
THE TIME-COURSE OF 
PERCEPTUAL DECISION-MAKING: 

TEMPORAL AND SPATIAL DYNAMICS OF 
SCALP-RECORDED OSCILLATORY 

PHASE AND AMPLITUDE 
 

 

 

 

 

 

 

Francisco J. Parada 

 

 

 

 

 

Submitted to the Faculty of the University Graduate School  

in partial fulfillment of the requirements for the degree  

Doctor of Philosophy  

in the Department of Psychological & Brain Sciences  

and the Program in Neuroscience 

Indiana University 

September 2014



 ii 

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy 

 

Doctoral Committee 

 

  

Professor Thomas Busey, Ph.D. 

 

  

Professor Olaf Sporns, Ph.D. 

 

  

 

Professor Aina Puce, Ph.D. 

 

  

Professor Bennett Bertenthal, Ph.D. 

 

  

Professor Robert Nosofsky, Ph.D. 

Date of dissertation defense: 

June 19th 2014 



 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © 2014 
Francisco J. Parada 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 iv 

 
Acknowledgments 
 

 

Probable things pass in front of our eyes without us even noticing, they compose 

most of our daily lives. Improbable things are remembered and commented for years to 

come as the odd event they are. Impossible things sometimes happen; rare fruits, ripened 

by time, and sweetened by the wonderful flavors of ordinary day-by-day routine. 

 

This dissertation is a very small seed of a very strange fruit. 

 

The fruit has been ripened by time well spent with my partner Alejandra; my 

parents Raquel and Eduardo; my brothers Christian and José; my aunts Marcela and 

Teresa; my grandparents Fresia and José; my academic advisors and professors Tom, 

Olaf, Aina, Oriana, Jorge, Nelson, Pedro, Pancho; and all of my extended family 

composed of my friends. The fruit has been sweetened by the fact that I would have not 

been able to do anything without their support and their love. If my life were worth 

something, it would only be because all these wonderful people surround me. 

 

 

 

 

 

 



 v 

Francisco J. Parada 

THE TIME-COURSE OF PERCEPTUAL DECISION-MAKING:  

TEMPORAL AND SPATIAL DYNAMICS OF SCALP-RECORDED OSCILLATORY 

PHASE AND AMPLITUDE 

 

In natural conditions the brain has to actively integrate information about the 

current percept with information about past/present behavioral demands and cognitive 

states of the observer along with future outcomes related to a decision. Despite of 

somewhat extensive research, we still know little about the neuro-cognitive mechanisms 

and temporal dynamics allowing an observer to perceive an object and rapidly make a 

decision about it.  

This dissertation is based on previous research suggesting that there must be at 

least two cognitive processes underlying a task such as perceptual decision-making. An 

early mechanism related to the perception of information and a later one related to the 

subsequent decision-making process. Evidence has led to the proposal of the match-and-

utilization model, stating that early synchronization in the gamma band is the result of a 

match between the current percept and memory/attentional processes. In contrast, later 

synchronization would reflect the utilization/readout of the early matching process; 

updating or influencing future processes.  

Evidence for this two-stage process, comes mainly from the classic event-related 

potential literature and, in lesser degree, from newer measures such as oscillatory 

amplitude. Moreover, the exploration of multivariate nonlinear techniques derived from 

the study of synchronization between and within neural systems, has been largely 
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neglected in the literature. Thus, explorations of a more complete electrophysiological 

picture than the one provided by ERP or ERSP analyses alone, can provide us more 

information about the relation between neural oscillations and ERP components as 

electrophysiological markers of cognitive events. This is important because differential 

roles for frequency, phase, and amplitude as different information coding strategies in 

neural systems have been theoretically suggested and empirically shown. The present 

work presents for the first time, concomitant analyses of phase and amplitude dynamics 

in the context of perceptual decision-making. 

In this dissertation I present a parametrical task that can effectively separate the 

visual properties of the stimuli from the decision regarding the task at hand. Results 

indicate that the experimental design effectively separated stimulus properties from task 

demands. Additionally, I suggest distinct roles for the temporal dynamics of gamma-band 

oscillations. Finally, a central role for alpha oscillations is suggested. 
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Glossary 
 
 
 
ERP:    Event-Related Potential. 1-D measure of mean potential  

differences from a predetermined baseline (e.g. pre-

stimulus onset, button press) 

ERSP:    Event-Related Spectral Power. Mean change in  

oscillatory amplitude power (i.e. spectral power) from  

baseline (e.g. pre-stimulus onset, button press) 

ITPC: Inter-Trial Phase Clustering. Event-related phase 

consistency across trials measured at 1 sensor. In the 

literature this measure has also been called inter-trial 

coherence [ITC], inter-trial phase-coherence [ITPC], phase-

locking factor [PLF], and phase-locking 

ISPC: Inter-Site Phase Clustering. Event-related phase 

consistency across trials measured between 2 sensors. In 

the literature this measure has also been called phase-

coherence, coherence, phase-locking value (PLV), and 

phase synchrony 

ERPAC:   Event-Related Phase-amplitude Coupling. Within- and/or  

between-sensors measure of modulation of a target 

amplitude by a source phase across trials 
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1. Introduction  
 

 A decision is a purposeful process whose result is the transient engagement to a 

categorical proposition. In order to make a decision, specific sensory information must be 

collected from the environment and used to guide behavior. The process of mapping 

perceptual states onto goal-directed actions is known as perceptual decision-making 

(Gold & Shadlen, 2007; Smith & Ratcliff, 2004).  

Our everyday lives are composed of an immeasurable number of decisions. 

Imagine taking a leisure walk in a park during spring on a quiet Sunday afternoon. There 

are no cars around and the weather is optimal. We could say that the demands of this task 

are low. You can allocate most of your attention into enjoying the blue sky above you 

and the soft breeze. 

However, the situation could be very different. Imagine that you have travelled to 

Paris for work reasons. This is your first time in France and you do not speak French. 

You are staying in a hotel in a busy location, Marx Dormoy. You have an important 

meeting in Montmartre in a couple of hours. You start walking west on Boulebard de la 

Chapelle, a chaotic street full of cars, cabs, buses, and other people. You need to find the 

place of your meeting and keep track of time while navigating through the crowded 

street. Without being able to ask for directions and avoiding possible threats such as cars 

you realize that in contrast to taking a leisure walk on the park, this is a very demanding 

task. Attentional resources must be allocated to task-relevant information such as street 
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names1. You must also keep track of important task-irrelevant information, such as cars 

and other people. All of these processes have to be orchestrated in such a manner that 

useful task-relevant information will be available to adaptively coordinate behavior in 

time: Should you cross the street now? Should you turn left in the next intersection? 

During adaptive goal-directed behavior, perceptual and cognitive states are 

flexibly mapped onto motor plans (Gold & Shadlen, 2007). Historically, psychologists 

have studied these processes using reaction times (Cartwright & Festinger, 1943). 

Reaction times are a compound measure including multiple factors such as stimulus 

processing, memory retrieval and encoding, attention allocation/relocation, decision-

making, response selection, and response execution (Donkin, Brown, & Heathcote, 2009; 

Smith & Ratcliff, 2004). Cognitive electrophysiology can add new vistas and insights 

into the processes leading towards perceptual decisions. Cognitive electrophysiology can 

help “unpack” reaction time and provide an insight onto the temporal dynamics and 

neurobiological mechanisms underlying decisions. The goal of this dissertation is to 

implement a systematic semi-exploratory approach to study the time-course of perceptual 

decision-making using electroencephalogram (EEG) in healthy human population. 

1.1 Mapping perceptual states onto behavior 
 

Adaptive goal-directed behavior is characterized by flexibility; it is the trademark 

of behavior of every single living species (Allen & Bekoff, 1997; Maturana & Varela, 

1984; F. J. Varela, Thompson, & Rosch, 1991). Behavioral flexibility emerges from the 

dynamic integration of multiple cognitive processes in tight functional coupling with the 

                                                             
1 Which will be hard to encode because they are written in French 
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environment (Maturana & Varela, 1984; F. J. Varela et al., 1991). Thus, every single 

autonomous agent has to (i) sense the environment with a sampling rate appropriate to the 

scale of its environment2, (ii) process the information provided by the senses at a rate 

appropriate to the sampling rate of the senses, (iii) integrate the processed information at 

a rate appropriate to the autonomous agent’s spontaneous ongoing activity, and (iv) 

generate adequate sensorimotor adjustments at a rate appropriate to the scale of its 

environment (Baars & Franklin, 2007; Freeman, 2002; Halgren, Boujon, Clarke, Wang, 

& Chauvel, 2002; Maturana & Varela, 1984; F. J. Varela et al., 1991). Cognition emerges 

from these different timescales. Furthermore, the interaction between timescales can be 

described as cycles. These cycles are reflected in the periodicity of brain functioning (see 

2. Exploring Cognitive Dynamics Using Scalp-Recorded Neural Signals). 

Thus, I think moment-to-moment sensorimotor adjustments defining decision-

making emerge from processes operating at different timescales. This is observed in the 

characteristic flexibility of behavior. Therefore, for an autonomous agent the 

interpretation of a certain environmental event as described by its senses will depend not 

only on the nature of the event, but also on the agent’s current behavioral and cognitive 

states (Maturana & Varela, 1984; F. J. Varela et al., 1991). In other words, depending on 

the state of the system and the current behavioral demands, the exact same sensory input 

can be utilized to adjust different sensorimotor patterns or update different cognitive 

representations.  

                                                             
2 Environments can be defined at different scales: microscopic, mesoscopic, or macroscopic. At each scale 
a different number of interacting entities will be found. These can range from particles to cells to organisms 
to other agents. Each scale will have its own intrinsic dynamics that are most probably nested and 
functionally engaged by local-to-global and global-to-local causation (Kelso, 1995) between each other but 
rarely encounter one another in a direct manner 
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Neurobiological models explaining the implementation of such flexibility can be 

summarized by two ideas: First, a “central controller” anatomically localized in anterior 

brain regions3 using top-down influences selectively bias the acquisition and processing 

of information in a task-dependent manner (Corbetta & Shulman, 2002; E. K. Miller & 

Cohen, 2001). Second, recurrent and transient feedback and feedforward loops integrate 

sensory information with previous task-relevant knowledge (Bar, 2003; Engel, Fries, & 

Singer, 2001)4. 

In this dissertation, I will base my work on two existing models of information 

acquisition and utilization in the brain; the memory match and utilization model (C. S. 

Herrmann, Munk, & Engel, 2004) and the top-down facilitation model (Bar, 2003). These 

two models, although complementary have not encountered a converging point at 

empirical and/or theoretical levels. I will use these models in the same context and 

moreover link them to perceptual judgments with the purpose of exploring the time-

course of perceptual decision-making. 

1.2 Flexible perceptual decisions 
 

As mentioned earlier, in natural conditions, the brain has to actively integrate 

information about the current percept (e.g. physical properties of the stimuli) with 

                                                             
3 Usually the prefrontal and posterior parietal cortices (Corbetta & Shulman, 2002; E. K. Miller & Cohen, 
2001) 
4 I find myself conceptually closer to the second kind of models; understanding decision-making not only 
as a neurobiological but also as systemic process (Bertalanffy, 1968; Maturana & Varela, 1984; F. J. Varela 
et al., 1991). Therefore, I think that the flexible mapping of perceptual states onto adaptive behavior mostly 
depends on the temporal dynamics within and between widely distributed neuronal populations. More 
specifically, I think that neural activity at different timescales flexibly regulates the interaction within and 
between neuronal populations underlying perceptual decision-making 
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information about past/present behavioral demands and cognitive states of the observer 

(e.g. instruction or task at hand) along with future outcomes related to the decision. 

Despite of the somewhat extensive amount of research on the subject, we still 

know little about the neuro-cognitive mechanisms and their temporal dynamics that allow 

an observer to perceive an object and rapidly make a decision about it (Gold & Shadlen, 

2007; Smith & Ratcliff, 2004). Previous literature suggests that there must be at least two 

cognitive processes underlying tasks such as perceptual decision-making: an early 

process related to the perception of information and a later one related to the subsequent 

decision-making process (Busch, Herrmann, Muller, Lenz, & Gruber, 2006; Busch, 

Schadow, Frund, & Herrmann, 2006; C. S. Herrmann, Lenz, Junge, Busch, & Maess, 

2004; C. S. Herrmann, Munk, et al., 2004; Philiastides, Ratcliff, & Sajda, 2006; 

Philiastides & Sajda, 2007; VanRullen & Thorpe, 2001). Evidence from this two-stage 

process can be found in different EEG studies of healthy human participants. 

1.2.1 The time-course of perception 
 

An early negative ERP component peaking around 170 ms post-stimulus onset 

has been linked to perception of the object of relevance for the decision. Importantly, the 

N1 ERP component has been found weakly associated with the prediction of task errors 

(Philiastides et al., 2006), thus relegating this component to be a correlate of sensory 

evidence gathering (Philiastides et al., 2006; Schyns, Gosselin, & Smith, 2009; 

VanRullen & Thorpe, 2001). 

Later in time, a positive ERP component peaking after 200 ms after stimulus 

onset strongly correlated with the difficulty of the decision to be made by participants at 
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the trial-by-trial level (Philiastides et al., 2006) as well as in the grand-average responses 

(VanRullen & Thorpe, 2001). Therefore, a P3 ERP component has been posed as a 

putative signature of the link between sensory evidence gathering occurring earlier (~170 

ms) and the participant’s later decision (~300 ms). 

Importantly, in this context, P3 could be an electrophysiological marker of the 

accumulation of: prior cognitive states, current perceptual evidence, and/or future 

decision-related outcomes. Particularly, these outcomes can either reflect the actual 

decision or announce the commitment to a particular decision-to-be-made. However, the 

ERP signal alone cannot give us a complete idea of its functional nature. This is due to 

how ERPs are computed. Due to the process of averaging, any signal that is not time-

locked to the event of interest will be lost in the average. Moreover, most ERP 

researchers filter their signals with a 30 or 40 Hz low-pass filter. This means that any 

signal in the gamma range (>30 Hz) will be regarded as noise and discarded. Thus, ERP 

measure is an important, nevertheless, limited measure of brain activity (see Event 

Related Potentials (ERP)). 

1.2.2 The matching and utilization model (MUM) 
 

Herrmann and colleagues posed a model of information match and utilization 

(MUM) based on empirical findings (C. S. Herrmann, Munk, et al., 2004). This model 

suggests that neural oscillations in the gamma band (>30 Hz), measured by event-related 

spectral perturbation (ERSP), reflect a twofold mechanism of perception (Figure 1). Early 

gamma-band response (GBR), peaking around 100 ms post-stimulus onset, might be a 

signature of the comparison and matching between incoming sensory information and a 
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memory-stored representation (Busch, Herrmann, et al., 2006; Busch, Schadow, et al., 

2006). Later in time, around 300 ms post-stimulus onset, another GBR could be a 

signature of the usage of the result of the first operation (~100 ms) to store new items, 

evoke old stored representations, and/or integrate information in large-scale networks (C. 

S. Herrmann, Munk, et al., 2004).  

 

 

Figure 1 – Schematic representation of the memory match and utilization model (MUM). 
After sensory encoding and feature integration processes occurring early in visual 
perception a “matching” process occur. Information stored in memory is matched against 
the current percept. This matching process is reflected by an “early” high-frequency 
spectral component in the gamma band (early GBR) occurring at ~100 ms. In the period 
comprised after the matching, attentional processes are allocated/relocated and items are 
stored in memory as needed. Furthermore, a “utilization” process occurs around 300 ms. 
The “utilization” is evidenced by a “late” high-frequency spectral component in the gamma 
band (late GBR) occurring at ~300 ms. The “utilization refers to the usage of the preceding 
processes in order to adjust behavior. Taken from (C. S. Herrmann, Munk, et al., 2004) 
 

Previous research has not approached the functional or physiological relation 

between gamma-band activity and ERP components in the context of visual information 

acquisition/utilization. Furthermore, the MUM model makes no reference to ERPs. 

However, it has been shown that visual ERP components may result from changes in 

phase and amplitude dynamics across different scalp locations and at different 

More recently, these changes could be assigned to the
activation of cholinergic receptors in the cortex [45]. The
oscillations found to be modulated in the context of
plasticity and memory formation could have a profound
impact on synaptic plasticity because they convey a highly
repetitive and precise temporal structure to the postsyn-
aptic cells [46]. Recent in-vitro studies have shown that
synaptic plasticity of cortical neurons is sensitive to the
phase of the oscillations during which inputs arrive [47].
In these experiments, sinusoidal current at 20 or 40 Hz
was injected into the recorded cells, and input signals
were given at different phases of the oscillation. If the
peak of the oscillation coincides with the peak of the
afferent input, the synaptic response was found to be
strengthened. The reverse happened if the incoming
signal coincided with the trough of the membrane
potential oscillation [47]. Taken together, these data
clearly demonstrate that precise timing of neuronal
activity is an important factor determining the mechan-
isms of memory formation.

Recent evidence from in-vivo recordings in monkeys
establishes a direct relation between gamma-band activity
and working memory, suggesting that gamma oscillations
carry information about stimuli that have to be memor-
ized. In these experiments, field potentials were recorded
from ventral prefrontal cortex in awake macaques while
the animals performed a short-term memory task. Inter-
estingly, fast oscillations recorded during the delay phase
of the task showed coherence patterns that were specific to
certain object classes [48]. Thus, synchrony in the gamma
band could differentiate between the stimuli whereas
gamma power was almost identical for all stimuli. These

data support the idea that working memory processes
directly use gamma oscillations – perhaps to encode tem-
plates for matching with subsequently perceived stimuli.

The match-and-utilization model
Integrating bottom-up with top-down processing
As discussed in the preceding sections, bottom-up and top-
down factors both have an influence on synchronization of
neural activity in the gamma band. We suggest that they
do not just relate to these influences per se but, more
prominently, to the interaction between these influences.
On closer inspection, all of the tasks mentioned above
contain as a crucial element the comparison of stimulus-
related information with memory contents. Although also
possible in modes of more automatic processing, in many
cases this comparative operation is speeded up and
focussed by attention. Following comparison, the resulting
information can then be used to generate a behavioural
response, to update memory, or to reallocate attention. In
agreement with the data reviewed above, we suggest that
gamma band activity might be related to each of these
computational steps.

Our model, which we term the ‘match-and-utilization-
model’ (MUM) is schematically illustrated in Figure 2. We
assume that the ‘early’ gamma-band response reflects
the matching of bottom-up signals with memory contents
that occurs rapidly (before 150 ms) after stimulus onset.
Typically, the early gamma response is rather well
localized and is mainly observed over the region comput-
ing the match (Figure 1c,d). Our model predicts that,
whenever the matching process yields a positive result for
comparing incoming stimuli with memory contents, this
should lead to enhanced early gamma responses.
Although these memory matches could explain the early
evoked gamma response, we suggest that a different
mechanism is reponsible for the ‘late’, induced response
(after 200 ms) – argued to occur too late to correlate with
perceptual processes [49].

Once a stimulus has been identified and classified by
comparing it with data in memory, this information can
be used for coordinating behavioural performance, for
redirecting attention or for storage in memory. According
to MUM, the ‘late’ gamma response might be a signature
of such utilization processes. We assume that the
information resulting from the match is implemented by
synchronized neural signals [17] and, thus, ‘utilization’
could involve, in principle, any neural process that ‘reads’
or uses temporally structured information. Because read-
out processes like action planning, behavioural control or
memory storage involve highly distributed brain regions,
MUM predicts that the ‘late’ gamma response should be
associated with large-scale coherence [32,50] reflecting
the ‘broadcasting’ of a synchronized neural message to
other centers. Our model could also explain why late
gamma is not always seen – it is observed only when
utilization involves regions whose activity can be detected
in the EEG (i.e. cortex), but does not occur with rather
automated responses like button-presses, which may rely
mainly on subcortical structures.

An important prediction of MUM is that temporal
patterning of activity could be ideally suited to achieve

TRENDS in Cognitive Sciences 

Utilization Response
selection

Memory

Attention

Feature
integration

Sensory
encoding

Early GBR
(100 ms)

Late GBR
(300 ms)

Match

Figure 2. Schematic illustration of the ‘match-and-utilization model’ (MUM). The
crucial step in this model is the match between stimulus-related information and
memory contents that has been activated and loaded into short-term memory. The
result of this comparison, which can be eithermatch ormismatch, is then ‘read out’
by another set of processes which we jointly refer to as ‘utilization’. Utilization can
lead to updating of memory contents, selection of different behavioural responses,
reallocating attention, or any combination of these. In MUM, memory is conceived
similar to the model of Cowan [54] where working memory is implemented by the
same neuronal architecture as long-term memory. Working memory, thus,
corresponds to the dynamics of neuronal activation in the same network which
implements long-term memory in the patterns of synaptic weights. Attention, in
MUM, has the role of regulating the speed and capacity of the interactions between
the three component processes ‘memory’, ‘match’ and ‘utilization’. It should be
noted that attention has an ambiguous nature: on the one hand, it enables and
facilitates the match but, on the other hand, it is itself also influenced by the
outcome of the match. Note that feature integration might also be subject to
memory influences because ‘binding rules’ are mostly learned postnatally and
results of the matching operation could influence perceptual feature integration.
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frequencies in a highly task-dependent fashion5 (Makeig, Debener, Onton, & Delorme, 

2004; Makeig et al., 2002). Moreover, it has been shown that phase dynamics code for 

more information than power alone, suggesting that phase-related measures could be a 

complementary, and sometimes a more accurate reflection of brain function (Schyns, 

Thut, & Gross, 2011; F. Varela, Lachaux, Rodriguez, & Martinerie, 2001). However, the 

MUM model does not address the role of phase dynamics in perception. Importantly no 

study has explored concomitant phase and amplitude dynamics in the context of 

information acquisition/utilization for decisions. To the best of my knowledge, the 

presented work is the first study to concomitantly explore the functional role of phase and 

amplitude dynamics in the context of perceptual decision-making. 

1.2.3 The top-down facilitation model (TDF) of visual recognition 
 

Similar to the match and utilization model (C. S. Herrmann, Munk, et al., 2004), 

Bar (Bar, 2003, 2004, 2007, 2009; Bar et al., 2006) has posed a model proposing that 

early visual processing rapidly transmits coarse information about the world to frontal 

areas6, allowing the brain to use past experiences and learned statistical regularities of the 

world to generate “hypotheses” on what the object might be or how it could be used (Bar, 

2009). In this model (Figure 2), orbitofrontal cortex (OFC) would be functionally 

connected to the occipital cortex, back-projecting information about the identity/usage of 

the objects of current perception via top-down facilitation (Bar et al., 2006). 

 

                                                             
5 Central and lateral posterior # along with frontal midline theta (4 – 8 Hz) rhythms in visual selective 
attention tasks 
6 Specifically to orbito-frontal cortex, OFC 
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Figure 2 – Top-down facilitation model. Feedback and feedforward projections between 
occipital and frontal areas would facilitate perception in a flexible context-dependent 
manner. Taken from (Bar et al., 2006) 

 

To the best of my knowledge, the work by Bar and colleagues (2006) has been the 

only one to deal with temporal dynamics in the context of the top-down facilitation model 

(TDF) of visual recognition. Moreover, although complementary, MUM (C. S. 

Herrmann, Munk, et al., 2004) and the TDF model of visual recognition (Bar, 2003) have 

been considered as separate and have not been empirically or theoretically related to one 

another yet.  

1.2.4 Linking models 
 

Considering the lack of uniformity and theoretical congruency of the 

aforementioned models, linking this literature together in the context of perceptual 

decision-making is not straightforward. Neither of these two models has been related to 

ERP components in the context of acquisition/utilization of information. Moreover, ERP 

components in general have been linked to a plethora of other processes that go far 

beyond simple sensory information acquisition (e.g. processing of emotional face 

expressions, Blau, Maurer, Tottenham, & McCandliss, 2007). Likewise, evoked and 

induced gamma-band oscillatory activity has been experimentally associated to a wide 

Top-down facilitation of visual recognition
M. Bar*†, K. S. Kassam*‡§, A. S. Ghuman*§¶, J. Boshyan*, A. M. Schmid*, A. M. Dale*, M. S. Hämäläinen*,
K. Marinkovic*, D. L. Schacter‡, B. R. Rosen*, and E. Halgren*

*Martinos Center at Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129; and ¶Program in Biophysics and ‡Department of
Psychology, Harvard University, Cambridge, MA 02138

Edited by Riitta Hari, Helsinki University of Technology, Espoo, Finland, and approved November 23, 2005 (received for review August 17, 2005)

Cortical analysis related to visual object recognition is traditionally
thought to propagate serially along a bottom-up hierarchy of
ventral areas. Recent proposals gradually promote the role of
top-down processing in recognition, but how such facilitation is
triggered remains a puzzle. We tested a specific model, proposing
that low spatial frequencies facilitate visual object recognition by
initiating top-down processes projected from orbitofrontal to
visual cortex. The present study combined magnetoencephalogra-
phy, which has superior temporal resolution, functional magnetic
resonance imaging, and a behavioral task that yields successful
recognition with stimulus repetitions. Object recognition elicited
differential activity that developed in the left orbitofrontal cortex
50 ms earlier than it did in recognition-related areas in the temporal
cortex. This early orbitofrontal activity was directly modulated by
the presence of low spatial frequencies in the image. Taken
together, the dynamics we revealed provide strong support for the
proposal of how top-down facilitation of object recognition is
initiated, and our observations are used to derive predictions for
future research.

feedback ! object recognition ! orbitofrontal cortex ! visual cortex !
low spatial frequency

The functional architecture of the visual cortex has helped
shape the traditional view that visual input is processed

serially, in a bottom-up cascade of cortical regions that analyze
increasingly complex information. This view has been challenged
by models proposing a simultaneous bottom-up and top-down
flow of information in the cortex (1–6). Recent findings support
those proposals by showing that top-down mechanisms might
play an important role in visual processing (7–10), but it remains
puzzling how such processing would be initiated. Indeed, the
existence of top-down processes that facilitate perception im-
plies that high-level information is activated earlier than some
lower-level information. We examine here a specific proposal for
the triggering of such top-down facilitation in visual object
recognition (11). The gist of this proposal is that a partially
analyzed version of the input image (i.e., a blurred image),
comprised of the low spatial frequency (LSF) components is
projected rapidly from early visual areas directly to the prefron-
tal cortex, possibly by using the dorsal magnocellular pathway.
This coarse representation is subsequently used to activate
predictions about the most likely interpretations of the input
image in recognition-related regions within the temporal cortex.
Combining this top-down ‘‘initial guess’’ with the bottom-up
systematic analysis facilitates recognition by substantially limit-
ing the number of object representations that need to be
considered (Fig. 1).

