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A Lagrange multiplier-based damped least-squares control algorithm for woofer-tweeter (W-T') dual de-
formable-mirror (DM) adaptive optics (AO) is tested with a breadboard system. We show that the algo-
rithm can complementarily command the two DMs to correct wavefront aberrations within a single
optimization process: the woofer DM correcting the high-stroke, low-order aberrations, and the tweeter
DM correcting the low-stroke, high-order aberrations. The optimal damping factor for a DM is found to be
the median of the eigenvalue spectrum of the influence matrix of that DM. Wavefront control accuracy is
maximized with the optimized control parameters. For the breadboard system, the residual wavefront
error can be controlled to the precision of 0.03 ym in root mean square. The W-T dual-DM AO has ap-
plications in both ophthalmology and astronomy. © 2012 Optical Society of America
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1. Introduction

The dynamic nature of human eye optics requires
that an adaptive optics (AO) retinal imaging system
corrects both low- and high-order wavefront aberra-
tions simultaneously. While trial lenses can be used
to correct defocus and astigmatism, this approach is
limited and cumbersome due to the fact that not all of
the low-order aberrations can be well compensated
by trial lenses. Furthermore, it requires an extra step
in subject testing and it may require changing the
combination and orientation of the trial lenses due
to the variation in refractive error across the retina
[1-6]. In addition, even if the static low-order aberra-
tions are corrected, unless powerful cycloplegic drugs
are used, defocus can vary dynamically during
in vivo retinal imaging due to eye accommodations
[7]. A single deformable-mirror (DM) can make excel-
lent wavefront corrections if it has relatively high
actuator counts and ample stroke. However, most
precision high-order mirrors, such as the microelec-
tromechanical systems (MEMS) mirrors, have actua-
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tor stroke limitations. For this reason, as well as
for cost considerations, the woofer-tweeter (W-T) ap-
proach is very attractive [8-10].

The W-T AO is a special configuration of dual-DM
AO. The AO system with two DMs was first reported
for compensating amplitude and phase in wavefront
propagation through turbulent medium [11-13]. In
ocular AO imaging, the W-T approach was first im-
plemented with a sequential dual-step correction
[8-10], where a woofer DM is used for correcting the
low-order aberrations and a tweeter DM for high-
order aberrations. First, the woofer was optimized
for wavefront correction to convergence, and then
the AO control was switched to the tweeter optimiza-
tion. Because of the rapid variations of the wavefront
aberrations of the human eye [14,15], the sequential
approach can be cumbersome and require alternat-
ing steps. Simultaneous correction algorithms for
W-T AO systems have been implemented [16,—19].
Hu et al. proposed to split the Zernike coefficients re-
constructed from slope data and estimate the DM
commands independently from the split Zernike
coefficients [20]. Lavigne and Véran proposed imple-
menting the W-T split in Fourier space, with the low-
spatial-order Fourier modes off-loaded to the woofer



DM and the higher-spatial-order modes to the twe-
eter DM, and then the DM commands were obtained
with a Fourier reconstructor [21]. Conan et al. pro-
posed concatenating the influence matrices of the
tip/tilt DM, the woofer DM, and the tweeter DM into
a single matrix for zonal control, and the actuator
commands of the three DMs were obtained by eval-
uating the pseudo inverse of the concatenated matrix
[22]. For the modal control algorithm, the influence
matrix used would be a new set of influence functions
built from a given set (such as the tweeter) such that
it is orthogonal to the third set (i.e., the woofer) [22].
Recently Li et al. proposed a zonal algorithm to con-
struct a new influence matrix for the tweeter that is
orthogonal to the woofer influence matrix, so the
woofer DM and tweeter DM work independently in
wavefront correction for ocular retinal imaging [23].
In 2008, we proposed to construct a composite influ-
ence matrix from the influence matrices of the two
DMs with the Lagrange multiplier (LM) method, so
the commands of the two DMs could be directly com-
puted from wavefront measurements. To suppress
the correlation between the two DMs, the damped
least squares (DLS) method was employed [24,25].

