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A KHINTCHINE DECOMPOSITION FOR FREE PROBABILITY

BY JOHN D. WILLIAMS

Indiana University

Let μ be a probability measure on the real line. In this paper we prove
that there exists a decomposition μ = μ0 � μ1 � · · · � μn � · · · such that
μ0 is infinitely divisible, and μi is indecomposable for i ≥ 1. Additionally,
we prove that the family of all �-divisors of a measure μ is compact up to
translation. Analogous results are also proven in the case of multiplicative
convolution.

1. Introduction. In classical probability theory, it has long been known that
the set of all convolution divisors of a random variable is compact up to trans-
lation. That is, given a family of decompositions μ = μ1,i ∗ μ2,i with i ∈ I , the
families {μj,i}i∈I,j=1,2 can be translated to form sequentially compact families
{μ̂i,j }i∈I,j=1,2 so that μ = μ̂1,i ∗ μ̂2,i for all i ∈ I . The proof of this result is a
simple application of Lévy’s lemma; see Chapter 5 in [15] for a full account of the
classical case. This compactness lemma serves as the cornerstone for the proof of
the following classical result of Khintchine.

THEOREM 1.1. Let μ be a probability measure. Then there exist measures μi

with i = 0,1,2, . . . such that μ0 is ∗-infinitely divisible, μi is indecomposable for
i = 1,2, . . . and μ = μ0 ∗ μ1 ∗ μ2 ∗ · · · . This decomposition is not unique.

The equation μ = μ0 ∗ μ1 ∗ μ2 ∗ · · · is in the sense that in the weak∗ topology
we have that limn↑∞ μ0 ∗ μ1 ∗ · · · ∗ μn = μ. This type of equality will be used
throughout the paper without further comment.

In free probability theory, the corresponding compactness and decomposition
theorems have hitherto been absent from the literature. Partial results of the corre-
sponding compactness theorem are near trivialities. Indeed, consider a W ∗ proba-
bility space (A, τ) and a random variable X ∈ A with mean 0 and finite variance.
Let X = X1 + X2 be a decomposition with the Xi ’s freely independent and of
mean 0. Then the equation τ(X2) = τ(X2

1) + τ(X2
2) would imply the necessary

tightness result when applied to families of decompositions.
It is the first aim of this paper to prove the corresponding tightness results in the

fullest possible generality. That is, we make no assumptions as to the finiteness of
moments. It is the second aim of this paper to prove versions of Theorem 1.1 for
additive and multiplicative free convolution.
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This paper is organized as follows: in Section 2 we give the background and ter-
minology of additive free convolution; in Section 3 we state and prove a number
of compactness results for families of decompositions with respect to additive free
convolution; in Section 4 we prove the existence of the Khintchine decomposition
with respect to additive free convolution; Sections 5, 6 and 7 are the respective
analogs of Sections 2, 3 and 4, but with regard to multiplicative free convolution
for measures supported on the positive real numbers; in Section 8 we give the
background and terminology for multiplicative free convolution of measures sup-
ported on the unit circle; in Section 9 we prove the existence of the Khintchine
decomposition for measures supported on the unit circle; in Section 10 we provide
applications of our compactness results.

2. Background and terminology for additive-free convolution. We refer to
[21] for a full account of the basics of free probability theory.

Let (A, τ) be a W ∗ probability space. We say that a family of unital subalgebras
{Ai}i∈I are freely independent if τ(xi1xi2 · · ·xin) = 0 for xij ∈ Aij whenever ij �=
ij+1 for j = 1, . . . , n − 1 and τ(xik ) = 0 for k = 1, . . . , n. We say that random
variables x, y ∈ A are freely independent if the unital algebras that they generate
in A satisfy the above definition.

Assume that A ⊂ B(H). We say that a not necessarily bounded operator x is
affiliated with A (in symbols, xηA) if the spectral projections of x are elements
in A. Equivalently, xηA if for every y ∈ A′ (the commutant of A), we have that
yx ⊂ xy. This expanded class of random variables allows us to study measures
with unbounded support.

Let xηA be a self-adjoint random variable with distribution μ, a probability
measure supported on R. We associate to μ its Cauchy transform,

Gμ(z) =
∫

R

dμ(t)

z − t
= τ

(
(z − x)−1)

.

Observe that zGμ(z) → 1 as z → ∞ nontangentially. It follows that Gμ is univa-
lent on a set of the form �α,β = {z ∈ C+ :�(z) > α,�(z) > β�(z)} for sufficiently
large α,β > 0. Throughout this paper we shall refer to a set of this type as a Stolz
angle. The set Gμ(�α,β) contains a set of the form �α′,β ′ = {z ∈ C− : 0 < �(z) ≤
α′, β ′�(z) < �(z)} on which we have a well-defined left inverse, G−1

μ . The func-
tion Rμ(z) = G−1

μ (z) − 1/z is called the R-transform of μ. First proved in [18],
the following equality is fundamental in free probability theory:

Rμ�ν(z) = Rμ(z) + Rν(z).

In what follows, it will be more convenient to consider the following functions:

Fμ(z) = 1

Gμ(z)
,

ϕμ(z) = F−1
μ (z) − z = Rμ(1/z).
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These functions are referred to as the F and Voiculescu transform, respectively.
They have the following properties which are proven to various degrees of gener-
ality in [10, 18] and [16]:

(1) |Fμ(z) − z| = o(|z|) uniformly as |z| → ∞ in �α,β for all α,β > 0.
(2) �(Fμ(z)) ≥ �(z) for all z ∈ C+.
(3) Fμ has a well-defined left inverse on �α,β for some α,β > 0 (hence, the

Voiculescu transform is defined on this set).
(4) There exist α,β > 0 such that ϕμ�ν(z) = ϕμ(z) + ϕν(z) when z ∈ �α,β .
(5) Fμ�δc (z) = Fμ(z − c) and ϕμ�δc = c + ϕμ(z) for c ∈ R.

Given a decomposition μ = μ1 � μ2, it was shown in [20] and [13] that there
exist analytic subordination functions ωi : C+ → C+ such that:

(1) Fμ(z) = Fμi
(ωi(z)) for z ∈ C+ and i = 1,2.

(2) limy↑+∞ ωi(iy)
iy

= 1 for i = 1,2.
(3) ω1(z) + ω2(z) = z + Fμ(z).

Observe that ωi and Fμ satisfy the same asymptotic properties in (2) above.
A classical result, due to Nevanlinna (whose full account can be found in [1],
Volume 2, page 7), implies that these functions have the following representation:

ωi(z) = ri + z +
∫ ∞
−∞

1 + tz

z − t
dσi(t),

Fμ(z) = r + z +
∫ ∞
−∞

1 + tz

z − t
dσ (t),

where r, ri ∈ R and σ , σi are positive, finite measures which are uniquely deter-
mined by ωi and Fμ. Observe that property (3) above and uniqueness imply that
r1 + r2 = r and σ1 + σ2 = σ .

We denote by Fμ(t) = μ((−∞, t]) the cumulative distribution function of μ.
This function is used to define two metrics on the space of probability measures,
namely the Kolmogorov and Lévy metric, d∞ and d , respectively. These are de-
fined as follows:

d∞(μ, ν) = sup
t∈R

|Fμ(t) − Fν(t)|,

d(μ, ν) = inf{ε > 0 :Fμ(t − ε) − ε ≤ Fν(t) ≤ Fμ(t + ε) + ε}.
The Lévy metric induces the weak topology on the space of probability measures
on the line, while the Kolmogorov metric induces a stronger topology, which we
call the Kolmogorov topology. We have the the following facts, first proven in [10],
which will be used throughout, often without reference:

LEMMA 2.1. Let μn and νn converge to probability measures μ and ν, re-
spectively, in the weak∗ (resp., Kolmogorov) topology. Then μn � νn converges to
μ � ν in the weak∗ (resp., Kolmogorov) topology.
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The proof of this lemma relies on the following inequalities which will be used
in what follows:

d(μ � ν,μ′ � ν′) ≤ d(μ,μ′) + d(ν, ν′),
d∞(μ � ν,μ′ � ν′) ≤ d∞(μ,μ′) + d∞(ν, ν′).

The next two lemmas were first proven in Section 5 of [10].

LEMMA 2.2. Let {μn}n∈N be a tight sequence of measures. Then there exists a
Stolz angle �α,β such that the functions |Fμn(z)− z| = o(z) uniformly as |z| → ∞
in this set. In particular, the functions F−1

μn
exist on a common domain for all n.

LEMMA 2.3. Let {μn}n∈N be a sequence of probability measures on R. The
following assertions are equivalent:

(1) The sequence {μn}n∈N converges in the weak∗ topology to a probability
measure μ.

(2) There exist α,β > 0 such that the functions {ϕμn}n∈N are defined and con-
verge uniformly on compact subsets of �α,β to a function ϕ and ϕμn(z) = o(z)

uniformly in n as |z| → ∞, z ∈ �α,β .

Moreover, if (1) and (2) are satisfied, we have that ϕ = ϕμ in �α,β .

DEFINITION 2.4. A probability measure μ on the real line is said to be �-
infinitely divisible if for every n ∈ N there exists a measure μ1/n such that μ =
μ1/n � · · · � μ1/n, where the measure on the right is the n-fold free convolution.

In dealing with infinitely divisible measures, the following characterization, first
proven in [8], will prove invaluable.

