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Abstract. We introduce systems of objects and operators in linear monoidal catego-
ries called ĈC-systems. A ĈC-system satisfying several additional assumptions gives rise to a
topological invariant of triples (a closed oriented 3-manifold M, a principal bundle over M,
a link in M). This construction generalizes the quantum dilogarithmic invariant of links
appearing in the original formulation of the volume conjecture. We conjecture that all
quantum groups at odd roots of unity give rise to ĈC-systems and we verify this conjecture
in the case of the Borel subalgebra of quantum sl2.
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Introduction

One of the fundamental achievements of quantum topology was a discovery of deep
connections between monoidal categories and 3-dimensional manifolds. It was first ob-
served by O. Viro and V. Turaev that the category of representations of the quantum group
Uqðsl2Þ gives rise to a topological invariant of 3-manifolds. The invariant is obtained as a
state sum on a triangulation of a 3-manifold; the key ingredients of the state sum are the
6j-symbols. This construction was generalized to other categories by several authors includ-
ing J. Barrett, B. Westbury, A. Ocneanu, S. Gelfand, D. Kazhdan and others. Their results
may be summarized by saying that every spherical fusion category gives rise to a state sum
3-manifold invariant. Similar methods apply to links in 3-manifolds and to 3-manifolds en-
dowed with principal fiber bundles. A related but somewhat di¤erent line of development
was initiated by Kashaev [7]. He defined a state sum invariant of links in 3-manifolds using
‘‘charged’’ versions of the 6j-symbols associated with certain representations of the Borel
subalgebra of Uqðsl2Þ. The work of Kashaev was further extended by S. Baseilhac and
R. Benedetti, see [1], [2].
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The aim of this paper is to analyze categorical foundations of the Kashaev–Baseilhac–
Benedetti theory. The key new notions in our approach are the ones of C-systems and
ĈC-systems in linear monoidal categories. The C-systems provide a general framework for
6j-symbols. Roughly speaking, a C-system is a family of simple objects of the category
fVigi A I closed under duality and such that for ‘‘almost all’’ i; j A I , the identity endomor-
phism of Vi nVj splits as a sum of certain compositions fVi nVj ! Vk ! Vi nVjgk A I

(see Section 1). Examples of C-systems can be derived from quantum groups at roots
of unity or, more generally, from Cayley–Hamilton Hopf algebras, see Section 11. Every
fusion category has a C-system formed by arbitrary representatives of the isomorphism
classes of all simple objects. A C-system in a linear monoidal category gives rise to a vector
space H (the space of multiplicities), a linear form T on Hn4 (the tetrahedral evaluation
form), and two automorphisms A, B (obtained by taking adjoints of morphisms). The
vector space H has a natural symmetric bilinear form which allows us to consider the trans-
poses A�, B� of A, B. We use T to define 6j-symbols and we use A, B, A�, B� to formulate
the tetrahedral symmetry of the 6j-symbols. We also develop a T-calculus for endomor-
phisms of H which allows us to speak of equality/commutation of operators ‘‘up to com-
position with T ’’. These definitions and results occupy Sections 1–5.

To define 3-manifold invariants we need to fix square roots of the operators

L ¼ A�A; R ¼ B�B; C ¼ ðABÞ3 A EndðHÞ:

A C-system endowed with such square roots L
1
2, R

1
2, C

1
2 satisfying appropriate relations is

said to be a ĈC-system. The ĈC-systems provide a general framework for so-called ‘‘charged’’
6j-symbols depending on two additional integers of half-integer parameters. The advantage
of the charged 6j-symbols lies in the simpler tetrahedral symmetry. This material occupies
Sections 6–8.

We need two assumptions on a ĈC-system to produce a 3-manifold invariant. The first
assumption says essentially that the operators L

1
2 and R

1
2 commute up to composition with

T and multiplication by a certain scalar ~qq. The second assumption introduces additional
data: a group G and a family of finite subsets fIggg AG of I satisfying certain conditions.
We use this data to define a numerical topological invariant of any tuple (a closed con-
nected oriented 3-manifold M, a non-empty link LHM, a conjugacy class of homomor-
phisms p1ðMÞ ! G, an element of H 1ðM;Z=2ZÞ), see Sections 9, 10. The invariant in
question is defined as a state sum on a Hamiltonian triangulation of ðM;LÞ. To encode
the Hamiltonian path L into the state sum, we use the charges on H-triangulations first
introduced in [7]. The theory of charges subsequently has been developed in [2]. It is a
natural extension of the theory of angle structures due to W. Neumann, see, for example,
[13], [14]. The key ingredients of our state sum are the charged 6j-symbols. The resulting
invariant is well-defined up to multiplication by integer powers of ~qq.

We conjecture that the C-systems associated with quantum groups and their Borel
subalgebras at odd roots of unity extend to ĈC-systems satisfying all our requirements. We
verify this conjecture in the case of the Borel subalgebra of Uqðsl2Þ, see Sections 11, 12.
Geer and Patureau-Mirand [5] verify the conjecture for all quantum groups associated to
simple Lie algebras and prove that the usual modular categories arising from quantum
groups have ĈC-systems satisfying all our requirements. The conjecture is open for Borel sub-
algebras of quantum groups other than Uqðsl2Þ. We expect that the associated invariants
are closely related with the invariants constructed in [6], [11]. In the case of the example
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of Section 12 with the trivial homomorphism p1ðMÞ ! G, this construction coincides with
the one of Kashaev [7]. The latter invariant enters the volume conjecture [8], and for links
in S3, it is a specialization of the colored Jones polynomial [12]. Precise relationships of our
invariants with the Baseilhac–Benedetti 3-manifold invariants are yet unclear.

1. C-systems in monoidal categories

1.1. Monoidal Ab-categories. A monoidal (tensor) category C is a category equipped
with a covariant bifunctor n : C� C ! C called the tensor product, an associativity
constraint, a unit object I, and left and right unit constraints such that the Triangle and
Pentagon Axioms hold. When the associativity constraint and the left and right unit
constraints are all identities, the category C is a strict monoidal (tensor) category. By
MacLane’s coherence theorem, any monoidal category is equivalent to a strict monoidal
category. To simplify the exposition, we formulate further definitions only for strict mono-
idal categories; the reader will easily extend them to arbitrary monoidal categories.

A monoidal category C is said to be an Ab-category if for any objects V , W of C, the
set of morphisms HomðV ;W Þ is an additive abelian group and the composition and tensor
product of morphisms are bilinear. Composition of morphisms induces a commutative ring
structure on the abelian group k ¼ EndðIÞ. The resulting ring is called the ground ring of C.
For any objects V , W of C the abelian group HomðV ;WÞ becomes a left k-module via
kf ¼ k n f for k A k and f A HomðV ;WÞ. We assume that the tensor multiplication of
morphisms in C is k-bilinear.

An object V of C is simple if EndðVÞ ¼ k IdV . For any simple object V and
f A EndðVÞ, there is a unique k A k such that f ¼ k IdV . This k is denoted h f i.

Fix from now on a monoidal Ab-category C whose ground ring k is a field. We shall
use the symbol n for the tensor product of k-vector spaces over k and the symbol n for
the tensor product in C.

1.2. C-systems. A C-system1) in C consists of

(i) a distinguished set of simple objects fVigi A I such that HomðVi;VjÞ ¼ 0 for all
i3 j;

(ii) an involution I ! I , i 7! i�;

(iii) two families of morphisms fbi j I ! Vi nVi �gi A I and fdi jVi nVi � ! Igi A I , such
that for all i A I ,

ðIdVi
n di � Þðbi n IdVi

Þ ¼ IdVi
and ðdi n IdVi

ÞðIdVi
n bi �Þ ¼ IdVi

:ð1Þ

To formulate the fourth (and the last) requirement on the C-systems, set

H
ij
k ¼ HomðVk;Vi nVjÞ and H k

ij ¼ HomðVi nVj;VkÞ

for any i; j; k A I . We require that

1) This name is inspired by the logo of the Indiana University, where the definition has been finalized.
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(iv) for any i; j A I such that H
ij
k 3 0 for some k A I , the identity morphism IdVinVj

is
in the image of the linear map

L
k A I

H
ij
k nH k

ij ! EndðVi nVjÞ; xn y 7! x � y:ð2Þ

We fix from now on a C-system in C and keep the notation introduced above.

Lemma 1. For any i; j; k A I , the linear spaces H
ij
k and H k

ij are finite dimensional, and

the bilinear pairing

H k
ij nH

ij
k ! k; xn y 7! hx � yi;ð3Þ

is non-degenerate. In particular, dim H k
ij ¼ dim H

ij
k .

Lemma 2. For any i; j A I , there are only finitely many k A I such that H
ij
k 3 0.

These lemmas will be proven in the next subsection after a little preparation.

1.3. The operators A and B. Consider the vector space H ¼ ĤH l �HH, where

ĤH ¼
L

i; j;k A I

H k
ij and �HH ¼

L
i; j;k A I

H
ij
k :

Let

pk
ij : H ! H k

ij ; p
ij
k : H ! H

ij
k ; p̂p : H ! ĤH; �pp : H ! �HH

be the obvious projections. We define linear maps A;B : H ! H by

Ax ¼
P

i; j;k A I

�
ðIdVi � n pk

ij xÞðbi � n IdVj
Þ þ ðdi � n IdVj

ÞðIdVi � n p
ij
k xÞ
�
;

Bx ¼
P

i; j;k A I

�
ðpk

ij xn IdVj � ÞðIdVi
n bjÞ þ ðIdVi

n djÞðp ij
k xn IdVj � Þ

�
:

For each x A H, there are only finitely many non-zero terms in these sums, since x has only
finitely many non-zero components pk

ij x and p
ij
k x. We can represent the definitions of A and

B in the following graphical form:

¼ ; ¼ ;

¼ ; ¼ ;
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where we use the graphical notation

p
ij
k x ¼ ; pk

ij x ¼ ; bi ¼ ; di ¼ :

Lemma 3. The operators A and B are involutive and satisfy the ‘‘exchange’’ relations:

p
ij
k A ¼ Ap

j
i �k; p

ij
k B ¼ Bp i

kj � ; pk
ij A ¼ Ap i �k

j ; pk
ij B ¼ Bp

kj �

i :ð4Þ

Proof. The exchange relations easily follow from the inclusions

AðH k
ij ÞHH i �k

j ; AðH ij
k ÞHH

j
i �k; BðH k

ij ÞHH
kj �

i ; BðH ij
k ÞHH i

kj � :ð5Þ

For any x A H,

p
ij
k A2x ¼ ¼ ¼ ¼ ¼ p

ij
k x

and

pk
ij A

2x ¼ ¼ ¼ ¼ ¼ pk
ij x:

Thus, A2 ¼ 1. A similar calculation shows that B2 ¼ 1. r

Proof of Lemma 1. Assume first that H
ij
k 3 0. By the basic condition,

IdVinVj
¼
P
l AX

P
a ARl

elae
la;ð6Þ

where X is a finite subset of I and for all l A X , we have a finite set of indices Rl , linearly

independent vectors felaga ARl
in H

ij
l and certain vectors ela in H l

ij. For any x A H
ij
k ,

x ¼ IdVinVj
x ¼

P
l AX

P
a ARl

elae
lax ¼

P
l AX

P
a ARl

elahelaxidk; l ¼
P

a ARk

ekahekaxi;ð7Þ

where dk; l is the Kronecker delta. Thus, the vectors eka with a A Rk generate H
ij
k . Since

these vectors are linearly independent, they form a (finite) basis of H
ij
k . Similarly, for any

y A H k
ij ,

y ¼ y IdVinVj
¼
P

a ARk

hyekaieka:ð8Þ
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Therefore the vectors eka with a A Rk generate H k
ij . For all a; b A Rk, formula (7) with

x ¼ ekb implies that hekaekbi ¼ da;b. Hence fekaga ARk
is a basis of H k

ij dual to the basis

fekaga ARk
of H

ij
k with respect to the pairing (3). Therefore, this pairing is non-degenerate.

It remains to show that H
ij
k ¼ 0 implies H k

ij ¼ 0. Indeed, if H k
ij 3 0, then we have

H i �k
j ¼ AðH k

ij Þ3 0. By the preceding argument, AðH ij
k Þ ¼ H

j
i�k 3 0. Hence H

ij
k 3 0. r

Proof of Lemma 2. If H
ij
k 3 0, then by formula (7), k belongs to the finite set X

appearing in (6). r

1.4. Transposition of operators. We provide the vector space H ¼ ĤH l �HH with the
symmetric bilinear pairing h ; i by

hx; yi ¼
P

i; j;k A I

ðhpk
ij xp

ij
k yiþ hpk

ij yp
ij
k xiÞ A kð9Þ

for any x; y A H. Note that hĤH; ĤHi ¼ h �HH; �HHi ¼ 0.

A transpose of f A EndðHÞ is a map f � A EndðHÞ such that h fx; yi ¼ hx; f �yi for
all x; y A H. Lemma 1 implies that if a transpose f � of f exists, then it is unique and
ð f �Þ� ¼ f .

Lemma 4. The canonical projections have transposes computed as follows:

�pp� ¼ p̂p and ðp ij
k Þ

� ¼ pk
ij :

Proof.

hx; p̂pyi ¼ h�ppx; p̂pyi ¼ h�ppx; yi;

hx; pk
ij yi ¼ hp ij

k x; pk
ij yi ¼ hp ij

k x; yi: r

Lemma 5. The transposes of the operators A and B exist and

A�B�A� ¼ BAB:ð10Þ

Proof. The existence of A� and B� follows from Lemma 1 and the inclusions (5).
Note that

A�ðH k
ij ÞHH i �k

j ; A�ðH ij
k ÞHH

j
i �k; B�ðH k

ij ÞHH
kj �

i ; B�ðH ij
k ÞHH i

kj � :ð11Þ

To prove (10), observe that for any x A ĤH and y A �HH,

hx; yi ¼ hBABy;ABAxi:ð12Þ
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Here is a graphical proof of this formula for x A H i
jk and y A H

jk
i with i; j; k A I .

¼ ¼ :

Now we can prove (10). Applying (12) to x ¼ x1 and y ¼ BABx2 with x1; x2 A ĤH, we
obtain

hx1;BABx2i ¼ hðBABÞ2
x2;ABAx1i ¼ hx2;ABAx1i ¼ hABAx1; x2i:

Applying (12) to x ¼ ABAy1 and y ¼ y2 with y1; y2 A �HH, we obtain

hy1;BABy2i ¼ hBABy2; y1i ¼ hABAy1; y2i:

Hence BAB ¼ ðABAÞ� ¼ A�B�A�. r

2. The tetrahedral forms

2.1. Operations on tensor powers. We recall the usual notation for operations on the
tensor powers of a vector space. Given a k-vector space V and an integer nf 2, the symbol
Vnn denotes the tensor product of n copies of V over k. Let Sn be the symmetric group on
nf 2 letters. Recall the standard action Sn ! AutðVnnÞ, s 7! Ps. By definition, for dis-
tinct i; j A f1; . . . ; ng, the flip PðijÞ permutes the i-th and the j-th tensor factors keeping the
other tensor factors. For f A EndðVÞ and i ¼ 1; . . . ; n, set

fi ¼ idnði�1Þ n f n idnðn�iÞ A EndðVnnÞ:

Note the exchange relations Ps fi ¼ fsðiÞPs for any s A Sn and the commutativity relation
figj ¼ gj fi for any f ; g A EndðVÞ and i3 j.

Given F A EndðV nk VÞ, we define for any i; j A f1; . . . ; ng with i3 j an endomor-
phism Fij of Vnn as follows. If i < j, then Fij acts as F on the i-th and j-th tensor factors
of Vnn keeping the other tensor factors. If i > j, then Fij ¼ PðijÞFjiPðijÞ.

2.2. The forms T and T. Recall the vector space H ¼ ĤH l �HH from Section 1.3. We
define two linear forms T ;T : Hn4 ! k by the following diagrammatic formulae: for any
u; v; x; y A H,
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Tðun vn xn yÞ ¼
P

i;...;n A I

* +
; Tðun vn xn yÞ ¼

P
i;...;n A I

* +
:

The indices i, j, k, l, m, n in both formulas run over all elements of I . For any given
u; v; x; y A H, only a finite number of terms in these formulas may be non-zero.

Lemma 6 (Fundamental lemma). We have

TPð4321Þ ¼ TA�
1 A3;ð13aÞ

TPð23Þ ¼ TA2B3;ð13bÞ

TPð1234Þ ¼ TB2B�
4 :ð13cÞ

Proof. Since A� is an involution, (13a) is equivalent to the identity

Tðun vn xnA�yÞ ¼ Tðyn unAvn xÞ; u; v; x; y A H;

which is a direct consequence of the identity

* +
¼ hx;A�yi ¼ hAx; yi ¼ hy;Axi ¼

* +
; x ¼ A H m

in :

The other two identities are verified in a similar manner. r

The formulas

Pð12Þ ¼ Pð4321ÞPð23ÞPð1234Þ; Pð34Þ ¼ Pð1234ÞPð23ÞPð4321Þ
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allow us to compute the action of the permutations Pð12Þ and Pð34Þ on T :

TPð12Þ ¼ TPð23ÞPð1234ÞA
�
4 A1 ¼ TPð1234ÞðBAÞ1A2A�

4 ¼ TðBAÞ1ðBAÞ2ðABÞ�4 ;ð14Þ

TPð34Þ ¼ TPð23ÞPð4321ÞB4B�
1 ¼ TPð4321ÞB3ðABÞ4B�

1 ¼ TðBAÞ�1 ðABÞ3ðABÞ4:ð15Þ

The action of the permutations on T can be easily determined from the involutivity of
A, B, Pð12Þ, Pð23Þ, Pð34Þ. The resulting formulae can be obtained from those for T via the

substitutions T $ T and A $ B.

