Regression Models for Binary Dependent Variables Using Stata, SAS, R, LIMDEP, and SPSS*

Hun Myoung Park, Ph.D.
kucc625@indiana.edu

2003-2010
Last modified on October 2010

[^0]This document summarizes logit and probit regression models for binary dependent variables and illustrates how to estimate individual models using Stata 11, SAS 9.2, R 2.11, LIMDEP 9, and SPSS 18.

1. Introduction
2. Binary Logit Regression Model
3. Binary Probit Regression Model
4. Bivariate Probit Regression Models
5. Conclusion

References

1. Introduction

A categorical variable here refers to a variable that is binary, ordinal, or nominal. Event count data are discrete (categorical) but often treated as continuous variables. When a dependent variable is categorical, the ordinary least squares (OLS) method can no longer produce the best linear unbiased estimator (BLUE); that is, OLS is biased and inefficient. Consequently, researchers have developed various regression models for categorical dependent variables. The nonlinearity of categorical dependent variable models makes it difficult to fit the models and interpret their results.

1.1 Regression Models for Categorical Dependent Variables

In categorical dependent variable models, the left-hand side (LHS) variable or dependent variable is neither interval nor ratio, but rather categorical. The level of measurement and data generation process (DGP) of a dependent variable determine a proper model for data analysis. Binary responses (0 or 1) are modeled with binary logit and probit regressions, ordinal responses ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}, \ldots$) are formulated into (generalized) ordinal logit/probit regressions, and nominal responses are analyzed by the multinomial logit (probit), conditional logit, or nested logit model depending on specific circumstances. Independent variables on the righthand side (RHS) are interval, ratio, and/or binary (dummy).

Table 1.1 Ordinary Least Squares and Categorical Dependent Variable Models

	Model	Dependent (LHS)	Estimation	Independent (RHS)
OLS	Ordinary least squares	Interval or ratio	Moment based method	A linear function of interval/ratio or binary variables$\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2} \cdots$
Categorical DV Models	Binary response Ordinal response Nominal response Event count data	Binary (0 or 1) $\operatorname{Ordinal}\left(1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }} \ldots\right)$ Nominal (A, B, C ...) Count ($0,1,2,3 \ldots$)	Maximum likelihood method	

Categorical dependent variable models adopt the maximum likelihood (ML) estimation method, whereas OLS uses the moment based method. The ML method requires an assumption about probability distribution functions, such as the logistic function and the complementary log-log
function. Logit models use the standard logistic probability distribution, while probit models assume the standard normal distribution. This document focuses on logit and probit models only, excluding regression models for event count data (e.g., negative binomial regression model and zero-inflated or zero-truncated regression models). Table 1.1 summarizes categorical dependent variable models in comparison with OLS.

1.2 Logit Models versus Probit Models

How do logit models differ from probit models? The core difference lies in the distribution of errors (disturbances). In the logit model, errors are assumed to follow the standard logistic distribution with mean 0 and variance $\frac{\pi^{2}}{3}, \lambda(\varepsilon)=\frac{e^{\varepsilon}}{\left(1+e^{\varepsilon}\right)^{2}}$. The errors of the probit model are assumed to follow the standard normal distribution, $\phi(\varepsilon)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{\varepsilon^{2}}{2}}$ with variance 1 .

Figure 1.1 The Standard Normal and Standard Logistic Probability Distributions

The probability density function (PDF) of the standard normal probability distribution has a higher peak and thinner tails than the standard logistic probability distribution (Figure 1.1). The standard logistic distribution looks as if someone has weighed down the peak of the standard normal distribution and strained its tails. As a result, the cumulative density function (CDF) of the standard normal distribution is steeper in the middle than the CDF of the standard logistic distribution and quickly approaches zero on the left and one on the right.

The two models, of course, produce different parameter estimates. In binary response models, the estimates of a logit model are roughly $\pi / \sqrt{3}$ times larger than those of the probit model. These estimators, however, end up with almost the same standardized impacts of independent variables (Long 1997).

The choice between logit and probit models is more closely related to estimation and familiarity than to theoretical or interpretive aspects. In general, logit models reach convergence fairly well. Although some (multinomial) probit models may take a long time to reach convergence, a probit model works well for bivariate models. As computing power improves and new algorithms are developed, importance of this issue is diminishing. For discussion of selecting logit or probit models, see Cameron and Trivedi (2009: 471-474).

1.3 Estimation in SAS, Stata, LIMDEP, R, and SPSS

Table 1.2 summarizes the procedures and commands used for categorical dependent variable models. Note that Stata and R are case-sensitive, but SAS, LIMDEP, and SPSS are not.

	Model	Stata 11	SAS 9.2	R	LIMDEP 9	SPSS17
OLS		.regress	REG	1 me ()	Regress\$	Regression
Binary	Binary logit	$\begin{aligned} & \text {.logit, } \\ & . \text {.logistic } \end{aligned}$	QLIM, LOGISTIC, GENMOD, PROBIT	glm()	Logit\$	Logistic regression
	Binary probit	.probit	QLIM, LOGISTIC, GENMOD, PROBIT	glm()	Probit\$	Probit
Bivariate	Bivariate probit	.biprobit	QLIM	bprobit()	Bivariateprobit\$	-
Ordinal	Ordinal logit	. 010 git	QLIM, LOGISTIC, GENMOD, PROBIT	1 mm()	Ordered\$, Logit\$	Plum
	Generalized logit	. $\mathrm{gologit2*}$	-	logit()	-	-
	Ordinal probit	.oprobit	QLIM, LOGISTIC, GENMOD, PROBIT	polr ()	Ordered\$	Plum
Nominal	Multinomial logit	.mlogit	LOGISTIC, CATMOD	$\begin{aligned} & \text { multinom(), } \\ & \text { mlogit() } \end{aligned}$	Mlogit\$, Logit\$	Nomreg
	Conditional logit	.clogit	LOGISTIC, MDC, PHREG	clogit()	Clogit\$, Logit\$	Coxreg
	Nested logit	.nlogit	MDC	-	Nlogit***	-
	Multinomial probit	.mprobit	-	mnp ()	-	-

[^1]Stata offers multiple commands for categorical dependent variable models. For example, the .logit and .probit commands respectively fit the binary logit and probit models, while.mlogit and.nlogit estimate the mulitinomial logit and nested logit models. Stata enables users to perform post-hoc analyses such as marginal effects and discrete changes in an easy manner.

SAS provides several procedures for categorical dependent variable models, such as PROC LOGISTIC, PROBIT, GENMOD, QLIM, MDC, PHREG, and CATMOD. Since these procedures support various models, a categorical dependent variable model can be estimated by multiple procedures. For example, you may run a binary logit model using PROC LOGISTIC, QLIM, GENMOD, and PROBIT. PROC LOGISTIC and PROC PROBIT of SAS/STAT have been commonly used, but PROC QLIM and PROC MDC of SAS/ETS have advantages over other procedures. PROC LOGISTIC reports factor changes in the odds and tests key hypotheses of a model. The QLIM (Qualitative and LImited dependent variable Model) procedure in SAS analyzes various categorical and limited dependent variable regression models such as censored, truncated, and sample-selection models. PROC QLIM also handles Box-Cox regression and the bivariate probit model. The MDC (Multinomial Discrete Choice) procedure can estimate conditional logit and nested logit models. ${ }^{1}$

In R, $g \operatorname{lm}()$ fits binary logit and probit models in the object- oriented programming concept. Multiple other functions have been developed to fit other categorical dependent variable models. The LIMDEP Logit\$ and Probit\$ commands support a variety of categorical dependent variable models that are addressed in Greene's Econometric Analysis (2003). The output format of LIMDEP 9 is slightly different from that of previous version, but key statistics remain unchanged. The nested logit model and multinomial probit model in LIMDEP are estimated by NLOGIT, a separate package. SPSS also supports some categorical dependent variable models and its output is often messy and hard to read.

1.4 Long and Freese's SPost

Stata users may benefit from user-written commands such as J. Scott Long and Jeremy Freese's SPost. This collection of user-written commands conducts many follow-up analyses of various categorical dependent variable models including event count data models. See section 2.2 for the most common SPost commands.

In order to install SPost, execute the following commands consecutively. Visit J. Scott Long's Web site at http://www.indiana.edu/~jslsoc/ to get further information.

```
net from http://www.indiana.edu/~jslsoc/stata/
net install spost9_ado, replace
net get spost9_do,- replace
```

[^2]If a Stata command, function, or user-written command does not work in version 11, run the .version command to switch the interpreter to old one and execute that command again. For example, normal () was norm () in old versions.

```
version 9
```

Also you may update Stata or reinstall user-written commands to get their latest version installed.

```
update all
```


2. Binary Logit Regression Model

The binary logit model is represented as $\operatorname{Prob}(y=1 \mid x)=\Lambda(x \beta)=\frac{\exp (x \beta)}{1+\exp (x \beta)}$, where Λ indicates a link function, the cumulative standard logistic distribution function. This chapter illustrates how to fit the binary logit model. The sample model considered here explores how social trust is affected by education, family income, age, gender, and Internet use (www).

2.1 Binary Logit Model in Stata (.logit)

Stata provides two equivalent commands for the binary logit model that present the same result in different ways. The .logit command produces coefficients with respect to logit (log of odds), while .logistic reports odd ratios.

This model fits the data very well ($\mathrm{p}<.0000$) and all independent variables except for gender are statistically significant at the .01 level. Interpretation of the odds ratio will be discussed in Section 2.2. In order to get the coefficients (log of odds), simply run .logit without any argument right after the .logistic command.

```
. logit
(output is skipped)
```

Or you may run a separate .logit command with all arguments. Both commands report the same goodness-of-fit measures such as likelihood ratio and McFadden's pseudo R^{2}.

```
. logit trust educate income age male www
Iteration 0: log likelihood = -798.31217
Iteration 1: log likelihood = -734.25733
Iteration 2: log likelihood = -733.97169
Iteration 3: log likelihood = -733.97164
Logistic regression
\begin{tabular}{llr} 
Number of obs & \(=\) & 1174 \\
LR chi2 (5) & \(=\) & 128.68 \\
Prob > chi2 & \(=\) & 0.0000 \\
Pseudo R2 & \(=\) & 0.0806
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline trust & Coef. & Std. Err. & z & P> \(|z|\) & \multicolumn{2}{|l|}{[95\% Conf. Interval]} \\
\hline educate & . 1515812 & . 0261774 & 5.79 & 0.000 & . 1002745 & . 2028879 \\
\hline income & . 0303485 & . 0115364 & 2.63 & 0.009 & . 0077376 & . 0529595 \\
\hline age & . 0280152 & . 0048707 & 5.75 & 0.000 & . 0184688 & . 0375616 \\
\hline male & . 256796 & . 1258287 & 2.04 & 0.041 & . 0101762 & . 5034157 \\
\hline www & . 5537383 & . 1658815 & 3.34 & 0.001 & . 2286165 & . 8788601 \\
\hline _cons & -4.983007 & . 478359 & -10.42 & 0.000 & -5.920574 & -4.045441 \\
\hline
\end{tabular}
```

A coefficient of .logit is the corresponding logarithmic transformed odds ratio of .logistic. For example, the coefficient of education is $.1516=\log (1.1637)$ or $1.1637=\exp (.1516)$.

Stata has post-estimation commands that conduct follow-up analyses. The following .predict command with the residual option computes residuals and then stores them into a new variable resid.

```
. predict resid, residual
```

The .test and . Irtest commands respectively conduct the Wald test and likelihood ratio test. A large chi-squared rejects the null hypothesis that the parameter of education is zero. Education has a significant positive impact on social trust.

```
. test educate
( 1) [trust]educate = 0
    chi2( 1) = 33.53
```

Marginal effects and discrete changes are very useful when interpreting the result of a binary logit or probit model. The marginal effect of a continuous independent variable x_{c} is the partial derivative with respect to that variable. The discrete change of a binary independent variable (dummy variable) x_{b} is the difference in predicted probabilities of $x_{b}=1$ and $x_{b}=0$, holding all other independent variables constant at their reference points. x_{-b} denotes all independent variables other than x_{b} Marginal effects and discrete changes look similar but are not equal in conceptual and numerical senses.

$$
\frac{\partial P(y=1 \mid x)}{\partial x_{c}}=\frac{\exp (x \beta)}{[1+\exp (x \beta)]^{2}}=\Lambda(x \beta)\left(1-\Lambda(x \beta) \beta_{c}\left(\text { marginal effect of } x_{c}\right)\right.
$$

$$
\frac{\Delta P(y=1 \mid x)}{\Delta x_{b}}=P\left(y=1 \mid x_{-b}, x_{b}=1\right)-P\left(y=1 \mid x_{-b}, x_{b}=0\right) \quad\left(\text { discrete change of } x_{b}\right)
$$

The .mfx command with dydx (partial derivatives), the default option, computes marginal effects for continuous covariates and discrete changes for binary variables at the reference points after the estimation of a linear or nonlinear regression model. You may change reference points using the at () option; If this option is not specified, Stata by default uses means of independent variables as reference points. mean in the at () option below says that if a covariate is not listed in at (), its mean is used as its reference point.

```
. mfx, dydx at(mean educate=16 male=0 www=1)
```

variable	$d y / d x$	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	95\%	C.I.	X
educate \|	. 0378032	. 0066	5.73	0.000	. 024873	. 050734	16
income \|	. 0075687	. 00287	2.63	0.008	. 001934	. 013203	24.6486
age \|	. 0069868	. 00121	5.75	0.000	. 004606	. 009367	41.3075
male*\|	. 0640968	. 03132	2.05	0.041	. 002718	. 125475	0
www*	. 1329051	. 03797	3.50	0.000	. 058487	. 207323	1

The predicted probability of trusting most people is .4753 for female WWW users at the average age of 41 who graduated a college (16 years of education) and have average family income of 25 thousands dollars. Marginal effects and discrete changes are listed under $\mathrm{dy} / \mathrm{dx}$. For a year increase in education after college graduation, the predicted probability of trusting people will increase by 3.78 percent, holding other independent variables constant at the reference points (see the list of values under the label x). WWW users are 13.29 percent more likely than non-users to trust people, holding other covariates at the reference points.

2.2 Using SPost Commands in Stata

SPost commands provide useful follow-up analysis commands (ado files) for categorical dependent variable models (Long and Freese 2003). The .fitstat command reports various goodness-of-fit measures such as log likelihood, McFadden's R^{2} (or Pseudo R^{2}), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). 1467.943 labeled as $\mathrm{D}(1168)$ is $-2 *$ Log-likelihood $(=-2 *-733.972)$ and $1,168=\mathrm{N}-\mathrm{K}=1,174-6$, where K denotes the number of parameters including the intercept.

```
. net install spost9_ado, replace from(http://www.indiana.edu/~jslsoc/stata/)
checking spost9_ado consistency and verifying not already installed...
. fitstat
\begin{tabular}{lrlr} 
Log-Lik Intercept Only: & -798.312 & Log-Lik Full Model: & -733.972 \\
D(1168): & 1467.943 & LR(5): & 128.681 \\
& & Prob \(>\) LR: & 0.000 \\
McFadden's R2: & 0.081 & McFadden's Adj R2: & 0.073 \\
ML (Cox-Snell) R2: & 0.104 & Cragg-Uhler(Nagelkerke) R2: & 0.140 \\
McKelvey \& Zavoina's R2: & 0.140 & Efron's R2: & 0.105 \\
Variance of y*: & 3.826 & Variance of error: & 3.290 \\
Count R2: & 0.654 & Adj Count R2: & 0.175
\end{tabular}
```

AIC:	1.261	AIC*n:	1479.943
BIC:	-6787.682	BIC':	-93.340
BIC used by Stata:	1510.352	AIC used by Stata:	1479.943

The likelihood ratio statistic is based on the difference of log likelihoods between the null model and the full model. $128.68=-2 *[(-798.312)-(-733.972)]$.