The cortical regions most often associated with visual object
recognition are situated in the temporal cortex (12, 13) and in
humans include in particular the fusiform gyrus and the lateral
occipital cortex (14–17). However, recent studies indicate that the
prefrontal cortex might also play an active role in the cortical
network that mediates visual object recognition. In particular, Bar
et al. (14) compared the functional (fMRI) activity elicited by trials
in which objects were successfully recognized with the activity
elicited by the same pictures when they were not recognized under

identical conditions (Fig. 2A). In addition to the temporal regions
typically associated with object recognition, a prefrontal site, in the
orbitofrontal cortex (OFC), was also differentially active in this
comparison (Fig. 2B).

How should this OFC activity be interpreted with respect to
object recognition? Given that various prefrontal regions have been
implicated in semantic analysis (18–20) (although not the orbital
section in particular), it would be reasonable to interpret prefrontal
activity observed during recognition of everyday objects as reflect-
ing postrecognition semantic processing. According to this view, the
OFC activity is not related to the processes required for object
recognition per se, but rather is a manifestation of related semantic
processes taking place after the object has been recognized. An
alternative account, however, is that the network that mediates
object recognition includes regions beyond the traditionally defined
visual cortex and, specifically, that this OFC activation represents
the cortical source of top-down facilitation in visual object recog-
nition (11). This alternative is our focus here.

To facilitate recognition, top-down processing would have to
start before recognition has been accomplished. Consequently, for
the OFC site to be critical for early top-down facilitation, recog-
nition-related activity must develop at that site earlier than it does
in temporal regions associated with recognition. Given the brief
amount of time that is sufficient for typical recognition to be
accomplished, it was critical to use a neuroimaging method with
superior temporal resolution to test this alternative account. We
therefore combined milliseconds-resolution magnetoencephalog-
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Abbreviations: HSF, high spatial frequency; LSF, low spatial frequency; OFC orbitofrontal
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Fig. 1. An illustration of the proposed model. A LSF representation of the
input image is projected rapidly, possibly via the dorsal magnocellular path-
way, from early visual cortex to the OFC, in parallel to the systematic and
relatively slower propagation of information along the ventral visual path-
way. This coarse representation is sufficient for activating a minimal set of the
most probable interpretations of the input, which are then integrated with
the bottom-up stream of analysis to facilitate recognition.
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range of cognitive and neural processing, sprouting several functional interpretations that 

range from a specific perceptual binding mechanism to a more general signature of local 

computation (Fries, 2009; Merker, 2013; Tallon-Baudry & Bertrand, 1999; Uhlhaas, 

Pipa, Neuenschwander, Wibral, & Singer, 2011). Hence, interpreting changes in 

measures of neural activity in the light of certain cognitive processes is not a simple task. 

To facilitate interpretation and analyses, a linear model along with a systematic analysis 

approach is used in this dissertation (see 2.4 Linear Modeling of EEG Measures and 

Analyzing Temporal Dynamics with a Systematic Approach). 

Changes in neural activity can be found in studies where specific experimental 

manipulations are implemented, yet no behavioral effects are seen. Drawing meaningful 

interpretations from data obtained from experiments as such is not a straightforward task 

either (e.g. Wilkinson & Halligan, 2003). However, this is not something that only 

happens in decision-related experimental paradigms. Scientists have been challenged to 

understand the meaning of neural signals in cognition in language research (e.g. 

Grossman et al., 2002), social neuroscience (e.g. Keightley et al., 2003), visual perception 

(e.g. Weiss, Marshall, Zilles, & Fink, 2003), memory research (e.g. Suzuki et al., 2002), 

and many other fields of cognitive neuroscience.  

In this dissertation, I will implement a dual-task parametric design in order to 

separate stimuli properties from the task at hand. Furthermore, I will make use of a multi-

linear regression, which will allow me to benefit from my experimental paradigm and 

link neural measures to the experimental manipulation and behavior (see 2.4 Linear 

Modeling of EEG Measures). Furthermore, several linear and non-linear measures of 
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brain activity will be implemented. In the following sections I will describe and discuss 

them in the context of this dissertation. 

2. Exploring Cognitive Dynamics Using Scalp-Recorded Neural Signals 
 

Natural phenomena are recursive, systematic, and essential for the known 

universe; periodicity is a natural law (Carroll, 2012). Functional periodicity7 is an 

essential property in all long-term sustained systems (Suh, 2004). Furthermore, the 

impact of periodic phenomena on life on Earth can be seen at all scales. From the wax 

and wane of daylight determining circadian rhythms to the periodicity of menstrual 

cycles allowing sexual reproduction.  

The nervous system is not different. Recurrent, periodic events are seen at all 

scales (Buzsáki, 2006; Fries, 2009; Gazzaniga, Ivry, & Mangun, 2013; Llinas, Ribary, 

Contreras, & Pedroarena, 1998; VanRullen, Busch, Drewes, & Dubois, 2011; F. Varela et 

al., 2001). Neurons communicate via electrochemical pulses. These pulses generate 

changes in the membrane potential of individual nerve cells. Membrane dynamics cause 

the opening and closing of membrane channels; flux of ions in and out of nerve cells is 

possible. Collectively from these events, dynamical variations in electrical voltages 

emerge. Thus, induced electrical dynamics unfold over extended temporospatial scales. 

Over time, the net effect of each individual neuronal spike and synapsis organized as 

neuronal populations gives way to the emergence of short-lived neural oscillations with 

characteristic frequency, phase, and amplitude (Buzsáki, 2006). 

                                                             
7 Along with stable equilibrium 
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Recent evidence indicates that frequency, phase, and amplitude extracted from 

neurophysiological signals have different roles as putative information coding strategies 

in neural systems (Akam & Kullmann, 2010; Canolty & Knight, 2010; Fries, 2005; 

Makeig et al., 2004; F. Varela et al., 2001). Thus, neural communication mechanisms 

such as synchronization and phase coupling have recently become particularly active 

topics of research8.  

Scientists observe direct evidence of these complex dynamics using a wide 

variety of methods ranging from patch-clamp to local-field potentials (LFP) to 

electroencephalogram (EEG). Each one of these methods provides a small window of 

observation to the multidimensional space were brain dynamics unfold (Figure 3). 

Therefore, recorded brain signals at different spatial scales are direct observations of 

specific known neurobiological events (Buzsáki, 2006; Fries, 2009; Gazzaniga et al., 

2013; Llinas et al., 1998; VanRullen et al., 2011; F. Varela et al., 2001). 

Due to the non-linearity of neural events, their dependence on their own 

historicity, and the existence of feedback and feedforward loops, brain dynamics are 

regarded as complex (Buzsáki, 2006; Llinas et al., 1998; Maturana & Varela, 1984; 

Tononi, Edelman, & Sporns, 1998). Understanding complex brain dynamics requires the 

systematic study of the multiple operational dimensions where they unfold.  

                                                             
8 Phase coupling refers to correlations between a source phase and a target oscillatory amplitude or phase 
separated in frequency (e.g. theta phase coupled to gamma amplitude). Whereas synchronization refers to a 
particular kind of phase-coupling dynamic in which separate oscillators maintain a constant phase 
relationship that can be measured at the level of amplitude and/or phase. Studying oscillatory brain 
dynamics may lead to understand how neural activity underlying the flexible nature of cognition and 
behavior emerges from neural ensembles or brain networks based on a relatively static structure. 
Furthermore exploring temporospatial connectivity dynamics using measures derived from both 
information (Paninski, 2003) and graph theory (O. Sporns, Chialvo, Kaiser, & Hilgetag, 2004) promises to 
be a fruitful approach for future research. 



 13 

Over the last 25 years of cognitive electrophysiological research, a plethora of 

neural measures have been used in order to model and mine brain dynamics (M. X. 

Cohen, 2011; M. X. Cohen & Gulbinaite, 2014). In this dissertation I relied on linear and 

non-linear measures of brain functioning. In the following sections I will describe and 

discuss neural measures of temporal, spatial, and spectral dynamics of 

electrophysiological signals. I will start with the study of temporal dynamics (see 
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2.1 Neural Dynamics in the Time Domain), followed by the study of temporal and 

spectral dynamics (see 2.2 Neural Dynamics in the Time-Frequency Domain). Finally, I 

will address the study of EEG connectivity (see 2.3 Functional Connectivity Dynamics in 

the Time-Frequency Domain). 

 

 

 

Figure 3 – Some of the dimensions of brain functioning that can be modeled using cognitive 
electrophysiological methods (taken from (Makeig et al., 2004) and (M. X. Cohen, 2011))  
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2.1 Neural Dynamics in the Time Domain 
 

 Using M/EEG, neuroscientists can measure fast, complex signals of long-range 

and local neural network activity. Due to these signals’ multidimensionality (Figure 3), 

they can be used for testing hypotheses drawn from psychological and/or physiological 

processes. Several measures, such as microstates (Lehmann, 1971) and ERP-images 

(Makeig et al., 2004), have been developed in order to quantify scalp-recorded temporal 

dynamics. Reviewing all the relevant time-domain M/EEG analyses is beyond the scope 

of this dissertation. Therefore, I will focus on the event-related potential (ERP) technique; 

the most common analysis applied to M/EEG signals. 

I will proceed to describe and discuss ERP. I will furthermore briefly discuss the 

physiological basis of its generation and interpretation. Finally, I will highlight its 

advantages and limitations as a measure of temporal brain dynamics in cognitive 

neuroscience research. 

2.1.1 Event-Related Potentials (ERP) 
 

ERP is the most frequently used technique for modeling scalp-recorded brain 

dynamics. Its success is partially due to its simplicity in computation and interpretation. 

ERP is widely interpreted as capturing signals evoked by sensory stimulation (Kok, 

1997). It is commonly derived from the post-stimulus average across a sufficient number 

of condition trials. ERPs provide an account of phase-locked mean amplitude changes 

from baseline in !V with millisecond precision. Figure 4 depicts ERPs in contrast to the 

original EEG single trials that originated it. Summing all voltages at each time-point per 
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channel and diving by the number of trials produces an ERP waveform. ERP’s robustness 

can be evidenced in Figure 4.  

 

 

Figure 4 – ERP (red line) superimposed over an increasing number of trials (10 - 110) of 
ongoing EEG activity (blue lines) that originated it. Trials come from channel PO8 from a 
randomly selected subject. Vertical black continuous line at 0 ms represents event onset. 
Pre-stimulus ERP signal (red) is mostly flat, while ‘evoked components’ P1 (~100 ms), N1 
(~170 ms), and P2 (~250 ms) can be seen in the post-stimulus ERP signal even with 10 trials 
(top left panel), demonstrating the robustness of the ERP measure 
  

Generative Mechanisms and Physiological Basis of ERPs 
 

ERP is the most widely used technique in cognitive electrophysiology. 

Nevertheless, its physiological basis is still an issue of ongoing debate (Makeig et al., 

2004). The classic generative model of ERP assumes that ongoing EEG activity is 

uncorrelated noise (Figure 4, pre-stimulus blue lines). When some external event is 



 17 

perceived (Figure 4, indicated by vertical black line), signals reflecting neuronal 

activation are evoked (Figure 4, post-stimulus red line). It is commonly thought that each 

evoked signal has fixed polarity and more-or-less consistent latency (Jervis, Nichols, 

Johnson, Allen, & Hudson, 1983). Linear summation of the signal of interest and ongoing 

noise occurs at the scalp (Nunez & Srinivasan, 2006); therefore, averaging techniques 

must be used in order to increase the signal-to-noise ratio. Once multiple trials of M/EEG 

activity are averaged, an ERP emerges (e.g. 100 trials used to compute ERP in Figure 4). 

This model of ERP generation is known in the literature as “additive” or “evoked”.  

In contrast to the “additive” model, an alternative physiological generative 

mechanism of ERPs does not consider ongoing EEG activity as noise. The “phase-reset” 

model assumes that ERPs are generated by a transient re-organization of the phase of 

ongoing EEG activity (Brandt, Jansen, & Carbonari, 1991). In other words, the ongoing 

oscillatory phase of the EEG would “collapse” and reset after sensory stimulation or 

cognitive events. Figure 5 depicts the relationship between ongoing phase and ERPs. Blue 

lines show the phase angle in radians of 4 Hz EEG signals for 30 randomly selected trials 

from channel PO8. Each blue vector in the polar plots (Figure 5 top panels) represents the 

phase angle of 1 trial at a particular time point. During pre-stimulus time points phase 

angles are somewhat uniformly distributed across the polar space (-54 ms. Figure 5, top 

left panel), whilst a clear clustering tendency can be seen for both post-stimulus time-

points (160 and 242 ms. Figure 5, top middle and right panels). Moreover, phase angles 

relatively clustered near the polar axis (0 rad, around $/2 and -$/2) temporally correlate 

with positive ERP potentials (e.g. P1 and P2), while phase angles clustered in the 

opposite side of the polar space (180 rad, around $ and -$) correlate with negative 
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potentials (e.g. N1). The close relationship between phase and ERPs has led to the idea 

that generating ERPs is mostly caused by the transient resetting of phase (Makeig et al., 

2002). 

Despite long discussions and research efforts the neurophysiological mechanisms 

that underlie ERP generation are still unknown (Brandt et al., 1991; Jervis et al., 1983; 

Makeig et al., 2004; Min et al., 2007). No modern analysis technique is capable of 

quantifying the amount of influence phase resetting or additive responses have on ERP 

generation (Makeig et al., 2004). Simulations support parsimonious approaches, where 

ERPs might be generated by complex additive and non-linear effects (David, Kilner, & 

Friston, 2006) or sudden transient changes at different frequencies (Burgess, 2012). Thus, 

parsimonious approaches suggest that a combination of both phase resetting and additive 

power might be the answer to such fundamental, yet, overlooked question (Makeig et al., 

2004; Min et al., 2007).  

The mystery surrounding ERP generation is one of its main disadvantages. ERPs 

provide a weak ground for interpreting obtained results into plausible neurophysiological 

mechanisms. In fact, most ERP articles discuss the role of functional brain networks in 

diverse perceptual and/or cognitive phenomena even though ERPs cannot readily test 

such interactions9. The disconnection between ERPs and neurophysiological mechanisms 

can be seen in its relation to the single EEG trials that generate them (Figure 6). Figure 6, 

panel A shows an ERP computed with the same 30 trials used to generate Figure 5. Pre-

stimulus onset ongoing brain activity is far from being ‘flat’ as normally described by the 

                                                             
9 I will provide no citation of articles on which ‘network activity’ is discussed while only 
measuring ERP. Nevertheless a simple scholar search would suffice  



 19 

pre-stimulus ERP baseline (red line, Figure 6 panel A). In contrast, single-trial EEG 

signals are highly active throughout the trial (blue lines, Figure 6 panel A). Vertical red 

dashed lines indicate the maxima and minima of typical ERP components for this trial 

subset (Figure 6, P1=98 ms, N1=160 ms, P2=242 ms). It can be seen how the ERP 

measure (Figure 6, red line) is somewhat disconnected from the EEG signals (Figure 6, 

blue lines). The ERP is a rough descriptor of the peaks/troughs occurring in single trial 

data; their complexity poorly translates into the ERP. Hence, it can be said that the ERP 

is not necessarily defined by the single-trial EEG (Makeig et al., 2004). 

 

 

Figure 5 – The relation between ERP and ongoing oscillatory phase. 30 EEG trials were 
used to compute an ERP (red line, lower panel). The spectral components of the same 30 
trials were extracted using wavelet decomposition (see Methods). Phase angles (blue lines, 
lower panel) were calculated from the complex wavelet output. Phase angles at 4 Hz are 
shown in radians. Phase angle distributions for individual trials are represented as blue 
vectors on polar plots (top panels) for a pre-stimulus onset point (-54 ms, top left panel), for 
the N1 (160 ms, top middle panel) and P2 (242, top right panel) ERP components minima 
and maxima, respectively 
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Figure 6, panel B shows 10 simulated EEG trials created using noise in addition to 

a 6 Hz sine wave and a 10 Hz signal, representing an “evoked response” (M. X. Cohen, 

2011)10. Left column plots show simulated EEG single trials where no analyses are 

needed in order to identify the simulated “event-related” non-time locked response 

occurring between ~1000 and ~1500 ms. Middle panels depict simulated ERPs using the 

number of single trials indicated on the left panels. It can be clearly seen how after only 5 

trials the ERP is almost flat. In contrast, by computing the mean alpha power the 

simulated “event-related” response is quantified. This simple simulation indicates that 

other measures (e.g. power) might be better at describing single trial activity, and 

therefore might better relate to neural mechanisms11. I will go over some of these 

measures in the next section (Modeling Dynamics in the Time-Frequency Domain). 

In summary, this simple exercise clearly shows that in the averaging process, the 

richness of single trials is collapsed into a single statistic that can sometimes miss task-

related brain activity (Figure 6). Furthermore, it is argued that due to its simplicity and its 

unclear generation, ERP hardly relates to fundamental neuronal mechanisms for 

information processing and communication. Such mechanisms (e.g. interregional 

synchronization, cross-frequency coupling) have been described across a wide range of 

species and experimental paradigms and promise to be of great relevance for future 

research (Buzsaki & Draguhn, 2004; Canolty & Knight, 2010; Fries, 2005; F. Varela et 

al., 2001). 

                                                             
10 Simulated data provided by Dr. Michael X. Cohen 
11 As an alternative to ERP, power-based measures better describe single trial EEG activity as 
shown in Figure 6, panel B. For example, Friston (1997) suggested that transient spatiotemporal 
cross-frequency power interactions might be a good descriptor of distinct neural populations 
involved in information integration 
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Figure 6 – The disconnection between ERP peaks and troughs and single EEG trials. A) 30 
randomly selected single EEG trials (blue lines) from channel PO8 (same as in Figure 5) 
were averaged in order to produce an ERP (red line). Vertical red dashed lines signal the 
maxima and minima of each ERP component (P1=98 ms, N1=158 ms, P2=242 ms). The ERP 
(red line) is a poor descriptor of the single EEG trial activity (blue lines). Black continuous 
line signals stimulus onset. B) 9 trials of simulated EEG data (left column) were used in 
order to compute ERPs (middle column) and simulated mean alpha-band power (right 
column). An “event-related” 10 Hz response can be identified in individual trials (left 
column). Nevertheless, these responses are lost in the ERP (middle column). In contrast, the 
estimation of alpha power recovers the “event-related” activity (right column)  

 

Simplicity, a Double-Edged Sword 
 

ERP’s simplicity is both one of its greatest strengths and main disadvantages. 

ERPs main advantage is its simple and fast computation. The straightforward nature of 

ERPs has positioned them as the most widely used measure in cognitive 

electrophysiology research. Modern computers can perform single-subject grand-

averages of large arrays of M/EEG electrodes in a matter of seconds, while subject-level 

analyses will only take a couple of minutes. ERPs are thus an excellent way to inspect the 
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integrity of the collected data. Therefore, before proceeding to more complex analyses, it 

is advisable to first compute ERPs for each subject/condition. 

Another advantage is that ERP computation practically has no assumptions. More 

specifically, ERP analysis is not influenced by the philosophical/theoretical position of 

the researcher. No direct impacts will be seen in the results if a researcher cannot decide 

whether ERPs are generated by addition of evoked activity or by the resetting of ongoing 

oscillatory phase. Furthermore, results will not be affected if the researcher has never 

even wondered about ERP generation and its physiological meaning12. 

An additional advantage of simplicity is that virtually no parameters have to be 

optimized in order to compute ERPs. The calculations involved are so simple that no real 

understanding of the M/EEG signal and/or the processes involved in ERP computation 

are needed in order to effectively calculate ERPs from M/EEG signals. 

Temporal Precision of ERPs 
 

In addition to the advantages of simplicity, ERP’s major strength relies on its high 

temporal precision and accuracy. This is because ERP computation, by definition, should 

involve minimal data processing. Thus, if computed correctly, the estimation of electrical 

activity that ERP provides at the millisecond level is very precise. Nevertheless, a 

limitation emerges from a common mistake made by ERP researchers. An important 

distinction is that time-domain averaging of EEG signals is itself a low-pass filter; non-

phase locked activity (usually above 15 Hz) gets lost in the averaging process (e.g. Figure 

6). Grand-average ERPs across subjects provides further filtering. Nevertheless, most 
                                                             
12 Nevertheless, the lack of insight about these topics may lead to poor experimental designs, 
weak hypotheses, and to inappropriate interpretation of results 
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classic ERP studies report in their method sections additional cut-off filter frequencies 

between 25 and 40 Hz. These filters are implemented in order to temporally smooth the 

signals and get clear peaks and troughs for statistical testing. 

 

 

Figure 7 – The impact of low-pass filtering. ERP waveforms were calculated using data 
from channel PO8 taken from 2 randomly selected subjects (subjects X and Y). 4 different 
low-pass filter cut-offs: 100 (black), 40 (blue), 30 (red), and 25 (green) Hz were used. A) 
ERP waveforms computed using 300 randomly selected trials per subject. Top panel shows 
ERP for subject X. Vertical black continuous line at 0 ms represents event onset. Colored 
vertical dashed lines indicate N1 ERP trough minima. Resulting ERP trough minima suffer 
temporal shifts ranging from 2 up to 8 ms for these subjects, depending on filter 
parameters. B) Detail at N1 trough for both subjects shown in panel A better display 
temporal shifts of ERP trough minima due to filtering. C) The impact of filtering on 
different methods for computing “ERP peaks”. Dots indicate trough values according to N1 
minima for both 100 (black) and 30 Hz (red), difference is 0.14 !V. Crosses indicate trough 
values according to the integration of data points across a 50 ms window centered at the N1 
minima for both 100 (black) and 30 Hz (red), difference is 0.01 !V. Amplitude values are 
not dramatically affected by filtering while latency suffers time shifts. 

 

Figure 7 is an exercise showing how detrimental data filtering can be for the 

estimation of the precise timing of brain dynamics. The same EEG signals were filtered 
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using 4 different filter parameters. The resulting ERPs display temporal shifts. 

Importantly, the variability of the shifts is not linear or monotonic. As can be seen in 

Figure 7 panel A, when a wide filter was applied to subject X’s data (100 Hz, black) the 

N1 trough minima is 168 ms. In contrast, when a 30 or 40 Hz low-pass filter cut-off is 

applied (red, blue), a 2 ms shift is obtained in comparison to 100 Hz low-pass (black). In 

contrast, different filter cut-off frequencies made a noticeable impact in subject Y’s data 

(Figure 7, lower panel). The wider filter (100 Hz, black) shows the earliest N1 trough (152 

ms), while using a 30 Hz low-pass filter (red) delayed the same trough by 8 ms.  

A common ‘ERP peak’ analysis procedure sets a pre-defined “search window” 

and finds the extreme value inside such window. For this simple exercise, I will define 

my window as extending for 50 ms starting at 130 ms post-stimulus onset, a period of 

time that contains the N1 ERP component for both subjects. If we find the minimum %V 

value and its latency within the pre-defined window, the resulting values are -0.93 %V at 

152 ms using a 100 Hz low-pass filter and -0.79 %V at 160 ms using a 30 Hz low-pass 

filter (Figure 7, panel C). 

Another common strategy to compute ‘ERP peaks’, just like the previously 

described strategy, defines a pre-defined “search window” and finds the ‘peak’ (extreme 

%V value). However, the average of values over a new window centered on the ‘peak’ is 

considered as the actual “ERP peak measure”. For example, if we compute the ‘N1 peak’ 

for subject Y using a 50 ms window centered on its minima and integrate values inside 

the window, the resulting %V values are 0.08 %V at 152 ms using a 100 Hz low-pass filter 

and -0.07 %V at 160 ms using a 30 Hz low-pass filter (Figure 7, panel C). 
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Two things can be learned from the simple exercise shown in Figure 7. First, ERP 

amplitude values are not dramatically affected by filtering, but latency suffers time shifts 

that may undermine the study of the time-course of perceptual or cognitive processes. 

Second, when measuring ERP components ‘peaks’, the integration of values over a 

window is a much more robust method against filter-based distortions: the difference 

between ERP amplitudes when using different low-pass filters was only .01 %V (Figure 7, 

panel C).  

In summary, high temporal precision is one of the greatest strengths of the ERP 

measure. It was shown how filtering EEG signals in order to temporally smooth ERPs 

and remove unwanted ‘noise’ produces temporal shifts while amplitude remains virtually 

unaffected. One could argue that as long as filtering parameters and ‘peak’ measuring 

parameters are kept constant, no problems should arise when analyzing ‘ERP peaks’ after 

filtering. This reasoning is at the heart of most ERP studies published to date. 

Notwithstanding its validity, this logic must be critically examined because there is no 

clear rationale behind centering ERP analysis only on peaks and troughs. Thus, I think we 

must question the very reason why researchers filter EEG signals for ERP analysis in the 

first place. 

Analyzing Temporal Dynamics with a Systematic Approach 
 

Temporal precision is a key feature of the ERP measure. ERPs can be used as a 

powerful and computationally inexpensive tool for analyzing the time-course of 

perceptual and cognitive processes. Nevertheless, most ERP articles do not exploit this 

relevant feature. Researchers commonly discard most of the ERP time series in order to 
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focus their analysis on specific peaks and troughs, an approach known as “peak analysis”. 

ERP ‘peaks’ are the main variable used in virtually thousands of research articles. As 

discussed above, researchers have acquired the tradition of temporally “smoothing” ERPs 

by eliminating unwanted high-frequency ‘noise’ in order to obtain ERP component peak 

amplitude and its latency (Figure 7). These ‘peaks’ are then used for null hypothesis 

significance testing (NHST). 

Peaks and troughs are by far the most commonly quantified, analyzed, and 

reported ERP feature. However, no clear reason exists for studying ERP peaks and 

troughs while discarding all other data points in the time series. Most ERP researchers 

conceptually correlate the ‘ERP peak’ to a relevant functional brain event. In contrast, it 

could be argued that different time points in the ERP waveform could be equally 

important as the peaks and troughs.  

Let me re-draw Figure 5 with polar representations using different time points. 

Thus, Figure 8 shows single-trial phase angle distributions at four different time points (-

54, 120, 160, and 200 ms). In comparison to pre-stimulus onset phase angle distributions 

(-54 ms, top left panel) post-stimulus oscillatory phases are roughly clustered around 

specific phase angles (Figure 8). From this extremely simple exercise it can be said that it 

is unclear what makes ERP ‘peaks’ special as opposed to activity in-between peaks. 

