steps occurring during a simulation run. 
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Simulation Run Steps: 

1. Set the calibration sample size to the minimum calibration sample size of 10. 

2. Use item responses from randomly selected masters and nonmasters equal to the 

calibration sample size (e.g. 10 masters and 10 nonmasters) to calibrate items for 

use with EXSPRT and empirically establish item-bank level probabilities for use 

with SPRT. 

3. Administer a simulated test to each of the 104 examinees with all relevant SPRT 

and EXSPRT data being output to the associated tables. 

4. Repeat steps 2 and 3 the number of times indicated (e.g., 10 rounds). 

5. Increment the calibration sample size by the increment value of 10. 

6. If the calibration sample size is less than or equal to the maximum calibration 

sample size value of 100 then go to step 2. Otherwise, end the simulation. 

Each of the adaptive testing algorithms also had a priori error rates that could be set 

to specific values. However, the simulations conducted for the purposes of this study 

used the same values that matched those used in earlier COM test studies. The prior 

probability of mastery was set to .5 and both the a priori false mastery and false 

nonmastery error rates were set to .025. 

In each simulated adaptive test associated with step 3 above, a specific examinee 

would be randomly administered one of the 85 items with their actual correct or incorrect 

response to the item being available in the historical data and used as their response in the 

simulated test. Items would continue to be administered randomly to the same examinee 

until either all 85 items had been exhausted or all the adaptive testing algorithms had 
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been able to make a classification decision. The process would repeat with the next 

examinee and continue in this way until the conditions for the termination of the 

simulation specified by the calibration inputs had been met.  

Each run of the simulations would populate data into five tables: (1) Precision of 

Item Calibration Estimates; (2) SPRT and EXSPRT Results by Examinee; (3) SPRT 

Precision of Item Calibration Estimates and Test Metrics By Unique Test; (4) EXSPRT 

Precision of Item Calibration Estimates and Test Metrics By Unique Test; and (5) Test 

Metrics By Calibration Sample Size Group. Screenshots of the first few rows of each of 

the five tables are provided below. It is important to note that these screenshots are not 

results of the study but are provided to show context on how the simulations operated. 
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Figure 11. Screenshot of sample output of results from estimating precision of item calibrations. 

 

Where: 

Cal Sample Size is the calibration sample size being simulated 

Cal Round is the calibration round for a given calibration sample size 

Item ID is the ID of one of the 85 items being calibrated  

Nonmaster (NM) is label for all the nonmaster calibration statistics for the item 

Master (NM) is label for all the master calibration statistics for the item 

# is the number of nonmasters/masters in the calibration sample size 

s is the number of nonmaster/master successful/correct responses to the item 

f is the number of nonmaster/master failed/incorrect responses to the item 

P(C|NM)/P(C|M) is the probability of a correct response from a nonmaster/master 

P(!C|NM)/P(!C|M) is the probability of an incorrect response from a nonmaster/master 

Area I is the area under masters beta distribution curve between the P(C|NM) and the end of the tail 

Area II is the area under masters beta distribution curve between the P(C|NM) and a specific alpha point 

Beta t-tests columns are initial experiments with various versions of the Beta Difference Index statistic  
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Figure 12. Screenshot of sample results for SPRT and EXSPRT tests during Monte Carlo COM test simulations 

 

Where: 

Cal Sample Size is the calibration sample size being simulated 

Cal Round is the calibration round for a given calibration sample size 

Examinee ID is the ID of one of the 104 examinees who took the COM test 

Is Master is the indication of if the examinee is a master based on their total test score 

Master (NM) is label for all the master calibration statistics for the item 

SPRT Results are the set of results associated with the SPRT based test  

EXSPRT Results are the set of results associated with the EXSPRT based test 

Correct/False NM/False M/No Dec indicates the accuracy of the test decision 

Test Length is the number of items given on the test before a decision was made  

Total Test Score is the percent of correct answers the examinee had on the total test 
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Figure 13. SPRT precision of item calibration estimates and test metrics by unique calibration round output table screenshot from 

Monte Carlo COM test simulations 

 

Where: 

Cal Sample Size is the calibration sample size being simulated 

Cal Round is the calibration round for a given calibration sample size 

Precision of Item Calibration Estimates are the set of statistics associated with the item-bank level parameter estimates 

Nonmaster (NM) is label for all the nonmaster calibration statistics for the item-bank 

Master (NM) is label for all the master calibration statistics for the item-bank 

# is the number of nonmasters/masters in the calibration sample size 

Area I is the area under masters beta distribution curve between the P(C|NM) and the end of the tail 

Area II is the area under masters beta distribution curve between the P(C|NM) and a specific alpha point 

Beta t-tests columns are initial experiments with various versions of the Beta Difference Index statistic 

SPRT Test Metrics are the set of statistics associated with SPRT testing 

PRE is the proportion reduction in error achieved by the test 

Percent Correct/False NM/False M/No Dec indicates the accuracy of the test decisions 

Test Length is the number of items given on the test before a decision was made 

μ is the mean test length 

SD is the standard deviation associated with the mean test length 
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Figure 14. EXSPRT Precision of Item Calibration Estimates and Test Metrics By Unique Test Output Table Screenshot 

 

Where: 

Calibration Sample Size is the calibration sample size being simulated 

Calibration Round is the calibration round for a given calibration sample size 

Precision of Item Calibration Estimates are the set of statistics associated with the item-bank level parameter estimates 

Nonmaster (NM) is label for all the nonmaster calibration statistics for the item-bank 

Master (NM) is label for all the master calibration statistics for the item-bank 

# is the number of nonmasters/masters in the calibration sample size 

Area I is the area under masters beta distribution curve between the P(C|NM) and the end of the tail 

Area II is the area under masters beta distribution curve between the P(C|NM) and a specific alpha point 

μ is the mean of the associated statistic 

SD is the standard deviation associated with mean 

Beta t-tests columns are initial experiments with various versions of the Beta Difference Index statistic 

EXSPRT Test Metrics are the set of statistics associated with EXSPRT testing 

PRE is the proportion reduction in error achieved by the test 

Percent Correct/False NM/False M/No Dec indicates the accuracy of the test decisions 

Test Length is the number of items given on the test before a decision was made 
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Figure 15. Test Metrics By Calibration Sample Size Group Output Table Screenshot 

 

Where: 

Cal Sample Size is the calibration sample size being simulated 

SPRT/EXSPRT Results are the set of statistics associated with SPRT/EXSPRT test simulations 

PRE is the proportion reduction in error achieved by the test 

Percent Correct/False NM/False M/No Dec indicates the accuracy of the test decisions 

Test Length is the number of items given on the test before a decision was made 

μ is the mean of the associated statistic 

SD is the standard deviation associated with mean but was not calculated in this version of the simulation 



5.1.2 High Error Rate with Empirically Established Item-bank Level Probabilities 

The first challenge experienced while answering RQ1 resulted from the use of 

empirically established item-bank level probabilities with SPRT instead of the set item-bank 

level probability values used in previous studies. It was found that the use of empirically 

established item-bank level probabilities with SPRT resulted in false nonmaster error rates 

higher than those established a priori. This was a problem for two reasons. First, the SPRT 

algorithm is a key component of ARCH, and issues with SPRT would also represent issues 

with ARCH. Second, RQ2 involves the comparison of ARCH to SPRT and problems with 

SPRT would limit the value of this comparison. The SPRT challenge was overcome by 

setting item-bank level probabilities to values used in previous COM test data-based studies 

rather than applying an empirical approach. 

Item-bank level probabilities of a correct response from each classification group 

(equations 2 and 4) were established empirically using the total number of correct and 

incorrect responses from nonmasters (#��� and #¬���) and masters (#�� and #¬��). A 

probability of a correct response given nonmastery, P(C|NM), of 0.56, was established 

empirically by using all available response data from true nonmasters. A probability of a 

correct response given mastery, P(C|M), of 0.88 was also established empirically through 

response data from all true masters. The index of discrimination (equation 15) for the item-

bank level probabilities established empirically was 0.32. 

Item-bank level probabilities used with SPRT have not typically been established 

empirically in previous studies, with the exception Welch and Frick’s (1993, p. 57) use of 

empirically derived values for use with SPRT. In the original research that used COM test 

data, “the SPRT parameters were set a priori as follows: mastery level = .85, non-mastery 

level = .60, α = β = .025” (Frick, 1989, p. 102) instead of establishing the values empirically. 
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The values .85 and .60 were selected to reflect widely used letter grade cutoffs with .725 

representing the value between these two cutoffs. Using the set values from the Frick (1989) 

study, the index of discrimination for the item-bank level probabilities (equation 15) was 

0.25, which is 0.07 or 21.9% smaller than the index of discrimination calculated using 

empirically established probabilities. In other words, the set SPRT parameters were 

substantially less discriminating than the SPRT parameters established empirically. 

I initially thought that empirically based item-bank level probabilities would be the 

most appropriate to use in simulations involving both SPRT and ARCH.  Since these values 

are based on actual response data, I expected them to lead to optimal SPRT performance. 

However, repeated simulations of SPRT with COM test data using P(C|M) = 0.88, P(C|NM) 

= 0.56, α = β = .025 consistently yielded false nonmastery error rates that exceeded the .025 

rate established a priori. Recall that a false nonmastery error occurs when an examinee is 

classified as a nonmaster when they are, in fact, a master (according to their total test score). 

For example, examinee response data from 104 examinees was used to simulate 2,080 

SPRT tests calibrated empirically using all the available response data to establish item-bank 

level probabilities of P(C|M) = 0.88, P(C|NM) = 0.56, α = β = .025. The simulation involved 

each examinee being administered a SPRT based test twenty times. Since SPRT randomly 

selects items, the chances of two SPRT test administrations being identical is unlikely. 

Table 15 provides the error rates by algorithm and includes both the empirically 

calibrated SPRT and manually calibrated SPRT using set parameters to match earlier SPRT 

studies based on COM test data. Out of the 2,080 simulated test administrations, SPRT 

calibrated empirically made 2,073 decisions with 67 of those decisions (3.23%) being false 

nonmastery decisions. A nonmastery error rate of 3.23% is above the a priori false 
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nonmastery rate of 2.5% by 0.73%. The mean test length of tests that applied SPRT 

calibrated empirically was 16.61 items (SD = 12.28).   

Table 15. SPRT Decision Error Rates By Method of Setting Item-bank Level Probabilities 

Item-bank 

Probability 

Approach 

False 

Nonmastery 

Errors 

False Mastery 

Errors Total Errors 

Total Nonmastery & 

Mastery Decisions 

 n % n % n % N 

Empirical 67 3.23% 29 1.40% 96 4.63% 2,073 

Manual 42 2.11% 28 1.41% 70 3.52% 1,990 

 

Using the same approach, examinee response data from 104 examinees was used to 

simulate 2,080 SPRT tests using item-bank level probabilities manually set to P(C|M) = 0.85, 

P(C|NM) = 0.60, α = β = .025 that are consistent with earlier studies (Frick, 1989). Out of the 

2,080 simulated test administrations, SPRT made 1,990 decisions (83 fewer than the 

empirically calibrated SPRT) with 42 of those decisions (2.11%) being false nonmastery 

decisions – well below the a priori false nonmastery rate of 2.5%. The mean test length of 

the tests that applied SPRT with item-bank probabilities set manually was 21.97 items (SD = 

16.37), which is 5.36 items (32.3%) longer than the results obtained with SPRT using item-

bank probabilities set empirically.  On hindsight, this should not be surprising, since the 

SPRT requires more items to reach a decision when Wald’s zone of uncertainty is smaller 

([.85 - .60 = .25] is less than [.88 - .56 = .32]), when using the same a priori error rates (see 

Frick, 1989). 

The differences in the results between the SPRT algorithms calibrated empirically and 

using values set manually are outside the scope of this study but warrant further 

investigation. Nevertheless, results from the analysis above show that: (1) it cannot be 

assumed that SPRT will always make classification decisions within error rates established a 
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priori; (2) choice of item-bank level probabilities impacts SPRT error rates; and (3) the 

empirically established item-bank level probabilities for the COM test data had a higher 

index of discrimination, shorter average SPRT test lengths, and higher false mastery error 

rates than associated manually set item-bank level probabilities.  

Given that SPRT using set values used in earlier studies resulted in decision error 

rates within rates established a priori, I decided to proceed with SPRT using the manually set 

values and abandon empirically established item-bank level probabilities for use with SPRT 

for the remainder of the Monte Carlo studies. 

5.1.3 Initial Calibration Statistics Problematic 

The first use of computer simulations  in the first study, Monte Carlo ARCH 

operationalization and evaluation with historical COM test data, required programming and 

then testing the effectiveness of the calibration measures proposed for use with the heuristics 

that determine when an item is sufficiently calibrated. In some cases, the measures originally 

proposed relied on intensive calculations to establish the area under specific areas of the 

unique beta distributions associated with P(Ci|M) and P(Ci|N) every time new calibration 

data were collected. This proved to both be programmatically complex and contribute to slow 

system performance that would likely result in unacceptable delays during live testing when 

the test is administered online via a Web server—examinees could be waiting excessively 

long times for the next test question, especially when Web servers are under high demand. In 

other cases, the proposed measures only functioned acceptably within limited circumstances.  

More practical and robust alternatives were found or established that reduce 

calculation complexity, correlate strongly with the originally proposed measures, and align 

with established statistical approaches. The following will: (1) describe the rationale for 
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moving away from both the 95% Highest Density Region Width calculation and calculations 

of the overlapping areas of P(Ci|M) and P(Ci|N) and (2) explain the associated alternatives 

that were identified or established. 

95% Highest Density Region Width Replaced With Standard Deviation 

Recall that the 95% highest density region width (HDRW) was proposed as a 

measure of the precision of the P(Ci|M) and P(Ci|N) estimated beta means, since the 95% 

HDRW would get smaller as estimated values became more precise. However, it was found 

that calculating the 95% HDRW was much more involved than expected. 

No equation or set of equations was found for calculating HDRW. Instead, 

establishing the HDRW of a given beta density function is an optimization problem that 

involves finding the narrowest region under a given beta density function that equals a given 

probability (e.g. 95%). Finding such a region is straightforward. The challenge is finding the 

narrowest such region from among the possible areas. Textbooks that address the concept of 

a beta density function highest density region (HDR) often provide tables in an appendix that 

enable one to look up the HDR for a limited set of specific functions rather than providing a 

method for coming up with HDRs. 

An approach for determining the 95% HDRW was programmed but it involved 

performing hundreds or thousands of calculations and dramatically decreased the speed of 

the simulations to unacceptable levels. It was also clear that the computationally intensive 

calculation of the 95% HDRW could pose significant problems during the second study, 

ARCH evaluation with new IU plagiarism test examinees, when the 95% HDRW would need 

to be calculated during real-time execution of the test associated with the Indiana University 



 

 123

plagiarism tutorial. Consequently, alternative approaches for determining the precision of the 

P(Ci|M) and P(Ci|N) were explored. 

I subsequently determined empirically that the standard deviation associated with its 

beta density function proved to be an excellent alternative to the 95% HDRW, since it 

provides a measure of the precision beta mean via a single straightforward calculation. The 

following explains the equations used to calculate the beta SD and the relationship found 

between the beta SD and the 95% HDRW. The equations for the beta mean, variance, and 

standard deviation are presented below in equations 19, 20, and 21. 

,��� ���0 = �[@] =  "" +   (19) 

,��� -�./�01� = 7�.[@] =  " �" +  
2�" +  + 1
 (20) 

,��� 4��05�.5 6�7/��/80 = 46[@] =  9 " �" +  
2�" +  + 1
 (21) 

As in the 95% HDRW, the beta SD also gets smaller as the estimate of the beta mean 

becomes more precise. Unlike the 95% HDRW, the beta SD is straightforward to calculate, 

which is advantageous both from a programming perspective and for explanatory purposes.  

When applying beta distribution equations to adaptive testing, Frick (1992) used a 

slightly different beta mean equation, based on Schmidt (1969) to ensure that the beta mean 

would: (1) always be a positive non-zero value and (2) equal 0.5 when both parameters are 

zero. 

" = 
 + 1 (22) 
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 = � + 1 (23) 


 + � = � (24) 

Equations 25, 26, and 27 are the resulting beta equations derived by substituting equations 

22, 23, and 24 into equations 19, 20, and 21. 

