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Abstract: Retinal vascular diseases are a leading cause of blindness and 
visual disability. The advent of adaptive optics retinal imaging has enabled 
us to image the retinal vascular at cellular resolutions, but imaging of the 
vasculature can be difficult due to the complex nature of the images, 
including features of many other retinal structures, such as the nerve fiber 
layer, glial and other cells. In this paper we show that varying the size and 
centration of the confocal aperture of an adaptive optics scanning laser 
ophthalmoscope (AOSLO) can increase sensitivity to multiply scattered 
light, especially light forward scattered from the vasculature and 
erythrocytes. The resulting technique was tested by imaging regions with 
different retinal tissue reflectivities as well as within the optic nerve head. 
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1. Introduction 

The ability to image the complex retinal microvasculature network is an important step in 
advancing our understanding of normal structure and function as well as pathological changes 
associated with sight-threatening retinal disease. Retinal vascular diseases such as diabetes are 
the major causes of blindness in the developed world [1,2]. Although compromised retinal 
vascular structure and retinal blood flow have been reported in retinal diseases, our ability to 
image the retinal vasculature in vivo typically requires the injection of exogenous dyes such as 
sodium fluorescein or indocyanine green to enhance the normally low contrast found in the 
retinal tissues. This is expensive, time intensive, and carries significant systemic risks in a 
small proportion of the population [3,4]. Recently, advances in both direct detection 
techniques [5–7] and coherent detection techniques [8–12] have expanded our ability to map 
the retinal vasculature, but these techniques use variations over time to perform the mapping 
and do not provide an enhanced visualization of the vascular structures themselves. 
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The larger arteries and veins in human retina are readily visible with low resolution 
imaging techniques. The smaller arterioles, capillaries, and venules are much more difficult to 
visualize, which can be partially overcome with the use of high resolution imaging 
techniques. Recently, the AOSLO has allowed noninvasive visualization and quantification of 
the foveal and parafoveal capillary network in living human retina without the injection of 
contrast agents, using blood flow as a surrogate marker for vascular structure [5,6]. 
Noninvasive imaging of the peripapillary, papillary, and perifoveal (~5°–10° from the fovea) 
[13] microvascular networks remains challenging however, because of the complexity of the 
retina, and confocal images focused on the vasculature include many structures, including the 
retinal nerve fiber layer (RNFL) and other non-neural components including glial cells. These 
structures can also return a strong backscattering signal to the detector via a confocal aperture 
conjugated with the retinal plane and their presence can mask the appearance of the 
microvasculature. Combining fluorescein angiography and AOSLO, it is now possible to 
visualize the peripapillary microvascular network in macaque retina [14]. Unfortunately, this 
imaging technique has not yet been applied in living human retina due to the invasive nature 
and the relatively long imaging session. In this paper, we present the use of an imaging 
approach that emphasizes multiple light scattering [15,16] instead of direct backscatter to 
improve visualization of the peripapillary, papillary, and perifoveal microvascular network in 
living human retina. This is done without the use of contrast agents, allowing microvascular 
examination in both normal and diseased retinas, as frequently as required for clinical or 
scientific purposes. By systematically varying the position and/or size of our confocal 
aperture, we determined the conditions producing improved imaging of both erythrocytes and 
the microvasculature, including the fine structure of arteriole walls. 

2. Methods 

2.1. Subjects 

Six healthy subjects (ages 22–35 yr; 5 males and 1 female) participated in this study. All 
subjects received a complete eye examination, including a subjective refraction and fundus 
examination. All subjects had best corrected visual acuity of 20/20 or better. Only one eye of 
each subject was tested. A 30° × 30° infrared scanning laser ophthalmoscope (SLO) fundus 
image was obtained for each subject using the Spectralis OCT (Heidelberg Engineering, 
Heidelberg, Germany). Pupil dilation with 1 drop of 1% tropicamide was performed on all 
subjects. Informed consent was obtained after a full explanation of the procedures and 
consequences of the study. This study protocol was approved by the Indiana University 
Review Board and complied with the requirements of the Declaration of Helsinki. 