The binary logit (log of the odds) model can be expressed in a log-linear form of $\ln \Omega(x)=x \beta$, where $\Omega(x)$ is the odds of the success $(\mathrm{y}=1)$ given x (Long 1997: 79). The odds ratio is used to examine the change in the odds when an independent variable $x_{\text {odds }}$ increases by δ; a odds ratio greater than 1 means that the odds increase as that variable increase by δ ($\mathrm{pp} .80-82$).

$$
\text { The odds: } \Omega(x)=\frac{P(y=1 \mid x)}{P(y=0 \mid x)}=\frac{P(y=1 \mid x)}{1-P(y=1 \mid x)}=\frac{\Lambda(x \beta)}{1-\Lambda(x \beta)}
$$

$$
\text { Odds ratio: } \frac{\Omega\left(x_{-o d d s}, x_{\text {odds }}+\delta\right)}{\Omega\left(x_{-o d d s}, x_{\text {odds }}\right)}=\exp \left(\beta_{\text {odds }} \delta\right)
$$

The .listcoef command produces a table of unstandardized coefficients (parameter estimates), factor (percent) changes in odds, and standardized coefficients. The help option helps read the output of .listcoef. Find factor changes in odds under the labels $e^{\wedge} b$ and e^{\wedge} bStdx. Factor changes in odds are, in fact, the odds ratios that .logistic produced on page 6 .

Long (1997) discusses interpretation of binary response models using factor changes in odds and predicted probabilities. For a unit increase in education, for example, the odds are expected to increase by a factor of $1.1637=\exp (.1516)$. Alternatively, for a standard deviation change in education, the odds will change by a factor of $1.4763=\exp (.1516 * 2.5697)$. Notice that the last column under SDofx lists standard deviations of covariates. The odds of trusting people are $1.2928=\exp (.2568)$ times larger for men than for women, holding all other variables constant.

```
. listcoef, help
logit (N=1174): Factor Change in Odds
    Odds of: 1 vs 0
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline trust & b & z & \(\mathrm{P}>|\mathrm{z}|\) & \(e^{\wedge} \mathrm{b}\) & \(e^{\wedge} \mathrm{bStdX}\) & SDofX \\
\hline educate & 0.15158 & 5.791 & 0.000 & 1.1637 & 1.4763 & 2.5697 \\
\hline income & 0.03035 & 2.631 & 0.009 & 1.0308 & 1.2068 & 6.1943 \\
\hline age & 0.02802 & 5.752 & 0.000 & 1.0284 & 1.4559 & 13.4071 \\
\hline male & 0.25680 & 2.041 & 0.041 & 1.2928 & 1.1364 & 0.4978 \\
\hline www & 0.55374 & 3.338 & 0.001 & 1.7397 & 1.2554 & 0.4108 \\
\hline
\end{tabular}
        b = raw coefficient
        z = z-score for test of b=0
    P>|z| = p-value for z-test
        e^^b = exp (b) = factor change in odds for unit increase in X
e^bStdX = exp (b*SD of X) = change in odds for SD increase in X
    SDofX = standard deviation of X
```

You may interpret factor change in odds in a reverse way. Pay attention to reverse of the .listcoef command. For a standard deviation change in education, the odds of having NO
social trust are expected to decrease by a factor of $.6774=\exp (-.1516 * 2.5697)$. The odds of NOT trusting people are $.7735=\exp (-.2568)$ times smaller for men than for women. The labels $e^{\wedge} b$ and $e^{\wedge} b S t d x$ below should be $e^{\wedge}(-b)$ and $e^{\wedge}(-b S t d x)$, respectively.

```
. listcoef, reverse
logit (N=1174): Factor Change in Odds
    Odds of: 0 vs 1
```

trust	b	z	$\mathrm{P}>\|\mathrm{z}\|$	$e^{\wedge} \mathrm{b}$	$e^{\wedge} \mathrm{b}$ StdX	SDofX
educate	0.15158	5.791	0.000	0.8593	0.6774	2.5697
income	0.03035	2.631	0.009	0.9701	0.8286	6.1943
age	0.02802	5.752	0.000	0.9724	0.6869	13.4071
male	0.25680	2.041	0.041	0.7735	0.8800	0.4978
www	0.55374	3.338	0.001	0.5748	0.7966	0.4108

Alternatively, you may use percent changes in the odds by adding the percent option. For example, the odds of trusting people are 29.3 percent larger for men than for women, holding all other covariates constant.

```
. listcoef, percent help
logit (N=1174): Percentage Change in Odds
    Odds of: 1 vs 0
```

trust	b	z	$\mathrm{P}>\|\mathrm{z}\|$	\%	\%StdX	SDofX
educate	0.15158	5.791	0.000	16.4	47.6	2.5697
income	0.03035	2.631	0.009	3.1	20.7	6.1943
age	0.02802	5.752	0.000	2.8	45.6	13.4071
male	0.25680	2.041	0.041	29.3	13.6	0.4978
www	0.55374	3.338	0.001	74.0	25.5	0.4108

```
            b = raw coefficient
            z = z-score for test of b=0
    P>|z| = p-value for z-test
            % = percent change in odds for unit increase in X
    %StdX = percent change in odds for SD increase in X
    SDofX = standard deviation of X
```

The .prvalue command lists predicted probabilities of positive and negative outcomes for a given set of values for the independent variables. The following example predicts, as shown in .mfx above, that 47.53 percent of female WWW users will trust most people at the reference points (educate $=16$, income $=24.65$, age $=41.31$), while 52.47 percent will not.

```
. prvalue, x(educate=16 male=0 www=1) rest(mean)
logit: Predictions for trust
Confidence intervals by delta method
\begin{tabular}{rrrrr} 
& & 95\% Conf. Interval \\
\(\operatorname{Pr}(\mathrm{y}=1 \mid \mathrm{x}):\) & 0.4753 & {\([0.4277\),} & \(0.5230]\) \\
\(\operatorname{Pr}(\mathrm{y}=0 \mid \mathrm{x}):\) & 0.5247 & {\([0.4770\),} & \(0.5723]\)
\end{tabular}
```

The .prtab command constructs a table of predicted values (probabilities) for all combinations of categorical variables listed. Both . prtab and . prvalue report the same predicted probability of .4753 that female WWW users trust most people. The table below suggests that male WWW users are more likely to trust than their counterparts (53.94 percent versus 34.24 percent, respectively). The $\times()$ option specifies particular values of covariates other than their means as reference points. The rest () option sets the reference points of independent variables that are not specified in x() .

```
. prtab male www, x(educate=16 male=0 www=1) rest(mean)
logit: Predicted probabilities of positive outcome for trust
```



```
male www
\(x=\)
\(16 \quad 24.64863741 .307496\)
0
1
```

The most useful command for binary response models is . prchange, which calculates marginal effects and discrete changes at a given set of values of independent variables. The predicted probability of .4753 and the marginal effects (discrete changes) are the same as what .mfx produced above. Read marginal effects under the last MargEfct (or $-+1 / 2$) column and discrete changes under $0->1$ (when changing the value from 0 to 1). For an additional year of education after college, the predicted probability of trusting people is expected to increase by 3.78 percent (marginal effect) when holding all other covariates constant at their reference points. WWW users are 13.29 percent (discrete change) more likely than non-users to trust people, holding other variable at their reference points.

```
. prchange, x(educate=16 male=0 www=1) rest(mean)
logit: Changes in Probabilities for trust
\begin{tabular}{rrrrrr} 
& min->max & \(0->1\) & \(-+1 / 2\) & \(-+s d / 2\) & MargEfct \\
educate & 0.5264 & 0.0111 & 0.0378 & 0.0968 & 0.0378 \\
income & 0.1936 & 0.0064 & 0.0076 & 0.0468 & 0.0076 \\
age & 0.4397 & 0.0049 & 0.0070 & 0.0934 & 0.0070 \\
male & 0.0641 & 0.0641 & 0.0640 & 0.0319 & 0.0640 \\
www & 0.1329 & 0.1329 & 0.1372 & 0.0567 & 0.1381
\end{tabular}
Pr(y|x) 0.5247 0.4753
\begin{tabular}{rrrrrr} 
& educate & income & age & male & www \\
x= & 16 & 24.6486 & 41.3075 & 0 & 1 \\
sd_x \(=\) & 2.56971 & 6.19427 & 13.4071 & .497765 & .410755
\end{tabular}
```

SPost .prgen computes a series of predictions (predicted probabilities in this case) by holding all variables but one interval variable constant and allowing that variable to vary (Long and Freese 2003). The first command below computes predicted probabilities that male WWW users (male=1 and www=1) trust most people when education changes from 0 through 20 years,
holding other independent variables at the reference points, and then stores them into new variables, whose names begin with Logit_ed11.

```
. prgen educate, from(0) to(20) ncases(20) x(male=1 www=1) rest(mean) gen(Logit_ed11)
logit: Predicted values as educate varies from 0 to 20.
```



```
. prgen educate, from(0) to(20) ncases(20) x(male=1 www=0) rest(mean) gen(Logit_ed10)
logistic: Predicted values as educate varies from 0 to 20.
\begin{tabular}{rrrrr} 
educate & income & age & male & www \\
\(x=\) & 14.24276 & 24.648637 & 41.307496 & 1
\end{tabular}
. prgen educate, from(0) to(20) ncases(20) x(male=0 www=1) rest(mean) gen(Logit_ed01)
logistic: Predicted values as educate varies from 0 to 20.
\begin{tabular}{rrrrr} 
educate & income & age & male & www \\
\(\mathrm{x}=\) & 14.24276 & 24.648637 & 41.307496 & 0
\end{tabular}
. prgen educate, from(0) to (20) ncases(20) x(male=0 www=0) rest(mean) gen(Logit_ed00)
logistic: Predicted values as educate varies from 0 to 20.
\begin{tabular}{rrrrr} 
educate & income & age & male & www \\
\(x=\) & 14.24276 & 24.648637 & 41.307496 & 0
\end{tabular}
```

Figure 2.1 Predicted Probabilities of Trusting Most People (Binary Logit Model)

After generating predicted probabilities of other groups (male WWW non-users, female users, and female non-users), you can draw Figure 2.1. See the Stata script in Appendix for necessary data manipulation. Figure 2.1 suggests that education and WWW use influence social trust significantly but gender does not.

2.3 Binary Logit Model in SAS: PROC LOGISTIC and PROC PROBIT

SAS has several procedures for the binary logit model such as LOGISTIC, PROBIT, GENMOD, and QLIM procedures. PROC LOGISTIC is commonly used for the binary logit model, but PROC PROBIT is also able to estimate the binary logit model.

Unlike PROC QLIM, LOGISTIC, PROBIT, and GENMOD procedures by default use a smaller value in the dependent variable as success (positive event). As a consequence, magnitudes of the coefficients remain the same, but their signs are opposite to those of PROC QLIM, Stata, and LIMDEP. The DESCENDING (DESC) option in PROC LOGISTIC and PROC GENMOD forces SAS to use a larger value as success. Notice that a SAS procedure is comprised of a series of statements, each of which ends with a semi-colon.

```
PROC LOGISTIC DESCENDING DATA = masil.gss_cdvm;
    MODEL trust = educate income age male www;
RUN;
```

Alternatively, you may explicitly specify the category of successful event using the EVENT option. EVENT=LAST (or EVENT='1') use the last ordered category (1) as a successful event. Both approaches produce the same results.

```
PROC LOGISTIC DATA = masil.gss_cdvm;
    MODEL trust(EVENT=LAST) = educate income age male www;
RUN;
\begin{tabular}{lll}
\multicolumn{2}{l}{ The LOGISTIC Procedure } & \\
& Model Information & \\
& \\
Data Set & MASIL.GSS_CDVM & \\
Response Variable & trust & trust \\
Number of Response Levels & 2 & \\
Model & binary logit & \\
Optimization Technique & Fisher's scoring &
\end{tabular}
```

Number of Observations Read 1174
Number of Observations Used 1174

Response Profile

Ordered Value	trust	Total
1	1	492
2	0	682

Percent Tied	0.4	Tau-a	0.181
Pairs	335544	c	0.686

Stata and SAS produce the same results. Log likelihood is -733.9716=(1467.943/-2); SAS report $-2 * \log$ likelihood 1467.943. Likelihood ratio is $128.681=1596.624-1467.943$. McFadden's pseudo R^{2} is $.0806=1-(1467.943 / 1596.624)$. AIC and BIC (or Schwarz information criterion) are 1479.943 and 1510.352 , respectively, in both outputs. Parameter estimates and their standard errors are the same. However, Stata and SAS respectively conduct z test and Wald test to examine the effects of individual independent variables but produce the same p-values, except for rounding errors. For example, Stata's z score 5.79 for education is the square root of the Wald statistic 33.53.

If you want to get the output in the HTML format, use ODS statements before and after a SAS procedure. ODS HTML redirects SAS output to the HTML format. The output is skipped.

```
ODS HTML;
```

PROC LOGISTIC . . .
ODS HTML CLOSE;

PROC LOGISTIC by default reports odds changes when independent variables increase by a unit. The odds changes (ratios) under Odds Ratio Estimates are the same as what Stata .listcoef produced in Section 2.2. For a unit $(\$ 1,000)$ increase in family income, the odds of having social trust are expected to change by a factor of $1.031=\exp (.0303)$, holding all other covariates constant. The odds of having social trust are $1.293=\exp (.2568)$ times larger for men than for women; conversely, the odds of having no social trust are . $7734=\exp (-.2568)$ times smaller for men than for women.

The UNITS statement specifies a unit other than means of covariates. The SD in UNITS indicates a standard deviation increase in covariates listed (educate, income, and age in this example). UNITS adds factor changes in odds to the end of the LOGISTIC output. Read numbers under Odds Ratios (other output is skipped below). For a standard deviation increase in family income, the odds are expected to increase by a factor of $1.207=\exp (.0303 * 6.1943)$. You may find the same number under $\mathrm{e}^{\wedge} \mathrm{bStdx}$ of .listcoef in Section 2.2.

```
PROC LOGISTIC DATA = masil.gss_cdvm;
    MODEL trust(EVENT='1') = educate income age male www;
    UNITS educate=SD income=SD age=SD;
RUN;
```

	Odds Ratios	
Effect	Unit	Estimate
educate	2.5697	1.476
income	6.1943	1.207
age	13.4071	1.456

Let us compute marginal effects manually. See Park (2004) for computation in detail. If you are not familiar with SAS, you may skip this part. The first step is to get parameter estimates and
reference points. In PROC LOGISTIC, add OUTEST=masil.blm to store parameter estimates into a SAS data set masil.blm. PROC MEANS with MEAN and STD computes means and standard deviations of variables listed in the VAR statement and then store them into masil.meanX. Notice that SAS, unlike Stata and R, is not case-insensitive.

```
PROC LOGISTIC DESCENDING DATA = masil.gss_cdvm OUTEST=masil.blm;
    MODEL trust = educate income age male www;
PROC MEANS MEAN STD DATA = masil.gss_cdvm;
    VAR educate income age male www;
    OUTPUT OUT=masil.meanX;
RUN;
(output is skipped)
```

Next, convert two SAS data sets into matrices, $b H a t$ and X in PROC IML. Then, compute predicted probability and marginal effects. Pay attention to comments enclosed by $/ *$ and $* /$.

```
PROC IML;
```

USE masil.blm; /* get a row vector of parameter estimates */
READ ALL VAR\{Intercept educate income age male www\} INTO bHat;
K=NCOL(bHat); /* get the number of regressors */
USE masil.meanX;
READ ALL VAR\{educate income age male www\} INTO X;
meanX $=\{1\}| | X[4,] ; / * a ~ r o w ~ v e c t o r ~ o f ~ m e a n s ~ o f ~ i n d e p e n d e n t ~ v a r i a b l e s ~ * / ~$
$\operatorname{sdX}=\{0\}| | X[5,] ; / *$ a row vector of standard deviations of independent variables */
referX = meanX; /* set reference points */
referX[1,2]=16; referX[1,5]=0; $\operatorname{referX[1,6]=1;~/*~education=16,~male=0,~www=1~*/~}$
$\mathrm{xb}=\mathrm{bHat}$ * T(referX);
prob $=\exp (x b) /(1+\exp (x b)) ; / *$ compute a predicted probability */
PRINT referX prob;
margin $=$ prob * (1-prob) * T(bHat); /* compute marginal effects */
marginSD $=$ prob * (1-prob) * T(bHat \# sdX);
result $=T(b H a t)| | T(\exp (b H a t))| | T(\exp (b H a t \# s d X))| | \operatorname{margin}| | m a r g i n S D| | T(m e a n X)| | T(s d X) ;$
result = result[2:K,];
PRINT result[ROWNAME=\{"educate", "income", "age", "male", "www"\}
COLNAME=\{"b" "exp(b)" "exp(b*sdX)" "MargEffect" "MargEffect(SD)" "Mean of X" "SD of X"\}];
QUIT; /* terminate PROC IML */

The following is the output of the PROC IML above. Compare marginal effects with what .prchange reported in Section 2.2. Notice that .0640 and . 1381 are not correct discrete changes of gender and WWW use, respectively. Factor changes in the odds are also listed under labels $\exp (b)$ and $\exp (b * s d X)$.

referX			prob		
1	16	24.648637	41.307496	0	10.4753497

				result			
	b	$\exp (\mathrm{b})$	$\exp \left(b^{*}\right.$ ddX)	MargEffect	MargEffect(SD)	Mean of X	SD of X
educate	0.1515807	1.1636722	1.4762701	0.0378031	0.097143	14.24276	2.5697123
income	0.0303475	1.0308127	1.2068103	0.0075684	0.046881	24.648637	6.1942699
age	0.0280151	1.0284112	1.4558671	0.0069867	0.0936722	41.307496	13.407127
male	0.2567949	1.29278	1.1363525	0.0640427	0.0318782	0.4505963	0.4977653
www	0.5537335	1.7397362	1.255393	0.1380969	0.056724	0.7853492	0.4107548

PROC PROBIT is primarily designed for the binary probit model but can estimate the same binary logit model as well. The /DIST=LOGISTIC option indicates the link function (probability distribution) to be used in maximum likelihood estimation.

```
PROC PROBIT DATA = masil.gss_cdvm;
    MODEL trust = educate income age male www /DIST=LOGISTIC;
RUN;
```

	The Probit Procedure
	Model Information
Data Set	MASIL.GSS_CDVM
Dependent Variable	trust
Number of Observations	1174
Name of Distribution	Logistic
Log Likelihood	-733.97164

Number of Observations Read	1174
Number of Observations Used	1174

 Class Level Information
 | Name | Levels | Values |
| :--- | ---: | :--- |
| trust | 2 | 01 |

Response Profile		
Ordered		
Value	trust	Frequency
1	0	682
2	1	492

PROC PROBIT is modeling the probabilities of levels of trust having LOWER Ordered Values in the response profile table.