,��� ���0 =  
 + 1�
 + 1
 + �� + 1
 = 
 + 1� + 2 (25) 

 

 

,��� -�./�01� =  �
 + 1
�� + 1
[�
 + 1
 + �� + 1
]2[�
 + 1
 + �� + 1
 + 1] 
,��� -�./�01� = �
 + 1
�� + 1
�� + 2
2�� + 3
 

(26) 

 

 

,��� 4��05�.5 6�7/��/80 = 9 �
 + 1
�� + 1
�� + 2
2�� + 3
 

(27) 

 

In subsequent evaluation of the relationship between the 95% HDRW and the beta 

SD, I found a near-perfect correlation between the two. Using the Highest Density Region 

table provided in Schmidt (1969, p. 378), 142 95% HDRWs were calculated for s and f 

values ranging from 0 to 50. Beta SD values were calculated based on the same s and f 

values. The Pearson correlation between the 95% HDRW and the associated beta SD values 

was .987—a near-perfect relationship.  This finding supports the use of the beta SD as a 

replacement for the 95% HDRW. 
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In the context of evaluating the precision the beta mean of P(Ci|M) or P(Ci|N) to 

determine when enough data has been collected, a minimum value for the beta SD would 

need to be established. In other words, at what point has the beta SD of a beta distribution 

associated with an item decreased enough to indicate that the associated beta mean for that 

item is sufficiently precise? 

Overlapping Areas of P(Ci|M) and P(Ci|N) Replaced with Beta Difference Index. 

Originally, the intention was to use a calculation of the overlapping area associated with the 

beta distributions for P(Ci|M) and P(Ci|N) to calculate the probability that P(Ci|M) is larger 

or smaller than P(Ci|N). For example, the area under the P(Ci|M) beta distribution to the left 

of the beta mean of the P(Ci|N) beta distribution represents the probability that P(Ci|M) is 

less than the beta mean of the P(Ci|N) and can be calculated by using Simpson’s rule to 

integrate under specific portions of the beta distribution curve. 

There were two problems with using the overlapping area between P(Ci|M) and 

P(Ci|N) as a measure, that became clear during computer simulations. First, while 

considerably simpler than the process for determining the HDRW, integration using 

Simpson’s rule to calculate overlapping areas is still computationally intensive and 

contributes to slow performance. Second and most problematic was the issue uncovered 

during computer simulations that overlapping areas of P(Ci|M) and P(Ci|N) were extremely 

small for many P(Ci|M) and P(Ci|N) combinations, which hindered the utility of using the 

size of an overlapping area as a measure of the difference between P(Ci|M) and P(Ci|N). 

The overlapping area between P(Ci|M) and P(Ci|N) can vary from zero to one, where 

zero indicates there is no overlap, and one indicates there is a perfect overlap. As P(Ci|M) 
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and P(Ci|N) become more different, the overlapping area gets closer and closer to zero. 

However, the overlapping area gets very close to zero more quickly than expected, which 

limits the utility of the overlapping approach to detect greater differences between P(Ci|M) 

and P(Ci|N) beyond a point. The problem with using the overlapping area to measure 

differences between P(Ci|M) and P(Ci|N) is analogous to using a thermometer that does not 

go below zero to measure how cold it is – after a point, the reading from the instrument 

remains stuck at zero despite noticeable changes in what you want to measure. 

For example, consider the following case using only 14 responses from both masters 

and nonmasters to item i. The P(Ci|M) beta distribution curve associated with 9 correct 

responses and 5 incorrect responses to item i from true masters has a mean of .625. The 

P(Ci|N) beta distribution curve associated with 3 correct responses and 11 incorrect 

responses to item i from true masters has a mean of .25, which makes the index of 

discrimination (difference between the means) for the item .375. The probability that P(Ci|M) 

is less than the P(Ci|N) mean of .25 can be calculated by finding the area under the P(Ci|M) 

beta distribution curve between 0 and .25. Performing this calculation yields an area just 

smaller than .001, which means that: (1) there is less than a one-in-a-thousand probability 

that P(Ci|M) is less than 0.25 and (2) the lowest end of the range for the area under this 

portion of the P(Ci|M) curve, zero, has very nearly been reached after only 14 responses from 

both masters and nonmasters. 

The reality that the overlapping areas of P(Ci|M) and P(Ci|N) nearly disappear after 

so few responses have been gathered (e.g., only 14 responses from both masters and 

nonmasters) limits the utility of using the overlapping area as a measure of the difference 

between P(Ci|M) and P(Ci|N) beta distributions. Items with an index of discrimination much 
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greater than .375 and based on responses from many more masters and nonmasters than the 

case described above would have beta distributions with overlapping areas that are similarly 

miniscule to the case above, despite the fact that we can be much more confident that 

P(Ci|M) is different from P(Ci|N). A different measure was required that would reveal 

differences across a greater range of mastery and nonmastery beta distribution curves. 

Therefore, I sought a measure of the difference between P(Ci|M) and P(Ci|N) beta 

distributions that would address both of the problems associated with using the overlapping 

areas of the beta distributions. The results of the measure needed to reflect the fact that 

confidence that P(Ci|M) and P(Ci|N) beta distributions are different increases as (1) the 

differences between P(Ci|M) and P(Ci|N) means grows or (2) variance associated with the 

P(Ci|M) and P(Ci|N) beta distributions decreases. Furthermore, the measure needed to be 

straightforward to calculate so that it would not contribute to slow Web server performance 

during real-time test administrations. 

In the same way that the beta SD was ultimately used in place of the 95% HDRW, I 

proposed the Beta Difference Index as the replacement for using overlapping areas of 

P(Ci|M) and P(Ci|N). The Beta Difference Index provides a computationally straightforward 

way of measuring the confidence that P(Ci|M) and P(Ci|N) beta distributions are different, 

where a larger result indicates more confidence that there is a difference.  

Unlike the beta SD equation, which is an established equation, the Beta Difference 

Index equation is, to the best of the author’s knowledge, new. I derived the Beta Difference 

Index equation by substituting beta mean and beta variance equations into Welch’s t-test 

equation. While Welch’s t-test assumes that means and variances are being drawn from 
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normally distributed populations, the use of beta mean and beta variance equations in the 

proposed Beta Difference Index suggests that assumptions of normality need not apply to the 

Beta Difference Index. 

Welch’s t-test in equation 28 provides a measure of the confidence that two means are 

different when equal variances cannot be assumed. The numerator provides a measure of 

variance between the two groups via the difference between the associated means. The 

denominator provides a measure of variance within groups via a calculation using associated 

variances and sample sizes.  

Applying equation 25 for the beta mean and equation 26 for the beta variance leads to 

a proposed Beta Difference Index equation (29). 

A�<1ℎB
 � ��
� = @C' −  @C2
9
'2�' + 
22�2

 
(28) 

,��� � ��
� = �[@'] −  �[@2]
D7�.[@']�' + 7�.[@2]�2

 
(29) 

Finally, equation 30 is the resulting proposed Beta Difference Index derived by 

substituting equations 22, 23, and 24 into equation 29. 

,��� � ��
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(30) 
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The Beta Difference Index has several desirable characteristics. While equation 30 

above is not simple, it is straightforward to compute and would not contribute to slow system 

performance in either simulated or live testing. Second and more important, the Beta 

Difference Index is an effective measure of the difference between any two beta distributions 

rather than being limited to a specific range as was the case with using overlapping areas of 

beta distribution curves. The Beta Difference Index approaches zero as the difference 

between the two beta distributions decreases but only reaches zero if the beta means are 

identical. The Beta Difference Index continues to increase as confidence that the two beta 

distributions are different increases either through: (1) a greater difference between beta 

means in the numerator; or (2) reduction in the variance of either beta distribution in the 

denominator.  

5.1.4 Proposed Item-Level Calibration Criteria Not Sufficient 

I determined during computer simulations that the two new item-level criteria (min 

beta SD and the max Beta Difference Index) alone were not sufficient to yield test decision 

accuracy rates within expected levels. I found that, through repeated simulations with COM 

test data, the most discriminating items would be the first ones to be approved for use with 

EXSPRT-R as they reached max Beta Difference Index criteria. Consequently, early 

EXSPRT-R decisions would be made exclusively with the most discriminating items and, as 

such, were prone to making classification errors at rates higher than those set a priori. 

I added a third calibration measure, percent items approved, to ensure that items with 

a broader range of discriminations would be available when EXSPRT-R was first deployed. 

Percent items approved ranges from 0% to 100% and refers to the percentage of items in the 

pool that had met the two item-level approval criteria: (1) the minimum beta SD had been 
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reached for both the mastery and nonmastery beta distributions of an item and (2) the 

maximum Beta Difference Index had been reached for the item. Unlike the item-level 

calibration measures, the measure for the percent of items approved refers to the entire item 

pool, so it is a pool-level calibration measure. For example, setting percent of items approved 

to 50% means that items that meet both item-level approval criteria would not be used until 

half of all items in the pool had also met both item-level approval criteria. 

I thus needed to determine the specific combination of settings for the single pool-

level approval criteria, percent items approved, and the two item-level criteria (beta SD and 

Beta Difference Index) that would lead to classification decision making within expected 

error rates. 

5.1.5 Version 2 of Web-based Computer Program for Monte Carlo Simulations 

 With the discovery that an item-level criterion alone would not be sufficient to enable 

ARCH to calibrate items in a way that supported accurate and efficient testing, I developed a 

second version of the web-based computer program to conduct the Monte Carlo simulations 

using the historical COM test data. While this new version did draw on some of the existing 

code developed in the first version of the program, I created new software (Version 2) to 

carry this out. 

 The second version used the same approach of presenting an input form that collected 

information on how the simulations would proceed and HTML tables to summarize overall 

results of the simulation and to generate specific test results down to individual responses to 

items on specific tests associated with a given examinee that are similar to the tables already 

presented for the first version of the simulation. The second version of the simulation enabled 

repeated Monte Carlo simulations to be conducted on the ARCH approach with various 
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settings in order to establish the specific set of ARCH calibration criteria threshold values 

that led to accurate and efficient testing. 

 

Figure 16. Screenshot of sample input settings for Version 2 of the web-based Monte Carlo 

COM Test Simulation program. 
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Figure 17. Screenshot of sample input ARCH settings for Version 2 of the web based Monte 

Carlo COM Test Simulation program. 

5.1.6 Establishment of Calibration Statistic Thresholds 

The process by which the criteria threshold were chosen involved: (1) establishing 

lenient and strict threshold bounds for each of the calibration criteria; (2) determining 
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conservative threshold values for each of the calibration criteria that, when used in isolation, 

led to sufficiently calibrated items; and (3) systematically adjusting the threshold values for 

the three calibration criteria to establish a set of threshold values that strike a good balance 

between ensuring subsequent testing accuracy while hastening the deployment of M-

EXSPRT-R to improve test efficiency. Overly conservative calibration thresholds would 

promote classification accuracy at the expense of test efficiency. Overly lenient calibration 

thresholds would have the opposite effect – very efficient but unacceptably inaccurate tests. 

Each of the three steps presented above will be discussed in turn below in the context of each 

of the three calibration criteria. 

Table 16. Calibration Statistic Bounds and Thresholds 

Statistic Associated Question 

Lenient 

Bound 

Strict 

Bound 

Threshold 

Value 

Established 

Min Beta SD P(Ci|M) and P(Ci|N) 

estimates precise? 

.22 .069 .078 

Max Beta Difference Index Are P(Ci|M) and P(Ci|N) 

estimates different? 

0 29 15 

Max % Items Approved Are sufficient items 

approved? 

0% 100% 83% 

 

The minimum beta distribution standard deviation (min beta SD) provides a measure 

of the precision of associated beta distribution means P(Ci|M) and P(Ci|N). As the beta 

standard deviation decreases, the precision of the associated beta distribution mean increases.  

The value .22 was used as the lenient bound value of the min beta SD since it is 

associated with the beta distribution formed by one correct response and one incorrect 
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response. Collecting only two responses seemed unlikely to be sufficient for item calibration. 

Therefore, .22 provided a reasonable lenient bound for the minimum beta distribution. 

The strict bound of .069 for the min beta SD was formed based on beta distributions 

developed by collecting 50 responses where half are correct and half are incorrect. Fifty 

responses represent a doubling of Frick’s (1992) finding that 25 responses by examinees 

from each classification group to each item led to accurate classification decisions. An equal 

ratio of correct and incorrect responses corresponds to the largest beta distribution standard 

deviations for a given calibration sample size and was used to ensure items with this pattern 

of correct and incorrect responses could possibly make the cutoff. 

The lenient bound of 0 corresponds to cases when there is no difference between 

P(Ci|M) and P(Ci|N). The upper bound of 29 corresponds to the case when the difference 

between P(Ci|M) and P(Ci|N) is greatest after collecting 50 responses from masters and 

nonmasters. The maximum beta distribution t-test equals 29 after all 50 masters respond 

correctly to an item and all 50 nonmasters respond incorrectly to the same item. 

Table 17. Example of intermediate steps towards ARCH criteria 

Min Beta 

SD 

Max Beta 

Difference 

Index 

Max % 

Items 

Approved 

False 

Mastery 

Rate 

False 

Nonmastery 

Rate 

M-EXSPRT-R 

Test Length 

μ SD 

.079 11 83% 1.089% 2.208% 19.228 14.864 

.079 12 83% 1.080% 2.345% 19.856 15.095 

.079 13 83% 1.035% 2.236% 19.400 14.903 

.079 14 83% 1.209% 2.134% 19.500 14.971 

.079 15 83% 0.974% 2.455% 19.939 15.222 
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Finally, the percent of items approved provides an item-pool level setting for ensuring 

that sufficient calibration data have been collected to enable M-EXSPRT-R to make 

classification decisions within a priori established error rates. The values of 0% and 100% 

provide the lenient and strict bounds, respectively, for the percent-of-items-approved setting. 

 Table 17 presents an example of a few of the statistics that were generated using the 

simulations where the beta SD, the Beta Difference Index, and the percent items approved 

were set to specific values. Results of the simulation enabled false mastery rates, false 

nonmastery rates, and mean test lengths to be compared for different combinations of 

calibration criteria threshold values. Since random selection of items occurred with every test 

that made up the simulations, repeatedly using the same thresholds would be unlikely to 

produce the same results. I continued the simulations until I arrived at a set of calibration 

threshold values that consistently performed better than other sets of values. However, 

repeating this simulation process would not necessarily yield the exact same set of values due 

to the random nature of the item selection methods used in ARCH. Further, it is not clear that 

using a different data set would yield the same values. Due to the unpredictable nature of 

testing approaches that use random item selection, the final set of calibration threshold values 

arrived at should not be considered as the only possible combination that will lead to accurate 

and efficient testing. 

5.1.7 RQ1 Results for Monte Carlo ARCH Operationalization and Evaluation with 

Historical COM Test Data 

The ARCH statistic thresholds established through Monte Carlo simulations using 

historical COM test data and identified in Table 16 consistently led to accurate and efficient 

testing using the ARCH approach. Therefore, I concluded that an item was sufficiently 
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calibrated for use with M-EXSPRT-R when (1) the minimum beta distribution for both 

P(Ci|M) and P(Ci|N) had reached .078, (2) the maximum beta distribution t-test of the 

difference between P(Ci|M) and P(Ci|N) had reached 15, and (3) the percentage of items 

approved had reached 83%. 

5.2 ARCH Accuracy (RQ2) Results 

The research question – How accurate is ARCH in comparison to traditionally 

calibrated SPRT and EXSPRT? – was answered in both the first study, Monte Carlo ARCH 

operationalization and evaluation with historical COM test data, and in the second study, 

ARCH evaluation with new IU plagiarism test examinees. In both studies, the accuracy of 

ARCH was examined both pre-calibration and post-calibration. ARCH pre-calibration refers 

to the period where ARCH testing mimics the SPRT testing algorithm and gathers calibration 

data on test items. Once sufficient item calibration data had been collected, the period of 

ARCH post-calibration began. ARCH post-calibration placed the SPRT method and a 

modified version of EXPSRT in a race to make a classification decision—with the test 

ending when one of the two can make a decision. 