2.2. AOSLO instrumentation 

The Indiana AOSLO used in this experiment has been described in detail previously [17]. In 
short the AOSLO uses a supercontinuum source (Fianium, Inc.) to provide both the wavefront 
sensing beacon and the imaging sources. Wavefront sensing was performed at 740 nm, and 
imaging at 820 nm, with the wavelengths obtained using interference filters with bandwidths 
of 13 nm and 12 nm, respectively (Semrock, Inc). Light returning from the retina passes 
through a confocal aperture optically conjugate to the retinal plane. This confocal aperture 
was approximately 2× or 10× the Airy disk diameter as measured in the detector plane. These 
values are calculated for the maximal pupil size of our system (8 mm at the eye). In practice 
not all subjects when dilated reached this pupil size, and in those cases the Airy disk diameter 
would be slightly larger. Based on the theoretical calculation, the axial resolution was 
approximately 80 µm for the 2× Airy disk diameter confocal aperture (small aperture) and 
150 µm for the 10× Airy disk diameter confocal aperture (large aperture). In this experiment, 
the vertical scan was programmed to provide full frame images of either 2° × 1.8° or 1.3° × 
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1.2° at a frame rate of 28 Hz. Subject’s head movements were stabilized using a chin and 
head rest. 

2.3. Confocal aperture control 

Confocal apertures were mounted on a motorized filter wheel which could be rotated to 
switch between apertures. The motorized filter wheel was mounted on an automated XY 
positioning stage, allowing translation of the apertures perpendicular to the direction of beam 
propagation to an accuracy of better than 1 µm. Thus, the apertures were always focused in 
the same plane as the imaging beam, but their position relative to the focal waist of the 
imaging beam was varied. Within each imaging session the centered aperture positions were 
first recalibrated using a model eye to ensure they were confocal with the imaging beam. 
Center coordinates for the apertures were saved to the control computer. During imaging, 
changing the aperture size selection caused the control computer to move the translation stage 
to bring each aperture into confocal alignment in less than 5 seconds. The aperture could then 
be displaced by the operator while the computer recorded the altered aperture position. The 
larger confocal aperture was used to capture more multiply scattered light [15]. We also 
systematically displaced the larger aperture, allowing us to change the relative contributions 
of multiply scattered [18] and singly scattered light. 

Three aperture manipulations were studied. 1. We investigated the effect of aperture size 
by imaging the same location using the small and large apertures (tested in Subject 1). 2. We 
varied the large aperture from −8× Airy disk diameter to +8× Airy disk diameter location 
from its centered position. Displacements of −8× Airy disk diameter to +8× Airy disk 
diameter with a step size of 2× Airy disk diameter in either the horizontal or vertical direction 
were used (tested in Subjects 1, 2 and 3). In 2 subjects, we also investigated the impact of 
diagonal offsets on visibility of obliquely oriented vessel walls (Subjects 1 and 2). 3. Finally, 
to evaluate robustness of a single horizontal offset of 8× Airy disk diameter, we tested 
imaging across larger regions of retina (tested in Subject 3). In pilot experiments, 
displacement of the small confocal aperture was investigated. We found that the detected 
intensity dropped very quickly, limiting the signal-to-noise ratio of the resulting images. Thus, 
we concentrated on measurements using displacements of the large aperture and do not report 
results for the displaced smaller aperture in this report. 

2.4. Light levels and detector gain 

All light levels were safe according to the American National Standards Institute ANSI Z136 
[19]. The incident corneal power level of the infrared light source was set at 120 µW in five 
subjects and 70 µW in one subject (Fig. 1). Because the different conditions returned very 
different amounts of light to the detector, we needed to adjust the detector gain across 
conditions. In experiments directly comparing light return for all aperture conditions within a 
single session (performed in one subject, Fig. 1), we reduced the imaging beam power to 70 
µW at the cornea to avoid saturating the detector for the aligned larger confocal aperture 
conditions. In general, for the variable offset experiment we found that the light return was 
too small for offsets greater than 8× the Airy disk diameter, i.e., displacements larger than the 
radius of the large aperture. 