Furthermore, to the best of my knowledge, there is no evidence to argue that an ERP 

‘peak’ is a descriptor or counterpart of a “functional brain component” as commonly 

believed by ERP researchers. In the literature, this point has been made clear in several 

occasions (e.g. Kutas & Federmeier, 2011; Luck, 2005; Rousselet & Pernet, 2011; 

Rousselet, Pernet, Bennett, & Sekuler, 2008; Schyns, Petro, & Smith, 2007; Vanrullen, 
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2011). Nevertheless, for some reason this important conceptual remark has not percolated 

to the wide number of ERP researchers, perpetuating the sole use and interpretation of 

‘peaks’ in ERP studies. 

Once researchers measure a ‘peak’ they can obtain its latency (e.g. Figure 7). Most 

published articles that have quantified the ERP measure using peak analysis consider 

‘peak’ amplitude and its latency as independent sources of information. To the best of my 

knowledge, there is no evidence to argue for such independence. In a study by Schyns et 

al. (2007) subjects were provided with specific spatial frequency information for a facial 

expression classification task. Participants used sparse samples of information in order to 

categorize facial expression images. Using reverse correlation between the partial 

information provided by the stimuli and the categorization output from participants, and 

the single-trial EEG signals, they concluded that processes for accumulating information 

start 50 ms prior to the N1 peak, occurring at 170 ms post-stimulus onset (Schyns et al., 

2007). Importantly, their analysis showed that participants categorizing facial expressions 

stopped integrating information at the N1 peak (170 ms). 

This study provides relevant evidence linking ERP peak latency to the speed of 

information accumulation, further indicating that ERP peaks might be describe the 

termination of a perceptual or cognitive process and not the cognitive process itself. 

Moreover, this study shows that differences in ERP peak latency necessarily imply an 

amplitude difference starting before the measured ERP peak (in this case, 50 ms prior 

ERP peak). This also indicates that latency and amplitude are rather confounded, far from 

being independent sources of information as commonly believed by ERP researchers. 

Evidence supporting these findings has been found using parametric approaches of 
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single-trial EEG analysis (Rousselet, Husk, Bennett, & Sekuler, 2008; Rousselet, Pernet, 

et al., 2008). Such evidence further supports the idea that neural activity described by 

ERP peaks might not be more important than activity described by other time points in 

the ERP waveform. 

 

 

Figure 8 – Same 30 trials used to generate Figure 5 were used to generate an ERP (red) and 
phase angles (blue) were obtained using wavelet transform (see Methods). Polar 
representations of 3 different time points (-54, 120, 160, 200 ms) are shown. In contrast to 
pre-stimulus onset (-54 ms) whose phase angles are evenly distributed, rather a “phase 
preference” can be seen for post-stimulus activity (~270 at 140 ms, ~180 at 160 ms and ~120 
at 200 ms) 

   

Therefore, instead of measuring peaks or troughs inside pre-defined analysis 

windows, a consistent and systematic approach was applied to examine the temporal 

dynamics of brain activity. In contrast to the classic “peak analysis” approach, a 

suggested viable alternative is to analyze all the time-points in a time-series in order to 
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reveal the complete time course of effects (Maris & Oostenveld, 2007; Pernet, Chauveau, 

Gaspar, & Rousselet, 2011; Rousselet, Husk, et al., 2008; Rousselet & Pernet, 2011; 

Rousselet, Pernet, et al., 2008; Vanrullen, 2011). 

An counterargument can be made to continue using the classic peak analysis 

approach in current and future ERP studies regardless of the implementation of new 

analysis techniques (e.g. Wilcox & Keselman, 2003). The first part of the argument 

would suggest that current and new studies could benefit from the historicity of the ERP 

measure. An extensive and impressive body of work on the ERP measure has been 

published in multiple scientific journals, spanning more than five decades. Peak analysis 

of ERPs has been so widely used that multiple studies can be found for virtually all kinds 

of clinical and healthy populations performing all sorts of cognitive tasks. Following this 

part of the argument, the contextualization and interpretation of current ERP studies 

could rely on the ‘classic literature’. The second part of the argument is based on the fact 

that a large number of theoretical interpretations of ERP effects have been published over 

the years. These could provide a good playground for the development and testing of 

hypothesis-driven studies of cognition. However, this argument fails to acknowledge that 

the lack of a consistent experimental, analytic, and statistical framework on the majority 

of these “classic studies” renders them as practically unusable in order to compare results 

across studies (Ioannidis, 2005; Rousselet & Pernet, 2011). Therefore, just like with any 

other technique, ERPs peaks must be used rigorously, interpreted with healthy 

skepticism, and by any means taken by a default “gold standard” in cognitive 

electrophysiology research. 
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In this dissertation, no peak analysis will be performed in ERPs. Moreover, all 

measures will be analyzed as time series using modern statistical procedures. This 

approach will be further described and discussed in sections 2.4 Linear Modeling of EEG 

Measures, 2.5 Non-Parametric Permutation Testing, and 3.6 Statistical Testing. 

Summary 
 

The event-related potential (ERP) is the most widely used measure of temporal 

brain dynamics in cognitive electrophysiology. Although the neural mechanisms that 

generate ERPs remain unknown, two main theories have been broadly discussed in the 

literature using modeling and experimental approaches. The “additive” and the “phase 

reset” models of ERP generation try to link neural dynamics to ERPs. Though, due to the 

nature of ERP, it might be impossible to pinpoint the mechanisms that produce the 

signals at the scalp. Thus, parsimonious approaches have been postulated suggesting 

mixed generation mechanisms (Makeig et al., 2004).  

ERP is a great research tool for studying the time-course of brain dynamics. Its 

temporal precision can resolve neural events within the millisecond range. However 

traditional approaches misuse this striking feature of ERPs by focusing analyses on pre-

defined time windows. A systematic approach where all time points conforming the ERP 

waveform are analyzed has been suggested as a reliable alternative to peak analysis 

(Maris & Oostenveld, 2007; Pernet et al., 2011; Rousselet, Husk, et al., 2008; Rousselet 

& Pernet, 2011; Rousselet, Pernet, et al., 2008; Vanrullen, 2011). 

Finally, it is argued that ERPs are somewhat disconnected from the single-trial 

EEG activity that generates them. EEG activity at the single-trial level reflects the 
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summation of excitatory and inhibitory postsynaptic potentials of large ensembles of 

neurons at the scalp. The dynamic interaction between excitatory and inhibitory neurons 

produces rhythmic excitability fluctuations observed as “ripples” at different temporal 

and spatial scales (F. Varela et al., 2001). Over the last 20 years, research has provided 

evidence indicating that short-lived brain oscillations play a key role in information 

processing and communication in cortical networks (Canolty & Knight, 2010; Engel et 

al., 2001; Uhlhaas et al., 2009; F. Varela et al., 2001). Only exploring temporal dynamics 

seems to overlook the complexity conveyed by M/EEG signals. Furthermore, the present 

experimental manipulation allowed me to separate activity linked to task demands from 

physical stimulus properties. I therefore expect effects quantified by oscillatory activity 

(Fries, 2005; Uhlhaas et al., 2009; Uhlhaas et al., 2011; F. Varela et al., 2001). A natural 

extension to the study of neural activity is to study their dynamics in the time-frequency 

domain. 

2.2 Neural Dynamics in the Time-Frequency Domain 
 

Although neural network models can be built from simple components using 

logical states (Hopfield, 1982) or graded responses (Hopfield & Tank, 1986), real-world 

neural networks need inhibitory forces in order to counterbalance the effect of sole 

excitation (Freeman, 2000). From the complex hierarchical nature of the cerebral cortex, 

self-organized networks are built from excitatory and inhibitory components giving way 

to the emergence of complex phenomena such as feedback and feedforward inhibition 

(Buzsaki, 1984). The regulatory properties of these complex neural networks have been 

shown to influence spike timing with precision in the submillisecond range (Pouille & 
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Scanziani, 2001). Thus, it has been proposed that maximum functional complexity in 

neural systems can be reached through the intricate organization of inhibitory and 

excitatory cells (Buzsáki, 2006). Periodic patterns of activation emerging from such 

complex organization generate brain oscillations occurring at different temporospatial 

levels (F. Varela et al., 2001). Neuronal oscillations often vary with behavioral and 

cognitive experimental manipulations.  

In the following sections I will proceed to describe and discuss time-frequency 

measures used in this dissertation. At a global level, all time-frequency measures have 

three major advantages over measures that can only model time-domain brain dynamics. 

First, most time-frequency measures can be directly related to neurophysiological 

mechanisms. The mechanisms responsible for generating brain oscillations are fairly well 

understood at the cellular and network level. Importantly, the functional role of 

oscillatory network dynamics in high-level processes remains unknown. However, 

quantifying oscillatory activity in cognitive electrophysiology can help establish direct 

links between well-known neural mechanisms and cognition.  

Furthermore, a second advantage is that neural oscillations can be studied using 

multiple populations, scales, species, and methods. Results obtained using time-

frequency measures can be interpreted in the light of recent modeling, in vitro, and in 

vivo findings elucidating physiological mechanism underlying the generation of neuronal 

oscillations (Buzsáki & Wang, 2012; Fries, 2009; Tiesinga & Sejnowski, 2009; Wang, 

2010). Therefore, the oscillatory framework can easily serve as a bridge linking literature 

from different fields of life science to multiple species, scales, and methods. 
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Working under the oscillatory framework implies the belief that neural systems 

operate over a multi-dimensional domain. Consequently, M/EEG data captures only a 

small fraction of that multidimensional space where brain dynamics emerge. Therefore 

time-frequency measures of brain activity are probably the most appropriate approach to 

analyze M/EEG signals since they allow a larger portion of the dynamics embedded in 

raw data to be modeled. Not only the time and frequency dimensions are taken into 

account but also power, phase, and space. Furthermore, time-frequency approaches have 

the ability to model brain signals’ complex dynamics at the single-trial level. As shown in 

Figure 6, time-frequency measures can reveal task-relevant M/EEG dynamics that time-

domain measures cannot. 

At the global level, all time-frequency-based measures share two distinguishable 

limitations. First, temporal resolution is decreased when computing time-frequency 

decompositions. This is not a specific property to M/EEG data, but an intrinsic property 

of signal processing in general. Thus all time-frequency-based approaches have a lower 

temporal resolution than unfiltered time-domain measures (see 3. Methods). 

The second limitation relies on the complexity of time-frequency analysis. 

Compared to ERP, time-frequency-based measures have several key parameters that need 

to be optimized for each dataset. Theoretical or empirical approaches can be used in order 

to find the optimal parameters for a given M/EEG dataset (Christoph S Herrmann, 

Crigutsch, & Busch, 2005). On one hand, research questions might demand investigating 

certain frequencies or certain time-points, defining the parameters to be used. On the 

other hand, exploratory analyses might want to use a more open range of times and 

frequencies to be explored. Thus, the number of frequencies used in order to characterize 
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a frequency range13, the spacing between those frequencies14, the wavelet length15, the 

number of cycles for the Gaussian tapper16, and other parameters will have an impact on 

the results. Poorly chosen parameters will result in deficient estimations of the analytic 

signal and ultimately the measure of interest. The fact that many parameters have to be 

optimized according to the nature of the data renders the existence of ready-to-use “off-

the-shelf” time-frequency measures virtually impossible. 

Just like how the number of parameters that must be set increases with more 

complex time-frequency-based methods, so too do the number of comparisons that must 

be made. Thus, researchers not only have to perform tests over time, but over frequency 

as well. Typical time-frequency studies have between 20 and 50 different frequencies 

sampled across 200 and 600 time-points per trial, per channel, per condition, per subject. 

Researchers will easily find themselves working with 5-dimensional matrices when 

performing time-frequency-based analyses. The complexity of statistical procedures and 

their corresponding corrections for multiple comparisons will increase considerably. 

Fortunately, robust non-parametric statistical methods have been developed for this 

problem (e.g. Maris & Oostenveld, 2007; Pernet et al., 2011). Yet again, none of these 

methods can be used “off the shelf”. 

The results of a simple exercise are shown in Figure 9. Optimized parameters were 

used in order to calculate the analytic signal of 200 randomly selected trials from PO8 

                                                             
13 If a research group wants to test the effects of manipulation X over alpha-band oscillations, 
should they use a 10 Hz wavelet? Should they use wavelets from 8 to 12 Hz? Should they use an 
even wider range of frequencies? 
14 Should the researchers linearly or logarithmically space their frequencies? 
15 Should the researchers define their wavelet using a time-range of 1, 2, 3, or more seconds?  
16 Should the researchers use fewer or should they use more cycles per wavelet? 
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from a randomly selected subject using wavelet convolution (see 3. Methods). Figure 9, 

top right panel shows clear event-related spectral components across different frequency 

bands and spanning multiple time-points. Most notably, a low-frequency power 

increment is visible starting at ~200 ms (maximally visible at ~150 ms post-stimulus 

onset) and extending up until the end of the chosen window. This increment spans 

between ~4 and ~10 Hz, where a power decrement between ~10 and ~20 Hz can be 

observed after the ~150 ms post-stimulus onset. If we select a particular frequency (e.g. 

~40 Hz), we can see its time-course (Figure 9, top left panel).  

In contrast, suboptimal parameters were used in order to calculate the analytic 

signal of the same data sample using wavelet convolution. From this suboptimal analysis, 

clear event-related spectral components can also be recovered. Most notably, a power 

increment between ~10 and ~20 Hz starting at ~200 ms and extending up until the end of 

the chosen window (Figure 9, bottom left panel). The time-course of ~40 Hz for the 

suboptimal analysis is also shown (Figure 9, bottom right panel). In most situations sub-

optimal parameters will lead to missing effects more than generating misleading results. 

However, if the researcher is not aware that the parameters used are suboptimal, results 

can be incorrectly interpreted. 

It has been seen that time-frequency-based analyses have clear advantages and 

limitations. Nevertheless they pose a powerful tool for exploring neural time series data. 

In the following sections I will describe and discuss the time-frequency measures used in 

this dissertation. Reviewing all existing power- and phase-based time-frequency 

measures is beyond the scope of this dissertation. The following review has the sole 

purpose of contextualizing the applied measures. 
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Figure 9 – The effect of different parameters on spectral power computation. Different 
parameters were used to perform wavelet convolution on 200 randomly selected trials from 
channel PO8 from a randomly selected subject. Top panels show power computed with 
optimized parameters (left) and corresponding power time-course at ~40 Hz (right). Bottom 
panels show power computed with suboptimal wavelet parameters (left) and corresponding 
power time-course at ~40 Hz (right). Vertical black lines signal stimulus onset. Each plot is 
auto-scaled 
 

2.2.1 Event-Related Spectral Power (ERSP) 
  

Estimates of task-related time-varying frequency-band-specific power can be 

calculated from M/EEG data. Several methods, mostly based on convolution, can be used 

in order to extract spectral power from analytic signals, among them Hilbert and Fast 

Fourier Transforms. When used with optimal parameters, these different approaches lead 

to very similar results (Bruns, 2004; Le Van Quyen et al., 2001). In this dissertation, 

wavelet convolution was used in order to obtain the spectral components of EEG data 

(see 3. Methods). The squared magnitude of the complex output of convolution provides 

a trial-by-trial measure of phase-locked, non-phase-locked, and ongoing background 

neural activity known as total spectral power. Total spectral power quantifies the amount 

of energy at a given time-frequency point. When computed across all available time-
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points and frequencies, a time-frequency representation of total spectral power can be 

obtained (Figure 10, bottom right panel). 

 

 

Figure 10 – Time-frequency representations of total raw power estimation of EEG activity 
(phase-locked, non-phase-locked, and ongoing background activity). Top left panel shows a 
1/f function that characterizes EEG power. Wavelet convolution was used in order to 
compute total raw power (see Methods). Total raw power estimation from 6 randomly 
selected trials is shown. Bottom right panel depicts grand-average of total raw power 
estimation across 500 trials. Plots are in the same scale 
  

Spectral power measures in general, can be found in the literature as 

“synchronization”, “event-related synchronization” (ERS), “event-related 

desynchronization” (ERD), “time-frequency representations” (TFR), and “event-related 

spectral perturbation” (ERSP). All of these names refer to spectral power. Throughout 

this dissertation I will use “theory-free” measure names (M. X. Cohen & Gulbinaite, 

2014). For example, the names “ERS” and “ERD” can be extremely misleading since 
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they may refer not only to synchronization or desynchronization either within and 

between neuronal populations or within and between electrodes. Moreover, denominating 

an augmentation in power at a given time-frequency point as “synchronization” refers to 

a neurobiological mechanism underlying such power increment which is far from the 

actual mathematical technique of data analysis. Furthermore, synchronization can be 

described in amplitude and/or phase and within and/or between frequencies (Canolty & 

Knight, 2010). I have chosen to use names that best describe the analysis, rather than the 

putative underlying neurobiological mechanisms (M. X. Cohen & Gulbinaite, 2014). 

Therefore, I will refer to changes in spectral power elicited by an event as event-related 

spectral power (ERSP). 

Figure 10 shows 2-dimensional time-frequency total raw power plots. Adjacent 

small plots depict total raw power from randomly selected trials from channel PO8 from 

a randomly selected subject. Each trial has a different activity profile. Some trials contain 

high pre-stimulus onset total raw power (e.g. bottom left), while some others contain little 

activation overall. The grand-average of total raw power across 500 randomly selected 

trials from channel PO8 from a randomly selected subject is shown in the bottom right 

panel of Figure 10. As you might have realized, although this is a grand-average plot, it is 

very difficult to interpret visually. Total raw power magnitude in low frequency bands 

(below 15 Hz) is so much larger than in high frequency bands (above 15 Hz) that it is 

hard to really appreciate the time-frequency dynamics of raw power. This problem comes 

from the nature of the relationship between power and frequency. EEG power decreases 

as a function of frequency increments, following a ‘power law’, where EEG time-
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frequency power is a power17 function of frequency. Since EEG spectral power follows a 

1/ƒ phenomenon (Nunez & Srinivasan, 2006), power at higher frequencies is lower than 

the power at lower frequencies (Figure 10 top left panel). 

 

 

Figure 11 – Time-frequency representations of total power estimations of EEG activity. 
Wavelet convolution was used to extract the spectral components of 500 trials from channel 
PO8 from 2 randomly selected subjects (see Methods). Top row shows total raw power 
(phase-locked, non-phase-locked, and ongoing background activity). In contrast, bottom 
row shows total ERSP. All plots are in the same scale 

 

 Limitations with visualizing and quantifying EEG raw power can be reduced by 

baseline normalizations (Grandchamp & Delorme, 2011). Baseline procedures allow data 

to be transformed from different frequencies, channels, and subjects into the same scale. 

Moreover, baseline correction untangles ‘uninformative’ ongoing background activity 
                                                             
17 Importantly, “power” here denotes the mathematical operation of raising a number to a power 
of another number. Not to the squared magnitude of a complex number as in spectral “power” 
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from event-related power variations (for a counter argument to this point see He, Zempel, 

Snyder, & Raichle, 2010; and VanRullen et al., 2011). Thus, from raw spectral power, 

the ERSP measure can be used to quantify task-dependent mean power deviations from 

baseline (Makeig et al., 2004). Figure 11 shows a comparison between total raw power of 

data from 2 subjects form channel PO8 and total ERSP. Just like in Figure 10 bottom right 

panel, top panels in Figure 11 cannot be easily understood. In contrast, bottom panels 

depicting total ERSP can be interpreted more easily as representing event-related mean 

changes in total spectral power from baseline in decibels (Figure 11). 

Spectral Power: Total, Phase-Locked, and Non-Phase-Locked 
 

Importantly, time-frequency representations in Figure 10 and Figure 11 were made 

using total spectral power. Top panels of Figure 11 depict total spectral power with no 

baseline correction. Therefore, the data utilized to generate these images contain phase-

locked, non-phase-locked, and ongoing background activity. Lower panels in Figure 11 

depict total ERSP representing event-related phase-locked and non-phase-locked activity. 

Task-unrelated ongoing background activity was removed using single-trial-based 

baseline correction (see 3. Methods). Total ERSP is the most commonly used measure of 

spectral power in the cognitive electrophysiology literature and is obtained by averaging 

single-trial total spectral power values. All power-based analyses in this dissertation were 

made using total spectral power. Therefore, the term “ERSP” refers to baseline-corrected 

total spectral power (see 3. Methods). 
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Nevertheless, two variants of ERSP can be found in the literature as well18. Figure 

12 compares three power-based measures. First, a measure of non-phase-locked spectral 

power, known as “induced” power (Tallon-Baudry, Bertrand, Delpuech, & Pernier, 

1996). Although several ways to compute this measure have been suggested (e.g. 

Klimesch, Russegger, Doppelmayr, & Pachinger, 1998) there is general agreement in the 

main idea as to how to compute it. The logic is simple, if phase-locked activity produces 

ERPs, subtracting the ERP at each trial and then computing time-frequency 

decomposition on the ‘ERP-free’ single trials should leave behind only non-phase-locked 

activity. Moreover, if baseline correction procedures are applied, only event-related non-

phase-locked activity should remain. The second variant of ERSP is a measure of phase-

locked spectral power or “evoked” activity, which is obtained by subtracting non-phase-

locked spectral power from the total representation. Thus, activity that is not phase-

locked to the onset of the stimulus (time=0) will not be represented. More variants for the 

computation of this measure have been suggested. However, they all rely in the same 

principle stated above (e.g. Busch, Herrmann, et al., 2006; Christoph S Herrmann et al., 

2005; Min et al., 2007).  

The main argument for computing phase-locked and non-phase-locked ERSP 

separately is that in combination they can be used in order to assess the contribution of 

“induced” and “evoked” activity at a given task (Gruber & Muller, 2002). However, it is 

not known if the neurophysiological events that generate phase-locked activity are 

different from the ones that generate non-phase-locked power (David et al., 2006). 

                                                             
18 Technically, a third variant could be mentioned. The “ERP power” measure can be computed 
by calculating time-frequency decomposition on the ERP. Nevertheless, I do not consider this 
measure as being relevant and will not be further discussed 
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Furthermore, it is not certain if a clear separation of phase-locked and non-phase-locked 

activity can be effectively achieved by simple subtraction; this latter argument is a 

recurrent discussion topic in time-series analysis boards (e.g. Delorme & Makeig, 2014). 

 

 

Figure 12 – Time-frequency representations of event-related spectral power measures. Top 
panel depicts total spectral power, the measure used for power-based analyses in this 
dissertation. Bottom left panel depicts non-phase-locked spectral power. Bottom right panel 
depicts phase-locked spectral power. All plots are in the same scale  
 

Figure 12 depicts total, non-phase-locked, and phase-locked spectral power 

computed using 100 trials from a randomly selected subject from channel Pz. Figure 12, 

top panel shows clear spectral features in the event-related total power time-frequency 

representation. Most notably a power increment in low-frequency ranges (~4 to ~10 Hz) 

extending maximally from ~100 to ~200 ms and a high-frequency range (~20 to >70 Hz) 

power decrease at ~200 ms. Bottom right panel in Figure 12 shows non-phase-locked 
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activity. Clear spectral features can be seen in the “induced” time-frequency 

representation. Most notably a high-frequency range (~20 to >70 Hz) power decrease at 

~200 ms. Likewise, clear spectral features can be seen in the “induced” time-frequency 

representation most notably a low-frequency range (~4 to ~10 Hz) power increment 

extending maximally from ~100 to ~200 ms (Figure 12, bottom right panel). By plotting 

the three variants of ERSP we can clearly see that event-related total spectral power 

captures both “evoked” and “induced” activity. In this dissertation I have decided to use 

the total power measure (top panel Figure 12) because it does not assume any paradigm of 

physiological generation and involves no arbitrary data alterations. Therefore, all power-

based results and discussions will be using total spectral power. 

Functional Interpretation of Spectral Power-Based Measures 
 

The amplitude of EEG signals is the most widely measured aspect of scalp-

recorded neurophysiological dynamics. The current EEG literature is mostly based in 

amplitude-dependent measures of EEG signals, primarily ERP and in a much lesser 

degree ERSP. However, the functional interpretation of amplitude-based measures of 

brain function is still vague and a matter of debate due to the lack of understanding of the 

generation of amplitude changes. 

EEG amplitude variations are a function of current dipole magnitudes emerging 

from linearly summated synaptic potentials at the scalp, produced by cortico-cortical and 

thalamo-cortical neural networks (Buzsáki, 2006; Nunez & Srinivasan, 2006; Tenke, 

Schroeder, Arezzo, & Vaughan, 1993; Whittingstall & Logothetis, 2009). Thus, it is 

widely accepted that scalp-recorded amplitude changes reflect differences in transient 
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synchronization of neural activity across relatively large patches of cortex (Buzsáki, 

2006; Makeig et al., 2002; F. Varela et al., 2001). Nevertheless, changes in amplitude 

dynamics may occur without increments or decrements of synchronization. For example, 

(Hughes et al., 2004)  used in vitro thalamic recordings to show that alpha oscillations 

can be modulated by antiphase subpopulations. Importantly, amplitude changes were 

independent of the number of active neurons in the network. When manipulating the 

number of active neurons entrained to the oscillation, the amplitude of the recorded 

signals varied. In contrast, when the number of active neurons remained fixed, amplitude 

modulations were seen due to phase relationships between subpopulations (Hughes et al., 

2004). These results indicate that amplitude changes can be obtained by changing the 

number of members involved in the neural assembly and by phase dynamics alone. These 

results have been confirmed by computational modeling (Cosandier-Rimele, Merlet, 

Badier, Chauvel, & Wendling, 2008). Furthermore, these ideas were tested using 

concomitant local-field potential (LFP) and EEG recordings in behaving nonhuman 

primates (Musall, von Pfostl, Rauch, Logothetis, & Whittingstall, 2014). Musall et al. 

(2014) found that EEG power is a direct function of the linear summation of LFP power 

and phase synchronization. Moreover phase synchronization alone can trigger changes in 

EEG amplitude. Finally, it has also been shown that significant changes in phase 

synchrony can be quantified with no repercussions on spectral power (J. M. Palva, Palva, 

& Kaila, 2005).  



 45 

Summary 
 

Power-based measures of brain function are good measure of trial-by-trial neural 

activity as recorded by M/EEG. In this dissertation I used a measure of total event-related 

mean spectral power deviations from baseline. ERSP not only provides a quantification 

of neural signals that are phase-locked to the stimulus onset but it can also measure non-

phase-locked “induced” activity (Figure 12). Thus, as understood in this dissertation, 

ERSP provides a measure of event-related total spectral power. 