The LM DLS method can provide simultaneous
AO corrections for ocular imaging and astronomical
imaging. In vivo retinal imaging using the LM DLS
method was reported recently [26]. In this paper, we
present the testing of the LM DLS control algorithm
on a breadboard W-T AO system. Section 2 describes
the experimental setup and the related methodology
for implementation. Section 3 describes the experi-
mental results of wavefront correction, and we
demonstrate an approach to optimizing the control
parameters. In Section 4, we discuss the optimal con-
trol parameters and compare the wavefront fitting
errors between the 1-Step and 2-Step inverse compu-
tations. Section 5 is the conclusion.

2. Methods

We first briefly summarize the experimental setup of
the breadboard W-T AO system, and then describe
the correlation (coupling) suppression in the dual-
DM AO control. We validate the proposed algorithm
by inspecting the wavefront partition and correction
of the control through simulations.

A. Experimental Setup

The experimental system for the W-T dual-DM AO is
shown in Fig. 1. A 52-actuator electromagnetic DM
produced by Imagine Eyes (Mirao-52d DM, maxi-
mum stroke 50 ym) was used as the woofer [27],
and a 140-actuator DM produced by Boston Micro-
machines Corp. (BMC DM, maximum stroke 2.5 ym)
was used as the tweeter [28]. The light source was a
superluminescent laser diode (SLD, Superlum) with
a central wavelength of 676.6 nm and a full-width at
half-maximum spectral bandwidth of 13.9 nm [29].
Light from the SLD was collimated and passed
though an aberration sample, which was a piece of
poured glass or a trial lens. The aberrated wavefront
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Fig. 1. (Color online) Optical layout of the WT AO breadboard

system.

was corrected by both the Mirao-52d DM (15 mm in
diameter) and the BMC DM (4.4 mm x 4.4 mm) si-
multaneously. A Shack—Hartmann (SH) wavefront
sensor was placed in downstream of the correcting
mirrors for wavefront measurement. The aberration
sample, the Mirao-52d DM, the BMC DM, and the
lenslet array of the SH wavefront sensor were opti-
cally conjugated to one another by the relay lenses.
The pupil sizes at the aberration sample, the Mirao-
52d DM, and the BMC DM were @15 mm, ®15 mm,
and ®4.4 mm, respectively. The SH wavefront sensor
consisted of a lenslet array and a charge-coupled de-
vice (CCD) camera [30,31]. The pupil size at the loca-
tion of the lenslet array was ®6 mm, using a 19 x 19
array of lenslets. The pitch size of the lenslet was
0.3 mm and the focal length 7.6 mm. The reference
SH grid was generated by imaging collimated light
from a ®200 ym pinhole illuminated by a light-
emitting diode (LED). A separate CCD camera was
used to measure the imaging system’s point spread
function (PSF) [31]. Figure 2 shows the actuator dis-
tributions of the Mirao DM and the BMC DM. Both
mirrors are optically conjugate to the pupil to share
the burden of the same wavefront phase correction,
which is different from the dual-DM configuration
used for correcting wavefront amplitude and phase
[11-13]. The wavefront errors were the inherent
aberrations of our breadboard system plus the aber-
ration sample, of which the low-order aberration was
basically

astigmatism.

B. Wavefront Aberration Partition and Correction

Given a wavefront slope measurement S provided
by the SH wavefront sensor, as shown in Fig. 3,
the problem of W-T dual-DM wavefront control can
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Fig. 2. (Color online) Actuator distributions of (a) BMC DM and
(b) Mirao DM.
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be described as how to determine the actuator vec-
tors X for the woofer DM and Y for the tweeter DM
from slope data S. The dual-DM AO correction pro-
blem is mathematically equivalent to searching for
the actuator command vectors X for the Mirao DM
(the woofer) and Y for the BMC DM (the tweeter)
that can minimize the residual wavefront error in
a least-squares sense [24],

P(X,Y) = p’[AX + /BY, S] = ||AX + IBY -S|}, (1)

where A and B are the influence matrices of the Mir-
ao and BMC DMs. The LM 1 was used to mathema-
tically integrate the two DMs into an “imaginary”
monolithic DM, creating a composite influence ma-
trix C =[A AB] for the “imaginary” DM. The LM
method was successfully exemplified in the integra-
tion of segment alignment control and segment
phase control [32].