Algorithm converged.

Type III Analysis of Effects

	Wald Effect		
	DF	Chi-Square	Pr $>$ ChiSq
educate	1	33.5304	$<.0001$
income	1	6.9204	0.0085
age	1	33.0827	$<.0001$
male	1	4.1650	0.0413
www	1	11.1433	0.0008

Unlike PROC LOGISTIC, PROC PROBIT does not have the DESCENDING (or DESC) option. Therefore, you have to switch the signs of coefficients when comparing with PROC LOGISTIC, Stata, and LIMDEP. PROC PROBIT does not have the UNITS statement to compute factor changes in the odds.

2.4 Binary Logit Model in SAS: PROC QLIM and PROC GENMOD

PROC QLIM estimates not only logit and probit models, but also censored, truncated, and sample-selected models. You may provide the probability distribution of a dependent variable in the ENDOGENOUS statement or in the DISCRETE option of the MODEL statement.

```
PROC QLIM DATA=masil.gss_cdvm;
    MODEL trust = educate income age male www;
    ENDOGENOUS trust ~ DISCRETE(DIST=LOGIT);
PROC QLIM DATA=masil.gss_cdvm;
    MODEL trust = educate income age male www /DISCRETE(DIST=LOGIT);
RUN;
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{The QLIM Procedure} \\
\hline & Discrete Response & ile of tru & \\
\hline Index & Value & Frequency & Percent \\
\hline 1 & 0 & 682 & 58.09 \\
\hline 2 & 1 & 492 & 41.91 \\
\hline \multicolumn{4}{|c|}{Model Fit Summary} \\
\hline \multicolumn{4}{|l|}{Number of Endogenous Variables} \\
\hline
\end{tabular}
```

```
\begin{tabular}{lr} 
Endogenous Variable & trust \\
Number of Observations & 1174 \\
Log Likelihood & -733.97164 \\
Maximum Absolute Gradient & 0.0000275 \\
Number of Iterations & 13 \\
Optimization Method & Quasi-Newton \\
AIC & 1480 \\
Schwarz Criterion & 1510
\end{tabular}
Goodness-of-Fit Measures
\begin{tabular}{lcl} 
Measure & Value & Formula \\
Likelihood Ratio (R) & 128.68 & \(2 *^{*}(\) LogL - LogLO \()\) \\
Upper Bound of R (U) & 1596.6 & \(-2^{*}\) LogLO \\
Aldrich-Nelson & 0.0988 & \(R /(R+N)\) \\
Cragg-Uhler 1 & 0.1038 & \(1-\exp (-R / N)\) \\
Cragg-Uhler 2 & 0.1397 & \((1-\exp (-R / N)) /(1-\exp (-U / N))\) \\
Estrella & 0.108 & \(1-(1-R / U)^{\wedge}(U / N)\) \\
Adjusted Estrella & 0.0981 & \(1-((L o g L-K) / L o g L O)^{\wedge}(-2 / N * L o g L O)\) \\
McFadden's LRI & 0.0806 & \(R / U\) \\
Veall-Zimmermann & 0.1714 & \((R *(U+N)) /(U *(R+N))\) \\
McKelvey-Zavoina & 0.3489 & \\
& \\
N = \# of observations, K = \# of regressors
\end{tabular}
Algorithm converged.
```

		Paramet	imates		
			Standard		Approx
Parameter	DF	Estimate	Error	t Value	$\mathrm{Pr}>\mid \mathrm{t\mid}$
Intercept	1	-4.983009	0.478382	-10.42	<. 0001
educate	1	0.151581	0.026178	5.79	<. 0001
income	1	0.030349	0.011536	2.63	0.0085
age	1	0.028015	0.004871	5.75	<. 0001
male	1	0.256796	0.125829	2.04	0.0413
www	1	0.553738	0.165881	3.34	0.0008

PROC QLIM produces various goodness-of-fit measures and, unlike other procedures, reports t scores, which are the same as z score in Stata (see Section 2.1). Therefore, PROC QLIM is more comparable to Stata and LIMDEP than other alternative procedures in SAS.

PROC GENMOD provides flexible methods to estimate generalized linear and nonlinear models. The DISTRIBUTION (DIST) and the LINK=LOGIT options respectively specify a probability distribution and a link function.

```
PROC GENMOD DATA = masil.gss_cdvm DESC;
    MODEL trust = educate income age male www /DIST=BINOMIAL LINK=LOGIT;
RUN;
```

The GENMOD Procedure

Model Information

Data Set	MASIL.GSS_CDVM	
Distribution	Binomial	
Link Function	Logit	
Dependent Variable	trust	trust

Number of Observations Read	1174
Number of Observations Used	1174
Number of Events	492
Number of Trials	1174

Response Profile	
Ordered	
Value	trust
1	1

PROC GENMOD is modeling the probability that trust='1'.

\qquadCriteria For Assessing Goodness Of Fit Criterion Log Likelihood Full Log Likelihood	Value	Value/DF
AIC (smaller is better)	-733.9716	
AICC (smaller is better)	-733.9716	
BIC (smaller is better)	1479.9433	

Algorithm converged.

Parameter	Analysis Of Maximum Likelihood Parameter Estimates						
	DF	Estimate	Standard Error	Wald 95\% Confidence Limits		Wald Chi-Square	Pr > ChiSq
Intercept	1	-4.9830	0.4784	-5.9206	-4.0454	108.51	<. 0001
educate	1	0.1516	0.0262	0.1003	0.2029	33.53	<. 0001
income	1	0.0303	0.0115	0.0077	0.0530	6.92	0.0085
age	1	0.0280	0.0049	0.0185	0.0376	33.08	<. 0001
male	1	0.2568	0.1258	0.0102	0.5034	4.17	0.0413
www	1	0.5537	0.1659	0.2286	0.8789	11.14	0.0008
Scale	0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

Instead of the LINK=LOGIT option, you may provide a corresponding link function manually using the FWDLINK and INVLINK statements. The following is an example.

```
PROC GENMOD DATA = masil.gss_cdvm DESC;
    FWDLINK link=LOG(_MEAN_/(1-_MEAN_));
    INVLINK invlink=1/(1+EXP(-1*_XBETA_));
    MODEL trust = educate income age male www /DIST=BINOMIAL;
RUN;
(output is skipped)
```


2.5 Binary Logit Model in \mathbf{R}

In R, $g \operatorname{lm}()$ fits binary logit and probit models. This function returns associated statistics and functions such as coef () and vcov () in an object. Unlike Stata and SAS, R does not give you all answers with a single function. Accordingly, you need to get specific answers using statistics and functions that $g 1 m$ () returns.

Let us read a data set first using read.table (). The following example reads a CSV file and saves into a data frame $d f$. A delimiter is specified in sep='' and header $=T$ reads variable names from the first row. The attach () function adds the data frame to R search path so that variables in the data frame are accessed by their names alone (without their data frame name).

```
> df<-read.table('http://www.indiana.edu/~statmath/stat/all/cdvm/gss_cdvm.csv',
+ sep=',', header=T)
> attach(df)
```

In the $\operatorname{glm}()$ below, a dependent variable is followed by a tilde (\sim) and a list of independent variables separated by a plus (+) sign. The family=option specifies a link function. The glm() returns associated statistics and functions in an object $b l m$. summary (blm) reports the summary of the estimated binary logit model.

```
> blm<-glm(trust~educate+income+age+male+www, data=df, family=binomial(link="logit"))
> summary (blm)
Call:
glm(formula = trust ~ educate + income + age + male + www, family = binomial(link = "logit"),
    data = df)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-1.8263 & -0.9987 & -0.6752 & 1.1494 & 2.1516
\end{tabular}
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.983009 0.478359 -10.417 < 2e-16 ***
educate 0.151581 0.026177 5.791 7.02e-09 ***
income 0.030349 0.011536 2.631 0.008522 **
age 0.028015 0.004871 5.752 8.83e-09 ***
male 0.256796 0.125829 2.041 0.041267 *
www 0.553738 0.165881 3.338 0.000843 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
        Null deviance: 1596.6 on 1173 degrees of freedom
Residual deviance: 1467.9 on 1168 degrees of freedom
```

```
AIC: 1479.9
```

Number of Fisher Scoring iterations: 4
R reports the same parameter estimates, standard errors, and z scores that Stata produced. R does not, however, display goodness-of-fit measures except for AIC and, like SAS PROC LOGISTIC, returns $-2 * \log$ likelihood of null and full models (see Section 2.3) instead. For instance, $1,467.9$ of Residual deviance: is $-2 * \log$ likelihood of the full model. df. null $(=1,173)$ and df.residual $(=1,168)$ are degrees of freedom of null and full models, respectively. Therefore, the likelihood ratio and its p-value are computed as,

```
> blm$deviance/-2
[1] -733.9716
> AIC (blm)
[1] 1479.943
> LRtest<-blm$null.deviance - blm$deviance
> LRtest
[1] 128.6811
> dchisq(LRtest, blm$df.null - blm$df.residual)
[1] 2.214737e-26
```

The likelihood ratio is 128.6811 , which is large enough to reject the null hypothesis of poor fit (no difference between null and full models). McFadden's pseudo R^{2} is computed on the basis of the two deviances (log likelihoods of null and full models): .0806=1-(1467.9/1596.6). Notice that a comment begins with the pound sign (\#).

```
> 1-bpm$deviance/bpm$null.deviance # McFadden's pseudo R square
[1] 0.08056336
```

Now, let us compute factor changes in the odds of having success. Create vectors of means and standard deviations of covariates using c(), mean (), and sd(). Notice that 1 is for the intercept. $b H a t$ and K are a vector of parameter estimates and a scalar for the length of bHat (number of parameters).

```
>meanX<-c(1, mean (educate), mean(income), mean(age), mean(male), mean(www))
> sdX<-c(1, sd(educate), sd(income), sd(age), sd(male), sd(www))
> bHat<-coef(blm) # vector of parameter estimates
> K<-length(bHat) # the number of parameters
```

Next, compute factor changes of the odds. The following cbind () combines individual vectors into a matrix. Exp (bHat*sdX) is factor changes when covariates increase by their standard deviations. colnames (fcodds) puts column names to the data frame fcOdds.

```
> fcOdds<-cbind(bHat, exp(bHat), exp (bHat*sdX), meanX, sdX)
> fcOdds<-fcOdds[2:K,]
> colnames(fcOdds)<-c("b", "e^b", "e^(b*sd)", "Mean of x", "SD of X")
```

The following output is very similar to what .listcoef produced in Section 2.2.

```
> fcOdds
b exp(b) exp(b*sd) Mean of X SD of X
educate 0.15158121 1.163673 1.476272 14.2427598 2.5697123
income 0.03034856 1.030814 1.206818 24.6486371 6.1942699
age 0.02801520 1.028411 1.455869 41.3074957 13.4071272
```

```
male 0.25679598 1.292781 1.136353 0.4505963 0.4977653
www 0.55373840 1.739745 1.255396 0.7853492 0.4107548
```

Finally, compute marginal effects at the same reference points. $\% * \%$ below obtains the element by element product, a scalar of $x b$ in this case. The scalar prob contains the predicted probability of 47.53 percent that female WWW users with 16 years of education (educate $=16$, male $=0$, and www=1) trust most people, holding other covariates at their means.

```
> referX<-c(1, 16, mean(income), mean(age), 0, 1) # set reference points
> xb<-bHat %*% referx # element by element product
> prob<-exp(xb)/(1+exp(xb)) # compute a pridicted probability
> prob
    [,1]
[1,] 0.4753492
```

Marginal effects are $\Lambda(x \beta)\left(1-\Lambda(x \beta) \beta_{c}\right.$ in the binary logit model. When covariates increase by their standard deviations from the reference points, the marginal effects are prob* (1prob) *bHat*sdx. Compare the following result with what .prchange computed in Section 2.2 and the PROC IML output in Section 2.3. Notice that .0640 and .1381 below are not discrete changes of gender and WWW use. See Section 3.4 for computing discrete changes.

```
> margEffect<-cbind(bHat, prob*(1-prob)*bHat, prob*(1-prob)*bHat*sdX, meanX,sdX)
> margEffect<-margEffect[2:K,]
> colnames(margEffect)<-c("b", "MargEffect", "MargEffect(SD)", "Mean of X", "SD of X")
> margEffect
b MargEffect MargEffect(SD) Mean of X SD of X
educate 0.15158121 0.037803193 0.09714333 14.2427598 2.5697123
income 0.03034856 0.007568699 0.04688256 24.6486371 6.1942699
age 0.02801520 0.006986775 0.09367259 41.3074957 13.4071272
male 0.25679598 0.064042951 0.03187836 0.4505963 0.4977653
Www 0.55373840 0.138098116 0.05672447 0.7853492 0.4107548
```


2.6 Binary Logit Model in LIMDEP (Logit\$)

LIMDEP can read data in the ASCII text (CSV) and Excel format. The following script clears the worksheet (RESET\$), defines data size (ROWS; 999999\$), and then reads an Excel file gss cdvm.xls. Notice that each command ends with $\$$ and subcommands are separated by a semi-colon.

```
RESET$
ROWS;999999$
READ;FILE="C:\Temp\Limdep\gss_cdvm.xls"$
```

The Logit\$ command estimates various logit models in LIMDEP. A dependent variable is specified in the Lhs= (left-hand side) subcommand and a list of independent variables in the Rhs= (right-hand side). You have to explicitly specify one for the intercept.

LOGIT; Lhs=TRUST; Rhs=ONE, EDUCATE, INCOME , AGE ,MALE, WWW\$

Normal exit from iterations. Exit status=0.

```
+---------------------------------------------------
| Binary Logit Model for Binary Choice
| Maximum Likelihood Estimates
```


| \|Predictions for Binary Choice Model. Predicted value is | $\mid 1$ when probability is greater than .500000 , 0 otherwise.\| | Note, column or row total percentages may not sum to | 100% because of rounding. Percentages are of full sample.\| | |
| :---: | :---: |
| \|Actual| Predicted Value | |
| \|Value | $0 \quad 1$ \| Total Actual | |
| $0\|538(45.8 \%)\| 144$ (12.3\%)\| 682 (58.10) | |
| 1 l 262 (22.3\%) \| 230 (19.6\%)| 492 (41.9\%) | | |
| \|Total | 800 (68.1%) \| 374 (31.9\%)| 1174 (100.0\%) | | |
| Analysis of Binary Choice Model Predictions Based on Threshold = . 5000 | |
| Prediction Success | |
| Sensitivity = actual 1s correctly predicted | 46.748% |
| Specificity = actual 0s correctly predicted | 78.886\% |
| Positive predictive value = predicted 1s that were actual 1s | 61.497\% |
| Negative predictive value $=$ predicted 0s that were actual 0s | 67.250\% |
| Correct prediction $=$ actual 1 s and 0 s correctly predicted | 65.417\% |
| Prediction Failure | |
| False pos. for true neg. = actual 0s predicted as 1s 21.114\% | |
| False neg. for true pos. = actual 1s predicted as 0s | 53.252\% |
| False pos. for predicted pos. = predicted 1s actual 0s | 38.503\% |
| False neg. for predicted neg. = predicted 0s actual 1s | 32.750\% |
| False predictions = actual 1 s and 0 s incorrectly predicted | 34.583\% |

Stata, SAS, and LIMDEP produce the same result. The likelihood ratio is $128.6811=-2 *[(-$ 798.3122)-(-733.9716)]. While SAS reports AIC $* N=1,479.9433$, LIMDEP returns an AIC of $1.2606(=1,479.943 / 1,174)$. BIC (Schwarz IC) is $1510.351=1.2865^{*} 1174$. In order to compute marginal effects, add the Marginal Effects and Means subcommands to Logit\$. The following script computes marginal effects at the mean values of independent variables. Other parts in the output are skipped.

