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Tetrahedral forms in monoidal categories
and 3-manifold invariants
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and Viadimir Turaev at Bloomington

Abstract. We introduce systems of objects and operators in linear monoidal catego-
ries called WP-systems. A W-system satisfying several additional assumptions gives rise to a
topological invariant of triples (a closed oriented 3-manifold M, a principal bundle over M,
a link in M). This construction generalizes the quantum dilogarithmic invariant of links
appearing in the original formulation of the volume conjecture. We conjecture that all
quantum groups at odd roots of unity give rise to W-systems and we verify this conjecture
in the case of the Borel subalgebra of quantum sl,.
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Introduction

One of the fundamental achievements of quantum topology was a discovery of deep
connections between monoidal categories and 3-dimensional manifolds. It was first ob-
served by O. Viro and V. Turaev that the category of representations of the quantum group
U,(sly) gives rise to a topological invariant of 3-manifolds. The invariant is obtained as a
state sum on a triangulation of a 3-manifold; the key ingredients of the state sum are the
6j-symbols. This construction was generalized to other categories by several authors includ-
ing J. Barrett, B. Westbury, A. Ocneanu, S. Gelfand, D. Kazhdan and others. Their results
may be summarized by saying that every spherical fusion category gives rise to a state sum
3-manifold invariant. Similar methods apply to links in 3-manifolds and to 3-manifolds en-
dowed with principal fiber bundles. A related but somewhat different line of development
was initiated by Kashaev [7]. He defined a state sum invariant of links in 3-manifolds using
“charged” versions of the 6j-symbols associated with certain representations of the Borel
subalgebra of U,(sl;). The work of Kashaev was further extended by S. Baseilhac and
R. Benedetti, see [1], [2].
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The aim of this paper is to analyze categorical foundations of the Kashaev—Baseilhac—
Benedetti theory. The key new notions in our approach are the ones of W-systems and
W-systems in linear monoidal categories. The W-systems provide a general framework for
6j-symbols. Roughly speaking, a W-system is a family of simple objects of the category
{Vi},c; closed under duality and such that for “almost all” i, j € I, the identity endomor-
phism of V; ® V; splits as a sum of certain compositions {V;® V; — Vi — Vi® Vi} o,
(see Section 1). Examples of W-systems can be derived from quantum groups at roots
of unity or, more generally, from Cayley—Hamilton Hopf algebras, see Section 11. Every
fusion category has a W-system formed by arbitrary representatives of the isomorphism
classes of all simple objects. A W-system in a linear monoidal category gives rise to a vector
space H (the space of multiplicities), a linear form 7" on H®* (the tetrahedral evaluation
form), and two automorphisms A4, B (obtained by taking adjoints of morphisms). The
vector space H has a natural symmetric bilinear form which allows us to consider the trans-
poses A%, B* of A, B. We use T to define 6j-symbols and we use A4, B, A*, B* to formulate
the tetrahedral symmetry of the 6j-symbols. We also develop a 7T-calculus for endomor-
phisms of H which allows us to speak of equality/commutation of operators “up to com-
position with 7”°. These definitions and results occupy Sections 1-5.

To define 3-manifold invariants we need to fix square roots of the operators
L=A"A, R=B'B, C=(AB)’ cEnd(H).

A W-system endowed with such square roots Lz Rz C: satisfying appropriate relations is
said to be a W-system. The W-systems provide a general framework for so-called ““‘charged”
6j-symbols depending on two additional integers of half-integer parameters. The advantage
of the charged 6j-symbols lies in the simpler tetrahedral symmetry. This material occupies
Sections 6-8.

We need two assumptions on a W-system to produce a 3-manifold invariant. The first
assumption says essentially that the operators L3 and R> commute up to composition with
T and multiplication by a certain scalar g. The second assumption introduces additional
data: a group G and a family of finite subsets {;},.; of I satisfying certain conditions.
We use this data to define a numerical topological invariant of any tuple (a closed con-
nected oriented 3-manifold M, a non-empty link L < M, a conjugacy class of homomor-
phisms 7;(M) — G, an element of H'(M;Z7/27)), see Sections 9, 10. The invariant in
question is defined as a state sum on a Hamiltonian triangulation of (M, L). To encode
the Hamiltonian path L into the state sum, we use the charges on H-triangulations first
introduced in [7]. The theory of charges subsequently has been developed in [2]. It is a
natural extension of the theory of angle structures due to W. Neumann, see, for example,
[13], [14]. The key ingredients of our state sum are the charged 6j-symbols. The resulting
invariant is well-defined up to multiplication by integer powers of g.

We conjecture that the W-systems associated with quantum groups and their Borel
subalgebras at odd roots of unity extend to W-systems satisfying all our requirements. We
verify this conjecture in the case of the Borel subalgebra of U,(sl,), see Sections 11, 12.
Geer and Patureau-Mirand [5] verify the conjecture for all quantum groups associated to
simple Lie algebras and prove that the usual modular categories arising from quantum
groups have W-systems satisfying all our requirements. The conjecture is open for Borel sub-
algebras of quantum groups other than U,(sl,). We expect that the associated invariants
are closely related with the invariants constructed in [6], [11]. In the case of the example
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of Section 12 with the trivial homomorphism 7; (M) — G, this construction coincides with
the one of Kashaev [7]. The latter invariant enters the volume conjecture [§8], and for links
in $3, it is a specialization of the colored Jones polynomial [12]. Precise relationships of our
invariants with the Baseilhac—Benedetti 3-manifold invariants are yet unclear.

1. W-systems in monoidal categories

1.1. Monoidal Ab-categories. A monoidal (tensor) category € is a category equipped
with a covariant bifunctor [X]: ¥ x € — % called the tensor product, an associativity
constraint, a unit object [, and left and right unit constraints such that the Triangle and
Pentagon Axioms hold. When the associativity constraint and the left and right unit
constraints are all identities, the category % is a strict monoidal (tensor) category. By
MacLane’s coherence theorem, any monoidal category is equivalent to a strict monoidal
category. To simplify the exposition, we formulate further definitions only for strict mono-
idal categories; the reader will easily extend them to arbitrary monoidal categories.

A monoidal category % is said to be an Ab-category if for any objects V', W of €, the
set of morphisms Hom(V, W) is an additive abelian group and the composition and tensor
product of morphisms are bilinear. Composition of morphisms induces a commutative ring
structure on the abelian group k = End([). The resulting ring is called the ground ring of €.
For any objects V', W of € the abelian group Hom(V, W) becomes a left k-module via
kf =k[xl f for k ek and f € Hom(V, W). We assume that the tensor multiplication of
morphisms in % is k-bilinear.

An object V' of & is simple if End(V) =klIdy. For any simple object V' and
f € End(V), there is a unique k € k such that / = kIdy. This k is denoted (/).

Fix from now on a monoidal Ab-category ¥ whose ground ring k is a field. We shall
use the symbol ® for the tensor product of k-vector spaces over k and the symbol [X] for
the tensor product in €.

1.2. W-systems. A W-system" in & consists of

(i) a distinguished set of simple objects {¥;},.; such that Hom(V;, V';) =0 for all
i+ J;

(i) an involution I — I, i+ i¥,

(iii) two families of morphisms {b; || — V;[X] V;-},., and {d; | Vi X] V;+ — 1}, such
that for alli e I,

(1) (IdV, d,w)(b,’ IdVi) =1Idy, and (d,' IdV,)(IdVi bi*) = Idy,.
To formulate the fourth (and the last) requirement on the W-systems, set
H} =Hom(Vy, ;X V;) and Hf =Hom(V; X V}, Vi)

for any i, j,k € I. We require that

D This name is inspired by the logo of the Indiana University, where the definition has been finalized.
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) 5 ix1V;
(iv) for any i, j € I such that H,' # 0 for some k € I, the identity morphism Idy;xy, is
in the image of the linear map

2) @ H) ® Hf — End(V;R V), x®y xoy.
kel

We fix from now on a W-system in % and keep the notation introduced above.

Lemma 1. Forany i, j, k € I, the linear spaces H, ,g and Hif are finite dimensional, and
the bilinear pairing

3) HEQ@HT Kk x®y > (xop,

is non-degenerate. In particular, dim Hiﬁ? =dim H, ,i’ .
Lemma 2. For any i, j € I, there are only finitely many k € I such that H,ij * 0.
These lemmas will be proven in the next subsection after a little preparation.
1.3. The operators A and B. Consider the vector space H = H @ H, where

H= @H;‘ and H = @H,g
ijkel ijkel

Let
n;]‘.:H—>H.1.( n,lZ:H—>H1?, #:H—H, #:H—H

I/

be the obvious projections. We define linear maps 4, B: H — H by

Ax= 3 ((dy,. ®zfx) (b ®1dy,) + (d R 1dy,)(Idy,. ®7x)),

ijkel

Bx= Y ((mix®1dy,.)(Idy, ®by) + (Idy, & d))(n]x K 1dy,.)).

ijkel

For each x € H, there are only finitely many non-zero terms in these sums, since x has only
finitely many non-zero components n{;x and 7/ x. We can represent the definitions of 4 and
B in the following graphical form:

i J k
Ax | =i Ax | =i
k i j
i J k
Bx | = Bx | =
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where we use the graphical notation

Lemma 3. The operators A and B are involutive and satisfy the “‘exchange’ relations:
(4) n,ijA = Anlﬂk, ngB = Bn,’;j*, n;j‘.A = An;*k, nf]‘.B = Bn;{j*.
Proof. The exchange relations easily follow from the inclusions

(5)  AHY) < H'*, AH])< Hl,, BHS)<H, BH)<H.

For any x € H,
i '
nlA*x = | Ax = x| =nlx
k k
and
O
‘k i* k k

Thus, A> = 1. A similar calculation shows that B> =1. []

Proof of Lemma 1. Assume first that H, ,3 %+ 0. By the basic condition,

(6) ldygy, =3 3 ene™,

leX aeR;

where X is a finite subset of / and for all / € X, we have a finite set of indices R;, linearly
independent vectors {e/, }, . g, in H and certain vectors ¢’* in Hlﬁ. For any x e H/,

(7) x=Idygyx= 3 > ee”x =3 Y e xyor = O er,eFixd,

leX oaeR, leX aeR, ae Ry

where J;; is the Kronecker delta. Thus, the vectors e, with « € R, generate H) . V. Since
these vectors are linearly independent, they form a (finite) basis of H, . y Slmllarly, for any

(8) y=yldygy, = 3 (ewye.

e Rk
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Therefore the vectors eX* with o € Ry generate H k. For all a,p e Ry, formula (7) with
x = exp implies that {eex3) = J, 5. Hence {e* }3(e . is a basis of Hj % dual to the basis
{era}tyer, of H U with respect to the pairing (3). Therefore, this pairing 1s non-degenerate.

It remains to show that H/ = 0 implies Hf =0. Indeed if Hjf 40, then we have

Hji*k = A(H}} ) #+ 0. By the precedlng argument, A(H ) = H], +0. Hence HU +0. O

Proof of Lemma 2. 1f Hki" #+ 0, then by formula (7), k belongs to the finite set X
appearing in (6). []

1.4. Transposition of operators. We provide the vector space H = H @ H with the
symmetric bilinear pairing <, ) by

9) oyy= Y (Kakxalyy + (afymlxy) e

i,j,kel
for any x, y € H. Note that (H, HY = (H,H)> = 0.

A transpose of f € End(H) is a map f* € End(H) such that {fx, y) = <{x, f*y) for
all x, ye H. Lemma 1 implies that if a transpose f* of f exists, then it is unique and
)=

Lemma 4. The canonical projections have transposes computed as follows:

7' =7 and (n))" = nl]]‘
Proof-

X wy) = <X, myy = {7x, y),
xmhyy = lxalyy = lx, yy. O

Lemma 5. The transposes of the operators A and B exist and
(10) A*B*A* = BAB.

Proof. The existence of 4* and B* follows from Lemma 1 and the inclusions (5).
Note that

* it * kj* * ij i
(11)  A(Hf) < H'*, a*(H]))<H., BH})<H" B H)<H...
To prove (10), observe that for any x € H and y € H,

(12) {x,y> = {(BABy, ABAX).
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Here is a graphical proof of this formula for x € H]’k and y e H,-jk with i, j, k € I.

Now we can prove (10). Applying (12) to x = x; and y = BABx, with xi,x; € H, we
obtain

{x1,BABx»)> = <(BAB)2xz,ABAx1> = {x2, ABAx> = {ABAXx|,x>).
Applying (12) to x = ABAy, and y = y, with y;, y, € H, we obtain

{y1,BAByy) = (BABy>, y1) = CABAy1, y2).

Hence BAB = (ABA)" = A*B*A*. [

2. The tetrahedral forms

2.1. Operations on tensor powers. We recall the usual notation for operations on the
tensor powers of a vector space. Given a k-vector space ¥ and an integer n = 2, the symbol
1®" denotes the tensor product of n copies of V' over k. Let S,, be the symmetric group on
n = 2 letters. Recall the standard action S, — Aut(V®"), g — P,. By definition, for dis-
tinct 7, j € {1,...,n}, the flip P; permutes the i-th and the j-th tensor factors keeping the
other tensor factors. For f € End(V) andi=1,...,n, set

£ =id®V ® £ @id®") ¢ End(V'®").

Note the exchange relations P, f; = fo(;)Ps for any g € S, and the commutativity relation
figi = g;fi for any f,g € End(V) and i + j.

Given F € End(V ®y V'), we define for any 7, j € {1,...,n} with i + j an endomor-
phism F; of V®" as follows. If i < j, then Fj acts as F on the i-th and j-th tensor factors
of V®" keeping the other tensor factors. If i > j, then Fj; = P Fi Pjj).