2.5. Imaging retinal locations 

Comparisons were made for a variety of retinal locations in all 6 subjects, with each location 
imaged under the different aperture conditions. Comparisons of the impact of apertures on the 
images are based on comparisons within imaging sessions. To measure the possible 
interaction of aperture conditions with retinal structure we chose three template retinal 
regions, including regions where the RNFL was thick (e.g., the peripapillary region; the 
perifoveal region located 5°–10° from the fovea Fig. 1A), regions where the RNFL was thin  
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Fig. 1. The effect of aperture size and confocality on perifoveal microvasculature imaging. A, 
Spectralis infrared SLO fundus image of a 35 year old male. Asterisk indicates the fovea. The 
black box indicates the AOSLO imaging region located at ~10° from the fovea. B and C, 
AOSLO videos obtained using the small and large confocal apertures, respectively (Media 1 
and Media 2), fine structures of the nerve fiber bundles were observed. However, capillaries 
were masked by the highly reflective nerve fiber layer. E and F, The corresponding standard 
error maps of B and C show a limited visibility of the capillaries. D, AOSLO video obtained 
using the large aperture with offset (6× Airy disk diameter horizontally and 4× Airy disk 
diameter vertically) (Media 3), capillaries were clearly seen due to the blockage of the direct 
specular reflection from the RNFL and increased detection of scattered light from the blood 
content. G, The standard error map calculated from the pre-truncated video of D. 

and the outer retinal layer was thick (the foveal region), and finally regions where there is a 
great deal of scattering (the optic nerve head and the optic disc crescent). 

2.6. Image acquisition and processing 

AOSLO images of the retinal vascular network were collected as short sections of sequential 
video frames for all subjects. Typically a single acquisition of 100 frames (<4 seconds) at a 
single location and aperture condition was sufficient to collect a data set suitable for further 
image processing (Due to the maximum multimedia file size recommended by Biomedical 
Optics Express, all videos presented in this manuscript were truncated to less than 4 MB, 
approximately 25 frames/video). Imaging sessions were performed in one visit, which 
required approximately 30 minutes per subject. All images were corrected for the sinusoidal 
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distortion created by the resonant galvanometer, and then aligned offline. Aligned image 
sequences were used to generate both average images and calculations of statistics on a pixel 
by pixel basis [5]. The primary calculated value were pixel standard error maps [5] where we 
use the temporal variation in image brightness arising from the motion of erythrocytes to 
detect the location of blood vessels. Montages were created using Adobe Photoshop CS5 
(Adobe Systems Inc., San Jose, CA). 

3. Results 

3.1. The general effect of aperture size and aperture displacement 

The contrast of different retinal structures varied markedly with the varying aperture 
conditions as shown in Fig. 1. For the small confocal aperture, the fine structures of the retinal 
nerve fiber bundles, and the superficial layer of capillaries were observed in high contrast 
when the appropriate retinal depth was optimally focused (Fig. 1B). For the large confocal 
apertures, these details were also visible although at somewhat lower contrast (Fig. 1C). 
However, with the large confocal aperture, the image has fewer specular highlights, 
presumably due to the larger contributions from scattered light. In general, for the centered 
confocal conditions, the deeper capillaries were not readily detected in the presence of strong 
contributions from the RNFL (Fig. 1B and 1C; Media 1 and Media 2). When the large 
aperture was offset, the specular component in the images decreased markedly, but blood 
vessels and erythrocytes were still readily detectable. However, in the absence of the more 
specular features, blood vessels and erythrocytes became a dominant feature of the image 
(Fig. 1D; Media 3). This general effect of displacement of the large aperture was observed in 
all subjects in all offset directions. 