I used similar analytic methods to evaluate the accuracy of ARCH pre-calibration and 

ARCH post-calibration in both studies—with a few differences that are outlined in the 

respective sections below. In each section, I first will present the results of goodness-of-fit 

tests that evaluated whether or not ARCH accuracy results differed significantly from the a 

priori error rates.  I will then present the results of nonparametric statistical tests, and note 

significant differences among the testing algorithms for false nonmastery and false mastery 

error rates.   
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5.2.1 RQ2 Results for Monte Carlo ARCH Evaluation with Historical COM Test Data 

Chi-Squared Tests   

One hundred Chi-Squared tests were conducted on the 50 sets of ARCH pre-

calibration tests of 104 examinees and the 50 sets of ARCH post-calibration tests of 104 

examinees. Unlike mean error rates and mean test lengths based on 50 tests for each 

examinee that can be statistically compared across the 104 examinees, the Chi-Squared test 

depends on each examinee being associated with a single mutually exclusive category. 

Consequently, a single Chi-Squared test cannot be conducted on all the data generated 

through 50 sets of 104 simulated tests given four ARCH pre-calibration and ARCH post-

calibration tests. Rather than reporting on the results of all 100 chi-squared tests associated 

with the 50 ARCH pre-calibration samples and the 50 ARCH post-calibration samples, only 

the results for noteworthy sets and overall findings are presented.  

None of the 50 sets of ARCH pre-calibration tests had error rates that deviated 

significantly (p ≤ .05) from error rates established a priori according to chi-squared 

goodness-of-fit tests; however, two of the 50 sets of ARCH post-calibration did.  Set 37 

included seven false nonmaster decisions, one false master decision, and 96 correct 

classification decisions which resulted in a chi-squared test that indicated a significant 

departure from a priori error rates, χ2=(2, N = 104) = 8.51, p = .02. Set 39 had seven false 

nonmaster decisions, one false master decision, and 96 correct classification decisions which 

resulted in a chi-squared test that indicates a significant departure from a priori error rates, 
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χ2=(2, N = 104) = 7.05, p = .04. All remaining 48 sets for ARCH post-calibration did not 

reveal significant deviations from error rates established a priori according to chi-squared 

testing.  With the Type I error rate of p <= .05, 2.5 of the 50 tests (0.05 x 50) would be 

expected to be significant by chance alone (attributable to sampling error when the null 

hypothesis is true in the theoretical chi-squared distribution).  Two such findings here are in 

line with such expectations (2 compared with 2.5). 

Overall Error Rate and PRE Descriptive Statistics 

 The overall error rate and proportion of reduction in error (PRE) are measures that 

combine the false nonmaster error rate and the false master error rates. Descriptive statistics 

are provided for the overall error rate in Table 18 and the PRE in Table 19 for each of the 

four testing algorithms. The statistics are the result of combining the results for all the tests 

associated with a given examinee into a single examinee-specific value and then computing 

descriptive statistics for the group of 104 examinees. Consider the 50 simulated ARCH pre-

calibration tests conducted with examinee 26, there were no false nonmaster decisions, one 

false master decisions, and 49 correct classification decisions, which results in an overall 

error rate of 2% and a PRE of .96. With overall error rates and PRE values available for the 

remaining examinees, descriptive statistics and tests of normality were calculated. 

Table 18. COM Test Simulations Overall Error Rate Descriptive Statistics and Test of 

Normality 

     Test of Normality 

Algorithm M SD Skewness Kurtosis 

Shapiro-

Wilk  df p 

SPRT 2.77 6.40 3.15 10.72 .50 104 < .001 

ARCH Pre-Cal 3.35 8.05 3.29 12.13 .49 104 < .001 

ARCH Post-Cal 4.58 9.96 2.98 9.70 .53 104 < .001 

EXSPRT 3.29 7.54 3.26 11.43 .50 104 < .001 
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As shown in table 18, the mean overall error rates for all the testing algorithms were 

below 5%, which is the combined a priori error rate of the false nonmasters error rate (2.5%) 

and the false master error rate (2.5%). The extreme skewness and kurtosis values reflect that 

most examinees had very low or zero overall error rates, while those examinees near the cut-

score of 72.5% on the total test had higher overall error rates.  

Examinees near the cut-score had high frequencies of false nonmaster and false 

master errors. In fact, the eight examinees with total test scores of 74.12%, 76.47%, or 

77.65%, representing less than 8 percent of the examinees, accounted for over 60% of the 

false nonmaster decisions across all the testing algorithms in the simulations. Similarly, the 

four examinees with total test scores of 70.59% or 71.77%, representing less than 4% of the 

examinees, accounted for over 75% of the false master decisions across all the testing 

algorithms. 

The fact that these data deviate significantly from the normal distribution rules out the 

use of statistical analysis approaches such as the repeated measures one-way analysis of 

variance (RM-ANOVA) that are based on the assumption that data are normally distributed. 

Fortunately, nonparametric alternatives are available that serve similar functions. A Friedman 

Test was conducted to examine differences in total error rates among the four algorithms, 

χ2(3) = 11.22, p = .011. The p value of the Friedman Test was slightly higher than the set 

value for individual hypothesis testing of p = .01 to indicate a significant result, and therefor 

a significant result was not found, and post-hoc testing was not conducted. 

Table 19 presents the proportion of reduction in error (PRE) associated with each of 

the testing algorithms. PRE is just a linear transformation of the same data used to calculate 
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the overall error rate (i.e. correct decisions rate, false nonmaster rate, and false master rate), 

which was examined for significant differences across testing algorithms. Consequently, no 

statistical tests were conducted to determine whether or not differences between PRE values 

across algorithms were significant.  

Table 19. COM Test Simulations Proportion of Reduction in Error Descriptive Statistics and 

Test of Normality 

     Test of Normality 

Algorithm M SD Skewness Kurtosis 

Shapiro-

Wilk  df p 

SPRT 0.95 0.13 -3.15 10.72 .50 104 < .001 

ARCH Pre-Cal 0.93 0.16 -3.29 12.13 .49 104 < .001 

ARCH Post-Cal 0.91 0.29 -2.98 9.70 .53 104 < .001 

EXSPRT 0.93 0.15 -3.26 11.43 .50 104 < .001 

 

 The higher the PRE value, the more accurate was a given testing algorithm with a 

PRE value of 1 representing a complete elimination of error. Examination of table 18 and 19 

shows the expected inverse relationship between mean PRE values and mean overall error 

rates (due to how PRE is calculated).   

False Nonmaster and False Master Error Rates 

Tables 20 and 21 present the mean percentages and tests of normality for false 

nonmaster and false master rates. 

Table 20. COM Test Simulations False Nonmastery Rate Descriptive Statistics and Test of 

Normality 

     Test of Normality 

Algorithm M SD Skewness Kurtosis 

Shapiro-

Wilk  df p 

SPRT 1.69 5.15 4.32 21.23 .38 104 < .001 

ARCH Pre-Cal 2.25 7.06 4.44 22.25 .37 104 < .001 

ARCH Post-Cal 3.17 8.86 4.02 17.94 .41 104 < .001 
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EXSPRT 1.96 6.07 4.76 26.19 .37 104 < .001 

 

Table 20 provides the mean false nonmaster rates across each of the four testing 

algorithms, along with standard deviation, skewness, kurtotois, and test of normality 

statistics. All the algorithms, with the exception of ARCH post-calibration, yielded mean 

false nonmaster error rates that were lower than the a priori rate of 2.5%. However, claims 

cannot be made regarding whether or not the 3.17% ARCH post-calibration false nonmaster 

rate is significantly higher than the 2.5% rate established a priori. Recall that results of chi-

squared goodness-of-fit tests reported earlier demonstrated that 96% of the ARCH post-

calibration tests did not yield error rates that deviated significantly from rates established a 

priori.  

Given that, once again, skewness, kurtosis, and test of normality values indicates that 

the false nonmaster rate data are not normally distributed, the nonparametric Friedman Test 

was used to examine differences in false nonmaster rates among the four algorithms. The 

Friedman Test found a statistically significant difference in false nonmastery rates depending 

on which algorithm was used, χ2(3) = 17.95, p < .001. Post hoc analyses with six Wilcoxon 

signed-rank tests were conducted with a Bonferroni correction applied, resulting in a 

significance level set at p < .0017. There was a statistically significant reduction, Z = -3.68, p 

< .001, in the false nonmaster rate for SPRT (M = 1.69, SD = 5.15) versus ARCH post-

calibration (M = 3.17, SD = 8.86), which is associated with an effect size of .36. The 

remaining comparisons did not reveal differences that were significant at the p < .0017 level. 

Significant reductions were not found between: (1) SPRT and ARCH pre-calibration, Z = -

1.95, p = .05; (2) SPRT and EXSPRT, Z = -0.484, p = .63; (3) ARCH pre-calibration and 
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ARCH post-calibration, Z = -2.48, p = .013; (4) ARCH pre-calibration and EXSPRT, Z = -

0.825, p = .41; and (5) ARCH post-calibration and EXSPRT, Z = -2.91, p = .004. 

Table 21. COM Test Simulations False Mastery Rate Descriptive Statistics and Test of 

Normality 

     Test of Normality 

Algorithm M SD Skewness Kurtosis 

Shapiro-

Wilk  df p 

SPRT 1.08 4.25 5.18 30.52 .49 104 < .001 

ARCH Pre-Cal 1.10 4.46 4.88 25.00 .49 104 < .001 

ARCH Post-Cal 1.40 5.45 4.44 19.13 .49 104 < .001 

EXSPRT 1.33 5.02 4.78 23.61 .46 104 < .001 

 

 Table 19 presents the mean false master rate across each of the four testing algorithms 

along with standard deviation, skewness, kurtosis, and test of normality statistics. All 

algorithms had mean false master rates that were below the 2.5% false master rate 

established a priori. A Friedman Test was conducted to examine differences in false master 

rates among the four algorithms; however, no significant differences were found, χ2(3) = 

1.59, p = .662, and therefor post-hoc testing was not conducted.  

Summary 

 The results above address the research question – How accurate is ARCH in 

comparison to a priori error rates, SPRT, and EXSPRT? – in the context of Monte Carlo 

simulations with historical COM test data. Goodness-of-fit tests showed that ARCH pre-

calibration did not have error rates that differed significantly from a priori error rates across 

all 50 sets of 104 tests. In the 50 ARCH post-calibration sets of 104 tests, 96% had error rates 

that did not differ significantly from error rates established a priori. Results of Friedman 
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Tests to examine if mean overall error, false nonmaster, and false master rates differed across 

SPRT, ARCH pre-calibration, ARCH post-calibration, and EXSPRT testing algorithms only 

found significant differences between the four testing algorithms with respect to false 

nonmaster rates. Subsequent post-hoc testing revealed only one significant difference – the 

mean ARCH post-calibration false nonmaster rate was significantly higher than the mean 

SPRT false nonmaster rate. 

 Results suggest that, overall, ARCH is an accurate testing approach whose error rates, 

in most cases, do not differ significantly from rates established a priori or from the error 

rates of SPRT or EXSPRT. However, in 4% of the test sets examined, ARCH post-

calibration had error rates that did deviate significantly from a priori error rates. 

Furthermore, ARCH post-calibration was found to be significantly less accurate than SPRT 

with respect to mean false nonmaster rates. 

5.2.2 RQ2 Results for ARCH Evaluation with New IU Plagiarism Test Examinees 

 Accuracy of ARCH was evaluated both before and after ARCH had been calibrated. 

A total of 1,202 unique examine tests were selected for analysis during the ARCH pre-

calibration phase and 4,527 unique examinee tests were selected for analysis during the 

ARCH post-calibration phase. 

Since EXSPRT served as the measure of the true classification of each examinee 

(master or nonmaster) in this study, the accuracy of EXSPRT is not included in the analysis 

below.  Unlike the COM test, where all 85 questions were answered by each examinee, there 

was no known total test score for each examinee who took the IU Plagiarism Test which 

could then be compared with a cut-score to determine his or her mastery status.  Thus, 

EXSPRT was chosen as the standard for comparison, because it had demonstrated accuracy 
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in predicting total test decisions in past studies (Frick, 1992; Welch & Frick, 1993) with 

prediction errors within theoretically expected ranges. 

Also, examinees taking the IU Plagiarism Test were either in the ARCH pre-

calibration or the ARCH post-calibration group. Consequently, ARCH pre-calibration and 

ARCH post-calibration are analyzed separately (since these are independent groups). The 

following agreement tables provide results for ARCH pre and post-calibration, SPRT, and 

EXSPRT. Second, results of goodness-of-fit tests are provided. Finally, results of Friedman 

Tests and subsequent post-hoc testing are presented that examined error rates to determine if 

differences observed between the testing algorithms were significant. 

Agreement Tables 

 I constructed tables to show how ARCH pre-calibration and ARCH post-calibration 

agreed or disagreed with SPRT and EXSPRT. 

Table 22. ARCH Pre-Calibration Decision Agreement with SPRT (Percent Agreement in 

Parentheses) 

  ARCH Pre-Calibration Decision 

SPRT Decision n 

Nonmaster 

n = 729 

Master 

n = 325 

No Decision 

n = 148 

Nonmaster 729 729 (100) 0 (0) 0 (0) 

Master 325 0 (0) 325 (100) 0 (0) 

No Decision 148 0 (0) 0 (0) 148 (100) 

 

 ARCH pre-calibration agreed perfectly with SPRT, as expected. This is not surprising 

given that ARCH pre-calibration mimics SPRT and, unlike the first study, the testing 

algorithms in the second study used items in the order actually administered in real-time to 

examinees.  Had these two sets of decisions not agreed perfectly here, this would have been 

an indication of a software error during the Web-based Plagiarism Test administrations. 
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Table 23. ARCH Pre-Calibration Decision Agreement with EXSPRT (Percent Agreement in 

Parentheses) 

  ARCH Pre-Calibration Decision 

EXSPRT Decision n 

Nonmaster 

n = 729 

Master 

n = 325 

No Decision 

n = 148 

Nonmaster 653 630 (86.42) 6 (1.85) 17 (11.49) 

Master 549 99 (13.58) 319 (98.15) 131 (88.51) 

 

 ARCH pre-calibration did not agree perfectly with EXSPRT. While ARCH pre-

calibration and EXSPRT agreed 98.15% of the time with respect to master decisions, they 

only agreed 86.42% of the time with respect to nonmaster decisions. The relatively low rate 

of agreement between ARCH pre-calibration and EXSPRT with respect to nonmaster 

decisions is reflected in the high false nonmaster rate of ARCH pre-calibration, which will be 

detailed later in this chapter. Interestingly, in the 148 cases when ARCH pre-calibration was 

not able to make a decision, EXSPRT classified most of them (88.51%) as masters. 

Table 24. ARCH Post-Calibration Decision Agreement with SPRT (Percent Agreement in 

Parentheses) 

  ARCH Post-Calibration Decision 

SPRT Decision n 

Nonmaster 

n = 2615 

Master 

n = 1704 

No Decision 

n = 208 

Nonmaster 2863 2514 (96.14) 257 (15.08) 92 (44.23) 

Master 1132 31 (1.19) 1083 (63.56) 18 (8.65) 

No Decision 532 70 (2.68) 364 (21.36) 98 (47.12) 

 

 Unlike ARCH pre-calibration, ARCH post-calibration did not agree perfectly with 

SPRT. ARCH post-calibration agreed with SPRT in 96.14% of nonmaster decisions but only 

agreed with SPRT in 63.56% of master decisions. When ARCH was not able to make a 
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decision, SPRT was nearly equally likely to make a nonmaster decision (44.23%) or not 

make a decision (47.12%). 

Table 25. ARCH Post-Calibration Decision Agreement with EXSPRT (Percent Agreement in 

Parentheses) 

  ARCH Post-Calibration Decision 

EXSPRT Decision n 

Nonmaster 

n = 2615 

Master 

n = 1704 

No Decision 

n = 208 

Nonmaster 2613 2432 (93.00) 92 (5.40) 89 (42.79) 

Master 1914 183 (7.00) 1612 (94.60) 119 (57.21) 

 

 ARCH post-calibration had high levels of agreement with EXSPRT. ARCH post-

calibration agreed with EXSPRT in 93% of nonmaster decisions and 94.60% of master 

decisions. When ARCH post-calibration could not make a decision EXSPRT was slightly 

more like to classify that individual as a master.  Overall, this finding is consistent with 

theoretical expectations, based on the thresholds established for when the ARCH post-

calibration method starts being used with test examinees (determined in the Monte Carlo 

simulations conducted earlier). 