2.2. The forms T and 7. Recall the vector space H = H @ H from Section 1.3. We
define two linear forms 7, T : H®* — k by the following diagrammatic formulae: for any
u,v,x,yeH,
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The indices i, j, k, [, m, n in both formulas run over all elements of /. For any given
u,v,x,y € H, only a finite number of terms in these formulas may be non-zero.

Lemma 6 (Fundamental lemma). We have

(13a) TPy = TAj A,
(13b) TP(23) = TAng,,
(13C) TP(1234) = TBQBZ;

Proof. Since A* is an involution, (13a) is equivalent to the identity
TuRv®x®@Ay)=T(rQu® Av®x), u,v,x,yeH,

which is a direct consequence of the identity

> =A%y =<A4E, y) =<y, AS) = <

The other two identities are verified in a similar manner. []

The formulas

P2y = PusanPosyPng)y,  Piay = Paazay P3Pz
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allow us to compute the action of the permutations P15 and P4 on T

(14) TPy = TPp3) PosayA; A1 = TP1p34)(BA) A2 A; = T(BA),(BA),(AB);,
(15)  TP4 = TPpu3yPusi)BaBy = TP B3(AB),B] = T(BA){(AB);(AB),.

The action of the permutations on 7 can be easily determined from the involutivity of
A, B, P(13), P(23), P(34). The resulting formulae can be obtained from those for 7" via the
substitutions 7 «» T and 4 < B.

The formulas computing the action of the permutations on 7" and T may be re-
written in a simpler form in terms of the equivalent tensors S = TP 34y : H ® _ k and
S=TPuu3 : H ®*% _, k. For these tensors, equations (13a)—(13c) take the following form:

(163) SP(]Q) = SA;A4,
(16b) SP(23) = SA\ By,
(16¢) SP4) = SBB;.

Though these symmetry relations for S, S are simpler than the symmetry relations for 7', T,
we shall mainly work with 7" and 7. A geometric interpretation of these symmetry relations
will be outlined in the appendix to the paper.

2.3. The adjoint operators. We define the operators H®? — H®? adjoint to T
and T. For all i, j,k € I pick dual bases (¢ ), and (efj?“)a in the multiplicity spaces H;/

and Hij-‘ , respectively. For the vectors of these bases, we shall use the graphical notation

koo
and ;" =

where i, j, k, I, m, n run over all elements of /. By Lemma 2, for any x, y € H, there are
only finitely many terms in the expansions for 7(x ® y) and 7(x ® y).
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The operators 7 and 7 do not depend on the choice of the bases in the multiplicity
spaces. Indeed, these operators are adjoint to 7', T in the sense that

Ku®v,1(x@y)»=TURv®xR® )
and
Ku@o,i(x@y)»=TU®r®x®y)
for all u,v € H, x, y € H. Here the bilinear pairing
&H»: (HRH)x (H® H) — k

is defined by u ® v,x ® y)) = {u,x)<v,y» where -, - is the symmetric bilinear form on
H = H @ H introduced in Section 1.4.

2.4. The pentagon and inversion identities. To formulate the properties of v and 7,
we need further notation. For any i, j € [ set

gii= {1 if there is k e I such that H/ # 0,
! 0 otherwise.

We define two endomorphisms *z and 7* of H®? by

°o__ il jk o ij Kkl
T = Z 9,7, ® T and 7° = Z 94j,17 X7y,
i,jk,l,mel i,j bk, Lmel

Clearly, *7 and 7°* are commuting projectors onto certain subspaces of H®.
Lemma 7. The operators t and T satisfy
(i) the pentagon identity in End(H®3):
123713712 = T12T23('7T)217
(ii) the inversion relations in End(H®?):
T =n" and 7Tt = °x,
where a1 = P12)TP(12) and Ty1 = P(12)TP12).

Proof. (i) For x, y,z e H,
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TTR(X® Yy @ z)

i,...,n,1

= X

[N

J 1 in

= > 013X ® [y | ®2) = 112123("71) (X ® y @ 2).

i,...,n

n m
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All these equalities follow directly from the definitions except the fifth equality. The sum on
its left-hand side is preserved if we insert an additional factor g, . Indeed, if the triangular
block with the vertices labeled u, A, 1 contributes non-zero, then necessarily g, x = 1. This
allows us to sum up over all p, x and then over all k, 7 to obtain the fifth equality.

(ii) For x,y e H,

I(X®y) =

Iyesy

The second inversion relation is proved similarly. []

3. The 6j-symbols

3.1. Notation. For any i, J,k € I, the non-degenerate pairing H ® H) 7 — k defined

in Lemma 1 will be denoted >x< . Composing this pairing with the flip H}; ” ® Hj k_, Hj k@ HY,
we obtain a non-degenerate pamng H/ ' ® sz — k denoted . We shall use these palrlngs

to identify the dual of Hj; k with H} 4 and the dual of H| i Wlth Hy. k_ The pairings * and
induce the tensor contractlons

UQH;@VOH/@W - URV®W,

URH!@VRH,@W - UQV®W,

where U, V, W are arbitrary k-vector spaces. These tensor contractions will be denoted by
the same symbols l’j‘ and =, respectively.
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3.2. Definition of 6j-symbols. For any i, j,k,/,m,n € I, the restriction of
T:H® —k
to the tensor product
HiQH,®H/@H)y cHQHQH®H < H®
gives a vector in the k-vector space
(17)  Hom(Hjj ® Hj ® H ® H,.k) = H,' ® H} ® Hj} ® Hj.

This vector is denoted

() U )

and called the positive 6j-symbol determined by the tuple i, j, k, [, m, n. In graphical nota-
tion, the 6j-symbol (18) is the summand in the definition of 7" in Section 2.2 corresponding
to the tuple i, j, k,/,m,n € I. Thus, for any u,v,x, y€ H,

Tu®v®x® y)

- o
- % *;z;*’“*f’*,'z(;:;<u>®n:;<v>®n4’<x>®nz,':<y>®{l / })

i,jk,l,mnel I m n

The adjoint operator 7 € End(H®?) expands as follows: for any x, y € H,

wen= T da(dwemmel; I 1)

i,j,k,l,mmnel I m n

Similarly restricting 7 to the tensor product H” ® Hj® H,’g ® HK' we obtain the
negative 6j-symbol ‘

i k) . .
(19) {} 1) emon oo,
For any u,v,x, y e H,

TuRrv®x® y)

. *M*J,*k*g( ,n<>®nﬂ<v>®n<x>®n,’:f<y>®{i ! k})

i,j,k,l,mmnel I m n

The adjoint operator 7 € End(H®?) expands as follows: for any x, y € H,

x®y) = X *k*kl< ()®”'§’l()®{i j k}_)'

ij k. l,mnel I m n
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3.3. Identities. The properties of the forms 7" and T established in Section 2 can be
rewritten in terms of the 6j-symbols. Formula (13a) yields

i j ok ST kU
= Pz A1 4
{07 S =reass ({411,

where A is induced by the restriction of 4 to HP™ and A is induced by the restriction
of A* to H}.,. Formula (13b) yields

i kY (KT
U np=resis(ls i)

where A5 is induced by the restriction of 4* to H{ " and Bj is induced by the restriction
of B* to Hj,.. Formula (13c) yields

i J kY ([ m m)
I m n — £7(1234) Dy D4 I* k ] )

where B; is induced by the restriction of B* to Hj"’ " and By is induced by the restriction
of By to HE,..

Note for the record that formula (14) yields

[0 = rwoieaas,({ L L0,

where the operator (BA); is induced by the restriction of (BA)* = A*B* to Hl:’;k*; the oper-
ator (BA); is induced by the restriction of (BA)" to H]™", and (A4B), is induced by the
restriction of AB to H! .. Formula (15) yields

nm*

m*

07 = rswaamses ({40,

where the operator (BA), is induced by the restriction of BA to H/" *; the operator (4B);
is induced by the restriction of (4B)" to H"., and (AB), is induced by the restriction of
(AB)" to H/.,.

The pentagon identity yields that for any jo, ji,...,js €1,
s s i J I 2T v J Je o3
sopapp({8 2 BYa(h L MY gLh b )
jel J3 Jo J Ja Jo J7 Ja J1 I8

s (J U T2 s Js 3 Js
:%%””W”%ﬁ({ﬁ Jo ﬁ}®{h Jo h}>

Here both sides lie in the k-vector space

js/ J1j jel. Ji J3J J
(20) I{jﬁs ’ ® Hjs ’ ® Hjo ) ® Hjloﬁ ® H.I's3 ) ® I_Ijz7js'
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To rewrite the inversion relations in terms of the 6j-symbols, observe that the trans-
pose of the pairing *k H" ® H” — k is @ homomorphism k — H’] ® H" The image of
the unit 1 e k under thls homomorphlsm is denoted by 5’ In the notat1on of Section 2.3,
we have 5 Z e, ® el']‘“ The relation 7;7 = 7° may be rewritten as the identity

i Tk ik 0
PR { }®{ n} = 08.9).1Pax) (0, ®3])

I m n I m

for all i, j,k,k’,I,m e I. The relation 7t5; = °*z may be rewritten as the identity

1 i k) [ ik in j
3 *,’; *,’;;{ J ,} ®{ / . } = 00,gi, /P (01 @ 57

Pyt [ m n [ m
forall i, j,l,m,n,n" €.

Remark 8. As an exercise, the reader may prove that 712723(°7),, = (7°)3,712723.
This formula does not give non-trivial identities between the 6j-symbols.

4. The T-calculus

4.1. T-equalities. We say that two endomorphisms «, b of H are T-equal and write
aLbif Ta; = Tb for all z— 1,2,3,4. It is clear that the T-equality is an equivalence
relation. If @ = b, then ac = be for all c € End(H).

Though the definition of the T-equality involves four conditions, two of them may be
eliminated as is clear from the following lemma.

Lemma 9. For any a,b € End(H), we have
Ta, =Thy < Tay = Thy and Tay = Thy < Tas = Thy.
Proof. Formulas (13) and the identity P31y = P4321)P(23) imply that
(21) TP(431) = TA[(BA), 43
Multiplying on the right by A{(AB),A3P(134) = P134)41(AB), A}, we obtain
(22) TP 34y = TA|(AB),Ay.
Similar arguments prove that

(23) TP (124) = TB:(AB),B;,
(24) TP41) = TB;(BA);Bu.
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For each i = 1,2, 3,4 one of the equations (21)—(24) has the form

(25) TP, = TXi Y Zpm,
where

€Sy, X,Y,Ze{A,A",B,B*",AB,BA}, {k,l,m}=1{1,2,3,4}\{i},
and the set {i,a(i)} is either {1,2} or {3,4}. Set j = o(i) and observe that
Ta; = TP,(Xi Y1 Zy) 'a; = TP,ai(Xi Y1 Z,) ' = Ta;Po(X; YiZ,,) "

Also, Th; = Th;P,(X; Y;Z,,) . Hence, Ta; = Th; if and only if Ta; = Th;. []

Corollary 10. The T-equality a L b holds if and only if Ta; = Tb; for some i € {1,2}
and for some i € {3,4}.

4.2. T-scalars. An endomorphism ¢ of H is a T-scalar if t has a transpose ¢* and

(26) Tty =Tty =Tt; =Tt, and Tt =Tt =Ttz = Tty.
For example, all scalar automorphisms of H are T-scalars. A more interesting example of a
T-scalar will be given in Lemma 14 below. If 7 is a T-scalar, then the adjoint operator
7: H®? — H®? introduced in Section 2.3 satisfies

(27) ht=tt=r1t =t and 1=1471="1l =18.

If t e End(H) is a T-scalar, then so is ¢*. If a T-scalar ¢ is invertible in End(H), then
t~!is a T-scalar. Indeed, the equality Tt; = Tt, implies that T7;' = Tt;! and similarly for

all the other required equalities.

The product of any two 7-scalars f,u € End(H) is a T-scalar. Indeed, for any
re{l,2} and s € {3,4},

T(tu), = Ttyu, = Ttiu, = Tu,t; = Tut) = T(tu);

and similarly 7'(ru); = T(tu),. Thus, the T-scalars form a subalgebra of the k-algebra
End(H) invariant under the involution a — a*.

If ¢ is a T-scalar, then a Lb=taLhfor any a,b € End(H). Indeed,
T(ta), = Ttia) = Thhay = Tait, = Thit, = Ttryby = Tt1by = T(th),
and similarly, 7'(ta), = T(tb)s.
We call an invertible endomorphism ¢ of H wunitary if t* = t~'. More generally, an

invertible endomorphism ¢ of H is T-unitary if t* L. ForaT -unitary 7 € End(H), equa-
tions (26) simplify to 7t,¢, = T for all r € {1,2} and s € {3,4}.



86 Geer, Kashaev and Turaev, Tetrahedral forms in monoidal categories and 3-manifold invariants

4.3. T-commutation relations. We now show that 7T-scalars 7T-commute with every
product of an even number of operators A, B, A*, B*. To give a more precise statement, we
define a group F by the presentation

(28) F={aba’ b’ |a® == () = (b") = ).

Consider the group homomorphism F — Z/27 carrying the generators a, b, a*, b* to
1 (mod2). Elements of F belonging to the kernel of this homomorphism are said to be
even; all other elements of F' are said to be odd. In other words, an element of F is even if
it expands as a product of an even number of generators and odd otherwise. The group F
actson H bya— A4, b — B, a* — A*, b* — B*. The endomorphism of H determined by
g € F is denoted g.

. Lemma 11.  For any T-scalar t € End(H) any g € F, we have gt L tg if g is even and
gt =1t*gif g is odd.

Proof. Fixa T-scalar t € End(H). Forge F,sett =tifgisevenand ¢/ =t* if g is
odd. We need to prove that gt Lz t9g forallge F. Fori=1,2,3,4, set

A'={geF|T(gt);=T(t%);} = F.