The formulas computing the action of the permutations on T and T may be re-
written in a simpler form in terms of the equivalent tensors S ¼ TPð2134Þ : Hn4 ! k and
S ¼ TPð1243Þ : Hn4 ! k. For these tensors, equations (13a)–(13c) take the following form:

SPð12Þ ¼ SA�
3 A4;ð16aÞ

SPð23Þ ¼ SA1B4;ð16bÞ

SPð34Þ ¼ SB1B�
2 :ð16cÞ

Though these symmetry relations for S, S are simpler than the symmetry relations for T , T ,
we shall mainly work with T and T . A geometric interpretation of these symmetry relations
will be outlined in the appendix to the paper.

2.3. The adjoint operators. We define the operators �HHn2 ! �HHn2 adjoint to T

and T . For all i; j; k A I pick dual bases ðeij
kaÞa and ðeka

ij Þa in the multiplicity spaces H
ij
k

and H k
ij , respectively. For the vectors of these bases, we shall use the graphical notation

e
ij
ka ¼ and eka

ij ¼ :

Let t; t A Endð �HHn2Þ be the operators defined by the graphical formulae

tðxn yÞ ¼
P

i;...;n A I

P
a

n ; tðxn yÞ ¼
P

i;...;n A I

P
a

n

where i, j, k, l, m, n run over all elements of I . By Lemma 2, for any x; y A �HH, there are
only finitely many terms in the expansions for tðxn yÞ and tðxn yÞ.
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The operators t and t do not depend on the choice of the bases in the multiplicity
spaces. Indeed, these operators are adjoint to T , T in the sense that

hhun v; tðxn yÞii ¼ Tðun vn xn yÞ

and

hhun v; tðxn yÞii ¼ Tðun vn xn yÞ

for all u; v A ĤH, x; y A �HH. Here the bilinear pairing

hh� ; �ii : ðĤH n ĤHÞ � ð �HH n �HHÞ ! k

is defined by hhun v; xn yii ¼ hu; xihv; yi where h� ; �i is the symmetric bilinear form on
H ¼ ĤH l �HH introduced in Section 1.4.

2.4. The pentagon and inversion identities. To formulate the properties of t and t,
we need further notation. For any i; j A I set

gi; j ¼ 1 if there is k A I such that H
ij
k 3 0;

0 otherwise:

�

We define two endomorphisms �p and p� of �HHn2 by

�p ¼
P

i; j;k; l;m A I

gi; jp
il
m n p

jk
l and p� ¼

P
i; j;k; l;m A I

gj; lp
ij
k n pkl

m :

Clearly, �p and p� are commuting projectors onto certain subspaces of �HHn2.

Lemma 7. The operators t and t satisfy

(i) the pentagon identity in Endð �HHn3Þ:

t23t13t12 ¼ t12t23ð�pÞ21;

(ii) the inversion relations in Endð �HHn2Þ:

t21t ¼ p� and tt21 ¼ �p;

where t21 ¼ Pð12ÞtPð12Þ and t21 ¼ Pð12ÞtPð12Þ.

Proof. (i) For x; y; z A �HH,
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t23t13t12ðxn yn zÞ

¼
P

i;...;n; i
t23t13ð n n zÞ ¼

P
i;...;q; i;k

t23ð n n Þ

¼
P

i;...; r; i;k;l

n n ¼
P

i;...; r; i;...;m

* +
n n

¼
P

i;...; r;l;m

gi; j n n ¼
P

i;...; r;l

gi; jt12ð n n Þ

¼
P

i;...;n

gi; jt12t23ð n n zÞ ¼ t12t23ð�pÞ21ðxn yn zÞ:
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All these equalities follow directly from the definitions except the fifth equality. The sum on
its left-hand side is preserved if we insert an additional factor go;k. Indeed, if the triangular
block with the vertices labeled m, l, i contributes non-zero, then necessarily go;k ¼ 1. This
allows us to sum up over all p, k and then over all k, i to obtain the fifth equality.

(ii) For x; y A �HH,

t21tðxn yÞ ¼
P

i;...;n;l

t21ð n Þ ¼
P

i;...;o;l;m

n

¼
P

i;...;m;m

gj; l n ¼
P

i;...;m
gj; l n ¼ p�ðxn yÞ:

The second inversion relation is proved similarly. r

3. The 6j-symbols

3.1. Notation. For any i; j; k A I , the non-degenerate pairing H k
ij nH

ij
k ! k defined

in Lemma 1 will be denoted �k
ij . Composing this pairing with the flip H

ij
k nH k

ij ! H k
ij nH

ij
k ,

we obtain a non-degenerate pairing H
ij
k nH k

ij ! k denoted � ij
k . We shall use these pairings

to identify the dual of H k
ij with H

ij
k and the dual of H

ij
k with H k

ij . The pairings �k
ij and � ij

k

induce the tensor contractions

U nH k
ij nV nH

ij
k nW ! U nV nW ;

U nH
ij
k nV nH k

ij nW ! U nV nW ;

where U , V , W are arbitrary k-vector spaces. These tensor contractions will be denoted by

the same symbols �k
ij and � ij

k respectively.
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3.2. Definition of 6j-symbols. For any i; j; k; l;m; n A I , the restriction of

T : Hn4 ! k

to the tensor product

H m
kl nH k

ij nH jl
n nH in

m H ĤH n ĤH n �HH n �HH HHn4

gives a vector in the k-vector space

HomðH m
kl nH k

ij nH jl
n nH in

m ; kÞ ¼ H kl
m nH

ij
k nH n

jl nH m
in :ð17Þ

This vector is denoted

i j k

l m n

� �
ð18Þ

and called the positive 6j-symbol determined by the tuple i, j, k, l, m, n. In graphical nota-
tion, the 6j-symbol (18) is the summand in the definition of T in Section 2.2 corresponding
to the tuple i; j; k; l;m; n A I . Thus, for any u; v; x; y A H,

Tðun vn xn yÞ

¼
P

i; j;k; l;m;n A I

�m
kl �k

ij � jl
n � in

m pm
klðuÞn pk

ij ðvÞn p jl
n ðxÞn p in

mðyÞn i j k

l m n

� �� �
:

The adjoint operator t A Endð �HHn2Þ expands as follows: for any x; y A �HH,

tðxn yÞ ¼
P

i; j;k; l;m;n A I

� jl
n � in

m p jl
n ðxÞn p in

mðyÞn i j k

l m n

� �� �
:

Similarly restricting T to the tensor product H m
in nH n

jl nH
ij
k nH kl

m , we obtain the
negative 6j-symbol

i j k

l m n

� ��
A H in

m nH jl
n nH k

ij nH m
kl :ð19Þ

For any u; v; x; y A H,

Tðun vn xn yÞ

¼
P

i; j;k; l;m;n A I

�m
in �n

jl �
ij
k �kl

m pm
inðuÞn pn

jlðvÞn p
ij
k ðxÞn pkl

m ðyÞn i j k

l m n

� ��� �
:

The adjoint operator t A Endð �HHn2Þ expands as follows: for any x; y A �HH,

tðxn yÞ ¼
P

i; j;k; l;m;n A I

� ij
k �kl

m p
ij
k ðxÞn pkl

m ðyÞn i j k

l m n

� ��� �
:
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3.3. Identities. The properties of the forms T and T established in Section 2 can be
rewritten in terms of the 6j-symbols. Formula (13a) yields

i j k

l m n

� �
¼ Pð4321ÞA1A�

3

i� k j

l n m

� ��� �
;

where A1 is induced by the restriction of A to H i �m
n and A�

3 is induced by the restriction
of A� to H

j
i �k. Formula (13b) yields

i j k

l m n

� �
¼ Pð23ÞA

�
2 B�

3

k j � i

n m l

� ��� �
;

where A�
2 is induced by the restriction of A� to H

j �n
l and B�

3 is induced by the restriction
of B� to H i

kj � . Formula (13c) yields

i j k

l m n

� �
¼ Pð1234ÞB

�
2 B4

i n m

l � k j

� ��� �
;

where B�
2 is induced by the restriction of B� to H nl �

j and B4 is induced by the restriction
of B4 to H k

ml � .

Note for the record that formula (14) yields

i j k

l m n

� �
¼ Pð12ÞðBAÞ�1 ðBAÞ�2 ðABÞ4

j l n

m� i� k�

� ��� �
;

where the operator ðBAÞ�1 is induced by the restriction of ðBAÞ� ¼ A�B� to H
jk �

i � ; the oper-
ator ðBAÞ�2 is induced by the restriction of ðBAÞ� to H lm�

k � , and ðABÞ4 is induced by the
restriction of AB to H i �

nm� . Formula (15) yields

i j k

l m n

� �
¼ Pð34ÞðBAÞ1ðABÞ�3 ðABÞ�4

m� i n�

j l � k

� ��� �
;

where the operator ðBAÞ1 is induced by the restriction of BA to H m�k
l � ; the operator ðABÞ�3

is induced by the restriction of ðABÞ� to H n�

m�i, and ðABÞ�4 is induced by the restriction of
ðABÞ� to H l �

n�j.

The pentagon identity yields that for any j0; j1; . . . ; j8 A I ,

P
j A I

� jj4
j7

� j2 j3
j � j1 j

j6

j1 j2 j5

j3 j6 j

� �
n

j1 j j6

j4 j0 j7

� �
n

j2 j3 j

j4 j7 j8

� �� �

¼ gj2; j3 Pð135642Þ � j5 j8
j0

j1 j2 j5

j8 j0 j7

� �
n

j5 j3 j6

j4 j0 j8

� �� �
:

Here both sides lie in the k-vector space

H
j5j3
j6

nH
j1j2
j5

nH
j6j4
j0

nH
j0

j1 j7
nH

j3 j4
j8

nH
j7

j2 j8
:ð20Þ
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To rewrite the inversion relations in terms of the 6j-symbols, observe that the trans-
pose of the pairing �k

ij : H k
ij nH

ij
k ! k is a homomorphism k ! H

ij
k nH k

ij . The image of
the unit 1 A k under this homomorphism is denoted by d

ij
k . In the notation of Section 2.3,

we have d
ij
k ¼

P
a

e
ij
ka n eka

ij . The relation t21t ¼ p� may be rewritten as the identity

P
n A I

�n
jl �m

in

i j k

l m n

� �
n

i j k 0

l m n

� ��
¼ dk

k 0gj; lPð432Þðdkl
m n d

ij
k Þ

for all i; j; k; k 0; l;m A I . The relation tt21 ¼ �p may be rewritten as the identity

P
k A I

�k
ij �m

kl

i j k

l m n 0

� ��
n

i j k

l m n

� �
¼ dn

n 0gi; jPð432Þðd in
m n d jl

n Þ

for all i; j; l;m; n; n 0 A I .

Remark 8. As an exercise, the reader may prove that t12t23ð�pÞ21 ¼ ðp�Þ32t12t23.
This formula does not give non-trivial identities between the 6j-symbols.

4. The T-calculus

4.1. T-equalities. We say that two endomorphisms a, b of H are T-equal and write
a ¼T b if Tai ¼ Tbi for all i ¼ 1; 2; 3; 4. It is clear that the T-equality is an equivalence
relation. If a ¼T b, then ac ¼T bc for all c A EndðHÞ.

Though the definition of the T-equality involves four conditions, two of them may be
eliminated as is clear from the following lemma.

Lemma 9. For any a; b A EndðHÞ, we have

Ta1 ¼ Tb1 , Ta2 ¼ Tb2 and Ta3 ¼ Tb3 , Ta4 ¼ Tb4:

Proof. Formulas (13) and the identity Pð431Þ ¼ Pð4321ÞPð23Þ imply that

TPð431Þ ¼ TA�
1 ðBAÞ2A3:ð21Þ

Multiplying on the right by A�
1ðABÞ2A3Pð134Þ ¼ Pð134ÞA1ðABÞ2A�

4 , we obtain

TPð134Þ ¼ TA1ðABÞ2A�
4 :ð22Þ

Similar arguments prove that

TPð124Þ ¼ TB2ðABÞ3B�
4 ;ð23Þ

TPð421Þ ¼ TB�
1 ðBAÞ3B4:ð24Þ
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For each i ¼ 1; 2; 3; 4 one of the equations (21)–(24) has the form

TPs ¼ TXkYlZm;ð25Þ

where

s A S4; X ;Y ;Z A fA;A�;B;B�;AB;BAg; fk; l;mg ¼ f1; 2; 3; 4gnfig;

and the set fi; sðiÞg is either f1; 2g or f3; 4g. Set j ¼ sðiÞ and observe that

Tai ¼ TPsðXkYlZmÞ�1
ai ¼ TPsaiðXkYlZmÞ�1 ¼ TajPsðXkYlZmÞ�1:

Also, Tbi ¼ TbjPsðXkYlZmÞ�1. Hence, Tai ¼ Tbi if and only if Taj ¼ Tbj. r

Corollary 10. The T-equality a ¼T b holds if and only if Tai ¼ Tbi for some i A f1; 2g
and for some i A f3; 4g.

4.2. T-scalars. An endomorphism t of H is a T-scalar if t has a transpose t� and

Tt1 ¼ Tt2 ¼ Tt�3 ¼ Tt�4 and Tt�1 ¼ Tt�2 ¼ Tt3 ¼ Tt4:ð26Þ

For example, all scalar automorphisms of H are T-scalars. A more interesting example of a
T-scalar will be given in Lemma 14 below. If t is a T-scalar, then the adjoint operator
t : �HHn2 ! �HHn2 introduced in Section 2.3 satisfies

t1t ¼ t2t ¼ tt1 ¼ tt2 and t�1t ¼ t�2t ¼ tt�1 ¼ tt�2 :ð27Þ

If t A EndðHÞ is a T-scalar, then so is t�. If a T-scalar t is invertible in EndðHÞ, then
t�1 is a T-scalar. Indeed, the equality Tt1 ¼ Tt2 implies that Tt�1

1 ¼ Tt�1
2 and similarly for

all the other required equalities.

The product of any two T-scalars t; u A EndðHÞ is a T-scalar. Indeed, for any
r A f1; 2g and s A f3; 4g,

TðtuÞr ¼ Ttrur ¼ Tt�s ur ¼ Turt
�
s ¼ Tu�

s t�s ¼ TðtuÞ�s

and similarly TðtuÞ�r ¼ TðtuÞs. Thus, the T-scalars form a subalgebra of the k-algebra
EndðHÞ invariant under the involution a 7! a�.

If t is a T-scalar, then a ¼T b ) ta ¼T tb for any a; b A EndðHÞ. Indeed,

TðtaÞ1 ¼ Tt1a1 ¼ Tt2a1 ¼ Ta1t2 ¼ Tb1t2 ¼ Tt2b1 ¼ Tt1b1 ¼ TðtbÞ1

and similarly, TðtaÞ3 ¼ TðtbÞ3.

We call an invertible endomorphism t of H unitary if t� ¼ t�1. More generally, an
invertible endomorphism t of H is T-unitary if t� ¼T t�1. For a T-unitary t A EndðHÞ, equa-
tions (26) simplify to Ttrts ¼ T for all r A f1; 2g and s A f3; 4g.
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4.3. T-commutation relations. We now show that T-scalars T-commute with every
product of an even number of operators A, B, A�, B�. To give a more precise statement, we
define a group F by the presentation

F ¼ ha; b; a�; b� j a2 ¼ b2 ¼ ða�Þ2 ¼ ðb�Þ2 ¼ 1i:ð28Þ

Consider the group homomorphism F ! Z=2Z carrying the generators a, b, a�, b� to
1 ðmod 2Þ. Elements of F belonging to the kernel of this homomorphism are said to be
even; all other elements of F are said to be odd. In other words, an element of F is even if
it expands as a product of an even number of generators and odd otherwise. The group F

acts on H by a 7! A, b 7! B, a� 7! A�, b� 7! B�. The endomorphism of H determined by
g A F is denoted g.

Lemma 11. For any T-scalar t A EndðHÞ any g A F , we have gt ¼T tg if g is even and

gt ¼T t�g if g is odd.

Proof. Fix a T-scalar t A EndðHÞ. For g A F , set tg ¼ t if g is even and tg ¼ t� if g is
odd. We need to prove that gt ¼T tgg for all g A F . For i ¼ 1; 2; 3; 4, set

D i ¼ fg A F jTðgtÞi ¼ TðtggÞigHF :

By the previous lemma, D1 ¼ D2 and D3 ¼ D4. We claim that for any generator
c A fa; b; a�; b�g, we have cD1 HD3 and cD3 HD1. This will imply that the set D1 XD3 HF

is closed under left multiplication by the generators of F . Since this set contains the neutral

element of F , we have D1 XD3 ¼ F . In other words, D i ¼ F for all i ¼ 1; 2; 3; 4. This means
that gt ¼T tgg for all g A F .