LOGIT; Lhs=TRUST; Rhs=ONE, EDUCATE, INCOME, AGE , MALE , WWW; Marginal Effects; Means\$

---------+Marginal effect for variable in probability					
Constant	-1.20446697	. 11302276	-10.657	. 0000	
EDUCATE	. 03663942	. 00632491	5.793	. 0000	1.27598047
INCOME	. 00733570	. 00278319	2.636	. 0084	. 44211529
AGE	. 00677169	. 00117650	5.756	. 0000	. 68395424
---------+	rginal effect	dummy varia	e is Pl1	P10.	
MALE	. 06213506	. 03043408	2.042	. 0412	. 06845822
-	ginal effect	dummy varia	e is Pl1	Pl0.	
WWW	. 12861867	. 03653176	3.521	. 0004	. 24698361

Marginal Effects for\|	
Variable	All Obs.
ONE	-1.20447
EDUCATE	. 03664
INCOME	. 00734

AGE	\|	. 00677
MALE	\|	. 06214
WWW	\|	. 12862

In order to compare marginal effects computed in Stata and LIMDEP, let us run .prchange in Stata without reference points specified. quietly before a command run the command but suppresses the output. Stata and LIMDEP produce the same marginal effects (e.g., . 0366 for education) and discrete changes (e.g., . 1286 for WWW use). Notice that marginal effects and discrete changes vary depending on reference points used (compare with marginal effects in Section 2.2).

```
. quietly logit trust educate income age male www
- prchange
logit: Changes in Probabilities for trust
\begin{tabular}{rrrrrr} 
& min->max & \(0->1\) & \(-+1 / 2\) & -+ sd/2 & MargEfct \\
educate & 0.5259 & 0.0111 & 0.0366 & 0.0939 & 0.0366 \\
income & 0.1805 & 0.0057 & 0.0073 & 0.0454 & 0.0073 \\
age & 0.4428 & 0.0041 & 0.0068 & 0.0905 & 0.0068 \\
male & 0.0621 & 0.0621 & 0.0620 & 0.0309 & 0.0621 \\
www & 0.1286 & 0.1286 & 0.1331 & 0.0549 & 0.1338
\end{tabular}
Pr(y|x) 0.5910
\begin{tabular}{rrrrr} 
& educate & income & age & male
\end{tabular}\(\quad\) www
```


2.7 Binary Logit Model in SPSS

In SPSS, the Logistic Regression command fits the binary logit model. SPSS generates messy tables, which are often overwhelming for beginners. The tables below are selected from the entire output.

```
LOGISTIC REGRESSION VARIABLES trust
    /METHOD=ENTER educate income age male www
    /CRITERIA=PIN(0.05) POUT(0.10) ITERATE(20) CUT(0.5).
```


a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001 .

Variables in the Equation

	B	S.E.	Wald	Df	Sig.	Exp(B)

Step $1^{\text {a }}$	educate	. 152	. 026	33.530	1	. 000	1.164
	income	. 030	. 012	6.920	1	. 009	1.031
	age	. 028	. 005	33.083	1	. 000	1.028
	male	. 257	. 126	4.165	1	. 041	1.293
	www	. 554	. 166	11.143	1	. 001	1.740
	Constant	-4.983	. 478	108.511	1	. 000	. 007

a. Variable(s) entered on step 1: educate, income, age, male, www.

SPSS returns the same parameter estimates and their standard errors. Like SAS PROC
LOGISTIC, SPSS reports $-2 *$ Log-likelihood ($1,467.943=-2 * 733.9716$) and Wald statistics. Pvalues are listed under the label Sig. and factor changes in odds under Exp (B). SPSS does not produce Pseudo R ${ }^{2}$, AIC, Schwarz, and BIC.

Table 2.1 summarizes parameter estimates and goodness-of-fit measures of the binary logit model produced in Stata, SAS, R. and LIMDEP, excluding the output of PROC PROBIT and SPSS. Parameter estimates, their standard errors, and goodness-of-fit measures are identical except for some rounding errors. Stata, R, and LIMDEP report z scores for hypothesis test, while PROC QLIM returns t scores and LOGISTIC, GENMOD, and PROBIT procedures conduct chi-square tests. PROC LOGISTIC and Stata .logit with SPost are general recommended.

Table 2.1. Parameter Estimates and Goodness-of-fit of the Binary Logit Model

	SAS			Stata	R	LIMDEP
	LOGISTIC	QLIM	GENMOD	.logit	glm()	Logit\$
Education	$\begin{gathered} .1516 \\ (.0262) \end{gathered}$					
Family income	$\begin{gathered} .0303 \\ (.0115) \end{gathered}$	$\begin{aligned} & .0303 \\ & (.0115) \end{aligned}$	$\begin{gathered} .0303 \\ (.0115) \end{gathered}$			
Age	$\begin{aligned} & .0280 \\ & (.0049) \end{aligned}$					
Gender (male)	$\begin{gathered} .2568 \\ (.1258) \end{gathered}$	$\begin{gathered} .2568 \\ (.1258) \end{gathered}$	$\begin{gathered} .2568 \\ (.1258) \end{gathered}$	$\begin{aligned} & .2568 \\ & (.1258) \end{aligned}$	$\begin{aligned} & .2568 \\ & (.1258) \end{aligned}$	$\begin{gathered} .2568 \\ (.1258) \end{gathered}$
WWW use	$\begin{gathered} .5537 \\ (.1659) \end{gathered}$					
Intercept	$\begin{array}{r} -4.9830 \\ (.4784) \\ \hline \end{array}$					
Log likelihood	-733.9716	-733.9716	-733.9716	-733.9716	-733.9716	-733.9716
Likelihood test	128.6811	128.68		128.68	128.6811	128.6811
Pseudo R^{2}	. 0806	. 0806		. 0806	. 0806	. 0806
AIC	1479.943	1480.	1479.9433	1479.943	1479.943	1479.944
BIC (Schwarz)	1510.352	1510.	1510.3523	1510.352		1510.352
H_{0} test	Chi-square	t	Chi-square	z	z	z

${ }^{*}$ PROC LOGISTIC and R report (-2*Log-likelihood).
*AIC*N and BIC*N in Stata and LIMDEP

3. Binary Probit Regression Model

The probit model is represented as $\operatorname{Prob}(y=1 \mid x)=\Phi(x \beta)$, where Φ indicates the cumulative standard normal probability distribution function. Let us fit the binary probit model to see if there is substantial difference between binary logit and probit models.

3.1 Binary Probit Model in Stata (.probit)

Stata . probit estimates the binary probit regression model. If you want to get robust standard errors, add the robust option to .logit and .probit. The logit and probit models produce almost similar goodness-of-fit measures but their parameter estimates differ.

The standard normal probability distribution and standard logistic distribution respectively have a unit variance and a variance of $\pi^{2} / 3$. Therefore, a parameter estimate in a binary logit model is about $1.8138(=\pi / \sqrt{3})$ larger than its corresponding coefficient in its probit counterpart. Long's suggestion is 1.7 (Long 1997: 48). For instance, the coefficient of education in the binary logit model is .1516, which is similar to . 1542 (1.7*.0907). See Cameron and Trivedi (2009: 451-452) for discussion on parameter estimates across models (OLS, binary logit, and binary probit model).

```
. di_pi/sqrt(3)*.0907207
.16454915
```

. di 1.7*.0907207
. 15422519
Goodness-of-fit measures are very similar to those of the logit model. Log likelihoods are 733.972 and -733.997 and likelihood ratios are 128.681 and 128.629 in binary logit and probit models, respectively. They produce the same pseudo R^{2} of .0806 .

[^3]| Log-Lik Intercept Only: | -798.312 | Log-Lik Full Model: | -733.997 |
| :--- | ---: | :--- | ---: |
| D(1168): | 1467.995 | LR(5): | 128.629 |
| | | Prob $>$ | |
| McFadden's R2: | 0.081 | McFadden's Adj R2: | 0.000 |
| ML (Cox-Snell) R2: | 0.104 | Cragg-Uhler (Nagelkerke) R2: | 0.073 |
| McKelvey \& Zavoina's R2: | 0.166 | Efron's R2: | 0.140 |
| Variance of y*: | 1.199 | Variance of error: | 0.105 |
| Count R2: | 0.652 | AdjCount R2: | 1.000 |
| AIC: | 1.261 | AIC*n: | 0.171 |
| BIC: | -6787.630 | BIC': | 1479.995 |
| BIC used by Stata: | 1510.404 | AIC used by Stata: | -93.289 |

In order to get standardized estimates, run SPost's .listcoef command. A coefficient is the impact of an independent variable for a unit increase in that variable, while the corresponding number under bStdx is the impact of the covariate for a standard deviation increase in that variable. For example, the x-standardized coefficient of education is . $2331(=.0907 * 2.5697)$. Notice that factor changes in odds by definition are not available in a probit model.

```
. listcoef, help
probit (N=1174): Unstandardized and Standardized Estimates
Observed SD: .49361879
    Latent SD: 1.0952088
```

trust	b	z	$\mathrm{P}>\|\mathrm{z}\|$	bStdX	bStdY	bStdXY	SDofX
educate	0.09072	5.878	0.000	0.2331	0.0828	0.2129	2.5697
income	0.01859	2.707	0.007	0.1152	0.0170	0.1051	6.1943
age	0.01731	5.869	0.000	0.2321	0.0158	0.2119	13.4071
male	0.15939	2.073	0.038	0.0793	0.1455	0.0724	0.4978
www	0.34176	3.445	0.001	0.1404	0.3121	0.1282	0.4108

```
        b = raw coefficient
        z = z-score for test of b=0
    P>|z| = p-value for z-test
    bStdX = x-standardized coefficient
    bStdY = y-standardized coefficient
    bStdXY = fully standardized coefficient
    SDofX = standard deviation of X
```

The discrete change of a binary variable remains unchanged in the binary probit model, but the marginal effect of a continuous independent variable in the binary probit model is defined as,

$$
\frac{\partial P(y=1 \mid x)}{\partial x_{c}}=\phi(x \beta) \beta_{c}
$$

where ϕ denotes the standard normal probability density function.
You may compute marginal effects and discrete changes using either .mfx or SPost's .prchange. Marginal effects and discrete changes in the logit and probit models, despite different parameter estimates, are very similar (. 0378 versus .0361 for education and .1329 versus .1320 for WWW use). Also two models return the similar predicted probability at the same reference points (. 4753 versus .4747).

```
. mfx, at(mean educate=16 male=0 www=1)
Marginal effects after probit
```

variable	$d y / d x$	Std. Err.	z	$\mathrm{P}>\|\mathrm{z}\|$	95\%	C.I.	X
educate \|	. 0361195	. 00681	5.30	0.000	. 022774	. 049465	16
income \|	. 0074017	. 00264	2.81	0.005	. 002234	. 012569	24.6486
age	. 006892	. 00118	5.83	0.000	. 004574	. 00921	41.3075
male*\|	. 0635132	. 03058	2.08	0.038	. 003573	. 123453	0
www*	. 1320435	. 0374	3.53	0.000	. 058748	. 205339	1

(*) $d y / d x$ is for discrete change of dummy variable from 0 to 1

```
. prchange, x(educate=16 male=0 www=1) rest(mean)
```

probit: Changes in Probabilities for trust

	min->max	$0->1$	$-+1 / 2$	-+ sd/2	MargEfct
educate	0.5265	0.0123	0.0361	0.0926	0.0361
income	0.1916	0.0065	0.0074	0.0458	0.0074
age	0.4409	0.0051	0.0069	0.0922	0.0069
male	0.0635	0.0635	0.0634	0.0316	0.0635
www	0.1320	0.1320	0.1354	0.0558	0.1361

	0	1

	educate	income	age	male	www
x $=$	16	24.6486	41.3075	0	1
sd $x=$	2.56971	6.19427	13.4071	.497765	.410755

Similarly, .prtab and .prvalue report same predicted probabilities at the same reference points. Compare the following result with the output presented in Section 2.2.

```
. prtab male www, x(educate=16 male=0 www=1) rest(mean)
probit: Predicted probabilities of positive outcome for trust
\begin{tabular}{|c|c|c|}
\hline Gender & WWW Non-users & Users \\
\hline Female & 0.3427 & 0.4747 \\
\hline Male & 0.4029 & 0.5382 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr} 
& educate & income & age & male
\end{tabular}\(\quad\) www
. prvalue, x(educate=16 male=0 www=1) rest(mean)
probit: Predictions for trust
Confidence intervals by delta method
\begin{tabular}{rcccc} 
& & 95\% Conf. Interval \\
\(\operatorname{Pr}(\mathrm{y}=1 \mid \mathrm{x}):\) & 0.4747 & {\([0.4281\),} & \(0.5213]\) \\
\(\operatorname{Pr}(\mathrm{y}=0 \mid \mathrm{x}):\) & 0.5253 & {\([0.4787\),} & \(0.5719]\) & \\
educate & income & age & male & www \\
\(\mathrm{x}=\) & 16 & 24.648637 & 41.307496 & 0
\end{tabular}
```

Finally, let us draw a plot of predicted probabilities using .prgen. We are using the same reference points and same range of education (0 to 20) to get Figure 3.1. See Appendix for the Stata script used.

```
. quietly probit trust educate income age male www
```

```
. prgen educate, from(0) to (20) ncases(20) x(male=1 www=1) rest(mean) gen(Probit_age11)
probit: Predicted values as educate varies from 0 to 20.
rreducate 
. prgen educate, from(0) to(20) ncases(20) x(male=1 www=0) rest(mean) gen(Probit_age10)
probit: Predicted values as educate varies from 0 to 20.
```



```
. prgen educate, from(0) to (20) ncases(20) x(male=0 www=1) rest(mean) gen(Probit_age01)
probit: Predicted values as educate varies from 0 to 20.
\begin{tabular}{rrrrr} 
educate & income & age & male & www \\
\(\mathrm{x}=\) & 14.24276 & 24.648637 & 41.307496 & 0
\end{tabular}
. prgen educate, from(0) to (20) ncases(20) x(male=0 www=0) rest(mean) gen(Probit_age00)
probit: Predicted values as educate varies from 0 to 20.
\begin{tabular}{rrrrr} 
educate & income & age & male & www \\
\(x=\) & 14.24276 & 24.648637 & 41.307496 & 0
\end{tabular}
```

Compare Figure 2.1 and 3.1 to find they are almost identical. This finding is not surprising at all because predicted probabilities, marginal effects, and discrete changes are very similar in binary logit and probit models, although two models produce different parameter estimates and standard errors.

Figure 3.1 Predicted Probabilities of Trusting Most People (Binary Probit Model)

3.2 Binary Probit Model in SAS: PROC PROBIT and PROC LOGISTIC

PROBIT and LOGISTIC procedures estimate the binary probit model. Keep in mind that the coefficients of PROC PROBIT have opposite signs. Stata and SAS produce the same result.

```
PROC PROBIT DATA = masil.gss_cdvm;
    MODEL trust = educate income age male www;
RUN;
The Probit Procedure
Model Information
\begin{tabular}{lrr} 
Data Set & MASIL.GSS_CDVM & \\
Dependent Variable & trust \\
Number of Observations & 1174 & trust \\
Name of Distribution & Normal \\
Log Likelihood & -733.9974633
\end{tabular}
\begin{tabular}{ll} 
Number of Observations Read & 1174 \\
Number of Observations Used & 1174
\end{tabular}
Class Level Information
\begin{tabular}{crc} 
Name & Levels & Values \\
trust & 2 & 01
\end{tabular}
Response Profile
Ordered
Value trust \(\quad\) Frequency
\begin{tabular}{lll}
1 & 0 & 682 \\
2 & 1 & 492
\end{tabular}
```

PROC PROBIT is modeling the probabilities of levels of trust having LOWER Ordered Values in the response profile table.