It is thought that fluctuations in spectral power reflect synchronization changes in 

neural populations contributing to the EEG signal. Empirical research and computational 

modeling indicates that the main interpretation of EEG power as an indicator of neural 

synchronization is not erroneous but incomplete. Thus, functional interpretations 

regarding neural mechanisms of cognition relying solely on spectral power-based 

measures should be cautiously made. Recent evidence demonstrates that in order to 

uncover the neural mechanisms underlying cognition it is necessary to go beyond power-

based measures EEG signals. 

2.2.2 Inter-Trial Phase Clustering (ITPC) 
 

 The output of convolution not only can be used 

to extract spectral power from the analytic signal. Other 

information can be also obtained from the convolved 

M/EEG signal. Thus, from the analytic signal we can 

extract linear measures of EEG activity (e.g. ERSP) and 
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also non-linear measures of oscillatory activity. Figure 13 depicts a polar plane 

representing three different time-points at a given frequency19. The length of each vector 

represents the magnitude of the selected time-frequency point whereas the phase angle is 

indicated by the vector angle relative to the positive real axis. Phase angles provide 

researchers with information about the timing of activity in specific frequency bands. 

Phase synchronization of neuronal oscillations has been suggested as an important 

mechanism for neural communication (Fries, 2005; F. Varela et al., 2001). Importantly, 

phase dynamics can be used as a trial-based measure of such neurobiological mechanism 

(VanRullen et al., 2011). Finally, due to the ambiguous relation between spectral power 

and synchronization, power-based measures can be better informed by phase-based 

metrics of neural activity. Further providing a link between frequency band-specific 

M/EEG activity and its putative interpretation as a signature of local and/or inter-regional 

synchronization. 

 Measuring Phase-based Neural Dynamics 
 

The most intuitive way to measure the degree of phase angle consistency at a 

given time-frequency point would be to average phase angles across trials, just like it 

would be done in order to compute ERP or ERSP. Nevertheless this procedure is wrong.  

Top left panel in Figure 14 shows 2 phase angles at the same time-frequency point 

(blue and green vectors), which are fairly close to each other (near the polar axis at 0). 

The average vector (black) clearly captures this relationship. In contrast, averaging 

values in radians fails at describing the relationship between these 2 phase angles (red 

                                                             
19 Not from real data 
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vector at 180º). This simple exercise shows how this seemingly correct procedure bears a 

wrong description of the relationship between phase angles across trials. Lower panel in 

Figure 14 shows 30 trials (blue lines, same as in Figure 6) and their average in radians (red 

line) over time. Despite its apparent exactitude, mean phase angle (red line, bottom panel 

Figure 14) is not an adequate descriptor of phase-based dynamics across trials. Unwary 

researchers may fall in this trap. 

 

 

Figure 14 – Estimating inter-trial phase clustering (ITPC). Top left polar plane shows the 
incorrect way of quantifying phase angle clustering, 2 random phase angles (green, blue 
vectors) are near the polar axis (0) as represented by the average vector (black vector). The 
average vector in radians (red vector. 180º, ") does not represent the 2 data vectors (green, 
blue vector). Lower panel represents the phase angles of 30 trials (blue lines) and their 
average in radians (red line). Top middle and right panels depict phase angle distributions 
on polar plane and as histograms at -54 ms (pre-stimulus onset) and at 212 ms (post-
stimulus onset). Clear clustering of phase angles can be seen post-stimulus 
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In contrast, the ITPC measure can effectively quantify the degree of phase angle 

consistency across trials. First introduced as phase-locking factor (PLF, Tallon-Baudry et 

al., 1996), this measure is also known as “phase-resetting”, “phase-locking”, ‘inter-trial 

coherence” (ITC), “cross-trial phase coherence”, and many others. I prefer using the term 

“inter-trial phase clustering” because it implies no functional interpretation of the 

measure (M. X. Cohen & Gulbinaite, 2014). The use of the word “clustering” is a 

description of what the measure is actually quantifying with no putative functional 

interpretations referring to coherence or resetting of ongoing phase.  

Similarly to Figure 5 and Figure 8, top middle and right panels of Figure 14 depict 

phase angle distributions at different time-points. Polar plots and histograms show that 

pre-stimulus (-54 ms) phase angles are not clustered (top middle panel) whilst post-

stimulus (212 ms) phase angles show clear consistency across trials (top right panel). The 

very simple exercise in Figure 14 shows that computing the average vector (not the phase 

angle average in radians) provides a good measure of the degree of the distribution of 

phase angles across trials. 

The further the distance between phase angles at a given time-frequency point 

across trials, the smaller the average vector length will be. Top right panel in Figure 15 

exemplifies this concept. Unit-length vectors were arbitrarily generated (blue, green). On 

the one hand, blue vectors are rather far from each other; the length of their average 

vector is ~0.17. On the other hand green vectors are close to each other; the length of 

their average vector is ~0.75. If these were phase angles taken from convolved M/EEG 

data from 2 different conditions (blue vs. green) at a particular time-frequency point (e.g. 

4 Hz at 200 ms post-stimulus onset), the length of the red average vectors would 
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represent their ITPC values (Figure 15, top right panel). The direction of the average 

vectors (red) is interpreted as the “preferred” phase over all considered trials. So, 

depending on the experimental questions, both ITPC strength (average vector length) and 

preferred phase angle (average vector direction) could be quantified (VanRullen et al., 

2011). 

 

 

Figure 15 – Estimating the degree of clustering across vectors. Top right panel shows 
examples of arbitrary unit-length vectors (blue, green) and the length of their average 
vectors (red vectors, values) as a descriptor of their proximity. Bottom right panel depicts 
ITPC for all time-points at 10 Hz. Top left panel shows ITPC calculated for all time-
frequency points over 70 trials in channel PO8 for a randomly selected subject. Bottom left 
panel shows ITPC calculated with a formula error. Left panels data is auto-scaled 
 

Moreover, an ITPC time-course can be computed using all time-points at a given 

frequency. Bottom right panel in Figure 15 shows the time-course of ITPC for all time-

points at a given frequency (~10 Hz). When using real data, is preferable to calculate 
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ITPC for all available time-frequency points, generating a time-frequency representation 

of ITPC (top left panel Figure 15).  

Importantly, ITPC is bounded from 0 to 1. Evenly distributed phase angles across 

the polar plane result in ITPC with value of 0. In contrast, two identical signals have 

perfect synchrony; ITPC will be 1. Therefore, ITPC cannot be negative nor can go 

beyond 1. Bottom left panel in Figure 15 depicts an incorrect computation of ITPC, where 

the average of the absolute values was taken resulting in numbers larger than 1. 

 Functional Interpretation of ITPC 
  

In contrast to other phase-based measures of brain activity such as coherence (Carter, 

1987), ITPC is mostly independent from spectral power (J.-P. Lachaux, E. Rodriguez, J. 

Martinerie, & F. J. Varela, 1999). ITPC thus deserves a functional interpretation that is 

different from that given to power-based measures20. Furthermore, as suggested earlier, 

ITPC is an adequate companion metric to power-based measures of brain function. 

As discussed earlier, the computation of ITPC uses phase angle information 

obtained from the analytic signal of neurophysiological data. Mathematically, ITPC 

provides a measure of the clustering of the timing of band-specific neural activity across 

trials. Thus, the phase of frequency-band specific activity can be quantified. An 

increasing amount of empirical evidence indicates that phase synchronization in cortical 

networks reveals the timing of population-level dynamics; thus playing a central role in 

the functional coordination of neural communication and processing (Fries, 2005; J. M. 

Palva et al., 2005; Uhlhaas et al., 2009; VanRullen et al., 2011; F. Varela et al., 2001). 
                                                             
20 This argument also applies to other phase-based measures of brain function (e.g. Stam et al. 
2007; Vinck et al 2012; Lobier et al. 2014) 
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Oscillatory phase indicates the signal’s position within an oscillation cycle (F. Varela et 

al., 2001). ITPC can be thus interpreted as providing an account of the functional state of 

the underlying neural networks generating the measured signal. In other words, if high 

phase-consistency is measured across trials for a given cognitive act or perceptual state it 

can be argued that the underlying neural populations are engaged in similar or potentially 

the same functional configurations. Recurrent functional network organization can be 

thus indicative of relevant neurobiological events, such as the maximization of 

information processing (F. Varela et al., 2001). The influence of oscillatory phase on 

neural processing has been known for a long time using in vitro recordings (Calvin & 

Stevens, 1967). More recently, in vivo recordings have shown that oscillatory phase 

determines neuronal firing (Fries, Neuenschwander, Engel, Goebel, & Singer, 2001) and 

that it is a robust indicator of neuronal activation (Vinck et al., 2010). Finally, it has been 

shown that transient synchronization of large populations of neurons, as the ones 

measured by phase-based M/EEG metrics, is less metabolically demanding (Buzsaki & 

Draguhn, 2004) an important evolutionary constrain for a neurobiological mechanisms 

supporting cognition. 

Summary 
 

In order to quantify the amount of phase consistency across trials at specific time-

frequency points, I used the ITPC measure. Phase-based measures are an excellent 

companion metric to descriptors based on spectral power. Phase-based synchronization 

has been suggested as an important mechanism for the integration and computation of 

information in neural systems (Fries, 2005). Moreover, it has been argued that is at the 
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level of large-scale network activity where phase synchronization can be a key 

mechanism underlying top-down and bottom-up processes (F. Varela et al., 2001). Thus, 

ITPC can be conceptualized as a measure of recurrent functional states among neural 

networks underlying a given cognitive act.  

The cognitive electrophysiology literature is full of highly interesting theoretical 

questions and fantastic experimental manipulations. However, only superficial analyses 

are often performed on such rich datasets. Therefore, in order to better provide an account 

of the neurobiological mechanisms underlying cognition, it is of prime importance that 

cognitive electrophysiologists concomitantly quantify the phase and power of 

neurophysiological signals.  

2.3 Functional Connectivity Dynamics in the Time-Frequency Domain 
  

In the previous sections I have described and discussed measures of brain activity 

that are particularly concerned with local activity. ERPs are a very robust measure with 

excellent temporal resolution. Moreover, they are simple and inexpensive to compute, 

making them an accessible, ‘bread and butter’ measure. In contrast, time-frequency 

domain measures such as ERSP and ITPC provide a better opportunity to link findings 

across species, levels, and methods. Although their temporal resolution gets decreased 

when compared to that of ERPs, time-frequency domain measures provide a rich 

description of temporal brain dynamics. 

Gray, Konig, Engel, and Singer (1989) showed that high-frequency activity in the 

beta and gamma ranges (20 – 80 Hz) reflects an alignment in the action potentials 

generated by cortical neurons. Since that milestone, it has become widely accepted that 
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synchrony within these frequency bands plays an important role in establishing functional 

integration between distributed neural sources. 

Thus, in order to better asses the functional role of oscillatory brain activity in 

cognition, electrophysiologists must consider not only exploring single-sensor time-

frequency activity. Thus connectivity analyses promise to be of great use for the future of 

cognitive electrophysiology. Functional connectivity measures will be understood in this 

dissertation as any quantification of more than one signal at a time. This is, as 

operationalized in this dissertation, functional connectivity measures will quantify: 

 

i. Time-frequency domain signals measured at different sensors. This kind of 

connectivity refers to correlations quantified by power- or phase-based measures 

of brain function between different electrodes (Friston, 1997; F. Varela et al., 

2001). Thus, theory-driven or exploratory analyses of within- or between-

frequency power or phase connectivity can be performed (i.e. power-power, 

phase-phase, and phase-amplitude coupling). The main goal behind this kind of 

analysis is to test relations between a particular time-frequency point measured at 

a sensor and the same time-frequency point measured at a different sensor (see 

inter-site phase clustering, section 2.4.1). The logic behind this kind of analysis 

relies on (i) the concept of inter-regional neural synchronization as a mechanism 

for the functional integration and computation of information within and between 

neural networks (Fries, 2005; Uhlhaas et al., 2009; F. Varela et al., 2001) and (ii) 

the concept of oscillatory activity as a multiplexing mechanism for the processing 

and communication of information (see cross-frequency coupling, section 2.4.2) 
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(Akam & Kullmann, 2010; Canolty & Knight, 2010). This latter point makes this 

type of connectivity analysis the most compatible with analyses performed in the 

time-frequency domain (e.g. ERSP and ITPC, sections 2.3.1 and 2.3.2). 

Nevertheless, a disadvantage is that the number of statistical tests that have to be 

made increases exponentially. Take into account that in time-frequency domain 

analyses, statistical tests have to be performed at each time-frequency point per 

electrode (see 3. Methods). When analyzing functional connectivity in the time 

frequency domain, statistical tests have to be performed at each time-frequency 

point for each pair of electrodes. Thus, mass-bivariate approaches increase the 

possibility of finding false-positives due to the increased number of comparisons 

needed. In this dissertation an approach based on multi-linear regression was used 

in order to address this issue (see 3. Methods). Several alternative methods can be 

applied in order to deal with the increased dimensionality intrinsic to these 

analyses. Reviewing and discussing them is outside the scope of this dissertation 

(for alternative methods see Maris, van Vugt, & Kahana, 2011; Morup, Hansen, 

& Arnfred, 2008). 

 

ii. Multiple signals in the time-frequency domain from multiple sensors. 

Connectivity can be measured using more straightforward methods. For example 

a single global measure of connectivity can be computed by averaging power- or 

phase-based measures computed intra- and inter-electrode. Another possible 

measure is to use a measure called “global field power” or “global field 

amplitude”, computing using the standard deviation across electrodes (Lehmann 
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& Skrandies, 1980; Rousselet, Husk, et al., 2008). Simple connectivity techniques 

such as global means or global field amplitude (Lehmann & Skrandies, 1980; 

Rousselet, Husk, et al., 2008) can provide several advantages. First, when no 

specific hypothesis can be made due to experimental design constrains or lack of 

theoretical background21, the aggregation of multiple signals from multiple 

sensors can be used to provide a global description of the data. These global 

descriptions, although rough and unspecific can be used as a first exploratory step 

towards the formulation of hypotheses. Moreover, global measures are a simple 

way to reduce the intrinsic increased dimensionality of connectivity analyses, 

avoiding an inflated and inconvenient number of multiple comparisons. Even 

though their simple nature obscures possible physiological interpretations, global 

measures are a suitable, simple, and safe “first pass” measure for connectivity 

analysis. Since the analyses in this dissertation were based on multi-linear 

regression (see 3. Methods) I did not use global measures; this type of 

connectivity analysis will not be further discussed. 

 

iii. Two different time-frequency domain signals measured at the same sensor. This 

type of connectivity analysis is based on a variation of ITPC and ERSP (sections 

2.3.1 and 2.3.2). These measures assume that frequency band-specific activity 

quantified at a sensor carries independent information. The logic behind this 

assumption relies in the hypothesis that the functional role of oscillations is to 

serve as a multiplexing mechanism for information transmission and processing 

                                                             
21 This might be the case in some understudied topics  
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within and between neural networks (see cross-frequency coupling, section 2.4.2). 

Thus, different frequency points measured at a single electrode are tested for 

correlations across time. Hypothesis-driven and exploratory analyses can be 

carried out between phase (i.e. phase-phase coupling) or power measures (i.e. 

power-power coupling). Moreover, a very popular approach has been to test for 

relations between low-frequency phase and high-frequency amplitude. This kind 

of cross-frequency method is known as phase-amplitude coupling and has been, 

by far, the most studied type of cross-frequency connectivity analysis (Canolty & 

Knight, 2010). In this dissertation, phase-amplitude coupling was used a measure 

of same-sensor connectivity. 

 

In summary, functional connectivity measures in the time-frequency domain can be 

based on power and/or phase and may use a wide variety of linear and non-linear 

methods (for a review of linear methods see Makeig et al., 2004; for a review of non-

linear methods see Pereda, Quiroga, & Bhattacharya, 2005). As all metrics in 

neuroscience, functional connectivity measures have clear advantages and disadvantages. 

In the following sections, I will discuss the main properties of the connectivity measures I 

used in this dissertation. Importantly, it is impossible to define a “correct” or “best” 

functional connectivity measure. Even in controlled situations (e.g. modeled data, 

EEG/fMRI data) it has been shown that no measure of functional connectivity will 

outperform all other ones in every domain (David, Cosmelli, & Friston, 2004; Wendling, 

Ansari-Asl, Bartolomei, & Senhadji, 2009). Thus, experimental designs, hypothesis to be 

tested, and details of the data should be taken into account when choosing a particular 
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functional connectivity measure. In this dissertation I followed two simple rules to 

choose my connectivity metrics: 

 

i. Choose metrics that have been previously used in the literature. Since this 

dissertation presents a mixture of hypothesis-driven and exploratory analyses. 

Connectivity analyses are mostly of exploratory nature, since these kinds of 

analyses have been neglected from literature. Thus, using previously used 

connectivity measures was the safer choice 

 

ii. Choose metrics that can be easily linked to well understood neurobiological 

mechanisms. A big risk of performing exploratory analysis is to end up with 

unintelligible results. In this dissertation, the present experimental design was 

carefully made (see 3. Methods). The stimuli were explicitly controlled in order to 

answer a specific question. Therefore, this dataset is appropriate for exploratory 

data analyses. However, since no many precursor studies to ours exists nowadays, 

using connectivity measures that can be link to well understood neurobiological 

mechanisms was the safe choice 

 

Thus, in this dissertation, two connectivity measures were used. The following 

sections will describe and discuss Inter-Site Phase Clustering (ISPC) and Cross 

Frequency Coupling (CFC). 
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2.3.1 Inter-Site Phase Clustering (ISPC) 
 

Like many time-frequency measures, ISPC can be found in the literature with a 

plethora of names. “Phase-locking value”, “phase synchronization”, “phase-locking 

statistic”, and “phase coherence”, are terms often used in the literature to refer to the 

clustering of phase angle differences between electrodes in polar space. Therefore, 

following the “theory-free” measure-naming strategy that I am adopting in this 

dissertation, the term Inter-Site Phase Clustering (ISPC) will be preferred (M. X. Cohen 

& Gulbinaite, 2014). 

In this dissertation I chose phase-based connectivity analyses because they are a 

natural complementary extension to inter-trial phase clustering (ITPC). As shown in 

Equation 12 and Equation 13, ISPC is the spatial version of ITPC. Therefore, much of what 

was said about ITPC in section 2.3.2 can be applied to inter-site phase clustering (ISPC). 

Thus, like ITPC, functional interpretation of phase-based connectivity metrics is 

straightforward. The main logic behind quantifying phase-based connectivity is that high-

level cognitive processes such as decision-making, relies on the dynamic recruitment of 

distant neural populations (O. Sporns et al., 2004; F. Varela et al., 2001). Thus, when 

large-scale functional networks become active, oscillatory activity emerging from them 

can be described as synchronized at specific time-frequency points. Importantly, as 

mentioned earlier, phase synchrony has been suggested as an important mechanism for 

functional information integration and computation in neural networks using in vitro, in 

vivo, and computational models (Fries, 2005, 2009; F. Varela et al., 2001). 
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The fact that phase-based connectivity analysis can be easily interpreted in a 

plausible neurobiological framework has positioned them as widely used measures of 

functional connectivity22. Thus like ITPC, one of the main advantages of inter-areal phase 

connectivity metrics relies on its functional interpretation. Furthermore, phase-based 

measures have been used in a wide range of species and levels (e.g. Fries, 

Neuenschwander, et al., 2001; Schroeder & Lakatos, 2009b; F. Varela et al., 2001; Vinck 

et al., 2010). Therefore, results obtained with M/EEG signals can be linked to network 

dynamics at different temporospatial levels and species. 

It was mentioned before that the main assumption of ITPC is that event-related 

changes in connectivity will produce a re-alignment of the distribution of phase angles 

across trials at specific time-frequency points (J.-P. Lachaux et al., 1999). Such 

assumption adds a strong constraint to phase-based connectivity measures; there must be 

inter-areal consistency of phase-angle differences across trials. Thus, another advantage 

of computing an inter-areal phase angle consistency measure is that it provides strong 

evidence for task-related changes in connectivity.  

A further advantage is that just like ITPC, ISPC is computed at each time point. 

This means that apart from the wavelet-related temporal smoothing (see 3.5 EEG data 

analysis), no further loss in temporal resolution exists. In contrast to ITPC that is bounded 

from 0 to 1 indicating homogeneous phase distribution across the complex polar plane or 

clustering at a “preferred phase”, ISPC quantifies the amount of phase angle clustering 

                                                             
22 This statement is certainly true for invasive recordings using humans and animal models. Sadly, the 
cognitive electrophysiology literature still lags far behind is this kind of analyses. 
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differences between channels across trials. Moreover, baseline normalization procedures 

are needed in ISPC. Therefore, there is no such bound. 

Left and right columns in Figure 16 compare uninformative single-trial phase 

angles from 2 different channels (PO8, left. O2, right). No real differences can be 

described between phase angles at the single-trial level. The average difference between 

single trials provides a better account of the consistency of phase angles between these 2 

channels. 

Top middle panel in Figure 16 depicts the mean phase angle differences between 

channels PO8 and O2 (topographic map). Nevertheless, in order to quantify the amount 

of event-related phase consistency across trials between different sensors, it is necessary 

to adjust for pre-stimulus phase angle consistency. Thus, as mentioned before in order to 

compute ISPC baseline normalization is required. Bottom middle panel in Figure 16 

depicts ISPC between channels PO8 and O2 (topographic map). ISPC quantifies the 

amount of event-related phase angle consistency that cannot be seen in the mean phase 

angle differences. An important discussion point is that mean phase angle differences 

(top middle panel Figure 16) describes ongoing EEG phase activity while ISPC removes 

it. Although, baseline-subtracted measures of phase-based are usually recommended as a 

measure (M. X. Cohen & Cavanagh, 2011; J.-P. Lachaux et al., 1999), other metrics can 

be used in other to test for phase consistency of ongoing oscillations (e.g. Phase 

Bifurcation Index. See Busch, Dubois, & VanRullen, 2009). Since no hypothesis-driven 

questions about ongoing oscillatory phase were made in this dissertation, ISPC will be 

the preferred phase-based connectivity metric. 
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Figure 16 – The effect of baseline correction on ISPC. Left and right columns display time-
frequency representations of phase angles single trials (bounded ", -"). Middle column 
shows time-frequency representations of the mean phase angle differences between both 
channels (top) and the inter-site phase clustering (ISPC) between both channels (bottom). 
Mean phase angle, by definition, has no baseline procedures while ISPC, by definition, is 
baseline-corrected 
 

The main disadvantage of phase-based measures of connectivity is that it is very 

difficult to provide compelling evidence for any interpretations based on signal 

directionality. Although some techniques such as Granger “causality” have been 

developed in order to address this question (Oostenveld, Fries, Maris, & Schoffelen, 

2011; Seth, 2010), skepticism still exists about the possible usage of such techniques in 

cognitive electrophysiology. Furthermore, newer metrics based on information theory 

have been recently suggested as a good approach to resolve this issue (Lobier, 

Siebenhuhner, Palva, & Palva, 2014). In this dissertation I attempted no directionality 

analyses using phase-based connectivity. Therefore this issue will not be further 

discussed. 

 



 62 

 

Figure 17 – Comparison between inter-trial phase clustering (ITPC) and inter-site phase 
clustering (ISPC). Top left panel depicts a time-frequency representation of ITPC for 
channel PO8 (red dot in headmap). Middle panel depicts a time-frequency representation of 
ISPC between closely located channels PO8 and O2 (red dots in headmap). Middle panel 
depicts a time-frequency representation of ISPC between spatially apart channels PO8 and 
F4 (red dots in headmap). Color-coded lines indicating strength of connection between 
channels as quantified by ISPC can be seen in both ISPC headmaps (middle and bottom 
right). Black square signals the time-frequency points used to compute headmap 

 

Another relevant disadvantage is the potential confound posed by volume 

conduction. Spurious connectivity results can be obtained due to volume-conducted 

signals. It is well known that active brain networks would generate large electromagnetic 

fields. Such spatially large fields will be measured by more than 1 M/EEG sensor. Thus, 

highly autocorrelated data will be measured at the electrode level. Middle and bottom 

panels of Figure 17 compare the amount of phase clustering between contiguous and 

distant electrodes. Data from one randomly selected subject was used. Middle and bottom 

panels depict ISPC across trials between PO8 and two different electrodes. First, I 
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computed ISPC across trials between the posterior channel PO8 and the anterior channel 

F4. The results are shown in the middle panel in Figure 17. It is not expected to find much 

similarity between such distant channels. Thus, the amount of phase clustering across the 

randomly selected trials (N=100) is low (in the range of ~0.1). Further, I calculated the 

amount of phase clustering across trials between the posterior channel PO8 and the 

contiguously located channel O2. Figure 17 (bottom panel) shows a time-frequency 

representation of ISPC for contiguous electrodes. It is expected to find a large amount of 

phase clustering from this simple exercise. Even when calculated using only 100 trials, 

ISPC is much higher between contiguous electrodes than between distant ones (in the 

range of >0.2). This simple exercise demonstrates the effect of autocorrelations at the 

sensor level when computing ISPC.  

There is no evidence for robustness and congruency of results between phase-

based connectivity measures. The primary reason for the lack of literature in the subject 

is that non-linear measures of temporal brain dynamics are not commonly used in 

cognitive electrophysiology. A comparison between ISPC and 3 different phase-lag-

based measures (i.e. phase-lag index (PLI. Stam, Nolte, & Daffertshofer, 2007), weighted 

phase-lag index and de-biased weighted phase-lag index (wPLI, dwPLI. Vinck, 

Oostenveld, van Wingerden, Battaglia, & Pennartz, 2011)) was performed in order to 

explore the functional role of phase-based inter-areal connectivity. Results show that 

although slight differences exist, possible due to volume conduction, phase-lag measures 

show more robustness. However, ISPC results are congruent with the phase-lag (Parada, 

Moravec, Emerick, & Busey, in preparation). Our results further suggest that the 

exploration of zero phase-lag cortical brain dynamics is a phenomenon worth studying 



 64 

(Uhlhaas et al., 2009). In this dissertation ISPC was used since it is the natural extension 

to ITPC. Therefore phase-lag measures will not be further discussed. 

Figure 17 also illustrates the differences between ITPC and ISPC. Data from 

channel PO8 was used in order to quantify the degree of phase angle clustering at a single 

channel. ITPC describes phase angles broadly clustered in time and frequency, extending 

from ~50 to ~300 ms in time and encompassing theta, alpha, and beta ranges in 

frequency. Moreover, maximal clustering in the alpha range occurs at two different time-

points, first between ~100 and ~150 ms and then between ~200 and ~250 ms. In contrast, 

ISPC provides an insight into phase dynamics across electrodes, revealing similar 

features as ITPC (e.g. low frequency phase consistency between ~150 and 200 ms), time-

frequency-specific features (e.g. ~20 Hz beta phase clustering before 200 ms). 