By minimizing the objective function ¥(X,Y), the
actuator command vectors X and Y can be obtained
by [24]

X1 _ [ATA + 51
Y| IBTA

JATB -1 AT
AZBTBJFﬁZIQ] [ABT}S’ 2)

where f; and j, are the damping factors for the Mirao
DM and the BMC DM, respectively, and I; and I, are
identity matrices. Due to the correlation between the
two DMs, the normal matrix CTC is usually badly
conditioned. The DLS method is used to suppress
the correlation between the two DMs, yielding a well-
conditioned normal matrix. The DLS method was
first introduced by Levenberg and later on was
widely used in optical design [33-39]. In this paper,
we explore the LM-based DLS AO control algorithm
in wavefront aberration sorting and correction across
iterations.

C. Correlation Problem

For a given wavefront aberration, the wavefront cor-
relation problem in dual-DM AO controls arises from
the uncertainty of the required actuator displace-
ments between the two DMs. In the W-T AO systems,
the two DMs are not independent, as they share the
same wavefront sensor and contribute to the same
wavefront correction via the influence matrices A

Influence matrix A
4
BMC Influence matrix B

Fig. 3. (Color online) Problem description of W-T dual-DM AO
correction.
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and B. For instance if one DM “pushes” and another
DM “pulls” the same region of wavefront, then the
total change in wavefront could be minimal while
the mirrors were actually using a significant amount
of deflections. On the other hand, for a given wave-
front correction, one DM can contribute more and the
other DM less, or vice versa, while in both scenarios
the AO control equation can still be satisfied. For this
reason the correlation between two identical DMs is
at a minimum only when they are mapped in an in-
terlaced geometry, as shown in Fig. 4. A dual-DM AO
system with the illustrated mapping will provide an
equivalent correction of a single-DM AO system with
the doubled actuator density. However, typically the
DMs are not identical or perfectly interleaved; there-
fore, the inherent correlation between actuators can
be serious and the dual-DM AO control is sensitive to
sensor noise and liable to DM saturation due to the
opposed action of the DMs.

3. Experimental Results

A. Wavefront Correction Results

For the present breadboard AO system, the condition
number of a normal matrix was defined as the ratio
of maximum to minimum eigenvalues (Fig. 5). Itis a
measure of numerical stability of the normal matrix.
The numerical stability improves if the condition
number of the matrix decreases. By damping condi-
tioning (for example, $; = 100 and S, = 0.05), the
condition number of the composite normal matrix
CTC was decreased from 5.38 x 10° to 6.77 x 108,
and the correlation between the two DMs sup-
pressed. Note that in Fig. 5, due to different units
of the voltages to the Mirao and BMC used in influ-
ence matrix calibration, the condition number was
still numerically large after damping conditioning.
However, it would not be a problem because we can
normalize the voltage units to reduce the condition
number if the precision of numerical computation
is an issue.

Figure 6 shows wavefront correction of the first
four iterations of the W-T AO breadboard experimen-
tal system. The wavefront root mean square (RMS)
error was efficiently reduced from 0.443 um to
0.078 um after its first iteration, then to 0.044 ym
after its second iteration, and finally to 0.034 ym

[V2nX2n]

Fig. 4. (Color online) Actuator-interlaced dual-DM AO. It is
equivalent to a single-DM AO with double actuator density.
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ATA (blue curve), BB (green curve), and CTC (red curve) with
LM A= 1. Mirao actuators were numbered as 0-51, and the
BMC actuators were numbered as 52—-191. Due to the different
voltage units adopted, the eigenvalues of the Mirao DM are much
larger than those of the BMC DM.