THEOREM 2.5. Let {μi,j }i∈N,j=1,...,ki
be an array of Borel probability

measures on R and {ci}i∈N be a sequence of real numbers. Assume that
limi→∞ maxj=1,...,ki

μi,j ({t : |t | > ε}) = 0 for all ε > 0 and that the measures
δci

�μi,1 � · · ·�μi,ki
converge to a probability measure μ in the weak∗ topology.

Then μ is �-infinitely divisible.

DEFINITION 2.6. Let μ be a probability measure. A decomposition μ = ν�ρ

is said to be nontrivial if neither ν nor ρ is a Dirac mass. We say that a measure μ

is indecomposable if it has no nontrivial decomposition.

Such measures were studied extensively in [2, 3] and [12]. We close with a
theorem, first proven in [10] and [3] from which we derive a corollary that will
play a key role in the proof of Theorem 4.4.
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THEOREM 2.7. Let μ and ν be two Borel probability measures on R, neither
of them a Dirac mass. Then:

(1) The point a ∈ R is an atom of the measure μ � ν if and only if there exist
points b, c ∈ R such that a = b + c and μ({b}) + ν({c}) > 1. Moreover, (μ �
ν)({a}) = μ({b}) + ν({c}) − 1.

(2) The absolutely continuous part of μ � ν is always nonzero, and its density
is analytic wherever positive and finite. More precisely, there exists an open set
U ⊆ R so that the density function f (x) = d(μ�ν)ac(x)

dx
with respect to Lebesgue

measure is locally analytic on the set U and (μ � ν)ac(R) = ∫
U f (x) dx.

(3) The singular continuous part of μ � ν is zero.

COROLLARY 2.8. Let μ and ν be as above. There exists a point s ∈ R such
that the cumulative distribution function Fμ�ν is continuous and increasing in a
neighborhood of s.

PROOF. First observe that (1) implies that μ � ν has only finitely many point
masses. To see this, assume that a = a1 + a2 and b = b1 + b2 are point masses of
μ � ν where

(μ � ν)({a}) = μ({a1}) + ν({a2}) − 1,

(μ � ν)({b}) = μ({b1}) + ν({b2}) − 1.

Further assume that a1 �= b1. This implies that

μ({a1}) + μ({b1}) ≤ 1.

Combined with the previous equalities, this implies that 1 < ν({a2}) + ν({b2}) so
that a2 = b2. This implies that, under these assumptions, there are at most (1 −
ν({b2}))−1 point masses of μ � ν.

Note that the nonatomic part of μ � ν has mass strictly greater than 0. To see
this, let {xi}ni=1 be the set of point masses of μ � ν. Let y and {zi}ni=1 satisfy
y + zi = xi and ν(y) + μ(zi) − 1 = (μ � ν)(xi) for i = 1,2, . . . , n where these
points arise as in the previous paragraph. Summing over both sides of the equation
and recalling that ν(y) < 1, we have that

n∑
i=1

(μ � ν)(xi) = nν(y) − n +
n∑

i=1

μ(zi) < n − n + μ(R) = 1.

Thus, for U as in the previous theorem, pick an open subset V ⊆ U that contains
no point masses. This set satisfies our claim. �
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3. Compactness results for additive free convolution. We begin our inves-
tigation with a technical lemma.

LEMMA 3.1. Let μ be a probability measure on R. Let � denote a Stolz angle
on which F−1

μ is defined. If μ = μ1 � μ2 is any decomposition of μ, then ϕμ1

and ϕμ2 have analytic extensions to �. These extensions satisfy �(ϕμ1(z)) and
�(ϕμ2(z)) ≤ 0 for all z ∈ �.

PROOF. By assumption, ϕμ exists and is analytic on all of � and, since Fμ

increases the imaginary part, ϕμ(z) ≤ 0 for all z ∈ �.
Turning our attention to μ1, consider the subordination function ω satisfying

Fμ(z) = Fμ1(ω(z)) for z ∈ C+. Recall that

lim
y↑∞

Fμ(iy)

iy
= lim

y↑∞
Fμ1(iy)

iy
= lim

y↑∞
ω(iy)

iy
= 1.

These facts imply that on a sufficiently small Stolz angle, all three functions are
invertible, and we have the following:

ω ◦ F−1
μ = F−1

μ1
.

Since the left-hand side is defined on �, the right-hand side must also extend to �.
This implies that this implies that the Voiculesu transform of μ1 extends to � and,
by abuse of notation, we continue to call this extension ϕμ1

With regard to the negativity of the imaginary part of our analytic extension,
note that on a large enough Stolz angle, Fμ1 acts as a left inverse for F−1

μ1
and

ω ◦ F−1
μ = F−1

μ1
. Thus, Fμ1(ω(F−1

μ (z))) = z. As the left-hand side of the equation
is defined and analytic for all z ∈ �, by analytic continuation, the same equality
holds for all z ∈ �. Thus

ϕμ1(z) = ω(F−1
μ (z)) − z = ω(F−1

μ (z)) − Fμ1(ω(F−1
μ (z)))

for all z ∈ �. As Fμ1 increases the imaginary part, our result holds. �

With this preliminary result out of the way, we now begin proving tightness
results. The diameter of a subset σ ⊂ R is defined in the usual way: diam(σ ) =
supx,y∈σ |x −y|. The support of a measure μ [in symbols, supp(μ)] is the comple-
ment of the largest open μ-null set.

THEOREM 3.2. Let μ be a probability measure with compact support, and
consider a decomposition μ = μ1 � μ2. Then diam(supp(μi)) ≤ diam(supp(μ))

with equality if and only if one of the μi is a Dirac mass.
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PROOF. Consider the subordination functions ωi satisfying Fμ(z) =
Fμi

(ωi(z)) with the following Nevanlinna representations:

ωi(z) = ri + z +
∫ 1 + zt

t − z
dσi(t),

Fμ(z) = r + z +
∫ 1 + zt

t − z
dσ(t).

Let α,β ∈ R satisfy supp(μ) ⊆ [α,β], where the interval on the right-hand
side is the smallest for which this containment holds. Observe that Gμ has a
nonzero real analytic continuation across (−∞, α) so that the same must hold
for Fμ. This implies that σ((−∞, α)) = 0. Since σ = σ1 + σ2, we also have that
σi(−∞, α) = 0 so that, by the Schwarz reflection principle, ωi admits analytic
continuation across (−∞, α). Furthermore, ωi is increasing on (−∞, α) so that
Fμi

= Fμ ◦ ω−1
i has an analytic continuation to ωi(−∞, α). This tells us that

supp(μi) ⊂ R \ ω1((−∞, α)).
Now, observe that ωi(x) − x → ri − mi as x → ±∞, where mi is the first

moment of σi . Differentiating the Nevanlinna representation of ωi , it is clear that
ω′

i(x) ≥ 1 for x < α. Thus

ωi(α − ε) =
∫ α−ε

x
ω′

i (t) dt + ωi(x) ≥
∫ α−ε

x
dt + x + (

ωi(x) − x
)

→ α − ε + ri − mi.

It follows that (−∞, α + ri − mi) ⊆ ωi((−∞, α)). Similarly, (β + ri − mi,∞) ⊆
ωi(β,∞). These two observations imply that supp(μi) ⊆ [α + ri − m1, β + ri −
mi]. Hence, we have that diam(supp(μi)) ≤ diam(supp(μ)).

With regard the equality claim, observe that our measure σ1 = 0 implies that μ1
is a translation of μ. This implies that μ2 is a Dirac mass. Thus, by assuming that
neither μ1 nor μ2 is a Dirac mass, we have that σi �= 0 for i = 1,2. This implies
that ω′

i (t) > 1 for t < α. It follows that supp(μi) � [α + ri −m1, β + ri −mi], and
our claim follows. �

In what follows, for O ⊂ R, we let conv(O) be the smallest interval containing
the set O .

LEMMA 3.3. Let μ1 and μ2 be probability measures with compact support.
Then supp(μ1 � μ2) ⊆ conv(supp(μ1) + supp(μ2)).

PROOF. Let x1 and x2 be freely independent random variables in a W ∗ proba-
bility space (A, τ) with respective distributions μ1 and μ2. Let ci = inf{t ∈ σ(xi)}
and di = sup{t ∈ σ(xi)}. It is precisely the content of Theorem 4.16 in [10] that
x1 − c1I + x2 − c2I is a positive random variable. Thus, its spectrum is contained
in the positive real numbers. Since the spectrum of a self-adjoint operator contains
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the support of its distribution, we have that the distribution of x1 − c1I + x2 − c2I

is supported in the positive reals. Similarly, the distribution of x1 − d1I + x2 − d2I

is supported in the negative reals. Thus, supp(μ1 �μ2) ⊆ [c1 + c2, d1 +d2], which
is equivalent to our claim. �

We now extend the above theorem to measures with unbounded support. For a
measure μ, recall that Fμ denotes its cumulative distribution function. We shall let
�ε(μ) = {t ∈ R : ε < Fμ(t) < 1 − ε}.

THEOREM 3.4. Let μ = μ1 � μ2. For ε > 0 we have that �ε(μ) ⊆
�ε/2(μ1) + �ε/2(μ2).

PROOF. Let ai and bi denote the left and right endpoints of �ε/2(μi). Con-
sider the probability measures μi,ε/2 defined as follows:

μi,ε/2(σ ) = μi

(
σ ∩ �ε/2(μi)

) +
(

1 − μi(�ε/2(μi))

2

)
δai

(σ )

+
(

1 − μi(�ε/2(μi))

2

)
δbi

(σ ).