2.3.2 Cross-Frequency Coupling (CFC) 
 

Cross-frequency coupling is a non-linear method that allows cognitive 

electrophysiologists to quantify the statistical relationship of brain activity between 

different frequency bands. Such relationships can be described between power spectrums; 

as the power of one signal fluctuates in time, so does the power of the other in a 

correlated way. This type of interaction is known as amplitude-amplitude or power-power 

coupling (Friston, 1997). Another way computing CFC is by correlating their phase 

dynamics. Thus, the phase of one signal modulates the phase of the other. This kind of 

interaction is known as phase-phase coupling, n:m phase-locking, and n:m phase 

synchrony (J. M. Palva et al., 2005; Tass et al., 1998). A third kind of interaction involves 

the phase of one signal modulating the power of another. It is physiologically assumed 
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that slow frequencies drive faster ones, although the reverse interaction could also happen 

theoretically (Canolty & Knight 2010). This type of interaction is known in the literature 

as phase-amplitude coupling (PAC).  

Different methods have been suggested for the calculation of cross-frequency 

interactions. For example, Penny, Duzel, Miller, and Ojemann (2008) proposed a method 

that uses the general linear model to test if variance in phase explains variance in power. 

Another approach is based on the generation of phase bins and testing the uniformity of 

power distribution across those bins (Tort, Komorowski, Eichenbaum, & Kopell, 2010). 

The biggest disadvantage of these and other methods is that it requires the integration of 

data points across a pre-defined window. Furthermore, in order to improve estimation 

stability signal-to-noise ratio has to be improved. Therefore, large windows are 

recommended in order to perform CFC analyses. Unfortunately, event-related processes 

in EEG change in the order of milliseconds. Therefore, these approaches are not the most 

optimal for the quantification of event-related cross-frequency coupling. 

In this dissertation I implemented the event-related phase-amplitude coupling 

(ERPAC) measure as described by Voytek, D'Esposito, Crone, and Knight (2013). This 

method uses circular-linear correlation, linearizing the oscillatory phase (non-linear by 

default) into its sin and cos components. In order to perform this operation the CircStat 

MATLAB toolbox was used (Berens, 2009). Once the phase of a given low frequency 

has been linearized, correlation can be tested with a high-frequency power (linear by 

default). Importantly, this procedure allows the estimation of phase-amplitude coupling in 

a data point-by-data point basis; allowing the exploration of transient changes related to 

events. 
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As a measure of connectivity, cross-frequency coupling can be computed within a 

single channel in order to infer local organization at the sensor level. Moreover, the lower 

frequency signal can be selected from one channel whilst the high frequency signal can 

be selected from a different sensor; thus testing for long-range cross-frequency 

connectivity. The logic behind testing for nested oscillations is based on the concept of 

multiplexing. Multiplexing is the process of combining multiple signals of information 

into a single channel for its transmission. Importantly, the different signals can be 

independently recovered from the multiplexed channel; serving as a mechanism for 

selective communication in telecommunication systems (Weinstein & Ebert, 1971). In 

neuroscience, the concept of multiplexing has been often used as a putative mechanism of 

information representation. Thus, multiplexed neural coding has been suggested as the 

neural mechanism underlying a plethora of cognitive functions; from the binding of 

object features (Singer, 1999) to the emergence of consciousness (Doesburg, Green, 

McDonald, & Ward, 2009). Thus, cross-frequency interactions have been of interest for 

neuroscientists due to its physiological plausibility. The tight relationship between nested 

oscillations as a neurobiological mechanism for information communication and 

processing is its main advantage. CFC has been reported using a variety of species and 

methods (Canolty & Knight, 2010), including the human cortex (Canolty et al., 2006). 

Recently, Canolty et al. (2006) recorded 64-channel electrocorticogram (ECoG) from 

human subjects. Distinct cognitive, sensory, and motor tasks were performed. Results 

showed high gamma (80 – 150 Hz) functionally coupled with theta phase (4 – 8 Hz) for 

the first time in human cortical recordings. Remarkably, this CFC was task-dependent 

and significantly present in most electrodes in different cortical areas. This supports 
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earlier reports of CFC in different species and brain regions, leading to the idea that 

phase-amplitude interactions might play a vital role in linking functional systems across 

time and space scales.  

Importantly, there is evidence that low-frequency oscillatory phase facilitates 

cortical computation through the dynamic coordination of spike timing (Buzsaki & 

Draguhn, 2004; Womelsdorf & Fries, 2007). Moreover, it has been shown that phase-

amplitude CFC can suppress and facilitate cortical processing. For example the phase of 

theta can enhance spike transmission between synchronized brain regions, which triggers 

an increment in gamma-band amplitude and a corresponding processing of information 

(Womelsdorf and Fries 2007). Further, inhibition could be easily exerted over 

synchronized populations by phase-resetting active networks, hence destroying the time- 

locked interaction. Thus, it might well be the case that the phase of low-frequency 

oscillations enslaves the power of high-frequency ones in order to facilitate information 

processing (Schroeder & Lakatos, 2009a). These and other results (reviewed in Canolty 

& Knight, 2010) support the idea that slow frequencies can be dynamically entrained by 

external and endogenous processes in order to become an action-oriented predictive 

system (Schroeder & Lakatos, 2009b). Thus, recently, CFC analyses of connectivity have 

been increased interest in neuroscience. However, not many studies have explored the 

functional role of CFC in cognition using non-invasive methods. 

As most connectivity measures, the main disadvantage of CFC is the increased 

number of multiple comparisons to be performed, which can be in the order of hundreds 

per channel, per time point. Consider that in order to test for theta-gamma phase-

amplitude coupling, tests have to be performed for the selected theta range and power at 
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all subsequent frequencies (e.g. 20 to 100 Hz) at all channels and time points. Thus, the 

search space for CFC is extremely large and requires appropriate statistical and multiple 

comparison correction methods, which are not commonly used in the cognitive 

electrophysiology literature (see 3.6 Statistical Testing).  

 

Figure 18 – Putative cross-frequency interaction at 
the single trial level. Top panel depicts the time-
course of low-pass filtered EEG signal at 25 Hz. 
Bottom panel shows power at 25 Hz. Clear power 
‘bursts’ can be seen suggesting that 25 Hz power 
might interact with a lower frequency signal. 
Cross-frequency coupling test the robustness of 
these interactions across trials 

 

A second disadvantage is the lack of previous findings in the cognitive 

electrophysiology literature, which makes it really hard to interpret current results if no 

specific manipulations have been made by the experimenter. Thus, for now and in the 

near future, the success of exploratory CFC analyses in cognitive electrophysiology will 

mainly rely on the quality of experimental designs. In this dissertation we have carefully 

crafted an experimental paradigm that allows me to ask specific questions (see 3. 

Methods). Moreover, by using multi-linear regression I have implemented a data-driven 

dimensionality reduction (see 3. Methods). Therefore, exploratory analyses can be safely 

performed on these data. 

Cross-frequency interactions can be anecdotally seen in band-passed data. Figure 

18 depicts a 25 Hz low-pass filtered single EEG trial (top panel). In the filtered signal 

small ‘bursts’ of power can be seen where the amplitude of the signal increases 

rhythmically. Furthermore, power at 25 Hz was extracted from the filtered signal (bottom 
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panel). When power is computed, the suspicion of cross-frequency interactions becomes 

even stronger. The bottom waveform in Figure 18 depicts clear rhythmic bursts of power. 

Remember that this waveform was created from a randomly selected EEG trial. Thus, 

cross-frequency interactions can be (anecdotally) seen even at the single trial level. 

Several approaches can be employed in order to test for nested oscillations. Since the 

search space is so big23 and limited evidence is available for the generation of specific 

hypotheses, a mixed hypothesis-driven and exploratory approach has been primarily used 

(M. X. Cohen, 2008). This mixed approach uses a priori-defined low frequency 

oscillation while the rest of the high frequency space is used to search for relations. 

Generally, the low frequency is set a priori while high frequencies are explored, however 

there are no restrictions to arbitrarily choose a high frequency in order to explore the low 

frequency space (M. X. Cohen, 2008). Top left panel in Figure 19 shows the result of 

semi-exploratory CFC approach. Theta phase at 6 Hz was chosen while a wide range of 

frequencies (16 to 70 Hz) was used for power in order to compute phase-amplitude 

coupling. This semi-exploratory analysis suggests that for this arbitrarily chosen group of 

trials (N=200), for this particular subject, in channel PO8, for a pre-defined window (170 

to 470 ms post-stimulus onset), gamma power (~30 Hz and >55 Hz) is coupled to theta at 

6 Hz (Figure 19, top left panel). 

In contrast, a completely hypothesis-driven approach could be taken, where 2 

specific frequency bands are tested for correlations. Bottom left panel in Figure 19 depicts 

the results of hypothesis-driven CFC. The phase of theta at 6 Hz and the power of gamma 

at 30 Hz were arbitrarily chosen in order to compute CFC over time points. This strategy 

                                                             
23 Usually in the order of subject x frequency x frequency x electrode x condition x time  
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has several advantages, most importantly increased statistical power. Potentially, 

hypothesis driven CFC can be calculated over a pre-defined window (e.g. 260 – 380 ms) 

and no corrections for multiple comparisons would have to be performed. However, in 

bottom left panel of Figure 19, hypothesis-driven CFC was computed over time points. 

Thus, a time-series of cross-frequency interaction can be obtained for the 2 frequencies of 

interest. The main disadvantage of this approach is that it might miss significant 

interactions among other frequencies. Moreover, this approach cannot resolve if the 

cross-frequency effect is specific to the 2 selected frequencies or corresponds to a more 

wide broadband effect.  

Furthermore, a completely exploratory approach can be used where all 

frequencies are tested for correlations using all other frequencies at specific time-

windows or over time. The obvious disadvantage of this approach is the inflated amount 

of statistical tests to be performed. Potentially, statistical tests would be performed over 

frequencies and over time, which can rise to the order of hundreds per electrode. Right 

panels in Figure 19 depict a frequency-frequency representation of cross-frequency 

interactions computed over a pre-defined window (e.g. 260 – 380 ms). Inset rectangles in 

Figure 19 present top left panel CFC in context of time (bottom left panel) and frequency 

(top right panel). This simple exercise shows that the exploratory approach allows 

uncovering other relationships that both hypothesis-driven and mixed approaches would 

have missed.  
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Figure 19 – Example of the 3 different approaches to compute cross-frequency coupling. 
Data from 200 trials from channel PO8 from 1 randomly selected subject was used in order 
to compute phase-amplitude cross-frequency coupling (CFC). Top left panel depicts the 
results of mixed CFC approach (see text) computed over a pre-defined time window (260 – 
380 ms). PAC between a pre-defined low frequency phase (6 hz) and a wide range of high-
frequency power (16 – 70 Hz) was computed. Bottom left panel depicts the results of 
hypothesis-driven CFC approach (see text) computed over time. A pre-defined low-
frequency phase (6 Hz) and a pre-defined high-frequency power (30 Hz) were chosen to 
compute PAC. Right panels depict the results of exploratory CFC approach (see text) 
computed over a pre-defined time window (260 – 380 ms). PAC was computed between a 
range of low-frequency phase (4 – 12 Hz) and a wide range of high-frequency power (16 – 
70 Hz) for 2 different conditions. Inset rectangles indicate where the results presented in top 
left panel fit in context of time (bottom left panel) and frequency (top right panel) 
  

 
Currently, CFC analyses are so novel in the cognitive electrophysiology literature 

that very few previous studies can be found (in some cases, none) so as to draw strong 

hypotheses. Thus for now most studies will benefit from exploratory and mixed 

approaches more than hypothesis-driven. It is of utter importance to use appropriate 

statistical methods in order to use the exploratory and mixed CFC approaches. In this 
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dissertation I chose to use a semi-exploratory approach (see 3.5.1 Analysis of linear 

measures). 

2.4 Linear Modeling of EEG Measures 
 

 The cognitive electrophysiology literature is mostly composed of studies based on 

simple categorical designs quantifying brain activity using ERPs at the group level. Thus, 

hundreds of studies can be simply summarized: at some point between 100 and 300 ms 

the peak or trough of an ERP component for a condition differs from the peak or trough 

measured on the opposite condition. Although this approach has been clearly useful 

(Luck, 2005), modern statistical approaches and increased computation power have 

allowed neuroscientists to implement more appropriate analysis routines, providing a 

relevant opportunity to improve cognitive electrophysiology as a field (Litvak et al., 

2011; Makeig et al., 2004; Maris & Oostenveld, 2007; Rousselet & Pernet, 2011; Wilcox 

& Keselman, 2003). 

Accumulating evidence suggests that exploring time series can provide insights to 

interesting dynamics related to information processing. Such dynamics are lost when 

analyses are confined to peaks, troughs, and/or pre-defined windows. For example, 

VanRullen and Thorpe (2001) used a dual-task design and quantified the time-course of 

perceptual decision-making. Analyzing the time course of ERPs allowed them to 

dissociate early activity related to the processing of low-level characteristics of the 

stimuli while separating activity independent of low-level visual processing, probably 

linked to decision-making (VanRullen & Thorpe, 2001). Philiastides et al. (2006) 

quantified the content of information associated to perceptual classification carried by 
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single-trial ERP time series in a categorization task. Using logistic regression they 

uncovered temporal dynamics of perceptual categorization at the single-trial level, 

separating components linked to perception and decision (Philiastides et al., 2006). 

Similarly, van Rijsbergen and Schyns (2009) used reverse correlation between stimuli 

and ERP waveforms in order to uncover the temporal evolution of face processing of 

facial emotion perception. By focusing on time series, they demonstrated that time frames 

prior to and after the N170 peak are more strongly associated with information 

processing than the actual N170 peak (van Rijsbergen & Schyns, 2009).  

More recently, a similar approach based on information theory was used in order 

to determine the amount of 

information encoded by the 

temporal dynamics of power, 

phase, and frequency in a facial 

expression of emotion 

categorization task (Schyns et al., 

2011). These examples demonstrate 

that temporal dynamics underlying 

information processing (Philiastides 

et al., 2006; VanRullen & Thorpe, 

2001), accumulation (Philiastides et 

al., 2006; Schyns et al., 2007), 

and/or multiplexing (Schyns et al., 

Figure 20 – Top: Schematic representation of 
experiment 2 in Philiastides et al. (2006). Different 
decisions (color/category) were made using the 
same evidence provided by face and car images 
with 2 different levels of phase coherence (30, 
45%). Bottom: Stimuli used in Rousselet et al. 
(2011). Different decisions (color/identity) were 
made using 8 different levels of phase coherence 
(10-80%) 
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2011) can be examined when using appropriate analyses and experimental methods. 

Moreover, it has been argued that in order to uncover electrophysiological mechanisms of 

information processing and transmission, a single-trial analysis approach in combination 

with parametric and/or dual-task designs should be used (Schyns, 2010; Schyns et al., 

2009; Vanrullen, 2011). Therefore, these more rigorous experimental techniques should 

be preferred by cognitive electrophysiologists in order to dissociate low-level stimulus-

driven activity from flexible task-related activation. 

In this dissertation, I have implemented a parametric, two-interval, dual-task 

design that allows dissociating physical stimuli from task requirements. Participants had 

to make block-wise similarity and discrimination judgments using the same perceptual 

evidence (see Figure 27 and Figure 28). Manipulating the diagnostic quality of the 

presented stimuli allowed me to quantify how task demands affect perceptual decision-

making. Further, by analyzing time series I was able to quantify when the effects of task 

demands on perceptual decision-making take place. Previous studies have demonstrated 

how brain signals are sensitive to different physical stimuli/task (Philiastides et al., 2006; 

Rousselet, Husk, et al., 2008; Schyns et al., 2007; Schyns et al., 2011; van Rijsbergen & 

Schyns, 2009). However, very few have focused on quantifying task-related neural 

activity in the time domain correlated to the perception of the same information (Goffaux, 

Jemel, Jacques, Rossion, & Schyns, 2003; Philiastides et al., 2006; Rousselet, Gaspar, 

Wieczorek, & Pernet, 2011; VanRullen & Thorpe, 2001). Moreover, to the best of my 

knowledge no study has done so in the time-frequency domain. 

In order to present the approach taken in this dissertation, let me consider 2 

experiments, which were of great influence (Philiastides et al., 2006; Rousselet et al., 
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2011). First, in experiment 2 of Philiastides et al. (2006), participants were provided with 

two stimuli categories (car or face) and used 2 levels of phase coherence (30% and 45%). 

Task requirements demanded judgments about stimuli’s color (green vs. red) or category 

(car vs. face see Figure 20 top). Among other very relevant findings, the clever 

manipulation in Philiastides et al. (2006) allowed them to quantify the time course of 

events linked to perception and decision-making (Philiastides et al., 2006). Second, the 

manipulation made by Rousselet et al. (2011) implied a dual-decision task based on color 

(green vs. red) and identity (face 1 vs. face 2). Participants made judgments using 8 

different levels of phase coherence (10 – 80%, see Figure 20 bottom). The parametric 

manipulation of noise allowed them to separately quantify the time course of noise 

sensitivity and task effects (Rousselet et al., 2011).  

These 2 examples (Philiastides et al., 2006; Rousselet et al., 2011) exploit the 

manipulation of stimuli phase coherence in order to control for task difficulty. Phase 

coherence has been shown to contain most of the information pertaining object identity 

(Gaspar & Rousselet, 2009); ERP modulations are therefore expected when manipulating 

phase coherence. The monotonic relationship between ERP components and phase 

coherence levels indeed demonstrates this point in Rousselet et al. (2011) and in 

experiment 1 by Philiastides et al. (2006) (Figure 21). In this dissertation I did not rely on 

amplitude spectra and explored the neural correlates of judgments based on more subtle 

stimuli features that might not necessarily elicit ERP differences (Figure 21). I separated 

task demands and task difficulty from the physical properties of the stimuli by using 

composite images with equated amplitude spectra mixed in 7 different levels (see Figure 

27). Thus, I predicted that no differences would be seen in the ERP measure. I 
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furthermore predict that measures of brain activity in the time-frequency domain would 

be a more appropriate descriptor of the neural dynamics underlying perceptual decision-

making for the carefully crafted used experimental design. 

Furthermore, the present parametric dual-task experimental design allowed me to 

implement a single-trial approach 

and express linear measures in 

terms of sensitivity to stimulus 

information (!w3" ), task demands 

(!w1T1 , !w2T2 ), and behavioral 

outcome (!w4RT ). Thus, I 

implemented multi-linear 

regression at the level of single 

trials per subject represented in 

Equation 6 and Equation 7 (S. J. 

Kiebel & Friston, 2004a, 2004b; 

Litvak et al., 2011; Pernet et al., 

2011). Specific factors of the 

present experimental design were 

considered and included in the 

linear model for ERP, ERSP, and 

ERPAC (see 3.5.1 Analysis of 

linear measures): 

Figure 21 – Many studies confound task difficulty 
and stimulus properties as evidenced by the 
monotonic relationship of phase coherence levels as 
quantified by ERPs. Top: ERPs from Philiastides 
et al. (2006). Bottom: ERPs from Rousselet et al. 
(2011)   
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1. Sensitivity to Stimulus Properties: In order to determine if linear measures 

were sensitive to stimulus information (i.e. mixture level) in the context of 

each task, trials were tagged according to Parameter 2 – Test Face Difference and 

were included in the linear model as 1 regression coefficient (!w3" ). Using 

this predictor I thus expect to estimate the effect of stimulus properties over 

linear measures of brain activity 

 

2. Sensitivity to Task Demands: In order to determine if linear measures were 

sensitive to different task demands (i.e. similarity vs. discrimination), trials 

belonging to each decision were separately included in the linear model as 2 

regression coefficients (!w1T1 and !w2T2 ). I thus expect to uncover the 

effects of task demands in linear measures of brain activity. Importantly, this 

is the only analysis performed using non-linear measures 

 

3. Sensitivity to Behavioral Outcome: In order to determine if linear measures 

were sensitive to the trial-by-trial behavioral outcome of each subject, I used 

the time of each button press associated with participants’ responses on each 

trial. Thus, reaction times (RT) were included in the linear model as a single 

regression coefficient (!w4RT ). I thus expect to uncover EEG features 

associated with the trial-by-trial variation of participants’ response 
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4. Sensitivity to Stimulus Difficulty: I defined “stimulus difficulty” as the effects 

of stimulus properties (Parameter 2) over task demands (i.e. similarity vs. 

discrimination). For task 1 (more car/more face), a “hard” trial would use zero 

and near-zero values from Parameter 2 while an “easy” trial would use extreme 

values from Parameter 2. In contrast, for task 2 (same/different), a “hard” trial 

would use near-zero values from Parameter 2 while an “easy” trial would use 

extreme and zero values from Parameter 2. Beta weights associated with 

stimulus information (!w3" ) were combined with beta weights associated 

with task demands (!w1T1 , !w2T2 ) using Equation 8. I think the combination 

of task- and stimulus-related regressors provides an appropriate estimation of 

stimulus information over task demands (!wSIT ) as quantified by linear 

measures 

Thus, for the ERP, ERSP, and ERPAC measures, my results will be based on the 

analysis of the time course of the different regression coefficients described above (see 

3.5.1 Analysis of linear measures).  

Each regression coefficient will be expressed per measure, per subject, per 

channel. In order to decrease the search space of electrodes and prevent type I errors, I 

used the coefficient of determination known as R2. Furthermore, the usage of R2 as a 

dimensionality reduction technique allowed me to prevent circular inferences (aka 

“double dipping”) (Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). 

Coefficients of determination (R2) are a measure of goodness of fit of data points 

to a statistical model, a linear model in the case of this dissertation (see 3.5 EEG data 
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analysis, Figure 22). The use of R2 has been neglected in the field of cognitive 

electrophysiology. In contrast this approach has been successfully applied by other 

research groups using different kinds of data (e.g. Logothetis, Pauls, Augath, Trinath, & 

Oeltermann, 2001). The left panel in Figure 22 depicts the time course of R2 computed 

using 200 trials from all electrodes from a randomly selected subject. Right panel in 

Figure 22 depicts a topographical representation of interpolated R2 values.  

As depicted in Figure 22, R2 allowed me to identify electrodes that were 

maximally associated with variations in neural activity across trials as modeled by the 3 

factors described above (represented as a design matrix in Figure 33). A maximal R2 value 

was obtained per subject, per measure; providing a way to optimize the identification of 

the electrode with best fitness to each regression coefficient. The time course of those 

electrodes were used in order to establish statistical significance. Theoretically, the time 

course of each R2 function can be used in replacement of the actual neural measure of 

interest (e.g. ERP). However, since this approach has not been explored enough in the 

literature I decided to use R2 as a dimensionality reduction technique and not as the main 

dependent variable of this dissertation. Therefore, the linearly modeled beta weights 

associated with ERP, ERSP, and ERPAC from the measure-wise R2–optimized electrode 

were used for statistical testing (see 3.5.1 Analysis of linear measures). 

In summary, the present dual-task parametric design allowed me to implement 

single-trial linear modeling in order to determine the effects of stimulus information (

!w3" ), task demands (!w1T1 , !w2T2 ), and behavioral outcome (!w4RT ) on perceptual 

decision-making as quantified by ERP, ERSP, and ERPAC. Linear modeling of neural 

time series allowed me to independently explore the relationship between single-trial 
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brain activity and task demands while accounting for the effects of stimuli information, 

task, and reaction time (see 3.5.1 Analysis of linear measures). Furthermore, this analysis 

allowed me to better take into account within-subject variance and eliminating any effects 

due to small sample bias (S. J. Kiebel & Friston, 2004a, 2004b; Litvak et al., 2011; Pernet 

et al., 2011; Wilcox, 2005a). 

 

 

Figure 22 – Time course of R2 values (left) and topographical representation of interpolated 
R2 displaying the highest-valued R2 (right) for the ERSP measure computed using a 
randomly chosen set of trials (N=200) from one subject. Red dot indicates the electrode with 
the highest R2 value, in this case, electrode Oz 
 

Moreover, I used the coefficient of determination (R2) as a dimensionality 

reduction technique in order to identify electrodes that were most sensitive to variations 

in neural activity, thus reducing type I errors. I used data recorded at R2–optimized 

electrodes in order to test for statistically significant results at the group level (see 3.6 

Statistical Testing). Modern statistical methods were implemented in order to detect 

differences in neural activity (Maris & Oostenveld, 2007; Wilcox, 2005b; Wilcox & 

Keselman, 2003). The following section will describe and discuss the statistical methods 

implemented in this dissertation.  
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2.5 Non-Parametric Permutation Testing 
 

Statistical methods in psychology have been recently under attack (Cumming, 

2013; Lambdin, 2012; Masicampo & Lalande, 2012; Nosek, Spies, & Motyl, 2012; 

Nuzzo, 2014). Most psychology studies blindly and rigidly use archaic non-appropriate 

methods in order to establish statistical significance. The most common statistical method 

in cognitive electrophysiology is the N-way analysis of variance F test (N-way ANOVA) 

as implemented in a software package originally called Statistical Package for the Social 

Sciences, nowadays known as SPSS (SPSS Inc.). It has been demonstrated several times 

that the F test has very good statistical power relative to other methods when the required 

assumptions are met (Tomarken & Serlin, 1986). However, it has been shown that when 

assumptions are violated, the F test power can very low, leading to increased probability 

of reporting false positives even when large samples are used (Cumming, 2013; Wilcox, 

2005a). This fact poses a particularly dangerous problem for cognitive electrophysiology; 

our samples are usually small24 (<30 subjects) and our data are naturally 

multidimensional. Furthermore, our data can easily violate the assumptions of ANOVA 

(Cumming, 2013; Wilcox, 2005a). Open-source toolboxes for the analysis of 

neurophysiological signals are nowadays available (Delorme & Makeig, 2004; 

Oostenveld et al., 2011; Pernet et al., 2011; Worsley et al., 1996). These and other 

toolboxes provide a wide range of functions that can be used in order to implement 21st 

century statistical analyses to neural time series data. In this dissertation I primarily relied 

on functions from EEGLAB (Delorme & Makeig, 2004), LIMO (Pernet et al., 2011), 

                                                             
24 Although these problems can be seen with samples as big as 2000 or 1000 participants (Nuzzo, 2014; 
Nosek et al. 2012) 
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FieldTrip (Oostenveld et al., 2011), MES (Hentschke & Stüttgen, 2011), Statistics and 

Image Processing toolboxes (The MathWorks, Inc.). 