By the previous lemma, A' = A% and A®> = A*. We claim that for any generator
ce{a,b,a*,b*}, we have cA' = A* and cA®> = A'. This will imply that the set A' "A* = F
is closed under left multiplication by the generators of F. Since this set contains the neutral
element of F, we have A' 7 A® = F. In other words, A’ = F for all i = 1,2, 3, 4. This means
that gt E t9g forallg e F.

To prove our claim, consider again equality (25). Pick any g € A% Then
T(Xgt), = TPo(X Y1 Zy) (X gt), = TP,(YiZ,) "' (gt),

=Tt P, (YiZy) ",

ERD)
where the fourth equality follows from the inclusion g € A% Since t € End H is a T-scalar,
we have Ttg(k) = Tt[;o.> for some ¢’ € {¢,¢*}. Then

Tt

1 —1 -1
a(k)gg(k)P(f(YlZM) = Tt;(i)gg(k)Pﬂ(YIZM) - TPU(YIZWI) ti/gk = th{(Xg)kv

where the last equality follows from (25). Since ¢ is a T-scalar, Tt] = Tt} for some
t" € {t,t*}. Recall that X = x for some x € {a,a*,b,b* ab,ba}. A case by case analysis
shows that " = t¥. Combining the formulas above, we obtain that

T(xgt), = T(Xgt), = T(rxg)y,

ie., xg € A*. Thus, xA°® = A*. Applying this inclusion to all forms (21)-(24) of (25) and
to all possible choices of k, we obtain cA! = A* and ¢cA® = A! forall c e {a,b,a*,b*}. O
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5. Further properties of T
To study the form 7" we introduce the operators
L=A"A, R=B'B, C=(4B)’ ¢End(H).
We shall study these operators and show that the commutator of L and R is a T-scalar.
Though this fact will not be directly used in the sequel, the properties of the operators
L, R, C will lead us in the next section to a notion of a ¥-system.
An operator f e End(H) such that f* = f is called symmetric. An operator
/€ End(H) such that f(H) < H and f(Hl_.ﬁ.‘) c Hl_f for all i, j,k e I is called grading-

preserving.

Lemma 12. The operators L, R, C are invertible, symmetric, and grading-preserving.
They satisfy the following identities:

(29) ACA=BCB=C!,

(30) LCL™'=RCR!'=C,

(31) ALA=L"", BRB=R',
(32) ARA=L'RC™', BLB=R'LC.

Proof. That L, R, C are invertible follows from the fact that 4 and B are inver-
tible. The inverses of these operators are computed by L' = 44* R~! = BB*, and
c = (BA)3. The operators L and R are manifestly symmetric. We have

C = (AB)® = ABABAB = (ABA)(ABA)".
Therefore C* = C. That L, R, C are grading-preserving follows from (5) and (11).

The identities (29)—(32) are checked as follows:

ACA = A(AB)*A = A>(BA)® = (BA)* = ¢!,
and similarly for BCB;
LCL™' = 4" ACAA* = 4*C7'4* = (AC'4)" = C* = C,
and similarly for RCR™!;
ALA = AA*AA = AA* = L7,
and similarly for BRB;
L 'RC™' = AA*B*A(BA)* = AA*B*(BAB)"BA = AB*BA = ARA,

and similarly for R-'LC. [
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Lemma 13. The following identities hold.:

(33a) TC,Cy = TC5Cs,
(33b) TR\L, = TRy Ly,
(33c¢) TR\ R, = TCsRy,
(33d) TL, = TCyLsLy.

Proof.  The proof is based on a study of the action of the standard generators of Sy
on T using the formulas of Section 2.2. We have

TP(12)Po3) = TP(23)(BA),(BA)y(AB), = T(BA),B(ABA);(A4B),.
The Coxeter relation (P(lz)P(23))3 = 1 yields equation (33a):
T = T(PuyPas)’ = T(Pa2yPa3) (BA),By(ABA),(AB);
= TP(15 Po3) (BAB)(A(BA)*) (BA); (4B);’
— T(BA); (BA);(AB);(4B);’ = TCy C;' C3Cy.
The identity P(12)P(23)P34)P4321) = 1 implies that

T = TP15)P3)Ps) Pasaty = TP(23)P(34)Pazar) (BA),(BA) (AB),
= TP(34)P4321)B3(BA),(ABA),(4B),

= TPs21)(A"B*BA),Bs((AB)* ), (ABB*4*),

T
T(B*(AB)’A),(A*B*BA),(ABB"A"),
T

(RCT) (RCT,(RTIC),.
This and (33a) yields (33c). The identity P(34)P(23)P12)P(1234) = 1 implies that
T = TP;34)P(23)P(12) P1234) = TP(23)P12) P(1234) (BA) { (AB),(AB)s
= TP(12)P(1234)42(BA)| (BAB)(AB);,
= TPy (BAA"B"), A>((BA)’B) ,(B* A" AB),
= T(BAA*B*),(B*A*AB),(4"(BA)*B),
= T(Lflcfl)l(LC%(LC)zt-
This and (33a) yields (33d). Finally,
TP(12)P4) = TP(sa) (BA), (BA)y(4B);
= T(B*A*BA),(BA),(BAB*A*);(BA),.
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The relation (P<12)P(34))2 =1 gives
T = T(Pa2)P )’ = TP(12)P34)(B* A" BA),(BA), (BAB* A") ,(BA),

= T(B"A"(BA)®),(BAB*A"BA),(BAB* A" BA),((BA)’B*4"),

=T(A"A),(BAA"B),(BAA*B);(BB"),

=TL(C'L™'R),(C"'L™'R);R;".
This formula can be rewritten in the following equivalent form:

T(R'L),C3Ry = TL,C;'(L7'R),

which reduces to (33b) after using (33c) on the left-hand side, and (33d) on the right-hand
side. [

Lemma 14. Q = LRL™'R™' € End(H) is a T-unitary T-scalar.
Proof.  Applying consecutively (33d) and (33b) in alternating order, we obtain
TQ, = T(RL™'R™"), G L3Ly = T(L™'R7"),(L7'C),(RL),L;
= TR 'Ly (L""RL);Ly = TRy (L™'RL); = TQ;.
Similar transformations using (33d) and (33c) yield 7Q; = TQ;. Analogously, using (33b)
and (33c), we obtain 7Q, = TQ;. This verifies the first three equalities of (26). The other
three equalities are checked similarly.

Since Q is a T-scalar, sois Q* = R~'L~'RL. We have

O '=RLR 'L '=LRO*R'L'" L Q"LRR'L™! = 07,
where the T-equality follows from Lemma 11 applied to the T-scalar Q*. [

Remark 15. It is clear that Q is grading-preserving. For any i, j, k,/,m,n € I, the
restrictions of Q to the corresponding multiplicity spaces induce the endomorphisms
01, 05, 03, Q4 of the vector space (17). Lemma 14 implies that for any r e {1,2} and
s € {3,4}, the composition Q,Q; preserves the 6j-symbol (18).

6. ‘i’-systems
6.1. The operators C%, R%, and L2. Recall the symmetric, grading-preserving, inver-

tible operators C, R’]T € llind(H ). Suppose that we have symmetric, grading-preserving,
invertible operators C2, R2 € End(H) such that

(34a) (C3)>=C, AC:A=BCiB=CT,

1

(34b) (R®)}*=R, BR:B=R™, R:C:=CiR:,
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where by definition Ci= (C%)_1 and R = (R %) ! Set
(35) L= BARIABeEnd(H) and L= (L}) ' = BARAB e End(H).
The properties of L: are summarized in the following lemma.
Lemma 16. The operator L is symmetric, grading-preserving, and
(36) (L3)? =L, ALA=L", LiCi= C:iL:.
Proof:  We have
(L?)> = BAR"AB= BABB*AB = A"B*A"B*AB = A"ABAAB = A"A = L,
AL*A = ABARABA = (AB)*R:(BA)? = BACR:C'AB = BAR:AB = L,
(L?)* = B*"A*RA'B" = B°"A"B"R:B*A"B" = ABARIABA = AL™3A = L.
That L3 is grading-preserving and commutes with C? follows from the definitions. O

6.2. W-systems in €. A W-system in € is a LI’-systenla in % together with a choice of
invertible, symmetric, grading-preserving operators C2, Rz € End(H) satisfying equalities
(34) as well as the identities

1 1
(37a) TCiC; = TC:C,
1 1 1 1
(37b) TR:L: = TRIL:,
L1 L1
(37¢) TR:R; = TC:R:,
1 11
(37d) TL: = TCILL:,

where L is defined by (35). Generally speaking, a W-system may not allow operators
C:,R: e End(H) as above.

Equations (37¢) and (37d) above are not independent. In fact, any one of them may
be omitted.

We suppose from now on that we do have a W-system.

6.3. Commutation relations. We establish commutation relation analogous to those
in Lemma 11. Consider the group

F=<a,b,a*,b*,c,r|a®> =b* = (a*)2 = (b*)2 =1).

Consider the group homomorphism F — 7/27 carrying a, b, a*, b* to 1 (mod2) and
carrying ¢, r to 0. Elements of F belonging to the kernel of this homomorphism are said
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to be even; all other elements of F are said to be odd. The group F acts on H by
a— A, b— B, a"'— A", b"— B, ¢~ C%7 ris R,
The endomorphism of H determined by g € F is denoted by g.

Lemma 17. Let t € End(H) be a T-scalar that T-commutes with C:in the sense that
1Cs L ot For geF, set t9=1if g is even and tY = t* if g is odd. Then gt = tqgfor all
geF.

Proof Observe that 7 also T-commutes with €2 and #* T-commutes with both C:
and C 2. Indeed, let {i, j} be the set {1,2} or the set {3,4}. Set {k,/} = {1,2,3,4}\{i, j}.
Formula (37a) implies that

1 _1 1 Lo
T(1C), = TuC; * = TyC; > = TC, *t; = TC;C*C;
o1 o1 IR 1
= T4C;C3C, 2 = TtC3C, °C, 2 = TC:C,*C)*t = T(C ),
1 1 1 !
T(1°C3), = Tt} C; = Ty C; = TCity = TC, *CiCriy
11 ! 11
= TuC*CiC} = Tt; C, *CiC} = TC, *CiCjt; = T(C>t"),.
Forie{l,2,3,4}, set
Ai={geF|T(g), = T(t%);} = F.

By Lemma 9, we have AIA: Ay and Ay =As. Set A=A, nA; c F. Clearly, 1€ A. Tt is
enough to show that A = F.

Pick any index ie{l1,2,3,4} and let j k,/€{1,2,3,4} be such that either
{i,j} ={1,2} or {i, j} = {3,4}, and {k, [} = {1,2,3,4}\{j, ]} For X = ¢ = C? and any
g € A, formula (37a) implies that

T(cgt);, = T(Xgt), = T(g0) X' Xi X; = T(t99), X, X, X; = Tt! X' Xi Xig;

(the last two equalities follow from the assumptions g € A and 7 is a T-scalar, respectively).
Since ¢, t* both T-commute with C +2 we similarly have

T/ X' X, Xigi = TX; ' Xi Xigit! = T(Xg),1!
= Tt!(Xg), = T(1'Xg); = T(tcg);.

Thus, T(cgt); = T(t“¢cg), for all i so that cg e A. This shows the inclusion ¢cA = A. The
inclusion ¢ 'A = A is proved similarly.

Next, pick indices 7, j, k such that {7, j,k} = {1,2,4}. Set X =r = Riand Y = C3.
For any g € A, formula (37¢) implies that for some ¢ = +1 and X', X" € {X, X 1},

T(rgt); = TXi(gt), = TYiX/ X (g1); = T(1°9), YiX/ X = Tt,g; YiX/ X},
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where ¢’ € {¢,1*} is such that Tt} = Tt}. Since ¢/ Y £y,
Ttyg; Y;X].’Xk” = TYngj/X/é/(_Jité =T(Xg)t; = Tts3(Xg), = T(t'Xg); = T(t"rg),.

Thus, rg € A and so rA < A. Similarly, A = A. The rest of the proof is as in Lemma 11.
U]

6.4. Stable T-equivalence. We say that two operators a,b € End(H) are stably
T-equal and write a L b if fa = fb for all f e F. Obviously, if ¢ b, then a = b and
gaS:Tgb for all g € F.

Corollary 18. For any g € F and any T-scalar t that T-commutes with C%,
(38) gt ST t'g.
Indeed, by Lemma 17, for all f € F,

T 1 T
fot=fur® 4 = (¥ fg £ 1%
Corollary 18 and the evenness of the elements » and barl ab of F imply that if a
T- scalar t commutes w1th Cz then ¢ stably T-commutes with Rz and L: in the sense that
Rt L R>and Lt 2 (L2
6.5. The T-scalar q. The following 7-scalar will play a key role in the sequel.

Lemma 19. The grading-preserving operator
g = RIARZAL>C™: = R:BL:BL3C™>
is a unitary T-scalar commuting with Cs.

Proof. That ¢ is grading- preservllng 11s obvious because Rz Cz and1 L: are grading-
preserving and A4 is 1nV01utlve Since R2, L2, and AR~ 34 commute with C3 2, the operator ¢
also commutes with C3. To prove the remaining claims, set

(39) D= AR:A = BLB.

It is clear that DC% =C %D. Note also that

(40a) D* = LDL™,
(40b) D*=R'LC=CR'L.
Indeed,

D* = A*RA* = A*ABL:BAA* = LBL:BL™' = LDL"!
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and
D?>=BLB=BA*"AB = BB*A*A*B*A* AB
= BB*A*AABABAB = R'LC.

We claim that the operator D satisfies the following identities:

11
(41a) TD, = TRIL:D;,
1 1
(41b) TC:D, = TR:D},
1 1
(41c¢) TL:D;C; = TD;.