Observe that d∞(μi,μi,ε/2) ≤ ε/2 where d∞ denotes the Kolmogorov metric.
Further observe that supp(μi,ε/2) = �ε/2(μi). It follows that

d∞(μ,μ1,ε/2 � μ2,ε/2) ≤ d∞(μ1,μ1,ε/2) + d∞(μ2,μ2,ε/2) ≤ ε.

Observe that Fμ(t) ∈ (ε,1 − ε) implies that Fμ1,ε/2�μ2,ε/2(t) ∈ (0,1). Thus,
�ε(μ) ⊆ supp(μ1,ε/2 � μ2,ε/2). By Lemma 3.3, we have that supp(μ1,ε/2 �
μ2,ε/2)) ⊂ conv(supp(μ1,ε/2)+ supp(μ2,ε/2)) = conv(�ε/2(μ1)+�ε/2(μ2)). �

We close with the main result of the section. Observe that this theorem lacks
the quantitative information found in Theorem 3.4. The hope was to extend Theo-
rem 3.2 in a similar manner, but such an approach proved elusive. We have found
no negative results in this direction so we conjecture that �ε(μi) ⊆ x + �ε/2(μ)

for some x ∈ R. However, the theorem below provides us with tightness and will
suffice for the applications that follow.

Let ν be a measure satisfying 0 < ν(R) ≤ 1. We extend the definition of
the Cauchy and F -transform by letting Gν(z) = ∫

R(z − t)−1 dν(t) and Fν(z) =
1/Gν(z). Observe that for λ = ν(R), the measure ν̂ = λ−1ν is in fact a probability
measure. This provides us with the following inequality which we shall exploit in
what follows.

�Fν(z) = λ−1�Fν̂(z) ≥ λ−1�(z).

THEOREM 3.5. Let μ = μ1,k � μ2,k for all k ∈ N. Then there exist transla-
tions {μ̂i,k} so that μ = μ̂1,k � μ̂2,k and the family of measures {μ̂i,k} is tight for
i = 1,2.
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Before embarking on the proof, we remark that there are two ways for tightness
to fail. The first is to take an otherwise tight sequence of measures and translate
their support to ±∞. The second is if the mass of your measures becomes more
spread out. Since our theorem assumes away the former case, the idea of the proof
is to show that the latter cannot happen. We quantify the latter case as follows:
a sequence of measures {μk}k∈N cannot be translated to tightness if and only if
there exists a γ ∈ [0,1) such that lim infk supt∈R(μk(t − a, t + a)) < γ for all
a ∈ R+.

PROOF OF THEOREM 3.5. Assume that {μ1,k}k∈N is tight which is equiva-
lent to sequential precompactness in the weak∗ topology. As we established in
Lemma 3.1, F−1

μ , F−1
μ1,k

and F−1
μ2,k

extend to a common domain for all k, which we

shall denote by � in what follows, on which they satisfy F−1
μ (z) − F−1

μ1,k
(z) + z =

F−1
μ2,k

(z). Recall that, according to Lemma 2.3, weak convergence is equivalent to

the uniform convergence of the functions F−1
μ1,k

on compact subsets of a Stolz an-
gle �α,β to a function F satisfying F(iy)/iy → 1 as y → ∞. The equation above
implies that F−1

μ2,k
is similarly behaved on �α,β so that {μ2,k} is also weakly con-

vergent along this subsequence. Thus {μ1,k} is tight, which implies the same for
{μ2,k}.

With that in mind, we may assume, for the sake of contradiction, that
the family {μ1,k} cannot be translated to form a tight family of measures
along any subsequence. This implies that there exists a γ ∈ (0,1) such that
lim infk supx∈R(μ1,k(−a + x, a + x)) < γ < 1 for all a ∈ R+. Passing to
subsequences and possibly renumbering our measures, we may assume that
supx∈R(μ1,k(x − k, x + k)) < γ .

Now, pick ε > 0 such that (1 − ε) > γ . Let w = ib where b ∈ R+ is chosen so
that w ∈ � and |F−1

μ (w) − w| ≤ ε|w| = εb. Observe that

F−1
μ (w) = F−1

μ1,k
(w) + F−1

μ2,k
(w) − w

implies that

�F−1
μ1,k

(w) + �F−1
μ2,k

(w) ≥ b(2 − ε).

In Lemma 3.1, we showed that F−1
μi,k

decreases the imaginary part so that

�F−1
μ1,k

(ib) ≥ b(1 − ε).

Further observe that analytic continuation implies that Fμ1,k
(F−1

μ1,k
(z)) = z for all

z ∈ � so that, in particular, ib = Fμ1,k
(F−1

μ1,k
(ib)).

Now, let zk = F−1
μ1,k

(ib), and denote by tk the real part of this number (the real
part can vary as wildly as you would like but we will show that this is not a prob-
lem). We decompose μ1,k so that μ1,k = ν1,k + ρ1,k where ν1,k(R) = λk < γ and
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ρ1,k([tk − k, tk + k]) = 0. A decomposition with these properties exists because
of the fact that supx∈R(μ1,k(x − k, x + k)) < γ . We will use the last of the above
properties to show that |Fμ1,k

(zk) − Fν1,k
(zk)| → 0. We will then use the fact that

Fν1,k
increases the imaginary part in proportion to λ−1

k to derive a contradiction.
Observe that

Fμ1,k
(zk) = 1

Gν1,k
(zk) + Gρ1,k

(zk)

and that

|Gρ1,k
(zk)| =

∣∣∣∣
∫

R\(tk−k,tk+k)

1

zk − t
dρ1,k(t)

∣∣∣∣ → 0

as k → ∞. This second fact is clear since ρ1,k is a subprobability measure, and,
since �(zk) = tk , the above integrand converges to 0 uniformly on the domain of
integration as k ↑ ∞. Now, if lim infk |Gν1,k

(zk)| = 0, then lim supk |Fμ1,k
(zk)| =

∞ which would contradict the fact that Fμ1,k
(zk) ≡ ib. Thus, we may assume that

|Gν1,k
(zk)| ≥ c > 0. This implies that λk > 0.

Consider the quantity

|Fμ1,k
(zk) − Fν1,k

(zk)| =
∣∣((Gν1,k

(zk) − Gμ1,k
(zk)

))
(Gμ1,k

(zk)Gν1,k
(zk))

−1∣∣.
Observe that the numerator of the right-hand side goes to zero since Gμ1,k

−
Gν1,k

= Gρ1,k
, and the denominator is bounded away from zero since |Gν1,k

(zk)| ≥
c > 0 and |Gμ1,k

(zk)| ≡ b−1 > 0. Thus, |Fμ1,k
(zk) − Fν1,k

(zk)| → 0 as k ↑ ∞.
Recalling the remarks preceding this theorem, we consider the probability mea-

sure ν̂1,k = λ−1
k ν1,k so that Fν1,k

(zk) = λ−1
k Fν̂1,k

(zk). We then have

b = �Fμ1,k
(zk) = lim

k↑∞�Fμ1,k
(zk) = lim

k↑∞λ−1
k �Fν̂1,k

(zk)

≥ lim
k↑∞λ−1

k �(zk) ≥ γ −1(
b(1 − ε)

)
> b.

This contradiction completes our proof. �

We end with a few remarks and corollaries. We single out the following fact
from last theorem for easy reference.

COROLLARY 3.6. Let μ = μ1,k �μ2,k be a family of decompositions. Assume
that {μ1,k}k∈N is tight. Then {μ2,k}k∈N is tight.

As we stated before the proof of Theorem 3.5, a family of measures can fail to
be tight either by being translated to ±∞ or by becoming more spread out. For
t ∈ (0,1), we shall say that a measure μ is t-centered if Fμ(s) < t for s < 0
and Fμ(s) ≥ t for s ≥ 0. Right continuity of the distribution function implies
that a measure μ has a unique t-centered translation. Observe that when t = 1/2,
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t-centered is simply the more familiar median 0. Now, if we assume that we have
a family of decompositions μ = μ1,k � μ2,k where {μ1,k}k∈N are assumed to be
t-centered, then the supports of these measures are not being sent to ∞. By Theo-
rem 3.5, we have the following corollary.

COROLLARY 3.7. Let μ = μ1,k � μ2,k where {μ1,k} are t-centered where t

is allowed to range over a compact subset of (0,1). Then {μi,k}k∈N forms a tight
family.

The following variation will prove useful in what follows.

COROLLARY 3.8. Let {μn}n∈N be a tight sequence of measures. Assume that
to each member of this family we associate a family of decompositions μn = νn,k �
ρn,k for k ∈ N. Then we may translate our measures so as to form tight families
{ν̂n,k}n,k∈N and {ρ̂n,k}n,k∈N with the property that μn = ν̂n,k � ρ̂n,k for all n, k ∈ N.

PROOF. We assume that each νn,k has median 0.
Assume that {νn(i),k(i)}i∈N has no subconvergent sequence. Let μ be a cluster

point of {μn(i)}i∈N. By Lemmas 2.2 and 3.1, we have that there exists a truncated
cone �α,β so that for i large enough, F−1

μ ,F−1
μn(i)

, F−1
νn(i),k(i)

and F−1
ρn(i),k(i)

are all

defined and satisfy F−1
νn(i),k(i)

(z)+F−1
ρn(i),k(i)

(z)− z = F−1
μn(i)

(z) → F−1
μ (z) uniformly

over compact subsets of �α,β .
Now, since we have centered our measures νn(i),k(i) by assuming median 0, the

lack of a convergent subsequence amounts to assuming that

lim inf
i

(
sup
t∈R

νn(i),k(i)([t − a, t + a])
)

→ γ < 1

for all a ∈ R+. At this point, one need only observe that every step of the proof of
Theorem 3.5 holds under the weaker assumption that F−1

νn(i),k(i)
(z) + F−1

ρn(i),k(i)
(z) −

z → F−1
μ (z) as opposed to assuming outright equality. This completes our proof.