To prove our claim, consider again equality (25). Pick any g A DsðkÞ. Then

TðXgtÞk ¼ TPsðXkYlZmÞ�1ðXgtÞk ¼ TPsðYlZmÞ�1ðgtÞk

¼ TðgtÞsðkÞPsðYlZmÞ�1 ¼ TðtggÞsðkÞPsðYlZmÞ�1

¼ Tt
g
sðkÞgsðkÞPsðYlZmÞ�1;

where the fourth equality follows from the inclusion g A DsðkÞ. Since t A End H is a T-scalar,
we have Tt

g
sðkÞ ¼ Tt 0sðiÞ for some t 0 A ft; t�g. Then

Tt
g
sðkÞgsðkÞPsðYlZmÞ�1 ¼ Tt 0sðiÞgsðkÞPsðYlZmÞ�1 ¼ TPsðYlZmÞ�1

t 0i gk
¼ Tt 0i ðXgÞk;

where the last equality follows from (25). Since t is a T-scalar, Tt 0i ¼ Tt 00k for some
t 00 A ft; t�g. Recall that X ¼ x for some x A fa; a�; b; b�; ab; bag. A case by case analysis
shows that t 00 ¼ txg. Combining the formulas above, we obtain that

TðxgtÞk ¼ TðXgtÞk ¼ TðtxgxgÞk;

i.e., xg A Dk. Thus, xDsðkÞ HDk. Applying this inclusion to all forms (21)–(24) of (25) and
to all possible choices of k, we obtain cD1 HD3 and cD3 HD1 for all c A fa; b; a�; b�g. r
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5. Further properties of T

To study the form T we introduce the operators

L ¼ A�A; R ¼ B�B; C ¼ ðABÞ3 A EndðHÞ:

We shall study these operators and show that the commutator of L and R is a T-scalar.
Though this fact will not be directly used in the sequel, the properties of the operators
L, R, C will lead us in the next section to a notion of a ĈC-system.

An operator f A EndðHÞ such that f � ¼ f is called symmetric. An operator
f A EndðHÞ such that f ðH ij

k ÞHH
ij
k and f ðH k

ij ÞHH k
ij for all i; j; k A I is called grading-

preserving.

Lemma 12. The operators L, R, C are invertible, symmetric, and grading-preserving.

They satisfy the following identities:

ACA ¼ BCB ¼ C�1;ð29Þ

LCL�1 ¼ RCR�1 ¼ C;ð30Þ

ALA ¼ L�1; BRB ¼ R�1;ð31Þ

ARA ¼ L�1RC�1; BLB ¼ R�1LC:ð32Þ

Proof. That L, R, C are invertible follows from the fact that A and B are inver-
tible. The inverses of these operators are computed by L�1 ¼ AA�, R�1 ¼ BB�, and
C�1 ¼ ðBAÞ3. The operators L and R are manifestly symmetric. We have

C ¼ ðABÞ3 ¼ ABABAB ¼ ðABAÞðABAÞ�:

Therefore C � ¼ C. That L, R, C are grading-preserving follows from (5) and (11).

The identities (29)–(32) are checked as follows:

ACA ¼ AðABÞ3
A ¼ A2ðBAÞ3 ¼ ðBAÞ3 ¼ C�1;

and similarly for BCB;

LCL�1 ¼ A�ACAA� ¼ A�C�1A� ¼ ðAC�1AÞ� ¼ C � ¼ C;

and similarly for RCR�1;

ALA ¼ AA�AA ¼ AA� ¼ L�1;

and similarly for BRB;

L�1RC�1 ¼ AA�B�AðBAÞ2 ¼ AA�B�ðBABÞ�BA ¼ AB�BA ¼ ARA;

and similarly for R�1LC. r
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Lemma 13. The following identities hold:

TC1C2 ¼ TC3C4;ð33aÞ

TR1L2 ¼ TR3L4;ð33bÞ

TR1R2 ¼ TC3R4;ð33cÞ

TL1 ¼ TC2L3L4:ð33dÞ

Proof. The proof is based on a study of the action of the standard generators of S4

on T using the formulas of Section 2.2. We have

TPð12ÞPð23Þ ¼ TPð23ÞðBAÞ1ðBAÞ3ðABÞ�4 ¼ TðBAÞ1B2ðABAÞ3ðABÞ�4 :

The Coxeter relation ðPð12ÞPð23ÞÞ3 ¼ 1 yields equation (33a):

T ¼ TðPð12ÞPð23ÞÞ3 ¼ TðPð12ÞPð23ÞÞ2ðBAÞ2B3ðABAÞ1ðABÞ�4

¼ TPð12ÞPð23ÞðBABÞ3

�
AðBAÞ2�

2
ðBAÞ2

1ðABÞ�2
4

¼ TðBAÞ3
1ðBAÞ3

2ðABÞ3
3ðABÞ�3

4 ¼ TC�1
1 C�1

2 C3C4:

The identity Pð12ÞPð23ÞPð34ÞPð4321Þ ¼ 1 implies that

T ¼ TPð12ÞPð23ÞPð34ÞPð4321Þ ¼ TPð23ÞPð34ÞPð4321ÞðBAÞ2ðBAÞ1ðABÞ�4
¼ TPð34ÞPð4321ÞB3ðBAÞ2ðABAÞ1ðABÞ�4

¼ TPð4321ÞðA�B�BAÞ2B3

�
ðABÞ2

A
�

1
ðABB�A�Þ4

¼ T
�
B�ðABÞ2

A
�

1
ðA�B�BAÞ2ðABB�A�Þ4

¼ TðRC�1Þ1ðRC�1Þ2ðR�1CÞ4:

This and (33a) yields (33c). The identity Pð34ÞPð23ÞPð12ÞPð1234Þ ¼ 1 implies that

T ¼ TPð34ÞPð23ÞPð12ÞPð1234Þ ¼ TPð23ÞPð12ÞPð1234ÞðBAÞ�1 ðABÞ4ðABÞ3

¼ TPð12ÞPð1234ÞA2ðBAÞ�1ðBABÞ4ðABÞ3

¼ TPð1234ÞðBAA�B�Þ1A2

�
ðBAÞ2

B
�

4
ðB�A�ABÞ3

¼ TðBAA�B�Þ1ðB�A�ABÞ3

�
A�ðBAÞ2

B
�

4

¼ TðL�1C�1Þ1ðLCÞ3ðLCÞ4:

This and (33a) yields (33d). Finally,

TPð12ÞPð34Þ ¼ TPð34ÞðBAÞ1ðBAÞ2ðABÞ�3
¼ TðB�A�BAÞ1ðBAÞ2ðBAB�A�Þ3ðBAÞ4:
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The relation ðPð12ÞPð34ÞÞ2 ¼ 1 gives

T ¼ TðPð12ÞPð34ÞÞ2 ¼ TPð12ÞPð34ÞðB�A�BAÞ2ðBAÞ1ðBAB�A�Þ4ðBAÞ3

¼ T
�
B�A�ðBAÞ2�

1
ðBAB�A�BAÞ2ðBAB�A�BAÞ3

�
ðBAÞ2

B�A��
4

¼ TðA�AÞ1ðBAA�BÞ2ðBAA�BÞ3ðBB�Þ4

¼ TL1ðC�1L�1RÞ2ðC�1L�1RÞ3R�1
4 :

This formula can be rewritten in the following equivalent form:

TðR�1LÞ2C3R4 ¼ TL1C�1
2 ðL�1RÞ3

which reduces to (33b) after using (33c) on the left-hand side, and (33d) on the right-hand
side. r

Lemma 14. Q ¼ LRL�1R�1 A EndðHÞ is a T-unitary T-scalar.

Proof. Applying consecutively (33d) and (33b) in alternating order, we obtain

TQ1 ¼ TðRL�1R�1Þ1C2L3L4 ¼ TðL�1R�1Þ1ðL�1CÞ2ðRLÞ3L2
4

¼ TR�1
1 L�1

2 ðL�1RLÞ3L4 ¼ TR�1
3 ðL�1RLÞ3 ¼ TQ�

3 :

Similar transformations using (33d) and (33c) yield TQ1 ¼ TQ�
4 . Analogously, using (33b)

and (33c), we obtain TQ2 ¼ TQ�
4 : This verifies the first three equalities of (26). The other

three equalities are checked similarly.

Since Q is a T-scalar, so is Q� ¼ R�1L�1RL. We have

Q�1 ¼ RLR�1L�1 ¼ LRQ�R�1L�1 ¼T Q�LRR�1L�1 ¼ Q�;

where the T-equality follows from Lemma 11 applied to the T-scalar Q�. r

Remark 15. It is clear that Q is grading-preserving. For any i; j; k; l;m; n A I , the
restrictions of Q to the corresponding multiplicity spaces induce the endomorphisms
Q1, Q2, Q3, Q4 of the vector space (17). Lemma 14 implies that for any r A f1; 2g and
s A f3; 4g, the composition QrQs preserves the 6j-symbol (18).

6. ĈC-systems

6.1. The operators C
1
2, R

1
2, and L

1
2. Recall the symmetric, grading-preserving, inver-

tible operators C;R;L A EndðHÞ. Suppose that we have symmetric, grading-preserving,
invertible operators C

1
2;R

1
2 A EndðHÞ such that

ðC
1
2Þ2 ¼ C; AC

1
2A ¼ BC

1
2B ¼ C�1

2;ð34aÞ

ðR
1
2Þ2 ¼ R; BR

1
2B ¼ R�1

2; R
1
2C

1
2 ¼ C

1
2R

1
2;ð34bÞ
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where by definition C�1
2 ¼ ðC 1

2Þ�1 and R�1
2 ¼ ðR1

2Þ�1. Set

L
1
2 ¼ BAR�1

2AB A EndðHÞ and L�1
2 ¼ ðL

1
2Þ�1 ¼ BAR

1
2AB A EndðHÞ:ð35Þ

The properties of L
1
2 are summarized in the following lemma.

Lemma 16. The operator L
1
2 is symmetric, grading-preserving, and

ðL
1
2Þ2 ¼ L; AL

1
2A ¼ L�1

2; L
1
2C

1
2 ¼ C

1
2L

1
2:ð36Þ

Proof. We have

ðL
1
2Þ2 ¼ BAR�1AB ¼ BABB�AB ¼ A�B�A�B�AB ¼ A�ABAAB ¼ A�A ¼ L;

AL
1
2A ¼ ABAR�1

2ABA ¼ ðABÞ2
R

1
2ðBAÞ2 ¼ BACR

1
2C�1AB ¼ BAR

1
2AB ¼ L�1

2;

ðL
1
2Þ� ¼ B�A�R�1

2A�B� ¼ B�A�B�R
1
2B�A�B� ¼ ABAR

1
2ABA ¼ AL�1

2A ¼ L
1
2:

That L
1
2 is grading-preserving and commutes with C

1
2 follows from the definitions. r

6.2. ĈC-systems in C. A ĈC-system in C is a C-system in C together with a choice of
invertible, symmetric, grading-preserving operators C

1
2;R

1
2 A EndðHÞ satisfying equalities

(34) as well as the identities

TC
1
2

1C
1
2

2 ¼ TC
1
2

3C
1
2

4;ð37aÞ

TR
1
2

1L
1
2

2 ¼ TR
1
2

3L
1
2

4;ð37bÞ

TR
1
2

1R
1
2

2 ¼ TC
1
2

3R
1
2

4;ð37cÞ

TL
1
2

1 ¼ TC
1
2

2L
1
2

3L
1
2

4;ð37dÞ

where L
1
2 is defined by (35). Generally speaking, a C-system may not allow operators

C
1
2;R

1
2 A EndðHÞ as above.

Equations (37c) and (37d) above are not independent. In fact, any one of them may
be omitted.

We suppose from now on that we do have a ĈC-system.

6.3. Commutation relations. We establish commutation relation analogous to those
in Lemma 11. Consider the group

F̂F ¼ ha; b; a�; b�; c; r j a2 ¼ b2 ¼ ða�Þ2 ¼ ðb�Þ2 ¼ 1i:

Consider the group homomorphism F̂F ! Z=2Z carrying a, b, a�, b� to 1 ðmod 2Þ and
carrying c, r to 0. Elements of F̂F belonging to the kernel of this homomorphism are said
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to be even; all other elements of F̂F are said to be odd. The group F̂F acts on H by

a 7! A; b 7! B; a� 7! A�; b� 7! B�; c 7! C
1
2; r 7! R

1
2:

The endomorphism of H determined by g A F̂F is denoted by g.

Lemma 17. Let t A EndðHÞ be a T-scalar that T-commutes with C
1
2 in the sense that

tC
1
2 ¼T C

1
2t. For g A F̂F , set tg ¼ t if g is even and tg ¼ t� if g is odd. Then gt ¼T tgg for all

g A F̂F .

Proof. Observe that t also T-commutes with C�1
2 and t� T-commutes with both C

1
2

and C�1
2. Indeed, let fi; jg be the set f1; 2g or the set f3; 4g. Set fk; lg ¼ f1; 2; 3; 4gnfi; jg.

Formula (37a) implies that

TðtC�1
2Þi ¼ TtiC

�1
2

i ¼ TtjC
�1

2
i ¼ TC

�1
2

i tj ¼ TC
1
2
j C

�1
2

k C
�1

2

l tj

¼ TtjC
1
2
j C

�1
2

k C
�1

2

l ¼ TtiC
1
2
j C

�1
2

k C
�1

2

l ¼ TC
1
2
j C

�1
2

k C
�1

2

l ti ¼ TðC�1
2tÞi;

Tðt�C
1
2Þi ¼ Tt�i C

1
2

i ¼ TtkC
1
2

i ¼ TC
1
2

i tk ¼ TC
�1

2

j C
1
2

kC
1
2

l tk

¼ TtkC
�1

2

j C
1
2

kC
1
2

l ¼ Tt�i C
�1

2

j C
1
2

kC
1
2

l ¼ TC
�1

2

j C
1
2

kC
1
2

l t�i ¼ TðC
1
2t�Þi:

For i A f1; 2; 3; 4g, set

D̂Di ¼ fg A F̂F jTðgtÞi ¼ TðtggÞigH F̂F :

By Lemma 9, we have D̂D1 ¼ D̂D2 and D̂D3 ¼ D̂D4. Set D̂D ¼ D̂D1 X D̂D3 H F̂F . Clearly, 1 A D̂D. It is
enough to show that D̂D ¼ F̂F .

Pick any index i A f1; 2; 3; 4g and let j; k; l A f1; 2; 3; 4g be such that either
fi; jg ¼ f1; 2g or fi; jg ¼ f3; 4g, and fk; lg ¼ f1; 2; 3; 4gnfi; jg. For X ¼ c ¼ C

1
2 and any

g A D̂D, formula (37a) implies that

TðcgtÞi ¼ TðXgtÞi ¼ TðgtÞiX
�1
j XkXl ¼ TðtggÞiX

�1
j XkXl ¼ Tt

g
j X �1

j XkXlgi

(the last two equalities follow from the assumptions g A D̂D and t is a T-scalar, respectively).
Since t, t� both T-commute with CG1

2, we similarly have

Tt
g
j X �1

j XkXlgi ¼ TX �1
j XkXlgit

g
j ¼ TðXgÞit

g
j

¼ Tt
g
j ðXgÞi ¼ TðtgXgÞi ¼ TðtcgcgÞi:

Thus, TðcgtÞi ¼ TðtcgcgÞi for all i so that cg A D̂D. This shows the inclusion cD̂DH D̂D. The

inclusion c�1D̂DH D̂D is proved similarly.

Next, pick indices i, j, k such that fi; j; kg ¼ f1; 2; 4g. Set X ¼ r ¼ R
1
2 and Y ¼ C

1
2.

For any g A D̂D, formula (37c) implies that for some e ¼G1 and X 0;X 00 A fX ;X �1g,

TðrgtÞi ¼ TXiðgtÞi ¼ TY e
3 X 0

j X 00
k ðgtÞi ¼ TðtggÞiY

e
3 X 0

j X 00
k ¼ Tt 03giY

e
3 X 0

j X 00
k ;
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where t 0 A ft; t�g is such that Tt
g
i ¼ Tt 03. Since t 0Y ¼T Yt 0,

Tt 03giY
e

3 X 0
j X 00

k ¼ TY e
3 X 0

j X 00
k git

0
3 ¼ TðXgÞit

0
3 ¼ Tt 03ðXgÞi ¼ TðtgXgÞi ¼ TðtrgrgÞi:

Thus, rg A D̂D and so rD̂DH D̂D. Similarly, r�1D̂DH D̂D. The rest of the proof is as in Lemma 11.
r

6.4. Stable T-equivalence. We say that two operators a; b A EndðHÞ are stably

T-equal and write a ¼sT b if f a ¼T f b for all f A F̂F . Obviously, if a ¼sT
b, then a ¼T b and

ga ¼sT gb for all g A F̂F .

Corollary 18. For any g A F̂F and any T-scalar t that T-commutes with C
1
2,

gt ¼sT
tgg:ð38Þ

Indeed, by Lemma 17, for all f A F̂F ,

f gt ¼ fgt ¼T t fgfg ¼ ðtgÞ f
f g ¼T f tgg:

Corollary 18 and the evenness of the elements r and bar�1ab of F̂F imply that if a
T-scalar t commutes with C

1
2, then t stably T-commutes with R

1
2 and L

1
2 in the sense that

R
1
2t ¼sT tR

1
2 and L

1
2t ¼sT tL

1
2.