Formula (41a) is proved as follows:
1 1o .
TD = TP(134)A;(BA),(R3A4), = TLIR, "L, P34 A; (BA), A,
1 I
— TP34Li(R24%),(L2BA), A, = TRIL:D},
where in the first, second, etc. equalities we use respectively: the definition of D and (22);

the action of the permutation group S4 and (37b); the action of Sy; the definitions of L%, D
and (22). The proof of (41b) is similar:

1 1 _1
TD; = TP(124)B;(BA)y(L?B), = TL: C, *Ly*P(124B;(BA) 3B
1 1 11
= TP124)LiC, *Ly*B;(BA);B, = TC, *RiD},

where we use consecutively: the definition of D and (23); the action of Sy and (37d); the
action of Sy; the definitions of L2, D and (23). Finally, we prove (41c):

1 L S |
TD; = TPy A} (AB),(R3A4); = TRIC, *R,*Piaz1y A} (AB), 45
A S | L1
= TPy RiC, R, 24 (AB),A; = TD; L, *C, *.

Here we use: thle definition of D and (21); the action of S4 and (37c); the action of Sy; the
definitions of L2, D and (21).

The definition of ¢ may be rewritten as
(42) g=RDLC™.
We can now prove the unitarity of ¢:
¢"=CL:D*R: = C:L:DL™'R>

Lol 1827 —1 pt D G 1 L R | —1
=C2L2 D' DL R:=CiL2D" CR:2=C:L2D " R 1=gq ',
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where we use the relations (40). Now,
11 1 1 11
Tqy = TR,*C:R:(DL:C™3), = TL2D;C:R:(L2C ),
L1 11 1 R O §
— TC,’L,’D;C:R:C,* = TC, >C,*C(qC3); = Tq;,

where we use consecutively: formulas (42) and (37c); formula (41a); formula (37d); formula
(42); formula (37a). Similarly,

111 11 111
Tq, = TR, *C}R;(DL3C %), = TC, *RiD;R,*C;R}(L>C ),

1

1 1 11 1 N
= TC,’L,*D;CiR;C,* = TC, *C, *C3(¢4C?); = Tqj,

where we use consecutively: formulas (42) and (37c); formula (41b); formula (37b); formula
(42); formula (37a). Similarly,

L1 1 111
Tqs = TRIL3L,*(DL:C ), = TD; C; *RiL,*(L2C %),
11 RO S r 1 _1
— TL,*C;D;C, RiC;* = T(¢C); C3C, °C, * = Tq,

where we use: formulas (42) and (37b); formula (41c¢); formula (37d); formula (42); formula
(37a). Together with the unitarity of ¢ these identities imply that ¢ is a T-scalar. []

Lemma 20. Forall a,b e lZ,

2
(43) LaRb sT qgabRbLa,
1
For all a,b e §Z and c e 7,
(44) (LaRb)(f g q4ab¢‘(1—c)LacRb(;.

Proof. Formulas (42) and (40b) imply that
1 1 1 1
qL:R g = R2L>.

This and (38) yield (43) fora =b = %:

11 11 11 o1 1 LT 5 1 1 1.1 [ G

I2R> = R2R 2Lsz:quLzR 2qR2:q R2I2R 2R2:q R2[ 2.
. 1 1 .
Assuming (43) for some «a € EZ andb:E,we obtain

LR = LOLiR: L [9g*RaL>

sT quaR%L% sT q2q4aR%LaL% _ q4(a+%)R%La+%'
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. . 1 | .
This proves (43) for all positive a € EZ and b = 3 Similarly, assuming (43) for some

.. 1 .
positive a, b € §Z, we obtain

LaRb+l — LHR%Rb g q4aR%LaRb g q4aR%q8abRbLa

g q4aq8abR%RbLa _ an(b+%)Rb+%La.

. .. 1
This proves (43) for all positive a,b € §Z. Moreover, for such a, b,

L“Rb = [aRbpop L [~agSabpagby—asT ~Saby-ayapby-a _ ,~Sabpby-a
LR = RPRVLAR™D L Rby—SabpagbR—b L ~Sabp-byapbp=b _ ,~Sabp-bra
and
[-9Rb — RbRbp-ag-b L RS [~aRP R sT SPRPL
This proves (43) for all non-zero a, b. For a = 0 or b = 0, formula (43) is obvious.
The case ¢ = 0 of (44) is obvious. Assuming (44) for some ¢ € Z, we obtain
(LaRb)c+1 _ (LaRb)CLaRb sT q4abc(1—c)La(,'RbcLaRb sT q4abv(l—c)Lac’q—SabcLaRb<,’Rb
sT q74abc(c+l)LacLaRbcRb _ q4ab(c+1)(l7(1+c))La(c+1)Rb(c+l).
This implies (44) for all ¢ = 0. The proof for negative c is similar. []
Remark 21. If we apply formula (43) to a=h =1, we obtain ¢° Z Q, where

O = LRL7'R~" is the operator studied in Lemma 14.

7. Charged T-forms
1
7.1. Definition. For any a,c e 52’ we define the “charged” T-forms

T(a,c) = Tq{“R{ R, "Ly "Ry : H®* — k
and
T(a,c) = Tq;*“Ly"Ry“R;“R§ : H®* — k.
Lemma 22. Set A = AL’%, B=BR:e End(H). Then A, B are symmetric involutions

1 1
and for any a,b,c € EZ such that a+b + ¢ = 5 we have
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(45a) T(a,c)Pusny = T(a,b)q; *AiAs,
(45b) T(Cl,C)P(23) = T(b,C)L]%CAzB3,
(45¢) T(a,c)P234) = T(a,b)q; **B1By.

Proof. The equalities A> = B> = 1 directly follow from the involutivity of the oper-
ators 4, B and the formulas AL3A = L and BR3B = R73. We have

1

A" = (L3)'A" = L 34" = LAAA" = AL'AA™ = AL'L™ = AL = A.
Similarly, B* = B. To prove (45), observe that
AL"RA=AL:"RA = L""3AR A = L' 3(ARA)*
= L3R :Cq) % L g CeLP 3 (LR )X
sT 2cCcLbf— ~2e(1-2¢) y e p—c L q4CZCCLb+cf—R ¢

Here the ﬁrst second etc. equalities follow respectively from: the definition of A; the
formula AL: = le the involutivity of A; the definition of ¢; the fact that & and L:
commute with C2 and stably 7-commute with ¢; formula (44); the fact that L: stably
T-commutes with g. A similar computation shows that

(46) BL“R~"B sT q4a2—4aC—aL—aRa+b—%.

Formula (45b) is equivalent to the formula 7'(b, ¢)qiA,B3P(23) = T (a, ¢) which we
now prove:

T(b, C)qlchzB3P<23) quc(l 2b)L2_bR2_cR3_bRiAzB3P(Z3)

=TPp3 A233q12(

020 L0 Ry Ry R§AB; P o3,

= Tg;"" " (BR"B),(AL"R™°A); R}

1
— T g4 R 2(CL "R )RS
1

= TqHR, H(CLR), R

_ T(ch4ac>lRz—a(L—aR—c)3

= T(¢"R),Ry“ (L "R )y = T(a,c).
Here we use consecutively: the definition of T(b,¢); formula (13b); the action of Sy; the

.. 1 . .

equalities BR "B = R®~3 and AL "R~A £ 4% C°L-“R~ established above; the equality
Tq; = Tq; '; formula (37c); the fact that R stably T-commutes (and therefore 7-commutes)
with ¢; the definition of 7'(a, c).

The proof of (45c¢) is similar:
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T(a,b)q; **B2BsP 1) = TP(1234)BzBXq1_2a(2b+l)L{”Rz_bR§“RfBzB4P(4321)
= T(B*R"B),q,“*"*"(BL-“R"B), R,
= TR} g,V (BL-“RB), R}
= TR} e (CL IR ), R}
= TR{(R™“¢*),(L™“R); = T(a,c).
Here we use consecutlvely the definition of T(a,b) and formula (13c); the action of Sy;
forrnula B* RbB R>"" which follows from the deﬁnltlons of R, B and the equality
BRzB R formula (46) and the equality Tq; = Tq;'; formula (37c); the formulas
Rg = qR Tq> = Tq; and the definition of T'(a,¢).
Finally, we prove (45a):
T(a,b)q; *AiAsP 1234y = TP(4321)A1*A3Qf2a(2b+l>Lz_“Rz_bR;”Rf(AlA3P(1234)
= T(LR), (AR AL RY(A"g ),
_ T(L*”R*b)l (q4a2 CaLaféRfa)zRé)(an(ZbJrl)L%)é‘
= TRl_b(q_‘mLa_%R_“)z(RbL_a)3L§1_a
= T( ¥R, Ry (R L), = Ta.o).
where we use (among others) formulas (13a), (37d), (37b), and (43). [

Remark 23. Though we shall not need it in the sequel, note that the involutions
A,B: H — H introduced in Lemma 22 satisfy the relations (BA)® = ¢2 and

(AC?)* = (BC3)” = (Ag)” = (Bg)” = (AL)” = (BR?)” = 1.

1
7.2. The charged pentagon and inversion identities. For any a,c € 3 Z, we define the
“charged” operators 7(a, ¢), 7(a,c) : H®* — H®? by

7(a,¢) = ¢ *R{R“TL“Ry¢ and  7(a,¢) = ¢} Ry Ly “TR; RS,

where 7 and 7 are the endomorphisms of H®? introduced in Section 2.3. The operator
7(a, c) is adjoint to T'(a, c): for any u,ve H, x,y € H,

{(u®w, (q*4”"RC QR (LR () ®@y))
{(q"R () ® R™(v), 7(L™R™(x) ® )))
T(q‘“’“RC(u) ®R () ®LR“(x) ®)
T(a,c)u®vx®y),

Ku®uv,t(a,c)(x® y)»
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where we use tllle pairing <{-,-» introduced in Section 2.3, the unitarity of ¢, and the sym-
metry of L3, R3. Similarly, #(a, ¢) is adjoint to T (a, ¢).

Lemma 24. The charged operators t, T satisfy the following identities.
(1) The charged pentagon identity:

723(610, 00)713(027 02)712(047 6‘4) = 712(613, 6’3)123(0!1,01)('%)21
1
for any ay,ay, az, as, ay, ¢, €1, C2, C3,C4 € EZ such that
(47) ay=ap+a, a3=ay+as, c1=co+as, c3=ag+cs, C3=7c1+C3.
(i) The charged inversion identities: for any a,c € EZ’

1(a, ¢)t(—a,—c) =n* and 7T(—a,—c)t(a,c) = *n.

Proof.  We first rewrite formulas (37) in terms of 7 and 7:

11 1 1 1 1 1 1

11 11 11 11 11 11 o1 11
2 20 2 2 2J 2, 272 2 24 — 2 P2 2 24 272
CiC3t=1CiC}, RLit=1RL3 RRit=1CiR, L:C, t=r<LL

In the following computations, the underlined expressions are transformed via one of these
four equalities. We have

4 ) .
Cll(al(ﬁa}“)flz(as, c3)ta3(ar, c1)(°m)y,

_ C3 p—da3 —dasz p—C3 pcC1 p—dadi —ay —Cl[e®

= RP’Ry“tinLy “ Ry “ Ry Ry o3 L, " Ry ' (* 1),y

= RPR,“Ry " 1Ry 13 L "Ry Ly "R, (*m)y,

_ 3 p—d3 p—di PC1 PCl —C] —az p—Cy —ay p—cCy[/e
= RV R, “ Ry RI' Ry 112Cy "t Ly P RO Ly Ry (1)
= RPRY ™ Ry 1ot (") € Ly ROy Ry

where the last equality follows from the definition of °z and the fact that R%, L%, C are
grading-preserving operators. We also have

qi‘<a0(?o+uz€2+a4c4)723(ao, 60)7513(“27 Cz)T12(614, C4)

— ROR;“1y3L;“ Ry R Ry “ 113 Ly Ry RS Ry “ 1o L% Ry
= RfZREORgaOT%R;uzflng_ale_ao_c] LZ_aORz_tlflle_aARl_C’4

= szRgoiazR;aoiaZTBC;ZTBL;@R;HOL;LIOR;Q R;CITIZLJMR;CA‘
= Rf2R§07a2R3701123T13L;a2 C?R;aoL;aOT]zC;cl R;CIL;MR;C“
== RICZR;OiazRS_al‘L'BTBLI_aZ C;zflzRfaoLgaO C1—61L1—44R1—64R2—C1

= szRgoiazR;al‘[23‘[13T12Cf€1L;azR;aOL;mR;c“L;alR;q

— q;8a0a4RlczR§07azR;a1 T23T]3T12CfCIL;a3R;C3L£a1 Rgc] ]
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Comparing the obtained expressions and using that t1,723(°7),, = 723713712, We conclude
that the charged pentagon equality follows from the formula

aopco + arcr + ageq + 2apay = ajcy + ascs.
This formula is verified as follows:

aopco + arcp + agcq + 2apas = ao(Co + a4) + arcr + a4(ao + C4)
=apcr + ax(cr + ¢3) + azcs
= (ap + ax)c1 + (ar + ag)c3 = ayey + ascs.
We now prove the first inversion identity:
01(a, €)T(—a, —¢) = q; “ RER “t21 Ly “R; ¢} RSLYTRI R,
= RSR{ ‘1 TR{R; = RSR“n* R{ Ry = 1°,
where the second equality follows from (27) since ¢ is a T-scalar. The equality
RiR “n*R{R,“ =n"*
follows from the fact that z° is the projector on a direct sum of multiplicity spaces. The

second inversion identity is proved similarly. []

8. Charged 6j-symbols

1
Let i, j,k,l,mnel and a,ce EZ' Replacing T by T'(a,c) in the definition of the

positive 6j-symbol in Section 3.2, we obtain the charged positive 6j-symbol

. o feoenieononomn;

Replacing T by T'(a, c) in the definition of the negative 6j-symbol in Section 3.2, we obtain
the charged negative 6j-symbol

T ' '
(49) {; }; n}(a,c)eH,Z’@Hf@Hif@)Hg.