An exhaustive discussion about statistical methods in cognitive electrophysiology 

is beyond the scope of this dissertation. Nevertheless, in order to justify the selection of 

the implemented methods (3.6 Statistical Testing) I will discuss and describe some 

features and characteristics of M/EEG data that should be a matter of interest for 

cognitive electrophysiologists when implementing statistical procedures. 

Losing power 
 
In statistics textbooks, readers are often warned about the dangers that extreme 

values, data distribution, and within/between subjects variation pose to the power of 

parametric statistical tests (Cumming, 2013; Wilcox, 2005a). In order to illustrate these 3 

potential dangers for null-hypothesis testing in cognitive electrophysiology I created a 

new dataset composed of channel PO8 for 30 new subjects, which I will refer to as 

“resampled subjects”. Each resampled subject was generated by randomly selecting 544 

trials from the original dataset regardless of subject or condition (N=12, see 3.1 

Participants).  

In order to make this exercise I will use the ERP measure because of its 

computational simplicity and its widespread usage in the field. Thus, I run peak-analysis 

of the N170 integrating values over a window that comprised 140 and 200 ms using 30 

resampled subjects. As in most ERP studies, the null hypothesis for this “resampled 

experiment” was such that there was no statistically significant differences between the 
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N170 elicited by “resampled condition 1” and the N170 elicited by “resampled condition 

2”. No real differences should exist between these resampled conditions. 

Figure 23 shows 4 histograms (panel A) and 3 ERP plots (panels B, and C). 

Histograms were constructed with 50 bins (Freedman & Diaconis, 1981) using data from 

2 randomly selected resampled subjects at 2 different time points, 170 and 200 ms (black 

lines, Figure 23 panel B). Red vertical lines in each histogram indicate the center of 

distribution (0, zero). Panel B depicts the average ERPs for 6 of the 30 resampled 

subjects plotted in different colors. However, 2 ERPs are plotted in black lines. Data from 

these 2 resampled subjects was used to generate histograms in panel A and are plotted 

independently in panel C. From Figure 23 I can describe that: 

 

i. A non-trivial number of trials follow at the extremes of each distribution 

(Figure 23, panel A). These extreme values are commonly known as “outliers”. 

M/EEG data, by nature, contain a not negligible number of outliers. The 

commonality of outliers and strategies on how to handle them are a recurrent 

discussion topics in statistical methods that go beyond cognitive 

electrophysiology (Cumming, 2013; Wilcox, 2005a) 

 

ii. The distribution of values, although separated only by 30 ms (i.e. 15 data 

points), differs considerably. Whilst the distribution of trials at 170 ms tends 

to be following a relatively Gaussian shape25 for one of the resampled subjects 

(panel A Figure 23, top left), for other resampled subject a strong negative 

                                                             
25 Although it can be argued that some of these distributions could be described as bi- or multimodal 
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skew can be seen (panel A Figure 23, bottom left). At 200 ms the distribution 

of values radically changes, being skewed for both resampled subjects with 

opposite direction (panel A Figure 23, right). In general, asymmetry within and 

between individual subjects’ measurements have raised strong concerns 

among statisticians (Cressie & Whitford, 1986; Wilcox, 2005a, 2005b; Wilcox 

& Keselman, 2003). Although in M/EEG data, asymmetrical distributions are 

expected, the implementation of single-trial analysis (Gaspar, Rousselet, & 

Pernet, 2011), normality tests (Mantel & Brown, 1974), and/or data 

transformations (Wilcox, 2005a) are rare practices among cognitive 

electrophysiologists and psychologists alike 

 

iii. ERPs in panel B differ from one resampled subject to another. These 

variations are a product of the existence of outliers influencing the distribution 

of values (Figure 23, panel A), making some ERP features very unreliable at 

the single-subject level. For example, P1 for green, red, and yellow resample 

subjects is almost non-existent whereas for blue and one of the black 

resampled subjects P1 is very similar (Figure 23, panel B). The same can be 

said for all other ERP components, which are widely popular in the literature 

(i.e. N170, P250, etc.). Moreover, peaks and troughs can have large room for 

variation, whereas the transition between them can be very reliable, as shown 

by confidence intervals (C.I.) (Figure 23, panel C). Thus, when comparing 

subjects or groups using parametric tests, like the F ANOVA, it is assumed 
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that a common variance exists (Wilcox, 2005a, 2005b). Power gets affected 

when this assumption is violated 

 

Strategies to overcome the 3 problems encountered in this toy dataset (Figure 23) 

have been developed over the years. Normality tests and data transformation techniques 

have been suggested as good diagnostics and solutions, however it is has been argued that 

they do not possess the power to actually detect problems and that they do not solve the 

issue presented by outliers (Wilcox, 2005b). Using trimmed means as appropriate 

estimators have been suggested as a possible solution (Wilcox, 2005b). Furthermore, 

Bayesian statistics have been also suggested as a viable alternative to null-hypothesis 

testing (Kruschke, 2010). 

The aforementioned strategies are not commonly used in cognitive 

electrophysiology. Scientists often draw conclusions without verifying their data, a 

common practice in psychology and social sciences (Lambdin, 2012). Thus, in order to 

test for significance in this resampled experiment, I did not correct for any of the raised 

concerns.  

I run a group-level t-test and, as expected, no statistical differences were found in 

this resampled experiment. However, in order to test the robustness of these results, I run 

this exercise 300 times. Thus, 299 new resampled experiments where made, containing 

30 new resampled subjects each time. ERPs were computed for each one of these new 

resampled subjects and the peak of the N170 component was quantified. Figure 24 top and 

middle panels show the results of the original resampled experiment and the following 

299 replications. Top panel displays p-values. Following the bulk of the ERP literature a 
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non-significant p-value was considered to be greater than 0.05; this threshold is 

represented by horizontal red lines (top panel). Just for reference a second horizontal red 

line was added indicating significance threshold of 0.01 (top panel). Blue asterisks in the 

top panel represent non-significant p-values (>0.05) while significant p-values (<0.05) 

are plotted as red dots. It can be clearly seen how p-values are widely spread acquiring 

ranging from ~0.01 to >0.25. The middle panel in Figure 24 shows confidence intervals 

for each resampled experiment. Furthermore, p-values and confidence intervals for 

resampled experiments number 100 to 150 are plotted for more detail in the bottom panel 

(Figure 24).  

If one considers the results displayed in the bottom panel of Figure 24, it can be 

seen that about 10% of the results suggest that there is a significant difference between 

N170 from the resampled conditions. How can a cognitive electrophysiologist know if 

the obtained results are robustly significant and would be replicated? As clearly shown in 

the bottom panel of Figure 24, p-values represented as blue asterisks and red dots are not 

very informative since they range from <0.01 to 1, a phenomenon that has been described 

as “the dance of the p-values” (Cumming, 2013). Relying on p-values to establish 

significance has been critically examined many times (Cumming, 2013; Lambdin, 2012; 

Masicampo & Lalande, 2012; Nosek et al., 2012; Nuzzo, 2014) and has been described as 

“not empirical” and compared to “sorcery” (Lambdin, 2012). In contrast, confidence 

intervals allow scientists to understand the size and the relative importance of the effects 

(Cumming, 2013). In the bottom panel of Figure 24, even in the cases where I obtained a 

significant N170 effect, the confidence interval is so spread and close to zero that its 
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message can only be interpreted as “this effect is small, probably a false positive and 

should not be considered” (Lambdin, 2012; Nuzzo, 2014). 

 

 

 

Figure 23 – Some reasons why parametric statistical tests might not be appropriate for 
cognitive electrophysiology. 544 trials from channel PO8 from 30 resampled subjects (see 
text) were used to generate (A) histograms of trials from 2 subjects at 170 and 200 ms. Red 
line indicates 0 (zero). (B) Sample ERPs from 5 resampled subjects, different colored ERPs 
represent different subsampled subjects while black lined ERPs represent the subjects 
whose data are plotted in A and C. (C) ERPs for 2 selected subsampled subjects used to 
compute A, with confidence intervals (grey boundaries) 
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Figure 24 – Results from 300 resampled experiments testing differences between N170 ERP 
component quantified from 30 resampled subjects in 2 resampled conditions. Top panel 
displays p-values associated with each resampled experiment. Significance thresholds at 
0.05 and 0.01 are signaled by horizontal red lines. P-values associated with a significant 
effect (<0.05) are plotted as red dots. Middle panel displays confidence intervals associated 
with each resampled experiment. Rectangle indicates the range of data with p-values and 
confidence intervals plotted in the bottom panel 
 

In contrast, Figure 25 was made using data from the same 300 resampled 

experiments displayed in Figure 24. This time, however, instead of comparing N170s 

from both resampled conditions I compared the N170 from resampled condition 1 to 

baseline (-50 ms) in resampled condition 2. Thus ensuring a significant difference. 

Results are shown in the same fashion as Figure 24. This time ~10% of the resampled 

experiments p-values missed the effect; we know these are false negatives. Whereas 

confidence intervals indicate that although the effect might be small for certain resampled 

experiments the effect is robust. 
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Figure 25 – Same exercise as in Figure 24. However, this time the N170 was compared 
against baseline to ensure a significant effect. Top panel displays p-values associated with 
each resampled experiment. Significance thresholds at 0.05 and 0.01 are signaled by 
horizontal red lines. P-values associated with a significant effect (<0.05) are plotted as red 
dots. Middle panel displays confidence intervals associated with each resampled 
experiment. Rectangle indicates the range of data with p-values and confidence intervals 
plotted in the bottom panel 
 

In summary, in this simple exercise I applied the regular procedures of ERP 

research simulating 300 experiments investigating the effects of a categorical 

manipulation over the popular N170 ERP component. We can furthermore see the benefit 

of moving away from interpreting our results based only on p-values. Although no “real 

effect” existed between our resample conditions, significant results were found in about 

10% of our resampled experiment (Type I error, Figure 24). Similarly, when a “real 

effect” was forced to exist, we failed to detect such differences in about 10% of our 

resampled experiments (Type II error, Figure 25). Showing the importance of considering 

robust methods based on bootstrapping or permutation when testing for significant effects 
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(Wilcox, 2005a). Importantly, in this exercise nothing was done in order to deal with the 

concerns raised in Figure 23. In this dissertation, in order to test for significant effects and 

to take care of outliers, skewness, and intra- and inter-subject variance I used 2-level 

robust non-parametric permutation testing for both linear and non-linear EEG measures 

(see 3.6 Statistical Testing). 

The Non-Parametric Permutation Testing Framework 
 

The framework provided by permutation testing allows psychologists, and 

cognitive electrophysiologists to assess the statistical significance of given time or time-

frequency point(s). Due to the non-Gaussian nature of data distribution and the 

multidimensionality of results, non-parametric permutation testing framework has been 

suggested as absolutely necessary for time-frequency analysis (Maris & Oostenveld, 

2007). The power of permutation testing comes from its assumption-free nature. Unlike 

the popular F-ANOVA, as implemented in SPSS and other commercial statistical 

software, no assumptions have to be made about the distribution of data (Maris & 

Oostenveld, 2007; Theiler, Eubank, Longtin, Galdrikian, & Doyne Farmer, 1992; 

Wilcox, 2005a).  

In parametrical tests, it is assumed that data points are drawn for Gaussian 

distributions. However, the exercise in Figure 23 shows that this assumption is violated in 

EEG data. In order to reject the null-hypothesis, parametric tests compare the statistic of 

interest (e.g. F or t value) against an idealized distribution of that given statistic expected 

under the null hypothesis (Wilcox, 2005a). Using these theoretical distributions a p-value 

is computed in order to assess the probability of observing the empirical results by 



 91 

chance. The size of the obtained p-value should indicate the likelihood of the null-

hypothesis of being true (Wilcox, 2005a).   

In radical contrast, non-parametric permutation testing assumes nothing. Data 

points can be thus drawn from any kind of distribution, presenting no problem for 

statistical power. Furthermore no theoretical assumptions are made about the distribution 

of test statistics under the null-hypothesis (Wilcox, 2005a). Instead of assuming the 

existence of an idealized test statistic distribution, a data-driven distribution is generated 

under the null-hypothesis.  

Another exercise was made using the categorical comparison of N170 ERP 

component shown in Figure 23, Figure 24, and Figure 25. This time, instead of running 300 

different resampled experiments with 30 different resampled subjects each time, I 

performed a group-level analysis on 30 resampled subjects using 1000 permutations.  

Thus, condition labels between resampled condition 1 and resampled condition 2 were 

swapped 1000 times. In permutation testing the mapping between the dependent and 

independent variables is shuffled; but data are not altered in any way (Wilcox, 2005a). 

Top left panel in Figure 26 show data-driven distributions of test statistic values observed 

under the null-hypothesis was created for both comparisons (i.e. resampled condition 1 

N170 vs. resampled condition 2 N170 and resampled condition 1 N170 vs. baseline). In 

permutation testing, comparing the “real” observed value against the null-hypothesis 

distribution assesses statistical significance (Wilcox, 2005a).   

Top left panel in Figure 26 depicts the data-driven t statistic distribution for one set 

of 30 resampled subjects testing differences in the N170 ERP component between 

resampled condition 1 and resampled condition 2. Since I build the subjects randomly, no 
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significant differences were expected. The non-parametric permutation testing framework 

allowed the confirmation of the story told by confidence intervals (Figure 24, bottom 

panel); no significant effect exists between the N170 component elicited by resampled 

condition 1 when compared against resampled condition 2. The observed value was 

indistinguishable from values observed under the null-hypothesis. Furthermore, when the 

N170 was compared against baseline, the significant effect was not missed (Figure 26, top 

right panel). Fundamentally, the distribution of parameters describing the data, the 

presence of outliers, and data points with non-representative values had no impact in the 

obtained results (Wilcox, 2005a). Real data looks very different from the idealized 

theoretical distribution that is commonly used in cognitive electrophysiology (Figure 26, 

bottom panel); non-parametric permutation testing is indeed a superior framework for 

cognitive electrophysiologists (Maris & Oostenveld, 2007). 

 

Figure 26 – Data-driven and theoretical test statistic distributions. Non-parametric 
permutation testing allows the creation of data-driven test statistics distribution under the 
null-hypothesis (top panels). Red vertical line indicates zero. In contrast, parametric tests 
assume the underlying distribution is Gaussian (bottom panel).  
    

The main disadvantage of non-parametric permutation testing is that comparing 

the observed value to 1 null-hypothesis test statistic is useless. Therefore, as shown in 

Figure 26, the permutation procedure has to be done hundreds or thousands of times. This 
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procedure can become computationally expensive. There is no optimal or magic number 

of permutations to be implemented. However, for most procedures, 1000 permutations 

have been recommended (Wilcox, 2005a). If we consider that 1000 permutations will 

have to be performed for each trial, channel, time point, and frequency computation time 

can easily span several weeks. I take as a rule of thumb that the noisier the data, the fewer 

the trials, the fewer the subjects, and the larger the disparity between trials present in each 

condition, the larger the number of permutations needed. In this context, more iterations 

of the process are always better. Yet, this disadvantage should be completely ignored 

nowadays because most laboratories possess adequate computational power. 

Correction for Multiple Comparisons 
 

Due to the simplicity of the exercise presented in figures 21 – 23, no correction 

for multiple comparisons had to be implemented. However, this is not the usual situation 

cognitive electrophysiologists face in their research. Thus, multiple comparison 

correction (MCC) is a common procedure applied in cognitive neuroscience. It is hard to 

imagine a published article that applies no correction for multiple comparisons. A 

particularly useful feature of the non-parametric permutation testing framework is that 

correction for multiple comparisons can be naturally implemented in any analysis 

pipeline. The most common and popular method for multiple comparison correction is 

the Bonferroni correction. Most commercial statistical software packages implement 

Bonferroni correction by default, perpetuating its usage in thousands of cognitive 

electrophysiology studies. However, the Bonferroni method has been criticized over the 

years in multiple disciplines. Authors have pointed at its flaws that range from 
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mathematical to logical to practical (Maris & Oostenveld, 2007; Moran, 2003; Narum, 

2006). Bonferroni correction consists in dividing the desired p-value threshold (e.g. 0.05) 

by the number of tests performed. In the simplest ERP study, at least 2 electrodes will be 

tested, usually left and right hemisphere electrodes. Thus, the new Bonferroni-corrected 

p-value of 0.05 for such a study is 0.025. In this situation, the method is appropriate. 

However, this scenario can be rarely encountered when doing research with real 

cognitive neuroscience datasets. 

Most cognitive neuroscience studies are somewhat exploratory. They mix 

hypothesis-driven approaches with exploratory ones. Cognitive electrophysiology is no 

different. Tests are performed at multiple electrodes, at different time points or temporal 

components, at different frequencies, etc. In these situations the Bonferroni method is 

usually not appropriate. The first obvious problem is that in order to ask interesting 

questions to a data set, more complicated analyses need to be performed26. Testing 1 time 

point at 2 different channels would probably answer a very specific and simple question. 

However, even when specific questions are asked, Bonferroni might not be the most 

appropriate method.  

What if a scientist would like to know if increasing image contrast modulates 

posterior gamma power (30 and 70 Hz) between 100 and 300 ms? (Schadow et al., 2007). 

In this case, we would have ~100 time points, ~13 channels, and ~21 frequency bands 

leading to 27,300 between-condition tests. If we consider this very realistic situation, our 

Bonferroni-corrected p-value of 0.05 would be 0.0000018; so small that not even real 

                                                             
26 More complicated than 1 time point at 1 electrode between 2 conditions  
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effects would be detected. Moreover, so many tests are performed that the number of 

false positives would also increase dramatically. 

Furthermore, Bonferroni correction is blind to the nature of the data a scientist is 

working with. Imagine a researcher that knows the N170 ERP component is sensitive to 

facial expressions in humans (Blau et al., 2007). This researcher wants to know when 

does the amplitude of N170 measured at channel PO8 starts distinguishing “positive” 

facial expressions from “negative” facial expressions. Our scientist will therefore test for 

differences in amplitude within a time window comprising 50 to 250 ms. Just like 

hundreds of ERP studies data will be sampled at 250 Hz. In this case, 51 tests will be 

performed. Bonferroni-corrected p-value of 0.05 would be 0.00098. What if data was 

sampled at 500 Hz? Now our scientist has 101 tests to be performed. Bonferroni-

corrected p-value of 0.05 would be 0.00049. Finally, if data were sampled at 1000 Hz, the 

new p-value would be 0.00024. Bonferroni correction went from an excessive 0.00098 to 

an unrealistic 0.00024 as a threshold for significance. In this case, the number of data 

points inside the window to be tested should not be considered as independent. In our 

realistic example, no additional information is obtained when testing 51 or 201 time 

points within 50 and 250 ms. Bonferroni fails at acknowledging this relationship and the 

statistical significance threshold is negatively affected. The same argument can be 

applied to the frequency, sensor, and time-frequency domains. 

Finally, imagine that the same scientist wants to know what the effects of 

perception of emotional faces are not only on the N170 but also on the P250 ERP 

component. Thus, bilateral test statistics for peak analysis would be performed at 2 

different, yet continuous time-points. Yet Bonferroni correction would assume that each 
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test was independent. Thus, the corrected p-value of 0.05 for the N170 component is 

0.025. Likewise, the corrected p-value of 0.05 for the P250 component is 0.025. These 2 

corrected p-values are very reasonable and significant effects might be expected. 

However, the independence of these 2 ERP components is not a straightforward and easy 

to argue assumption. A more appropriate method should take into account the high 

autocorrelation between time points in the ERP time series. Therefore, our scientist 

should have used a Bonferroni-corrected p-value of 0.0125 instead of 0.025. Once again, 

Bonferroni failed at acknowledging the nature of the data. 

In summary, the main problem with the standard method of multiple comparison 

correction is that it can be described as a “cookie-cutter” strategy. Lack of flexibility in 

research has always been and will always be a problem. The Bonferroni correction 

blindly applies a pre-defined criterion based on the number tests performed regardless of 

the nature of the data or the scientific question. 

In contrast, the non-parametric permutation testing framework offers the 

opportunity to implement tailor-made methods for correction of multiple comparisons 

depending on the nature of the data and the scientific question at hand. Flexile strategies 

such as false-discovery rate (Benjamini & Hochberg, 1995; Genovese, Lazar, & Nichols, 

2002) and Gaussian random-field theory (Kilner, Kiebel, & Friston, 2005; Pantazis, 

Nichols, Baillet, & Leahy, 2005) have been suggested in the literature. Surveying 

strategies to correct for multiple comparisons is beyond the scope of this dissertation, 

therefore I will focus on the one I have implemented in this dissertation, which is the 

temporo-spatial clustering technique (Maris & Oostenveld, 2007). 
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Clusters of significant data points can be flexibly defined in the time, time-sensor, 

time-frequency, frequency-sensor, frequency-frequency, time-frequency-frequency, and 

time-frequency-sensor space as needed. The logic behind generating clusters of 

significant points is that given the large amount of autocorrelation in data, it is expected 

that statistically significant effects extend across the different data dimensions regardless 

of it being time, frequency, and/or space. Thus, a single isolated time-frequency point 

that is significant is most probably a false alarm. In summary, this multidimensional 

strategy of correcting for multiple comparisons takes into account the nature of EEG data 

and is most suitable for cognitive electrophysiology (Maris & Oostenveld, 2007). 

3. Methods 

3.1 Participants 
 

Participants where recruited from the Indiana University Bloomington 

community. Thus, 12 participants (3 males) between the ages of 20 – 40 participated in 

this study after providing written consent. All participants were free of neurological 

conditions according to their self-report.  All participants reported normal or corrected-to-

normal vision. All procedures conformed the requirements of the local Institutional 

Review Boards (IRB). Due to the large amount of number of conditions I have, each 

participant run 2 sessions of the experiment in order to increase the signal-to-noise ratio. 

3.2 Stimuli, Task, and Procedure 
 

The stimuli consisted on composite Car/Face images. A grayscale frontal view of 

a human face with neutral expression generated from a database of facial features was 
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used. This face was chosen because it is carefully controlled across several statistical 

dimensions and has been used in a previous study by our research group (Schneider, 

DeLong, & Busey, 2007). Also, a grayscale side view of a car was used. Image statistics, 

including amplitude spectrum and overall energy were equated for both pictures; these 

low-level characteristics thus become non-diagnostic features for the tasks. This means 

that participants will not be able to use low-level visual features, such as contrast or 

energy of one image alone, in order to perform the tasks. In order to minimize 

confounding factors, contrast was also varied within 2 levels on each presentation of the 

test image. This, along with the 7 mixing levels between car and face also prevented 

participants from using spurious features, such as small changes in contrast, to 

accomplish the tasks. 

 

 

Figure 27 – Idealized stimuli sample. A composite image of a human face and a car was 
generated automatically using MATLAB in each trial. The proportion of face within each 
composite image was parametrically manipulated. The mixing level parameter that 
controlled the face proportion is shown along with an idealized version of the composite 

 

The face subtended a visual angle of 3.6º width and 4.8° height while the car 

subtended a visual angle of 4.8º width and 3° height. At each trial a new Car/Face 

composite image was generated at random. In the first interval, the proportion of face 

visible was randomly selected from a “standard face proportion” parameter: 
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Parameter 1 – Standard Face Proportion 
Standard Face Proportion = [0.3    0.4    0.5    0.6    0.7] 

 

This composite image was presented as a single Car/Face mixture for 100 ms. The 

first presentation of a composite image will be referred to simply as the ‘standard’. In the 

second interval, a new composite image was generated with a potentially different 

mixture level. The “test face difference” parameter was: 

 

Parameter 2 – Test Face Difference 
Test Face Difference (!) = [-0.25   -0.1   -0.05   0   0.05   0.1   0.05]  

 

This composite image was also presented as a single Car/Face mixture for 100 

ms. I will refer to the second presentation of a composite image as the ‘test image’. Figure 

27 shows an idealized representation of the stimuli. The central value of the “test face 

difference parameter” (zero, 0) generated a composite image that contained equal 

amounts of face and car as the standard. In contrast, the extreme values (-0.25, 0.25) 

generated a composite image that contained 75% less face and 75% more face from the 

standard. 

Stimuli were shown in a 21-inch (53.34 cm) cathode ray tube [CRT] monitor at 

120 Hz. In each new trial a Car/Face composite image was shown twice. The top part of 

Figure 28 depicts a graphic representation of a trial. The structure of this idealized trial 

will remain the same throughout the whole experiment and both sessions. After 

presenting the standard, a blank screen appeared for 500 ms followed by a new composite 
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image presented for 100 ms. Each test was generated using a value from the mixing level 

parameter. Each test image mixture level represents a condition. There are 7 conditions in 

total. Each composite image was randomly generated on a trial-by-trial basis. 

 

 

Figure 28 – Schematic representation of an idealized trial. In each block, participants were 
told which task to perform (T1 = more car/more face judgment or T2 = same / different 
judgment). In each trial, a standard image was presented followed by a test image. 
Participants indicated their decision by pressing the button of a computer mouse 
 

Participants performed 2 tasks. Each task had 7 conditions (from the mixing level 

parameter). Each task was randomly assigned at the beginning of each block, forcing 

participants to accommodate to a new task in each block of trials. The first task consisted 

in detecting the amount of face/car proportion present in the test image using the standard 

as comparison. Thus, participants had to judge whether the test image contained more 

face or more car in comparison to the previously shown standard image. The second 

judgment was based on a matching task where participants had to decide if the test image 

0 – 100 ms 

500 – 600 ms 

T1: 
Does the test image 

contain more face or more 
car than the standard? 

T2: 
Is the test image the same 

as the standard? 

Standard 

Response 

 Test 

Task 
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was the same as the previously shown standard image. Participants were instructed to 

inform their judgments using one of the two buttons of a computer mouse. Participants 

were also instructed to limit both their body and eye movements while a stimulus was on 

the screen. The whole procedure is representation in an idealized form in Figure 28. 

In some trials, the mixture difference will be large enough so participants will 

have enough information to perform a decision (easy trials, e.g. mixture level = -0.25, 

0.25). In some other trials the mixture difference will be small increments thus the 

difficulty of the decision is much higher (hard trials, e.g. mixture level = -0.1, 0.1). Block 

design was used in order to increase the signal-to-noise ratio for the task manipulation. 

3.3 EEG data acquisition 
  

Electrophysiological signals were collected using a 32-channel Sensorium EEG 

amplifier (Figure 29). Data was sampled at 1000 Hz amplified by a factor of 20,000. EEG 

signals were acquired with a nose reference. Impedance was kept below 5 k& for all 

electrodes. EEG data were recorded for a total of 1800 ms. Recording started 500 ms 

before the presentation of the standard image. Recording concluded 1300 ms after the 

presentation of the standard image. 