3.2. The relations of aperture displacement to retinal features 

Varying the amount of offset of the large confocal aperture had a systematic impact on the 
appearance of retinal structures as shown in Fig. 2. Here we show sample data for four 
amounts of vertical displacements of the large confocal aperture (0, 2×, 6× and 8× the Airy 
disk diameter offset), together with pixel standard error maps for a retinal region containing a 
mid-sized retinal vein (~50 µm diameter). Figure 2 shows not only the vein, but several 
branch venules entering at an angle, and portions of the associated capillary network. As the 
large aperture was displaced, there were three major effects on the images. First, as 
mentioned, the specular highlights and non-vascular highlights in the images decreased, and 
the overall images consequently became more uniform (Fig. 2A, 2C, 2E, and 2G). Second, the 
vascular walls as shown in Fig. 2, became more visible orthogonal to the direction of 
displacement. The Michelson contrast of the vessel changed as indicated by the black arrow in 
Fig. 2A, with larger displacements having a higher contrast 62%, 61%, 76%, and 77% for the 
0, 2×, 6× and 8× the Airy disk diameter offset, respectively. This general pattern of change 
was seen in all 3 subjects where the displacement was varied systematically. Third, the 
erythrocytes within the capillaries, while low in contrast became quite visible against the 
uniform background of the retina (Fig. 2G; Media 4). This impact on relative visibility of the 
erythrocytes is captured in the standard error maps (Fig. 2F, and 2H), which show the 
standard error of each pixel over time. For the centered aperture, the standard error map 
includes a large contribution from time variations in the more specular reflection (Fig. 2B), 
but with increasing displacement the capillary structure increasingly dominates the standard 
error maps, until for relatively large displacements (6× Airy disk diameter for instance), the 
variation from blood flow dominates the temporal brightness variations (Fig. 2G; Media 4). 
This relation between offset and retinal imaging was consistent in 3 subjects tested with 
systematic offsets. 
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Fig. 2. The effect of varying confocality on retinal microvasculature imaging using the large 
aperture. Columns represent increasing amounts of vertical displacements of the aperture 
relative to the illumination spot. A, C, E, and G, Specular reflection from the RNFL decreases 
with increasing aperture displacement. Overall the reflectance image becomes more uniform in 
contrast and the erythrocytes within the capillaries become more visible with large 
displacement (Media 4). Michelson contrast was computed across the vessel wall as indicated 
by the black arrow in A (see text). B, D, F, and H, The standard error maps calculated from the 
pre-truncated videos for the conditions in the first row. Note the readily visible laminar flow 
pattern of erythrocytes in Media 4. 

3.3. Variations in vascular imaging using offset apertures with retinal location 

The use of a large confocal aperture provided a higher relative contrast for the motion of 
erythrocytes at all locations tested. It was possible to visualize the individual erythrocytes 
using a large offset aperture. Figure 3 (Media 5) shows an AOSLO registered video obtained 
at 1° from the optic nerve head using the large offset aperture. In general, the impact of 
offsetting the apertures was largest where the vasculature was collocated with highly 
scattering structures such as the RNFL. One example of this is the visualization of the 
peripapillary capillaries which nourish the retinal nerve fiber bundles. Using the offset 
apertures it was possible to image the entire peripapillary capillary network as shown in Fig. 4 
for a region above the optic disc subtending approximately 5° × 5° in a 34 year old male. Here  

 

Fig. 3. A, Spectralis infrared SLO fundus image of a 24 year old male. The black box indicates 
the AOSLO imaging region located at 1° from the optic disc. B, AOSLO registered video 
obtained using a large offset aperture with 6× Airy disk diameter horizontally. Individual 
erythrocytes moving through the capillaries were clearly visualized as indicated by the black 
arrows (Media 5). C, The standard error map calculated from the pre-truncated Media 5 shows 
the peripapillary capillary network. 
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Fig. 4. 5° × 5° montages obtained from a location superior to the optic nerve head in a 34 year 
old male showing, A, peripapillary RNFL obtained using small confocal aperture and, B, 
peripapillary capillary network obtained using a large offset aperture at the same region. C, 
The standard error map calculated from the data shown as an average in B shows the 
peripapillary capillary network. Arrow indicates the optic disc margin. Artery and vein are 
labeled as “A” and “V’, respectively. Scale bars = 300 µm. 

we compare images obtained with the small confocal (Fig. 4A) and large offset aperture (Fig. 
4B) as well as the standard error map (Fig. 4C) of the corresponding reflectance montage in 
Fig. 4B. Artery, vein, and the disc margin were identified by comparing the AOSLO images 
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with the spectralis infrared SLO fundus picture. Note that capillaries running along the retinal 
nerve fiber bundles with complete connections between arterioles and venules clearly 
visualized in both the reflectance montage and the corresponding contrast enhanced standard 
error map. The capillary diameter varied from ~5 µm to 8 µm on the reflectance montage 
(Fig. 4B). For these conditions the AOSLO was focused at the RNFL and thus the montage 
shows only the superficial layer of retinal capillaries. This offset aperture technique was also 
tested at the foveal region, however, no noticeable improvement in capillary imaging was 
measured, except the appearance of the shadowing orthogonal to the offset direction was 
observed in this region with a thin RNFL. 