after its third iteration, where the wavefront error
maps were the measurements from the SH sensor.
Figure 7 shows the improvements of PSF of the
dual-DM AO breadboard system in its first five itera-
tions. Figure 7(a) is the PSF before correction, and
Figs. 7(b)-7(f) are the PSFs in the process of AO
correction, where the Strehl ratio (SR, increased
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from 4.5 x 1078 to 0.91) was computed from wave-
front RMS error [40]. We can see that the PSF quality
increased as the wavefront RMS error decreased.
Figure 8 plots the real-time wavefront residual error
of the W-T LM DLS AO for the first 60 iterations for
small amplitude wavefront error (0.443 ym in RMS,
as shown in Fig. 6) (Curve 1), and for the large am-
plitude wavefront error (~3.5 ym in RMS, Curve 2).
Because of the nonlinearity of deflection-to-voltage
relation of each DM, the correction accuracy for
large-amplitude wavefront errors was not as high as
that for small amplitude wavefront errors. This can
be seen in Curve 3, where we used a dual influence
matrix (DIM) AO correction to improve wavefront
correction accuracy up to the level of AO correction
obtained for small-amplitude wavefront errors
(Curve 1) [25]. Figure 9 shows the wavefront correc-
tions of a single Mirao DM AO for wavefront error of
3.22 ym in RMS in comparison to a single BMC DM
AO for wavefront aberration 0.35 ym in RMS. For the
Mirao DM AO, the DIM AO method was an efficient
approach for improving AO correction accuracy (from
0.085 to less than 0.04 ym in RMS). Due to its limited
dynamic range, the single BMC DM had limited
wavefront correction accuracy (0.13 yum RMS in aver-
age), even though the BMC DM can offer a better per-
formance than the Mirao DM for the very small
amplitude wavefront errors.
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(d) (e) )
Fig. 7. PSF of the breadboard system across dual-DM AO itera-
tions. (a) PSF before AO correction. (b)—(f) PSFs during AO correc-
tion at first, second, third, fourth, and fifth iterations. The Strehl

ratio for each PSF was estimated from the real-time wavefront
RMS error.
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Fig. 8. (Color online) Wavefront RMS error reduction of dual-DM

AO (generic AO) for small wavefront aberrations (Curve 1) and
comparison of the generic AO and DIM AO for large amplitude
wavefront aberrations (Curves 2 and 3). Curve 1 and Fig. 6 use
the same data.

B. Optimizations of AO Control Parameters

To evaluate the control performance for a range of
damping factors, the final wavefront residual RMS
error was used as the metric. The damping factors
for the Mirao DM were varied from 0.01 to 10,000,
and those for the BMC DM were varied from 0.001
to 1000. The resulting grid search optimization of
the two damping factors is shown in Fig. 10. When
we adopted the damping factors approximately be-
tween 500 and 2000 for the Mirao DM and between
0.004 and 0.01 for the BMC DM, the final wavefront
residual RMS error would be reduced to less than
0.03 ym, and the condition number would be im-
proved by up to four orders of magnitude. Appar-
ently, the best damping factors for the Mirao and
BMC DMs for the breadboard system were approxi-
mately 1000 and 0.005, respectively.
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The role of LM is to integrate two separate influ-
ence matrices into a single influence matrix, and
its value is usually set to 1 but can be varied. To
examine the impact of the LM on AO correction
performance, we varied the LM from 10710 to 1010
and again used the wavefront residual RMS error
as the optimization metric. The optimization was
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to 1), where (a), (b) are the expected wavefront corrections by the Mirao DM and the BMC DM, respectively, and (c) is the expected wave-

front fitting error of the dual-DM AO.
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performed with the damping factors of #; = 500 and
Bo = 0.05, and a control gain of 0.6, and the re-
sult is shown in Fig. 11, in which the wavefront
aberrations were generated by trial lenses of -0.5
diopter (D) astigmatism plus 0.12D sphere.