To ensure as-clean-as-possible EEG signals, all recordings were made inside a 

Faraday cage. Moreover, eye blink and eye movement calibration trials were performed 

at the beginning of each recording session in order to improve the efficacy of later 

artifact-removal procedures (see 3.4 EEG data pre-processing). In order to ensure an 

appropriate number of trials on each condition, participants ran in the experiment twice 
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on separate days. Data from each session was combined into a single data matrix for 

further analysis. 

 

 

Figure 29 – Topographical representation of electrode locations. Default numbering scheme 
for our 32-channel system (left) and its correspondent standard 10-20 international naming 
scheme (right) 
 

3.4 EEG data pre-processing 
 

Pre-processing procedures were performed using functions from the EEGLAB 

toolbox (Delorme & Makeig, 2004) as well as custom in-house MATLAB routines. 

Epoched data from both sessions were merged into a single data matrix per subject. A 

broad band filter (0.1 – 100 Hz) was applied to each electrode’s raw EEG signal using a 

finite impulse response filter27 with frequency-dependent order that balances temporal 

and frequency resolution; a common procedure implemented in analysis packages such as 

EEGLAB (Delorme & Makeig, 2004) and FieldTrip (Oostenveld et al., 2011). 

The length of each data trial was 1800 ms where 500 ms corresponded to pre-

stimulus onset baseline and the following 1300 ms corresponded to post-stimulus onset 

                                                             
27 firfilt 1.5.1 by Andreas Widmann, EEGLAB toolbox 
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period. Long segments of EEG data were used in order to provide sufficient padding for 

band-pass filters used in the time-frequency analysis, thus avoiding the necessity to zero-

pad the data (Christoph S Herrmann et al., 2005). Given that the lowest frequency for 

analysis is ~4 Hz, on each side of each trial 250 ms will be considered as distorted and 

will not be used for analyses purposes. Thus, the period used for statistical testing was 

from -200 ms before standard onset and 1000 ms after the standard onset. 

Visual data inspection was performed in order to discriminate the trials that 

contained excessive muscle movements, amplifier drifts, and other obvious sources of 

noise. Trials containing such artifacts were excluded from analysis. No subject had more 

than 20% of all trials rejected. Furthermore, no channel interpolation was necessary as all 

electrodes were kept with good impedance (<5 k&). 

After visual inspection of the data, an additional artifact rejection procedure based 

on independent component analysis (ICA) was performed as implemented in the 

runica.m function of the EEGLAB toolbox (Delorme & Makeig, 2004). ICA is a linear 

decomposition technique, often classified under machine learning, used by certain groups 

of cognitive electrophysiologists in order to estimate underlying statistical sources of 

linearly mixed M/EEG signals (Delorme & Makeig, 2004; Makeig et al., 2004).  

ICA is considered to be a powerful un-mixing tool. It has therefore gained a 

particularly privileged status among certain groups of cognitive electrophysiologists. ICA 

has been shown to successfully un-mix common artifacts such as line-noise and eye-

blinks from neurophysiological signals (Jung et al., 1998; Xue, Li, Li, & Wan, 2006). 

Impressively, ICA has been demonstrated to be capable of un-mixing the electrical signal 

of an unborn baby’s heartbeat from the mother’s heartbeat, measured from a multi-
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channel recording from a pregnant woman’s abdomen (Viola, Debener, Thorne, & 

Schneider, 2010). Furthermore, ICA has been recently used to un-mix electrical brain 

signals from muscle movements under extreme conditions, such as walking and running 

(Gwin, Gramann, Makeig, & Ferris, 2010). Thus, when using optimal parameters, ICA is 

a powerful technique for electrophysiological data processing, artifact removal, and 

mining (Makeig et al., 2004). 

In this dissertation I used the basic ICA model implemented in EEGLAB 

(Delorme & Makeig, 2004) as an artifact removal technique. Artifacts were mostly of 

physiological origin (e.g. eye blinks, carotid pulse) as our Faraday cage prevented line 

noise from being a problem in our recordings. 

The obtained two-dimensional 32-channel EEG data matrix time-series was 

decomposed into a weighted linear mixture of independent signals (Delorme & Makeig, 

2004). The output of ICA is stored in a squared matrix (W , channels x components). 

Equation 1 was used in order to obtain independent components ( IC ), multiplying the 

EEG data matrix by the ICA weights (W ). 

 

Equation 1 
IC = EEGdatamatrix*W  

 

An important assumption of ICA is that the number of sources is not larger than 

the number of sensors (Onton, Westerfield, Townsend, & Makeig, 2006). Cognitive 

electrophysiologists often run ICA without taking into account this important assumption, 
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leading to unsuccessful results. Thus, in order to estimate the number of ICA components 

to be used, the total number of data points was calculated per subject (Parameter 3). 

 

Parameter 3 – Total Data Points 
Total Data Points = Number of Time Frames * Number of Trials  

 

Considering the number of total data points per subject, a data threshold for ICA 

has to be calculated (Parameter 4). If the value of Parameter 3 is smaller than the value of 

Parameter 4 there are not enough data points in the dataset in order to perform full-rank 

ICA28. The number 20 has been recommended as an appropriate “rule of thumb” in order 

to improve ICA reliability (Delorme & Makeig, 2014; Onton et al., 2006; Viola et al., 

2010). According to this rule, in my data, at least 20,480 Total Data Points  were needed 

in order to perform full-rank ICA. In this dissertation the Rule  value used was 40 instead 

of the recommended 20. Thus, the threshold for full-rank ICA was computed: 

 

Parameter 4 – Data threshold for ICA 
Rule = 40
Threshold = Rule * Number of Channels2

 

 

According to the computed threshold (Parameter 4), a total of 40,960 data points 

were needed in order to perform full-rank ICA. All subjects passed this threshold. Thus, 

enough data was provided to the ICA algorithm so full-rank ICA decompositions were 

performed for each participant. A total of 32 ICA components were generated for each 

                                                             
28 “Full-rank” ICA means that the output of the ICA decomposition will be a squared weighting matrix 
(W) that will contain as many components as sensors 
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subject. Artifactual components were selected by visual inspection of their scalp 

topographies, overall activity spectra, and time courses. Selected artifactual components 

were removed from further analysis by zeroing-out from space (W !1 ) and time ( IC ) as 

needed. Finally, the ICA-pruned EEG data matrix was reconstructed using Equation 2.  

 

Equation 2 
EEGdatamatrix =W !1 * IC  

 

A final trial-by-trial visual inspection of the ICA-pruned reconstructed EEG data 

matrix was performed so as to detect any possible additional residual artifacts. This 

second visual inspection led to no trials being rejected for any subject. Finally, all 

artifact-free EEG data were digitally re-referenced to an average reference for further 

analysis. 

3.5 EEG data analysis 
 

Linear and non-linear measures were computed from artifact-free EEG signals. In 

order to compute power- and phase-based measures, the analytic signal of recorded EEG 

was extracted using complex Morlet wavelets (CMW). CMW have a real and imaginary 

part; occupying a 3-dimensional space composed of time (Equation 3, t), imaginary 

(Equation 3, i), and real domains. A CMW is displayed in Figure 30. 

Multiplying a Gaussian (Equation 3, first exponential) by a complex sine wave 

(Equation 3, second exponential) creates CMWs. The Gaussian is composed the factor A, 

which is a frequency band-specific scaling factor. The standard deviation of the Gaussian 

(Equation 3, s) is obtained by dividing the number of wavelet cycles (Equation 3, n) by the 
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product of 2$ and parameter f (peak frequency in Hz). The complex sine wave is created 

using Euler’s formula (Equation 3, ei'). M represents magnitude (length of the vector 

between the center of the plane and the dot product, Figure 31 A). ' is the angle formed 

by the vector formed with respect to the real axis (Figure 31 B). 

 

 

Figure 30 – A complex Morlet wavelet represented in different dimensions. Left panel 
represents the projection of a complex Morlet wavelet in 3-dimensional space. Right panels 
depict the projection of a complex Morlet wavelet into 2-dimensional space 

 

CMWs were used in order to extract the analytic signal of EEG at each electrode 

and trial. Since CMWs have to be “slid” through time in order to compute a time-series 

of complex EEG signals, temporal precision gets decreased for all time-frequency-based 

analyses. The complex output of each step of the convolution between a raw EEG signal 

and a wavelet can be conceptualized as one point in a complex polar plane (i.e. dot 

product, represented as a red dot in Figure 31). Concatenation in time of consecutive dot 

products generates a time-series of complex numbers (Figure 31, D) that can be used in 

order to extract time-frequency EEG power (Figure 31, A) and phase (Figure 31, B).  



 108 

Equation 3 
CMW = Ae!t

2 /(2s2 )ei2! ft

A = 1
(s ! )

1
2

s = n 2! f

ei! =M cos(!)+ isin(!)[ ]

M = real2 + imag2( )
! = arctan imag real( )

 

 

Time-frequency EEG power was calculated independently at each electrode (ch) 

and trial (r). The length of the vector (v) from the origin of the complex polar plane to the 

dot product of each wavelet convolution step was squared in order to estimate a time-

frequency point of EEG power (Figure 31 A, Equation 4). 

 

Equation 4 
EEGpower(ch,r ) = length(v)

2  

Equation 5 
EEGphase(ch,r ) = angle(v)  

 

Time-frequency EEG phase was calculated independently at each electrode (ch) 

and trial (r). The angle produced by the vector (v) from the origin of the complex polar 

plane to the dot product with respect to the real axis was considered the phase angle of 

the given time-frequency point (Figure 31 B, Equation 5). 
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Thus, I calculated time-frequency-based linear and non-linear EEG measures. 

Since EEG epochs were 1.5 s long, the lowest value for parameter f (Equation 3) was 4 

Hz; ensuring good signal to noise ratio for the low-frequency spectrum. Since sampling 

rate was 500 Hz I had no restrictions for the highest value for parameter f (Equation 3). 70 

Hz was arbitrarily chosen, since a range of 4 – 70 Hz is likely to capture the main spectral 

dynamics elicited by the present experimental paradigm. Furthermore, 34 linearly spaced 

frequency centroids were generated as values for parameter f (Equation 3). In order to 

avoid wavelet edge artifacts, the parameter t (Equation 3) was set to 2 s. Thus, wavelets 

were defined using a time-range of -2 to +2 s and centered in the window at 0. 

Furthermore, in order to optimize the trade-off between temporal and frequency 

precision, I used a variable number of cycles for the Gaussian taper (parameter n, 

Equation 3). Thus 3 to 7 cycles were linearly increased in the same number of steps as the 

f parameter (Equation 3). Wavelet-transformed EEG data was arbitrarily downsampled to 

55.5 Hz in order to make further time-frequency analyses more computationally 

affordable. Such heavy decimation can be done due to the large autocorrelation of the 

wavelet-transformed EEG signal. Each time-frequency point is the result of the weighted 

combination of the surrounding points; adjacent time-frequency points do not carry new 

information. Thus, all analyzed time-frequency measures were sampled at 55.5 Hz. 

In general, linear measures of brain activity are widely used in cognitive 

neuroscience. As discussed earlier, ERP is the most widely used technique (see section 

2.1.1 Event-Related Potentials (ERP)). Furthermore, ERSP is gaining a lot of interest in 

the community and is by far the most used time-frequency measure (see section 2.2.1 

Event-Related Spectral Power (ERSP)). The combination of ERP and ERSP is an 
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approach that has being neglected in cognitive electrophysiology. I hope it will be 

embraced in the future as the standard, leading to a fruitful framework of linear measures 

of brain activity (A. Rossi, Parada, Kolchinsky, & Puce, 2014). 

 

 

Figure 31 – Ideal representation of the dot product output (red dot) of 1 step of wavelet-
convolved EEG signals on a complex polar plane. Time-frequency spectral power is 
obtained by squaring the length of the vector from the origin to the dot product (A, 
Equation 4). Time-frequency phase is obtained from the angle of the vector from the origin 
to the dot product with respect to the real axis (B, Equation 5). The projection of the dot 
product into the real axis produces a band-passed signal (C). Shown power (A), phase (B), 
band-passed (C), and complex signal time series (D) are obtained by concatenating 
consecutive dot products in time 

 

Non-linear measures (i.e. ITPC and ISPC) cannot be analyzed using the linear 

model implemented in this dissertation. Thus, non-linear measures of brain activity were 

analyzed using robust subject- and group-level statistics using the non-parametric 

permutation testing framework. 
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Cross-frequency coupling, a non-linear measure of brain activity, has gained a lot 

of theoretical relevance in the field (Canolty & Knight, 2010). However, very little 

evidence exists for functional cross-frequency interactions in the cognitive 

electrophysiology literature making its functional interpretation not straightforward. I 

have learned that relying on robust measures and appropriate experimental designs is a 

must when analyzing neural time series29. Although ERPAC is a non-linear measure of 

brain activity, ERPAC can benefit from the linear model implemented in this dissertation 

in order to better link phase-amplitude coupling dynamics to behavior. 

 

 

Figure 32 – Example of Color-coding scheme for visualization of results. For each measure 
a particular colormap was chosen that helps distinguishing from similar measures. ERSP 
will use jet (top left corner), ITPC will use hot (top left corner), ISPC will use hsv (bottom 
left corner), and ERPAC will use jet (bottom right corner). Maximization of color difference 
between measures that will be likely displayed together was preferred. Another factor 
chosen was the range of values each measure could reach  
 

                                                             
29 I recently got an article rejected from NeuroImage where the main concern was produced by the lack of 
clear interpretations of effects from the data due to a rudimentary experimental design 
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Visualization of all time-frequency domain measures is color-coded throughout 

this dissertation. Figure 32 displays the color scheme for each neural measure. ERSP is 

represented using the bipolar jet MATLAB colormap (Figure 32, top left panel). ERSP is 

not bounded so it can reach any positive and negative value.  

In contrast to ERSP, ITPC is bounded from 0 to 1. The MATLAB colormap used 

to represent this measure is the unipolar scale hot since it clearly distinguishes low (dark) 

form higher (bright) values (Figure 32, top right panel). Although ISPC is also measure of 

phase clustering, it is not bounded from 0 to 1, because it is computed with phase angle 

differences between 2 electrodes (see 
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2.3.1 Inter-Site Phase Clustering (ISPC)). Hsv was the colormap used because positive 

and negative extremes of the color spectrum are interpreted similarly; increased phase 

clustering across trials between sensors from baseline (Figure 32, bottom left panel). ISPC 

plots will be accompanied by rectangles signaling time-frequency points used to generate 

the associated topographic maps indicating the spatial location of electrodes used for 

estimation of ISPC (Figure 32, bottom left panel insets). Finally, since the ERPAC 

measure is bounded from 0 to 1 it is (in)appropriately plotted using the winter colormap 

(Figure 32, bottom right panel). 

Between-subject statistical analysis results are presented in 2 ways. The observed 

differences per comparison are shown side-by-side with cluster-corrected z-maps (created 

with 10,000 permutations and multiple comparison corrections). Both are displayed using 

the bipolar colormap jet because these both observed differences and z-maps maps are 

not bounded. This color scheme is consistently used throughout the dissertation. Figure 32 

can be used as a guide or color-lookup table to navigate results if necessary. 

3.5.1 Analysis of linear measures 
 

Artifact-free data were analyzed using a multilinear model using functions from 

the Linear Modeling EEG toolbox (Pernet et al., 2011). This analysis was performed in a 

single-subject fashion30. This technique was preferred because allows using single-trial 

information in order to generate weighted factors associated to the particular regressor 

(Equation 6 and Equation 7, see 2.4 Linear Modeling of EEG Measures). Thus, multiple 

                                                             
30 These type of analyses are known as “within-subject analysis” or “level 1 analysis” (Wilcox, 2005) 
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regression was used in order to generate regression coefficients (beta weights, !w ) 

mapping each one of the regressors to the data. 

Each trial ( r ) for the measure of interest (M ) was independently expressed at 

each time point (t) and electrode (ch) using the following linear model (Equation 6, (S. J. 

Kiebel & Friston, 2004a, 2004b)). 

 

Equation 6 
M (r )( t ,ch )

= !w0 +!w1T1+!w2T2+!w3" +!w4RT +#  

 

Trials were modeled as the sum of a constant term !0 , tasks (Task 1, T1  and 

Task 2, T2 ), the mixing level (! , Parameter 2 – Test Face Difference), the reaction times 

(RT), and an error term (! ). The regressors for task demands (T1  and T2 ) were 

categorical factors. Stimulus information is the stimulus mixing level manipulation and 

was a continuous factor (! , Parameter 2 – Test Face Difference). Finally, behavioral 

outcome is reaction time (RT). All predictors were used in order to generate a design 

matrix of size trials x predictors (Dmat , Figure 33). The model estimated beta parameters 

relying on standard ordinary least squares (OLS) (S. J. Kiebel & Friston, 2004a, 2004b; 

Litvak et al., 2011; Pernet et al., 2011). Although (Pernet et al., 2011) argued that the 

most appropriate solution in order to make regressions more robust is estimating beta 

parameters using weighted least squares (WLS), a robust implementation does not exist 

yet. Thus, OLS has been recommended as the safest solution, until a robust 

implementation of WLS is published (Pernet et al., 2011). 
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Figure 33 – Example of the design matrix used for the linear model. For each subject a 
design matrix (Dmat) was constructed. Each matrix was of size trials x predictors. Predictors 
for task demands (T1, T2) were categorical, they indicate trial belonging to Task 1 or Task 
2. Predictors for stimulus information (!) and behavioral outcome (RT) were continuous. 
Each continuous predictor was z-scored independently per subject before its incorporation 
in the design matrix. The final column represents a constant error term (") 

 

The solution to ordinary least squares (Equation 6) was obtained using Equation 7, 

where !w  is estimated using the design matrix (Dmat ) and the data matrix (Y). Superscript 

T indicates the transpose of a given matrix (S. J. Kiebel & Friston, 2004a, 2004b; Litvak 

et al., 2011; Pernet et al., 2011). 

 

Equation 7 

!w = DmatDmat
!T( )

!1
DmatY

T  

 

Using Equation 6 and Equation 7 I obtained 5 different regression coefficients, 4 of 

them associated to each one of the dimensions of the present paradigm, represented in the 
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design matrix (Figure 33). The 5th regression coefficient was associated to the error term 

and will not be used further. 

 

Equation 8 
!wSIT1 = !w1T1+Bw3"
!wSIT 2 = !w2T2+Bw3"

 

 

From the 4 paradigm-related coefficients, one of them was merged in order to 

obtain a descriptor of the effects of stimulus properties on task demands. In other words, 

in order to generate beta weights quantifying the influence of stimulus information on 

task demands ( ), the beta weight associated with stimulus information ( ) was 

combined with beta weights associated with each task ( , ) using Equation 8. 

The new beta weights associated with the effect of stimulus information on task 

demands (!wSIT ) were used for group-level analyses31 in order to test the influence of 

stimulus properties on task demands. Furthermore, the beta weights independently 

associated with task 1 (!1T1) and task 2 (!2T2 ) were also used for group-level statistical 

analysis. Moreover, beta coefficients associated to stimulus properties (Bw3! ) and to 

behavioral outcome (!w4RT ) were individually tested at the group-level analyses. Thus, 

between-subject analyses for linear measures were made in order to answer 4 specific 

questions derived from the present experimental design (2.4 Linear Modeling of EEG 

Measures). 

                                                             
31 These analyses are also known as “between-subjects” or “level 2 analysis” (Wilcox, 2005) 

!wSIT !3"

!1T1 !2T2
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The main advantage of this approach is that each one of these analyses answered a 

specific question regarding one of the dimensions of the present design (see 5. 

Discussion).  

Event Related Potentials (ERP) 
 

Event-related potentials (ERP) were computed per subject independently at each 

electrode (ch) by adding raw voltage at each time-point for all trials (r) and diving the 

resulting value by the number of trials (n). 

Single-trial baseline normalization was used for ERP as implemented by the 

rmbase.m function of the EEGLAB toolbox (Delorme & Makeig, 2004). Baseline period 

was arbitrarily defined from -100 to 0 ms. This period was chosen because it is a 

common period used in other ERP studies providing a good reference of pre-stimulus 

onset EEG activity.  

 
Equation 9 

ERP(ch,t ) = 1n ri
i=1

n

!  

 

Since averaging can be conceptualized as a low-pass filter, unlike many ERP 

studies that apply further 30 or 40 Hz low-pass filtering, no additional filtering was 

applied to ERPs in this dissertation. Thus, the range of frequencies included in the ERP 

measure was 0.1 – 100 Hz.  

Single-trial ERPs were linearly modeled at the single-subject level using Equation 

6 and Equation 7. ERP beta weights for stimulus information over task demands (stimulus 
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difficulty, ERP!wSIT ) were obtained using Equation 8. ERPs are reported in units of 

!V/std. 

Event-Related Spectral Power (ERSP) 
 

Event-related spectral power (ERSP) was computed per subject independently at 

each frequency, electrode, and trial. The first step to compute ERSP was to choose 

appropriate parameters to generate complex Morlet wavelets. Wavelet parameters were 

kept constant for ITPC, ISPC, and CFC analyses (see 3.5 EEG data analysis). A total of 

34 linearly spaced frequency centroids were obtained from 4 to 70 Hz. A total of 200 

time-frequency points were obtained from the wavelet-convolved EEG data using 

Equation 3. Raw EEG power was estimated using Equation 4 on the complex time-series 

output from Equation 3.  

Single-trial baseline normalization was applied to the total raw EEG power 

according to the guidelines suggested by Grandchamp and Delorme (2011). Baseline 

period was arbitrarily defined from -200 to -50 ms. This period was chosen because it 

provides a good reference of pre-stimulus onset EEG power activity, without going into 

the distorted edge of the trial (-500 to -250 ms). Frequency-specific baseline power was 

computed within the specified window and then removed from the rest of the epoch in a 

trial-by-trial fashion. This procedure allowed the estimation of total ERSP (see Figure 12). 

I will refer to “total ERSP” simply as “ERSP”. 

Single-trial ERSPs were linearly modeled at the single-subject level using 

Equation 6 and Equation 7. ERP beta weights associated with the influence of stimulus 

information over task demands (stimulus difficulty, ERSP!wSIT ) were obtained using 
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Equation 8. No further transformations were applied. ERSPs are reported in units of 

!V/std. 

Event Related Phase-amplitude Coupling (ERPAC) analysis 
 

Event-related phase-amplitude coupling (ERPAC) was computed per subject 

independently at each frequency pair, electrode (ch) and trial (r) according to the method 

described by Voytek et al. (2013). In order to keep consistency with the other time-

frequency measures, ERPAC was computed using the analytic signal obtained using the 

parameters implemented for ERSP, ITPC, and ISPC (3.5 EEG data analysis). Thus, a 

total of 34 frequency centroids were linearly obtained from 4 to 70 Hz. 

Voytek’s cross-frequency approach (2013) was chosen because it allows the 

computation of phase-amplitude coupling (PAC) across trials in time. In contrast, regular 

PAC methods only allow the computation of phase-amplitude coupling on a pre-defined 

time window, requiring several samples for increased signal-to-noise ratio (Canolty et al., 

2006; M. X. Cohen, 2008; Penny et al., 2008; Tort et al., 2010). 

In traditional PAC estimation, the time-varying time-series of high-frequency 

power is used in order to assign a “weight” to a given phase angle (Canolty et al., 2006; 

M. X. Cohen, 2008; Penny et al., 2008; Tort et al., 2010). The phase angle vector of a low 

frequency (") and the vector length of a high-frequency power (a) at a given time-point 

(t) represented in polar space will create a “phase/amplitude angle”. A pre-defined time-

window can be used to generate as many “phase/amplitude angles” as time points (n). 

The length of the average vector of “phase/amplitude angles” is the measure of phase-

amplitude coupling at that particular time-frequency time window (Equation 10, i = 
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imaginary operator from Euler’s formula) and is usually interpreted as in arbitrary units 

of coupling strength. 

 

Equation 10 

PACch = n
!1 ate

i!t

t=1

n

"  

 

In contrast, ERPAC was computed based on circular-linear correlation using the 

circular statistics MATLAB toolbox (Berens, 2009). Each low frequency phase (") was 

linearized using circ_corrcl.m. Thus, a single correlation coefficient ( !"a  Equation 11) 

based on Pearson product-moment correlation coefficient (c) can be computed between 

the linearized low frequency phase and a high-frequency amplitude (a, linear by default). 

This method allows computing the correlation between a high-frequency 

amplitude and a low-frequency phase at each time point (t), without the necessity to 

integrate “phase/amplitude angles” across a pre-defined temporal window as in Equation 

10. Thus transient event-related phase-amplitude coupling (ERPAC) can be quantified in 

a point-by-point fashion (Voytek et al., 2013). 

Equation 11 

!"tat =
(Pcca

2 +Pcsa
2 ! 2PccaPcsaPcsc )
(1!Pcsc

2 )

Pcca = c cos!,a( )
Pcsa = c sin!,a( )
Pcsc = c sin!, cos!( )
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In order to compute phase-amplitude cross-frequency coupling, a “source” low 

frequency phase has to be chosen. Due to the lack of a better method at the time (see 7. 

Future Directions) the center frequency of the theta (4 – 8 Hz) and alpha (8 – 12 Hz) 

frequency bands was arbitrarily chosen. Thus, the selected low frequency phase for theta-

based phase amplitude coupling was 6 Hz whereas the selected low frequency phase for 

theta-based phase amplitude coupling was 10 Hz. 

Although a non-linear measure, ERPAC was used as a linear measure in order to 

take advantage of the linear model implemented in this dissertation, better explaining 

data variance at the single-trial, single-subject, and group levels (see 3.5.1 Analysis of 

linear measures). Single-trial baseline normalization (Grandchamp & Delorme, 2011) 

was applied to ERPAC. Baseline period was arbitrarily defined from -200 to -50 ms. This 

period was chosen because it provides a good reference of pre-stimulus onset coupling 

strength, without including data points that might be potentially distorted with edge 

artifacts (-500 to -250 ms). Frequency-specific baseline phase-amplitude coupling 

strength was computed within the specified window and then removed from the whole 

epoch in a trial-by-trial fashion.  

Single-trial ERPAC was linearly modeled at the single-subject level using 

Equation 6 and Equation 7. ERP beta weights associated with the influence of stimulus 

information over task demands (stimulus difficulty, ERSP!wSIT ) were obtained using 

Equation 8. No further transformations were applied. ERPAC are reported in arbitrary 

units of coupling strength bounded from -1 to 1. 