3.4. The role of deeper retinal structure on visualization of the vasculature using offset 
apertures 

The visibility of the erythrocytes and capillary vasculature was increased in regions with a 
strong scattering return from below the plane of focus, such as over the lamina cribrosa at the 
optic disc and at the optic disc crescent. The ability of the offset apertures to enhance 
visibility of the erythrocytes in the presence of light returning from the lamina cribrosa is 
shown in Fig. 5 (Media 6), where the microvasculature at the center of the optic disc was 
clearly visible using an 8× Airy disk diameter horizontal offset. The effect was especially 
striking when imaging at a region with peripapillary atrophy (e.g., the optic disc crescent), 
where there is a strong scattering source (the peripapillary atrophy) below the vascular layer. 
Figure 6 (Media 7) shows the complete capillary network above an optic disc crescent using  

 
Fig. 5. A, Spectralis infrared SLO fundus image of a 22 year old male. The black box indicates 
the AOLSO imaging region located at the center of the disc. B, AOSLO registered video 
obtained at indicated region (Media 6). C, The standard error map calculated from the pre-
truncated Media 6 showing the higher detectability of the flow over the lamina cribrosa. 

 
Fig. 6. A, Spectralis infrared SLO fundus image of a 25 year old male. The black box indicates 
the AOSLO imaging region located at the optic disc crescent B, AOSLO video obtained at 
indicated region (Media 7), blood vessels with various diameters were clearly visible. C, The 
standard error map calculated from the pre-truncated Media 7 showing the higher detectability 
of the flow over regions with highly scattering tissue below them. 
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an offset aperture technique (horizontal offset = 6× Airy disk diameter). Here the contrast is 
higher over regions with a highly scattering region below them (the bright vertical stripe in 
the reflectance image, Fig. 6B). This effect was seen in all subjects that had a visible crescent 
of peripapillary atrophy using conventional imaging and has implications for understanding 
the mechanism for enhancing vascular visibility using offset apertures (see Discussion). 

3.5. The effect of aperture offset on imaging the vascular fine structure 

The use of an aperture offset also enhanced the visibility of the vessel walls (Fig. 7). This 
effect was especially prominent in examining the walls of the retinal arterioles. Improved 
visibility of the vessel walls was achieved by offsetting the aperture orthogonal to the side of 
the vessel wall. This effect was seen in all subjects. Figure 7A shows the inner and outer 
vessel wall linings in a peripapillary artery with a lumen diameter of ~110 µm located at 5° 
from the optic nerve head in a 35 year old male. The thickness of the vessel wall varies from 
12 µm to 18 µm along the artery and the cellular structure of the vascular wall is readily 
visible. In general, three layers of the vessel wall were observed distinctively. Figure 7B 
shows an arteriole with 40 µm lumen diameter located at the optic disc crescent in a 26 year 
old female, again allowing the wall of the arteriole to be resolved. 

 

Fig. 7. Fine structure of peripapillary arterioles. A, A peripapillary arteriole located at 5° from 
the disc with a lumen diameter of 110 µm (Media 8) obtained with a displaced larger confocal 
aperture. White arrows indicate the three layers of the vessel wall. 1: Tunica adventitia; 2: 
Tunica media (smooth muscle); 3: Tunica intima. The thickness of the vessel wall varies from 
12 to 18 µm along the vessel. 4: the lumen diameter of the peripapillary artery containing 
moving cells (Media 8). B, An arteriole with a 40 µm lumen diameter located at the optic disc 
crescent in a different subject (Media 9). The thickness of the vessel wall is 10 µm (black 
arrows) and 4.5 µm (white arrowheads) in the arteriole and its daughter branch, respectively. 

4. Discussion 

Our results indicate that some features of the retinal vascular network can be imaged better 
using a large displaced aperture than with a centered, small confocal aperture. The use of an 
offset aperture allows direct assessment of the structural and functional properties of the 
microvasculature in living human retina. Specifically, this approach allows us to routinely 
examine the substructure of the arteriole wall (Fig. 7) and to observe single file flow of 
erythrocytes (Media 4–8) in blood vessels, ranging in size from the largest peripapillary 
vessels to the smallest capillaries. This approach is quite different from most approaches 
which use singly backscattered light to visualize the vasculature. 