�

4. A Khintichine decomposition for additive free convolution.

LEMMA 4.1. Let {μi}i∈I be a tight family of probability measures. Then, for
every C > 0, there exists a Stolz angle �α,β such that |ϕ′

μi
(z)| ≤ C|z| for all z ∈

�α,β and n ∈ N.

PROOF. It was shown in the proof of Theorem 5.2 in [10] that, given a tight
family of measures {μi}i∈I , there exists an α > 0 such that Fμi

= z(1 + o(1))

uniformly as |z| ↑ ∞ for z ∈ �α,0. Thus, for fixed C > 0, we may find a β large
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enough so that |ϕμi
(z)| = |F−1

μi
(z) − z| ≤ C|z| for z ∈ �α,β , n ∈ N. By Cauchy’s

formula,

|ϕ′
μi

(z)| = (2π)−1
∣∣∣∣
∫
|ζ |=1

ϕμi
(z)

(ζ − z)2 dζ

∣∣∣∣ ≤ C|z|. �

We will now define the functional that will be the main tool in the proof of our
main theorems. Let μ be a probability measure. Let M0 be the set of all median 0
probability measures ν satisfying μ = ν � ρ for some probability measure ρ. It is
a consequence of Corollary 3.7 that this is a tight family of measures. Let �α,β be
a Stolz angle on which F−1

μ is defined and for which Lemma 4.1 is satisfied with
regard to M0. Consider the set �′ = {z ∈ C+ :α + 1 > �(z) > α,�(z) > β�(z)} ⊂
�α,β , and let M�′ be the set of probability measures ν such that ϕν has analytic
extension to �′ such that �ϕν(z) ≤ 0 for all z ∈ �′. For ν ∈ M�′ , let �(ν) :=
− ∫

�′ �ϕν(z) dA(z) where A denotes the area measure.
Observe that, by Lemma 4.2, for any decomposition μ = ρ � ν we have that

ρ, ν ∈ M�′ . Furthermore, we claim the following properties for our functional �:

(1) � is weakly continuous.
(2) �(ν � ρ) = �(ν) + �(ρ) for all ν,ρ ∈ M�′ .
(3) 0 ≤ �(ν) < ∞ for all ν ∈ M�′ . �(ν) = 0 if and only if ν is a Dirac mass.
(4) �(ν � δt ) = �(ν) for all t ∈ R and ν ∈ M�′ .

The only fact that requires argument is that �(ν) = 0 if and only if ν is a Dirac
mass. One direction is clear since the Voiculescu transform of a Dirac mass is
simply a real constant. Furthermore, since −�(ϕν(z)) ≥ 0 for all z ∈ �′, �(ν) = 0
implies that −�(ϕν(z)) ≡ 0 for z ∈ �′. Analytic continuation implies that ϕν is a
real constant which implies that ν is a Dirac mass.

THEOREM 4.2. Let μ be a probability measure with the property that for ev-
ery nontrivial decomposition μ = μ1 � μ2, neither μ1 nor μ2 is indecomposable.
Then μ is infinitely divisible.

PROOF. We first note that for every ε > 0, there exists a decomposition
μ = μ1 � μ2 such that 0 < �(μ1) < ε. Assume otherwise and let α > 0 be the
infimum of � over all nontrivial decompositions of μ. By Theorem 3.5, there ex-
ists a sequence of decompositions μ = μ1,k � μ2,k so that the families {μi,k}∞k=1
are tight and so that �(μ1,k) → α. Taking weak cluster points μ1 and μ2, by
weak continuity of both � and � we have that μ = μ1 � μ2 and �(μ1) = α. By
assumption, μ1 has a nontrivial decomposition μ1 = ν0 � ν1. Since neither com-
ponent is a Dirac mass, we have that α > �(νi) > 0 so that the decomposition
μ = ν0 � (ν1 � μ2) violates minimality of α.

We now claim that for every t ∈ (0,�(μ)) there exists a decomposition μ =
μ1 � μ2 such that �(μ1) = t . To see this, let α be the supremum of all values of
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�(μ1) that are ≤ t . The previous paragraph implies that α > 0. We again take a
sequence μ = μ1,k � μ2,k so that �(μ1,k) ↑ α so that the cluster points μi satisfy
μ = μ1 � μ2 and �(μ1) = α. If α < t , by the above argument, we can break a
chunk of size less than t −α from μ2 so as to attain a contradiction. Thus, � takes
values on all of (0,�(μ)) as it ranges over divisors of μ.

By induction, for every n ∈ N we can find a decomposition μ = μn,1 � · · · �
μn,n � δxn such that �(μn,i) = �(μ)/n and μn,i has median 0 for all i = 1, . . . , n.
The real number xn is the shift constant that necessarily arises when centering
these measures. We now claim that the array {μn,j }n∈N,j=1,...,n converges to δ0
uniformly as n ↑ ∞.

Observe that Corollary 3.7 implies that our array is tight. Let ν be any clus-
ter point, and let {μkn,jn}n∈N be a subsequence converging to ν. By Lemma 2.3,
ϕ{μkn,jn }(z) → ϕν(z) uniformly on compact subsets of a Stolz angle �∗ ⊆ �. Now,
observe that �′ and �∗ may be disjoint. However, there exist a, b ∈ R such that
ia ∈ �′ and ib ∈ �∗.

Observe that ϕμkn,jn
is a normal family on �′ ∪ i[a, b], which implies pre-

compactness. By analytic continuation, any cluster point must agree with ϕν on
i[a, b] ∩ �∗. This implies that ϕν has analytic continuation to �′ that satisfies
ϕν(z) = limn↑∞ ϕμkn,jn

(z) for z ∈ �′. Now, observe that the fact that �(μkn,jn) →
0 implies that − ∫

�′ ϕμkn,jn
(z) dA(z) → 0. By Lemma 4.1, we have a bound on the

derivatives of these functions so that, recalling that the imaginary parts of these
functions are negative, �ϕμkn,jn

(z) → 0 for z ∈ �′. This implies that �ϕν(z) = 0
for z ∈ �′. Thus, ν is a dirac mass and our median 0 assumption implies that
ν = δ0.

Thus, our array is tight and every subsequence converges to δ0. This implies
that our array converges to δ0 uniformly over n. By Theorem 2.5, μ is infinitely
divisible. �

LEMMA 4.3. Let {μn}n∈N be a sequence of t-centered measures that converge
weakly to μ. Assume that for s ∈ R such that Fμ(s) = t , we have that Fμ is contin-
uous and strictly increasing in a neighborhood s. Then s = 0, or, in other words,
μ is t-centered.

PROOF. Choose ε > 0 such that Fμ is continuous on (s − 2ε, s + 2ε). Let
0 < ε′ < ε and observe that utilizing the Lévy metric and our assumption of weak
convergence, we have the following inequality for n large enough, independent
of ε:

Fμ(s − ε − ε′) − ε′ ≤ Fμn(s − ε) ≤ Fμ(s − ε + ε′) + ε′.
By continuity of Fμ at these points, it follows that Fμn(s − ε) → Fμ(s − ε).
Similarly Fμn(s + ε) → Fμ(s + ε). Thus, for n large enough, we have that
Fμn(s − ε) < t and Fμn(s − ε) > t . This implies that 0 ∈ (s − ε, s + ε). As ε

was arbitrary, this implies that s = 0. �
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It is clear from the statement of the previous lemma that it will be used in con-
junction with Corollary 2.8. Indeed, it is precisely the content of this corollary that
measures with nontrivial decompositions satisfy the hypotheses in Lemma 4.3,
which will play a small but key role in the proof of the following theorem.

THEOREM 4.4. Let μ be a probability measure. Then there exist measures μi

with i = 0,1,2, . . . such that μ0 is �-infinitely divisible, μi is indecomposable for
i = 1,2, . . . and μ = μ0 � μ1 � μ2 � · · · . This decomposition is not unique.

PROOF. If μ is infinitely divisible, then we are done. If not, by Theorem 4.2,
μ has nontrivial divisors. Otherwise, let α0 = sup{�(ρ)} where the supremum is
taken over all indecomposable probability measures ρ satisfying μ = ν � ρ for
some probability measure ν. Let μ1 be chosen so that μ = μ0,1 � μ1, �(μ1) >

α0/2 and μ1 is indecomposable. By translating our measures, μ1 is assumed to
be t-centered for a t to be chosen later [for the real number s such that μ1 � δs is
t-centered, we need only consider the decomposition μ = (μ0,1 �δ−s)� (μ1 �δs)

and all of the relevant properties will be satisfied].
At the nth stage of this process, we let αn−1 = sup{�(ρ)} where the supremum

is taken over all indecomposable probability measures ρ satisfying μ0,n−1 = ν �ρ

for some measure ν (unless μ0,n−1 is infinitely divisible, at which point we are
done). We then let μn be chosen such that μ0,n−1 = μ0,n � μn, �(μn) > αn/2
and μn is indecomposable. By translating μ0,n and μn, we may further assume
that μ1 � · · · � μn is t-centered. If at any point αn = 0, then by Theorem 4.2, we
are done. We therefore assume that αn > 0 for all n ∈ N.