Chi-Squared Goodness-of-fit 

 Two chi-squared goodness-of-fit tests were conducted to examine if ARCH pre-

calibration and ARCH post-calibration made classification decisions within a priori error 

rates. Recall that EXSPRT calibrated with 50 nonmasters and 50 masters was used to 

represent the true score, since the participants in the study only ever answered a small subset 

of the items available in the item pool. The a priori false nonmaster and false master rates 

were both set to 5% for the new IU Plagiarism Test. 

 The first goodness-of-fit test found that the observed results of ARCH pre-calibration 

testing deviated significantly, χ2=(2, N = 1054) = 82.06, p < .001, from error rates set a 
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priori. EXSPRT was used in this study to represent the true examinee classification. As 

shown in table 26, ARCH pre-calibration agreed with SPRT 100% of the time. Consequently, 

the significant lack of fit between ARCH pre-calibration and the a priori error rate is due to a 

lack of fit between SPRT and EXSPRT decisions. 

 The second goodness-of-fit test found that the observed results of ARCH pre-

calibration testing also deviated significantly, χ2=(2, N = 1054) = 82.51, p < .001, from error 

rates set a priori. In this case, ARCH post-calibration deviated from the a priori error rates 

because it made significantly fewer errors than expected a priori.  

Overall Error Rate and Proportion of Reduction in Error 

Tables 26 and 27 provide the overall error rate and PRE for ARCH pre-calibration 

and post-calibration respectively. The overall error rate and proportion of reduction in error 

(PRE) is the same for both SPRT and ARCH pre-calibration. Both made 1,054 decisions, of 

which 949 (90.04%) were correct and 105 (9.96%) were errors. The 9.96% overall error rate 

is below the total a priori error rate of 10%. The PRE for both was .8008. As SPRT and 

ARCH pre-calibration made identical decisions and had identical error rates, no tests were 

conducted to determine if overall error rates differed.  Again, as explained above, these two 

methods should perform exactly the same, assuming that the Web-based test administration 

software is working correctly. 

Table 26. IU Plagiarism Test Pre-Calibration Overall Error Rate and Proportion Reduction 

in Error 

Algorithm Errors Decisions % Correct % Errors PRE  

SPRT 105 1,054 90.04 9.96 .8008 

ARCH Pre-Cal 105 1,054 90.04 9.96 .8008 
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Table 27. IU Plagiarism Test Post-Calibration Overall Error Rate and Proportion Reduction 

in Error 

Algorithm Errors Decisions % Correct % Errors PRE  

SPRT 366 3,995 90.84 9.16 .8168 

ARCH Post-Cal 275 4,319 93.63 6.37 .8726 

 

SPRT made 3,995 decisions, of which 3,629 (90.84%) were correct and 366 (9.16%) 

were errors. The PRE for SPRT was .8168. ARCH post-calibration made 4,319 decisions, of 

which 4,044 (93.63%) were correct and 275 (6.37%) were errors. The PRE for ARCH post-

calibration was .8726. A Wilcoxon Signed Rank test found that there was a significant 

reduction in overall error, Z = -6.95, p < .001, between ARCH post-calibration and SPRT 

with an effect size of .11. 

False Nonmaster and False Master Rates 

Tables 28 and 29 provide the false nonmaster error rate for ARCH pre-calibration and 

post-calibration respectively. 

Table 28. IU Plagiarism Test Pre-Calibration False Nonmaster Error Rate  

Algorithm False Nonmaster Errors Decisions % False Nonmaster 

SPRT 99 1,054 9.39 

ARCH Pre-Cal 99 1,054 9.39 

 

Both SPRT and ARCH pre-calibration made 1,054 decisions, of which 99 (9.39%) 

were false nonmaster errors, which is above the false nonmaster a priori error rate of 5%. As 

SPRT and ARCH pre-calibration made identical decisions and, consequently, had identical 

false nonmaster error rates, no tests were conducted to determine if overall error rates 

differed. 
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Table 29. IU Plagiarism Test Post-Calibration False Nonmaster Error Rate  

Algorithm False Nonmaster Errors Decisions % False Nonmaster 

SPRT 348 3,995 8.71 

ARCH Post-Cal 183 4,319 4.24 

 

Of the 3,995 decisions made by SPRT during the post-calibration phase, 348 (8.71%) 

were false nonmaster errors, which is above the 5% false nonmaster rate established a priori. 

ARCH post-calibration made 4,319 decisions, of which 183 (4.24%) were false nonmaster 

errors, which is below the 5% false nonmaster rate established a priori. A Wilcoxon Signed 

Rank test found that there was a significant reduction in false nonmaster errors, Z = -11.54, p 

< .001, between ARCH post-calibration and SPRT with an effect size of .19. 

Tables 30 and 31 provide the false master error rate for ARCH pre-calibration and 

post-calibration respectively. 

Table 30. IU Plagiarism Test Pre-Calibration False Master Error Rate  

Algorithm False Master Errors Decisions % False Master 

SPRT 6 1,054 0.57 

ARCH Pre-Cal 6 1,054 0.57 

 

Both SPRT and ARCH pre-calibration made 1,054 decisions, of which 6 (0.57%) 

were false master errors, which is well below the false master a priori error rate of 5%. As 

SPRT and ARCH pre-calibration made identical decisions and, consequently, had identical 

false master error rates, no tests were conducted to determine if overall error rates differed. 

Table 31. IU Plagiarism Test Post-Calibration False Master Error Rate  

Algorithm False Master Errors Decisions % False Master 

SPRT 18 3,995 0.45 

ARCH Post-Cal 92 4,319 2.13 
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Of the 3,995 decisions made by SPRT during the post-calibration phase, 18 (0.45%) 

were false master errors, which is well below the 5% false master rate established a priori. 

ARCH post-calibration made 4,319 decisions, of which 92 (2.13%) were false master errors, 

which is well below the 5% false master rate established a priori. A Wilcoxon Signed Rank 

test found that there was a significant reduction in false master errors, Z = -6.65, p < .001, 

between ARCH post-calibration and SPRT with an effect size of .11.  Thus, SPRT made 

fewer false master decisions than expected, but apparently at the expense of making many 

more false nonmaster decisions (see tables 23 and 29).  This means that a SPRT decision for 

mastery was correct nearly all of time, but a SPRT decision of nonmastery was correct only 

86 percent of the time. 

Summary 

 The results above address the research question – How accurate is ARCH in 

comparison to a priori error rates, SPRT, and EXSPRT? – in the context of new examinees 

who took a new version of the IU Plagiarism Test. Agreement tables showed that ARCH pre-

calibration agreed 100% of the time with SPRT but that ARCH pre-calibration/SPRT made 

nonmaster decisions that only agreed with EXSPRT in 86.42% of cases. ARCH post-

calibration had high levels of agreement with SPRT for nonmaster decisions but only agreed 

with SPRT in 63.56% of master decisions and 47.12% of no-decisions.  

ARCH post-calibration had high levels of agreement with EXSPRT for both 

nonmaster and master decisions. Goodness-of-fit testing showed that ARCH pre-calibration 

and ARCH post-calibration had error rates that differed significantly from a priori error 

rates. However, ARCH pre-calibration’s lack of fit with a priori error rates can be explained 
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by the fact that ARCH pre-calibration was identical to SPRT, and SPRT decisions differed 

from EXSPRT, which was used to represent the true examinee state. ARCH post-

calibration’s lack of fit with a priori error rates is due to ARCH post-calibration having error 

rates lower than those expected. In the 50 ARCH post-calibration sets of 104 tests, 96% had 

error rates that did not differ significantly from error rates established a priori. SPRT and 

ARCH pre-calibration made identical false nonmaster errors with an error rate that was 

above the 5% false nonmaster rate established a priori. A Wilcoxon Signed Rank test found 

ARCH post-calibration made significantly fewer overall errors and false nonmaster errors 

than SPRT. While both SPRT and ARCH post-calibration had false master error rates below 

the 5% level established a priori, Wilcoxon Signed Rank testing found ARCH post-

calibration made significantly more false master errors than did SPRT. 

 Results suggest that SPRT/ARCH pre-calibration decision differed significantly from 

EXSPRT, which was used to represent true examinee classification. ARCH post-calibration 

was found to be an accurate testing approach that differed significantly from rates established 

a priori because of lower than expected error rates. ARCH post-calibration did make 

significantly more false mastery decisions than did SPRT but made significantly fewer false 

nonmaster errors. 

5.3 ARCH Efficiency (RQ3) Results 

The research question – How efficient is ARCH in comparison to traditionally 

calibrated SPRT and EXSPRT? – was answered in both the first study, Monte Carlo ARCH 

operationalization and evaluation with historical COM test data, and the second study, 

ARCH evaluation with new IU plagiarism test examinees. 
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5.3.1 RQ3 Results for Monte Carlo ARCH Evaluation with Historical COM Test Data 

 The assumption of normality of the test lengths and no-decision rates was evaluated 

for SPRT, ARCH pre-calibration, ARCH post-calibration, and EXSPRT via examination of 

the skewness and kurtosis values of the variables and through the Shapiro-Wilk test of 

normality, since the number of observations is less than 200. Results presented in Tables 32 

and 33 show that normality cannot be assumed across all the variables examined. 

The test length data and no-decision rates associated with each of the algorithms 

deviated from a normal distribution curve.  Each algorithm’s test length data and no-decision 

data were substantially positively skewed, which indicates a far from symmetrical 

distribution and a higher frequency of shorter test lengths.  For example, Kurtosis values of 

SPRT and ARCH post-calibration provide evidence that the underlying distributions are 

more peaked than would be expected if the data conformed to the normal distribution. Most 

convincingly, the Shapiro-Wilk test of normality conducted on each of the test length and no-

decision rate data sets yielded significant results (p <= .001) in all cases, which indicates that 

the data differ significantly from the normal distribution, so nonparametric tests needed to be 

employed. 

Table 32. COM Test Length Descriptive Statistics and Tests of Normality 

     Test of Normality 

Algorithm M SD Skewness Kurtosis 

Shapiro-

Wilk  df p 

SPRT 22.45 10.79 1.18 .80 .89 104 < .001 

ARCH Pre-Cal 21.98 9.97 .99 .12 .93 104 <.001 

ARCH Post-Cal 13.90 4.93 .92 1.01 .90 104 < .001 

EXSPRT 13.42 5.29 .80 -.14 .95 104 .001 
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 The nonparametric Friedman Test was conducted with a Bonferroni correction 

applied, resulting in a significance level set at p < 0.01 (.05 divided by 5). The Friedman Test 

examined differences in test lengths among the four algorithms. The Friedman Test found a 

statistically significant difference in test length depending on which algorithm was used, 

χ2(3) = 254.57, p < .001. Post hoc analysis with six Wilcoxon signed-rank tests was 

conducted with a Bonferroni correction applied, resulting in a significance level set at p < 

0.0017.  

There were no significant differences between the ARCH pre-calibration and SPRT 

algorithm test lengths, Z = -1.65, p = .098. However, statistically significant differences were 

found among the remaining five algorithm comparisons. There was a statistically significant 

reduction, Z = -8.85, p < 0.001, in test length for ARCH post-calibration (M = 13.90, SD = 

4.93) versus SPRT (M = 22.45, SD = 10.79). Mean test lengths for ARCH post-calibration 

(M = 13.90, SD = 4.93) were also significantly shorter, Z = -8.85, p < 0.001, than ARCH pre-

calibration (M = 21.98, SD = 9.97). EXSPRT mean test lengths (M = 13.42, SD = 5.29) were 

found to be significantly shorter, Z = -8.85, p < 0.001, than SPRT (M = 22.45, SD = 10.79), 

significantly shorter, Z = -8.85, p < 0.001, than ARCH pre-calibration (M = 21.98, SD = 

9.97), and, surprisingly, significantly shorter, Z = -3.78, p < 0.001, than ARCH post-

calibration (M = 13.90, SD = 4.93). The EXSPRT versus ARCH post-calibration mean test 

length comparison was associated with an effect size of .37 with the remaining significant 

differences associated with the large effect size of .87. 

The repeated occurrence of Z = -8.85 in the results above are due to the fact that for 

all 104 examinees both EXSPRT and ARCH post-calibration had shorter mean test lengths 

than both SPRT and ARCH pre-calibration. Mean EXSPRT test lengths were shorter than 
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ARCH post-calibration for 70 examinees and longer in the remaining 34 cases, which 

resulted in the significant Wilcoxon signed-rank test, despite the small overall difference in 

the mean of means of just 0.48. 

Table 33. COM Test No-Decision Rates and Test of Normality 

     Test of Normality 

Algorithm M SD Skewness Kurtosis 

Shapiro-

Wilk  df p 

SPRT 2.00 5.52 2.97 8.08 .48 104 < .001 

ARCH Pre-Cal 1.81 4.98 3.33 11.21 .45 104 < .001 

ARCH Post-Cal 0.17 0.79 5.50 33.53 .53 104 < .001 

EXSPRT 0.04 0.39 10.20 104.00 .53 104 < .001 

 

The Friedman Test examined differences in mean no-decision rates among the four 

algorithms. The Friedman Test found a statistically significant difference in false nonmastery 

rates depending on which algorithm was used, χ2(3) = 42.45, p < .001. Post hoc analysis via 

six Wilcoxon signed-rank tests was conducted with a Bonferroni correction applied, using 

the previously established significance level of p < .0017. Significant reductions in no-

decision rates were not found between: (1) SPRT and ARCH pre-calibration, Z = -0.64, p = 

0.52, and (2) ARCH post-calibration and EXSPRT, Z = -1.47, p = 0.14.  

Statistically significant reductions in no-decision rates were found for the rest of the 

comparisons. There was a statistically significant reduction, Z = -3.63, p < 0.001, in the no-

decision rate for SPRT (M = 2.00, SD = 5.52) versus ARCH post-calibration (M = 0.17, SD = 

0.79), which is associated with an effect size of .36. SPRT (M = 2.00, SD = 5.52) had a 

significantly higher, Z = -3.63, p < 0.001, no-decision rate compared to EXSPRT (M = 0.04, 

SD = 0.39), which is associated with an effect size of .36. There was a significant reduction, 
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Z = -3.82, p < 0.001, in no-decision rate from ARCH pre-calibration (M = 1.81, SD = 4.98) 

versus ARCH post-calibration (M = 0.17, SD = 0.79), which was associated with an effect 

size of .37. Finally, ARCH pre-calibration (M = 1.81, SD = 4.98) had a significantly higher, Z 

= -3.93, p < 0.001, no-decision rate compared to EXSPRT (M = 0.04, SD = 0.39), which is 

associated with an effect size of .39. 

Summary 

 Results presented above answer the research question – How efficient is ARCH in 

comparison to SPRT and EXSPRT – in the context of Monte Carlo simulations with COM 

test data. Overall findings suggest that, as expected, ARCH pre-calibration did not differ 

significantly from SPRT but that ARCH post-calibration provides significant reductions in 

test length and no-decision rates when compared to SPRT. ARCH post-calibration did not 

differ from EXSPRT in terms of no-decision rates, but the small 0.48 increase in mean test 

lengths associated with ARCH-post calibration when compared to EXSPRT was found to be 

significant. 

5.3.2 RQ3 Results for ARCH Evaluation with New IU Plagiarism Test Examinees 

  The following analyzes the efficiency of ARCH in the context of the new IU 

Plagiarism Test. Mean test lengths and no-decision rates serve as measures of test efficiency.  

In this study, if none of the algorithms could make a mastery or nonmastery decision after 20 

items were administered, using the a priori classification error rates, then the test ended in a 

no-decision classification for this examinee.  While this fact was recorded in the database, an 

examinee was informed at the end of 20 questions that no clear mastery decision could be 

confidently reached.  From a practical perspective, she or he had not passed the test—since a 

no-decision or nonmastery decision was still not a mastery decision. 
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Examinees taking the IU Plagiarism Test either took the test using the ARCH pre-

calibration method (equivalent to SPRT) or the ARCH post-calibration method. 

Consequently, ARCH pre-calibration and ARCH post-calibration methods are analyzed 

separately. 