6.5. The T-scalar q. The following T-scalar will play a key role in the sequel.

Lemma 19. The grading-preserving operator

q ¼ R
1
2AR�1

2AL�1
2C�1

2 ¼ R
1
2BL

1
2BL�1

2C�1
2

is a unitary T-scalar commuting with C
1
2.

Proof. That q is grading-preserving is obvious because R
1
2, C

1
2, and L

1
2 are grading-

preserving and A is involutive. Since R
1
2, L

1
2, and AR�1

2A commute with C
1
2, the operator q

also commutes with C
1
2. To prove the remaining claims, set

D ¼ AR�1
2A ¼ BL

1
2B:ð39Þ

It is clear that DC
1
2 ¼ C

1
2D. Note also that

D� ¼ LDL�1;ð40aÞ

D2 ¼ R�1LC ¼ CR�1L:ð40bÞ

Indeed,

D� ¼ A�R�1
2A� ¼ A�ABL

1
2BAA� ¼ LBL

1
2BL�1 ¼ LDL�1
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and

D2 ¼ BLB ¼ BA�AB ¼ BB�A�A�B�A�AB

¼ BB�A�AABABAB ¼ R�1LC:

We claim that the operator D satisfies the following identities:

TD1 ¼ TR
1
2

2L
1
2

3D�
4 ;ð41aÞ

TC
1
2

1D2 ¼ TR
1
2

3D�
4 ;ð41bÞ

TL
1
2

2D3C
1
2

4 ¼ TD�
1 :ð41cÞ

Formula (41a) is proved as follows:

TD1 ¼ TPð134ÞA
�
4ðBAÞ2ðR�1

2AÞ1 ¼ TL
1
2

4R
�1

2

1 L
�1

2

2 Pð134ÞA
�
4 ðBAÞ2A1

¼ TPð134ÞL
1
2

3ðR
�1

2A�Þ4ðL�1
2BAÞ2A1 ¼ TR

1
2

2L
1
2

3D�
4 ;

where in the first, second, etc. equalities we use respectively: the definition of D and (22);

the action of the permutation group S4 and (37b); the action of S4; the definitions of L
1
2, D

and (22). The proof of (41b) is similar:

TD2 ¼ TPð124ÞB
�
4 ðBAÞ3ðL

1
2BÞ2 ¼ TL

1
2

1C
�1

2

2 L
�1

2

3 Pð124ÞB
�
4 ðBAÞ3B2

¼ TPð124ÞL
1
2

4C
�1

2

1 L
�1

2

3 B�
4 ðBAÞ3B2 ¼ TC

�1
2

1 R
1
2

3D�
4 ;

where we use consecutively: the definition of D and (23); the action of S4 and (37d); the
action of S4; the definitions of L

1
2, D and (23). Finally, we prove (41c):

TD3 ¼ TPð431ÞA
�
1 ðABÞ2ðR�1

2AÞ3 ¼ TR
1
2

2C
�1

2

3 R
�1

2

4 Pð431ÞA
�
1 ðABÞ2A3

¼ TPð431ÞR
1
2

2C
�1

2

4 R
�1

2

1 A�
1ðABÞ2A3 ¼ TD�

1 L
�1

2

2 C
�1

2

4 :

Here we use: the definition of D and (21); the action of S4 and (37c); the action of S4; the
definitions of L

1
2, D and (21).

The definition of q may be rewritten as

q ¼ R
1
2DL�1

2C�1
2:ð42Þ

We can now prove the unitarity of q:

q� ¼ C�1
2L�1

2D�R
1
2 ¼ C�1

2L
1
2DL�1R

1
2

¼ C�1
2L

1
2D�1D2L�1R

1
2 ¼ C�1

2L
1
2D�1CR�1

2 ¼ C
1
2L

1
2D�1R�1

2 ¼ q�1;
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where we use the relations (40). Now,

Tq1 ¼ TR
�1

2

2 C
1
2

3R
1
2

4ðDL�1
2C�1

2Þ1 ¼ TL
1
2

3D�
4 C

1
2

3R
1
2

4ðL
�1

2C�1
2Þ1

¼ TC
�1

2

2 L
�1

2

4 D�
4 C

1
2

3R
1
2

4C
�1

2

1 ¼ TC
�1

2

1 C
�1

2

2 C
1
2

3ðqC
1
2Þ�4 ¼ Tq�

4 ;

where we use consecutively: formulas (42) and (37c); formula (41a); formula (37d); formula
(42); formula (37a). Similarly,

Tq2 ¼ TR
�1

2

1 C
1
2

3R
1
2

4ðDL�1
2C�1

2Þ2 ¼ TC
�1

2

1 R
1
2

3D�
4 R

�1
2

1 C
1
2

3R
1
2

4ðL�1
2C�1

2Þ2

¼ TC
�1

2

1 L
�1

2

4 D�
4 C

1
2

3R
1
2

4C
�1

2

2 ¼ TC
�1

2

1 C
�1

2

2 C
1
2

3ðqC
1
2Þ�4 ¼ Tq�

4 ;

where we use consecutively: formulas (42) and (37c); formula (41b); formula (37b); formula
(42); formula (37a). Similarly,

Tq3 ¼ TR
1
2

1L
1
2

2L
�1

2

4 ðDL�1
2C�1

2Þ3 ¼ TD�
1 C

�1
2

4 R
1
2

1L
�1

2

4 ðL�1
2C�1

2Þ3

¼ TL
�1

2

1 C
1
2

2D�
1 C

�1
2

4 R
1
2

1C
�1

2

3 ¼ TðqC
1
2Þ�1 C

1
2

2C
�1

2

3 C
�1

2

4 ¼ Tq�
1 ;

where we use: formulas (42) and (37b); formula (41c); formula (37d); formula (42); formula
(37a). Together with the unitarity of q these identities imply that q is a T-scalar. r

Lemma 20. For all a; b A
1

2
Z,

LaRb ¼sT q8abRbLa:ð43Þ

For all a; b A
1

2
Z and c A Z,

ðLaRbÞc ¼sT q4abcð1�cÞLacRbc:ð44Þ

Proof. Formulas (42) and (40b) imply that

qL
1
2R�1

2q ¼ R�1
2L

1
2:

This and (38) yield (43) for a ¼ b ¼ 1

2
:

L
1
2R

1
2 ¼ R

1
2R�1

2L
1
2R

1
2 ¼ R

1
2qL

1
2R�1

2qR
1
2 ¼sT

q2R
1
2L

1
2R�1

2R
1
2 ¼ q2R

1
2L

1
2:

Assuming (43) for some a A
1

2
Z and b ¼ 1

2
, we obtain

Laþ1
2R

1
2 ¼ LaL

1
2R

1
2 ¼sT Laq2R

1
2L

1
2

¼sT q2LaR
1
2L

1
2 ¼sT q2q4aR

1
2LaL

1
2 ¼ q4ðaþ1

2
ÞR

1
2Laþ1

2:
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This proves (43) for all positive a A
1

2
Z and b ¼ 1

2
. Similarly, assuming (43) for some

positive a; b A
1

2
Z, we obtain

LaRbþ1
2 ¼ LaR

1
2Rb ¼sT q4aR

1
2LaRb ¼sT

q4aR
1
2q8abRbLa

¼sT q4aq8abR
1
2RbLa ¼ q8a bþ1

2ð ÞRbþ1
2La:

This proves (43) for all positive a; b A
1

2
Z. Moreover, for such a, b,

L�aRb ¼ L�aRbLaL�a ¼sT L�aq�8abLaRbL�a ¼sT
q�8abL�aLaRbL�a ¼ q�8abRbL�a;

LaR�b ¼ R�bRbLaR�b ¼sT R�bq�8abLaRbR�b ¼sT
q�8abR�bLaRbR�b ¼ q�8abR�bLa;

and

L�aR�b ¼ R�bRbL�aR�b ¼sT R�bq8abL�aRbR�b ¼sT
q8abR�bL�a:

This proves (43) for all non-zero a, b. For a ¼ 0 or b ¼ 0, formula (43) is obvious.

The case c ¼ 0 of (44) is obvious. Assuming (44) for some c A Z, we obtain

ðLaRbÞcþ1 ¼ ðLaRbÞc
LaRb ¼sT q4abcð1�cÞLacRbcLaRb ¼sT

q4abcð1�cÞLacq�8abcLaRbcRb

¼sT q�4abcðcþ1ÞLacLaRbcRb ¼ q4abðcþ1Þð1�ð1þcÞÞLaðcþ1ÞRbðcþ1Þ:

This implies (44) for all cf 0. The proof for negative c is similar. r

Remark 21. If we apply formula (43) to a ¼ b ¼ 1, we obtain q8 ¼sT
Q, where

Q ¼ LRL�1R�1 is the operator studied in Lemma 14.

7. Charged T-forms

7.1. Definition. For any a; c A
1

2
Z, we define the ‘‘charged’’ T-forms

Tða; cÞ ¼ Tq4ac
1 Rc

1R�a
2 L�a

3 R�c
3 : Hn4 ! k

and

Tða; cÞ ¼ Tq�4ac
1 L�a

2 R�c
2 R�a

3 Rc
4 : Hn4 ! k:

Lemma 22. Set A ¼ AL�1
2, B ¼ BR�1

2 A EndðHÞ. Then A, B are symmetric involutions

and for any a; b; c A
1

2
Z such that a þ b þ c ¼ 1

2
we have
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Tða; cÞPð4321Þ ¼ Tða; bÞq�2a
1 A1A3;ð45aÞ

Tða; cÞPð23Þ ¼ Tðb; cÞq2c
1 A2B3;ð45bÞ

Tða; cÞPð1234Þ ¼ Tða; bÞq�2a
1 B2B4:ð45cÞ

Proof. The equalities A2 ¼ B2 ¼ 1 directly follow from the involutivity of the oper-
ators A, B and the formulas AL

1
2A ¼ L�1

2 and BR
1
2B ¼ R�1

2. We have

A� ¼ ðL�1
2Þ�A� ¼ L�1

2A� ¼ L�1
2AAA� ¼ AL

1
2AA� ¼ AL

1
2L�1 ¼ AL�1

2 ¼ A:

Similarly, B� ¼ B. To prove (45), observe that

AL�bR�cA ¼ AL
1
2
�bR�cA ¼ Lb�1

2AR�cA ¼ Lb�1
2ðAR�1

2AÞ2c

¼ Lb�1
2ðL

1
2R�1

2C
1
2qÞ2c ¼sT

q2cC cLb�1
2ðL

1
2R�1

2Þ2c

¼sT q2cC cLb�1
2q�2cð1�2cÞLcR�c ¼sT

q4c2

C cLbþc�1
2R�c:

Here the first, second, etc. equalities follow respectively from: the definition of A; the
formula AL

1
2 ¼ L�1

2A; the involutivity of A; the definition of q; the fact that R
1
2 and L

1
2

commute with C
1
2 and stably T-commute with q; formula (44); the fact that L

1
2 stably

T-commutes with q. A similar computation shows that

BL�aR�bB ¼sT q4a2�4aC�aL�aRaþb�1
2:ð46Þ

Formula (45b) is equivalent to the formula Tðb; cÞq2c
1 A2B3Pð23Þ ¼ Tða; cÞ which we

now prove:

Tðb; cÞq2c
1 A2B3Pð23Þ ¼ Tq

2cð1�2bÞ
1 L�b

2 R�c
2 R�b

3 Rc
4A2B3Pð23Þ

¼ TPð23ÞA2B3q
2cð1�2bÞ
1 L�b

2 R�c
2 R�b

3 Rc
4A2B3Pð23Þ

¼ Tq
2cð1�2bÞ
1 ðBR�bBÞ2ðAL�bR�cAÞ3Rc

4

¼ Tq
2cð1�2bÞ
1 q4c2

3 R
b�1

2

2 ðC cL�aR�cÞ3Rc
4

¼ Tq4ac
1 R

b�1
2

2 ðC cL�aR�cÞ3Rc
4

¼ TðRcq4acÞ1R�a
2 ðL�aR�cÞ3

¼ Tðq4acRcÞ1R�a
2 ðL�aR�cÞ3 ¼ Tða; cÞ:

Here we use consecutively: the definition of Tðb; cÞ; formula (13b); the action of S4; the

equalities BR�bB ¼ Rb�1
2 and AL�bR�cA ¼T q4c2

C cL�aR�c established above; the equality
Tq3 ¼ Tq�1

1 ; formula (37c); the fact that R stably T-commutes (and therefore T-commutes)
with q; the definition of Tða; cÞ.

The proof of (45c) is similar:
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Tða; bÞq�2a
1 B2B4Pð4321Þ ¼ TPð1234ÞB2B�

4 q
�2að2bþ1Þ
1 L�a

2 R�b
2 R�a

3 Rb
4B2B4Pð4321Þ

¼ TðB�RbBÞ1q
�2að2bþ1Þ
2 ðBL�aR�bBÞ3R�a

4

¼ TR
1
2
�b

1 q
�2að2bþ1Þ
2 ðBL�aR�bBÞ3R�a

4

¼ TR
1
2
�b

1 q4ac
2 ðC�aL�aR�cÞ3R�a

4

¼ TRc
1ðR�aq4acÞ2ðL�aR�cÞ3 ¼ Tða; cÞ:

Here we use consecutively: the definition of Tða; bÞ and formula (13c); the action of S4;
formula B�RbB ¼ R

1
2
�b which follows from the definitions of R, B and the equality

BR
1
2B ¼ R�1

2; formula (46) and the equality Tq3 ¼ Tq�1
2 ; formula (37c); the formulas

Rq ¼T qR, Tq2 ¼ Tq1 and the definition of Tða; cÞ.

Finally, we prove (45a):

Tða; bÞq�2a
1 A1A3Pð1234Þ ¼ TPð4321ÞA

�
1 A3q

�2að2bþ1Þ
1 L�a

2 R�b
2 R�a

3 Rb
4A1A3Pð1234Þ

¼ TðL�aR�bÞ1ðAR�aAÞ2Rb
3ðA�q�2að2bþ1ÞAÞ4

¼ TðL�aR�bÞ1ðq4a2

C aLa�1
2R�aÞ2Rb

3 ðq2að2bþ1ÞL
1
2Þ4

¼ TR�b
1 ðq�4acLa�1

2R�aÞ2ðRbL�aÞ3L
1
2
�a

4

¼ Tðq�4acRcÞ1R�a
2 ðR�cL�aÞ3 ¼ Tða; cÞ;

where we use (among others) formulas (13a), (37d), (37b), and (43). r

Remark 23. Though we shall not need it in the sequel, note that the involutions
A;B : H ! H introduced in Lemma 22 satisfy the relations ðBAÞ3 ¼ q2 and

ðAC
1
2Þ2 ¼ ðBC

1
2Þ2 ¼ ðAqÞ2 ¼ ðBqÞ2 ¼ ðAL

1
2Þ2 ¼ ðBR

1
2Þ2 ¼ 1:

7.2. The charged pentagon and inversion identities. For any a; c A
1

2
Z, we define the

‘‘charged’’ operators tða; cÞ; tða; cÞ : �HHn2 ! �HHn2 by

tða; cÞ ¼ q�4ac
1 Rc

1R�a
2 tL�a

1 R�c
1 and tða; cÞ ¼ q4ac

1 R�c
2 L�a

2 tR�a
1 Rc

2;

where t and t are the endomorphisms of �HHn2 introduced in Section 2.3. The operator
tða; cÞ is adjoint to Tða; cÞ: for any u; v A ĤH, x; y A �HH,

hhun v; tða; cÞðxn yÞii ¼
��

un v; ðq�4acRc nR�aÞt
�
L�aR�cðxÞn y

���
¼
��

q4acRcðuÞnR�aðvÞ; t
�
L�aR�cðxÞn y

���
¼ T

�
q4acRcðuÞnR�aðvÞnL�aR�cðxÞn y

�
¼ Tða; cÞðun vn xn yÞ;

97Geer, Kashaev and Turaev, Tetrahedral forms in monoidal categories and 3-manifold invariants

Brought to you by | Indiana University Bloomington
Authenticated

Download Date | 11/3/14 7:23 PM



where we use the pairing hh� ; �ii introduced in Section 2.3, the unitarity of q, and the sym-
metry of L

1
2, R

1
2. Similarly, tða; cÞ is adjoint to Tða; cÞ.

Lemma 24. The charged operators t, t satisfy the following identities.