In what follows, we utilize the following notation:

νn = μ1 � · · · � μn,

νn,m = μm+1 � · · · � μn,

ν∞,m = lim
n↑∞μm+1 � · · · � μn,

where we will show at a latter point that the latter actually converges.
Note that Corollary 3.8 implies that {νn,m}n,m∈N is a tight family. It follows

that {νn}n∈N is also tight. We now claim that this sequence of measures is actually
convergent for an appropriate choice of t in the sense of t-centeredness.

Proceeding with our claim, observe that �(μ) = �(μ0,n)+�(νn) = �(μ0,n)+
�(νm) + �(νn,m) for all m < n ∈ N. Observe that �(μ0,n) is bounded and de-
creasing so necessarily converges. This implies that �(νn,m) represents the tail of
a convergent series and must therefore go to 0 uniformly as m ↑ ∞ (note that this
implies that αn → 0).

Let ν̂n,m be the translation of νn,m with median 0 and observe that �(νn,m) =
− ∫

�′ �ϕνn,m(z) dA(z) = − ∫
�′ �ϕν̂n,m

(z) dA(z) = �(ν̂n,m). By Lemma 4.1, ϕ′
ν̂n,m

is bounded on �′. Since �(ν̂n,m) → 0 as m ↑ ∞, we have that −�ϕν̂n,m
(z) → 0
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uniformly over �′ as m ↑ ∞. By Lemma 2.3, any cluster point ν̂ of {ν̂n,m}n,m∈N
must satisfy ϕν(z) = 0 for z ∈ �′. This implies that ν̂ is a Dirac mass. Thus, any
cluster point ν of {νn,m} as m ↑ ∞ must also be a Dirac mass.

Thus, the set of cluster points of {νn}n∈N is of the form {ρ � δr}r∈K where K

is a compact subset of R. Since we are assuming that αn > 0 for all n ∈ N, we
have that ρ = μ1 � ν where ν is some nontrivial cluster point of {νn,1}n∈N. In
particular, ρ has a nontrivial decomposition so that, by Corollary 2.8, there exist
points s ∈ R and t ∈ (0,1) such that Fρ(s) = t and Fρ is continuous and increasing
in a neighborhood of s. We therefore assume that {νn}n∈N are t-centered (we may
do this retroactively since this only translates our measures νn and does not affect
the fact that they cluster to translations of ρ). By Lemma 4.3, all cluster points of
{νn}n∈N must be t-centered so that, by uniqueness of this property, our sequence
converges to a single measure.

Now, observe that these facts together imply that {νn,m}n,m must converge to
the Dirac mass at 0 as m ↑ ∞. This further implies that ν∞,m is the limit of a
convergent sequence. We next claim that if μ0 is any cluster point of {μ0,n}n∈N,
then μ = limn↑∞ μ0 � νn.

To see this, let in be a subsequence along which μ0,n converges to μ0. Ob-
serve that limn↑∞ μ0 � νn = limn↑∞ μ0,in � νn = limn↑∞ μ0,in � νin � νn,in =
limn↑∞ μ � νn,in . As n → ∞, the right-hand side converges to μ � δ0 = μ, prov-
ing our claim.

We have shown that μ = limn↑∞ μ0 � νn so that our theorem will be proven
once we show that μ0 is infinitely divisible. Toward this end, we claim that
μk,0 = μ0 � ν∞,k+1 for all k ∈ N. To see this, observe that the right-hand side is
equal to μ0 �ν∞,k+1 = limn↑∞ μ0,in �ν∞,k+1 = limn↑∞ μ0,in �νin,k+1 �ν∞,in =
limn↑∞ μ0,k � ν∞,in → μ0,k as n → ∞. This proves our claim.

Now, assume that μ0 has a decomposition μ0 = ρ � ν where ν is indecompos-
able. Assume that �(ν) > 0. Pick n large enough so that αn < �(ν) and recall that
μn,0 = μ0 � ν∞,n+1. The left-hand side has no indecomposable divisor whose �

value is larger than αn. This contradiction implies that μ0 has no indecomposable
divisors so that, by Theorem 4.2, our theorem holds. �

The failure of uniqueness will be addressed in Section 10.

5. Background and terminology for the multiplicative convolution of mea-
sures supported on the positive real line. Let x, y be positive random variables
in (A, τ) with respective distributions μ and ν. We denote by μ � ν the distri-
bution of the random variable xy. Since τ is a trace, the distribution of xy is the
same as that of y1/2xy1/2, so that � preserves the property that the distribution is
a measure supported on the positive real numbers.

Let MR+ denote the set of probability measures supported on R+. Observe that,
with exception of δ0, all such measures have nonzero first moment and we assume
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throughout that we are not dealing with this measure. Consider the following func-
tion:

ψμ(z) =
∫ ∞

0

zt

1 − zt
dμ(t)

for z ∈ C\R+. As seen in [19] and [10], ψμ|iC+ is univalent and maps into an open
neighborhood about the interval (μ({0})−1,0). It is also true that ψμ(iC+)∩R =
(μ({0}) − 1,0).

Let �μ = ψμ(iC+) and let χμ :�μ → iC+ denote the inverse function. We
refer to the S-transform as the following function:

Sμ(z) = (1 + z)χμ(z)

z
.

These functions have the following properties which will be used, often without
reference, in what follows:

(1) Sμ�ν(z) = Sμ(z)Sν(z) for all z in their common domain.
(2) Sμ(z) > 0 and S′

μ(z) ≤ 0 for z ∈ (μ({0}) − 1,0).
(3) (μ1 � μ2)({0}) = max{μ1({0}),μ2({0})}.
(4) χ ′

μ(z) > 0 for all z ∈ (μ({0}) − 1,0).
(5) χμ�δc (z) = χμ(z)/c and Sμ�δc (z) = Sμ(z)/c.

Observe that (3) above implies a multiplicative version of Lemma 3.1. That is,
for any nontrivial decomposition μ = μ1 � μ2, (3) implies that real part of the
domain of χμ is contained in the real part of the domain of χμi

for each i = 1,2.
We will use this fact without reference throughout.

The following results on convergence and tightness were first proven in full
generality in [10].

LEMMA 5.1. Let {μn}n∈N and {νn}n∈N be sequence of probability measures
on R+. Assume the these sequences weakly converge to μ and ν, respectively. Then
{μn � νn}n∈N converges to μ � ν in the weak∗ topology.

LEMMA 5.2. Let M be a set of probability measures on R+. The following
conditions are equivalent:

(1) M is tight, and the weak∗ closure of M does not contain δ0.
(2) There exists an α > 0 such that:

(a) −α belongs to the domain of χμ for all μ ∈ M .
(b) sup{|χμ(−α)| :μ ∈ M} < ∞.
(c) inf{|χμ(−β)| :μ ∈ M|} > 0 for all β ∈ (0, α).

(3) There exists an α > 0 such that:
(a) −α belongs to the domain of Sμ for all μ ∈ M .
(b) sup{|Sμ(−α)| :μ ∈ M} < ∞.
(c) inf{|Sμ(−β) :μ ∈ M|} > 0 for all β ∈ (0, α).
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LEMMA 5.3. Let {μn}n∈N be a tight sequence of probability measures on R+
such that δ0 is not in the weak∗ closure of our sequence. The following are equiv-
alent:

(1) The sequence {μn}n∈N converges to a measure μ in the weak∗ topology.
(2) There exist positive numbers β < α such that the sequence {χμn} converges

uniformly on the interval (−α,−β) to a function χ .
(3) There exist positive numbers β < α such that the sequence {Sμn} converges

uniformly on the interval (−α,−β) to a function S.

Moreover, if (1) and (2) are satisfied, we have χ = χμ in (−α,−β).

In a manner analogous to the additive case, we have the following subordination
result for multiplicative convolution. This was first proven in full generality in [13]
and is proven by different means in [6].

THEOREM 5.4. Let μ be a probability measure on R+ with decomposition
μ = μ1 � μ2. There exist analytic subordination functions ωi : C \ R+ → C \ R+
for i = 1,2, such that:

(1) ωi(0−) = 0.
(2) for every λ ∈ C+ we have that ωi(λ̄) = ωi(λ), ωi(λ) ∈ C+ and

arg(ωj (λ)) ≥ arg(λ).

(3) ψμ(λ) = ψμi
(ωi(λ)) for all λ ∈ C \ R+.

(4) ω1(λ)ω2(λ) = λψμ(λ).

Consider next the following result which may be found in [5].

THEOREM 5.5. Let η :� → C \ {0} be an analytic function such that η(z̄) =
η(z) for all z ∈ �. The following are equivalent:

(1) There exists a probability measure μ �= δ0 on [0,∞) such that η = ψμ/(1+
ψμ).

(2) η(0−) = 0 and arg(η(z)) ∈ [arg(z),π) for all z ∈ C+.

These two theorems may be combined to give us the following corollary. We
have no direct reference for this fact but can be sure that it is well known and are
recording it only for the reader’s convenience.

COROLLARY 5.6. Let ωi be a subordination function arising from the decom-
position μ = μ1 � μ2 as above. Then

ωi(z) = ψν(z)

1 + ψν(z)

for a probability measure ν with the property that supp(ν) ⊆ supp(μ).
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PROOF. The existence of such a representation is a direct consequence of the
previous theorems. It remains to prove to the assertion about the support of ν.