Algorithm converged.

Effect	Type III Analysis of Effects		
		Wald	
	DF	Chi-Square	Pr > ChiSq
educate	1	34.5467	<. 0001
income	1	7.3266	0.0068
age	1	34.4417	<. 0001
male	1	4.2983	0.0382

PROC LOGISTIC requires a normal probability distribution as a link function (/LINK=PROBIT or /LINK=NORMIT) to fit a binary probit model. McFadden's pseudo R ${ }^{2}$ is $.0806=1-(.1467 .995 / 1596.624)$. OUTEST stores parameter estimates into a SAS data set masil.bpm, which will be used when computing marginal effects later.

```
PROC LOGISTIC DATA = masil.gss_cdvm DESC OUTEST=masil.bpm;
    MODEL trust = educate income age male www /LINK=PROBIT;
RUN;
```


Stata, PROC LOGISTIC, and PROC PROBIT share the same parameter estimates, but PROC LOGISTIC reports slightly different standard errors (e.g., . 0158 versus .0154 for education). The following script fits the same model using/LINK=NORMIT and stores the SAS output in an HTML file $c: \$ temp \backslash sas \backslash logit. html using ODS.

```
ODS HTML FILE='c:\temp\sas\probit.html';
PROC LOGISTIC DATA = masil.gss_cdvm DESC;
    MODEL trust(EVENT='1') = educate income age male www /LINK=NORMIT;
RUN;
ODS HTML CLOSE;
```

Let us compute marginal effects using SAS/IML. We stored parameter estimates in masil.bpm. The following SAS script highlights the only parts different from the PROC IML in Section 2.3. PROBNORM ()$=\mathrm{CDF}($ ('NORMAL') and PDF('NORMAL') are respectively CDF and PDF of the standard normal distribution.

```
PROC IML;
USE masil.bpm; /* get a row vector of parameter estimates */
READ ALL VAR{Intercept educate income age male www} INTO bHat;
K=NCOL(bHat); /* get the number of regressors */
prob = PROBNORM(xb); /* compute a predicted probability */
margin = PDF('NORMAL', xb, 0, 1) * T(bHat); /* compute marginal effects */
marginSD = PDF('NORMAL', xb, 0, 1) * T(bHat # sdX);
QUIT; /* terminate PROC IML */
```

The predicted probability that female Internet users will trust people is 47.47 percent, holding other covariates at their means. Calculated marginal effects are the same as what . prchange returned in Section 3.1.

referX					$\begin{array}{rr}\text { prob } \\ 10 & \\ 10.4746975\end{array}$
1	16	24.6486374	41.307496	0	
result					
		MargEffect	t MargEffect(SD)	Mean of X	SD of X
educate	0.0907156	0.0361175	$5 \quad 0.0928116$	14.24276	2.5697123
income	0.0185849	0.0073994	40.0458338	24.648637	6.1942699
age	0.0173094	0.0068915	$5 \quad 0.0923958$	41.307496	13.407127
male	0.1593898	0.0634594	$4 \quad 0.0315879$	0.4505963	0.4977653
www	0.3417757	0.1360745	$5 \quad 0.0558932$	0.7853492	0.4107548

3.3 Binary Probit Model in SAS: PROC QLIM and PROC GENMOD

PROC QLIM provides various goodness-of-fit statistics. The DIST=NORMAL option below indicates the normal probability distribution to be used in estimation. Compared to PROC LOGISTIC, PROC QLIM reports same parameter estimates and goodness-of-fit statistics but slightly different standard errors.

```
PROC QLIM DATA=masil.gss_cdvm;
    MODEL trust = educate income age male www /DISCRETE (DIST=NORMAL);
RUN;
```

The QLIM Procedure			
	Discrete Response Profile of trust		
Index	Value	Frequency	Percent
1	0	682	58.09
2	1	492	41.91

Number of Endogenous Variables	1
Endogenous Variable	trust
Number of Observations	1174
Log Likelihood	-733.99746
Maximum Absolute Gradient	0.00200
Number of Iterations	11
Optimization Method	Quasi-Newton
AIC	1480
Schwarz Criterion	1510

Algorithm converged.

Parameter Estimates					
Parameter	DF	Estimate	Standard Error	t Value	Approx $r>\|t\|$
Intercept	1	-3.030053	0.278616	-10.88	<. 0001
educate	1	0.090721	0.015435	5.88	<. 0001
income	1	0.018591	0.006868	2.71	0.0068
age	1	0.017310	0.002950	5.87	<. 0001
male	1	0.159393	0.076882	2.07	0.0382
www	1	0.341764	0.099215	3.44	0.0006

PROC GENMOD estimates the binary probit model using the /DIST=BINOMIAL and /LINK=PROBIT options in the MODEL statement. Again, DESC uses a larger value as a positive event (success). PROC QLIM and PROC GENMOD return the same parameter estimates, standard errors, and goodness-of-fit measures.

```
PROC GENMOD DATA = masil.gss_cdvm DESC;
    MODEL trust = educate income age male www /DIST=BINOMIAL LINK=PROBIT;
RUN;
```

The GENMOD Procedure
Model Information

Data Set	MASIL.GSS_CDVM	
Distribution	Binomial	
Link Function	Probit	
Dependent Variable	trust	trust
Numbe	of Observations Read	1174
Numbe	of Observations Used	1174
Numbe	of Events	492
Numbe	of Trials	1174

Response Profile		
Ordered		
Value	trust	Frequency

PROC GENMOD is modeling the probability that trust='1'.

Criteria For Assessing Goodness Of Fit		
Criterion	DF	Value

Algorithm converged.

Parameter	Analysis Of Maximum Likelihood Parameter Estimates						Pr > ChiSq
	DF	Estimate	Standard Error	Wald 95\%	nfidence	Wald Chi-Square	
Intercept	1	-3.0301	0.2786	-3.5761	-2.4840	118.28	<. 0001
educate	1	0.0907	0.0154	0.0605	0.1210	34.55	<. 0001
income	1	0.0186	0.0069	0.0051	0.0321	7.33	0.0068
age	1	0.0173	0.0029	0.0115	0.0231	34.44	<. 0001
male	1	0.1594	0.0769	0.0087	0.3101	4.30	0.0382
www	1	0.3418	0.0992	0.1473	0.5362	11.87	0.0006
Scale	0	1.0000	0.0000	1.0000	1.0000		

NOTE: The scale parameter was held fixed.

3.4 Binary Probit Model in R

The glm() function fits the binary probit model with family=binomial(link="probit").

```
> bpm<-glm(trust~educate+income+age+male+www, data=df, family=binomial(link="probit"))
> summary (bpm)
Call:
glm(formula = trust ~ educate + income + age + male + www, family = binomial(link = "probit"),
    data = df)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-1.8299 & -1.0033 & -0.6756 & 1.1496 & 2.1831
\end{tabular}
Coefficients:
(Intercept) -3.030037 0.279632 -10.836 < 2e-16 ***
educate 0.090719 0.015812 5.737 9.63e-09 ***
income 0.018591 0.006820 2.726 0.006410 **
age 0.017311 0.002955 5.858 4.68e-09 ***
male 0.159394 0.076884 2.073 0.038157 *
www 0.341768 0.099532 3.434 0.000595 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
        Null deviance: 1596.6 on 1173 degrees of freedom
Residual deviance: 1468.0 on 1168 degrees of freedom
AIC: 1480
Number of Fisher Scoring iterations: 4
```

Parameter estimates are the same across Stata, PROC LOGISTIC, and PROC QLIM. R and PROC LOGISTIC have the same standard errors, which are slightly different from those of Stata, PROC QLIM, PROC GENMOD, and PROC PROBIT. Let us conduct the likelihood ratio test using deviances of the null and full models. The pseudo $\mathrm{R}^{2} .0806$ is also computed from the two deviances.

```
> bpm$deviance/-2
[1] -733.9975
> AIC (bpm)
[1] 1479.995
> LRtest<-bpm$null.deviance-blm$deviance
> LRtest
[1] 128.6811
> dchisq(LRtest, bpm$df.null - bpm$df.residual)
[1] 2.214737e-26
> 1-bpm$deviance/bpm$null.deviance # McFadden's pseudo R square
[1] 0.08056336
```

In order to get the predicted probability, use the same script except for the cumulative standard normal distribution function (CDF) pnorm (). The predicted probability is 47.47 percent at the same reference points.

```
> bHat<-coef(bpm) # vector of parameter estimates
> K<-length(bHat) # the number of regressors
> referX<-c(1, 16, mean(income), mean(age), 0, 1)
> xb<-bHat %*% referx # element by element product
> prob<-pnorm(xb)
> prob
```

 [,1]
    ```
[1,] 0.4746947
```

When calculating marginal effects in the binary probit model, use the standard normal probability density function (PDF) dnorm (). The following for () loop sets two reference points of 0 and 1 and computes the difference of the two predicted probabilities.

```
> margin<-cbind(bHat, dnorm(xb)*bHat, dnorm(xb)*bHat*sdX, meanX, sdX)
> for (i in c(5, 6)) { # locations of binary variables
+ referX0<-matrix(referX)
    referX1<-matrix(referX)
    referX0[i,1]<-0
    referX1[i,1]<-1
    xb0<-bHat %*% referX0
    xb1<-bHat %*% referX1
    dChange<-pnorm(xb1) -pnorm(xb0)
    margEffect[i,2]<-dChange # replace the marginal effect with the discrete change
}
margEffect<-margEffect[2:K,]
> colnames(margEffect)<-c("b", "MargEffect", "MargEffect(SD)", "Mean of X", "SD of X")
> margEffect
    b MargEffect MargEffect(SD) Mean of X SD of X
educate 0.09071919 0.036118888 0.09281515 14.2427598 2.5697123
income 0.01859065 0.007401671 0.04584795 24.6486371 6.1942699
age 0.01731051 0.006891997 0.09240188 41.3074957 13.4071272
male 0.15939356 0.063513240 0.03158862 0.4505963 0.4977653
www 0.34176814 0.132044777 0.05589197 0.7853492 0.4107548
```

Compare above marginal effects with the results of . prchange in Section 3.1 and PROC IML in Section 3.2.

3.5 Binary Probit Model in LIMDEP (Probit\$)

In LIMDEP, the Probit\$ command estimates various probit models. Do not forget to include the ONE for the intercept. LIMDEP produces the same result as the other software packages.

```
PROBIT;Lhs=TRUST;
    Rhs=ONE, EDUCATE, INCOME, AGE ,MALE ,WWW;
    Marginal Effects; Means$
Normal exit from iterations. Exit status=0.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Binomial Probit Model} \\
\hline \multicolumn{2}{|l|}{Maximum Likelihood Estimates} \\
\hline Model estimated: Sep 09, 200 & at 11:41:52PM.| \\
\hline Dependent variable & TRUST \\
\hline Weighting variable & None \\
\hline Number of observations & 1174 \\
\hline Iterations completed & 5 \\
\hline Log likelihood function & -733.9975 \\
\hline Number of parameters & 6 \\
\hline Info. Criterion: AIC & 1.26064 \\
\hline Finite Sample: AIC & 1.26070 \\
\hline Info. Criterion: BIC & 1.28655 \\
\hline Info. Criterion: HQIC & 1.27041 \\
\hline Restricted log likelihood & -798.3122 \\
\hline McFadden Pseudo R-squared & . 0805634 \\
\hline Chi squared & 128.6294 \\
\hline Degrees of freedom & 5 \\
\hline Prob[ChiSqd > value] = & . 0000000 \\
\hline Hosmer-Lemeshow chi-squared & 4.81557 \\
\hline
\end{tabular}
```


Compare marginal effects above with the following that . prchange computed at the means of all independent variables.

```
. prchange
probit: Changes in Probabilities for trust
\begin{tabular}{rrrrrr} 
& min->max & \(0->1\) & \(-+1 / 2\) & -+ sd/2 & MargEfct \\
educate & 0.5262 & 0.0123 & 0.0353 & 0.0905 & 0.0353 \\
income & 0.1816 & 0.0059 & 0.0072 & 0.0448 & 0.0072 \\
age & 0.4435 & 0.0045 & 0.0067 & 0.0901 & 0.0067 \\
male & 0.0621 & 0.0621 & 0.0619 & 0.0309 & 0.0620 \\
www & 0.1289 & 0.1289 & 0.1323 & 0.0546 & 0.1330
\end{tabular}
Pr(y|x) }\begin{array}{lrr}{0.5888}&{0.4112}
\begin{tabular}{rrrrrr} 
& educate & income & age & male & www \\
\(\mathrm{x}=\) & 14.2428 & 24.6486 & 41.3075 & .450596 & .785349 \\
sd_x \(=\) & 2.56971 & 6.19427 & 13.4071 & .497765 & .410755
\end{tabular}
```


3.6 Binary Probit Model in SPSS

SPSS has the Probit command to fit the binary probit model. This command requires an additional variable (e.g., n in the following example) with constant 1 . If you want to use GUI menu (point-and-click), include n in Total Observed: and independent variables in Covariate(s) of a dialog box Probit Analysis.

```
COMPUTE n=1.
PROBIT trust OF n WITH educate income age male www
    /LOG NONE
    /MODEL PROBIT
    /PRINT FREQ
    /CRITERIA ITERATE(20) STEPLIMIT(.1).
```

The following tables are selected from messy SPSS output. Stata, SAS, LIMDEP, SPSS and R produce the same parameter estimates and goodness-of-fit measures.

Parameter Estimates

| | | | | | | 95\% Confidence | Interval |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Parameter | Estimate | Std. Error | Z | Sig. | Lower Bound | Upper Bound |
| PROBITa | educate | . 091 | . 015 | 5.878 | . 000 | . 060 | . 121 |
| | income | . 019 | . 007 | 2.707 | . 007 | . 005 | . 032 |
| | age | . 017 | . 003 | 5.869 | . 000 | . 012 | . 023 |
| | male | . 159 | . 077 | 2.073 | . 038 | . 009 | . 310 |
| | www | . 342 | . 099 | 3.445 | . 001 | . 147 | . 536 |
| | Intercept | -3.030 | . 279 | -10.876 | . 000 | -3.309 | -2.751 |

a. PROBIT model: $\operatorname{PROBIT}(p)=$ Intercept $+B X$

Chi-Square Tests

| | Chi-Square | Dfa | Sig. | |
| :--- | :--- | :--- | :--- | :--- |
| PROBIT | Pearson Goodness-of-Fit Test | 1174.457 | 1168 | .442 |

Chi-Square Tests

| | | Chi-Square | Dfa | Sig. |
| :--- | :--- | :--- | :--- | :--- |
| PROBIT | Pearson Goodness-of-Fit Test | 1174.457 | 1168 | .442 |

a. Statistics based on individual cases differ from statistics based on aggregated cases.

The Probit command also fits the binary logit model. The following command reports z scores instead of Wald statistics and does not report factor changes of the odds. The output is skipped.