 

Table 34. IU Plagiarism Test Length Descriptive Statistics and Tests of Normality for ARCH 

Pre-Calibration 

     Test of Normality 

Algorithm M SD Skewness Kurtosis 

Shapiro-

Wilk  df p 

SPRT 9.96 5.83 0.58 -1.04 .874 1202 < .001 

ARCH Pre-Cal 9.96 5.83 0.58 -1.04 .874 1202 < .001 

EXSPRT 7.22 4.39 1.06 0.46 .898 1202 <.001 

 

 Since SPRT and ARCH pre-calibration have identical test length descriptive 

statistics, only a pairwise test was conducted to determine if differences were significant 

between mean test lengths of SPRT/ARCH pre-calibration and EXSPRT. A Wilcoxon 

signed-rank test found a statistically significant reduction, Z = -19.46, p < 0.001, in the test 

length for SPRT/ARCH pre-calibration (M = 9.96, SD = 5.83) versus EXSPRT (M = 7.22, 

SD = 4.39), which is associated with an effect size of .56. 

Table 35. IU Plagiarism Test Length Descriptive Statistics and Tests of Normality for ARCH 

Post-Calibration 

     Test of Normality 

Algorithm M SD Skewness Kurtosis 

Shapiro-

Wilk  df p 

SPRT 10.05 5.81 0.53 -1.10 .88 4527 < .001 

ARCH Post-Cal 8.15 5.03 0.93 -0.05 .89 4527 < .001 

EXSPRT 7.10 4.31 0.99 0.32 .91 4527 <.001 
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The Friedman Test examined differences in test lengths among the three algorithms. 

The Friedman Test found a statistically significant difference in test lengths depending on 

which algorithm was used, χ2(2) = 2025.91, p < .001. Post hoc analysis via three Wilcoxon 

signed-rank tests was conducted with a Bonferroni correction applied, resulting in a 

significance level set at p < .0017. A Wilcoxon signed-rank test found a statistically 

significant reduction, Z = -39.36, p < 0.001, in the test length for SPRT (M = 10.05, SD = 

5.81) versus EXSPRT (M = 7.10, SD = 4.31), which is associated with an effect size of .58. 

A Wilcoxon signed-rank test found a statistically significant reduction, Z = -26.37, p < 0.001, 

in the test length for SPRT (M = 10.05, SD = 5.81) versus ARCH post-calibration (M = 8.15, 

SD = 5.03), which is associated with an effect size of .39. A Wilcoxon signed-rank test found 

a statistically significant reduction, Z = -18.41, p < 0.001, in the test length for ARCH post-

calibration (M = 8.15, SD = 5.03) versus EXSPRT (M = 7.10, SD = 4.31), which is associated 

with an effect size of .27. 

Table 36. IU Plagiarism Test Pre-Calibration No-Decision Rate  

Algorithm No Decisions Tests % No Decision 

SPRT 148 1202 12.31 

ARCH Pre-Cal 148 1202 12.31 

 

Both SPRT and ARCH pre-calibration could not make a classification decision in 148 

of the 1,202 tests, for a no-decision rate of 12.31%. As SPRT and ARCH pre-calibration 

made identical decisions and, consequently, had identical no-decision rates, no tests were 

conducted to determine if overall error rates differed. 
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Table 37. IU Plagiarism Test Post-Calibration False Nonmaster Error Rate  

Algorithm No Decisions Tests % No Decision 

SPRT 532 4,527 11.75 

ARCH Post-Cal 208 4,527 4.59 

 

SPRT could not make a classification decision in 532 of the 4,527 tests for a no-

decision rate of 11.75%. ARCH pre-calibration could not make a classification decision in 

208 of the 4,527 tests for a no-decision rate of 4.59%. A Wilcoxon Signed Rank test found 

that there was a significant reduction in the no-decision rate, Z = -13.89, p < .001, between 

ARCH post-calibration and SPRT with an effect size of .27.  

Summary 

 Results presented above answer the research question – How efficient is ARCH in 

comparison to SPRT and EXSPRT – in the context of testing with new examinees associated 

with a new version of the IU Plagiarism Test. Overall findings suggest that, as expected, 

ARCH pre-calibration behaved exactly as SPRT with identical test lengths, but that ARCH 

post-calibration provided significant reductions in test length and no-decision rates when 

compared to SPRT. ARCH post-calibration was found to have significantly longer test 

lengths when compared to EXSPRT, however, this difference was approximately one 

additional item on average.  
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CHAPTER VI. DISCUSSION 

The three sections of this chapter present and discuss the major findings and 

implications associated with each of the three research questions. RQ1 was answered 

exclusively in the first study, Monte Carlo ARCH operationalization and evaluation with 

historical COM test data. RQ2 and RQ3 were answered in both the first and the second study.  

ARCH was evaluated in the latter study with new IU plagiarism test examinees. The chapter 

concludes with discussion of the finding that SPRT had a higher false nonmaster error rate 

than expected, followed by a broader discussion of viability of the ARCH approach in real-

world contexts and the practical implications of this research.  

6.1 ARCH Calibration Sufficiency (RQ1) 

 RQ1 – When are items sufficiently calibrated? – was addressed in the first study. An 

item was found to be sufficiently calibrated when two item calibration criteria thresholds and 

one item-bank level criterion threshold were met. The two item calibration criteria were: (1) 

Beta standard deviation values associated with both the probability of a correct answer to the 

item from a master, P(Ci|M), and the probability of a correct answer to the item from a 

nonmaster, P(Ci|NM), had to reach or be less than .078 to indicate sufficient precision of the 

beta mean estimate; (2) A Beta Difference Index value, a measure of the difference between 

P(Ci|M) and P(Ci|N), had to reach or be greater than 15 to indicate a sufficient difference. 

Finally, the item-bank level criterion required that at least 83% of items in the pool had to 

meet the two item-level criteria above before ARCH could begin (adaptive testing using 

item-level calibration data). 

  This set of calibration criteria thresholds provided an answer to RQ1, but the process 

of establishing the answer to RQ1 also yielded noteworthy findings. The novel use of beta 
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SD in the context of item calibration and the invention of the Beta Difference Index statistic 

also represent key findings of my research. The implications of the establishment of a set of 

calibration criteria thresholds and new item calibration and quality statistics are, in turn, 

discussed below. 

6.1.1 Viable Set Of Calibration Criteria Thresholds  

  The set of calibration criteria thresholds established through thousands of Monte 

Carlo simulations not only provide values required for the heuristics that make up ARCH, 

but also have the potential to be useful for determining test accuracy and efficiency in other 

assessment contexts.  The brute force approach applied in the first study for determining the 

set of calibration criteria threshold values that would lead to efficient and accurate VL-CCT 

in Monte Carlo simulations with COM test data was necessary because of the limited 

research into item calibration for Classical Test Theory-based VL-CCT approaches. Frick’s 

(1992) study was the lone study to provide any guidance on the level of calibration data 

necessary to facilitate efficient and accurate EXSPRT-based testing. 

Going forward, the set of calibration criteria thresholds established in my research 

will provide a starting point for subsequent investigations in other contexts. The set of 

calibration criteria thresholds established in this study might be found to be overly strict or 

too lenient using different testing data. Furthermore, it may be that fewer or more calibration 

criteria are necessary to reliably predict when items are sufficiently calibrated for use with 

VL-CCT approaches based on Classical Test Theory once more testing contexts are 

examined. 

The fact that the set of calibration criteria thresholds established through Monte Carlo 

simulations based on COM test data worked effectively in the very different context of the 
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IU Plagiarism Test does provide evidence of the robustness of these thresholds. The COM 

test was comprised of 85 items and proved to be a much easier test for examinees than was 

the IU Plagiarism Test with a much larger pool of considerably more difficult items. For 

example, nonmasters on the COM test were, on average, 33% more likely to answer an item 

correctly compared to the IU Plagiarism Test. In addition, simulations using the COM test 

did not have any restriction on the maximum test length, whereas the IU Plagiarism Test 

limited test lengths to 20 items. A further difference between the two testing contexts was 

that the a priori error rates with the IU Plagiarism Test were twice as large as those used in 

COM test Monte Carlo simulations. Despite these differences in testing contexts, the set of 

calibration criteria thresholds led to efficient and accurate testing with ARCH post-

calibration in both cases. 

While developed specifically for ARCH, the set of calibration criteria thresholds can 

be applied in other adaptive and non-adaptive testing contexts to evaluate calibration 

sufficiency or item quality. Traditionally, calibration associated with EXSPRT involves the 

collection of item calibration data during a separate calibration phase before adaptive testing 

methods are deployed (Frick, 1992; Welch & Frick, 1993; Welch, 1997). The set of 

calibration criteria thresholds established in this study could be applied in a separate item 

calibration phase to indicate when items have been sufficiently calibrated, rather than 

limiting calibration to a fixed number of examinees. 

A more far-reaching potential use of the set of calibration criteria thresholds involves 

adding to or replacing existing statistics and thresholds used in item quality analysis. For 

example, the index of discrimination and associated interpretation guidelines from Ebel 

(1972) are a widely taught item quality statistic in assessment and evaluation textbooks (e.g., 
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Reynolds et al., 2010) used to examine item quality but do not factor in the number of 

observations. In other words, a given index of discrimination value may be based on very 

few observations and, consequently, may not be sufficiently reliable to base decisions on 

(e.g., whether or not to eliminate or revise the item).  

In comparison, the Beta Difference Index and associated threshold value of 15 does 

factor in the number of observations.  Therefore, use of the Beta Difference Index would 

provide an empirically justified basis for decisions about elimination or revision of items. 

Selection of masters and nonmasters on tests that are not classification-focused could apply 

Kelley’s (1939) method for selecting upper and lower ability groups where the highest 27% 

of scores make up the upper ability group and the lowest 27% of scores make up the lower 

ability group. While more complicated to compute than the index of discrimination, the Beta 

Difference Index can easily be calculated either through the use of Excel or the development 

of a relatively simple online equation tool. 

6.1.2 New Item Calibration and Quality Statistics 

Statistics initially proposed to indicate calibration sufficiency – a measure of the 

precision of item calibration estimates and a measure of the differences between P(C|M) and 

P(C|NM) – were abandoned in favor of two less computationally complex and more 

understandable alternatives. Beta SD is an existing statistic that has never been applied to the 

problem of item calibration sufficiency. The Beta Difference Index is a new statistic I derived 

based on existing equations for beta distributions and Welch’s t-test equation:  to address the 

need to efficiently evaluate the degree of difference between two beta distributions. Both the 

novel application of beta SD and the invention of the Beta Difference Index are major 

findings of my research. 
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Use of the beta SD equation to measure the precision of a probability estimate of a 

correct answer from a specific classification group has, to my knowledge, not been done 

prior to my research. Originally, I had proposed using the 95% Highest Density Region 

Width (HDRW) associated with a given beta distribution to measure the precision of a 

probability estimate. However, the numerical integration method required for determining the 

HDRW was found to be impractical for deployment in massively open online testing 

contexts due to computational demand required to dynamically calculate the value. The beta 

SD proved to be an excellent replacement for the HDRW since it is straightforward to 

compute and correlates very strongly with HDRW values.  

Similarly, the new Beta Difference Index proved to be an excellent alternative to the 

originally proposed shared area under beta curve methods to measure difference between the 

beta distributions associated with the probability of a correct answer from a nonmaster and 

that of a master. As a new type of statistical test for examining the differences between two 

beta distributions, it is not clear if specific Beta Difference Index values should be associated 

with particular p values, under what conditions the test operates reliably, or what 

assumptions should be associated with the test. While the Beta Difference Index formula is 

inspired by t-test formulas, it is not clear if the proposed Beta Difference Index conforms to a 

t-distribution. Critical examination by experts in statistics is needed to address these 

questions. 

6.2 ARCH Accuracy (RQ2) 

RQ2 was addressed in both study 1 and study 2. In most cases, ARCH made 

classification decisions that did not differ significantly from a priori error rates, SPRT error 

rates, or EXSPRT error rates. However, in some circumstances ARCH did have significantly 
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higher error rates than expected a priori and did differ significantly from SPRT and EXSPRT 

error rates. 

6.2.1 Monte Carlo ARCH Evaluation with Historical COM Test Data 

Overall, in analyses of Monte Carlo simulations using historical COM test data, 

ARCH was found to be an accurate testing approach. With two exceptions, ARCH error rates 

did not differ significantly from rates established a priori or from the error rates of SPRT or 

EXSPRT methods. First, a small percentage (4%) of the test sets for ARCH post-calibration 

had error rates that did deviate significantly from a priori error rates. Second, the ARCH 

post-calibration method resulted in a significantly higher false nonmaster rate than did the 

SPRT. 

6.2.2 ARCH Evaluation with New IU Plagiarism Test Examinees 

Results of the second study lead to very different conclusions for ARCH pre-

calibration and ARCH post-calibration methods. As expected, ARCH pre-calibration 

decisions exactly matched SPRT decisions, but differed significantly from those of the 

EXSPRT method, which was used to represent true examinee classification. The ARCH post-

calibration method was found to be an accurate testing approach that differed significantly 

from rates established a priori only because error rates were lower than expected.  The 

ARCH post-calibration method error rates also highly agreed with those of EXSPRT. On the 

other hand, the ARCH post-calibration method made significantly more false mastery 

decisions than did SPRT, but the ARCH post-calibration false master rate was nonetheless 

below the a priori error rate. ARCH post-calibration made significantly fewer false 

nonmaster errors than did the SPRT method. 
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6.2.3 Discussion of ARCH Accuracy (RQ2) 

The overall finding that, in most cases, ARCH is an accurate VL-CCT approach is 

consistent with results investigating other instances of the item-level application of Classical 

Test Theory such as Frick’s EXSPRT (1992) and Rudner’s Measurement Decision Theory 

(2002). The specific situations where ARCH did not achieve expected accuracy rates are 

discussed in the context of related literature below. 

Goodness-of-fit findings for ARCH from the two studies are very different in terms 

of when and why pre- and post-calibration ARCH deviated significantly from a priori rates. 

ARCH pre-calibration had a good fit with expected error rates in the first study, but deviated 

significantly in the second study, which yielded higher-than-expected error rates. ARCH 

post-calibration had a few deviations from expected error rates in the first study due to higher 

than expected error rates, but deviated from expected error rates in the second due to the 

opposite reason – lower-than-expected error rates. 

One explanation for the finding that 4% of test sets for ARCH post-calibration had 

error rates that deviated significantly from a priori error rates in the first study is that 

discovering at least one significant result due to a type 1 error was nearly guaranteed. With 

50 chi-squared goodness-of-fit tests for ARCH pre-calibration test sets and a p value set to 

.05, the overall chances of committing at least one type I error was higher than 4%. As 

discussed earlier, the rationale for keeping the .05 p values for the chi-squared goodness-of-

fit tests was to err on the side of caution and increase the likelihood that a lack of fit would be 

detected. 

The reason for ARCH pre-calibration’s lack of fit with expected error rates due to 

higher than expected error rates in the second study is the unexpectedly high error rate of 
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SPRT – the testing algorithm used during ARCH pre-calibration. The SPRT has been 

criticized historically for use as a computer adaptive testing (CAT) method (e.g., see 

Reckase, 1983; Ferguson, 1969; Weiss & Kingsbury, 1983) because it does not take into 

account differences in item difficulties or their discriminating power.   

For example, if an examinee happens to get randomly selected questions early in the 

test that are easy and not very discriminating between masters and nonmasters, and if those 

questions were answered correctly, she or he would be classified as a master by the SPRT.  

Alternatively, if that same examinee happens to get questions that are more difficult and 

highly discriminating between masters and nonmasters, and answered those questions mostly 

incorrectly, she or he would be classified as a nonmaster by the SPRT method.  This is the 

fundamental reason why Plew (1989) and Frick (1992) created the EXSPRT method—in 

order to take into account item difficulty levels, as well as their ability to discriminate 

masters from nonmasters—when computing probability ratios.   

Given this limitation of the SPRT for use in CATs, Frick (1989) recommended that 

the SPRT be used conservatively—by not making the zone of indifference too wide, and by 

choosing very low a priori error rates—in order to keep tests from being too short.  This is 

because shorter tests are more likely to result in classification errors when item difficulty and 

discrimination are not accounted for when computing probability ratios.   

In the second study of the IU Plagiarism test, practical concerns drove the decisions 

for choosing a somewhat wider zone of indifference (.35) than that recommend by Frick (.25) 

and higher error rates for false mastery and nonmastery decisions (.05 instead of .025).  The 

parameters chosen for SPRT in the second study here were a compromise, in order to keep 
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tests from being too long, with the prior knowledge that the passing rate for the Plagiarism 

Test was relatively low—meaning that it took most examinees a number of attempts before a 

test was passed.  The reasoning was that false nonmastery decision errors were less important 

than false mastery decision errors.  That is, it was better to provide a certificate for passing 

the test, when an examinee is a true master of recognizing plagiarism, compared with 

erroneously giving a certificate to one who was a actually a nonmaster. 