The formulas of Section 3.2 computing 7, T, 7, 7 in terms of the 6j-symbols extend to
the present setting by inserting (a, c) after each occurrence of T, T, 7, T and after each
6j-symbol.

The properties of the charged T-forms established in Section 7 can be rewritten in

1 1
terms of the charged 6j-symbols. For any a, b, c e 3 Zsuchthata+b+c= 3 formula (45a)
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yields

ik ) ko)
(50) {l . n}(aac)zpmzl)éﬁ A1A3({l ; m} (dvb)),

where A, is induced by the restriction of A to H,; ™ and A; is induced by the restriction of A
to H/,. Formula (45b) yields

(51) {; Ifq I;}(a,c):P(23)ql_2"AzB3<{: fn ;}_(b,c)>,

where A; is induced by the restriction of A to H{ " and Bj is induced by the restriction of B
to H ,éj Finally, formula (45c) yields

i j ok " i n m)
(52) {Z . n}(a,c)—P<1234)q12 BzB4<{l* i j} (a,b)>,

where B, is induced by the restriction of B to H " and By is induced by the restriction of B
to H”

ml*
The charged pentagon identity yields that for any jo, ji,..., js € [ and any ay, a, a2,

1 Cp
az, dg, €y, C1, C2, C3, C4 € EZ satisfying (47),

(53) 2*114 ./713 /Iﬁl]({]l ].2 ]5}(610’ O)@{]l ] ].6}(6!2,6‘2)

jel J3 Jo ] Ja Jo J7

®{f.2 Js J}W,m))
Ja J1 8

—g. P Jsjs({f:l ]:2 ]S}a o ®{J:5 ]:3 JG}CZ,C)
I F133642) Js Jo Jr ( ) Ja Jo Js (a3, ¢3)

Here both sides lie in the k-vector space (20).

. . . . 1
The first inversion relation gives that for all i, j, k, k', [,me I and a,c € =7,

2
i j ok ik ,
Z i m({l . n}(dm)@){l . n} (—a,—C))=5/§gj,lP<432>(5fZl®5zﬁ)-

. . . . 1
The second inversion relation gives that for all i, j, I, m,n,n’ € I and a,c € EZ’

Z*U kl({i / k/}(_a’_C)@{i y l;}(%c)):ég/gu )0 ® 7).

I m n I m

9. Three-manifold invariants

In this section, following the ideas of the paper [7], we associate to a W-system an
invariant of an oriented compact three-manifold together with a non-empty link.
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9.1. Topological preliminaries. Throughout this subsection, the symbol M denotes
a closed connected orientable 3-manifold. Following [2], by a quasi-regular triangulation
of M we mean a decomposition of M as a union of embedded tetrahedra such that the
intersection of any two tetrahedra is a union (possibly, empty) of several of their vertices,
edges, and (2-dimensional) faces. Quasi-regular triangulations differ from the usual triangu-
lations in that they may have tetrahedra meeting along several vertices, edges, and faces.
Note that each edge of a quasi-regular triangulation has two distinct endpoints.

A Hamiltonian link in a quasi-regular triangulation .7 of M is a set % of unoriented
edges of 7 such that every vertex of .7 belongs to exactly two elements of .#. Then the
union of the edges of 7 belonging to ¥ is a link L in M. We call the pair (7, %) an
H-triangulation of (M, L).

Proposition 25 ([2], Proposition 4.20). For any non-empty link L in M, the pair
(M, L) admits an H-triangulation.

H-triangulations of (M, L) can be related by elementary moves of two types, the
H-bubble moves and the H-Pachner 2 <+ 3 moves. The positive H-bubble move on an
H-triangulation (7, %) starts with a choice of a face F = vjv,03 of 7 such that at least
one of its edges, say vjvs, is in . Consider two tetrahedra of .7 meeting along F. We
unglue these tetrahedra along F' and insert a 3-ball between the resulting two copies of F.
We triangulate this 3-ball by adding a vertex vy at its center and three edges connecting vy
to vy, vy, and v3. The edge v;v; is removed from % and replaced by the edges vyv4 and v;vy4.
This move can be visualized as the transformation

where the bold (green) edges belong to #. The inverse move is the negative H-bubble move.
The positive H-Pachner 2 < 3 move can be visualized as the transformation

This move preserves the set .#. The inverse move is the negative H-Pachner move; it is
allowed only when the edge common to the three tetrahedra on the right is not in .%.

Proposition 26 ([2], Proposition 4.23). Let L be a non-empty link in M. Any two
H-triangulations of (M, L) can be related by a finite sequence of H-bubble moves and
H-Pachner moves in the class of H-triangulations of (M, L).

Charges on H-triangulations first have been introduced in [7] and the corresponding
theory subsequently has been developed in [2]. This theory is a natural extension of the
theory of angle structures, see for example [13], [14], into the framework of arbitrary trian-
gulated three-manifolds.
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1 :
By a charge on a tetrahedron 7', we mean a EZ-Valued function ¢ on the set of edges

of T such that c(e) = c(e’) for any opposite edges e, ¢’ and c(e;) + ¢(e2) + ¢(e3) = 1/2 for
any edges ¢, e», ez of T forming the boundary of a face. Consider now an H-triangulation
(7,%) of (M, L) as above. Let E(7) be the set of edges of .7 and let E(7) be the set
of pairs (a tetrahedron 7 of 7, an edge of T). Let e : E(7) — E(J) be the obvious
projection. For any edge e of 7, the set ¢, (¢) has n elements, where n is the number of

tetrahedra of 7 adjacent to e.

. . 1
Definition 27. A charge on (7 ,%)isamapc: E(J) — EZ such that

(1) the restriction of ¢ to any tetrahedron 7 of 7 is a charge on 7T,

(i1) for each edge e of 7 not belonging to ¥ we have > c¢(e’) =1,

e'e E_;J (e)

(iii) for each edge e of 7 belonging to ¥ we have > ¢(¢/) =0.

eee;l(e)

Each charge ¢ on (7, %) determines a cohomology class [c] e H'(M;7/27) as fol-
lows. Let s be a simple closed curve in M which lies in general position with respect to .7
and such that s never leaves a tetrahedron 7 of 7 through the same 2-face by which it
entered. Thus each time s passes through 7', it determines a unique edge e belonging to
both the entering and departing faces. The sum of the residues 2¢|,(e) (mod2) € Z/27
over all passages of s through tetrahedra of  depends only on the homology class of s
and is the value of [c] on s.

It is known that each H-triangulation (7, %) of (M, L) has a charge representing
any given element of H'(M;Z/27Z). We briefly outline a proof of this claim following
[13], [1] and referring to these papers for the exact definitions and the details. In this
argument (and only here) we shall use “integral charges” that are equal to two times our
charges and take only integer values. Let J be the abelian group generated by pairs (a
tetrahedron A of 7, an edge of A) modulo the relations (A,e) = (A, e) where ¢ is the
edge opposite to e in A. An integral charge on .7 may be seen as an element of J satisfying
certain additional properties. Recall the Neumann chain complex associated with 7:

=G s lilo o).

Here C; with i =0,1 is the free abelian group freely generated by the i-dimensional
(unoriented) simplices of 7 and J is the quotient of J by the relations

(Ayer) + (Ayez2) + (Aye3) =0

where e, e, e3 are edges of a tetrahedron A €  forming a triangle. The homomorphisms
o, f are defined by Neumann and the homomorphisms o*, f* are their transposes with
respect to the obvious bases of Cy, C; and a canonical non-degenerate bilinear form on J.
The relationship to the charges comes from the fact that * : J — C; splits canonically as
a composition of certain homomorphisms 8, : J — J and B, : J — Cj. The rest of the
argument is a homological chase. One starts with any x € J such that for every tetrahe-
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dron A of 7, the coefficients of the edges of A in x total to 1. One shows that then
Pr(x) — 20 € Ker(a*) where g € C; is the formal sum of the edges of 7 not belonging
to . Using Neumann’s computation of H;(7), one deduces that f,(x) — 20 = fi*(a) for
some a € J. Then x’ = x — f,(«a) is an integral charge on 7. Next, using Neumann'’s for-
mula Hi(t) = H'(M;Z/2Z), one picks a cycle b e J of the chain complex 7 such that
x’ — B,(b) is an integral charge on .7 representing the given element of H'(M;Z/27).

Lemma 28. Let (7,%) and (7', %") be H-triangulations of (M,L) such that
(7', &) is obtained from (7, %) by an H-Pachner move or an H-bubble move. Let ¢ be a
charge on (7, ). Then there exists a charge ¢’ on (7', ") such that ¢' equals ¢ on all pairs
(a tetrahedron T of T not involved in the move, an edge of T) and for any common edge e
of 7 and T,

(54) Y, ca)= ¥ ).

ace;!(e) a’ee(e)

Moreover, [c] = [¢'].
Proof. A straightforward calculation, cf. [2], Lemma 4.10. []

The charge ¢’ in this lemma is unique if the move (7, %) — (7', #’) is negative. In
this case we say that ¢’ is induced by c. If the move (7, %) — (T ', £’') is positive, then ¢’
is not unique, see [2], Lemma 4.12.

9.2. The algebraic data. We describe the algebraic data needed to define our
3-manifold invariant. Let % be a monoidal Ab-category whose ground ring k is a field. Fix
a W-system in % with distinguished simple objects {¥;},.,. Fix a family {,} geq of finite
subsets of the set / numerated by elements of a group G and satisfying the following con-
ditions:

(i) Forany ge G, if i € I, theni* € I,-1.
(ii) Forany iy € I, i € I,, k € I\1,,,, with g1, g2 € G, we have H,i‘iz =0.

(iii) If iy € Iy, i> € I, with gy, ¢9> € G, then either g, = O or there is k € 1,4, such
that H,'” + 0.

(iv) For any finite family {g, € G},, there is g € G such that I, = 0 for all r.

(v) We are given a map b : / — k such that b(i) = b(i*) for all i e I, and for any
91,92 € G, k € I, such that I, + 0 and I, + 0,

S°  b(ir)b(ir) dim(H'*) = b(k).

f] EI‘JI .i2€1g2

9.3. G-colorings and state sums. We fix algebraic data as in Section 9.2. Let M be
a closed connected orientable 3-manifold and .7 a quasi-regular triangulation of M as in
Section 9.1. A G-coloring of 7 is a map ® from the set of oriented edges of 7 to G such
that
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(i) ®(—e) = D(e) " for any oriented edge e of 7, where —e is e with opposite orien-
tation;

(i1) if ey, ey, e3 are ordered edges of a face of 7 endowed with orientation induced by
the order, then ®(e;)®(ey)P(e3) = 1.

A G-gauge of 7 is a map from the set of vertices of 7 to G. The G-gauges of 7
form a multiplicative group which acts on the set of G-colorings of 7 as follows. If 0 is a
G-gauge of 7 and ® is a G-coloring of .7, then the G-coloring J® is given by

(00)(e) = (v, )(e)o(v])
where v, (resp. v,) is the initial (resp. terminal) vertex of an oriented edge e.

Let .# (M, G) be the set of conjugacy classes of group homomorphisms from the
fundamental group of M to G. The elements of .#(M,G) bijectively correspond to the
G-colorings of 7 considered up to gauge transformations. Indeed, for a vertex xy of 7,
each G-coloring ® of .7 determines a homomorphism 7; (M, xy) — G. To compute this
homomorphism on an element of 7;(M, xy), one represents this element by a loop based
at xo and formed by a sequence of oriented edges of 7; then one takes the product of the
values of ® on these edges. Let [®] € .#(M, G) be the conjugacy class of this homomor-
phism. We say that ® represents [®]. The assignment ® — [®] establishes the bijective cor-
respondence mentioned above.

A state of a G-coloring @ of 7 is a map ¢ assigning to every oriented edge e of
an element p(e) of Iy such that p(—e) = ¢p(e)” for all e. The set of all states of @ is
denoted St(®). The identity b(gp(e)) = b(p(—e)) allows us to use the notation b(¢p(e)) for
non-oriented edges. It is easy to see that St(®) + () if and only if Iy () =+ 0 for all oriented
edges e of 7. In this case we say that @ is admissible.

Let now L be a non-empty link in M and (7, %) be an H-triangulation of (M, L)
with charge ¢. From this data, we derive a certain partition function (state sum) as follows.
Fix a total order on the set of vertices of .7 . Consider a tetrahedron T of .7 with vertices
vy, U2, U3, U4 In increasing order. We say that T is right oriented if the tangent vectors v|v,,
v v3, v1v4 form a positive basis in the tangent space of M; otherwise T is left oriented. For
an admissible G-coloring ® of .7 and a state ¢ € St(®), set

i=g(0w), j=¢@03), k=g¢(0m0),
[ =p(vs02), m=g(vivs), n=ot203),
where v;0; is the oriented edge of T going from v; to v;. Set
i j k . . .
{l }j/l " }(c(vlvz),c(vzv3)) if T is right oriented,

7l, =

» . . -
{; J /;} (c(vra), cvyvs)) if T is left oriented.
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The 6j-symbol |T'|, belongs to the tensor product of four multiplicity modules associated to
the faces of T'. Specifically,

7 HY ® H! ® H) @ H) if T is right oriented,
€ . .
" |HY®H]!'®Hf ® HYj if T is left oriented.

Note that any face of .7 belongs to exactly two tetrahedra of .77, and the associated multi-
plicity modules are dual to each other, see Lemma 1. These dualities allow us to contract
&7, into a scalar. Denote by cntr the tensor product of all these tensor contractions
T

determined by the faces of 7. Set

KT, % ®,c)= (1‘[ b(qp(e))) cntr<§>|ﬂ¢> ek,

peSt(P) \ee

where T runs over all tetrahedra of 7. To compute K(.7, %, ®, ¢) we may need to order
the faces of .7, but the result does not depend on this order.