```
PROBIT trust OF n WITH educate income age male www
    /LOG NONE
    /MODEL LOGIT
    /PRINT FREQ
    /CRITERIA ITERATE(20) STEPLIMIT(.1).
```

Table 3.1 summarizes parameter estimates and goodness-of-fit statistics produced in SAS, Stata, R, and LIMDEP. Parameter estimates are the same across software packages, but standard errors in PROC LOGISTIC and R are slightly different from those computed in other software packages (i.e., PROC QLIM, PROC GENMOD, PROC PROBIT, Stata, LIMDEP, and SPSS). I would recommend PROC LOGISTIC and Stata for the binary probit model.

Table 3.1 Parameter Estimates and Goodness-of-fit of the Binary Probit Model

| | SAS | | | Stata
 .probit | $\begin{gathered} \mathrm{R} \\ \mathrm{glm}() \end{gathered}$ | LIMDEP
 Probit\$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | LOGISTIC | QLIM | GENMOD | | | |
| Education | $\begin{gathered} .0907 \\ (.0158) \end{gathered}$ | $\begin{gathered} .0907 \\ (.0154) \end{gathered}$ | $\begin{gathered} .0907 \\ (.0154) \end{gathered}$ | $\begin{gathered} .0907 \\ (.0154) \end{gathered}$ | $\begin{gathered} .0907 \\ (.0158) \end{gathered}$ | $\begin{gathered} .0907 \\ (.0154) \end{gathered}$ |
| Family income | $\begin{aligned} & .0186 \\ & (.0068) \end{aligned}$ | $\begin{aligned} & .0186 \\ & (.0069) \end{aligned}$ | $\begin{aligned} & .0186 \\ & (.0069) \end{aligned}$ | $\begin{gathered} .0186 \\ (.0069) \end{gathered}$ | $\begin{aligned} & .0186 \\ & (.0068) \end{aligned}$ | $\begin{aligned} & .0186 \\ & (.0069) \end{aligned}$ |
| Age | $\begin{aligned} & .0173 \\ & (.0030) \end{aligned}$ | $\begin{aligned} & .0173 \\ & (.0030) \end{aligned}$ | $\begin{aligned} & .0173 \\ & (.0029) \end{aligned}$ | $\begin{gathered} .0173 \\ (.0029) \end{gathered}$ | $\begin{aligned} & .0173 \\ & (.0030) \end{aligned}$ | $\begin{gathered} .0173 \\ (.0029) \end{gathered}$ |
| Gender (male) | $\begin{gathered} .1594 \\ (.0769) \end{gathered}$ |
| WWW use | $\begin{gathered} .3418 \\ (.0995) \end{gathered}$ | $\begin{aligned} & .3418 \\ & (.0992) \end{aligned}$ | $\begin{gathered} .3418 \\ (.0992) \end{gathered}$ | $\begin{aligned} & .3418 \\ & (.0992) \end{aligned}$ | $\begin{gathered} .3418 \\ (.0995) \end{gathered}$ | $\begin{gathered} .3418 \\ (.0992) \end{gathered}$ |
| Intercept | $\begin{array}{r} -3.0298 \\ (.2796) \\ \hline \end{array}$ | $\begin{array}{r} -3.0301 \\ (.2786) \\ \hline \end{array}$ | $\begin{array}{r} -3.0301 \\ (.2786) \\ \hline \end{array}$ | $\begin{array}{r} -3.0301 \\ (.2786) \\ \hline \end{array}$ | $\begin{array}{r} -3.0300 \\ (.2796) \\ \hline \end{array}$ | $\begin{array}{r} -3.0301 \\ (.2786) \\ \hline \end{array}$ |
| Log likelihood | -733.9975 | -733.9975 | -733.9975 | -733.9975 | -733.9975 | -733.9975 |
| Likelihood test | 128.629 | 128.63 | | 128.63 | 128.6811 | 128.6294 |
| Pseudo R^{2} | . 0806 | . 0806 | | . 0806 | . 0806 | . 0806 |
| AIC | 1479.995 | 1480. | 1479.9949 | 1479.995 | 1749.995 | 1749.9914 |
| BIC (Schwarz) | 1510.404 | 1510. | 1510.4040 | 1510.404 | | 1510.4097 |
| H_{0} test | Chi-square | t | Chi-square | z | z | z |

${ }_{* *}^{*}$ PROC LOGISTIC and R reports ($-2 *$ Log-likelihood).
** AIC*N and BIC*N in Stata and LIMDEP

4. Bivariate Probit Regression Models

Bivariate probit regression models have two equations for two binary dependent variables. This chapter explains how to fit the bivariate probit model and the recursive bivariate regression model with an endogenous variable. The recursive bivariate probit model is formulated as (Maddala 1983:122-123; Greene 2003:715-716),

$$
\begin{array}{ll}
y_{1}^{*}=x_{1}^{\prime} \beta_{1}+y_{2} \gamma+\varepsilon_{1}, & y_{1}=1 \text { if } y_{1}^{*}>0,0 \text { otherwise }, \\
y_{2}^{*}=x_{2}^{\prime} \beta_{2}+\varepsilon_{2}, & y_{2}=1 \text { if } y_{2}^{*}>0,0 \text { otherwise },
\end{array}
$$

where y_{1} is a binary dependent variable of interest in equation $1, y_{2}$ is a binary dependent variable of equation 2 that is included in the first equation as an endogenous variable, and x_{1} and x_{2} are the regressor vectors of two regression equations. A typical bivariate probit model does not include $y_{2} \gamma$ in the first equation. Disturbances of two equations are assumed to be independent, identically distributed and follow the bivariate standard normal probability distribution with their correlation coefficient ρ :

$$
\phi_{2}\left(\varepsilon_{1}, \varepsilon_{2}, \rho\right)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left[\frac{-1}{2\left(1-\rho^{2}\right)}\left(\varepsilon_{1}^{2}+\varepsilon_{2}^{2}-2 \rho \varepsilon_{1} \varepsilon_{2}\right)\right]
$$

Here we consider a model, where social trust and Internet use are jointly determined. Stata, SAS, and LIMDEP can fit bivariate probit models.

4.1 Bivariate Probit Model in Stata (.biprobit)

In Stata, .biprobit estimates bivariate probit models. If both equations have the same specification, you may list two dependent variables followed by covariates. If not, you need to specify equations individually, in each of which a binary variable and independent variables separated by an equal sign. The following two commands fit exactly the same model.

```
. quietly biprobit trust www educate income age male // or
. biprobit (trust = educate income age male) (www = educate income age male)
Fitting comparison equation 1:
Iteration 0: log likelihood = -798.31217
Iteration 1: log likelihood = -740.16976
Iteration 2: log likelihood = -740.02303
Iteration 3: log likelihood = -740.02303
Fitting comparison equation 2:
Iteration 0: log likelihood = -610.5431
Iteration 1: log likelihood = -564.86129
Iteration 2: log likelihood = -564.36806
Iteration 3: log likelihood = -564.36805
Comparison: log likelihood = -1304.3911
Fitting full model:
Iteration 0: log likelihood = -1304.3911
```


This model fits the data well ($\chi^{2}=185.87, \mathrm{p}<.0000$). . f itstat and other SPost commands do not work with this model. Instead, .estat returns AIC 2,618 and BIC 2,673 , respectively.

```
. estat ic
```


We can compute marginal effects and conditional marginal effects using predict (pmarg1) and predict (pcond1), respectively. If the correlation of disturbances of two equations is zero, they should be identical. Since the likelihood ratio test above rejects the null hypothesis of zero correlation ($\chi^{2}=13.1412, \mathrm{p}<.0003$), marginal effects and conditional marginal effects here are different even at the same reference points.

```
. mfx, predict(pcond1) at(mean educate=16 male=0)
Marginal effects after biprobit
    y = Pr(trust=1|www=1) (predict, pcond1)
        = .4744549
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline variable | & dy/dx & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & 95\% & C.I. & X \\
\hline educate | & . 0371474 & . 00613 & 6.06 & 0.000 & . 025124 & . 049171 & 16 \\
\hline income | & . 0076112 & . 00272 & 2.80 & 0.005 & . 002278 & . 012944 & 24.6486 \\
\hline age | & . 006753 & . 00117 & 5.79 & 0.000 & . 004467 & .009039 & 41.3075 \\
\hline male*| & . 0643811 & . 03051 & 2.11 & 0.035 & . 004592 & . 124171 & \\
\hline
\end{tabular}
```

(*) dy/dx is for discrete change of dummy variable from 0 to 1
mfx, predict(pmarg1) at(mean educate=16 male=0)

(*) $d y / d x$ is for discrete change of dummy variable from 0 to 1

4.2 Recursive Bivariate Probit Model in Stata (.biprobit)

What if Internet use influences social trust directly? In order words, WWW use is the dependent variable in the second equation and is also included in the first equation as an endogenous variable. This is a recursive bivariate probit model, which is explained in Maddala (1983) and Greene (1996, 2003). Since the two equations have different specifications, they should be provided separately in parentheses after the .biprobit command. Check the model name Seemingly unrelated bivariate probit in the following output.

```
. biprobit (trust = educate income age male www) (www = educate income age male)
Fitting comparison equation 1:
```

| Iteration 0: | log likelihood $=-798.31217$ |
| :--- | :--- | :--- |
| Iteration 1: | log likelihood $=-734.10951$ |
| Iteration 2: | log likelihood $=-733.99746$ |
| Iteration 3: | log likelihood $=-733.99746$ |
| | |
| Fitting comparison equation 2: | |
| Iteration 0: | log likelihood $=-610.5431$ |
| Iteration 1: | log likelihood $=-564.86129$ |
| Iteration 2: | log likelihood $=-564.36806$ |
| Iteration 3: | \log likelihood $=-564.36805$ |
| Comparison: | log likelihood $=-1298.3655$ |

Fitting full model:

| Iteration 0: | log likelihood $=-1298.3655$ |
| :--- | :--- | :--- |
| Iteration 1: | log likelihood $=-1298.2982$ |
| Iteration 2: | log likelihood $=-1297.3043$ |
| Iteration 3: | log likelihood $=-1297.3008$ |
| Iteration 4: | log likelihood $=-1297.3007$ |

| Seemingly unrelated bivariate probit | Number of obs | $=$ | 1174 |
| :--- | :--- | :--- | :--- |
| Log likelihood $=-1297.3007$ | Wald chi2 (9) | $=$ | 194.40 |
| | Prob $>$ chi2 | $=$ | 0.0000 |

| | Coef. | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. Interval] | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| trust | | | | | | |
| educate | . 1228844 | . 0197756 | 6.21 | 0.000 | . 084125 | . 1616437 |
| income | . 0225769 | . 0066392 | 3.40 | 0.001 | . 0095643 | . 0355894 |
| age | . 0126723 | . 004382 | 2.89 | 0.004 | . 0040837 | . 021261 |
| male | . 1682476 | . 0743747 | 2.26 | 0.024 | . 0224759 | . 3140193 |
| www | -. 7178395 | . 5729155 | -1.25 | 0.210 | -1.840733 | . 4050543 |
| _cons | -2.531195 | . 4938755 | -5.13 | 0.000 | -3.499174 | -1.563217 |
| WWw | | | | | | |
| educate | . 1510947 | . 0182167 | 8.29 | 0.000 | . 1153906 | . 1867988 |
| income | . 0188034 | . 0065301 | 2.88 | 0.004 | . 0060047 | . 0316021 |

This model also fits the data well ($\chi^{2}=194.40, \mathrm{p}<.0000$) and most individual parameters are statistically significant at the . 05 level. AIC and BIC are 2,619 and 2,679, respectively.

```
. estat ic
```

| Model | Obs | 11 (null) | 11 (model) | df | AIC | BIC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 1174 | . | -1297.301 | 12 | 2618.601 | 2679.419 |

However, the LR test $\left(\chi^{2}=2.1296\right)$ suggests that the two disturbances are not significantly correlated. The estimated correlation .5863 is far away from zero but is not statistically discernable ($\mathrm{p}<.1445$). Therefore, social trust and WWW use may not be jointly determined; each equation may need to be estimated separately or may be analyzed in the bivariate probit model. The binary probit model for WWW use is as follows.

| Iteration 0: log likelihood $=-610.5431$ | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Iteration 1: log likelihood $=-564.86129$ | | | | | | | |
| Iteration 2: log likelihood $=-564.36806$ | | | | | | | |
| Iteration 3: log likelihood $=-564.36805$ | | | | | | | |
| Probit regression | | | | Number of obs $=1174$ | | | |
| | | | | LR | (4) | = | 92.35 |
| | | | | Prob | chi2 | = | 0.0000 |
| Log likelihood $=-564.36805$ Pseudo R2 0.0756 | | | | | | | |
| www | Coef. | Std. Err. | z | $\mathrm{P}>\|\mathrm{z}\|$ | [95\% Conf. Interval] | | |
| educate | . 1454532 | . 0178746 | 8.14 | 0.000 | . 1104 | | . 1804868 |
| income | . 0189197 | . 0065902 | 2.87 | 0.004 | . 0060 | | . 0318362 |
| age | -. 0103946 | . 0032009 | -3.25 | 0.001 | -. 0166 | | -. 004121 |
| male | . 08164 | . 0865442 | 0.94 | 0.346 | -. 0879 | | . 2512635 |
| _cons | -1.288283 | . 2885836 | -4.46 | 0.000 | -1.853 | | -. 7226694 |

In the recursive bivariate probit model, conditional marginal effects make more sense than the typical marginal effects. The predicted probability that citizens trust most people is 47.21 percent at the reference points, given they use the Internet: pr (trust=1|www=1)=.4721.

```
. quietly biprobit (trust = educate income age male www) (www = educate income age male)
. mfx, predict(pcond1) at(mean educate=16 male=0 www=1)
Marginal effects after biprobit
    y = Pr(trust=1|www=1) (predict, pcond1)
    =.47208977
variable | dy/dx Std. Err. z P>|z| [ 95% C.I. ] X
```

| educate | . 0394964 | . 00635 | 6.22 | 0.000 | . 027053 | . 05194 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| income \| | . 0079921 | . 00266 | 3.01 | 0.003 | . 002786 | . 013198 | 24.6486 |
| age | . 0061891 | . 00132 | 4.67 | 0.000 | . 003592 | . 008786 | 41.3075 |
| male*\| | . 065738 | . 02987 | 2.20 | 0.028 | . 007193 | . 124284 | 0 |
| www*\| | -. 2858939 | . 21383 | -1.34 | 0.181 | -. 704984 | . 133196 | 1 |

(*) $d y / d x$ is for discrete change of dummy variable from 0 to 1
Stata .mfx does not report direct and indirect effects but returns the sum of the two effects. When combining direct and indirect effects, for an additional increase in education from the 16 years, the conditional predicted probability of trusting people will increase by 3.95 percent, holding all other variables constant at their reference points.

The following Stata script illustrates how to compute manually direct and indirect effects of covariates. See the Stata script in Appendix for entire steps of computation. Beginners may skip this part and take a look at the result table only. Find the predicted probability of .4721 in the middle of the output. See Greene $(1996,2007)$ for related formulas.

```
. quietly biprobit (trust = educate income age male www) (www = educate income age male)
. global rho=e(rho) // correlation coefficient of disturbances
. global n1 = 6 // the number of parameters in equation 1
. global n2 = 5 // the number of parameters in equation 2
. tabstat educate income age male www, stat(mean) col(variable) save
\begin{tabular}{c|ccccc} 
stats | educate income & age & male & WWw \\
mean | & 14.24276 & 24.64864 & 41.3075 & .4505963 & .7853492
\end{tabular}
- matrix ref1 = r(StatTotal),I(1) // reference points for equation 1
. matrix ref1[1,1]=16 // education (college graduation)
. matrix ref1[1,4]=0 // female
. matrix ref1[1,5]=1 // WWW use
. matrix ref2 = ref1[1,1..$n2] // reference points for equation 2
. matrix ref2[1,$n2]=1
. // get parameter estimates
. matrix b0=e(b)
. matrix b1=b0[1,1..$n1] // parameter estimates for equation 1
. matrix b2=b0[1,$n1+1..$n1+$n2] // parameter estimates for equation 2
. matrix xb1=b1*ref1' // compute xb1 of equation 1
. matrix xb2=b2*ref2' // compute xb2 of equation 2
. global xb1=xb1[1,1] // put xb1 into a global macro for computation
. global xb2=xb2[1,1] // put xb1 into a global macro for computation
. // compute the predicted probability at the reference points
. di binormal($xb1, $xb2, $rho)/normal($xb2)
.47208977
. // compute direct effects
. global g1=normalden($xb1)*normal(($xb2-($rho)*$xb1)/sqrt(1-($rho)^2))
. matrix directE=$g1/normal ($xb2)*b1
. matrix directE=directE[1,1..$n2]
. // compute indirect effects
. global g2=normalden($xb2)*normal(($xb1-($rho)*$xb2)/sqrt(1-($rho)^2))
. matrix indirectE=($g2/normal($xb2)- ///
    (binormal($xb1,$xb2,$rho) *normalden($xb2))/(normal($xb2)^2)) *b2
. matrix indirectE[1,$n2]=0
```

```
. // compute overall effects
. matrix Overall=directE+indirectE
```

(the procedure for computing discrete change is skipped)

| . matrix list Marginal | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| Marginal[4,5] | | | | | |
| Education | Income | Age | Male | WWW | |
| Reference | 16 | 24.648637 | 41.307496 | 0 | 1 |
| Direct | .05190699 | .0095366 | .00535285 | .07106867 | -.3032191 |
| Indirect | -.0124106 | -.00154447 | .00083628 | -.00545353 | 0 |
| Overall | .03949639 | .00799213 | .00618913 | .06573803 | -.28589388 |

Read the last line for overall marginal effects and discrete changes and compare with the output of the . mfx above. The overall impact of education on social trust is the sum of direct (.0519) and indirect effects (-.0124). Family income also has negative indirect effect -.0015 , but age has both positive direct and indirect effects (. 0054 and .0008 , respectively).

The following two commands compute marginal effects of equation 1 and 2 (pmarg1 and pmarg2). The predicted probability of trusting people is .4196 at the reference points, while the predicted probability of using WWW in the second equation is .8632 .