Item response theory (IRT) was invented by Lord and Novick (1968) as a way of 

accounting for item difficulty, discrimination, and chances of guessing (referred to as the 

lower asymptote).  While IRT has been demonstrated to work reasonably well with 

standardized tests when estimating an examinee’s ability level, one major issue has been the 

large number of examinees (thousands) which are necessary to estimate item parameters 

prior to actually implementing an IRT-based CAT.  This requirement is not practical for 

most instructional contexts, and why computerized classification tests (CCTs) have been 

subsequently considered as a more practical alternative to CAT. 

The higher-than-expected false nonmaster error rate of SPRT in the first study with 

empirically established parameter estimates and in the second study with the IU Plagiarism 

Test is discussed in detail in a separate section later in this chapter.  However, it is worth 

noting that similar findings are not reported in most of the previous studies examining the 

application of SPRT in educational testing contexts (Frick, 1989; Frick, 1992; Welch & Frick 

1993), with studies by Plew (1989) and Frick (1990) being notable exceptions. Plew’s 

dissertation study found that a variety of adaptive testing methods, including SPRT, did not 

perform within a priori error rates. Plew suggested that clustering of scores around the cut-

off point was likely to blame for lower-than-expected SPRT accuracy, as did Frick (1990), 
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who found that SPRT did not perform within a priori error rates when many examinees 

straddled the boundary between nonmastery and mastery. 

Related to the goodness-of-fit findings just discussed is the fact that in the first study 

ARCH post-calibration had a mean false nonmaster rate of 3.17% which is 0.67% higher 

than the 2.5% a priori rate and substancially higher than SPRT’s mean false nonmaster rate. 

We cannot just dismiss the 4% of ARCH post-calibration sets of tests that deviated from a 

priori error rates in the first study as being solely due to type I error, as there is evidence that 

suggests that ARCH post-calibration was prone to making more false nonmaster errors than 

expected a priori. A central idea of Classical Test Theory, the basis for all the VL-CCT 

algorithms, is that an observed test score is made up of the true score and error (Novick, 

1966). In the case of SPRT being used to classify examinees for the purpose of calibrating 

ARCH, error of SPRT may be getting compounded in that it is reflected in both the SPRT 

and then in ARCH post-calibration results. In other words, one misclassification by SPRT 

could live on to contribute to multiple misclassifications by ARCH post-calibration due to 

the role SPRT plays in calibrating items used by ARCH post-calibration. 

6.2.4 Implications 

 There are two main implications associated with the findings for RQ2. First, more 

research is required to determine the specific conditions under which SPRT operates within a 

priori error rates before the ARCH approach can reliably be deployed, as ARCH is heavily 

dependent on the SPRT testing algorithm. Suggestions for future research on SPRT are 

outlined in the next chapter. Second, the fact that ARCH post-calibration performed well in 

terms of classification accuracy in these initial studies (even when SPRT did not) 
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demonstrates that ARCH represents a promising and robust VL-CCT approach worthy of 

additional investigation. 

6.3 ARCH Efficiency (RQ3) 

RQ3 – How efficient is ARCH in comparison to traditionally calibrated SPRT and 

EXSPRT? – was answered in both study 1 and study 2. As expected, ARCH did not differ 

from SPRT in terms of mean test lengths or no-decision rates before items had become 

sufficiently calibrated in both studies. Both ARCH pre-calibration and SPRT methods had 

significantly longer tests and higher no-decision rates when compared to the EXSPRT 

method in both studies. After ARCH was able to use calibrated items, ARCH mean test 

lengths and no-decision rates were significantly smaller than SPRT. However, ARCH had 

significantly larger mean test lengths compared to EXSPRT across both studies. 

6.3.1 Monte Carlo ARCH Evaluation with Historical COM Test Data 

In the Monte Carlo simulations with historical COM test data, ARCH pre-calibration test 

length means and no-decision rates did not differ significantly from SPRT.  However, the 

ARCH post-calibration method provided significant reductions in test length and no-decision 

rates when compared to SPRT. ARCH post-calibration no-decision rates did not differ 

significantly from EXSPRT, but ARCH-post calibration mean test lengths were found to be 

significantly larger than those for EXSPRT. 

6.3.2 ARCH Evaluation with New IU Plagiarism Test Examinees 

Testing with new examinees associated with a new version of the IU Plagiarism Test 

revealed that, as expected, ARCH pre-calibration behaved exactly as SPRT with identical test 

lengths. However, ARCH post-calibration had significantly shorter test lengths and smaller 
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no-decision rates when compared to SPRT but significantly longer test lengths than 

EXSPRT. 

6.3.3 Discussion of ARCH Efficiency (RQ3) 

 It is helpful to consider the findings related to the efficiency of ARCH in the context 

of associated literature, given that use of new adaptive testing techniques to try to reduce test 

lengths is not new. Wald’s (1947) SPRT has been used to reduce test lengths as far back as 

when Cowden (1947) created an early version of an adaptive classification test. The first 

example of a VL-CCT from Ferguson (1969) demonstrated that the adaptive version required 

approximately one-third the number of items as the full test.  A study by Linn (1972) 

provided further support for Green’s (1970) assertion that adaptive testing could result in 50 

percent shorter tests without compromising accuracy of classifications.  

 SPRT and ARCH pre-calibration mean test lengths found in the Monte Carlo 

simulations with COM test historical data are in line with findings from Frick (1989), when 

based on the same data. Frick found that SPRT had mean test lengths of 18.6 (SD = 16.3) for 

nonmaster decisions and 21.6 (SD = 12.9) for master decisions. Recall that mean test lengths 

in the first study for SPRT were 22.45 (SD = 10.79) and for ARCH pre-calibration were 

21.98 (SD = 9.97). Frick’s results and the results from this study represent a 75% reduction in 

test lengths compared to the entire 85-item test. 

EXSPRT and ARCH post-calibration mean test lengths from the first study are also in 

line with findings from Frick (1992). Frick found that EXSPRT with random item selection 

had mean tests lengths of 12.82 (SD = 9.78), which is very similar to ARCH post-calibration 

mean test lengths of 13.90 (SD = 4.93) and EXSPRT mean test lengths of 13.42 (SD = 5.29). 

Note that the slight differences in test lengths between earlier studies using COM test data 



 

 171

(Frick, 1989; Frick, 1992) can be explained by the fact that these studies involved a single 

simulated SPRT test and single simulated EXSPRT test for each examinee, whereas, in my 

study, I conducted 50 simulated SPRT tests for each examinee where items were randomly 

selected each time. Frick’s results and the results from this study for EXSPRT and ARCH 

post-calibration represent an 84% reduction in test lengths compared to the entire 85 item 

test. An even larger reduction in test lengths was observed on the IU Plagiarism Test. During 

IU Plagiarism Testing, ARCH post-calibration had a mean test length of 8.15 (SD = 5.03), 

which represents over a 90% reduction in the number of items compared to the entire item 

pool. The number of items in the item pool is not specified here for test security reasons. 

What is unique about the present studies is that in the ARCH post-calibration method, 

unlike EXSPRT earlier research (Frick, 1992), items were calibrated without the need for a 

separate calibration phase prior to starting adaptive testing. The EXSPRT algorithm in 

Frick’s (1992) study was first calibrated with twenty-five responses from nonmasters and 

twenty-five responses from masters before adaptive testing. The ARCH post-calibration 

method uses calibration data gathered during live testing via ARCH pre-calibration, which 

uses the SPRT method. 

 

6.3.4 Implications 

 The key implication of the results related to the efficiency of ARCH is that substantial 

reductions in test lengths are achievable in educational contexts without having to calibrate 

items ahead of time. The efficiency of the ARCH post-calibration method is consistent with 

both Frick’s (1992) examination of the EXSPRT method and Rudner’s (2002) analysis of 

Measurement Decision Theory-based VL-CCT approaches. In both cases, use of item-level 
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calibration allowed for substantial reductions in test lengths. Item-level calibration data 

gathered via ARCH pre-calibration/SPRT during live testing enabled ARCH post-calibration 

to achieve significant reductions in test lengths. However, before ARCH can be considered 

ready for widespread use, the issues related to the higher than expected error rates observed 

with SPRT in both studies need to be addressed. 

6.4 SPRT False Error Rate Higher Than Expected 

The SPRT testing algorithm was found to have a false error rate that was higher than 

the rate established a priori under specific conditions in the first study and under the live 

testing conditions of the second study. Higher than expected error rates for SPRT are not 

consistent with earlier research investigating the accuracy of SPRT (Frick, 1989; Frick, 1992; 

Welch & Frick, 1993; Tao et al., 2008) with two exceptions where SPRT and other VL-CCT 

approaches were found to be prone to errors when examinees were clustered near cut-scores 

(Plew, 1989; Frick, 1990). While this finding is does not specifically address any of the three 

research questions, SPRT is the mechanism by which ARCH classifies examinees as 

nonmasters or masters during the ARCH pre-calibration phase. Consequently, issues with 

SPRT could have substantial implications for the ARCH approach to calibration. 

 

6.4.1 Monte Carlo ARCH Evaluation with Historical COM Test Data 

During the first study, Monte Carlo ARCH Evaluation with Historical COM Test 

Data, the SPRT was first calibrated empirically using all the available response data from all 

nonmasters and masters, which led to a P(C|M) = .88 and a P(C|NM) = .56. Subsequent 

simulations of 2,080 SPRT tests using these empirically calibrated values resulted in a SPRT 

false nonmaster rate of 3.23% versus the a priori rate set at 2.5%. When SPRT was manually 
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set to P(C|M) = 0.85 and P(C|NM) = 0.60 values, which have been used in previous studies 

(Frick, 1989; Frick, 1992), false nonmaster rates on an additional 2,080 SPRT based test 

simulations were below the a priori rate of 2.5%. The manually calibrated SPRT made 83 

fewer decisions than did the empirically calibrated SPRT method. The mean test length of 

the tests that applied SPRT with item-bank probabilities set manually was 21.97 items (SD = 

16.37), which is 5.36 items (32.3%) longer than the results obtained with SPRT using item-

bank probabilities set empirically (M=16.61, SD= 12.28)—but at the expense of more false 

nonmaster decision errors than expected. 

6.4.2 ARCH Evaluation with New IU Plagiarism Test Examinees 

During the second study, ARCH Evaluation with New IU Plagiarism Test Examinees, 

SPRT parameters were set manually to P(C|M) = 0.85 and P(C|NM) = 0.5. SPRT had a false 

nonmaster rate of 9.39% on the 1,202 tests during the ARCH pre-calibration phase and 

8.71% on the 4,527 tests during the ARCH post-calibration phase, both of which are well 

above the 5% false nonmaster rate set a priori. Unlike the first study, where the examinee 

total score on the complete 85-item test was used to determine their true mastery state, the 

second study used the decision of EXSPRT with items calibrated with 50 nonmaster and 50 

master responses. 

6.4.3 Discussion of SPRT High False Error Rates  

SPRT accuracy issues could be the result of coding error or improper SPRT 

equations. For example, Kingsbury and Weiss (1983) found accuracy problems with SPRT in 

their study comparing SPRT to IRT-based approaches. However, Frick (1990) suggested that 

these accuracy issue were the result of using incorrect equations for SPRT. Examination of 

the code used for SPRT in both the first and second study does not reveal errors, and tests of 
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the code using input values in previous studies yielded expected outputs. Furthermore, (1) 

ARCH pre-calibration based on SPRT in the first study yielded very similar results to earlier 

SPRT simulations done with COM test data (Frick, 1989) when the same P(C|NM) and 

P(C|M) settings were used, and (2) coding in the first and second study followed the same 

coding strategies, albeit with different programming languages (JavaScript versus Python). 

This suggests that a coding or mathematical error is unlikely to be the reason for SPRT 

accuracy issues seen in the second study.  

A more likely explanation for higher SPRT error rates is that greater P(C|M) versus 

P(C|NM) discrimination leads to “rash” and sometimes inaccurate decisions. The fact that 

SPRT applies item difficulty estimates for all items at the group level (i.e. nonmasters and 

masters) has been criticized as it ignores the reality that some items are more difficult than 

others (Weiss & Yoes, 1991; Jacobs-Cassuto, 2005). The greater the difference between 

P(C|M) and P(C|NM), the shorter the tests become, which makes a given SPRT decision 

dependent on fewer items. SPRT decisions based on a few items may result in increased 

errors due to differences in item difficulties. For example, on the IU Plagiarism Test there 

were 604 cases of SPRT making a nonmaster decision after an examinee responded to the 

first three items incorrectly but in 42 of these 604 cases EXSPRT did not make a decision 

and continued to administer items. Because EXSPRT uses item level data, it knows when 

examinees were administered difficult items and does not jump to conclusions when the 

examinee gets a hard item incorrect.  

Another possible explanation for high SPRT error rates involves clustering of 

examinees near the cut-score. When the shape of distribution of total scores includes 

examinees bunched around the cut-point, error rates have been shown to be negatively 
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impacted (Plew, 1989; Frick, 1990). However, since individual examinee responses to all the 

items on the IU Plagiarism Test are not available, I am unable to determine if there was in 

fact clustering of examinee total scores around the cut-score. 

Another fact to consider is that there were drastically different percentages of 

nonmasters in the two studies and that this could potentially have impacted false nonmaster 

error rates. The first study had 28 nonmasters (27%) who responded correctly to less than 

72.5% of the items and 76 masters (73%) who responded correctly to at least 72.5% of the 

85-item COM test. In the second study, EXSPRT (calibrated with 50 responses from 

nonmasters and 50 responses from masters to every item) represented the true mastery status. 

In the second study, 57% of the 5,729 examinees were classified as true nonmasters by 

EXSPRT, with the remaining 43% being classified as masters. The nonmaster rate in the 

second study was more than double that of the first study. Rudner (2009) suggested using the 

proportion reduction in error (PRE) to adjust for the probability that a given algorithm could 

be right due to chance. With a nonmaster rate in the second study that is double that of the 

first study, the probability of correctly making a nonmaster decision by chance is also 

doubled. Further, more nonmasters means more nonmaster decisions and thus more 

opportunities to make false nonmaster decisions. 

It may be the case that SPRT makes nonmastery decision too quickly, which makes it 

prone to false nonmastery errors. In what may be the first example of a VL-CCT, Ferguson 

(1969) found that SPRT made nonmaster decision more quickly than master decisions, and 

similar findings have come from subsequent SPRT research (Frick, 1989; Frick, 1992). 

However, in these studies SPRT error rates were not found to be problematic. 
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6.4.4 Implications 

 Higher-than-expected SPRT false nonmaster rates under some conditions is 

troublesome given the core role that SPRT plays in the ARCH approach. SPRT is the testing 

algorithm that ARCH uses to make classification decisions while it is still gathering 

calibration information about items, so issues with SPRT accuracy become issues with 

ARCH accuracy, as was demonstrated in the second study with new IU Plagiarism test 

examinees.  

Equally problematic is the fact that the classification decisions made by ARCH pre-

calibration/SPRT about a specific examinee drives how items are calibrated. If SPRT/ARCH 

pre-calibration makes a nonmaster decision for an examinee, all nonmaster-related item 

calibration data (i.e., number of correct and incorrect responses by nonmasters to a given 

item) for all the items to which the examinee responded get updated accordingly. Similarly, 

all master-related item calibration for all the items to which the examinee responded get 

updated when SPRT/ARCH pre-calibration makes a master decision. 

False nonmaster decisions mean that nonmaster calibration data are incorrectly being 

updated and master calibration data are incorrectly not getting updated. Consequently, it is 

reasonable to posit that inaccurate item calibration data gathered during ARCH pre-

calibration could contribute to increasing the error rate of ARCH post-calibration, which can 

be viewed as a compounding of the error rate. However, evidence from the IU Plagiarism 

Test study where SPRT/ARCH pre-calibration had a higher than expected false error rate did 

not show a corresponding higher than expected error rate with ARCH post-calibration. 