(C) 2012 OSA 1 October 2012 / Vol. 3,  No. 10 / BIOMEDICAL OPTICS EXPRESS  2546
#173363 - $15.00 USD Received 2 Aug 2012; rev. 10 Sep 2012; accepted 10 Sep 2012; published 13 Sep 2012

http://www.opticsinfobase.org/boe/viewmedia.cfm?uri=boe-3-10-2537-8
http://www.opticsinfobase.org/boe/viewmedia.cfm?uri=boe-3-10-2537-8
http://www.opticsinfobase.org/boe/viewmedia.cfm?uri=boe-3-10-2537-9
http://www.opticsinfobase.org/boe/viewmedia.cfm?uri=boe-3-10-2537-4
http://www.opticsinfobase.org/boe/viewmedia.cfm?uri=boe-3-10-2537-8


4.1. Comparisons of confocal and offset aperture imaging mode 

The results of this study indicate that the imaging performance of an adaptive optics scanning 
laser ophthalmoscope can be tuned for imaging different types of retinal structures. While 
others have shown this is possible for cone imaging by selecting the light distribution in the 
pupil of the eye [20], the current study has concentrated on the use of controlling both the size 
and position of retinal conjugate apertures to select singly scattered and multiply scattered 
light. Detection of multiply scattered light has been shown to be valuable with the use of both 
aperture [15], polarization [21,22] and illuminant position [16] for traditional retinal imaging 
systems. Using an AOSLO we have also shown [23] that increasing aperture size can improve 
localization of subretinal changes. In the present study, we investigated the role of multiply 
scattered light by systematically changing the confocal aperture size and position, with an 
emphasis on structural imaging of the retinal microvasculture. This use of imaging using 
multiply scattered light improves the visibility of the microvasculature and erythrocytes 
through two mechanisms. The first, as shown in Fig. 1, is to decrease the relative contribution 
of structures that produce highly specular light returns such as the RNFL. The second appears 
to be capitalizing on the forward scattering of erythrocytes to enhance visualization relative to 
other retinal structures [24]. The importance of forward scattering is supported by our finding 
that highly scattering regions below the blood vessels increases contrast of erythrocytes for 
the offset aperture conditions (Fig. 3). Thus we posit a model that is shown schematically in 
Fig. 8. In the typical confocal imaging mode (Fig. 8A), while direct specular reflection from 
the RNFL (heavy arrows) and vasculature, returns back to the detector via the confocal 
aperture, the highly backscattering nature of the RNFL or other structures, dominates the 
resulting image. However, when the confocal aperture is displaced (Fig. 8B), we mask singly 
scattering light over most of the depth of focus of the system. The forward scattering from the 
focal volume however can be detected if it scatters a second (or third or more) times, such that 
it is returned within the focal volume of the system. While structures outside of the focal 
volume could also generate multiply scattered light that ultimately reaches the detector, it is 
only items that are near the focal point of the illuminating beam that will generate high spatial 
frequencies in the image. Thus, when focused at the level of the vasculature, the offset 
apertures provide excellent images of the retinal vasculature and erythrocytes. 

The improvement of vascular contrast with multiply scattered light suggests that some of 
the same advantage could be obtained using a flood-illuminated AO system. Since such 
systems [25,26] can be simpler, since they do not require scanning and descanning, this 
approach might be simpler. It is not clear though that a flood system will provide the full 
benefits we describe for two reasons. First, since there is no aperture in a flood illuminated 
system, the possibility of decreasing a strong specular backscatter component is not present, 
although perhaps manipulation of pupil plane apertures could provide some of the benefit. 
Second, the small scanning beam provides a temporal separation of the scatter field, that is, 
for each location of the scanned beam, we are assigning the wide field of forward scattered 
light to that location, whereas in a flood illuminated system, all locations in the retina can 
contribute forward scattered light to a large area of the final image. In support of this 
advantage is the fact that to obtain our results required us to focus on the blood vessels 
themselves. Nevertheless, it is not clear that some of the advantages of the large aperture are 
not available to a flood illuminated system. 
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Fig. 8. Schematic diagram depicting the effect of offsetting the confocal aperture on the 
visibility of the capillaries. (A) A centered large aperture (10× the Airy disk diameter). 
Specular reflection from the RNFL (heavy arrows) decreases the contrast of the capillary. (B) 
Offset imaging mode with the confocal aperture displaced laterally with 1.5× radius. Specular 
reflection from the RNFL is blocked by the offset aperture, allowing more multiple scattered 
light (dashed arrows) to return back to the detector. 