Theorem 29. Suppose that there exists a scalar q € k such that q is T-equal to the
operator

Gld; ® g '1d; e End(H).

Then, up to multiplication by integer powers of q, the state sum K(7 , &, D, ¢) depends only
on the isotopy class of L in M, the conjugacy class [®] € M4 (M, G), and the cohomology class
[c] e HY(M;7/27) (and does not depend on the choice of c in its cohomology class, the
admissible representative ® of [®], the H-triangulation 7 of (M, L), and the ordering of
the vertices of T).

A proof of this theorem will be given in Section 10.

Lemma 30. Any element of the set #(M,G) can be represented by an admissible
G-coloring on an arbitrary quasi-regular triangulation I of M.

Proof. Take any G-coloring ® of 7 representing the given element of .# (M, G).
We say that a vertex of 7 is bad for @ if there is an oriented edge e in 7 incident to this
vertex and such that Ip() = 0. It is clear that ® is admissible if and only if ® has no bad
vertices. We show how to modify @ in the class [®@] to reduce the number of bad vertices.
Observe first that each pair (a vertex v of 7, an element g of G) determines a G-gauge 67
whose value on any vertex u of .7 is defined by

(55) 5"9(u) = {g ifu =0,
1 else.

Let v be a bad vertex for ®. Pick any g € G such that I,q() + 0 for all edges ¢ of 7
adjacent to v and oriented away from v. The G-coloring 6"Y® takes values in the set
{he G|I, # 0} on all edges of 7 incident to v and takes the same values as @ on all edges
of 7 not incident to v. Here we use the fact that the edges of .7 are not loops which is
ensured by the quasi-regularity of .7. The transformation ® +— J0"?® decreases the number
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of bad vertices. Repeating this argument, we find a G-coloring without bad vertices in the
class [@]. [

We represent any he .#(M,G) by an admissible G-coloring @ of 7 and any
(e H'(M;Z7/27) by a charge ¢, and set

K(M,L,h,{) =K(T,%,®,c) ek

By Theorem 29, K(M, L, h,{) is a topological invariant of the tuple (M, L, h,c).

10. Proof of Theorem 29
Throughout this section we keep the assumptions of Theorem 29.

Lemma 31. Up to multiplication by integer powers of q, K(7,%,®,c) does not
depend on the ordering of the vertices of 7.

Proof. Consider the natural action of the symmetric group on the orderings of the
vertices of .7 . As the symmetric group is generated by simple transpositions (r,r + 1), it is
enough to consider the action of one such transposition on an ordering. If the vertices
labeled by r and r+ 1 do not span an edge of .7, then the new state sum is identical to
the old one. Suppose that an edge, e, of 7 connects the vertices labeled by r and r + 1.
Let P be the set of all labels p such that the vertices labeled by r, r + 1, and p form a face
of 7. This face, denoted f,, belongs to two adjacent tetrahedra of .7~ containing e and
determines two dual multiplicity spaces.

For a tetrahedron T of .7, consider the transformation of the 6j-symbol |T’|, under
the permutation (r,r +1). If 7" does not contain e, then |7'|, does not change. We claim
that for 7' > e, the 6j-symbol |7'|, is multiplied by an integer power of g independent of ¢
and composed with the tensor product of operators acting on the multiplicity spaces corre-
sponding to f,, where p runs over the 2-element set {p € P| f, — T}. Here the operator
corresponding to p in this set is A if p >r and B if p < r. Since A and B are involutive
and self-dual, the effect of this transformation after the tensor contraction cntr will be mul-
tiplication by an integer power of ¢ independent of ¢. This will imply the lemma.

The claim above follows from equations (50)—(52). Indeed, let r, r+ 1, p, p’ be the
labels of the vertices of 7. Suppose for concreteness that p < r and r+ 1 < p’ (the other
cases are similar). Then the left- (resp. right-) hand side of formula (51) with a = ¢(T, vpv;),
b= c(T,vpvr11), ¢ = ¢(T,v,0,41) computes |7, before (resp. after) the permutation of r
and r + 1. The operators A, and Bj in (51) act on the multiplicity spaces corresponding to
the faces f, and f,, respectively. Therefore formula (51) implies our claim. []

Lemma 32. Let (7,%), (7', %) be H-triangulations of (M, L) such that (7', ")
is obtained from (7, %) by a negative H-Pachner move or a negative H-bubble move. Then
any admissible G-coloring ® on T restricts to an admissible G-coloring ®' of 7. For any
charge ¢ on (7, %), we have (up to multiplication by powers of q)

(56) KT, %, ®,c)=KT' &, 0 ),

where ¢' is the charge on (7', %) induced by c.
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Proof. The values of @' form a subset of the set of values of ®; therefore the admis-
sibility of @ implies the admissibility of @’

The rest of the proof follows the lines of [15], Section VIIL.2.3, via translating the
geometric moves into algebraic identities. First, we prove (56) for a negative H-bubble
move. Let vy, vy, v3, v4 be the vertices of .7 and F = vjv,v3 the face of 7' as in the descrip-
tion of the bubble move in Section 9.1 (see Figure 1). Since our state sums do not depend
on the ordering of the vertices, we assume that vy is the last in the order of the vertices of .J~
and the order of the vertices of .7 is induced by the order of the vertices of .7". We can also
assume that vivg, v3v4 € £ and viv; € £, Let T, (resp. T)) be the right oriented (resp. left

. . . 1
oriented) tetrahedron of 7 disappearing under the move. Let a,b € EZ be the c-charges

of the edges vjv;, vov3 of T, respectively. The properties of a charge imply that the charges
of the edges v vy, vov3 of T) are —a and —b, respectively.

J .

U]

Figure 1. T; U T, colored by ¢ € S.

Fix a state ¢’ € St(®’) and let S = St(®) be the set of all states of ® extending ¢’. It is
enough to show that the term K, of K(7', £, @', ¢’) associated to ¢’ is equal to the sum

> K, of the terms of K(7, &, ®, ¢) associated to all p € S. Set i = ¢'(vi03), j = ¢/ (V203),
pesS
and k = ¢'(v1v3). For any distinct indices p,q e {1,2,3,4}, set I, = logs) < 1. The

admissibility of @ implies that 1, # 0 for all p, q. Clearly, i € I», j € I3, k € I;3. A state
@ € S is determined by the labels

I = ¢(vs0s) € [y, m=p(viva) € L, n = p(v202) € Da.

We have

i j k i j k)
L A R R S N

I m

It is convenient to write |7}/ for |T;|, and \T3| 7% for 73],

Imn Imn

Denote by #, the tensor contraction determined by a face f. We have
Ky = *p (b(k)X ), where X is the term of the state sum determined by ¢’ before contraction
«xp and multiplication by b(k). Let F, and F; be the faces of T, and T}, respectively, with
vertices vy, vy, v3. We have
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YK, = *p, *p (X ® > b(/)b(m) *Zl *]"1 *I";(‘T,Uﬁ; ® ]T[‘;ZZ;H)>

(/7ES 16134,}7!6114,}16124

=*F,*F,<X® > b<l>b(m>*,,’21<2%ﬁ*?;\Tr!}L’i1®!Tz\}f;i‘n>>

16134,}716114 }’l6124

=mw{X® 5 mmwnﬂ%w%a%ﬁ

16134,}7!6114

=mm@® zbmmwmwwﬁ

16134,}716114

where the third equality follows from the first inversion relation and condition (ii) in
Section 9.2. The existence of the admissible coloring @ and condition (iii) of Section 9.2
imply that in the latter expression g;; = 1 for all / € I34. Therefore this expression is equal
to

*F, ¥F <X® > b(l)b(M*)dim(Hlﬁ”*)(Sl’O

16134,1116114

= g, *F, <X® » b(l)b(m’)dim(H,ﬁ’I")&Z)

16134 m’ 6141
)

= x5, 45, (X @ b(k*)0]) = *F, x5 (X @ b(k)J]) = #r(b(k)X) =Ky,

where the second equality is ensured by condition (v) in Section 9.2. This proves the lemma
for the H-bubble moves. Similarly, the H-Pachner move translates into the charged penta-
gon identity (53), see Figure 2. []

Figure 2. Labeling for H-Pachner move.

Lemma 33. Let v be a vertex of 7 and let g € G be such that I, + 0. If ® and 5*9D
are admissible G-colorings of 7, then K(7 , %, ®,¢) = K(T , L,0"D, ¢), where 6" is the
G-gauge of 7 defined in (55).

Proof. A similar claim in a simpler setting (no charges and G is abelian) was estab-
lished in [6], Lemma 27. The proof there relies on Lemma 26 of the same paper. Replacing
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Lemma 26 by Lemma 32 above and making the appropriate adjustments, we easily adapt
the argument in [6] to the present setting. []

Lemma 34. If admissible G-colorings ® and ®' of T represent the same element of
M(M,G), then K(T, L, ®,¢c) =K(T, L, D c) for any charge c.

Proof.  Since [®] = [®’], there are pairs (v;, g;) € {vertices of 7 } x G such that
(I)/ — 5”;’11?}”5”)1—1;.‘]”—1 .. .551»91(1).

Note that the gauges 0”7 and 0 9" commute for all ¢,¢’ € G provided the vertices v, v’ are
distinct. Using this property and the identity 6"90"¢9 =09 | we can ensure that all the
vertices v; in the expansion of @' are pairwise distinct.

We prove the lemma by induction on 7. If n = 0, then ®' = ® and there is nothing
to prove. For n = 1, pick any g € G such that the sets /,, Igg;l, L), and Iggl—l@/(e) are
non-empty for all oriented edges e of 7 outgoing from v;. Then the colorings 6”/® and

5799 @' are admissible. Clearly,
501-,091’1(1)' = O In§n-1:9n-1 . §V2:9259 ]
Lemma 33 and the induction assumption imply that
K(7,%,®,¢c) =K(T,%,0"m0,¢)
— K(ﬁ" gvéﬁllﬁg)iévn—lvgrl—l .. .502~,925U110(D’ C)

= K(T, 2,69 @ ) =K(T, 2, ¢). O

Lemma 34 implies that K(7, %, ®,¢) depends only on the element of .#(M,G)
represented by ®. We represent any /& € .#(M,G) by an admissible G-coloring ® of 7~
and set K(7, %, h,c) =K(7,%,®,c). The scalar K(7, Z, h, ¢) is invariant under negative
H-Pachner/H-bubble moves. More precisely, Lemma 32 implies that under the assump-
tions of this lemma, for any 4 € .# (M, G), we have (up to multiplication by powers of §)

(57) K(7, % hc)=K(T", 2" hc).

Lemma 35. For any he #(M,G), the scalar K(7 , %L, h,c) does not depend on the
choice of the charge c in its cohomology class.

Proof. The lemma is proved in two steps: first, any two charges are connected by a
finite sequence of local modifications and second, the state sum is shown to be preserved
under these modifications. Recall from Section 9.1 the set £(.7) of pairs (a tetrahedron T
of 7, an edge of T). Let * be the involution on E(.7) carrying a pair (T, e) to the pair
«(T,e) = (T,xe) where e is the edge of T opposite to e. Fix from now on an order on
the set of vertices of 7.

For each edge e of 7 we define a map d(e) : E(7) — {—1/2,0,1/2} as follows. Let
v be the vertex of e which is largest in the ordering of vertices. Let Ty, 11, T»,..., T, = Tp
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be the cyclically ordered tetrahedra of .7~ adjacent to e. We choose the cyclic order so that
the induced orientation in the plane transversal to e followed by the orientation of e to-
wards v determines the given orientation of M. For i =1,...,n, denote by ¢; the only
edge of the 2-face T;_| » T; which is distinct from e and incident to v. For any a € E (7),
set

1/2  ifa=(T;_1,e;) ora=*(T;_1,e;) forsomeie {1,...,n},
de)(a) =4 —1/2 if a= (T} e) ora=(T;e) forsomeie{l,... ,n},
0 otherwise.

It is easy to see that for any family of integers {4.}, numerated by the edges e of 7 the
sum ¢ + Y A.d(e) is a charge of (7, %) and [c +> Ze d(e)} = [c]. The following is due to
e e

Baseilhac [1], see also Neumann [13] and [2], Proposition 4.8:

Fact. For any pair of charges ¢, ¢’ of (7, %) with [c] = [¢], there is a family of inte-
gers { .}, numerated by the edges e of T such that ¢’ = c+ ) A.d(e).

Therefore to prove the lemma, it is enough to show that for any edge e of .7,
(58) K7, L, h,¢)=K(T,L, hc+de)).

We show how to reduce the case ¢ € ¥ to the case ¢ ¢ £. Suppose that e € #. Pick a face
F of 7 containing e. We apply the H-bubble move to F producing a new H-triangulation
(7, &) such that e viewed as an edge of .7, does not belong to %;. Pick a charge ¢; on 7,
inducing the charge ¢ on 7. A direct calculation shows that the charge ¢, + d(e) on 7,
induces the charge ¢ + d(e) on 7. By (57), we have

K(T, &L, h,c)=K(Tp, Lp,h,cp) and K(ﬂ,f,h,c+d(e)) = K(%,fb,h, Ch +d(e)).
Therefore, it is enough to prove (58) in the case e ¢ .Z.