In the proof of Theorem 6.1 in the next section, we will show that ωi will have
analytic continuation and is real on R \ (supp(μ)−1) where supp(μ)−1 = {t−1 : t ∈
supp(μ)}. This implies that �ψν(t + iε) → 0 as ε → 0 for t /∈ (supp(μ)−1). Since
Gν(1/z) = z(ψν(z) + 1), this implies that t−1 /∈ supp(ν). Our claim follows. �

This final result was first proven in [7] and will be used in proving a multiplica-
tive version of Theorem 4.2.

THEOREM 5.7. Consider (cn)n∈N ⊆ R and an array {μn,j }n∈N,j=1,2,...,kn
of

probability measures on (0,∞) such that

lim
n→∞ min

1≤j≤kn

μn,j

(
(1 − ε,1 + ε)

) = 1

for every ε > 0. If the measures δcn �μn,1 � · · ·�μn,kn have a weak limit μ which
is a probability measure, then μ is infinitely divisible.

Observe that the assumptions in this theorem may be weakened so that we need
only assume that μn,j ({0}) = 0 for all n ∈ N and j = 1,2, . . . , kn. Indeed, every
element in such an array can be approximated arbitrarily well by a measure sup-
ported on (0,∞). It is under this weakened assumption that we will later invoke
this theorem.

6. Compactness results for measures supported on the positive real half-
line. We define logdiam(μ) := supx,y∈supp(μ)(|log(x) − log(y)|) to be the loga-
rithmic diameter of the measure μ.

THEOREM 6.1. Let μ be a compactly supported probability measure on R+.
Then for any decomposition μ = μ1�μ2 we have that logdiam(μi) ≤ logdiam(μ).
If μ({0}) = 0, then equality occurs if and only if one of the μi is a Dirac mass.

PROOF. If {0} is contained in the support of μ, the theorem is trivial. Thus,
we assume that [α,β] = conv(supp(μ)) and [α1, β1] = conv(supp(μ1)) with α,
α1 > 0. Observe that ψμ has analytic extension to R \ [β−1, α−1]. We claim that
the subordination function ω1 does also.

To see this, note that ψμ1(ω1(te
iθ )) = ψμ(teiθ ) = (Gμ(1/teiθ )/teiθ ) + 1 for

t ∈ R \ [β−1, α−1]. Since 1/t is not contained in the support of μ, the Stieltjes
inversion formula tells us that the imaginary part of the right-hand side goes to zero
as θ goes to 0. Since ψμ1 increases argument, the imaginary part of ω1(te

iθ ) must
go to zero. The Schwarz reflection principle implies that ω1 extends analytically
across t .
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As we saw in Corollary 5.6, we have that ω1(z) = ψν(z)/(1 + ψν(z)) for ν sup-
ported on [α,β]. Thus, ω′

1(z) = (
∫

t (1− zt)−2 dν(t))/(
∫
(1− zt)−1 dν(t))2 so that

limλ↑∞ ω′
1(λ) = (

∫
t−1 dν(t))−1. We call this limit ω′

1(∞).
We now claim that λω′

1(∞) − ω1(λ) → C < 0 as λ ↑ ∞. Indeed,

ω1(λ) − λω′
1(∞)

=
∫ β
α tλ/(1 − tλ) dν(t)∫ β
α 1/(1 − tλ) dν(t)

− λ∫ β
α t−1 dν(t)

=
∫ β
α t−1 dν(t)

∫ β
α tλ/(1 − tλ) dν(t) − λ

∫ β
α 1/(1 − tλ) dν(t)∫ β

α t−1 dν(t)
∫ β
α 1/(1 − tλ) dν(t)

= λ

∫ β
α t−1 dν(t)

∫ β
α t/(λ−1 − t) dν(t) − ∫ β

α 1/(λ−1 − t) dν(t)∫ β
α t−1 dν(t)

∫ β
α 1/(λ−1 − t) dν(t)

= λ

(∫ β

α
t−1 dν(t)

(
1 +

∫ β

α

t

λ−1 − t
dν(t)

)

−
(∫ β

α
t−1 dν(t) +

∫ β

α

1

λ−1 − t
dν(t)

))

×
(∫ β

α
t−1 dν(t)

∫ β

α

1

λ−1 − t
dν(t)

)−1

=
∫ β
α t−1 dν(t)

∫ β
α 1/(λ−1 − t) dν(t) − ∫ β

α 1/(t (λ−1 − t)) dν(t)∫ β
α t−1

∫ β
α 1/(λ−1 − t) dν(t)

→ −(
∫ β
α t−1 dν(t))2 + ∫ β

α t−2 dν(t)

−(
∫ β
α t−1)2

= C

as λ ↑ ∞. Note that f (t) = t2 is a strictly convex function on [α,β]. Assuming
that ν is not a Dirac mass, it follows from Jensen’s inequality that C is a strictly
negative number (we may assume that ν is not a Dirac mass since this would imply
that μ1 is a Dirac mass and our theorem is trivially true in this case).

Now, by Cauchy–Schwarz, we have that |ω′
1(z)| ≥ ω′

1(∞) for all z ∈ C+ \
[β−1, α−1]. Indeed, we have that

|ω′
1(z)| =

∣∣∣∣
∫

t/(1 − zt)2 dν(t)

(
∫

1/(1 − zt) dν(t))2

∣∣∣∣ = ‖√t/(z − t)‖2
2

|〈1/
√

t,
√

t/(z − t)〉|2 ≥ ω′
1(∞).

Thus,

ω1(α
−1 + ε) = ω1(λ) −

∫ λ

α−1+ε
ω′

1(t) dt ≤ ω1(λ) − λω′
1(∞) + (α−1 + ε)ω′

1(∞),

which converges to (α−1 + ε)ω′
1(∞) + C as λ ↑ ∞.
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To complete our claim, note that

ω1(β
−1 − ε) = ω1(0) +

∫ β−1−ε

0
ω′(t) dt ≤ ω′

1(∞)(β−1 − ε)

since ω1(0) = 0. Thus, R+\[ω′
1(∞)β−1,ω′

1(∞)α−1 +C] ⊆ ω1(R+\[β−1, α−1]).
Since ψμ1 can be continued analytically to the right-hand set, we have that it
also has analytic continuation to R+ \ [ω′

1(∞)β−1,ω′
1(∞)α−1 + C]. This im-

plies that the support of μ1 is contained in ([ω′
1(∞)β−1,ω′

1(∞)α−1 + C])−1 ⊆
ω′

1(∞)−1[α,β] with equality if and only if one of the μi is a Dirac mass. The
theorem follows. �

THEOREM 6.2. Let μ be a probability measure with supp(μ) ⊂ R+ different
from δ0. Let μ = μ1,k �μ2,k be a family of decompositions. There exists a sequence
{λk} ⊂ R+ so that the families {μ1,k ◦ Dλk

}k∈N and {μ2,k ◦ D
λ−1

k
}k∈N are tight.

Furthermore, δ0 is not in the weak closure of either of these families of measures.

PROOF. Let 1 − μ({0}) = −α < 0. Recall that ψμ maps the negative half
line injectively onto (−α,0). Also recall that, for each k, ψμk

maps the negative
half line injectively onto (1 − μi,k({0}),0) and that μi,k({0}) ≤ μ({0}). Thus, for
each k, there exists a unique real number λk so that ψμ1,k◦Dλk

(−1) = −α/2. De-
note the new measure by ν1,k . Dilate μ2,k by D

λ−1
k

, and denote the new measure

by ν2,k . Observe that μ = ν1,k � ν2,k for all k ∈ N.
Now, observe that −α/2 is contained in the domain of χν1,k

and that |χν1,k
(−α/

2)| = 1 for all k ∈ N. By Lemma 5.2, if we can show that infk∈N |χν1,k
(−β)| > 0

for all β ∈ (0, α/2), then {ν1,k} is tight.
Consider the following equation for t ∈ (0, α/2):

−t + 1

−t
χν1,k

(−t)χν2,k
(−t) = χμ(−t).(6.1)

Assume that for β ∈ (0, α/2), we have that infk∈N(χν1,k
(−β)) = 0. Our assump-

tion that μ �= δ0 implies that χμ(−β) > 0. Manipulating (6.1), this implies that
{χν2,k

(−β)} are unbounded over k and negative. As χ ′
ν2,k

(t) > 0, this implies
that {χν2,k

(−α/2)} are unbounded over k. However, (6.1) and the assumption that
χν1,k

(−α/2) ≡ −1 results in contradiction. By Lemma 5.2, {ν1,k} is a tight family.
It is easily seen that {ν2,k} is also a tight family. Indeed, χν1,k

(−α/2) ≡ −1
implies that

χν2,k
(−α/2) ≡ α/2

1 − α/2
χμ(−α/2).

Thus, the first two criteria of Lemma 5.2 are satisfied, and the last follows from
the fact that for fixed β ∈ (0, α/2),

|χν2,k
(−β)| = βχμ(−β)

(1 − β)χν1,k
(−β)

≥ −βχμ(−β)

(1 − β)
> 0. �
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7. A Khintchine decomposition for multiplicative free convolution with
measures supported on the positive half line.

THEOREM 7.1. Let μ be a probability measure with the property that, for
any nontrivial decomposition μ = μ1 � μ2, neither μ1 nor μ2 is indecomposable.
Then μ is �-infinitely divisible.