4.2. Imaging the peripapillary and papillary microvasculature 

The offset aperture technique for vascular imaging is applicable to any retinal region within 
20 degree of the fovea, including the peripapillary and papillary regions. Because it can be 
used to generate vascular maps with very high resolution, we can obtain images all the way to 
the optics disc or even within the disc. For instance, Fig. 4C shows the superficial layer of 
peripapillary capillaries running radially from the optic disc and parallel to the retinal nerve 
fiber bundles. This distinctive appearance is in agreement with previous histological studies in 
human eyes [27]. The entire superficial layer of the peripapillary capillary plexus is embedded 
within the RNFL. The ability of the offset apertures to enhance visibility of the erythrocytes 
in the presence of high reflection from other retinal structures was especially striking when 
imaging within the optic nerve head and optic disc crescent (Figs. 5 and 6). In this region 
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confocal images are dominated by the strong scattering from the lamina cribrosa and the 
sclera, and larger confocal aperture images are dominated by scattering within the tissue 
(resulting in the classic “white” appearance of the optic nerve head and the optic disc crescent 
for flood illuminated imaging). Using an offset aperture however allowed us to select against 
the bright return and observe blood flow within the microvasculature located at the optic 
nerve head and optic disc crescent, as well as to map out the entire vascular network of the 
peripapillary and papillary regions (Fig. 5). These findings also support the forward scattering 
property of the blood content, particularly the erythrocytes. 

4.3. Imaging the vascular fine structure 

We also showed that the offset aperture technique allowed superb imaging of the vascular 
wall (Fig. 7). Consistent with previous histological measurements of vessel wall thickness in 
human retina [28], we measured that the vessel wall thickness was ~12–18 µm in an arteriole 
with ~110 µm luminal diameter. However, we were not able to resolve the venous vessel wall 
due to its relatively thin layer of smooth muscle (tunica media). 

4.4. Future studies 

This use of large offset apertures in an AOSLO, with or without standard error mapping has 
improved our ability to measure the retinal vasculature. A number of extensions of this 
technology are possible particularly with regard to normal retinal vascular physiology. The 
simplest would be to use an annular aperture. This would simplify the experiments and 
possibly provide enhanced vascular imaging for all vessel orientations simultaneously. An 
additional enhancement is to use the ability to visualize single file flow of erythrocytes to 
make accurate measurements of vessel diameters and simultaneously of plasma velocities 
using erythrocyte velocity as a surrogate for plasma flow velocity [29]. Accurate 
measurements will allow establishment of age, sex, and race related norms of both static and 
dynamic vascular properties. Additionally similar measurements and imaging can be done on 
virtually any retinal vascular pathology with special reference to the common conditions of 
hypertension, diabetes [30], and macular degeneration. Similarly, it is also likely that 
progressive changes occur in the papillary [31] and peripapillary [32,33] capillary network 
during the development of glaucoma. We anticipate that the freedom to do imaging of the 
retinal vasculature on a capillary level in the absence of the risks and burdens of fluorescein 
and with higher resolutions will yield considerable new scientifically and therapeutically 
valuable data. 

5. Conclusions 

In the present study, we introduce a direct and noninvasive imaging technique for imaging the 
microvasculature of the peripapillary, papillary, and perifoveal retina using offset apertures in 
an AOSLO. With this technique, we are able to demonstrate that by systematically altering 
the offset of a large confocal aperture, the flow through retinal vessels of various sizes can be 
visualized as well as the cross sectional structure of the arteriolar wall. Future studies of 
retinal capillary density, capillary blood flow analysis, blood vessel wall thickness and lumen 
diameter measurement are now possible using this imaging approach. While the current study 
used many frames of video at each location, we have found that acceptable capillary maps can 
be obtained with about 0.5 seconds per location. 
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