Suppose from now on that e ¢ . We first reduce the proof of (58) to the case where e
is contained in at least three tetrahedra of 7 and J has a vertex such that there is precisely
one face of .7 containing e and this vertex. Let V' be the set of vertices of 7. Pick a face of
J not containing e and having at least one side in .. We apply to this face the H-bubble
move producing a new H-triangulation (7', #') whose set of vertices is the union of V
with a 1-point set {vo}. Pick a charge ¢’ on 7 inducing the charge ¢ on 7. We can find
a sequence Ty, T1,...,T,, of distinct tetrahedra of .7" with m = 1 such that: vy € Ty and
To n T is the face of Ty opposite to vg; T; N T contains a common face of 7; and Tj,
for all i; T; does not contain e for all i < n and e = T},,. Generally speaking, the intersection
T; n T;1 may contain more than one face; we pick any face in this intersection and denote
it T; ~' Ty, 1. We apply to 7' a sequence of m positive H-Pachner moves. The first move
replaces the pair Ty, T} by three tetrahedra and adds an edge connecting vy to the vertex of
T opposite to Ty ' T = Ty n T}. One of these new three tetrahedra, 7, contains the face
T, ' T,. The second move replaces the pair ¢, 7, by three tetrahedra and adds an edge
connecting vy to the vertex of 7, opposite to 71 n' T,. Continuing in this way m times,
we transform (7', #’) into a new H-triangulation (7", #”) having a (unique) face that
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contains both vy and e. The triangulation 7" and all the intermediate triangulations are
quasi-regular because the newly added edges always connect vy to another vertex (belong-
ing to V). Our transformations preserve the set VU {vy} of the vertices of the triangulation
and lift to the charges (though non-uniquely). If the charge ¢’ of 7' is transformed into a
charge ¢ at the k-th step, then ¢, + d(e) is a transformation of ¢’ + d(e) (this is obvious for
k < m and is verified by a direct computation for k = m). Set ¢” = ¢,, and observe that as
above,

KT, L hc)=KT" L hc)=KT", L" hc"
and

K(Z,Z,hc+d(e) =K(T', L h,c' +d(e)) =K(T",L" h,¢" +dle)),

where on the right-hand side we view e as an edge of .7 ”. Note that e is contained in at
least three tetrahedra of 7" because at the (m — 1)-st step the edge e is contained in T,
and in at least one other tetrahedron of the triangulation, and the m-th move above creates
three tetrahedra of which two contain e. Moreover, there is precisely one face of 7" con-
taining e and the vertex vy.

Let A, 4, be the vertices of ¢ and ¢, 1, ...,t, with n = 3 be the cyclically ordered
tetrahedra of 7" adjacent to e. Let By = vy, Ba, ..., B, be the vertices of 7" (possibly
with repetitions) such that A, 4,, B;, Bi;; are the vertices of #; for all i (here B, = By).
Clearly, B; & B; for all i & 1. If n > 3, then we apply to .7 " a positive H-Pachner move
replacing ¢, t, by three tetrahedra and adding an edge connecting B; = vy to B;. This
produces a quasi-regular triangulation (7", #") of (M, L) with the same properties as
7" but having n — 1 tetrahedra adjacent to e. As above,

K(g’// g// h C//):K<g-//l g/// h C//l)
and

K(g'/ly g”; h7 c// + d(e)) = K(y”l7 3/1/7 h’ C/// + d(e))

for a certain charge ¢” on 7", Proceeding by induction, we reduce ourselves to the case
n = 3. In this case, the edge e may be eliminated by a negative H-Pachner move so that the
equality (58) follows from (57). [

Proof of Theorem 29. Theorem 29 follows from the results of this section and
Proposition 26. []

11. Cayley—Hamilton Hopf algebras

In this section, we recall some of the results of [4] and use them to construct W-systems
in categories. We assume that the ground field k is algebraically closed and is of charac-
teristic 0.
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11.1. Cayley—Hamilton algebras.

Definition 36. An algebra with trace is an (associative) algebra # over k with a
k-linear map ¢ : # — % such that for all a,b € %,

t(a)b = bi(a), t(ab) = t(ba), t(a)i(b) = t(t(a)b).

The image #(Z) of t is a subalgebra of Z called the trace subalgebra. Note that ()

is contained in the center Z of #. In the polynomial algebra k[xy,...,x,] we define the
elementary symmetric functions e;(x, ..., Xxy),

n n .

[Tx=x) =x"4+> eilxr,...,x,)x",

i=1 i=1

and the Newton functions
ok
Vi (X1, X) :le-, 1 £k <n,

which are well known to be related for certain uniquely defined polynomials P;(y1, ..., yi):

ei(xt, ..o xn) = Pi(Wy (X1, xn)s e Wi(Xa, o X))

Definition 37. An algebra with trace (2, ?) is an n-th Cayley—Hamilton algebra, if
t(1) = n and

for any a € .

A prototypical example of an n-th Cayley—Hamilton algebra is the matrix algebra
M, (k) of n x n matrices over k with the usual trace (with values in k = k1d = M, (k)).

Let (%, t) be a finitely generated n-th Cayley—Hamilton algebra with trace subalgebra
A = t(2). In the rest of this section we assume that:

(1) # is prime (that is the product of any two non-zero ideals is non-zero),
(i) Z is a finite A-module,

(iii) the center Z of Z is integrally closed,

(iv) A is a finitely generated algebra over k.

The reduced trace of # is defined by the formula 754/, = Tt, where m > 1 is the
n

minimal divisor of n such that # is an m-th Cayley—Hamilton algebra with trace "t Then
n

m= % : A = dim, %
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and there exists a reduced trace ty/7 : # — Z such that 14,4 =t7/40ty/7. Note that
(%Al =[%:Z|[Z: A

By an n-dimensional representation of (#,¢) we mean an algebra homomorphism
¢ : # — M, (k) which is compatible with traces in the sense that 7(a) = Tr(¢(a)) for all
a € A, where Tr is the standard trace on M, (k). Let V' (A4) be the affine algebraic variety
associated to A4, which can be identified with the maximal spectrum of 4 or with the set
of homomorphisms 4 — k. By [4], Theorem 3.1, the (closed) points of V' (A4) parametrize
semi-simple representations of (#,15/4) of dimension m = [# : A]. We can similarly use
the points of V'(4) to parametrize semi-simple representations of (Z,tz,) of dimension
p =1[Z: A]. Since Z is a finite A-module, Z also is a finite A-module. Then Z is a finitely
generated algebra over k and its associated affine variety V' (Z) parametrizes semi-simple
representations of (#, t5/,) of dimension [# : Z]. Observe finally that the inclusion 4 < Z
defines a morphism of algebraic varieties 7 : V(Z) — V(A) of degree p.

Given a point x € V(A4), denote by N, the corresponding m-dimensional semi-simple
representation of #. Given a point P € V(Z), denote by Mp the corresponding [# : Z]-
dimensional semi-simple representation of #. For x € V'(A), the fiber 7~ !(x) (with multi-
plicities) is a cycle > h;P; of degree > h; = p, where P; € V(Z) and h; = 1. One has the
following equality of #-modules:

Nx — @hiMPi-

The Zariski open subset of V' (A4) consisting of the points x such that 7z~!(x) consists
of p distinct points is called the unramified locus of #. For x in the unramified locus, any
P; € n7!(x) corresponds to an irreducible representation Mp..

11.2. Cayley—Hamilton Hopf algebras.

Definition 38. An n-th Cayley—Hamilton Hopf algebra is a Hopf algebra which is
also an n-th Cayley—Hamilton algebra such that the trace subalgebra is a Hopf subalgebra.

Assume now that # is a Cayley—Hamilton Hopf algebra satisfying the assumptions
(1)—(iv) of the last subsection. The co-multiplication on A defines an associative binary
operation on the variety G = V' (A4) while the antipode defines the inverse operation, so G
becomes an algebraic group. One has the following decomposition formula for x, y e G
([4], Proposition 5.15):

Ny ® N, =mN,,, wherem = [Z: A].

A pair x, y € G is generic if x, y and xy lie in the unramified locus. Then for each point
P e V(Z) lying in the fiber of x, y or xy the corresponding representation Mp is irreducible.
For Pen~!(x) and Qe n~ (), one has the following Clebsch-Gordan decomposition
([4], Theorem 5.16):

59 Mr@ My~ @ M and THC—(2:27]
(59) P 0= 0 an 0 T
Oen1(xy) o
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for some non-negative integers hg’Q. Also > hg’Q =m for all Oen~!(xy). Note that
P

generic pairs (x, y) form a Zariski open subvafiety in G x G.

For xe G we define a set I, as follows: if x is in the unramified locus, then
I, = n~!(x), otherwise I, = 0. Set I = |J I, and consider the family {Mp},_, of irreduc-
ible representations discussed above. ¥€¢

Theorem 39. Let € be the monoidal Ab-category of R-modules of finite dimension
over k. Then € has a Y-system with distinguished simple objects {Mp}p ;.

Proof- Any P € I belongs to I, for a unique point x of the unramified locus. Using
the antipode S : # — %, we associate to the irreducible representation Mp the dual repre-
sentation M together with the evaluation morphism of Z-modules My ® Mp — k and the
coevaluation morphism k — Mp ® M} determined by 1 — " v; ® v where {v;} is a basis
of Mp and {v;} is the dual basis of M. The representation M is isomorphic to Mp- where
P*=PoSen!'(x')and x~! = x o S. Thus, we obtain an involution I — I, P — P* and
#-module morphisms dp- : Mp- @ Mp — K, bp : k — Mp ® Mp- satisfying equation (1).
Equation (2) follows from (59). Thus, {Mp},_; is a W-system. []

Theorem 41.  Let b : I — k be the constant function taking the value 1/m. The triple
(G, 1,b) satisfies conditions (1)—(v) of Subsection 9.2 (where instead of Y-systems we should
speak of \W-systems).

Proof. Condition (i) follows from the fact that if x is in the unramified locus then
so is x~! = x o S. Conditions (ii) and (iii) follow from (59). Moreover, (59) implies that if
X1, X2, X1x7 are in the unramified locus and P € I, ,, then

. 1 .
> b(P)b(P)dim(HYT) = — Y dim(H)") =5 = b(P).
Piely, Prely, m Piely,Prely, m

This implies condition (v). Condition (iv) holds since the unramified locus is a Zariski open
subset of G = V(4). [

Remark 41. A Cayley—Hamilton Hopf algebra # is sovereign if % contains a group-
like element ¢ such that S2(x) = ¢~ 'x¢ for all x € 2. If Z is sovereign then the results of [3]
imply that the category % of Theorem 39 is sovereign (also known as pivotal). In this case,
the right duality comes from the sovereign structure on %. Then the general theory of
sovereign categories implies that the operator C = (AB)3 € End(H) is the identity.

11.3. Examples from quantum groups at roots of unity. Let g be a simple Lie algebra
of rank n over k = C with the root system A. Fix simple roots «;,...,a, € AT and denote
by (aU),” =1 the corresponding Cartan matrix. Denote by d; the length of the i-th simple
root.

For an odd positive integer N denote by w a primitive complex root of 1 of order N
(in the case of type G, we require that N ¢ 37).
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Consider the quantized universal enveloping algebra % ., = U, (g). It is an associative
unital algebra over C generated by K,,, where u runs over the weight lattice of g and E;, F;,
i=1,...,n with the defining relations

K,qu = K,u+v; Ko =1,
K E; = w“i(ﬂ)El.Kﬂ’ K, F; = w—ai(#)p}[(m

K, — K;
EiF; — FE; = 0 — %
. i

14y 1_ ij a;
2(—1)"[ k"’] ET T EEF =0, i+,
k=0

Wi

=gy 1 - ij a;
Z(—l)k[ k"f} FIro ™ pEE =0, i+,
k=0

Wi

where w; = w? and

) et P =l L =T
k] ke e T e e Belley e =

The formulas
AK,) =K, ® K,,
AE) =E®1+K, ®E;,
A(F)=1Q@F+F®K,,

define a homomorphism of algebras A : %, — %, ® %,. There are unique counit and
antipode turning %, into a Hopf algebra with comultiplication A. We denote by %7 the
subalgebras of %, generated by {E;}, and {F;}, respectively. The subalgebra generated by
{Kﬂ} will be denoted by 021 . We also consider Hopf subalgebras #* %107 ®UE. Tt is
known that the subalgebras Z — #E generated by EN, KV (respectlvely FYN, K}) and
the subalgebra Zy < %, generated by EN, FN, KY are central Hopf subalgebras. More-
over, 4~ and %, are Cayley—Hamllton Hopf algebras with trace subalgebras ZJr and
Z respectlvely, see [4]. In all these three situations, Theorem 39 produces a mon01da1
Ab-category ¢ with a W-system.

Conjecture 42. This W-system can be extended to a Y-system in € such that there
exists a scalar g€ C for which the operator q € End(H) of Lemma 19 is T-equal to
gld; ® g '1dg.

If this conjecture is true, then Theorem 29 implies that the state sum arising from %
with this W-system and the algebraic data of Theorem 40 is a topological invariant of the
triple (a closed connected oriented 3-manifold M, a non-empty link in M, a conjugacy class
of homomorphisms 7; (M) — G). In the next section, we verify Conjecture 42 for the Borel
subalgebra of U,(sly) for any primitive complex root of unity w of odd order N. The
corresponding topological invariant generalizes the one constructed in [7] which in the
case of links in the 3-sphere coincides with the N-colored Jones polynomial evaluated at co.
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12. The Borel subalgebra of U_(sl,)
12.1. The W-system. As above, fix a positive integer N and a primitive N-th root
of unity w. In what follows, Zy = Z/NZ. Consider the Hopf algebra B, defined by the
following presentation:

C<a*!,b|ab = wba,Aa) =a @ a,A(b) =a@b+b® ).

Following [7], [9], we consider the cyclic representations of B, i.e. the representations car-
rying b to an invertible operator.