(i) The charged pentagon identity:

t23ða0; c0Þt13ða2; c2Þt12ða4; c4Þ ¼ t12ða3; c3Þt23ða1; c1Þð�pÞ21

for any a0; a1; a2; a3; a4; c0; c1; c2; c3; c4 A
1

2
Z such that

a1 ¼ a0 þ a2; a3 ¼ a2 þ a4; c1 ¼ c0 þ a4; c3 ¼ a0 þ c4; c2 ¼ c1 þ c3:ð47Þ

(ii) The charged inversion identities: for any a; c A
1

2
Z,

t21ða; cÞtð�a;�cÞ ¼ p� and tð�a;�cÞt21ða; cÞ ¼ �p:

Proof. We first rewrite formulas (37) in terms of t and t:

C
1
2

1C
1
2

2t ¼ tC
1
2

1C
1
2

2; R
1
2

1L
1
2

2t ¼ tR
1
2

1L
1
2

2; R
1
2

1R
1
2

2t ¼ tC
1
2

1R
1
2

2; L
1
2

1C
�1

2

2 t ¼ tL
1
2

1L
1
2

2:

In the following computations, the underlined expressions are transformed via one of these
four equalities. We have

q
4ða1c1þa3c3Þ
1 t12ða3; c3Þt23ða1; c1Þð�pÞ21

¼ Rc3

1 R�a3

2 t12L�a3

1 R�c3

1 Rc1

2 R�a1

3 t23L�a1

2 R�c1

2 ð�pÞ21

¼ Rc3

1 R�a3

2 R�a1

3 t12Rc1

2 t23L�a3

1 R�c3

1 L�a1

2 R�c1

2 ð�pÞ21

¼ Rc3

1 R�a3

2 R�a1

3 Rc1

1 Rc1

2 t12C�c1

1 t23L�a3

1 R�c3

1 L�a1

2 R�c1

2 ð�pÞ21

¼ Rc2

1 Rc0�a2

2 R�a1

3 t12t23ð�pÞ21C�c1

1 L�a3

1 R�c3

1 L�a1

2 R�c1

2 ;

where the last equality follows from the definition of �p and the fact that R
1
2, L

1
2, C

1
2 are

grading-preserving operators. We also have

q
4ða0c0þa2c2þa4c4Þ
1 t23ða0; c0Þt13ða2; c2Þt12ða4; c4Þ

¼ Rc0

2 R�a0

3 t23L�a0

2 R�c0

2 Rc2

1 R�a2

3 t13L�a2

1 R�c2

1 Rc4

1 R�a4

2 t12L�a4

1 R�c4

1

¼ Rc2

1 Rc0

2 R�a0

3 t23R�a2

3 t13L�a2

1 R�a0�c1

1 L�a0

2 R�c1

2 t12L�a4

1 R�c4

1

¼ Rc2

1 Rc0�a2

2 R�a0�a2

3 t23C a2

2 t13L�a2

1 R�a0

1 L�a0

2 R�c1

1 R�c1

2 t12L�a4

1 R�c4

1

¼ Rc2

1 Rc0�a2

2 R�a1

3 t23t13L�a2

1 C a2

2 R�a0

1 L�a0

2 t12C�c1

1 R�c1

2 L�a4

1 R�c4

1

¼ Rc2

1 Rc0�a2

2 R�a1

3 t23t13L�a2

1 C a2

2 t12R�a0

1 L�a0

2 C�c1

1 L�a4

1 R�c4

1 R�c1

2

¼ Rc2

1 Rc0�a2

2 R�a1

3 t23t13t12C�c1

1 L�a2

1 R�a0

1 L�a4

1 R�c4

1 L�a1

2 R�c1

2

¼ q�8a0a4

1 Rc2

1 Rc0�a2

2 R�a1

3 t23t13t12C�c1

1 L�a3

1 R�c3

1 L�a1

2 R�c1

2 :
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Comparing the obtained expressions and using that t12t23ð�pÞ21 ¼ t23t13t12, we conclude
that the charged pentagon equality follows from the formula

a0c0 þ a2c2 þ a4c4 þ 2a0a4 ¼ a1c1 þ a3c3:

This formula is verified as follows:

a0c0 þ a2c2 þ a4c4 þ 2a0a4 ¼ a0ðc0 þ a4Þ þ a2c2 þ a4ða0 þ c4Þ

¼ a0c1 þ a2ðc1 þ c3Þ þ a4c3

¼ ða0 þ a2Þc1 þ ða2 þ a4Þc3 ¼ a1c1 þ a3c3:

We now prove the first inversion identity:

t21ða; cÞtð�a;�cÞ ¼ q�4ac
1 Rc

2R�a
1 t21L�a

2 R�c
2 q4ac

1 Rc
2La

2tR
a
1 R�c

2

¼ Rc
2R�a

1 t21tR
a
1 R�c

2 ¼ Rc
2R�a

1 p�Ra
1 R�c

2 ¼ p�;

where the second equality follows from (27) since q is a T-scalar. The equality

Rc
2R�a

1 p�Ra
1 R�c

2 ¼ p�

follows from the fact that p� is the projector on a direct sum of multiplicity spaces. The
second inversion identity is proved similarly. r

8. Charged 6j-symbols

Let i; j; k; l;m; n A I and a; c A
1

2
Z. Replacing T by Tða; cÞ in the definition of the

positive 6j-symbol in Section 3.2, we obtain the charged positive 6j-symbol

i j k

l m n

� �
ða; cÞ A H kl

m nH
ij
k nH n

jl nH m
in :ð48Þ

Replacing T by Tða; cÞ in the definition of the negative 6j-symbol in Section 3.2, we obtain
the charged negative 6j-symbol

i j k

l m n

� ��
ða; cÞ A H in

m nH jl
n nH k

ij nH m
kl :ð49Þ

The formulas of Section 3.2 computing T , T , t, t in terms of the 6j-symbols extend to
the present setting by inserting ða; cÞ after each occurrence of T , T , t, t and after each
6j-symbol.

The properties of the charged T-forms established in Section 7 can be rewritten in

terms of the charged 6j-symbols. For any a; b; c A
1

2
Z such that a þ b þ c ¼ 1

2
, formula (45a)
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yields

i j k

l m n

� �
ða; cÞ ¼ Pð4321Þq

2a
1 A1A3

i� k j

l n m

� ��
ða; bÞ

� �
;ð50Þ

where A1 is induced by the restriction of A to H i �m
n and A3 is induced by the restriction of A

to H
j

i �k. Formula (45b) yields

i j k

l m n

� �
ða; cÞ ¼ Pð23Þq

�2c
1 A2B3

k j � i

n m l

� ��
ðb; cÞ

� �
;ð51Þ

where A2 is induced by the restriction of A to H
j �n
l and B3 is induced by the restriction of B

to H i
kj � . Finally, formula (45c) yields

i j k

l m n

� �
ða; cÞ ¼ Pð1234Þq

2a
1 B2B4

i n m

l � k j

� ��
ða; bÞ

� �
;ð52Þ

where B2 is induced by the restriction of B to H nl �
j and B4 is induced by the restriction of B

to H k
ml � .

The charged pentagon identity yields that for any j0; j1; . . . ; j8 A I and any a0, a1, a2,

a3, a4, c0, c1, c2, c3, c4 A
1

2
Z satisfying (47),

P
j A I

� jj4
j7

� j2 j3
j � j1 j

j6

�
j1 j2 j5

j3 j6 j

� �
ða0; c0Þn

j1 j j6

j4 j0 j7

� �
ða2; c2Þð53Þ

n
j2 j3 j

j4 j7 j8

� �
ða4; c4Þ

�

¼ gj2; j3 Pð135642Þ � j5 j8
j0

j1 j2 j5

j8 j0 j7

� �
ða1; c1Þn

j5 j3 j6

j4 j0 j8

� �
ða3; c3Þ

� �
:

Here both sides lie in the k-vector space (20).

The first inversion relation gives that for all i; j; k; k 0; l;m A I and a; c A
1

2
Z,

P
n A I

�n
jl �m

in

i j k

l m n

� �
ða; cÞn i j k 0

l m n

� ��
ð�a;�cÞ

� �
¼ dk

k 0gj; lPð432Þðdkl
m n d

ij
k Þ:

The second inversion relation gives that for all i; j; l;m; n; n 0 A I and a; c A
1

2
Z,

P
k A I

�k
ij �m

kl

i j k

l m n 0

� ��
ð�a;�cÞn i j k

l m n

� �
ða; cÞ

� �
¼ dn

n 0gi; jPð432Þðd in
m n d jl

n Þ:

9. Three-manifold invariants

In this section, following the ideas of the paper [7], we associate to a ĈC-system an
invariant of an oriented compact three-manifold together with a non-empty link.
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9.1. Topological preliminaries. Throughout this subsection, the symbol M denotes
a closed connected orientable 3-manifold. Following [2], by a quasi-regular triangulation

of M we mean a decomposition of M as a union of embedded tetrahedra such that the
intersection of any two tetrahedra is a union (possibly, empty) of several of their vertices,
edges, and (2-dimensional) faces. Quasi-regular triangulations di¤er from the usual triangu-
lations in that they may have tetrahedra meeting along several vertices, edges, and faces.
Note that each edge of a quasi-regular triangulation has two distinct endpoints.

A Hamiltonian link in a quasi-regular triangulation T of M is a set L of unoriented
edges of T such that every vertex of T belongs to exactly two elements of L. Then the
union of the edges of T belonging to L is a link L in M. We call the pair ðT;LÞ an
H-triangulation of ðM;LÞ.

Proposition 25 ([2], Proposition 4.20). For any non-empty link L in M, the pair

ðM;LÞ admits an H-triangulation.

H-triangulations of ðM;LÞ can be related by elementary moves of two types, the
H-bubble moves and the H-Pachner 2 $ 3 moves. The positive H-bubble move on an
H-triangulation ðT;LÞ starts with a choice of a face F ¼ v1v2v3 of T such that at least
one of its edges, say v1v3, is in L. Consider two tetrahedra of T meeting along F . We
unglue these tetrahedra along F and insert a 3-ball between the resulting two copies of F .
We triangulate this 3-ball by adding a vertex v4 at its center and three edges connecting v4

to v1, v2, and v3. The edge v1v3 is removed from L and replaced by the edges v1v4 and v3v4.
This move can be visualized as the transformation

!

where the bold (green) edges belong to L. The inverse move is the negative H-bubble move.
The positive H-Pachner 2 $ 3 move can be visualized as the transformation

$ :

This move preserves the set L. The inverse move is the negative H-Pachner move; it is
allowed only when the edge common to the three tetrahedra on the right is not in L.

Proposition 26 ([2], Proposition 4.23). Let L be a non-empty link in M. Any two

H-triangulations of ðM;LÞ can be related by a finite sequence of H-bubble moves and

H-Pachner moves in the class of H-triangulations of ðM;LÞ.

Charges on H-triangulations first have been introduced in [7] and the corresponding
theory subsequently has been developed in [2]. This theory is a natural extension of the
theory of angle structures, see for example [13], [14], into the framework of arbitrary trian-
gulated three-manifolds.
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By a charge on a tetrahedron T , we mean a
1

2
Z-valued function c on the set of edges

of T such that cðeÞ ¼ cðe 0Þ for any opposite edges e, e 0 and cðe1Þ þ cðe2Þ þ cðe3Þ ¼ 1=2 for
any edges e1, e2, e3 of T forming the boundary of a face. Consider now an H-triangulation
ðT;LÞ of ðM;LÞ as above. Let EðTÞ be the set of edges of T and let ÊEðTÞ be the set
of pairs (a tetrahedron T of T, an edge of T). Let �T : ÊEðTÞ ! EðTÞ be the obvious
projection. For any edge e of T, the set ��1

T ðeÞ has n elements, where n is the number of
tetrahedra of T adjacent to e.

Definition 27. A charge on ðT;LÞ is a map c : ÊEðTÞ ! 1

2
Z such that

(i) the restriction of c to any tetrahedron T of T is a charge on T ,

(ii) for each edge e of T not belonging to L we have
P

e 0 A ��1
T

ðeÞ
cðe 0Þ ¼ 1,

(iii) for each edge e of T belonging to L we have
P

e 0 A ��1
T

ðeÞ
cðe 0Þ ¼ 0.

Each charge c on ðT;LÞ determines a cohomology class ½c� A H 1ðM;Z=2ZÞ as fol-
lows. Let s be a simple closed curve in M which lies in general position with respect to T
and such that s never leaves a tetrahedron T of T through the same 2-face by which it
entered. Thus each time s passes through T , it determines a unique edge e belonging to
both the entering and departing faces. The sum of the residues 2cjTðeÞ ðmod 2Þ A Z=2Z
over all passages of s through tetrahedra of T depends only on the homology class of s

and is the value of ½c� on s.

It is known that each H-triangulation ðT;LÞ of ðM;LÞ has a charge representing
any given element of H 1ðM;Z=2ZÞ. We briefly outline a proof of this claim following
[13], [1] and referring to these papers for the exact definitions and the details. In this
argument (and only here) we shall use ‘‘integral charges’’ that are equal to two times our
charges and take only integer values. Let J be the abelian group generated by pairs (a
tetrahedron D of T, an edge of D) modulo the relations ðD; eÞ ¼ ðD; eÞ where e is the
edge opposite to e in D. An integral charge on T may be seen as an element of J satisfying
certain additional properties. Recall the Neumann chain complex associated with T:

t ¼ ðC0 !a C1 !b J !b
�

C1 !a
�

C0 ! 0Þ:

Here Ci with i ¼ 0; 1 is the free abelian group freely generated by the i-dimensional
(unoriented) simplices of T and J is the quotient of J by the relations

ðD; e1Þ þ ðD; e2Þ þ ðD; e3Þ ¼ 0

where e1, e2, e3 are edges of a tetrahedron D A T forming a triangle. The homomorphisms
a, b are defined by Neumann and the homomorphisms a�, b� are their transposes with
respect to the obvious bases of C0, C1 and a canonical non-degenerate bilinear form on J.
The relationship to the charges comes from the fact that b� : J ! C1 splits canonically as
a composition of certain homomorphisms b1 : J ! J and b2 : J ! C1. The rest of the
argument is a homological chase. One starts with any x A J such that for every tetrahe-
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dron D of T, the coe‰cients of the edges of D in x total to 1. One shows that then
b2ðxÞ � 2s A Kerða�Þ where s A C1 is the formal sum of the edges of T not belonging
to L. Using Neumann’s computation of H2ðtÞ, one deduces that b2ðxÞ � 2s ¼ b�ðaÞ for
some a A J. Then x 0 ¼ x � b1ðaÞ is an integral charge on T. Next, using Neumann’s for-
mula H3ðtÞ ¼ H 1ðM;Z=2ZÞ, one picks a cycle b A J of the chain complex t such that
x 0 � b1ðbÞ is an integral charge on T representing the given element of H 1ðM;Z=2ZÞ.

Lemma 28. Let ðT;LÞ and ðT 0;L 0Þ be H-triangulations of ðM;LÞ such that

ðT 0;L 0Þ is obtained from ðT;LÞ by an H-Pachner move or an H-bubble move. Let c be a

charge on ðT;LÞ. Then there exists a charge c 0 on ðT 0;L 0Þ such that c 0 equals c on all pairs

(a tetrahedron T of T not involved in the move, an edge of T) and for any common edge e

of T and T 0,

P
a A ��1

T
ðeÞ

cðaÞ ¼
P

a 0 A ��1
T 0 ðeÞ

c 0ða 0Þ:ð54Þ

Moreover, ½c� ¼ ½c 0�.

Proof. A straightforward calculation, cf. [2], Lemma 4.10. r

The charge c 0 in this lemma is unique if the move ðT;LÞ 7! ðT 0;L 0Þ is negative. In
this case we say that c 0 is induced by c. If the move ðT;LÞ 7! ðT 0;L 0Þ is positive, then c 0

is not unique, see [2], Lemma 4.12.

9.2. The algebraic data. We describe the algebraic data needed to define our
3-manifold invariant. Let C be a monoidal Ab-category whose ground ring k is a field. Fix
a ĈC-system in C with distinguished simple objects fVigi A I . Fix a family fIggg AG of finite
subsets of the set I numerated by elements of a group G and satisfying the following con-
ditions:

(i) For any g A G, if i A Ig, then i� A Ig�1 .

(ii) For any i1 A Ig1
, i2 A Ig2

, k A InIg1g2
with g1; g2 A G, we have H i1i2

k ¼ 0.

(iii) If i1 A Ig1
, i2 A Ig2

with g1; g2 A G, then either Ig1g2
¼ j or there is k A Ig1g2

such

that H i1i2
k 3 0.

(iv) For any finite family fgr A Ggr, there is g A G such that Iggr
3j for all r.

(v) We are given a map b : I ! k such that bðiÞ ¼ bði�Þ for all i A I , and for any
g1; g2 A G, k A Ig1g2

such that Ig1
3j and Ig2

3j,

P
i1 A Ig1

; i2 A Ig2

bði1Þbði2Þ dimðH i1i2
k Þ ¼ bðkÞ:

9.3. G-colorings and state sums. We fix algebraic data as in Section 9.2. Let M be
a closed connected orientable 3-manifold and T a quasi-regular triangulation of M as in
Section 9.1. A G-coloring of T is a map F from the set of oriented edges of T to G such
that
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(i) Fð�eÞ ¼ FðeÞ�1 for any oriented edge e of T, where �e is e with opposite orien-
tation;

(ii) if e1, e2, e3 are ordered edges of a face of T endowed with orientation induced by
the order, then Fðe1ÞFðe2ÞFðe3Þ ¼ 1.

A G-gauge of T is a map from the set of vertices of T to G. The G-gauges of T
form a multiplicative group which acts on the set of G-colorings of T as follows. If d is a
G-gauge of T and F is a G-coloring of T, then the G-coloring dF is given by

ðdFÞðeÞ ¼ dðv�e ÞFðeÞdðvþe Þ
�1;

where v�e (resp. vþe ) is the initial (resp. terminal) vertex of an oriented edge e.