Results from the Monte Carlo simulations with historical COM test data included ARCH 

post-calibration false nonmaster error rates that were significantly higher than those for 
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SPRT – the exact opposite of what was observed in the IU Plagiarism Test – so it is difficult 

to draw any clear conclusions regarding the relationship between false nonmaster error rates 

between SPRT/ARCH pre-calibration and ARCH post-calibration. 

Given that SPRT false error rates may be associated with greater differences between 

P(C|M) and P(C|NM) settings for SPRT, it may be advisable to restrict SPRT P(C|M) and 

P(C|NM) settings such that differences are in line with or smaller than settings (i.e. P(C|M) = 

0.85 and P(C|NM) = 0.60) that have been shown to result in SPRT performing within a 

priori error rates (Frick, 1989; Frick, 1992; Welch & Frick 1993). Furthermore, care must be 

taken to avoid using SPRT in cases where examinees are likely to be clustered around the 

cut-score since this can contribute to higher than expected error rates (Plew, 1989; Frick, 

1990). In addition, a priori false nonmaster and false master error rates can be adjusted to 

lower, more conservative, values as a means of reducing error rates. The 0.25 difference 

between P(C|M) = 0.85 and P(C|NM) = 0.60 can be achieved with other settings (e.g., 

P(C|M) = 0.90 and P(C|NM) = 0.65, P(C|M) = 0.70 and P(C|NM) = 0.45), so SPRT decision 

can reflect the nature of the nonmaster versus master decision that needs to be made. The 

likely consequence of minimizing the difference between P(C|NM) and P(C|M) is increasing 

test lengths, and the appropriateness of this tradeoff must be evaluated by test administrators 

in a given assessment context. 

6.5 Viability of ARCH in Real-World Contexts 

While ARCH does not require a separate calibration phase before adaptive testing can 

begin, large numbers of test administrations are required before ARCH shifts to the most 

efficient testing approaches. In the first study using historical COM test data, around 700 test 

administrations were required in repeated Monte Carlo simulations before the 85 items were 
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sufficiently calibrated to enable ARCH to shift to adaptive testing using EXSPRT based 

methods. With a larger item pool, over 4,600 test administrations were required before 

ARCH could switch to the most efficient adaptive testing methods on the IU Plagiarism Test. 

The main drawback associated with IRT (Thompson, 2007; Frick, 1992) is that a large 

calibration sample is required to establishing item parameter estimates. Given that hundreds 

or thousands of test administrations were required before ARCH could switch to the most 

efficient adaptive testing methods in both studies, it would seem that ARCH is similar to IRT 

in requiring a large calibration sample, however, there are important differences. 

ARCH calibration involves many examinees answering a small percentage of the 

total number of items in the item pool under actual testing conditions, whereas traditional 

calibration of EXSPRT involves having at least 25 nonmasters and 25 masters respond to all 

the items in the item bank. Large numbers of test administrations are typically not a problem 

in massively open online contexts. For example, in the second study with the IU Plagiarism 

Test only a 25-hour period was required before item ARCH calibration criteria had been 

reached and more efficient testing algorithms could be deployed. However, the ARCH 

approach may not be viable in situations where the number of potential examinees is small.  

The reader should note that the item pool on the IU Plagiarism Test is very large, and many 

examinees took the test who could not recognize plagiarism.  The ratio of nonmasters to 

masters was about 4 to 1. Thus it took a large number of test administrations to identify 

enough masters to satisfy the EXSPRT minimum for every item. This was not only due to the 

relatively small proportion of mastery decisions, but also due to the fact that tests were 

relatively short (8.55 items on average were sampled from the very large pool), so it took a 

very large number of test administrations before each item was viewed by enough masters.  
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If a much smaller item pool were used, and test items were easier overall, then the ARCH 

post-calibration method could be employed much sooner than observed in the second study 

here. 

The ARCH approach to item calibration has additional advantages over traditional 

EXSPRT calibration with a set calibration sample. With ARCH, not a single examinee sees 

all the items in the pool, but with traditional EXSPRT calibration at least 50 individuals 

would see the entire item pool, which presents considerable test security issues. Another 

advantage for the ARCH approach to calibration is that item calibration data are generated 

during live testing, which means examinees are motivated to perform well. Examinee 

performance during low or no stakes item calibration phases has been raised as an issue that 

potentially impacts the quality of item calibration data collected (Wise & DeMars, 2006 in 

Makransky, 2010). 

Ultimately, the quality and reliability of the ARCH testing approach, like all testing 

approaches, requires that the relationships between the observed score/classification, the true 

score/classification, and error be examined and understood (Allan & Yen, 2002). Findings 

from both studies suggest that ARCH is a promising new VL-CCT approach.  However, 

further research is required to more fully understand the relationship between classification 

errors made during SPRT/ARCH pre-calibration and their impact on ARCH post-calibration. 

 

6.6 Practical Implications 

The ARCH approach to item calibration and computer adaptive testing is well suited 

to specific types of assessment contexts. The ARCH approach enables efficient and accurate 
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criterion-referenced assessment without the arduous item-calibration requirements associated 

with IRT based approaches. Consequently, ARCH is well suited to criterion-referenced 

assessment contexts where (1) the resources needed for IRT-based item calibration methods 

are not available or not justifiable; and (2) the necessary technology for CAT is in place but 

the resources required for IRT-based testing approaches are not. The following presents 

several assessment contexts where the ARCH approach to item calibration is particularly 

applicable followed by a brief discussion of when ARCH is not advisable. 

A general example of a context where ARCH would be well suited is associated with 

enabling the information-age learning management system (LMS) that Reigeluth and 

colleagues (2008) have proposed. Central to an information-age LMS is the ability to make 

classification decisions about what an individual learner knows in order to select appropriate 

learning experiences that the learner should next attempt. Rather than the standard practice of 

giving an entire group the same test at the end of a given unit of instruction before moving 

onto the next unit, in an information-age LMS individual learners are assessed several times 

to facilitate the selection of an appropriate learning experience and then to ensure they have 

mastered the associated learning outcomes. Learners do not proceed until they have mastered 

the target competencies so a learner may need to be assessed multiple times before mastery is 

attained. 

In the context of an information-age LMS, ARCH is uniquely suited to provide 

efficient and accurate mastery testing. IRT based methods would require too many resources 

for it to be feasible to create the large number of mastery focused tested that address 

numerous learning outcomes that would be assessed in an information-age LMS. In an 

information-age LMS it is critical to ensure that time spent conducting assessments takes a 
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minimal amount of time away from learning time so CAT methods would be important as a 

means of reducing testing time. The fact that many learners would need to take tests multiple 

times before attaining a mastery score would increase item exposure and make it important to 

be able to quickly create and calibrate new items to reduce the chances that the same learners 

would be administered the same items during multiple attempts to achieve mastery on the 

tests. 

A more specific example a context that is well suited to the ARCH approach is 

assessment of the effectiveness of classroom technology integration efforts. When students 

are learning in technology-enhanced environments it makes sense to apply technology 

enhanced assessment such as CAT. In some cases, evaluation of technology-oriented skills 

may not be possibly via traditional pencil and paper tests. Furthermore, given the pace at 

which technology has been changing, the time it would take to create and calibrate a pool of 

items using IRT-based methods would represent an undesirable delay that could hinder the 

applicability and longevity of technology oriented items developed. Items that reference 

specific technologies have a short shelf life, so reductions in the calibration burden provided 

by ARCH are helpful in quickly putting new items into operation. 

For example, recent increased adoption of Google Chromebooks in classroom 

settings is replacing Apple and Microsoft based computing devices (Winkler, 2014).  An 

item that evaluates an examinee’s knowledge of how to share a file with a peer using a 

Google Chromebook that is relevant today is likely to become outdated as new methods of 

sharing pictures via a Chromebook become available, or Chromebooks themselves become 

outdated technology.  
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ARCH can be helpful in educational contexts where large-scale standardized 

assessments are also deployed.  Large-scale standardized tests are typically norm-referenced 

and provide summative percentile rank examinee test results for a given generalized 

construct that is often more useful to researchers, administrators, and policy makers than to 

students, parents, and educators (Hickey, 2006). VL-CCT that apply ARCH calibration 

methods make classification decisions (e.g. mastery versus nonmastery) with respect to 

specific learning outcomes and, as such, reveal more actionable information about the state 

of a learner’s knowledge that educators, parents, and the students themselves can use. The 

fact that ARCH calibrates items more quickly than IRT based methods means that the 

associated tests can be deployed in lower-stakes contexts where test security is not as high, 

such as in classrooms or via a course space in an LMS.  

Finally, as was demonstrated through the use of ARCH in the context of the IU 

plagiarism test, ARCH is particularly useful in massively open online assessment contexts 

(MOOCs). MOOCs have specific attributes that present challenges for assessment. Their 

massively open nature limits the control that test administrators have over the test 

environment and makes it difficult to hinder cheating.  ARCH based VL-CCTs help to hinder 

cheating in MOOCs through use of random item selection, and also help to ease development 

of a large calibrated item bank. 

The ARCH approach and other computer-based testing approaches are not well suited 

in other types of assessment contexts. ARCH is not appropriate if test items cannot be easily 

administered or evaluated using computing resources. Administering a valid test item where 

the physical actions performed by the examinee constitute the response (e.g. performing first 

aid to address particular injuries presented by a simulated victim) would be challenging, if 
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not impossible, in a computer-based testing context. Automatically evaluating the correctness 

of certain types of response such as an essay-style written responses to open-ended ill-

structured problems (e.g. Shin, Jonassen, & McGee, 2003) would be challenging using only 

computing resources.  Although advances in artificial intelligence such as deep learning are 

pushing the boundaries of what computers can do, current computers are nonetheless limited 

with respect to understanding meaning of natural language and observing human actions 

(e.g., see Frick, 1997). 

If the construct being assessed is only applicable to a relatively small number of 

potential examinees then ARCH should likely not be used since it would likely take a very 

long time for items to be calibrated.  

Finally, ARCH is not appropriate for norm-referenced testing, since ARCH is an 

approach to criterion-referenced testing.  However, if U.S. school systems were to adopt a 

criterion-referenced approach, instead of massive statewide assessments being conducted 

annually at the same time, CRT’s could instead be administered individually as needed for 

students throughout the school year.  Students would be taking appropriate CRTs for 

standards on which they are ready to be assessed.   Such individualization and staggering of 

computer-based tests would help alleviate possible problems associated with large numbers 

of students take the same norm-referenced test at the same time which can swamp web 

servers and network capacities for the testing agencies, cause delays between test items, or 

worse, result in computer crashes where student data is lost (Rabinowitz & Brandt, 2001).   

Using CRTs that are staggered throughout the school year would help alleviate such “traffic 

jams” that occur when literally tens of thousands of students are all tested at the same time.  

This does not require abandonment of standards for student achievement, rather a different 
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approach to assessment of those standards.  For such a vision of such individualized 

assessment that was proposed some time ago, see Frick (1991, 

https://www.indiana.edu/~tedfrick/fastback/fastback326.html#student-content , “What If”)  

and Frick (1990, p. 480).   
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CHAPTER VII. SUMMARY, LIMITATIONS, AND FUTURE RESEARCH 

7.1 Summary 

Use of Computer Adaptive Testing (CAT) has tremendous potential in educational 

contexts to quickly and accurately assesses learner knowledge (Frick, 1989; Frick, 1992; 

Rudner, 2009). Massively Open Online Courses in particular require a reconceptualization of 

traditional assessment practices (DeBoer et al., 2014) with CAT uniquely positioned to 

efficiently assess large numbers of learners. However, use of CAT is hindered by arduous 

item calibration requirements, in some cases involving thousands of examinees (Weiss & 

Kingsbury, 1984; Welch & Frick, 1993) that have limited the use of CAT to large-scale, 

high-stakes, and/or highly profitable contexts. Highly efficient and accurate Variable-Length 

Computerized Classification Testing (VL-CCT) methods requiring limited item calibration 

are available  (Rudner 2009; Thompson, 2007; Frick, 1992), but minimal research has been 

conducted on their calibration requirements (Frick, 1992). 

The purpose of my research was to develop and evaluate an innovative item 

calibration and VL-CCT method, Automatic Racing Calibration Heuristics (ARCH), that 

includes specific item calibration guidelines and an approach that shifts to a more efficient 

VL-CCT approach, EXSPRT, as items are sufficiently calibrated during live testing. My 

research involved two studies.  

The first study, Monte Carlo ARCH operationalization and evaluation with historical 

COM test data, addressed three research questions: (RQ1) When is an item sufficiently 

calibrated? (RQ2) How accurate is ARCH? and (RQ3) How efficient is ARCH? Data for the 

first study were drawn from 104 examinee responses to an 85-item multiple-choice test on 

how computers work that has been the subject of previous studies (Frick, 1989; Frick, 1992). 
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Thousands of Monte Carlo simulations were conducted to examine how specific ARCH 

calibration criteria and associated thresholds impacted adaptive test accuracy and efficiency 

and, ultimately, to establish the calibration criteria and thresholds that answer RQ1. ARCH 

pre-calibration and post-calibration was then compared to the SPRT and EXSPRT testing 

algorithms via 50 sets of Monte Carlo simulations based on response data from each of the 

104 examinees. ARCH error rates were compared to a priori error rates through chi-squared 

goodness-of-fit testing using exact nonasymptotic methods. ARCH error rates, mean test 

lengths, and no-decision rates were compared to those of SPRT and EXSPRT through 

Friedman Tests and post hoc analysis using Wilcoxon signed-rank testing.  

The set of calibration criteria and associated thresholds that provide an answer to 

RQ1 regarding calibration sufficiency are: (1) beta SD of P(Ci|M) ≤ .078; (2) beta SD of 

P(Ci|NM) ≤ .078; (3) Beta Difference Index of difference between P(Ci|M) and P(Ci|NM) ≥ 

15; and (4) the percent of items calibrated ≥ 83%. With respect to RQ2, the first study found 

that ARCH did not deviate significantly from a priori error rates in the vast majority of 

cases. ARCH error rates did not differ significantly from SPRT and EXSPRT, with the 

exception of ARCH post-calibration committing significantly more false nonmaster errors 

than SPRT.  In terms of test efficiency (RQ3), ARCH post-calibration provided significant 

reductions in test length and no-decision rates when compared to SPRT. ARCH post-

calibration did not differ from EXSPRT in terms of no-decision rates but the marginally 

longer mean test lengths of ARCH-post calibration were found to be significantly different 

from those of EXSPRT.  

The second study, ARCH evaluation with new IU plagiarism test examinees, applied 

the findings of RQ1 from the first study and answered (RQ2) and (RQ3) using data gathered 
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in December 2013 and January 2014 from the massively open online context of a new 

version of the Indiana University Plagiarism Test, which I developed, that included a large 

item pool. Test results and response data from nearly 15,000 unique participants were used to 

calibrate all the items in the pool with 50 responses from nonmasters and 50 responses from 

masters for subsequent use with EXSPRT-based testing.  

After EXSPRT calibration was complete, test results and response data were collected 

from 5,729 examinees for SPRT, ARCH, and EXSPRT. The first 1,202 examinees took the 

ARCH pre-calibration version that mimicked SPRT and gathered calibration data, with the 

remaining 4,527 taking the ARCH post-calibration version that used calibration information 

gathered during live testing and a modified version of EXSPRT to render classification 

decisions. Again, ARCH error rates were compared to a priori error rates through chi-

squared goodness-of-fit testing using exact non-asymptotic methods. ARCH error rates, 

mean test lengths, and no-decision rates were compared to those of SPRT through Friedman 

Tests and post hoc analysis using Wilcoxon signed-rank testing. 

In terms of ARCH accuracy (RQ2), the second study found that ARCH did deviate 

significantly from a priori error rates, with ARCH pre-calibration having higher error rates 

than expected and ARCH post-calibration having lower error rates than expected. ARCH 

pre-calibration error rates were exactly the same as those for SPRT, since ARCH pre-

calibration mimics SPRT. ARCH post-calibration had significantly lower error rates than 

SPRT. With respect to efficiency (RQ3), ARCH post-calibration provided significant 

reductions in test length and no-decision rates when compared to SPRT. ARCH post-

calibration had marginally longer mean test lengths than EXSPRT and this difference of 

approximately one item was found to be statistically significant.  
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Major findings of these two studies include a refined version of ARCH, the 

development of new item calibration/quality statistics, and establishment of item calibration 

statistic threshold values that led to efficient and accurate VL-CCT in multiple contexts. 