Closely related to the damping factors adopted is
the control gain. It should be determined by the sam-
pling time of the system, the temporal response of
the DMs, and the noise level. Usually a value of 0.4
is the limit for a system with a one-frame measure-
ment delay; however, in our system, the damping
factor complicates the calculation a bit, and so we de-
termined it experimentally. Figure 12(a) shows the
wavefront RMS error reduction curves of a static
aberration correction for different control gains,
and Fig. 12(b) is the final wavefront RMS error opti-
mized with the control gain.

4. Discussion

A. Control Parameter Selections

The role of the damping factor is for suppressing the
correlation between mirrors, controlling the error
propagation, and adjusting the correction amplitude
in each step. Too small a damping factor will gener-
ate little effect on the actuators with large eigenva-
lues, while too large a damping factor will damp
down the small-eigenvalue actuators to zero. Relat-
ing Fig. 10 with Fig. 5, we can confirm that the opti-

1204 APPLIED OPTICS / Vol. 51, No. 9 / 20 March 2012

mum damping factor for a DM is approximately
located at the median of the eigenvalue spectrum,
which is reasonable because the median represents
the equilibrium point for error damping among all
actuators. For the breadboard system, the eigenvalue
median was about 1000 for the Mirao DM and 0.004
for the BMC DM. Similar to our observation, Matsui
and Tanaka also suggested using the median of
eigenvalues of the normal Jacobian matrix as the ap-
propriate damping factor for nonlinear LS optimiza-
tion in optical design [39].

Another approach to optimizing the damping
factor is based on Bayes’ theorem. Based on the
stable equilibrium of AO correction, we can assume
that DM commands X and Y are statistically random
variables of multivariate normal distribution with
zero mean and standard deviations of osx and oy,
and the slope errors S are independent random vari-
ables with zero mean and standard deviation og.
Under this assumption, the Tikhonov-regularized so-
lution is the most probable solution according to
Bayes’ theorem. We can obtain the Tikhonov factors
a; = og/ox for the Mirao DM and ay = 6g/0oy for the
BMC DM [41]. Then the damping factors for the two

DMs are 8y = (6g/0x)? and 8, = (6g/oy)?. Applying
the real slope data from our breadboard system,
we estimated the damping factors for the Mirao
DM as 5365 and for the BMC DM as 0.0004 (Fig. 13).
Obviously, such a solution is not optimal according to



Fig. 10, but it is a working solution for the woofer and
tweeter DMs that are not truly independent.

The optimum value for the LM was 1 (Fig. 11).
When the LM was smaller than 1, the residual wave-
front RMS increased from 0.03 to 0.05 ym, because in
this case the AO correction was dominated by the
Mirao correction, and the residual wavefront RMS
error was actually the accuracy of single Mirao DM
correction. When the LM was larger than 1, the BMC
correction began to dominate, and the residual RMS
error was increased to 0.4 ym, because with the large
LM (1 > 100) all the wavefront error was applied to
the BMC DM for correction, and it saturated.

Generally in AO control, a gain higher than 0.6 is
usually avoided, because the system can go into os-
cillations from very small disturbances. However, the
gain interacts with the control damping in our algo-
rithm. Higher damping can allow higher gain,
although of course this does not necessarily speed
up convergence of correction, but it can provide a bet-
ter conditioned control matrix and therefore a more
stable control. Usually the gain will be smaller for a
system with dynamic aberrations (such as the eye).
As shown in Fig. 12(b), the best working gain lies
between 0.2 and 0.8 um for this breadboard AO
system.
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B. Wavefront Fitting Computation: “1-Step”
versus “2-Step”