Let MðM;GÞ be the set of conjugacy classes of group homomorphisms from the
fundamental group of M to G. The elements of MðM;GÞ bijectively correspond to the
G-colorings of T considered up to gauge transformations. Indeed, for a vertex x0 of T,
each G-coloring F of T determines a homomorphism p1ðM; x0Þ ! G. To compute this
homomorphism on an element of p1ðM; x0Þ, one represents this element by a loop based
at x0 and formed by a sequence of oriented edges of T; then one takes the product of the
values of F on these edges. Let ½F� A MðM;GÞ be the conjugacy class of this homomor-
phism. We say that F represents ½F�. The assignment F 7! ½F� establishes the bijective cor-
respondence mentioned above.

A state of a G-coloring F of T is a map j assigning to every oriented edge e of T
an element jðeÞ of IFðeÞ such that jð�eÞ ¼ jðeÞ� for all e. The set of all states of F is
denoted StðFÞ. The identity b

�
jðeÞ

�
¼ b
�
jð�eÞ

�
allows us to use the notation b

�
jðeÞ

�
for

non-oriented edges. It is easy to see that StðFÞ3j if and only if IFðeÞ 3j for all oriented
edges e of T. In this case we say that F is admissible.

Let now L be a non-empty link in M and ðT;LÞ be an H-triangulation of ðM;LÞ
with charge c. From this data, we derive a certain partition function (state sum) as follows.
Fix a total order on the set of vertices of T. Consider a tetrahedron T of T with vertices
v1, v2, v3, v4 in increasing order. We say that T is right oriented if the tangent vectors v1v2,
v1v3, v1v4 form a positive basis in the tangent space of M; otherwise T is left oriented. For
an admissible G-coloring F of T and a state j A StðFÞ, set

i ¼ jðv1v2
		!Þ; j ¼ jðv2v3

		!Þ; k ¼ jðv1v3
		!Þ;

l ¼ jðv3v4
		!Þ; m ¼ jðv1v4

		!Þ; n ¼ jðv2v4
		!Þ;

where vivj
	! is the oriented edge of T going from vi to vj. Set

jT jj ¼

i j k
l m n

� ��
cðv1v2Þ; cðv2v3Þ

�
if T is right oriented;

i j k
l m n

� ���
cðv1v2Þ; cðv2v3Þ

�
if T is left oriented:

8>>><
>>>:

104 Geer, Kashaev and Turaev, Tetrahedral forms in monoidal categories and 3-manifold invariants

Brought to you by | Indiana University Bloomington
Authenticated

Download Date | 11/3/14 7:23 PM



The 6j-symbol jT jj belongs to the tensor product of four multiplicity modules associated to
the faces of T . Specifically,

jT jj A
H kl

m nH
ij
k nH n

jl nH m
in if T is right oriented;

H in
m nH jl

n nH k
ij nH m

kl if T is left oriented:

(

Note that any face of T belongs to exactly two tetrahedra of T, and the associated multi-
plicity modules are dual to each other, see Lemma 1. These dualities allow us to contractN
T

jT jj into a scalar. Denote by cntr the tensor product of all these tensor contractions

determined by the faces of T. Set

KðT;L;F; cÞ ¼
P

j AStðFÞ

� Q
e AL

b
�
jðeÞ

��
cntr

�N
T

jT jj
�

A k;

where T runs over all tetrahedra of T. To compute KðT;L;F; cÞ we may need to order
the faces of T, but the result does not depend on this order.

Theorem 29. Suppose that there exists a scalar ~qq A k such that q is T-equal to the

operator

~qq IdĤH l ~qq�1 Id �HH A EndðHÞ:

Then, up to multiplication by integer powers of ~qq, the state sum KðT;L;F; cÞ depends only

on the isotopy class of L in M, the conjugacy class ½F� A MðM;GÞ, and the cohomology class

½c� A H 1ðM;Z=2ZÞ (and does not depend on the choice of c in its cohomology class, the

admissible representative F of ½F�, the H-triangulation T of ðM;LÞ, and the ordering of

the vertices of T).

A proof of this theorem will be given in Section 10.

Lemma 30. Any element of the set MðM;GÞ can be represented by an admissible

G-coloring on an arbitrary quasi-regular triangulation T of M.

Proof. Take any G-coloring F of T representing the given element of MðM;GÞ.
We say that a vertex of T is bad for F if there is an oriented edge e in T incident to this
vertex and such that IFðeÞ ¼ j. It is clear that F is admissible if and only if F has no bad
vertices. We show how to modify F in the class ½F� to reduce the number of bad vertices.
Observe first that each pair (a vertex v of T, an element g of G) determines a G-gauge dv;g

whose value on any vertex u of T is defined by

dv;gðuÞ ¼ g if u ¼ v;

1 else:

�
ð55Þ

Let v be a bad vertex for F. Pick any g A G such that IgFðeÞ 3j for all edges e of T
adjacent to v and oriented away from v. The G-coloring dv;gF takes values in the set
fh A G j Ih 3jg on all edges of T incident to v and takes the same values as F on all edges
of T not incident to v. Here we use the fact that the edges of T are not loops which is
ensured by the quasi-regularity of T. The transformation F 7! dv;gF decreases the number
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of bad vertices. Repeating this argument, we find a G-coloring without bad vertices in the
class ½F�. r

We represent any h A MðM;GÞ by an admissible G-coloring F of T and any
z A H 1ðM;Z=2ZÞ by a charge c, and set

KðM;L; h; zÞ ¼ KðT;L;F; cÞ A k:

By Theorem 29, KðM;L; h; zÞ is a topological invariant of the tuple ðM;L; h; cÞ.

10. Proof of Theorem 29

Throughout this section we keep the assumptions of Theorem 29.

Lemma 31. Up to multiplication by integer powers of ~qq, KðT;L;F; cÞ does not

depend on the ordering of the vertices of T.

Proof. Consider the natural action of the symmetric group on the orderings of the
vertices of T. As the symmetric group is generated by simple transpositions ðr; r þ 1Þ, it is
enough to consider the action of one such transposition on an ordering. If the vertices
labeled by r and r þ 1 do not span an edge of T, then the new state sum is identical to
the old one. Suppose that an edge, e, of T connects the vertices labeled by r and r þ 1.
Let P be the set of all labels p such that the vertices labeled by r, r þ 1, and p form a face
of T. This face, denoted fp, belongs to two adjacent tetrahedra of T containing e and
determines two dual multiplicity spaces.

For a tetrahedron T of T, consider the transformation of the 6j-symbol jT jj under
the permutation ðr; r þ 1Þ. If T does not contain e, then jT jj does not change. We claim
that for T I e, the 6j-symbol jT jj is multiplied by an integer power of ~qq independent of j
and composed with the tensor product of operators acting on the multiplicity spaces corre-
sponding to fp, where p runs over the 2-element set fp A P j fp HTg. Here the operator
corresponding to p in this set is A if p > r and B if p < r. Since A and B are involutive
and self-dual, the e¤ect of this transformation after the tensor contraction cntr will be mul-
tiplication by an integer power of ~qq independent of j. This will imply the lemma.

The claim above follows from equations (50)–(52). Indeed, let r, r þ 1, p, p 0 be the
labels of the vertices of T . Suppose for concreteness that p < r and r þ 1 < p 0 (the other
cases are similar). Then the left- (resp. right-) hand side of formula (51) with a ¼ cðT ; vpvrÞ,
b ¼ cðT ; vpvrþ1Þ, c ¼ cðT ; vrvrþ1Þ computes jT jj before (resp. after) the permutation of r

and r þ 1. The operators A2 and B3 in (51) act on the multiplicity spaces corresponding to
the faces fp 0 and fp, respectively. Therefore formula (51) implies our claim. r

Lemma 32. Let ðT;LÞ, ðT 0;L 0Þ be H-triangulations of ðM;LÞ such that ðT 0;L 0Þ
is obtained from ðT;LÞ by a negative H-Pachner move or a negative H-bubble move. Then

any admissible G-coloring F on T restricts to an admissible G-coloring F 0 of T 0. For any

charge c on ðT;LÞ, we have (up to multiplication by powers of ~qq)

KðT;L;F; cÞ ¼ KðT 0;L 0;F 0; c 0Þ;ð56Þ

where c 0 is the charge on ðT 0;L 0Þ induced by c.
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Proof. The values of F 0 form a subset of the set of values of F; therefore the admis-
sibility of F implies the admissibility of F 0.

The rest of the proof follows the lines of [15], Section VII.2.3, via translating the
geometric moves into algebraic identities. First, we prove (56) for a negative H-bubble
move. Let v1, v2, v3, v4 be the vertices of T and F ¼ v1v2v3 the face of T 0 as in the descrip-
tion of the bubble move in Section 9.1 (see Figure 1). Since our state sums do not depend
on the ordering of the vertices, we assume that v4 is the last in the order of the vertices of T
and the order of the vertices of T 0 is induced by the order of the vertices of T. We can also
assume that v1v4; v3v4 A L and v1v3 A L 0. Let Tr (resp. Tl) be the right oriented (resp. left

oriented) tetrahedron of T disappearing under the move. Let a; b A
1

2
Z be the c-charges

of the edges v1v2, v2v3 of Tr respectively. The properties of a charge imply that the charges
of the edges v1v2, v2v3 of Tl are �a and �b, respectively.

Fix a state j 0 A StðF 0Þ and let S H StðFÞ be the set of all states of F extending j 0. It is
enough to show that the term Kj 0 of KðT 0;L 0;F 0; c 0Þ associated to j 0 is equal to the sumP
j AS

Kj of the terms of KðT;L;F; cÞ associated to all j A S. Set i ¼ j 0ðv1v2
		!Þ, j ¼ j 0ðv2v3

		!Þ,

and k ¼ j 0ðv1v3
		!Þ. For any distinct indices p; q A f1; 2; 3; 4g, set Ipq ¼ IFð		!vpvqÞ H I . The

admissibility of F implies that Ipq 3j for all p, q. Clearly, i A I12, j A I23, k A I13. A state
j A S is determined by the labels

l ¼ jðv3v4
		!Þ A I34; m ¼ jðv1v4

		!Þ A I14; n ¼ jðv2v4
		!Þ A I24:

We have

jTrjj ¼
i j k

l m n

� �
ða; bÞ and jTl jj ¼

i j k

l m n

� ��
ð�a;�bÞ:

It is convenient to write jTrj ijklmn for jTrjj and jTl j ijklmn for jTl jj.

Denote by �f the tensor contraction determined by a face f . We have
Kj 0 ¼ �F

�
bðkÞX

�
, where X is the term of the state sum determined by j 0 before contraction

�F and multiplication by bðkÞ. Let Fr and Fl be the faces of Tr and Tl , respectively, with
vertices v1, v2, v3. We have

Figure 1. Tl WTr colored by j A S.
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P
j AS

Kj ¼ �Fr
�Fl

�
X n

P
l A I34;m A I14;n A I24

bðlÞbðmÞ �kl
m �n

jl �m
in ðjTrj ijklmn n jTl j ijklmnÞ

�

¼ �Fr
�Fl

 
X n

P
l A I34;m A I14

bðlÞbðmÞ �kl
m

� P
n A I24

�n
jl �m

in jTrj ijklmn n jTl j ijklmn

�!

¼ �Fr
�Fl

�
X n

P
l A I34;m A I14

bðlÞbðmÞ �kl
m

�
gj; lðdkl

m n d
ij
k Þ
��

¼ �Fr
�Fl

�
X n

P
l A I34;m A I14

bðlÞbðmÞgj; l dimðH kl
m Þd ij

k

�
;

where the third equality follows from the first inversion relation and condition (ii) in
Section 9.2. The existence of the admissible coloring F and condition (iii) of Section 9.2
imply that in the latter expression gj; l ¼ 1 for all l A I34. Therefore this expression is equal
to

�Fr
�Fl

�
X n

P
l A I34;m A I14

bðlÞbðm�Þ dimðH lm�

k � Þd ij
k

�

¼ �Fr
�Fl

�
X n

P
l A I34;m 0 A I41

bðlÞbðm 0Þ dimðH lm 0

k � Þd ij
k

�

¼ �Fr
�Fl

�
X n bðk�Þd ij

k

�
¼ �Fr

�Fl

�
X n bðkÞd ij

k

�
¼ �F

�
bðkÞX

�
¼ Kj 0 ;

where the second equality is ensured by condition (v) in Section 9.2. This proves the lemma
for the H-bubble moves. Similarly, the H-Pachner move translates into the charged penta-
gon identity (53), see Figure 2. r

Lemma 33. Let v be a vertex of T and let g A G be such that Ig 3j. If F and dv;gF
are admissible G-colorings of T, then KðT;L;F; cÞ ¼ KðT;L; dv;gF; cÞ, where dv;g is the

G-gauge of T defined in (55).

Proof. A similar claim in a simpler setting (no charges and G is abelian) was estab-
lished in [6], Lemma 27. The proof there relies on Lemma 26 of the same paper. Replacing

Figure 2. Labeling for H-Pachner move.
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Lemma 26 by Lemma 32 above and making the appropriate adjustments, we easily adapt
the argument in [6] to the present setting. r

Lemma 34. If admissible G-colorings F and F 0 of T represent the same element of

MðM;GÞ, then KðT;L;F; cÞ ¼ KðT;L;F 0; cÞ for any charge c.

Proof. Since ½F� ¼ ½F 0�, there are pairs ðvi; giÞ A fvertices of Tg � G such that

F 0 ¼ dvn;gndvn�1;gn�1 � � � dv1;g1F:

Note that the gauges dv;g and dv 0;g 0
commute for all g; g 0 A G provided the vertices v, v 0 are

distinct. Using this property and the identity dv;gdv;g 0 ¼ dv;gg 0
, we can ensure that all the

vertices vi in the expansion of F 0 are pairwise distinct.

We prove the lemma by induction on n. If n ¼ 0, then F 0 ¼ F and there is nothing
to prove. For nf 1, pick any g A G such that the sets Ig, Igg�1

1
, IgFðeÞ, and Igg�1

1
F 0ðeÞ are

non-empty for all oriented edges e of T outgoing from v1. Then the colorings dv1;gF and
dv1;gg�1

1 F 0 are admissible. Clearly,

dv1;gg�1
1 F 0 ¼ dvn;gndvn�1;gn�1 � � � dv2;g2dv1;gF:

Lemma 33 and the induction assumption imply that

KðT;L;F; cÞ ¼ KðT;L; dv1;gF; cÞ

¼ KðT;L; dvn;gndvn�1;gn�1 � � � dv2;g2dv1;gF; cÞ

¼ KðT;L; dv1;gg�1
1 F 0; cÞ ¼ KðT;L;F 0; cÞ: r

Lemma 34 implies that KðT;L;F; cÞ depends only on the element of MðM;GÞ
represented by F. We represent any h A MðM;GÞ by an admissible G-coloring F of T
and set KðT;L; h; cÞ ¼ KðT;L;F; cÞ. The scalar KðT;L; h; cÞ is invariant under negative
H-Pachner/H-bubble moves. More precisely, Lemma 32 implies that under the assump-
tions of this lemma, for any h A MðM;GÞ, we have (up to multiplication by powers of ~qq)

KðT;L; h; cÞ ¼ KðT 0;L 0; h; c 0Þ:ð57Þ

Lemma 35. For any h A MðM;GÞ, the scalar KðT;L; h; cÞ does not depend on the

choice of the charge c in its cohomology class.

Proof. The lemma is proved in two steps: first, any two charges are connected by a
finite sequence of local modifications and second, the state sum is shown to be preserved
under these modifications. Recall from Section 9.1 the set ÊEðTÞ of pairs (a tetrahedron T

of T, an edge of T). Let � be the involution on ÊEðTÞ carrying a pair ðT ; eÞ to the pair
�ðT ; eÞ ¼ ðT ; �eÞ where �e is the edge of T opposite to e. Fix from now on an order on
the set of vertices of T.

For each edge e of T we define a map dðeÞ : ÊEðTÞ ! f�1=2; 0; 1=2g as follows. Let
v be the vertex of e which is largest in the ordering of vertices. Let T0;T1;T2; . . . ;Tn ¼ T0
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be the cyclically ordered tetrahedra of T adjacent to e. We choose the cyclic order so that
the induced orientation in the plane transversal to e followed by the orientation of e to-
wards v determines the given orientation of M. For i ¼ 1; . . . ; n, denote by ei the only
edge of the 2-face Ti�1 XTi which is distinct from e and incident to v. For any a A ÊEðTÞ,
set

dðeÞðaÞ ¼
1=2 if a ¼ ðTi�1; eiÞ or a ¼ �ðTi�1; eiÞ for some i A f1; . . . ; ng;
�1=2 if a ¼ ðTi; eiÞ or a ¼ �ðTi; eiÞ for some i A f1; . . . ; ng;
0 otherwise:

8<
:

It is easy to see that for any family of integers flege numerated by the edges e of T the

sum c þ
P

e

le dðeÞ is a charge of ðT;LÞ and



c þ

P
e

le dðeÞ
�
¼ ½c�. The following is due to

Baseilhac [1], see also Neumann [13] and [2], Proposition 4.8:

Fact. For any pair of charges c, c 0 of ðT;LÞ with ½c� ¼ ½c 0�, there is a family of inte-

gers flege numerated by the edges e of T such that c 0 ¼ c þ
P

e

le dðeÞ.