While not the focus of my research, the SPRT testing algorithm was found to be prone to 

higher than expected false nonmaster error rates under specific simulation conditions and 

during live testing. Results from both studies led to the establishment of specific criteria 

indicating when items are sufficiently calibrated and suggest that ARCH did enable accurate 

and efficient VL-CCT without the need for a separate item calibration phase.   

7.2 Limitations 

This research is the first of its kind.  These were the very first two studies of the 

ARCH calibration and adaptive testing method. More studies are needed before 

generalizations about the ARCH approach can be made and ARCH can be considered an 

established VL-CCT method.  

Moreover, ARCH introduces and depends on new item calibration and quality 

statistics such as the beta SD and the Beta Difference Index. While these new item calibration 

and quality criteria performed well in both studies to indicate when items had been 

sufficiently calibrated, they have not yet been subject to scrutiny from the broader 

educational assessment research community. 

The fact that the two contexts in which ARCH was applied are extremely different 

may be considered another limitation. The historical data gathered from the COM test took 

place in a traditional face-to-face context involving 104 volunteer examinees answering 85 

multiple-choice questions at VT-240 computer terminals in a computer lab under proctored 
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conditions in the 1980s. The web-based IU Plagiarism Test occurred in an unproctored, 

massively open, online context in late 2013 and early 2014.  Thousands of examinees 

responded to multiple-choice questions randomly selected from a large item pool, with the 

goal of earning a certificate that confirmed they could recognize plagiarism. Differences in 

the contexts, numbers of examinees, examinee motivations, and timeframes spanning four 

decades present challenges when comparing the two contexts.  

Another limitation is that decisions made regarding the IU Plagiarism Test study had 

to be balanced against practical consequences that the decisions would have on this heavily 

used online resource. For example, use of the same SPRT probability values for P(C|NM) 

and P(C|M) and a priori error rates as those used in earlier COM test studies (Frick, 1989; 

Frick, 1992) would have been advantageous from a research perspective to enable more 

direct comparisons. However, the new adaptive version of the IU Plagiarism Test was found 

to be very difficult for many examinees, and compromises were made to keep test lengths 

more reasonable. Consequently, a priori error rates for false nonmastery and false mastery 

decisions were relaxed; and SPRT probabilities were adjusted for practical rather than 

research reasons.  This had the desired effect of shorter CCT Plagiarism tests, but at the cost 

of higher-than-expected false nonmastery decision error rates.   

Finally, using the EXSPRT decision outcomes to indicate true examinee mastery 

status on the IU Plagiarism test is a limitation. VL-CCT based on Classical Test Theory 

depends on the ability to distinguish between classification groups, ideally via a method 

independent of the specific test (e.g., a separate test, expert judgment, etc.) (Frick, 1992; 

Rudner, 2002; Thompson, 2007). However, in the context of the IU Plagiarism Test there 
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was no independent way of determining mastery status efficiently for the volume of 

examinees involved. 

7.3 Suggestions for Future Research 

Suggestions for future research outlined below stem from several of the issues with 

the ARCH approach outlined in the discussion chapter. Higher-than-expected false 

nonmaster rates associated with the SPRT testing algorithm warrant further investigation 

given the central role that SPRT plays in ARCH. Monte Carlo simulation studies could be 

conducted to establish the conditions under which SPRT operates within a priori error rates 

and when it does not. For example, findings from both studies suggest that there may be a 

relationship between the high error rates observed with SPRT and the difference between 

P(C|M) and P(C|NM) probability values set for SPRT. The potential relationship between 

false error rates and P(C|M) and P(C|NM) probability values could be examined by 

conducting Monte Carlo simulations where the P(C|M) and P(C|NM) probability rates are 

systematically adjusted in order to examine the resulting impact on observed error rates. 

Investigation of methods for reducing the number of misclassified examinees that 

contribute to item calibration data used by ARCH post-calibration provides another potential 

line of research. Given that the vast majority of SPRT errors in the Monte Carlo simulations 

with COM test data occurred with examinees near the cut score, a future study could examine 

ways of identifying borderline examinees so that their data could be excluded from ARCH 

item calibration. Incorrect classification of those examinees whose overall test scores would 

be in Wald’s zone of indifference (between masters and nonmasters) may have contributed to 

higher ARCH post-calibration error rates observed in the first study. One strategy would be 

to have ARCH pre-calibration (SPRT) use three classification categories – nonmaster, zone 
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of indifference, and master – so that those examinees likely near the border in the zone of 

indifference are not used to calibrate items. Another strategy would be to use stricter decision 

error rates with SPRT during ARCH pre-calibration to limit the number of false nonmaster 

and false master decisions; however, stricter error rates would likely come at the cost of 

increasing average test lengths. 
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APPENDIX A: Abbreviations 

Abbreviation Description 

ARCH Automatic Racing Calibration Heuristics 

α Probability of making a type I error 

β Probability of making a type II error 

beta ( .6 | 5, 10) The ordinate of the BETA density for p = .6 when the parameters 

are s = 5 and f = 10 

beta ( * | 5, 10) Probability density function when the parameters are s = 5 and f = 

10 

BETA ( .6 | 5, 10) Probability of a BETA variable with s = 5 and f = 10 is less than or 

equal to .6 

BETA ( * | 5, 10) Cumulative distribution function with s = 5 and f = 10 is less than 

or equal to .6 

CRT Criterion-Referenced Testing 

CTT Classical Test Theory 

E ( beta * | 5, 10) The expected value (mean) of a beta variable with parameters s=5 

and f=10. 

= (s + 1)/(s + f + 2) 

EXSPRT-R Expert systems reasoning applied to Sequential Probability Ratio 

Test (SPRT) that uses random item selection 

EXSPRT-I Expert systems reasoning applied to Sequential Probability Ratio 

Test (SPRT) that uses intelligent item selection 

f Failures 
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HDRW Highest Density Region Width 

IRT Item Response Theory 

M-EXSPRT-R Measured application of expert systems reasoning applied to 

Sequential Probability Ratio Test (SPRT) that uses random item 

selection 

p Probability 

pd Probability Density 

P Proportion of Successes 

s Successes 

SPRT Sequential Probability Ratio Test 

VL-CCT Variable-Length Computer Classification Tests 

XML Extensible Markup Language 
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APPENDIX B: Initial Ten Item Plagiarism Test 

Please note: If the student version contains BOTH word-for-word and paraphrasing 

plagiarism, you should check word-for-word.  

Item 1  

In the case below, the original source material is given along with a sample of student work. Determine the type 

of plagiarism by clicking the appropriate radio button.  

Original Source Material Student Version 

The concept of systems is really quite simple. The 

basic idea is that a system has parts that fit together to 

make a whole; but where it gets complicated - and 

interesting - is how those parts are connected or 

related to each other. There are many kinds of 

systems: government systems, health systems, 

military systems, business systems, and educational 

systems, to name a few.  

References: 

Frick, T. (1991). Restructuring education through 

technology. Bloomington, IN: Phi Delta Kappa 

Educational Foundation.  

Systems, including both business systems, and 

educational systems, are actually very simple. The 

main idea is that systems have parts that fit together to 

make a whole. What is interesting is how those parts 

are connected together.  

Which of the following is true for the Student Version above?  

o Word-for-Word plagiarism  

o Paraphrasing plagiarism  

o This is not plagiarism  

Item 2  

In the case below, the original source material is given along with a sample of student work. Determine the type 

of plagiarism by clicking the appropriate radio button.  

Original Source Material  Student Version  
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There is a design methodology called rapid 

prototyping, which has been used successfully in 

software engineering. Given similarities between 

software design and instructional design, we argue 

that rapid prototyping is a viable method for 

instructional design, especially for computer-based 

instruction.  

References: 

Tripp, S. D., & Bichelmeyer, B. A. (1990). Rapid 

prototyping: An alternative instructional design 

strategy. Educational Technology Research and 

Development, 38(1), 31-44.  

Rapid prototyping could be an advantageous 

methodology for developing innovative computer-

based instruction (Tripp & Bichelmeyer, 1990).  

References: 

Tripp, S. D., & Bichelmeyer, B. A. (1990). Rapid 

prototyping: An alternative instructional design 

strategy. Educational Technology Research and 

Development, 38(1), 31-44.  

Which of the following is true for the Student Version above?  

o Word-for-Word plagiarism  

o Paraphrasing plagiarism  

o This is not plagiarism  

Item 3  

In the case below, the original source material is given along with a sample of student work. Determine the type 

of plagiarism by clicking the appropriate radio button.  

Original Source Material  Student Version  

The study of learning derives from essentially two 

sources. Because learning involves the acquisition of 

knowledge, the first concerns the nature of knowledge 

and how we come to know things.... The second 

source in which modern learning theory is rooted 

concerns the nature and representation of mental life.  

References: 

Driscoll, M. P. (2000). Psychology of learning for 

instruction (2nd Ed.). Needham Heights, MA: Allyn 

& Bacon.  

The study of learning derives from essentially two 

sources. The first concerns the nature of knowledge 

and how we come to know things.  The second source 

concerns the nature and representation of mental life.  

References: 

Driscoll, M. P. (2000). Psychology of learning for 

instruction (2nd Ed.). Needham Heights, MA: Allyn 

& Bacon.  

Which of the following is true for the Student Version above?  

o Word-for-Word plagiarism  

o Paraphrasing plagiarism  

o This is not plagiarism  

Item 4  
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In the case below, the original source material is given along with a sample of student work. Determine the type 

of plagiarism by clicking the appropriate radio button.  

Original Source Material  Student Version (written in 2002)  

The technological tools available today for creating 

computer-based learning materials are incredibly 

more powerful than those introduced just a few years 

ago. We can make our own movies with camcorders 

in our homes; we can publish our own books. Soon 

teachers and students will be able to use computer-

video technology to produce their own learning 

materials. All it takes is time, know-how, and some 

funds.  

References: 

Frick, T. (1991). Restructuring education through 

technology. Bloomington, IN: Phi Delta Kappa 

Educational Foundation.  

Computers are so powerful that K-12 educators and 

students are now able to produce their own 

multimedia and Web-based learning materials.  They 

just need to take the time required to learn to use the 

authoring tools and related technologies such as 

digital cameras and camcorders.  

References: 

Frick, T. (1991). Restructuring education through 

technology. Bloomington, IN: Phi Delta Kappa 

Educational Foundation.  

Which of the following is true for the Student Version above?  

o Word-for-Word plagiarism  

o Paraphrasing plagiarism  

o This is not plagiarism  

Item 5  

In the case below, the original source material is given along with a sample of student work. Determine the type 

of plagiarism by clicking the appropriate radio button.  

Original Source Material  Student Version  

The philosophical position known as constructivism 

views knowledge as a human construction. The 

various perspectives within constructivism are based 

on the premise that knowledge is not part of an 

objective, external reality that is separate from the 

individual. Instead, human knowledge, whether the 

bodies of content in public disciplines (such as 

mathematics or sociology) or knowledge of the 

individual learner; is a human construction.  

References: 

Gredler, M. E. (2001). Learning and instruction: 

Theory into practice (4th Ed.). Upper Saddle River, 

NJ: Prentice-Hall.  

Does knowledge exist outside of, or separate from, the 

individual who knows? Constructivists hold that 

human knowledge, whether the bodies of content in 

public disciplines (such as mathematics or sociology) 

or knowledge of the individual learner; is a human 

construction (Gredler, 2001).  

References: 

Gredler, M. E. (2001). Learning and instruction: 

Theory into practice (4th Ed.). Upper Saddle River, 

NJ: Prentice-Hall.  
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Major changes within organizations are usually 

initiated by those who are in power. Such decision-

makers sponsor the change and then appoint someone 

else - perhaps the director of training - to be 

responsible for implementing and managing change. 

Whether the appointed change agent is in training 

development or not, there is often the implicit 

assumption that training will "solve the problem." 

And, indeed, training may solve part of the 

problem....  The result is that potentially effective 

innovations suffer misuse, or even no use, in the 

hands of uncommitted users.  
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Dormant, D. (1986). The ABCDs of managing 

change. In Introduction to Performance Technology 

(p. 238-256). Washington, D.C.: National Society of 

Performance and Instruction.  

When major changes are initiated in organizations, "... 

there is often the implicit assumption that training will 

'solve the problem.'  And, indeed, training may solve 

part of the problem." (Dormant, 1986, p. 238).  
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Performance and Instruction.  
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The philosophical position known as constructivism 

views knowledge as a human construction. The 

various perspectives within constructivism are based 

on the premise that knowledge is not part of an 

objective, external reality that is separate from the 

individual. Instead, human knowledge, whether the 

bodies of content in public disciplines (such as 

mathematics or sociology) or knowledge of the 

individual learner; is a human construction.  
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Gredler, M. E. (2001). Learning and instruction: 

Theory into practice (4th Ed.). Upper Saddle, NJ: 

Prentice-Hall.  

The philosophical position known as constructivism 

views knowledge as a human construction. The 

various perspectives within constructivism are based 

on the premise that knowledge is not part of an 

objective, external reality that is separate from the 

individual. Instead, human knowledge is a human 

construction.  
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o Word-for-Word plagiarism  

o Paraphrasing plagiarism  

o This is not plagiarism  
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There is a desperate need for theorists and researchers 

to generate and refine a new breed of learning-focused 

instructional design theories that help educators and 

trainers to meet those needs, (i.e., that focus on 

learning and that foster development of initiative, 

teamwork, thinking skills, and diversity). The health 

of instructional-design theory also depends on its 

ability to involve stakeholders in the design process.  

References: 

Reigeluth, C. M. (1999). What is instructional design 

theory and how is it changing? In C. M. Reigeluth 

(Ed.), Instructional-design theories and models 

volume II: A new paradigm of instructional theory. 

Mahwah, NJ: Lawrence Erlbaum Associates.  

We need theorists and researchers to generate and 

refine learning-focused instructional design theories. 

Such theories will help educators and trainers to meet 

needs that focus on learning and that foster 

development of initiative, teamwork, thinking skills, 

and diversity. Instructional-design theory must 

involve stakeholders in the design process.  

References: 

Reigeluth, C. M. (1999). What is instructional design 

theory and how is it changing? In C. M. Reigeluth 

(Ed.), Instructional-design theories and models 

volume II: A new paradigm of instructional theory. 

Mahwah, NJ: Lawrence Erlbaum Associates.  
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Instructional designers typically employ models to 

guide their day-to-day work. Due to the increased 

practice of the systematic design of instruction in a 

growing number of settings, available models become 

more and more proliferated, focusing on particular 

types and contexts of learning, particular groups of 

learners or designers, or particular instructional units 

(either whole curricula or individual modules or 

lessons.) 

 

The main goal of any instructional design process is 

to construct a learning environment in order to 

provide learners with the conditions that support 

desired learning processes.  

References: 

Merriënboer, J. J. van. (1997). Training complex 

cognitive skills. Englewood Cliffs, NJ: Educational 

Technology Publications.  

"The main goal of any instructional design process is 

to construct a learning environment in order to 

provide learners with the conditions that support 

desired learning processes" (van Merriënboer, 1997, 

p. 2). Process models proliferate because more and 

more designers generate models that focus on specific 

contexts, learners, or even units of instruction, 

according to van Merriënboer.  
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Merriënboer, J. J. van. (1997). Training complex 

cognitive skills. Englewood Cliffs, NJ: Educational 

Technology Publications.  
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Learning is a complex set of processes that may vary 

according to the developmental level of the learner, 

the nature of the task, and the context in which the 

learning is to occur. As already indicated, no one 

theory can capture all the variables involved in 

learning.  

References: 

A learning theory is made up of a set of constructs 

linking observed changes in performance with 

whatever is thought to bring about those changes. 

Therefore since learning is a complex set of processes 

that may vary according to the developmental level of 

the learner, the nature of the task, and the context in 

which the learning is to occur, it is apparent that no 

one theory can capture all the variables involved in 
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Gredler, M. E. (2001). Learning and instruction: 

Theory into practice (4th Ed.). Upper Saddle, NJ: 

Prentice-Hall.  

A learning theory, there, comprises a set of constructs 

linking observed changes in performance with what is 

thought to bring about those changes.  
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Driscoll, M. P. (2000). Psychology of learning for 

instruction (2nd Ed.). Needham Heights, MA: Allyn 

& Bacon.  

learning.  
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