PROOF. Let α = 1−μ({0}). We will show later that α = 1. Recall that Sμ, Sμ1

and Sμ2 are all defined on an open neighborhood of (−α,0) for any decomposition
μ = μ1 � μ2. We assume without loss of generality that Sμ(−β) = 1 for some
β ∈ (0, α) [indeed, pick any β in this interval, and then consider μ � δc where
c = (−βχμ(−β))/(1 − β)].

We denote by Mβ the set of all probability measures ν ∈ MR+ such that
Sν(−β) = 1 and μ = ν � ρ for a probability measure ρ ∈ MR+ . Observe that
Sμ(−β) = Sν(−β)Sρ(−β) implies that ρ ∈ Mβ . Further note that for any decom-
position μ = ν′ � ρ′ there exists a real number c such that ν′ � δc, ρ � δc−1 ∈ Mβ .
Last, it is the content of Theorem 6.2 that Mβ is weak∗ compact.

Fix γ ∈ (0, β). We claim that given any ε > 0, there exists an element ν ∈ Mβ

such that 1 > Sν(−γ ) > 1 − ε. To show this, assume instead that there is a δ > 0
so that 1 − δ is the supremum of Sν(−γ ) ranging over all nontrivial elements in
Mβ . By compactness, we may pass to a cluster point, and assume that we have a
decomposition μ = μ1 �μ2 where Sμ1(−γ ) takes on this supremum. Now, by as-
sumption, we have a nontrivial decomposition μ1 = ν0 �ν1 where Sνi

(−β) = 1 for
i = 0,1. Since S ′

νi
≤ 0, this implies that both Sνi

(−γ ) < 1 (we would have equality
if and only if νi were a Dirac mass, which we have assumed away). As their prod-
uct satisfies Sν0(−γ )Sν1(−γ ) = Sμ1(−γ ) = 1 − δ, we have that Sνi

(−γ ) > 1 − δ

for i = 1,2. Thus the decomposition ν0 � (ν1 �μ2) violates the above supremum.
We next claim that Sν(−γ ) takes on all values of the interval [Sμ(−γ ),1] as

we range over elements in Mβ . Clearly our compactness result implies that the
range of the Sν(−γ ) is closed. We assume, for the sake of contradiction, that there
exist real numbers δ > 0 and λ > Sμ(−γ ) such that Sν(−γ ) does not take on any
values in the interval (λ− δ, λ) for ν ∈ Mβ and that this interval is maximal in this
regard. Passing to cluster points, we assume that Sμ1(−γ ) = λ for a decomposition
μ = μ1 � μ2. Now, pick a nontrivial decomposition μ2 = ν0 � ν1 so that Sν0(−γ )

is close enough to 1 so that λSν0(−γ ) ∈ (λ − δ, λ). Transferring this mass, we
obtain our contradiction.

By induction, there exists a decomposition μ = μn,1 � · · · � μn,n such that
Sμn,i

(−β) = 1 and Sμn,i
(−γ ) = n

√
Sμ(−γ ) for all n ∈ N and i = 1,2, . . . , n. Ob-

serve that this implies that Sμn,i
(−t) → 1 uniformly for t ∈ (γ,β) and n ∈ N (Sμn,i

is nonincreasing on this interval). By Lemma 5.3 this implies that any subsequence
of our array {μn,i}n∈N,i=1,2,...,n converges to δ1. Compactness implies that our ar-
ray converges to δ1 uniformly over n. Last, note that this implies that our measures
satisfy μn,i({0}) = 0. Indeed, observe that maxi=1,2,...,n μn,i({0}) → 0 since we
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have uniform weak convergence to δ1. Since μ({0}) = maxi=1,2,...,n μn,i({0}) we
must have no mass at 0 for μ or for any element in our array.

Thus, we may now invoke Theorem 5.7 which implies that our measure μ is
�-infinitely divisible. �

THEOREM 7.2. Let μ ∈ MR+ different from δ0. Then there exist measures μi

with i = 0,1,2, . . . such that μ0 is �-infinitely divisible, μi is �-indecomposable
for i = 1,2, . . . and μ = μ0 � μ1 � μ2 � · · · . This decomposition is not unique.

PROOF. We again assume without loss of generality that Sμ(−β) = 1 for
some β ∈ (0,1 − μ({0})). In what follows, all decompositions will be taken from
elements in Mβ .

Pick γ ∈ (0, β). Let α = Sμ(−γ ) ≤ 1 (with equality if and only if μ = δ1, in
which case the theorem is trivially true). Now, let α0 = inf{Sν(−γ )} where the in-
fimum is taken over all indecomposable ν ∈ Mβ . If α0 = 1, then, by Theorem 7.1,
our theorem holds. If not, let μ = μ0,1 � μ1 with μ1 ∈ Mβ indecomposable satis-
fying Sμ1(−γ ) >

√
α0.

At the nth stage of this process, we start with a decomposition μ = μ0,n−1 �
μ1 � μn−1 where all divisors are elements of Mβ and μi is indecomposable for
i = 1,2, . . . , n−1. We let αn−1 = inf{Sν(−γ )} where the infimum is taken over all
indecomposable ν ∈ Mβ such that μ0,n−1 = ν � ρ for some ρ ∈ Mβ (observe that
μ0,n−1, ν ∈ Mβ implies that ρ ∈ Mβ ). If at any point αn = 1 then, by Theorem 7.1,
we are done. Thus, we assume that αn < 1 for all n ∈ N. Let μ0,n−1 = μ0,n � μn

where μn ∈ Mβ is indecomposable and satisfies Sμn(−γ ) >
√

αn. At this point,
we have a decomposition μ = μ0,n � μ1 � · · · � μn satisfying μ0,n, μi ∈ Mβ , μi

is indecomposable and Sμi
(−γ ) >

√
αi for all i = 1,2, . . . , n − 1.

In what follows, we will use the following notation for n > m:

νn = μ1 � · · · � μn,

νn,m = μm+1 � · · · � μn,

ν∞,m = lim
n↑∞μm+1 � · · · � μn.

We will show later that this last element actually converges to a measure in Mβ .
Now, observe that {νn,m}m<n∈N is a tight family since it is a subset of Mβ .

We claim that νn,m → δ1 uniformly in the weak∗ topology as m ↑ ∞. Indeed,
observe that Sμ0,n

(−γ ) is increasing and bounded by 1 which implies convergence.
Furthermore,

Sμ(−γ ) = Sμ0,n
(−γ ) ∗ Sνn(−γ ) = Sμ0,n

(−γ ) ∗ Sνm(−γ ) ∗ Sνn,m(−γ )

so that Sνn,m(−γ ) represents the tail of a convergent product. This implies that
Sνn,m(−γ ) → 1 uniformly over n ∈ N as m ↑ ∞ (observe that this also implies
that αn ↑ 1). By Lemma 5.3, any convergent subsequence must converge to δ1. By
tightness, we must have uniform convergence to δ1 as m ↑ ∞.
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Now, let μ0 be a cluster point of μ0,n. We claim that μ0 � νn → μ in the weak∗
topology. Indeed, let ik be a subsequence on which μ0,ik converges to μ0 and let
f map N onto this subsequence by letting f (n) = ik where ik ≤ n < ik+1. We
then have that limn↑∞ μ0 � νn = limn↑∞ μ0,f (n) � νn = limn↑∞ μ0,f (n) � νf (n) �
νn,f (n) = limn↑∞ μ� νn,f (n). As we saw in the previous paragraph, the right-hand
side converges to μ.

It remains to show that μ0 is infinitely divisible. As in Theorem 4.4, we will
show that μ0 �ν∞,n = μn,0. Indeed, note that μ0 �ν∞,n = limk↑∞ μ0,ik �ν∞,n =
limk↑∞ μ0,ik � νik,n � ν∞,ik = limk↑∞ μn,0 � ν∞,ik = μn,0, proving our claim (the
second to last equality follows from the fact that, by construction, μ0,n � νn,m =
μ0,m for all m < n ∈ N).

To complete the proof, assume that μ0 = ν � ρ where ν is indecomposable and
satisfies Sν(−γ ) < 1. Pick n such that αn < Sν(−γ ). As μ0,n = μ0 �ν∞,n and the
left-hand side has no indecomposable divisors satisfying the above inequality, we
have a contradiction. Thus, μ0 has no nontrivial divisors so that, by Theorem 7.1,
our theorem holds. �

8. Background and terminology for measures supported on the unit circle.
Let MT be the set of all Borel probability measures supported on the unit circle. Let
M∗ be the set of all Borel probability measures on C with nonzero first moment.
For a measure μ ∈ M∗ ∩ MT, we have the following definition:

ψμ(z) =
∫

T

zt

1 − zt
dμ(t).

Observe that ψμ(0) = 0 and ψ ′
μ(0) = ∫

C t dμt so that our assumption of nonzero
first moment implies that ψ−1

μ = χμ is defined and analytic in the neighborhood
of 0. We again define Sμ(z) = (1 + z)χμ(z)/z. Observe that Sμ(0) = 1/ψ ′

μ(0) so
that Sμ is also defined and analytic in a neighborhood of 0. Further note that

|ψ ′
μ(0)| =

∣∣∣∣
∫

T
ζ dμ(ζ )

∣∣∣∣ ≤
∫

T
|ζ |dμ(ζ ) = 1,

which implies that |Sμ(0)| ≥ 1 for μ ∈ M∗ ∩ MT.
We now record the following lemmas and theorems for use in proving our main

results. These were first proven in [7, 9] and [19].