To establish a metric for evaluating wavefront correc-
tion with an algorithm, we defined the wavefront fit-
ting error as the expected wavefront residual error
obtained by subtracting the theoretical fitting wave-
front of the DM (or DMs) from a given wavefront. Gi-
ven the aberrated wavefront of Fig. 6(a), Figs. 14(a)
and 14(b) are the theoretical fitting wavefronts by
the woofer DM and the tweeter DM. They are the ex-
pected wavefront corrections that the two DMs can
provide with the LM DLS algorithm [Eq. (2)], and
Fig. 14(c) is the wavefront fitting error of the dual
DMs. Using the same wavefront of Fig. 6(a) and with
the traditional singular value decomposition meth-
od, Figs. 15(a) and 15(c) are the theoretical fitting
wavefronts by the single Mirao DM and by the single
BMC DM, respectively, and Figs. 15(b) and 15(d) are
their corresponding wavefront fitting errors.
Instead of the single-step (1-Step) inverse compu-
tation defined by Eq. (2), the dual-DM correction can
be computed in a two-step process (2-Step): given a
wavefront aberration, the woofer DM command
can be first computed by treating it as a single-DM
correction, and then we numerically subtract the
woofer correction from the original wavefront and

RMS=0.0380 um

05

05+
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Pupil in Y direction Pupil in X direction

(b)

RMS=0.0326 pm
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Fig. 16. (Color online) Simulation of LM DLS AO correction with the 2-Step computation for the given wavefront shown in Fig. 6(a)
(control gain set to 1), where (a) is the expected wavefront correction by single Mirao DM (3; = 100), (b) is the corresponding wavefront
fitting error of Mirao DM, (c) is the expected wavefront correction by the BMC DM (3, = 0.05) for the wavefront fitting error of (b), and (d) is
the final wavefront fitting error of the 2-Step computation.
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AO (1-Step) (Curve 4), and (2-Step) (Curve 5). Wavefront RMS error reduction of the dual-DM AO (Curve 1), which used the same data as in

Fig. 8, provided a reference for the wavefront fitting errors.

obtain the residual wavefront (i.e., wavefront fitting
error of woofer DM), from which the tweeter DM ac-
tuator commands can be computed in the second
step. If there is no correlation between the two DMs,
then the 1-Step and the 2-Step inverse computations
are equivalent. Given that the woofer DM has much
larger dynamic range than the tweeter DM, it is more
secure to use the woofer DM as the first fitting DM in
the 2-Step computation even if the two DMs have cor-
relations. The tweeter DM can fit the residual wave-
front error of the first step, and the two fitting
optimization processes are independent. The W-T
dual-DM wavefront fitting with the 2-Step computa-
tion is shown in Fig. 16. Given the original wavefront
error shown in Fig. 6(a), Fig. 16(a) is the estimated
wavefront correction by single Mirao DM; Fig. 16(b)
is the corresponding wavefront fitting error.
Figure 16(c) is the estimated wavefront correction
by the BMC DM for the wavefront residual error
in Fig. 16(b), and Fig. 16(d) is the final wavefront fit-
ting error of the 2-Step computation. Comparing the
fitting errors of 1-Step and 2-Step methods in
Fig. 14(c) and Fig. 16(d), we can see that the two ap-
proaches are essentially equivalent (2 nm RMS dif-
ference).

Figure 17 plots the above-mentioned wavefront fit-
ting errors (1-Step and 2-Step) for the first 60 itera-
tions (Curves 2-5) in comparison with the real-time
wavefront residual error of the W-T LM DLS AO
(Curve 1), where Curves 1in Fig. 17 and Fig. 8 repre-
sent the same data. We can see that the 1-Step and
2-Step wavefront fitting errors of LM DLS AO are
actually superposed after the AO converged, confirm-
ing that the two computations were indeed equiva-
lent for the breadboard system. The real-time
wavefront residual error is always larger than the
wavefront fitting errors (for both 1-Step and 2-Step
approaches). The wavefront fitting error of single
BMC DM (0.034 ym in average) is smaller than that
of single Mirao DM (0.036 ym in average), and the
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wavefront fitting error of the LM DLS dual-DM cor-
rection (Curve 4 or Curve 5, both 0.033 ym in aver-
age) is smaller than that of any single-DM correction.
Of course, when the low-order aberrations dominate
the wavefront error, the performance of single Mirao
AOQ is very close to that of dual-DM AO. However, si-
mulation showed that, for a population of 100 eyes
using the Thibos model, the static ocular aberrations
correction with the Mirao DM (with focus and astig-
matism removed) can reach a mean RMS wavefront
error of less than 0.03 ym [14,42,43].