Let G = R x R be the upper half plane with the group structure given by
(x, ¥)(u, 0) = (x + yu, yv).
As a topological space, the set I = G\ ({0} x R-) has two connected components
I ={(x,y) e G| +x > 0}.
We fix € € C such that ¢V = —1. In particular, in the case of odd N, we assume that e = —1.

We define the N-th root function {/x on real numbers x by the condition that it is positive
real for positive real x and {/x = ¢ {/—x for negative x. Define two maps

u:G— Ry, v:G— RygleRyy,
u(g) =uy; =y, v(g)=v,=7Vx, g=(x,9)eq.

We have the following properties:

1
Ugh = UgUp, Ug-1 = —,
Uy
and
v
_ Y _ 4l
Vg1 =€g—, € =€, g€l
Uy

To any g € I, we associate a B-module V, which is an N-dimensional vector space with a
distinguished basis {w;} and the (left) B,-module structure is given by the formulae

ieZy>
aw; = ugw'w;,  bwi =v,wip, i€ly.

Note that the distinguished basis permits to identify V, with ch.

In what follows, we need the following function:

1
(Dg,m _ (_eg)mwm(mfl)/Z7 (I)g,m — , me Zy.
g,m
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Proposition 43.  In the category of Be-modules, the set of objects {Vy},.; with the
involution g* = g~ is a WY-system, where the duality morphisms

dg : Vy@Vy —=C, by:C—V,QVy,

are given by the formulae

O, ifi+j=0 _
gi i+ j=0 bg(]):zq)g*,,iwl'@)wfia

0 otherwise, i€ Zy

@) =

and the multiplicity spaces H ,{ 9 are such that dim(H hf ) is N if h = fg and zero otherwise.

Proof. It is straightforward to verify that d, and b, are morphisms of the category of
B_-modules. The dimensions of the multiplicity spaces were calculated in 7], [9]. [

12.2. Calculation of the operators A, B, L, and R. Let us call a pair of elements
g,h € I admissible if gh e I. For an operator E satisfying the equation EY = —1 and an
admissible pair (g,/), we associate an operator valued function ¥, ,(E) as a solution of
the functional equation

Wy n(E) a Ugh

\Pg.’h(wE) Uy — ugth

More precisely, we choose numerical coefficients y,, ,, ,,,, m € Zy, such that

‘Pg-,h(E> = Z lpg,h,m<€E)m'

meZN

The above functional equation translates to the following difference equation:

-1
lpg,h.m € UGl

= — —.
lpg, h,m—1 Ug — Ugh™

We fix a unique solution of the latter equation normalized so that v, , , = 1. Using the
notation of [10], we have

lpg,h,m = w(vgn, ugon/e, vy m), Wy u(E) = f(vgn/vg,0| Eugon/vy),

where
_ (/)" N N _ _N
W(x7y7z|m>_(wx/z;w)m7 X +y =z I
. (wy; @) N N\_N
fx,y|z)= " L —x" =(1—y™M)z",
(x,»]2) ngw (oxi ), ( )
and

m—1

(x; @), = [1 (1 - xa).
j=0
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For two operators U and V satisfying the conditions UY = V¥ =1, UV = VU, we
also define

1 L
LU V)=— Y @iUV/.
Nz',jeZN

In what follows, the standard basis {e;} of C" will be indexed by elements of Zy. Define
operators X, Y € Aut(C"),

Xe,- = w’e,-, Ye[ = €jt+1, ie ZN.

For gel, let n,: B, — End(V,) be the algebra homomorphism corresponding to the
B-module structure of V.

Lemma 44. For any admissible pair (g, h), the operator valued function
Sen =Y u(~Y ' X@YV)L(Y® 1,1 ®X)
takes its values in the set of invertible matrices and satisfies the equation
(1 ® 1) (A(X)) = Sy (ms(x) @ dc) Sy}, Ve B
Proof. A straightforward computation. []

The operator S, ;, considered as a linear map S, , : Vy ® CY — V, ® Vj, permits to
identify the multiplicity spaces H j’,;h and H gglz with C" and (CV)*, respectively, through the
formulae

Jo=S8,,(v® f), feHygh’h,Ue Vs
flo@w) = (idy, ® f)(S, (v @w)), veVg,Wth,feHggl}l

In what follows, we shall use the notation e; and ¢; for the dual bases in H ",;h and H ;’}}1,
respectively, which correspond to the standard dual bases in CV and (C")*.

Lemma 45. The action of the operators A, A*, B, and B* is given by

Ae; =Wy gn(egm@) 3 Dy /e]’ Arei =Yyn(w@/eg) 3 Oy j- le

JEZy JELN

g,h h
e;e H?", ef eH . gh?

gh > %J
Ae.*:; Z(T) s A*e*:; Zq_)*e
YONY (@) E7, g9,j—ijs P TN e,m) 5, g*.i—j€j>
el eH i € € H]f oh
Be; = 1 D, . B*e<:; o* quh *GHg
l V(Ugn/vg) bt ' v(vg/vgn) T gh > “— gh,h*>

Be! = v(vy/vgn)@pe —ie—i,  Bel = v(vg/v,)®pie—i, e} eH"

h,h*
g €= eI,
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where

1 —xV

v(x) :7]\,(1 "
Proof. From Lemma 44 it follows that for any x € V,, y € H}/ e H ;h’h we have
(dg ®idy,)(idy,. ® Sg.1)(Sye,gn ® ide];h)(x ®y®z)=x{y,Az).

Starting from this identity, and using the results of [10], Appendices A and C, a straightfor-
ward calculation yields the formulas above for the action of A4.

Similarly, for any xe V,, ye H ;h’h*, zeH ;h’h the identity
(idyg ® dh)(Sg’hP ® idyh* )(ing/_/y ® Sgh,h*)(z ®xR y) = x(y, BZ>
gh
gives rise to the action of the operator B. [

Lemma 46. The action of the operators L = A*A and R = B* B is given by

U, vy N—-1
N/
Le,-—( g ) €i_1, E[GHQ'I

gh >

N—-1
Uy
Le?‘—(y 1> e’ €;<€th

g,h’

b AN

Re; =w™ (—q> e, e¢€ Hg,’h,
v g
gh

N-1

iV h

Re! =w ’<—g> ef, e eH’,.
U J7
gh

Proof- The case of R is straightforward. In the case of L we use the equality
(X, 0| zw) = XV (2,0 | xw)
for the function f(x, y|z) of [10]. [
12.3. The ¥-system for odd N. Assume from now on that N is odd.

1 Proposition1 47. The W-system of Proposition 43 extends to a W-system where
C> = 1Idy and R is given by

N-1

1 vy v\ 2 i
Ree; =w () <—q> €, eiEHggl;l’

i g,h°

1 vy U\ 2
Rze?‘:w(z)’<_g> er e,.*eth
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Proof. Since N is odd, we can set e = —1, and for any g € I, the coordinates u,
and v, are real numbers. In particular, as the operator r = R" has a positive spectrum, we
define /r as the unique positive operator such that (\/r ) = r. Define

N+1

= (V'R

ol—

R

Let us calculate R%ef for e;e H, ‘“ erte R = RyR; as the product of commutmg oper-
ators Ry and R; where Ry = (v,,/vjh) - and Rie; = we; for ¢ e Hg Then we have
RY =1dyandr=RY =R)YRY =R}, s

N+1

(\/’j)flRTei = (Rév)*1/2R(()N+l)/2R§N+l)/2ei _ (Ug/vgh)%ilwi(%)iei
The computation of R%el.* is similar.

Next consider the operator
C = (4AB)* = A(BAB)AB = AA*B*A*AB = L 'B*LB.

From Lemmas 45 and 46 it is ecasy to see that L~ 'B*LB = Idy. Thus, we can define
C: = 1dy. Then it is easy to see that Cz R: satisfy equations (34) and (37) since C and R
satisfy analogous formulas without square roots. [

Lemma 48. The operator L: = BARAB is given by

N-1

1 UyUp z g,h
Le; = < > ei-(N+1)/2, € € Hyw,
Ugh

N-1
1 u,vp\ 2 I
5% g * * gh
LZei = <—vl > el-Jr(NJr])/z, el- EHng.
gh

Proof. Write L = LoL, as the product of commuting operators Ly and L; where

N-1
— e
L/ h gh —
®H¢] h Ugh

and L1 is a translation operator such that LY = Idy. We will show that L= L(l)/ 2L§N+1)/ 2,
Let ¥’ = LY = BAr 'AB where r = R". Then

Lo|,

L: = BA\IR™ = (Vi) 'BAR T AB= (Vi) 'L

Since ' = LY = L}’ we have

\7+1 N+l

. Nt 1 oNi
=V LY = W)Ly L = L)

and the formulas of the lemma follow. []
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1 1 L1 .
Lemma 49. The operator ¢ = R:BL:BL™2C™2 has the form

g=(-1)""V2%(51d, ® w"1dy) € End(H),
N2 -1
R

where a =

Proof. A direct computation using Proposition 47 and Lemma 48 shows that
ger = (—1) VD25 (5.,
for e; € H{féh. Similarly, gef = (—1)" /5~ (5 )e fore; e H;h O
For ge G set I, ={g} < I, if geI and I, =0, otherwise. Let b: 7 — C be the

constant function taking the value v Then the triple (G, 1,b) satisfies conditions (i)—(v)

of Subsection 9.2. We summarize the results of this section in the following theorem.

Theorem 50. For any odd N, the category of Bo-modules has a ¥-system such that
the algebraic data (G, 1,b) satisfies conditions (1)—(v) of Subsection 9.2 and

g=(-)"" (@ dy @ = 1dy),
NZ-1
T

where a =

Thus, the category of B -modules gives rise to a topological invariant as in Theo-
rem 29. As mentioned above, this invariant generalizes that of [7].

Appendix

The relations in the fundamental lemma (Lemma 6) express the action of the
standard generators of the symmetric group S, on the tensors 7', T or equivalently on the
tensors S, S defined at the end of Section 2.2. We give a geometric interpretation of this
action in the case where the operators 4 and B are symmetric, i.e., 4 = A*, B= B*. This
interpretation involves a combinatorial 3-dimensional TQFT which we now define.

Consider a compact oriented surface (possibly with boundary) endowed with oriented
cellular structure X such that all 2-cells are either bigons or triangles. For example, for any
g, e {—1,+1}, the unit disk D in C has such a structure consisting of a single bigon with
two O-cells {+1} and two 1-cells ¢} : [0,1] — D given by el () = ee®™ and e! (1) = pe ™
where 7 € [0, 1].

A bigon of X is inessential if its edges are co-oriented. In the example above, the cel-
lular structures with ¢ = u are inessential. A triangular 2-cell of X is positive (resp. negative)
if the orientation of precisely two (resp. one) of its edges is compatible with that of the cell
itself. We shall consider only cellular structures £ without inessential bigons and such that
all the triangular cells are either positive or negative. We associate the 1-dimensional vector
space C to all bigons, the vector space H to all positive triangles and H to all negative
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triangles. Finally, we associate with X the tensor product over C of these vector spaces
numerated by the 2-cells of X. It is isomorphic to H®"™ ® H®"-, where m, (resp. m_) is
the number of positive (resp. negative) triangles of X.

Next, we define elementary 3-cobordisms. An oriented tetrahedron in R* with ordered
vertices has a natural cell structure, where the orientation on the edges is induced from the
order. Such a tetrahedron is positive if the oriented edges (12,13,14) form a positive basis
in R* and negative otherwise. We associate with a positive (resp. negative) tetrahedron the
tensor Se HQ H® H® H (resp. Se H® H® H ® H). Here the face opposite to the
i-vertex corresponds to the i-th tensor factor for i € {1,2,3,4}.

Next, we consider cones over essential bigons with induced cellular structure. The
orientation condition on the triangular cells leaves four isotopy classes of such cones. We
describe them for the cone over the unit disk D < C with the cone point (0,1) € C x R. The
four possible cellular structures have three 0-cells {(+1,0), (0, 1)} and four 1-cells

{eg (1) = te™ el (1) = (£(1 —1),1)}

or
{eost) = Fe ™™, e, (1) = (£(1 - 1).1)}
or
{eon(r) = 2e™, e, (1) = (21,1 — 1)}
or else

{eéi([) = $‘eiimv‘ellir(l) = (il, 1 - Z)}

Let us call them cones of type a., a_, b, and b_, respectively. We associate to these cones
respectively the operators A|y, 4|4, Bly, and B|,; viewed as vectors in H®? or H®2. Note
that our cones are invariant under rotation by the angle = around the vertical coordinate
axis, and this invariance leads here to the condition 4 = 4*, B = B*.

Now we give a TQFT interpretation of the formulae (16a)—(16c). Let us take, for ex-
ample the right-hand side of (16a). The form S corresponds to a negative tetrahedron. The
edge joining the first and the second vertices is incident to two faces opposite to the third
and the forth vertices. We can glue two cones, one of type a, and another one of type a_,
to these two faces in the way that one of the edges of the base bigons are glued to the initial
edge 12 and of course by respecting all orientations. Namely, we glue the cone of type a. to
the face opposite to the third vertex of the tetrahedron so that the tip of the cone is glued to
the forth vertex, and we glue the cone of type a_ to the face opposite to the forth vertex
of the tetrahedron so that the tip of the cone is glued to the third vertex. Finally, we can
glue naturally the two bigons with each other by pushing continuously the initial edge
inside the ball and eventually closing the gap like a book. The result of all these operations
is that we obtain a positive tetrahedron, where the only difference with respect to the initial
tetrahedron is that the orientation of the initial edge 12 has changed and this corresponds
to changing the order of its vertices. Notice that as these vertices are neighbors, their
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exchange does not affect the orientation of all other edges. On the other hand, as the order
of the tensor components in our TQFT rules for tetrahedra is matched with the order of
vertices, we have to exchange also the first two tensor components. This explains the left-
hand side of (16a). The other two relations are interpreted in a similar manner.
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