LEMMA 8.1. Let μ ∈ M∗ ∩ MT satisfy |Sμ({0})| = 1. Then μ = δα for some
α ∈ T.

LEMMA 8.2. Let μi ∈ M∗ ∩ MT be such that Sμi
(z) converge uniformly in

some neighborhood of 0 to a function S(z). Then there exists μ ∈ M∗ ∩ MT such
that S = Sμ.



KHINTCHINE DECOMPOSITION 2259

THEOREM 8.3. Consider μ ∈ M∗ ∩ MT, and let μi ∈ MT for i ∈ N. If μi

converge to μ in the weak∗ topology, the μi ∈ M∗ ∩ MT eventually and the func-
tions Sμi

converge to Sμ uniformly in some neighborhood of zero. Conversely, if
μi ∈ M∗ ∩ MT and Sμi

converge to Sμ uniformly in some neighborhood of zero,
then the measures μi converge to μ in the weak∗ topology.

THEOREM 8.4. Let cn ∈ T be a sequence of numbers and {μn,j }n∈N,j=1,...,kn

be and array of probability measures in MT such that

lim
n↑∞ max

j=1,...,kn

μn,j ({z : |z − 1| < ε}) = 1

for every ε > 0. If the measures δcn � μn,1 � · · · � μn,kn have a weak limit μ, then
μ is �-infinitely divisible.

9. Main results for measures supported on the unit circle. The last case
considered are measures μ ∈ MT ∩ M∗ where MT are those probability mea-
sures supported on the complex circle and M∗ are those probability measures with
nonzero first moment. Observe that our decompositions will be supported on the
unit circle so that a family of decompositions μ = μ1,k � μ2,k are trivially tight.

THEOREM 9.1. Let μ ∈ MT ∩ M∗ have the property that, for any nontrivial
decomposition μ = ν � ω with ν,ω ∈ MT ∩ M∗, neither ν nor ω is indecompos-
able. Then μ is �-infinitely divisible.

PROOF. Let � :MT → C be defined by �(ν) = Sν(0). Observe that |�(μ)| ≥
1 with equality if and only if μ is a Dirac mass situated on the circle. We may
then assume that |�(μ)| = 1 + α > 1. In a manner analogous to Theorems 4.2
and 7.1, for every α > ε > 0, there exists a nontrivial decomposition μ = ν � ω

such that |�(ν)| < 1 + ε. Through a similar maximality argument, one can show
that for every n ∈ N there exists a decomposition μ = μn,1 � · · · � μn,n such that
|�(μn,i)| = n

√|�(μ)| for all i = 1,2, . . . , n. We forgo the proof due to extreme
similarity to the first two cases.

Now, observe that �(μn,i � δc) = �(μn,i)/c for c ∈ T. Thus, we may assume
that μ = δcn � μn,1 � · · · � μn,n for all n ∈ N where we additionally assume that
�(μn,i) = n

√|�(μ)|.
Note that {μn,j }n∈N,j=1,2,...,n forms a tight array since all of our measures are

compactly supported. Further observe that, by Theorem 8.3 any cluster point ν of
this array satisfies �(ν) = 1. By Lemma 8.1, this implies that ν = δ1. Tightness
implies that our array converges to δ1 uniformly over n. By Theorem 8.4, this
implies �-infinite divisibility. �

We close with our Khinthine decomposition for measures in MT. Several steps
of the proof are indistinguishable from Theorem 7.2 so are not presented in full
detail.
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THEOREM 9.2. Let μ ∈ MT ∩ M∗ be a probability measure. There exists a
decomposition μ = μ0 � μ1 � μ2 � · · · such that μi ∈ MT ∩ M∗ for all i =
0,1,2, . . . , μ0 is infinitely divisible, and μi is indecomposable for i = 1,2, . . . .

Such a decomposition need not be unique.

PROOF. In a manner entirely analogous with the previous cases, for all n ∈ N,
we construct a decomposition

μ = μ0,n � μ1 � · · · � μn

with the following properties:

(1) The measure μi ∈ MT is indecomposable for all i ∈ N.
(2) Let αi−1 = sup |�(ν)| where the supremum is taken over all indecompos-

able measures ν ∈ MT satisfying μ0,1 = ν � ρ for some ρ ∈ MT. We have that
1 ≤ �(μi) <

√
αi [in particular, we may assume that �(μi) is real].

We again define νn, νn,m and ν∞,m as in the proof of Theorem 7.2. That is,

νn = μ1 � · · · � μn,

νn,m = μm+1 � · · · � μn,

ν∞,m = lim
n↑∞μm+1 � · · · � μn.

Observe that tightness is trivial in this case since MT is compact. We then have that
�(μ) = �(μ0,n)∗�(νn) = �(μ0,n)∗�(νm)∗�(νn,m). Since �μ0,n

is decreasing
and bounded as n ↑ ∞, this is a convergent sequence. This implies that νn,m rep-
resents the tail of a convergent product so that it goes to 0 as m ↑ ∞ (this implies
that αi → 1). Thus, {νn,m}m<n∈N is tight and any cluster point ν of a subsequence
with unbounded m must satisfy �(ν) = 1. By Lemma 8.1, ν = δ1. This implies
that νn,m → δ1 uniformly as m ↑ ∞.

Once again, we let μ0 be a cluster point of {μ0,n}n∈N. In the same manner as in
Theorem 7.2, we have that μ0 � νn → μ as n ↑ ∞.

The theorem is proved when we can show that μ0 is infinitely divisible. It is
again true that μ0 � ν∞:m = μ0,m−1 with no deviation from the previous proof.
Our result then follows by the same line of reasoning as Theorem 7.2. �

10. Applications. We begin by extending the class of �-indecomposable
measures.

THEOREM 10.1. Let μ be a measure with the property that the left and right
endpoints of the support of μ are Dirac masses. Then μ is indecomposable.

PROOF. Assume that μ = μ1 � μ2 and that the support of μ has respective
left and right endpoints a and b. Recall that Theorem 2.7 states that

μ({a}) = μ1({a1}) + μ2({a2}) − 1,

μ({b}) = μ1({b1}) + μ2({b2}) − 1
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for masses ai, bi ∈ supp(μi), and that these points satisfy a = a1 + a2 and b =
b1 + b2. Now, if a1 �= b1, then μ1({a1}) + μ1({b1}) ≤ 1. Thus

0 < μ({a}) + μ({b}) = μ1({a1}) + μ2({a2}) + μ1({b1}) + μ2({b2}) − 2

≤ μ2(a2) + μ2({b2}) − 1.

Thus, μ2(a2) + μ2({b2}) > 1 so that a2 = b2. Translating our measures, we
may assume that a2 = b2 = 0. Thus, a1 = a and b1 = b. This implies that
diam(supp(μ1)) ≥ diam(supp(μ)). By Theorem 3.2, it follows that μ2 = δ0 so
that μ is indecomposable. �

Now, given a measure μ, it was proven by Nica and Speicher in [17] that we
may associate to μ a semigroup of measures {μt }t≥1 so that μ1 = μ and μs+t =
μs � μt . In particular, μn = μ � · · · � μ, the n-fold free convolution. When μ is
infinitely divisible, this family may be extended to t ∈ R+.

It was shown in [4] that for μ = (δ1 + δ−1)/2, we have that μt is a sum of two
atoms concentrated at ±t and an absolutely continuous measure concentrated on
[−2

√
t − 1,2

√
t − 1]. This implies the following corollary to our theorem.

COROLLARY 10.2. For μ = (δ1 + δ−1)/2, the elements of the family of mea-
sures {μt }t∈[1,2) are indecomposable.

Observe that this family of examples also dashes any hope of uniqueness for our
Khintchine decomposition. Indeed, for μ and {μt }t≥1 as in the previous example
we have that, for s = 2 + ε, μs = μt � μs−t for all t ∈ (1,1 + ε). This is an
uncountable family of distinct decompositions of μs into a sum of indecomposable
elements.

Note that the even the infinitely divisible divisor in the Khintchine composition
cannot be determined uniquely. Indeed denote by μ the semicircle distribution with
mean 0 and variance 1, an infinitely divisible measure. It was shown in [11] that
there is a nontrivial decomposition μ = ν � ρ where neither ν nor ρ is infinitely
divisible. Taking the Khintchine decompositions for each ν and ρ and combining
the respective infinitely divisible divisors, we obtain a decomposition μ = μ0 �
μ1 � μ2 � · · · such that μ0 infinitely divisible, μi indecomposable for i ≥ 1 and
μ1 nontrivial. This implies that μ �= μ0.

Last, it has come to the author’s attention that these results have been addressed
independently in [14]. They rightly point out the following improvement on The-
orems 4.2 and 4.4. Namely, the class of measures that satisfy the hypotheses of
Theorem 4.2 are precisely the Dirac measures. For a simple justification of this
fact, note that we have shown that such measures are necessarily infinitely divis-
ible. It was shown in [10] that infinitely divisible measures may be decomposed
into the free convolution of a semicircular measure and a free Poisson measure.
Free Poisson measures have indecomposable divisors, almost by definition. As was
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shown in [11], semicircular measures also have indecomposable divisors. These
facts taken together imply the above statement so that Theorem 4.4 may be im-
proved into a purely prime decomposition, with no infinitely divisible component.
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divisibility. Proc. Amer. Math. Soc. 128 1011–1015. MR1636930

[9] BERCOVICI, H. and VOICULESCU, D. (1992). Lévy–Hinčin type theorems for multiplicative
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