```
. mfx, predict(pmarg1) at(mean educate=16 male=0 www=1)
Marginal effects after biprobit
        y = Pr(trust=1) (predict, pmarg1)
= .41959352
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline variable | & \(d y / d x\) & Std. Err. & z & P> \(|z|\) & [ 95\% & C.I. ] & X \\
\hline educate & . 0480246 & . 00759 & 6.33 & 0.000 & . 033147 & . 062903 & 16 \\
\hline income & . 0088233 & . 00258 & 3.42 & 0.001 & . 00377 & . 013876 & 24.6486 \\
\hline age | & . 0049525 & . 00175 & 2.82 & 0.005 & . 001515 & . 00839 & 41.3075 \\
\hline male*| & . 0665716 & . 02941 & 2.26 & 0.024 & . 008926 & . 124217 & 0 \\
\hline www* & -. 2770971 & . 20246 & -1.37 & 0.171 & -. 673911 & . 119717 & 1 \\
\hline
\end{tabular}
(*) dy/dx is for discrete change of dummy variable from 0 to 1
. mfx, predict(pmarg2) at(mean educate=16 male=0 www=1)
Marginal effects after biprobit
        y = Pr(www=1) (predict, pmarg2)
        = .86317073
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline variable | & dy/dx & Std. Err. & z & \(\mathrm{P}>|\mathrm{z}|\) & [ 95\% & C.I. ] & X \\
\hline educate | & . 0331092 & . 00319 & 10.37 & 0.000 & . 026852 & . 039366 & 16 \\
\hline income | & . 0041204 & . 00145 & 2.84 & 0.005 & . 001277 & . 006963 & 24.6486 \\
\hline age | & -. 002231 & . 00071 & -3.13 & 0.002 & -. 0003628 & -. 000834 & 41.3075 \\
\hline male*| & . 0140228 & . 01825 & 0.77 & 0.442 & -. 021756 & . 049801 & 0 \\
\hline www*| & 0 & 0 & . & . & 0 & 0 & 1 \\
\hline
\end{tabular}
(*) \(d y / d x\) is for discrete change of dummy variable from 0 to 1
```


4.3 Bivariate Probit Models in SAS: PROC QLIM

In SAS, PROC QLIM is able to estimate both bivariate probit models. Like Stata, SAS allows specifying two equations in a line if they share the same specification. ENDOGENOUS describes characteristics of dependent variables; in this example, they are discrete variables
whose disturbances are normally distributed. Stata and SAS report the same correlation of disturbances ($\rho=.2008$), parameter estimates, and standard errors.

```
PROC QLIM DATA=masil.gss_cdvm;
    MODEL trust www = educate income age male;
    ENDOGENOUS trust www ~ DISCRETE(DIST=NORMAL);
RUN;
```


Algorithm converged.

Parameter Estimates

| Parameter | DF | Estimate | Standard
 Error | t Value | Approx
 Pr |
| :--- | ---: | ---: | ---: | ---: | ---: |
| It\| | | | | | |

Now, let us fit the recursive bivariate probit model. Notice that the two equations are provided in two separate MODEL statements. The ENDOGENOUS statement is needed to indicate the probability distribution of disturbances in the two equations.

```
PROC QLIM DATA=masil.gss_cdvm;
    MODEL trust = educate income age male www;
    MODEL www = educate income age male;
    ENDOGENOUS trust www ~ DISCRETE(DIST=NORMAL);
RUN;
```


Algorithm converged.

| | | Parameter | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Standard | | Approx |
| Parameter | DF | Estimate | Error | t Value | $\operatorname{Pr}>\|\mathrm{t}\|$ |
| trust.Intercept | 1 | -2.532266 | 0.494644 | -5.12 | $<.0001$ |
| trust.educate | 1 | 0.122857 | 0.019796 | 6.21 | <. 0001 |
| trust.income | 1 | 0.022575 | 0.006640 | 3.40 | 0.0007 |
| trust.age | 1 | 0.012681 | 0.004389 | 2.89 | 0.0039 |
| trust.male | 1 | 0.168258 | 0.074380 | 2.26 | 0.0237 |
| trust.www | 1 | -0.716498 | 0.574098 | -1.25 | 0.2120 |
| www.Intercept | 1 | -1.365669 | 0.292877 | -4.66 | <. 0001 |
| www.educate | 1 | 0.151091 | 0.018218 | 8.29 | <. 0001 |

| www.income | 1 | 0.018804 | 0.006530 | 2.88 | 0.0040 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| www. age | 1 | -0.010182 | 0.003193 | -3.19 | 0.0014 |
| www.male | 1 | 0.066424 | 0.086610 | 0.77 | 0.4431 |
| _Rho | 1 | 0.585570 | 0.303930 | 1.93 | 0.0540 |

Stata and PROC QLIM produce the same result except for the correlation of disturbances and parameter estimates of WWW use, which are slightly different (e.g., .5863 versus .5856 in ρ and -. 7178 versus -.7165 for WWW use).

4.4 Bivariate Probit Models in LIMDEP (Bivariateprobit\$)

Bivariateprobit\$ estimates bivariate probit models in LIMDEP. The Lhs= subcommand lists the two binary dependent variables, whereas $\mathrm{Rh} 1=$ and $\mathrm{Rh} 2=$ respectively specify the independent variables for the two equations.

```
BIVARIATEPROBIT;Lhs=TRUST,WWW;
    Rh1=ONE , EDUCATE, INCOME , AGE ,MALE;
    Rh2=ONE,EDUCATE,INCOME,AGE,MALE$
Normal exit from iterations. Exit status=0.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{| FIML Estimates of Bivariate Probit Model} \\
\hline \multicolumn{2}{|l|}{Maximum Likelihood Estimates} \\
\hline | Model estimated: Sep 15, & at 03:16:00PM.| \\
\hline | Dependent variable & TRUWWW \\
\hline | Weighting variable & None \\
\hline | Number of observations & 1174 \\
\hline | Iterations completed & 17 \\
\hline | Log likelihood function & -1297.820 \\
\hline | Number of parameters & 11 \\
\hline Info. Criterion: AIC = & 2.22968 \\
\hline | Finite Sample: AIC & 2.22987 \\
\hline Info. Criterion: BIC = & 2.27716 \\
\hline Info. Criterion: \(\mathrm{HQIC}=\) & 2.24758 \\
\hline
\end{tabular}
+--------+--------------+----------------+-----------------------------------
|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|
+--------+--------------+----------------+--------------------------------------
---------+Index equation for TRUST
\begin{tabular}{l:rrrrr} 
Constant & -2.92696771 & .27487860 & -10.648 & .0000 & \\
EDUCATE & .10285982 & .01414096 & 7.274 & .0000 & 14.2427598 \\
INCOME & .02028760 & .00707111 & 2.869 & .0041 & 24.6486371 \\
AGE & .01612671 & .00293070 & 5.503 & .0000 & 41.3074957 \\
MALE & .16569900 & .07696720 & 2.153 & .0313 & .45059625 \\
\hdashline-----+ Index & equation & for & WWW & & \\
Constant & -1.31776621 & .29250724 & -4.505 & .0000 & \\
EDUCATE & .14782515 & .01763456 & 8.383 & .0000 & 14.2427598 \\
INCOME & .01887630 & .00643465 & 2.934 & .0034 & 24.6486371 \\
AGE & -.01039833 & .00328982 & -3.161 & .0016 & 41.3074957 \\
MALE & .07762348 & .08744329 & .888 & .3747 & .45059625 \\
-------+Disturbance Correlation & & & \\
RHO (1,2) & .20080326 & .05431808 & 3.697 & .0002 &
\end{tabular}
```


The above output suggests that Stata, SAS, and LIMDEP produce same correlation coefficient of errors, parameter estimates, and standard errors with some rounding errors. AIC and BIC are $2617=2.2297 * 1,174$ and $2,673=2.2772 * 1,174$, respectively.

Now, fit the recursive bivariate probit model by adding WWW use to the first equation as an endogenous variable. Marginal Effect (or Margin) in the following command computes marginal effects and discrete changes at the means of the independent variables.

```
BIVARIATEPROBIT;Lhs=TRUST,WWW;
    Rh1=ONE , EDUCATE, INCOME , AGE ,MALE ,WWW ;
    Rh2=ONE, EDUCATE, INCOME, AGE ,MALE;
    Marginal Effect$
```

Normal exit from iterations. Exit status=0.

| \| FIML Estimates of Bivariate Probit Model | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Maximum Likelihood Estimates \| | | | | | |
| \| Model estimated: Sep 15, 2009 at 00:21:09PM.| | | | | | |
| \| Depende | variable | TRUWWW | \| | | |
| \| Weighti | variable | None | I | | |
| \| Number | bservations | 1174 | I | | |
| \| Iterati | completed | 24 | \| | | |
| \| Log lik | ood function | -1297.301 | I | | |
| \| Number | arameters | 12 | I | | |
| \| Info. C | rion: AIC = | 2.23050 | \| | | |
| \| Finit | mple: AIC = | 2.23072 | I | | |
| \| Info. C | rion: BIC = | 2.28230 | I | | |
| \| Info. C | rion:HQIC = | 2.25003 | \| | | |
| \|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| | | | | | |
| ---------+Index equation for TRUST | | | | | |
| Constant | -2.53127459 | . 62810574 | -4.030 | . 0001 | |
| EDUCATE | . 12288180 | . 02325478 | 5.284 | . 0000 | 14.2427598 |
| INCOME | . 02257666 | . 00691464 | 3.265 | . 0011 | 24.6486371 |
| AGE | . 01267296 | . 00549849 | 2.305 | . 0212 | 41.3074957 |
| MALE | . 16824823 | . 07532931 | 2.234 | . 0255 | . 45059625 |
| WWW | -. 71772906 | . 79960562 | -. 898 | . 3694 | . 78534923 |
| ---------+Index equation for wWW | | | | | |

| EDUCATE | -.01572384 | .01418159 | -1.109 | .2675 | 14.2427598 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| INCOME | -.00195680 | .00186681 | -1.048 | .2945 | 24.6486371 |
| AGE | .00105955 | .00097193 | 1.090 | .2756 | 41.3074957 |
| MALE | -.00690973 | .01021978 | -.676 | .4990 | .45059625 |
| WWW | .000000 | $\ldots .$. (Fixed | Parameter)..... | | |

| \| Analysis of dummy variables in the model. The effects are | computed using $E[y 1 \mid y 2=1, d=1]-E[y 1 \mid y 2=1, d=0]$ where d is \| the variable. Variances use the delta method. The effect | accounts for all appearances of the variable in the model | | | |
| :---: | :---: | :---: | :---: |
| \|Variable | Effect | Standard error | t ratio |
| MALE | . 065467 | . 030353 | 2.157 |
| WWW | -. 296117 | . 325843 | -. 909 |

| Joint Frequency Table for Bivariate Probit Model Predicted cell is the one with highest probability | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WWW | | | | | | |
| TRUST | | 0 | | 1 | Total | |
| 0 | | 180 | | 502 | | 682 |
| Fitted | (| 54) | (| 560) | (| 614) |
| 1 | | 72 | | 420 | | 492 |
| Fitted | (| $0)$ | (| 560) | (| 560) |
| Total | | 252 | | 922 | | 1174 |
| Fitted | (| 54) | (| 1120) | (| 1174) |

SAS, Stata, and LIMDEP produce almost the same parameter estimates and log likelihood, but LIMDEP produces slightly different standard errors. The correlation of disturbances is . 5862 in Stata and LIMDEP but is slightly different in SAS ($\rho=.5856$). LIMDEP and Stata report the same conditional predicted probability of 49.9968 percent and conditional marginal effects at the means of covariates. Let us compare the LIMDEP output (direct and indirect effects combined) with the following output computed in Stata:

```
. mfx, predict(pcond1) at(mean male=.450596 www=.785349)
Marginal effects after biprobit
    y = Pr(trust=1|www=1) (predict, pcond1)
        = .49996773
```


| educate | . 0371892 | . 00611 | 6.09 | 0.000 | . 025213 | . 049165 | 14.2428 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| income | . 0077648 | . 00269 | 2.89 | 0.004 | . 002498 | . 013031 | 24.6486 |
| age | . 0065165 | . 0012 | 5.43 | 0.000 | . 004164 | . 008869 | 41.3075 |
| male*\| | . 0654669 | . 03028 | 2.16 | 0.031 | . 006124 | . 12481 | . 450596 |
| www* | -. 2961619 | . 23328 | -1.27 | 0.204 | -. 753376 | . 161052 | . 785349 |

LIMDEP reports direct and indirect effects separately in addition to direct and indirect effect combined. The first table under the label Marginal Effects for Eyl|y2=1 right after the parameter estimates summarizes direct and indirect effects. For example, education has a direct effect of .05291 and an indirect effect -.01572 , so its overall impact on social trust is the sum of the two effects, which is $.0372=.0529-.0157$. Stata reports this combined marginal effect. Find the equivalent overall effect in the table under Total effects reported $=$ direct+indirect of the above LIMDEP output. LIMDEP produces other two tables for direct (see under These are the direct marginal effects) and indirect effects (see under These are the indirect marginal effects).

Discrete changes .0655 of male and -. 3091 of WWW use under direct+indirect in the LIMDEP output are different from those of Stata since LIMDEP computes at the means of all covariates including binary variables; in fact, they are not, by definition, discrete changes (differences in predicted probabilities between trust=0 and trust=1). LIMDEP reports discrete changes ($E[y 1 \mid y 2=1, d=1]-E[y 1 \mid y 2=1, d=0]$) separately at the bottom of the output. Find -6.5467 percent for gender and -29.6117 for WWW use.

The following table reports direct, indirect, and overall effects computed manually at the means of covariates in Stata. See the attached Stata script for computation. Notice that the last two numbers (. 0655 and -.2962) on row overall are discrete changes of gender and WWW use, respectively.

| | Education | Income | Age | Male | WWW |
| ---: | ---: | ---: | ---: | ---: | ---: |
| Reference | 14.24276 | 24.648637 | 41.307496 | .45059625 | .78534923 |
| Direct | .05291496 | .00972179 | .0054568 | .07244873 | -.30910722 |
| Indirect | -.01572574 | -.00195703 | .00105967 | -.00691029 | 0 |
| Overall | .03718922 | .00776475 | .00651647 | .06546686 | -.29616189 |

Analysis of direct and indirect effects is very useful especially when two effects have opposite signs. For instance, education influences positively social trust in the first equation but has a negative impact (indirect effect) on WWW use in the second equation. Therefore, its overall effect is determined by magnitudes of two effects; the large direct impact dominates in this case, $.0372=.0529-.0157$. If this specification is correct, a single equation for social trust may mistakenly report an overestimated impact of education. See Greene $(1996,2003)$ for discussion of computing and interpreting marginal effects in the recursive bivariate probit model.

Table 4.1 compares the results of bivariate probit models across Stata, SAS, and LIMDEP. In the bivariate probit model, all three software packages report the same goodness-of-fit measures, parameter estimates, and the correlation coefficient of disturbance ($\rho=.2008$), but LIMDEP produces slightly different standard errors. In the recursive bivariate probit model, similarly, Stata, SAS, and LIMDEP produce the same parameter estimates and goodness-of-fit
measures, but LIMDEP produce different standard errors. SAS reports a bit different parameter estimate of the endogenous variable (-.7165 versus -.7178) and correlation coefficient ($\rho=.5856$ versus .5863).

Table 4.1 Parameter Estimates and Goodness-of-fit of Bivariate Probit Models

| | Bivariate Probit Model | | | Recursive Bivariate Probit Model | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Stata | SAS | LIMDEP | Stata | SAS | LIMDEP |
| Education | $\begin{gathered} .1029 \\ (.0151) \end{gathered}$ | $\begin{gathered} .1029 \\ (.0151) \end{gathered}$ | $\begin{gathered} .1029 \\ (.0141) \end{gathered}$ | $\begin{gathered} .1229 \\ (.0198) \end{gathered}$ | $\begin{gathered} .1229 \\ (.0198) \end{gathered}$ | $\begin{gathered} .1229 \\ (.0233) \end{gathered}$ |
| Family income | $\begin{aligned} & .0203 \\ & (.0068) \end{aligned}$ | $\begin{aligned} & .0203 \\ & (.0068) \end{aligned}$ | $\begin{aligned} & .0203 \\ & (.0071) \end{aligned}$ | $\begin{aligned} & .0226 \\ & (.0066) \end{aligned}$ | $\begin{aligned} & .0226 \\ & (.0066) \end{aligned}$ | $\begin{aligned} & .0226 \\ & (.0069) \end{aligned}$ |
| Age | $\begin{aligned} & .0161 \\ & (.0029) \end{aligned}$ | $\begin{aligned} & .0161 \\ & (.0029) \end{aligned}$ | .0161 $(.0029)$ | $\begin{aligned} & .0127 \\ & (.0044) \end{aligned}$ | $\begin{aligned} & .0127 \\ & (.0044) \end{aligned}$ | $\begin{aligned} & .0127 \\ & (.0055) \end{aligned}$ |
| Gender (male) | $\begin{gathered} .1657 \\ (.0766) \end{gathered}$ | $\begin{aligned} & .1657 \\ & (.0766) \end{aligned}$ | $\begin{gathered} .1657 \\ (.0770) \end{gathered}$ | $\begin{gathered} .1682 \\ (.0744) \end{gathered}$ | $\begin{aligned} & .1682 \\ & (.0744) \end{aligned}$ | $\begin{aligned} & .1682 \\ & (.0753) \end{aligned}$ |
| WWW use | | | | $\begin{aligned} & -.7178 \\ & (.5729) \end{aligned}$ | $\begin{aligned} & -.7165 \\ & (.5741) \end{aligned}$ | $\begin{aligned} & -.7177 \\ & (.7996) \end{aligned}$ |
| Intercept | $\begin{array}{r} -2.9270 \\ (.2751) \\ \hline \end{array}$ | $\begin{array}{r} -2.9270 \\ (.2751) \end{array}$ | $\begin{array}{r} -2.9270 \\ (.2749) \end{array}$ | $\begin{array}{r} -2.5312 \\ (.4939) \end{array}$ | $\begin{array}{r} -2.5323 \\ (.4946) \end{array}$ | $\begin{array}{r} -2.5313 \\ (.6281) \end{array}$ |
| Education | $\begin{gathered} .1478 \\ (.0180) \end{gathered}$ | $\begin{gathered} .1478 \\ (.0180) \end{gathered}$ | $\begin{gathered} .1478 \\ (.0176) \end{gathered}$ | $\begin{gathered} .1511 \\ (.0182) \end{gathered}$ | $\begin{gathered} .1511 \\ (.0182) \end{gathered}$ | $\begin{gathered} .1511 \\ (.0179) \end{gathered}$ |
| Family income | $\begin{gathered} .0189 \\ (.0066) \end{gathered}$ | $\begin{aligned} & .0189 \\ & (.0066) \end{aligned}$ | $\begin{aligned} & .0189 \\ & (.0063) \end{aligned}$ | $\begin{aligned} & .0188 \\ & (.0065) \end{aligned}$ | $\begin{aligned} & .0188 \\ & (.0065) \end{aligned}$ | $\begin{aligned} & .0188 \\ & (.0064) \end{aligned}$ |
| Age | $\begin{aligned} & -.0104 \\ & (.0032) \end{aligned}$ | $\begin{aligned} & -.0104 \\ & (.0032) \end{aligned}$ | $\begin{aligned} & -.0104 \\ & (.0033) \end{aligned}$ | $\begin{aligned} & -.0102 \\ & (.0032) \end{aligned}$ | $\begin{aligned} & -.0102 \\ & (.0032) \end{aligned}$ | $\begin{aligned} & -.0102 \\ & (.0033) \end{aligned}$ |
| Gender (male) | $\begin{aligned} & .0776 \\ & (.0865) \end{aligned}$ | $\begin{gathered} .0776 \\ (.0865) \end{gathered}$ | $\begin{gathered} .0776 \\ (.0874) \end{gathered}$ | $\begin{gathered} .0664 \\ (.0866) \end{gathered}$ | $\begin{gathered} .0664 \\ (.0866) \end{gathered}$ | $\begin{gathered} .0664 \\ (.0875) \end{gathered}$ |
| Intercept | $\begin{array}{r} -1.3178 \\ (.2898) \end{array}$ | $\begin{array}{r} -1.3178 \\ (.2898) \end{array}$ | $\begin{array}{r} -1.3178 \\ (.2925) \end{array}$ | $\begin{array}{r} -1.3657 \\ (.2929) \end{array}$ | $\begin{array}{r} -1.3657 \\ (.2929) \end{array}$ | $\begin{array}{r} -1.3657 \\ (.2954) \end{array}$ |
| Log likelihood | -1297.8205 | -1298 | -1297.820 | -1297.3007 | -1297 | 1297.301 |
| Likelihood test | 185.87 | | | 194.40 | | |
| Rho (ρ) | $\begin{gathered} .2008 \\ (.0543) \end{gathered}$ | $\begin{gathered} .2008 \\ (.0543) \end{gathered}$ | $\begin{gathered} .2008 \\ (.0543) \end{gathered}$ | $\begin{aligned} & .5863 \\ & (.3033) \end{aligned}$ | $\begin{gathered} .5856 \\ (.3039) \end{gathered}$ | $\begin{aligned} & .5862 \\ & (.4248) \end{aligned}$ |
| χ^{2} to test $\rho=0$ | 13.1412 | | | 2.1296 | | |
| AIC | 2617.641 | 2618 | 2617.644 | 2618.601 | 2619 | 2618.607 |
| BIC (Schwarz) | 2673.391 | 2673 | 2673.386 | 2679.419 | 2679 | 2679.420 |

AIC*N and BIC*N in LIMDEP

5. Conclusion

The regression models discussed so far are of categorical dependent variables (binary, ordinal, and nominal responses). An appropriate regression model is determined largely by the measurement level of the categorical dependent variable of interest. The level of measurement should be considered in conjunction with theory and research questions (Long 1997). You must also examine the data generation process (DGP) of a dependent variable to understand its "behavior." Experienced researchers pay special attention to censoring, truncation, sample selection, and other particular patterns of the DGP. These issues are not addressed in this brief technical note.

Generally speaking, if the dependent variable is binary, you may use the binary logit or probit regression model. For ordinal responses, try to fit either ordered logit or probit regression model. If you have a nominal response variable, investigate the DGP carefully and then choose one of the multinomial logit, conditional logit, and nested logit models. In order to use the conditional logit and nested logit, you need to reshape the data set in advance.

You should check key assumptions of a model before fitting the model. Examples are the parallel regression assumption in ordered logit and probit models and the independence of irrelevant alternatives (IIA) assumption in the multinomial logit model. You may respectively conduct the Brant test and Hausman test for these assumptions. If an assumption of an ordered or nominal response model is violated, find alternative models or consider if a dependent variable can be explored in a binary response model by dichotomizing the variable.

Since logit and probit models are nonlinear, their parameter estimates are difficult to interpret intuitively. The situation becomes even worse in generalized ordered logit and multinomial logit models, where many parameter estimates and related statistics are produced.
Consequently, researchers need to spend more time and effort interpreting the results substantively. Simply reporting parameter estimates and goodness-of-fit statistics is not sufficient. J. Scott Long (1997) and Long and Freese (2003) provide good examples of meaningful interpretations using predicted probabilities, factor changes in odds, and marginal effects (discrete changes) of predicted probabilities. It is highly recommended to visualize marginal effects and discrete changes using a plot of predicted probabilities.

In general, logit and probit models require larger N than do linear regression models. Like the Bayesian estimation method, the maximum likelihood estimation method depends on data. You need to check if you have sufficient valid observations especially when your data contain many missing values. Scott Long's rule of thumb says 500 observations and at least additional 10 per independent variable are required in ML estimation. If you have small N, DO NOT include a large number of independent variables. This is the so called "small N and large parameter" problem; you may not be able to reach convergence in estimation and/or may not get reliable results with desirable asymptotic ML properties. In contrast, an extremely large N, say millions to estimate only two parameters, is not always a virtue since it absurdly boosts the statistical power of a test without adding new information. Even a tiny effect, which should have been negligible in a normal situation, may be mistakenly reported as statistically significant.

Regarding statistical software packages, I would recommend the SAS LOGISTIC, QLIM, and MDC procedures of SAS/ETS (see Table 2.1 and 3.1). SAS also has PROC GENMOD and PROC PROBIT, but PROC LOGISTIC and PROC QLIM appear to be best for binary and ordinal response models, and PROC MDC is good for nominal dependent variable models. ODS is another advantage of using SAS. I also strongly recommend using Stata since it provides handy ways to fit various models and also can be assisted by SPost, which has various useful commands such as .fitstat, .prchange, .listcoef, .prtab, and .prgen. I encourage the SAS Institute to develop additional statements similar to, in particular, .prchange and .prgen.

LIMDEP supports various regression models for categorical dependent variables addressed in Greene (2003) but does not seem as user-friendly and stable as SAS and Stata. However, LIMDEP computes direct and indirect effects in the recursive bivariate probit model and helps researchers interpret the result in more detail. You may benefits from R's object-oriented programming concept and analyze data flexibly in your own way. SPSS is least recommended mainly due to its limited support for categorical dependent variable models and messy syntax and output.

For logit and probit models for ordinal and nominal outcome variables, see Park, Hun Myoung. 2009. Regression Models for Ordinal and Nominal Dependent Variables Using SAS, Stata, LIMDEP, and SPSS. Working Paper. The University Information Technology Services (UITS) Center for Statistical and Mathematical Computing, Indiana University." http://www.indiana.edu/~statmath/stat/all/cdvm/index_nominal.html

Appendix: Data Sets

The sample data set is a subset of the 2000 and 2002 General Social Survey of NORC (http://www.norc.org).
http://www.indiana.edu/~statmath/stat/all/cdvm/gss_cdvm.csv http://www.indiana.edu/~statmath/stat/all/cdvm/gss_cdvm.sas7bdat http://www.indiana.edu/~statmath/stat/all/cdvm/gss_cdvm.dta
http://www.indiana.edu/~statmath/stat/all/cdvm/cdvm_binary.do (Stata script) http://www.indiana.edu/~statmath/stat/all/cdvm/cdvm_binary.R (R script)

- trust: 1 if a respondent trust most people
- belief: Religious intensity: no religion (0) through strong (3)
- educate: respondent's education (years)
- income: family income ($\$ 1,000.00$)
- age: respondent's age
- male: 1 for male and 0 for female
- www: 1 if a respondent have used WWW

| Variable | Obs | Mean | Std. Dev. | Min | Max |
| :---: | :---: | :---: | :---: | :---: | :---: |
| trust | 1174 | . 4190801 | . 4936188 | 0 | 1 |
| belief | 1174 | 1.892675 | 1.044809 | 0 | 3 |
| educate | 1174 | 14.24276 | 2.569712 | 2 | 20 |
| income | 1174 | 24.64864 | 6.19427 | . 5 | 27.5 |
| age | 1174 | 41.3075 | 13.40713 | 18 | 86 |
| male | 1174 | . 4505963 | . 4977653 | 0 | 1 |
| www | 1174 | . 7853492 | . 4107548 | 0 | 1 |

| Social \| Trust | | Gender
 Female | Male \| | Total |
| :---: | :---: | :---: | :---: |
| 0 \| | 397 | 285 \| | 682 |
| 1 \| | 248 | 244 \| | 492 |
| Total \| | 645 | 529 \| | 1,174 |

| Social Trust | $\begin{gathered} \text { WWW } \\ \text { Non-users } \end{gathered}$ | Use
 Users | Total |
| :---: | :---: | :---: | :---: |
| 0 | 180 | 502 | 682 |
| 1 | 72 | 420 | 492 |
| Total | 252 | 922 | 1,174 |

[^4]| Female | 149 | 496 | 645 |
| :---: | :---: | :---: | :---: |
| Male | 103 | 426 | 529 |
| Total | 252 | 922 | 1,174 |

| Religious \| Intensity | | $\begin{aligned} & \text { Gender } \\ & \text { Female } \end{aligned}$ | Male \| | Total |
| :---: | :---: | :---: | :---: |
| No religion \| | 80 | 112 | 192 |
| Somewhat strong \| | 79 | 55 \| | 134 |
| Not very strong \| | 239 | 217 \| | 456 |
| Strong I | 247 | 145 \| | 392 |
| Total \| | 645 | 529 \| | 1,174 |

References

Allison, Paul D. 1991. Logistic Regression Using the SAS System: Theory and Application. Cary, NC: SAS Institute.
Cameron, A. Colin, and Pravin K. Trivedi. 2005. Microeconometrics: Methods and Applications. New York: Cambridge University Press.
Cameron, A. Colin, and Pravin K. Trivedi. 2009. Microeconometrics Using Stata. TX: Stata Press.
Greene, William H. 1996. Marginal Effects in the Bivariate Probit Model. Stern School of Business, New York University.
Greene, William H. 2003. Econometric Analysis, $5^{\text {th }}$ ed. Upper Saddle River, NJ: Prentice Hall. Greene, William H. 2007. LIMDEP Version 9.0 Econometric Modeling Guide. Plainview, New York: Econometric Software.
Long, J. Scott, and Jeremy Freese. 2003. Regression Models for Categorical Dependent Variables Using Stata, $2^{\text {nd }}$ ed. College Station, TX: Stata Press.
Long, J. Scott. 1997. Regression Models for Categorical and Limited Dependent Variables: Advanced Quantitative Techniques in the Social Sciences. Sage Publications.
Maddala, G. S. 1983. Limited Dependent and Qualitative Variables in Econometrics. New York: Cambridge University Press.
Park, Hun Myoung. 2004. "Presenting the Binary Logit/Probit Models Using the SAS/IML." Proceedings of the 15th Midwest SAS Users Group Conference in Chicago, IL (September 26-28, 2004).
SAS Institute. 2004. SAS/STAT 9.1 User's Guide. Cary, NC: SAS Institute. SPSS Inc. 2007. SPSS 16.0 Command Syntax Reference. Chicago, IL: SPSS Inc. Stata Press. 2007. Stata Base Reference Manual, Release 10. College Station, TX: Stata Press. Stokes, Maura E., Charles S. Davis, and Gary G. Koch. 2000. Categorical Data Analysis Using the SAS System, $2^{\text {nd }}$ ed. Cary, NC: SAS Institute.

Acknowledgements

I am grateful to Jeremy Albright and Kevin Wilhite at the UITS Center for Statistical and Mathematical Computing for comments and suggestions. I also thank J. Scott Long in Sociology and David H. Good in the School of Public and Environmental Affairs, Indiana University. A special thanks to many readers around the world who have eagerly provided constructive feedback and encouraged me to keep improving this document.

Revision History

- 2003. 04 First draft
- 2004. 07 Second draft
- 2005. 09 Third draft (Added bivariate logit/probit and nested logit models)
- 2008. 10 Fourth draft (Added SAS ODS and SPSS output)
- 2009. 09 Fifth draft (Estimated models using different data and rewrote chapter 2-4)
- 2010. Edited by Dani Marinova.

[^0]: * The citation of this document should read: "Park, Hun Myoung. 2009. Regression Models for Binary Dependent Variables Using Stata, SAS, R, LIMDEP, and SPSS. Working Paper. The University Information Technology Services (UITS) Center for Statistical and Mathematical Computing, Indiana University." http://www.indiana.edu/~statmath/stat/all/cdvm/index.html

[^1]: * A user-written command written by Williams (2005)
 ** The Nlogit\$ command is supported by NLOGIT, a stand-alone package, which is sold separately.

[^2]: ${ }^{1}$ An advantage of using SAS is the Output Delivery System (ODS), which makes it easy to manage SAS output. ODS enables users to redirect the output to HTML (Hypertext Markup Language) and RTF (Rich Text Format) formats. Once SAS output is generated in an HTML document, users can easily handle tables and graphics especially when copying and pasting them into a wordprocessor document.

[^3]: . fitstat
 Measures of Fit for probit of trust

[^4]: . tab male www, miss
 Gender | Non-users UWW Use Users | Total