Therefore to prove the lemma, it is enough to show that for any edge e of T,

KðT;L; h; cÞ ¼ K
�
T;L; h; c þ dðeÞ

�
:ð58Þ

We show how to reduce the case e A L to the case e B L. Suppose that e A L. Pick a face
F of T containing e. We apply the H-bubble move to F producing a new H-triangulation
ðTb;LbÞ such that e viewed as an edge of Tb does not belong to Lb. Pick a charge cb on Tb

inducing the charge c on T. A direct calculation shows that the charge cb þ dðeÞ on Tb

induces the charge c þ dðeÞ on T. By (57), we have

KðT;L; h; cÞ ¼ KðTb;Lb; h; cbÞ and K
�
T;L; h; c þ dðeÞ

�
¼ K

�
Tb;Lb; h; cb þ dðeÞ

�
:

Therefore, it is enough to prove (58) in the case e B L.

Suppose from now on that e B L. We first reduce the proof of (58) to the case where e

is contained in at least three tetrahedra of T and T has a vertex such that there is precisely
one face of T containing e and this vertex. Let V be the set of vertices of T. Pick a face of
T not containing e and having at least one side in L. We apply to this face the H-bubble
move producing a new H-triangulation ðT 0;L 0Þ whose set of vertices is the union of V

with a 1-point set fv0g. Pick a charge c 0 on T 0 inducing the charge c on T. We can find
a sequence T0;T1; . . . ;Tm of distinct tetrahedra of T 0 with mf 1 such that: v0 A T0 and
T0 XT1 is the face of T0 opposite to v0; Ti XTiþ1 contains a common face of Ti and Tiþ1

for all i; Ti does not contain e for all i < n and eHTm. Generally speaking, the intersection
Ti XTiþ1 may contain more than one face; we pick any face in this intersection and denote
it Ti X0 Tiþ1. We apply to T 0 a sequence of m positive H-Pachner moves. The first move
replaces the pair T0, T1 by three tetrahedra and adds an edge connecting v0 to the vertex of
T1 opposite to T0 X0 T1 ¼ T0 XT1. One of these new three tetrahedra, t, contains the face
T1 X0 T2. The second move replaces the pair t;T2 by three tetrahedra and adds an edge
connecting v0 to the vertex of T2 opposite to T1 X0 T2. Continuing in this way m times,
we transform ðT 0;L 0Þ into a new H-triangulation ðT 00;L 00Þ having a (unique) face that
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contains both v0 and e. The triangulation T 00 and all the intermediate triangulations are
quasi-regular because the newly added edges always connect v0 to another vertex (belong-
ing to V ). Our transformations preserve the set V W fv0g of the vertices of the triangulation
and lift to the charges (though non-uniquely). If the charge c 0 of T 0 is transformed into a
charge ck at the k-th step, then ck þ dðeÞ is a transformation of c 0 þ dðeÞ (this is obvious for
k < m and is verified by a direct computation for k ¼ m). Set c 00 ¼ cm and observe that as
above,

KðT;L; h; cÞ ¼ KðT 0;L 0; h; c 0Þ ¼ KðT 00;L 00; h; c 00Þ

and

K
�
T;L; h; c þ dðeÞ

�
¼ K

�
T 0;L 0; h; c 0 þ dðeÞ

�
¼ K

�
T 00;L 00; h; c 00 þ dðeÞ

�
;

where on the right-hand side we view e as an edge of T 00. Note that e is contained in at
least three tetrahedra of T 00 because at the ðm � 1Þ-st step the edge e is contained in Tm

and in at least one other tetrahedron of the triangulation, and the m-th move above creates
three tetrahedra of which two contain e. Moreover, there is precisely one face of T 00 con-
taining e and the vertex v0.

Let A1, A2 be the vertices of e and t1; t2; . . . ; tn with nf 3 be the cyclically ordered
tetrahedra of T 00 adjacent to e. Let B1 ¼ v0, B2; . . . ;Bn be the vertices of T 00 (possibly
with repetitions) such that A1, A2, Bi, Biþ1 are the vertices of ti for all i (here Bnþ1 ¼ B1).
Clearly, Bi 3B1 for all i3 1. If n > 3, then we apply to T 00 a positive H-Pachner move
replacing t1, t2 by three tetrahedra and adding an edge connecting B1 ¼ v0 to B3. This
produces a quasi-regular triangulation ðT 000;L 00Þ of ðM;LÞ with the same properties as
T 00 but having n � 1 tetrahedra adjacent to e. As above,

KðT 00;L 00; h; c 00Þ ¼ KðT 000;L 000; h; c 000Þ

and

K
�
T 00;L 00; h; c 00 þ dðeÞ

�
¼ K

�
T 000;L 000; h; c 000 þ dðeÞ

�
for a certain charge c 000 on T 000. Proceeding by induction, we reduce ourselves to the case
n ¼ 3. In this case, the edge e may be eliminated by a negative H-Pachner move so that the
equality (58) follows from (57). r

Proof of Theorem 29. Theorem 29 follows from the results of this section and
Proposition 26. r

11. Cayley–Hamilton Hopf algebras

In this section, we recall some of the results of [4] and use them to construct C-systems
in categories. We assume that the ground field k is algebraically closed and is of charac-
teristic 0.
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11.1. Cayley–Hamilton algebras.

Definition 36. An algebra with trace is an (associative) algebra R over k with a
k-linear map t : R ! R such that for all a; b A R,

tðaÞb ¼ btðaÞ; tðabÞ ¼ tðbaÞ; tðaÞtðbÞ ¼ t
�
tðaÞb

�
:

The image tðRÞ of t is a subalgebra of R called the trace subalgebra. Note that tðRÞ
is contained in the center Z of R. In the polynomial algebra k½x1; . . . ; xn� we define the
elementary symmetric functions eiðx1; . . . ; xnÞ,

Qn
i¼1

ðx � xiÞ ¼ xn þ
Pn
i¼1

eiðx1; . . . ; xnÞxn�i;

and the Newton functions

ckðx1; . . . ; xnÞ ¼
Pn
i¼1

xk
i ; 1e k e n;

which are well known to be related for certain uniquely defined polynomials Piðy1; . . . ; yiÞ:

eiðx1; . . . ; xnÞ ¼ Pi

�
c1ðx1; . . . ; xnÞ; . . . ;ciðx1; . . . ; xnÞ

�
:

Definition 37. An algebra with trace ðR; tÞ is an n-th Cayley–Hamilton algebra, if
tð1Þ ¼ n and

an þ
Pn
i¼1

Pi

�
tðaÞ; tða2Þ; . . . ; tðaiÞ

�
an�i ¼ 0

for any a A R.

A prototypical example of an n-th Cayley–Hamilton algebra is the matrix algebra
MnðkÞ of n � n matrices over k with the usual trace (with values in k ¼ k IdHMnðkÞ).

Let ðR; tÞ be a finitely generated n-th Cayley–Hamilton algebra with trace subalgebra
A ¼ tðRÞ. In the rest of this section we assume that:

(i) R is prime (that is the product of any two non-zero ideals is non-zero),

(ii) R is a finite A-module,

(iii) the center Z of R is integrally closed,

(iv) A is a finitely generated algebra over k.

The reduced trace of R is defined by the formula tR=A ¼ m

n
t, where mf 1 is the

minimal divisor of n such that R is an m-th Cayley–Hamilton algebra with trace
m

n
t. Then

m ¼ ½R : A� ¼ dimA R
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and there exists a reduced trace tR=Z : R ! Z such that tR=A ¼ tZ=A � tR=Z. Note that
½R : A� ¼ ½R : Z�½Z : A�.

By an n-dimensional representation of ðR; tÞ we mean an algebra homomorphism
f : R ! MnðkÞ which is compatible with traces in the sense that tðaÞ ¼ Tr

�
fðaÞ

�
for all

a A R, where Tr is the standard trace on MnðkÞ. Let VðAÞ be the a‰ne algebraic variety
associated to A, which can be identified with the maximal spectrum of A or with the set
of homomorphisms A ! k. By [4], Theorem 3.1, the (closed) points of VðAÞ parametrize
semi-simple representations of ðR; tR=AÞ of dimension m ¼ ½R : A�. We can similarly use
the points of VðAÞ to parametrize semi-simple representations of ðZ; tZ=AÞ of dimension
p ¼ ½Z : A�. Since R is a finite A-module, Z also is a finite A-module. Then Z is a finitely
generated algebra over k and its associated a‰ne variety VðZÞ parametrizes semi-simple
representations of ðR; tR=ZÞ of dimension ½R : Z�. Observe finally that the inclusion AHZ

defines a morphism of algebraic varieties p : VðZÞ ! VðAÞ of degree p.

Given a point x A VðAÞ, denote by Nx the corresponding m-dimensional semi-simple
representation of R. Given a point P A VðZÞ, denote by MP the corresponding ½R : Z�-
dimensional semi-simple representation of R. For x A VðAÞ, the fiber p�1ðxÞ (with multi-
plicities) is a cycle

P
hiPi of degree

P
hi ¼ p, where Pi A VðZÞ and hi f 1. One has the

following equality of R-modules:

Nx ¼
L

i

hiMPi
:

The Zariski open subset of VðAÞ consisting of the points x such that p�1ðxÞ consists
of p distinct points is called the unramified locus of R. For x in the unramified locus, any
Pi A p�1ðxÞ corresponds to an irreducible representation MPi

.

11.2. Cayley–Hamilton Hopf algebras.

Definition 38. An n-th Cayley–Hamilton Hopf algebra is a Hopf algebra which is
also an n-th Cayley–Hamilton algebra such that the trace subalgebra is a Hopf subalgebra.

Assume now that R is a Cayley–Hamilton Hopf algebra satisfying the assumptions
(i)–(iv) of the last subsection. The co-multiplication on A defines an associative binary
operation on the variety G ¼ VðAÞ while the antipode defines the inverse operation, so G

becomes an algebraic group. One has the following decomposition formula for x; y A G

([4], Proposition 5.15):

Nx nNy ¼ mNxy; where m ¼ ½R : A�:

A pair x; y A G is generic if x, y and xy lie in the unramified locus. Then for each point
P A VðZÞ lying in the fiber of x, y or xy the corresponding representation MP is irreducible.
For P A p�1ðxÞ and Q A p�1ðyÞ, one has the following Clebsch–Gordan decomposition
([4], Theorem 5.16):

MP nMQ F
L

O A p�1ðxyÞ
M

lh
P;Q

O

O and
P
O

h
P;Q
O ¼ ½R : Z�ð59Þ
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for some non-negative integers h
P;Q
O . Also

P
P;Q

h
P;Q
O ¼ m for all O A p�1ðxyÞ. Note that

generic pairs ðx; yÞ form a Zariski open subvariety in G � G.

For x A G we define a set Ix as follows: if x is in the unramified locus, then
Ix ¼ p�1ðxÞ, otherwise Ix ¼ j. Set I ¼

S
x AG

Ix and consider the family fMPgP A I of irreduc-
ible representations discussed above.

Theorem 39. Let C be the monoidal Ab-category of R-modules of finite dimension

over k. Then C has a C-system with distinguished simple objects fMPgP A I .

Proof. Any P A I belongs to Ix for a unique point x of the unramified locus. Using
the antipode S : R ! R, we associate to the irreducible representation MP the dual repre-
sentation M �

P together with the evaluation morphism of R-modules M �
P nMP ! k and the

coevaluation morphism k ! MP nM �
P determined by 1 7!

P
vi n v�

i where fvig is a basis
of MP and fv�

i g is the dual basis of M �
P. The representation M �

P is isomorphic to MP� where
P� ¼ P � S A p�1ðx�1Þ and x�1 ¼ x � S. Thus, we obtain an involution I ! I , P 7! P� and
R-module morphisms dP� : MP� nMP ! k, bP : k ! MP nMP� satisfying equation (1).
Equation (2) follows from (59). Thus, fMPgP A I is a C-system. r

Theorem 41. Let b : I ! k be the constant function taking the value 1=m. The triple

ðG; I ; bÞ satisfies conditions (i)–(v) of Subsection 9.2 (where instead of ĈC-systems we should

speak of C-systems).

Proof. Condition (i) follows from the fact that if x is in the unramified locus then
so is x�1 ¼ x � S. Conditions (ii) and (iii) follow from (59). Moreover, (59) implies that if
x1, x2, x1x2 are in the unramified locus and P A Ix1x2

, then

P
P1 A Ix1

;P2 A Ix2

bðP1ÞbðP2Þ dimðH P1P2

P Þ ¼ 1

m2

P
P1 A Ix1

;P2 A Ix2

dimðH P1P2

P Þ ¼ m

m2
¼ bðPÞ:

This implies condition (v). Condition (iv) holds since the unramified locus is a Zariski open
subset of G ¼ VðAÞ. r

Remark 41. A Cayley–Hamilton Hopf algebra R is sovereign if R contains a group-
like element f such that S2ðxÞ ¼ f�1xf for all x A R. If R is sovereign then the results of [3]
imply that the category C of Theorem 39 is sovereign (also known as pivotal). In this case,
the right duality comes from the sovereign structure on C. Then the general theory of
sovereign categories implies that the operator C ¼ ðABÞ3 A EndðHÞ is the identity.

11.3. Examples from quantum groups at roots of unity. Let g be a simple Lie algebra
of rank n over k ¼ C with the root system D. Fix simple roots a1; . . . ; an A Dþ and denote
by ðaijÞn

i; j¼1 the corresponding Cartan matrix. Denote by di the length of the i-th simple
root.

For an odd positive integer N denote by $ a primitive complex root of 1 of order N

(in the case of type G2 we require that N B 3Z).
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Consider the quantized universal enveloping algebra U$ ¼ U$ðgÞ. It is an associative
unital algebra over C generated by Km, where m runs over the weight lattice of g and Ei, Fi,
i ¼ 1; . . . ; n with the defining relations

KmKn ¼ Kmþn; K0 ¼ 1;

KmEi ¼ $aiðmÞEiKm; KmFi ¼ $�aiðmÞFiKm;

EiFj � FjEi ¼ dij

Kai
� K�1

ai

$i �$�1
i

;

P1�aij

k¼0

ð�1Þk 1 � aij

k


 �
$i

E
1�aij�k
i EjE

k
i ¼ 0; i 3 j;

P1�aij

k¼0

ð�1Þk 1 � aij

k


 �
$i

F
1�aij�k
i FjF

k
i ¼ 0; i3 j;

where $i ¼ $di and

m

k


 �
$

¼ ½m�$!
½m � k�$!½k�$!

; ½m�$! ¼ ½m�$½m � 1�$ � � � ½2�$½1�$; ½m�$ ¼ $m �$�m

$�$�1
:

The formulas

DðKmÞ ¼ KmnKm;

DðEiÞ ¼ Ei n 1 þ Kai
nEi;

DðFiÞ ¼ 1nFi þ Fi nK�ai
;

define a homomorphism of algebras D : U$ ! U$nU$. There are unique counit and
antipode turning U$ into a Hopf algebra with comultiplication D. We denote by UG

$ the
subalgebras of U$ generated by fEigi and fFigi respectively. The subalgebra generated by
fKmgm will be denoted by U0

$. We also consider Hopf subalgebras BG
$ ¼ U0

$nUG
$. It is

known that the subalgebras ZG
0 HBG

$ generated by E N
a , K N

ai
(respectively F N

a , K N
ai

) and
the subalgebra Z0 HU$ generated by E N

a , F N
a , K N

ai
are central Hopf subalgebras. More-

over, BG
$ and U$ are Cayley–Hamilton Hopf algebras with trace subalgebras ZG

0 and
Z0 respectively, see [4]. In all these three situations, Theorem 39 produces a monoidal
Ab-category C with a C-system.

Conjecture 42. This C-system can be extended to a ĈC-system in C such that there

exists a scalar ~qq A C for which the operator q A EndðHÞ of Lemma 19 is T-equal to
~qq IdĤH l ~qq�1 Id �HH :

If this conjecture is true, then Theorem 29 implies that the state sum arising from C
with this ĈC-system and the algebraic data of Theorem 40 is a topological invariant of the
triple (a closed connected oriented 3-manifold M, a non-empty link in M, a conjugacy class
of homomorphisms p1ðMÞ ! G). In the next section, we verify Conjecture 42 for the Borel
subalgebra of U$ðsl2Þ for any primitive complex root of unity $ of odd order N. The
corresponding topological invariant generalizes the one constructed in [7] which in the
case of links in the 3-sphere coincides with the N-colored Jones polynomial evaluated at $.
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12. The Borel subalgebra of U$(sl2)

12.1. The C-system. As above, fix a positive integer N and a primitive N-th root
of unity $. In what follows, ZN ¼ Z=NZ. Consider the Hopf algebra B$ defined by the
following presentation:

ChaG1; b j ab ¼ $ba;DðaÞ ¼ an a;DðbÞ ¼ an b þ bn 1i:

Following [7], [9], we consider the cyclic representations of B$, i.e. the representations car-
rying b to an invertible operator.