To calibrate the wavefront sensing accuracy, the
SH grid was optimized to its best condition, and a
0.014 ym wavefront RMS error due to SH centroiding
error was measured. As shown in Fig. 17, on average
the wavefront fitting error of the LM-DLS dual-DM
AO (Curve 4) has a deviation of 0.017 ym in RMS
from the real wavefront residual error (Curve 1),
which implies that the average wavefront residual
RMS error 0.037 yum (Curve 1) included the wave-
front fitting RMS error 0.033 yum (Curve 4), SH sen-
sing RMS error 0.014 ym, and actuator positioning
RMS error 0.01 ym.

5. Conclusion

We developed a breadboard system for the W-T dual-
DM AO, validated the LM-based zonal DLS control
algorithm on this system, and explored the AO per-
formance over a wide range of parameters. We con-
firmed that the zonal DLS control algorithm can
complementarily partition the wavefront aberrations
for the woofer and tweeter DMs according to their in-
dividual influence functions just as if the actuators of
the two DMs belong to a single DM. In our measure-
ments with the static aberration the wavefront
control accuracy of LM DLS algorithm was much
higher than a single DM. This may not be surprising
because there are more actuators and the W-T AO
has a more diverse set of influence functions; how-
ever, it confirms that the W-T approach can use two



less-expensive mirrors to provide a high-accuracy,
high-stroke composite mirror. In practice we have
found that we can use a low-stroke MEMS mirror
in conjunction with the Mirao DM to achieve a
high-accuracy W-T AQO, and it suggests that it might
be possible to use even lower actuator count (and
hence lower cost) electromagnetic mirrors as the
woofer, too. With the LM-based DLS algorithm, we
can integrate multiple stroke-limited DMs to obtain
an “imaginary” DM with extraordinary stroke cap-
ability and ultrahigh spatial resolution for biomedi-
cal AO imaging and for astronomy observation [44].

After the LM-based DLS algorithm was proposed
and validated, we implemented it in the wide field W-
T dual-DM scanning laser ophthalmoscope (AOSLO)
system for in vivo retinal imaging for human sub-
jects, and it has been shown to be very efficient [26].
The W-T AOSLO system can provide the stable real-
time retinal imaging that is very close to diffraction
limit. In our AOSLO system, the global tip/tilt of
wavefront in the slope data is filtered out, therefore
the tip/tilt of the wavefront was not corrected, yet the
LM-based DLS algorithm has the capability to cor-
rect wavefront tip/tilt. In the algorithm implementa-
tion, the boundary condition of the control pupil
should be taken care carefully so that the improve-
ment in wavefront control accuracy gained from the
efficient algorithm will not be flooded by the low-
order wavefront error induced from boundary slope
noise [45].

The LM DLS algorithm with either 1-Step or 2-
Step computation provides similar wavefront fitting
errors, which implied that the correlation between
the woofer and tweeter was not significant. The 1-
Step LM DLS was approved to be efficient for in vivo
retinal imaging because the woofer and tweeter DMs
can work simultaneously and complementarily [26].
The 2-Step approach is ideal in that the woofer and
the tweeter DMs contribute independently to the si-
multaneous corrections. For our breadboard system
with optimized control parameters, the wavefront
can be controlled to be less than 0.03 ym in RMS for
small aberrations; however, to obtain a diffraction-
limited PSF (Strehl ratio of 0.92), we need to better
calibrate the SH wavefront sensor.

This work was supported by NIH EY04395 and
NIH EY14375.
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