Let G ¼ R� R>0 be the upper half plane with the group structure given by

ðx; yÞðu; vÞ ¼ ðx þ yu; yvÞ:

As a topological space, the set I ¼ Gnðf0g � R>0Þ has two connected components

IG¼ fðx; yÞ A G jGx > 0g:

We fix � A C such that �N ¼ �1. In particular, in the case of odd N, we assume that � ¼ �1.
We define the N-th root function

ffiffiffi
xN

p
on real numbers x by the condition that it is positive

real for positive real x and
ffiffiffi
xN

p
¼ �

ffiffiffiffiffiffiffi
�xN

p
for negative x. Define two maps

u : G ! R>0; v : G ! R>0 t �R>0;

uðgÞ ¼ ug ¼ ffiffiffi
yN

p
; vðgÞ ¼ vg ¼

ffiffiffi
xN

p
; g ¼ ðx; yÞ A G:

We have the following properties:

ugh ¼ uguh; ug�1 ¼ 1

ug

;

and

vg�1 ¼ �g

vg

ug

; �g ¼ �G1; g A IG:

To any g A I , we associate a B$-module Vg which is an N-dimensional vector space with a
distinguished basis fwigi AZN

, and the (left) B$-module structure is given by the formulae

awi ¼ ug$
iwi; bwi ¼ vgwiþ1; i A ZN :

Note that the distinguished basis permits to identify Vg with CN .

In what follows, we need the following function:

Fg;m ¼ ð��gÞm$mðm�1Þ=2; Fg;m ¼ 1

Fg;m
; m A ZN :
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Proposition 43. In the category of B$-modules, the set of objects fVggg A I with the

involution g� ¼ g�1 is a C-system, where the duality morphisms

dg : Vg nVg� ! C; bg : C ! Vg nVg�

are given by the formulae

dgðwi nwjÞ ¼
Fg; i if i þ j ¼ 0;

0 otherwise;

�
bgð1Þ ¼

P
i AZN

Fg�;�iwi nw�i;

and the multiplicity spaces H
f ;g

h are such that dimðH f ;g
h Þ is N if h ¼ fg and zero otherwise.

Proof. It is straightforward to verify that dg and bg are morphisms of the category of
B$-modules. The dimensions of the multiplicity spaces were calculated in [7], [9]. r

12.2. Calculation of the operators A, B, L, and R. Let us call a pair of elements
g; h A I admissible if gh A I . For an operator E satisfying the equation E N ¼ �1 and an
admissible pair ðg; hÞ, we associate an operator valued function Cg;hðEÞ as a solution of
the functional equation

Cg;hð$EÞ
Cg;hðEÞ ¼ vg � ugvhE

vgh

:

More precisely, we choose numerical coe‰cients cg;h;m, m A ZN , such that

Cg;hðEÞ ¼
P

m AZN

cg;h;mð�EÞm:

The above functional equation translates to the following di¤erence equation:

cg;h;m

cg;h;m�1

¼ ��1ugvh

vg � vgh$m
:

We fix a unique solution of the latter equation normalized so that cg;h;0 ¼ 1. Using the
notation of [10], we have

cg;h;m ¼ wðvgh; ugvh=�; vg jmÞ; Cg;hðEÞ ¼ f ðvgh=vg; 0 jEugvh=vgÞ;

where

wðx; y; z jmÞ ¼ ðy=zÞm

ð$x=z;$Þm

; xN þ yN ¼ zN ;

f ðx; y j zÞ ¼
P

m AZN

ð$y;$Þm

ð$x;$Þm

zm; 1 � xN ¼ ð1 � yNÞzN ;

and

ðx;$Þm ¼
Qm�1

j¼0

ð1 � x$ jÞ:
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For two operators U and V satisfying the conditions U N ¼ V N ¼ 1, UV ¼ VU , we
also define

LðU ;VÞ ¼ 1

N

P
i; j AZN

$ ijU iV j:

In what follows, the standard basis feig of CN will be indexed by elements of ZN . Define
operators X ;Y A AutðCNÞ,

Xei ¼ $ iei; Yei ¼ eiþ1; i A ZN :

For g A I , let pg : B$ ! EndðVgÞ be the algebra homomorphism corresponding to the
B$-module structure of Vg.

Lemma 44. For any admissible pair ðg; hÞ, the operator valued function

Sg;h ¼ Cg;hð�Y �1X nYÞLðY n 1; 1nXÞ

takes its values in the set of invertible matrices and satisfies the equation

ðpg n phÞ
�
DðxÞ

�
¼ Sg;h

�
pghðxÞn idCN

�
S�1

g;h; Ex A B$:

Proof. A straightforward computation. r

The operator Sg;h, considered as a linear map Sg;h : Vgh nCN ! Vg nVh, permits to

identify the multiplicity spaces H
g;h
gh and H

gh
g;h with CN and ðCNÞ�, respectively, through the

formulae

fv ¼ Sg;hðvn f Þ; f A H
g;h
gh ; v A Vgh;

f ðvnwÞ ¼ ðidVgh
n f Þ

�
S�1

g;hðvnwÞ
�
; v A Vg; w A Vh; f A H

gh
g;h:

In what follows, we shall use the notation ei and e�
i for the dual bases in H

g;h
gh and H

gh
g;h,

respectively, which correspond to the standard dual bases in CN and ðCNÞ�.

Lemma 45. The action of the operators A, A�, B, and B� is given by

Aei ¼ Cg�;ghð�g$Þ
P

j AZN

Fg�; i�je
�
j ; A�ei ¼ Cg;hð$=�gÞ

P
j AZN

Fg; j�ie
�
j ;

ei A H
g;h
gh ; e�

j A H h
g�;gh;

Ae�
i ¼ 1

NCg;hð$=�gÞ
P

j AZN

Fg; j�iej; A�e�
i ¼ 1

NCg�;ghð�g$Þ
P

j AZN

Fg�; i�jej;

e�
i A H

gh
g;h; ej A H

g�;gh
h ;

Bei ¼
1

nðvgh=vgÞ
Fh; ie

�
�i; B�ei ¼

1

nðvg=vghÞ
Fh�;�ie

�
�i; ei A H

g;h
gh ; e�

�i A H
g
gh;h� ;

Be�
i ¼ nðvg=vghÞFh�;�ie�i; B�e�

i ¼ nðvgh=vgÞFh; ie�i; e�
i A H

gh
g;h; e�i A H gh;h�

g ;
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where

nðxÞ ¼ 1 � xN

Nð1 � xÞ :

Proof. From Lemma 44 it follows that for any x A Vh, y A H
g�;gh
h , z A H

g;h
gh we have

ðdg� n idVh
ÞðidVg� nSg;hÞðSg�;gh n id

H
g; h

gh

Þðxn yn zÞ ¼ xhy;Azi:

Starting from this identity, and using the results of [10], Appendices A and C, a straightfor-
ward calculation yields the formulas above for the action of A.

Similarly, for any x A Vg, y A H gh;h�
g , z A H

g;h
gh the identity

ðidVg
n dhÞðSg;hPn idVh� ÞðidH

g; h

gh

nSgh;h� Þðzn xn yÞ ¼ xhy;Bzi

gives rise to the action of the operator B. r

Lemma 46. The action of the operators L ¼ A�A and R ¼ B�B is given by

Lei ¼
ugvh

vgh

� �N�1

ei�1; ei A H
g;h
gh ;

Le�
i ¼ ugvh

vgh

� �N�1

e�
iþ1; e�

i A H
gh
g;h;

Rei ¼ $�i vg

vgh

� �N�1

ei; ei A H
g;h
gh ;

Re�
i ¼ $�i vg

vgh

� �N�1

e�
i ; e�

i A H
gh
g;h:

Proof. The case of R is straightforward. In the case of L we use the equality

zN�1f ðx; 0 j z$Þ ¼ xN�1f ðz; 0 j x$Þ

for the function f ðx; y j zÞ of [10]. r

12.3. The ĈC-system for odd N . Assume from now on that N is odd.

Proposition 47. The C-system of Proposition 43 extends to a ĈC-system where

C
1
2 ¼ IdH and R

1
2 is given by

R
1
2ei ¼ $� Nþ1

2ð Þi vg

vgh

� �N�1
2

ei; ei A H
g;h
gh ;

R
1
2e�

i ¼ $� Nþ1
2ð Þi vg

vgh

� �N�1
2

e�
i ; e�

i A H
gh
g;h:
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Proof. Since N is odd, we can set � ¼ �1, and for any g A I , the coordinates ug

and vg are real numbers. In particular, as the operator r ¼ RN has a positive spectrum, we
define

ffiffi
r

p
as the unique positive operator such that ð

ffiffi
r

p
Þ2 ¼ r. Define

R
1
2 ¼ ð

ffiffi
r

p
Þ�1

R
Nþ1

2 :

Let us calculate R
1
2ei for ei A H

gh
g;h. Write R ¼ R0R1 as the product of commuting oper-

ators R0 and R1 where R0 ¼ ðvg=vghÞN�1 and R1ej ¼ $�jej for ej A H
gh
g;h. Then we have

RN
1 ¼ IdH and r ¼ RN ¼ RN

0 RN
1 ¼ RN

0 , so

ð
ffiffi
r

p
Þ�1

R
Nþ1

2 ei ¼ ðRN
0 Þ�1=2

R
ðNþ1Þ=2
0 R

ðNþ1Þ=2
1 ei ¼ ðvg=vghÞ

N�1
2 $� Nþ1

2ð Þiei:

The computation of R
1
2e�

i is similar.

Next consider the operator

C ¼ ðABÞ3 ¼ AðBABÞAB ¼ AA�B�A�AB ¼ L�1B�LB:

From Lemmas 45 and 46 it is easy to see that L�1B�LB ¼ IdH . Thus, we can define
C

1
2 ¼ IdH . Then it is easy to see that C

1
2, R

1
2 satisfy equations (34) and (37) since C and R

satisfy analogous formulas without square roots. r

Lemma 48. The operator L
1
2 ¼ BAR�1

2AB is given by

L
1
2ei ¼

ugvh

vgh

� �N�1
2

ei�ðNþ1Þ=2; ei A H
g;h
gh ;

L
1
2e�

i ¼ ugvh

vgh

� �N�1
2

e�
iþðNþ1Þ=2; e�

i A H
gh
g;h:

Proof. Write L ¼ L0L1 as the product of commuting operators L0 and L1 where

L0jH g; h

gh
lH

gh

g; h

¼ ugvh

vgh

� �N�1

and L1 is a translation operator such that LN
1 ¼ IdH . We will show that L

1
2 ¼ L

1=2
0 L

ðNþ1Þ=2
1 .

Let r 0 ¼ LN ¼ BAr�1AB where r ¼ RN . Then

L
1
2 ¼ BA

ffiffi
r

p
R�Nþ1

2 AB ¼ ð
ffiffiffiffi
r 0

p
Þ�1

BAR�Nþ1
2 AB ¼ ð

ffiffiffiffi
r 0

p
Þ�1

L
Nþ1

2 :

Since r 0 ¼ LN ¼ LN
0 we have

L
1
2 ¼

ffiffiffiffi
r 0

p �1
L

Nþ1
2 ¼ ðLN

0 Þ
�1

2L
Nþ1

2

0 L
Nþ1

2

1 ¼ L
1
2

0L
Nþ1

2

1

and the formulas of the lemma follow. r
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Lemma 49. The operator q ¼ R
1
2BL

1
2BL�1

2C�1
2 has the form

q ¼ ð�1ÞðN�1Þ=2ð$�a IdĤH l$a Id �HHÞ A EndðHÞ;

where a ¼ N 2 � 1

8
.

Proof. A direct computation using Proposition 47 and Lemma 48 shows that

qei ¼ ð�1ÞðN�1Þ=2$

�
N 2�1

8

�
ei

for ei A H
g;h
gh . Similarly, qe�

i ¼ ð�1ÞðN�1Þ=2$�
�

N 2�1
8

�
e�

i for e�
i A H

gh
g;h. r

For g A G set Ig ¼ fggH I , if g A I and Ig ¼ j, otherwise. Let b : I ! C be the

constant function taking the value
1

N
. Then the triple ðG; I ; bÞ satisfies conditions (i)–(v)

of Subsection 9.2. We summarize the results of this section in the following theorem.

Theorem 50. For any odd N, the category of B$-modules has a ĈC-system such that

the algebraic data ðG; I ; bÞ satisfies conditions (i)–(v) of Subsection 9.2 and

q ¼ ð�1ÞðN�1Þ=2ð$�a IdĤH l$a Id �HHÞ;

where a ¼ N 2 � 1

8
.

Thus, the category of B$-modules gives rise to a topological invariant as in Theo-
rem 29. As mentioned above, this invariant generalizes that of [7].

Appendix

The relations in the fundamental lemma (Lemma 6) express the action of the
standard generators of the symmetric group S4 on the tensors T , T or equivalently on the
tensors S, S defined at the end of Section 2.2. We give a geometric interpretation of this
action in the case where the operators A and B are symmetric, i.e., A ¼ A�, B ¼ B�. This
interpretation involves a combinatorial 3-dimensional TQFT which we now define.

Consider a compact oriented surface (possibly with boundary) endowed with oriented
cellular structure S such that all 2-cells are either bigons or triangles. For example, for any
e; m A f�1;þ1g, the unit disk D in C has such a structure consisting of a single bigon with
two 0-cells fG1g and two 1-cells e1

G : ½0; 1� ! D given by e1
þðtÞ ¼ eeeipt and e1

�ðtÞ ¼ me�mipt

where t A ½0; 1�.

A bigon of S is inessential if its edges are co-oriented. In the example above, the cel-
lular structures with e ¼ m are inessential. A triangular 2-cell of S is positive (resp. negative)
if the orientation of precisely two (resp. one) of its edges is compatible with that of the cell
itself. We shall consider only cellular structures S without inessential bigons and such that
all the triangular cells are either positive or negative. We associate the 1-dimensional vector
space C to all bigons, the vector space ĤH to all positive triangles and �HH to all negative
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triangles. Finally, we associate with S the tensor product over C of these vector spaces
numerated by the 2-cells of S. It is isomorphic to ĤHnmþ n �HHnm� , where mþ (resp. m�) is
the number of positive (resp. negative) triangles of S.

Next, we define elementary 3-cobordisms. An oriented tetrahedron in R3 with ordered
vertices has a natural cell structure, where the orientation on the edges is induced from the
order. Such a tetrahedron is positive if the oriented edges (12,13,14) form a positive basis
in R3 and negative otherwise. We associate with a positive (resp. negative) tetrahedron the
tensor S A ĤH n �HH n ĤH n �HH (resp. S A �HH n ĤH n �HH n ĤH). Here the face opposite to the
i-vertex corresponds to the i-th tensor factor for i A f1; 2; 3; 4g.

Next, we consider cones over essential bigons with induced cellular structure. The
orientation condition on the triangular cells leaves four isotopy classes of such cones. We
describe them for the cone over the unit disk DHC with the cone point ð0; 1Þ A C� R. The
four possible cellular structures have three 0-cells fðG1; 0Þ; ð0; 1Þg and four 1-cells

e1
0GðtÞ ¼Geipt; e1

1GðtÞ ¼
�
Gð1 � tÞ; t

��
or 

e1
0GðtÞ ¼He�ipt; e1

1GðtÞ ¼
�
Gð1 � tÞ; t

��
or

fe1
0GðtÞ ¼Geipt; e1

1GðtÞ ¼ ðGt; 1 � tÞg

or else

fe1
0GðtÞ ¼He�ipt; e1

1GðtÞ ¼ ðGt; 1 � tÞg:

Let us call them cones of type aþ, a�, bþ, and b�, respectively. We associate to these cones
respectively the operators Aj �HH , AjĤH , Bj �HH , and BjĤH viewed as vectors in ĤHn2 or �HHn2. Note
that our cones are invariant under rotation by the angle p around the vertical coordinate
axis, and this invariance leads here to the condition A ¼ A�, B ¼ B�.

Now we give a TQFT interpretation of the formulae (16a)–(16c). Let us take, for ex-
ample the right-hand side of (16a). The form S corresponds to a negative tetrahedron. The
edge joining the first and the second vertices is incident to two faces opposite to the third
and the forth vertices. We can glue two cones, one of type aþ and another one of type a�,
to these two faces in the way that one of the edges of the base bigons are glued to the initial
edge 12 and of course by respecting all orientations. Namely, we glue the cone of type aþ to
the face opposite to the third vertex of the tetrahedron so that the tip of the cone is glued to
the forth vertex, and we glue the cone of type a� to the face opposite to the forth vertex
of the tetrahedron so that the tip of the cone is glued to the third vertex. Finally, we can
glue naturally the two bigons with each other by pushing continuously the initial edge
inside the ball and eventually closing the gap like a book. The result of all these operations
is that we obtain a positive tetrahedron, where the only di¤erence with respect to the initial
tetrahedron is that the orientation of the initial edge 12 has changed and this corresponds
to changing the order of its vertices. Notice that as these vertices are neighbors, their
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exchange does not a¤ect the orientation of all other edges. On the other hand, as the order
of the tensor components in our TQFT rules for tetrahedra is matched with the order of
vertices, we have to exchange also the first two tensor components. This explains the left-
hand side of (16a). The other two relations are interpreted in a similar manner.
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