3.5.2 Analysis of Non-Linear Measures 
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In addition to linear measures, I implemented non-linear measures of EEG. Non-

linear dynamics have been less explored in cognitive electrophysiology and little is 

known about their temporospatial dynamics. Ideally, assigning weights to single-trial 

phase angles according to parameterized predictors would have been an appropriate 

approach to analyze phase-based EEG dynamics. However, non-linear measures cannot 

be linearly modeled. Thus, the exploration of phase-based measures of brain activity will 

not be able to benefit from the linear model implemented in this dissertation (3.5.1 

Analysis of linear measures).  

By the time of the analyses were made32 I did not know a method to assign 

weights to single-trial phase angles. However, I have recently found out a method solve 

this problem (M. X. Cohen & Cavanagh, 2011). Unfortunately, there was no time to 

update the analyses. However, I have added a section regarding this issue (see 5. 

Discussion).  

                                                             
32 January/February 2014 
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Inter-Trial Phase Clustering (ITPC) analysis 
 

Inter-trial phase clustering (ITPC) was computed per subject at the estimated R2-

optimized sensor (R!
2 ) for trials belonging to task 1 and task 2. The first step to compute 

ITPC was to choose appropriate parameters to generate complex Morlet wavelets (3.5 

EEG data analysis). A total of 34 frequency centroids were linearly obtained from 4 to 70 

Hz. These parameters are the same for ERSP, ISPC, and CFC analyses (see 3.5 EEG data 

analysis).  

Equation 12 denotes the computation of ITPC. Where n is the number of trials. 

eiktfr is derived from Euler’s formula which represents the phase angle (k) from trial (r) at 

time-frequency (tf) in the complex polar plane (e.g. Figure 31). In ITPC the magnitude of 

the vector is not taken into account. Thus, the length of the vectors at each time-

frequency point and trial is set to 1 (J. P. Lachaux, E. Rodriguez, J. Martinerie, & F. J. 

Varela, 1999). 

 

Equation 12 

ITPC
R!tf
2 = n!1 eiktfr

r=1

n

"  

 

No baseline normalization procedures are necessary for the computation of ITPC 

(J. P. Lachaux et al., 1999). ITPC is presented in bounded arbitrary units of phase 

clustering (0 – 1). 
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Inter-Site Phase Clustering (ISPC) analysis 
 

Inter-site phase clustering (ISPC) was computed per subject independently, per 

frequency (f) at each pair of electrodes in regard to a “source” electrode defined by the 

estimated R2-optimized sensor (R!
2 ) for trials belonging to task 1 and task 2. The first 

step to compute ISPC was to choose appropriate parameters to generate complex Morlet 

wavelets (3.5 EEG data analysis). A total of 34 frequency centroids were linearly 

obtained from 4 to 70 Hz. These parameters are the same for ERSP, ITPC, and CFC 

analyses (see 3.5 EEG data analysis). 

Equation 13 was used to estimate ISPC at each frequency (f) between the R!
2 -

optimized sensor and all other electrodes (y), where n is the number of trials. The 

difference between phase angles recorded at the R!
2 -optimized sensor (!

R!
2 ) and the phase 

angles of another electrode (!y ) was averaged across trials (r).   

 

Equation 13 

ISPCf = n
!1 e

i !
R!
2r
!!yr

"

#
$

%

&
'

r=1

n

(  

 

Equation 13 is very similar to Equation 12. However ISPC instead of taking the 

average of phase angles, takes the average of phase angle differences between 2 signals 

from different electrodes (Lachaux et al., 2000; Mormann, Lehnertz, David, & E Elger, 

2000).  

As explained before (
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2.3.1 Inter-Site Phase Clustering (ISPC)), baseline normalization is required in order to 

assess event-related inter-site phase clustering. Baseline period was arbitrarily defined 

from -200 to -50 ms. This period was chosen because it provides a good reference of pre-

stimulus onset ISPC activity, without including data points that might be potentially 

distorted with edge artifacts (-500 to -250 ms). Frequency-specific baseline mean phase 

angle differences value was obtained and subtracted from the remaining part of the 

epoch. ISPC is reported in unbounded arbitrary units of phase clustering. 

3.6 Statistical Testing 
  

Within-subject analyses (level 1) and group-level analyses were performed for all 

measures implemented in this dissertation. Linear and non-linear dynamics were 

analyzed using separate pipelines but the same technique.  

All analyses in this dissertation were performed on the complete time-series33. 

Within-subject ERP analysis was conducted at all electrodes. Between-subject analyses 

were performed at the RERP
2 –optimized electrode per regressor (!w ), across all 601 time 

points comprising the time frames between -200 to 1000 ms. Thus, a total of 1803 tests 

were run for the ERP measure.  

Within-subject ERSP and ERPAC analysis were conducted at all electrodes. 

Between-subject analyses were run at the RERSP
2 – and RERPAC

2 –optimized electrode per 

regressor (!w ) for ERSP and ERPAC respectively. All 34 linearly-spaced frequency 

bands were tested at 159 time points comprising the time frames between -200 to 1000 

                                                             
33 Ignoring the 300 ms of padding at each side of the epoch 
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ms. A total of 16,218 tests were run for the ERSP measure. While a total of 69,165 tests 

were run for ERPAC. 

Statistical tests for ITPC and ISPC were run at an estimated electrode based on 

the mean of all available R2. All 34 linearly spaced frequency bands were tested at 159 

time points comprising the time frames between -200 to 1000 ms. A total of 5,406 tests 

were run in ITPC, while a total of 167,586 tests were run for ISPC. 

R2–optimized electrodes for linear measures and the estimated R2 electrode for 

non-linear measures were used as a dimensionality reduction technique, decreasing the 

amount of statistical tests in ~90%34. The n-dimensional clustering technique was used in 

order to correct for the increased number of statistical tests performed along the time-

series (Litvak et al., 2011; Maris & Oostenveld, 2007; Pernet et al., 2011). Statistical 

threshold for all analyses was 0.01. 

Within-Subject (Level 1) analysis 
 

Within-subject analysis can be used for establishing statistical significance within 

each subject. Importantly, it can also help decreasing small sample bias. Furthermore, it 

can be used in order to generate robust estimates of effect sizes and studying individual 

differences (Wilcox, 2005a). Hence, level 1 analysis is a powerful approach that has 

encountered little use in cognitive electrophysiology (Rousselet & Pernet, 2011). 

In this dissertation, instead of using within-subject analysis to establish statistical 

significance per se I implemented it in order to generate robust measures of temporal 

                                                             
34 In comparison to a complete exploratory approach in time and space 
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dynamics taking into account single-trial, single-subject variance. Thus providing more 

appropriate measures for group-level analyses. 

For level 1 analysis, linear measures benefited from multilinear regression, 

generating a linear mapping between EEG time and time-frequency features to regressors 

derived from the present parametric design and participants’ behavior (2.4 Linear 

Modeling of EEG Measures and 3.5.1 Analysis of linear measures). Thus, for linear 

measures, beta weights were estimated per subject using Equation 6 and Equation 7. This 

procedure led to 4 different regression coefficients. Each coefficient was associated with 

a different dimension of the present paradigm (see 2.4 Linear Modeling of EEG 

Measures). Individual beta weights were used in subsequent group-level statistical 

analysis. 

Since non-linear measures could not benefit from the multilinear regression 

implemented in this dissertation, non-parametric permutation was used to perform 

within-subject analysis. The analytic signal of EEG was divided into trials belonging to 

task 1 and trials belonging to task 2. Level 1 analysis for both phase-based measures (!m ) 

was implemented independently. I computed Equation 12 and Equation 13 500 times. Each 

time, trials were randomly shuffled from task 1 and task 2 per subject. Creating thus 500 

null-model (!mnull
) ITPC and ISPC. The final step used Equation 14 in order to create 

robust phase-based measures (!mz
) per subject, which were used for group level 

statistical analysis. 

Importantly, unlike group-level analysis, within-subject analysis was performed at 

all time-points and at all electrodes. 
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Equation 14 

!mz
=
!m ! 1n !mnulli

i=1

n

!
"

#
$

%

&
'

std !mnull( )
 

 

Between-Subjects (Level 2, group) analysis 
 

Group-level statistics were performed on beta coefficients for linear measures 

(Equation 6, Equation 7). In contrast, in order to explore non-linear brain dynamics, 

normalized phase-based measures were used (Equation 14). Although level 1 analysis for 

linear and non-linear measures differed in strategy it was implemented for all measures 

and all participants. Furthermore, group-level analyses were implemented using non-

parametric permutation testing for all measures in order to assess statistical significance. 

In general, level 2 analyses use gran average means per subject in order to assess 

statistical significance at the group level. I implemented this part of the analysis using the 

non-parametric permutation testing framework to generate null-model distributions 

(Wilcox, 2005a). Thus, group-level analyses were performed on linear measures to 

answer 4 specific questions (3.5.1 Analysis of linear measures): 

 

1. The goal of the first analysis is to explore the possible impact of 

stimulus features (Parameter 2 – Test Face Difference) on linear measures of 

brain dynamics. Thus, beta coefficients associated with mixing level of the 

composite image (!w3" ) were tested against a null-model generated with 

10,000 permutations. The null hypothesis was that a particular time or 
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time-frequency feature described by !w3"  is not reliable or consistent 

across subjects. Hence, in each one of the iterations participants were 

resampled with replacement and their time-frequency time series were 

shifted by a random amount. Thus generating a null-model where time-

frequency points had no temporal correlation to the stimulus onset across 

subjects. The original !w3"  was thresholded using the null-model in order 

to establish statistical significance. Correction for multiple comparisons 

using n-dimensional clustering technique was applied to the whole time 

series and time-frequency maps 

 

2. The second analysis focused on differences quantified by all 

measures produced by task demands. For linear measures, beta 

coefficients associated with task 1 (!w1T1 ) were tested against beta 

coefficients associated with task 2 (!w2T2 ). For non-linear measures, the 

robust measures of ITPC and ISPC associated with task 1 (!mz
, Equation 

14) were tested against robust measures of ITPC and ISPC associated with 

task 2 (!mz
, Equation 14). The null-hypothesis for this analysis assumed no 

differences between task 1 and task 2 across subjects. I used a bootstrap-t 

technique with 10,000 resamples. At each one of the iterations data from 

each subject from both conditions were resampled with replacement in 

order to generate 10,000 new subject groups under the null-model (Z-

map). The original observed difference between task 1 and task 2 was 
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compared against the null-model at each time and time-frequency point in 

order to establish significant differences. Correction for multiple 

comparisons using n-dimensional clustering technique was applied to the 

whole time series and time-frequency maps 

 

3. The goal of the third analysis was to uncover linear EEG features 

associated with the trial-by-trial variation of response times (RT). Thus, 

beta coefficients associated with participants’ reaction time (!w4RT ) were 

tested against a null-model generated with 10,000 permutations. Just like 

the null-model for the first analysis, this null hypothesis assumed no real 

correlation between time-frequency points described by !w4RT  and 

response time. Hence, in each one of the iterations participants were 

resampled with replacement and their time-frequency time series were 

shifted by a random amount. Thus generating a null-model where time-

frequency points had no temporal correlation to participants’ response 

time. The original !w4RT  was thresholded using the null-model in order 

to establish statistical significance. Correction for multiple comparisons 

using n-dimensional clustering technique was applied to the whole time 

series and time-frequency maps 

 

4. The fourth analysis focused on the effects of stimulus difficulty 

defined by stimulus properties over task demands. Beta coefficients 
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associated with task 1 (!w1T1 ) were combined with beta coefficients 

associated with stimulus properties (!w3" ) using Equation 8. Likewise, 

beta coefficients associated with task 2 (!w1T2 ) were combined with beta 

coefficients associated with stimulus properties (!w3" ) using Equation 8 

giving way to combined beta weights (!wSIT ). The combined beta weights (

!wSIT1 ,!wSIT 2 ) were tested for significant differences. The null-hypothesis 

for this analysis assumed no differences between !wSIT1 and !wSIT 2  across 

subjects. I used a bootstrap-t technique with 10,000 resamples. At each 

one of the iterations data from each subject from both combined beta 

weights were resampled with replacement in order to generate 10,000 new 

subject groups under the null-model (Z-map). The original observed 

difference between !wSIT1 and !wSIT 2  was compared against the null-model 

at each time and time-frequency point in order to establish significant 

differences. Correction for multiple comparisons using n-dimensional 

clustering technique was applied to the whole time series and time-

frequency maps 

 

Although statistical tests could have been performed at all electrode sites, I used 

the mean coefficient of determination (R2, see 2.4 Linear Modeling of EEG Measures) as 

a dimensionality reduction technique (Foxe & Simpson, 2002; Liu, Harris, & Kanwisher, 

2002; Rousselet, Husk, et al., 2008; Rousselet, Pernet, et al., 2008). This procedure 

allowed me to considerably reduce the number of statistical tests performed while 
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avoiding circular inferences. Thus, group-level statistical tests in linear measures were 

performed at the correspondent R2–optimized electrode per regressor. 

No R2–optimized electrode was obtained for non-linear measures, therefore I 

estimated one (R!
2 ). The estimated R!

2  allowed me to considerably reduce the number of 

statistical tests performed in non-linear measures. Considering the ISPC measure where 

an exploratory approach would lead to 1,383,936 tests. R!
2  reduced this number to 

167,586. Thus, group-level statistical tests in non-linear measures were performed at the 

estimated R!
2 –optimized electrode. 

 

 

Figure 34 – Topographical representation of maximum mean R2 per measure and the 
estimated R2 defined as the mean of all quantified R2 that were used to select the electrode 
for group-level analyses in each linearly-modeled measure 

 

Results for between-subject analysis will be presented in “z-maps” in order to 

compare results across measures and analyses. Z-maps were computed after 10,000 

permutations derived from observed differences (Odiff ) and permuted values (Pdiff ) 

expected under the null hypothesis using Equation 15. 
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Equation 15 

Z !map =
Odiff ! 1n Pdiffi

i=1

n

"
#

$
%

&

'
(

std(Pdiff )  

 

Correction for Multiple Comparisons 
 

Control for multiple comparisons was implemented using non-parametric 

permutation and n-dimensional clustering technique (Litvak et al., 2011; Maris & 

Oostenveld, 2007; Pernet et al., 2011).  

ERP analyses were performed in the time domain. ERSP, ITPC, and ERPAC 

analyses were performed in the time-frequency domain. ISPC analysis was performed in 

the time-frequency-space domain. For all between-subject analyses, building clusters of 

statistically significant time, time-frequency, and time-frequency-space points 

implemented correction for multiple comparisons.  

Maris and Oostenveld (2007) suggest that the most appropriate technique for 

establishing corrected-significance in electrophysiological recordings is to build clusters 

by applying an “uncorrected pre-cluster threshold” of 0.01 to the whole time, time-

frequency, or time-frequency-sensor map for each one of the iterations in the 

permutation. Since clusters were generated under the null-hypothesis, all surviving 

clusters to this “pre-cluster threshold” have to be considered a false alarm and further 

proof of their statistical significance is needed. This technique is sensitive to small 

clusters with highly significant test statistic values, and to large clusters with mildly 

significant test static values. 
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Thus, at each one of the iterations, the sum of the maximum test statistic for each 

one of the supra-threshold clusters generated under the null hypothesis was obtained and 

stored. This process was repeated 10,000 times per measure, per analysis. In order to 

threshold the observed data35 or the Z-maps36, the distribution of the largest supra-

threshold clusters expected by chance was used to identify the observed data clusters that 

were lower than 99% of the null-hypothesis (Maris & Oostenveld, 2007). These clusters 

were removed generating cluster-corrected time, time-frequency, and time-frequency-

space maps from observed differences or Z-maps. 

4. Results 
 

In the following sections I will describe the results obtained in the group-level 

analysis. Although between-subject analyses were run on specific R2-optimized 

electrodes, when appropriate I will display the data with as much context as possible. 

I will describe results organized by measure. Thus, I will start off with Event-

related potentials (ERP) followed by event-related spectral power (ERSP) and inter-trial 

phase clustering (ITPC). Finally, I will describe inter-site phase clustering (ISPC) and 

event-related phase-amplitude coupling (ERPAC) results. 

Furthermore, when describing results I will subdivide them according to the 

group-level analyses. This is 1) Sensitivity to Stimulus Properties, 2) Sensitivity to Task 

Demands, 3) Sensitivity to Behavioral Outcome, and 4) Sensitivity to Stimulus Properties 

over Task Demands. 

                                                             
35 i.e. non-permuted, from real subjects 
36 i.e. generated under the null-hypothesis from 10,000 permutations 
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4.1 ERP results 
 

Event-related potentials were robustly elicited by all conditions. Grand average 

ERP across all trials and participants at the R2-optimized electrode shows clear ERP 

components (Figure 35). 

 

 

Figure 35 – Grand average ERP across all trials and participants. Clear responses for the 
standard stimulus (C1, P1, N1, P2), while the standard elicited C1, P1, N1, and P2 ERP 
components 

 

Clear P1, N1 and P2 components were elicited by presentation of the standard 

composite image. Furthermore, clear C1, P1, N1, and P2 were elicited by the presentation 

of the test image (Figure 35, left).  

No statistically significant results were found for ERP in any of the 4 group-level 

analyses (Figure 36). 
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Figure 36 – ERP results for the 4 group-level analyses at the R2–optimized electrode. No 
statistically significant results were found. Shaded areas indicate 99% confidence intervals  
 

4.2 ERSP results 
 

Time-frequency specific changes in spectral power were quantified by event-

related spectral power (ERSP) in all conditions. Grand average ERSP across all trials and 

participants at the R2-optimized electrode shows clear changes in mean spectral power 

from baseline. Figure 37 shows that both standard and test composite images elicited 

similar spectral components.  

Most notably broadband power increments extending from ~100 to ~250 ms, 

peaking around 200 ms in the 4 to 12 Hz range after both standard and test onset. 

Furthermore, a broadband power decrement is seen starting ~300 ms after both standard 
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and test onset and extending for about 250 ms. Specific spectral features were seen in the 

gamma range (30 to 70 Hz). First, an “early” gamma burst (~100 ms after standard and 

test onset) between 30 and 40 Hz followed by a higher-frequency component between 45 

and 70 Hz extending from ~100 to 200 ms. Finally, a “late” gamma burst (~300 ms after 

standard and test onset) between 35 and 60 Hz.    

 

 

Figure 37 – Grand average ERSP for all trials and participants at the R2–optimized 
electrode Oz. Clear time-frequency features elicited by stimuli presentation are quantified 
by ERSP 
 

4.2.1 Sensitivity to Stimulus Properties 
 

Results for this analysis are presented in Figure 38. Small power changes can be 

seen in the observed beta weight associated with stimulus properties (!w3" ). The largest 

increments in power were seen in the 4 to ~15 Hz range occurring 100 ms before the 

standard onset. Furthermore a high-frequency gamma burst (~50 to ~60 Hz) at ~200 ms 
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post-stimuli onset can be seen after the presentation of both standard and test onset 

(Figure 38 left panel).  

Right panel of Figure 38 displays the z-map obtained with 10,000 permutations. 

No supra-threshold clusters are seen. 

 

 

Figure 38 – ERSP sensitivity to stimulus properties. LEFT panel displays a time-frequency 
representation of the observed beta weight for stimulus properties (!w3" ). RIGHT panel 
displays cluster-corrected Z-map for stimulus properties after 10,000 permutations. No 
supra-threshold clusters are found 
 

4.2.2 Sensitivity to Task Demands 
  

Results for this analysis are presented in Figure 39. Top panels of Figure 39 show 

time-frequency representations of beta weights associated with each task. Mean spectral 

power differences from baseline display very similar responses in the lower range of the 

frequency spectrum (4 – 30 Hz). Both stimuli elicited strong broadband power increase (4 

– ~25 Hz) extending from ~60 to ~250 ms post-stimuli onset followed by power 

decrements in a similar broadband range for both tasks (Figure 39, top panels). 
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Bottom left panel of Figure 39 shows the observed difference between regressors 

associated with task demands (  and ). High-frequency power (>30 Hz) was 

mostly augmented for Task 1 throughout the epoch, whereas low-frequency power (<30 

Hz) was overall larger for Task 2. 

 

 

 

Figure 39 – ERSP sensitivity to task demands. TOP panels display time-frequency 
representations of observed data for beta weights associated with Task 1 (left, !w1T1 ) and 
Task 2 (right, !w2T2 ). BOTTOM LEFT. Observed difference between beta weight for Task 
1 minus beta weight for Task 2. BOTTOM RIGHT. Cluster-corrected time-frequency 
representation of the z-map obtained after 10,000 permutations. Highlighted areas indicate 
statistically significant clusters 
 

!w1T1 !w2T2
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Figure 39, bottom right panel displays the z-map obtained after 10,000 

permutations. Presentation of both test and standard images elicits larger spectral power 

in the high frequency range (> 25 Hz). In contrast, presentation of both test and standard 

images in task 2 elicits stronger power in lower frequencies (<25 Hz).  

Group-level analysis reveals no statistically significant time-frequency clusters 

below ~35 Hz (Figure 39, bottom right panel). In contrast, statistically significant clusters 

were found in the gamma range above ~35 Hz. Six37 different significant time-frequency 

supra-threshold clusters are observed. The first one occurs at ~60 ms after standard onset. 

Two of them occur at ~200 ms after stimuli onset for both standard and test (Figure 39, 

bottom right panel). These clusters have a similar time and frequency range extending for 

about 100 ms from ~40 to ~70 Hz. The next three clusters occur consecutively in time 

(~310 to ~550 ms post-standard onset) consistently from ~50 to 70 Hz (Figure 39, bottom 

right panel). Thus, statistically significant increments in gamma power are seen for the 

more car/more face discrimination judgment (Task 1) in contrast to the similarity 

judgment (Task 2). 

4.2.3 Sensitivity to Behavioral Outcome 
 

Results for this analysis are presented in Figure 40. Right panel shows the 

observed ERSP for the beta weight associated with behavioral outcome (!w4RT ). Mean 

spectral power differences from baseline display small power changes throughout the 

epoch. The largest increments in power are seen in the 4 to ~10 Hz range occurring ~100 

ms before the standard onset. Later in the epoch a high-frequency gamma increment (55 

                                                             
37 Possibly 7 
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– 60 Hz) and decrement (~40 – 55 Hz) at ~200 ms post-test onset are seen. Although 

these specific time-frequency features were robust enough across subjects, they did not 

survive the group-level analysis. Thus, no statistically significant differences were found 

when the Z-map created with 10,000 permutations was cluster-corrected for multiple 

comparisons using 2-dimensional clusters in the time and frequency domains. 

 

 

Figure 40 – ERSP sensitivity to behavioral outcome. LEFT panel displays time-frequency 
representations of beta weights for behavioral outcome ( !w4RT ). RIGHT panel displays the 
cluster-corrected Z-map after 10,000 permutations. No statistically significant results are 
observed 
 

4.2.4 Sensitivity to Stimulus Difficulty  
 

Results for this analysis are presented in Figure 41. Top panels display the 

observed activity associated with the combined beta weights for task demands (!w1T1  

and !w2T2 ) and stimulus properties (!w3" ). Mean spectral power differences from 

baseline display clear and strong responses within a broadband frequency range 
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extending from 4 to ~ 40 Hz. Power increments are followed by power decrements after 

both standard and test onsets in both tasks (Figure 41, top panels). Most notably, both 

stimuli elicited strong broadband power increase (4 – ~40 Hz) at ~100 ms extending from 

~60 to ~250 ms post-stimuli onset followed by power decrements in very similar 

broadband ranges (Figure 41, top panels). These similarities also extend in the time 

domain. The high-end of gamma band (40 – 70 Hz) shows discrete power increments. 

Although power notably increments at ~300 ms extending from ~40 to ~60 Hz (Figure 41, 

top panels) for both conditions, it is seen larger for task 2.  

The observed difference between both combined betas displays diverse 

increments in power for both task 1 and task 2. However, task 1 elicits greater power 

when compared to task 2 in both high and low frequency ranges (Figure 41, bottom left 

panel). Most notably, gamma power is stronger for task 1 within the ~40 to ~50 Hz range 

at ~100 ms after presentation of both standard and test stimuli. Furthermore, stronger 

high gamma power (>50 Hz) is seen starting at ~300 ms up and ending right at the 

presentation of the test image (Figure 41, bottom left panel). 

Between-subject analysis reveals no statistically significant increments in gamma 

power for the more car/more face discrimination judgment (Task 1) in contrast to the 

similarity judgment (Task 2) (Figure 41, bottom right panel). However, some robust 

features can be seen in the z-map generated after 10,000 permutations. Gamma power 

increases at ~100 ms within ~40 to ~45 Hz post-standard and post-test onset (Figure 41, 

bottom right panel). Both spectral features are congruent in time and frequency. 
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Figure 41 – ERSP sensitivity to stimulus difficulty. TOP panels display time-frequency 
representations of observed data for combined beta weights associated with effect of 
stimulus properties over task 1 (top left, !wSIT1 ) and task 2 (top right, !wSIT 2 ). BOTTOM 
LEFT. Observed difference between beta weight for Task 1 minus beta weight for Task 2. 
BOTTOM RIGHT. Cluster-corrected time-frequency representation of z-map obtained 
after 10,000 permutations. No supra-threshold clusters are found 
 

4.3 ITPC results 
 

My results display clear and strong phase clustering in time and frequency. Figure 

42 shows a grand average of all trials and all participants at the estimated R!
2  electrode. 

Presentation of both standard and test composite images was followed by broadband 
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phase clustering within the ~10 to ~20 Hz range at ~150 ms post-stimuli onsets and 

extending to lower frequencies (4 Hz) around ~200 ms. Mean ITPC in the high frequency 

range (30 – 70 Hz) displayed increased consistency in 2 bouts. First period of high 

frequency phase consistency is seen at ~100 ms post-stimuli onset for both test and 

standard. Second period of phase consistency is seen at ~200 ms post-stimuli onset for 

both test and standard images (Figure 42). 

 

 

Figure 42 – Grand Average ITPC for all trials and participants at the estimated R!
2 –

optimized electrode Oz. Periods of phase consistency are seen after presentation of both 
standard and test stimuli 
 

4.3.1 Sensitivity to Task Demands 
 

Results for this analysis are presented in Figure 43. Top panels display the 

observed activity for ITPC for task 1 (left) and task 2 (right). Phase clustering for both 

tasks display very similar responses in the lower range of the frequency spectrum (4 – 30 
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Hz). Presentation of stimuli is followed by strong phase consistency peaking between 4 

and ~15 Hz and extending from ~50 to ~350 ms post-stimuli onset (Figure 43, top panel). 

The unthresholded observed difference time-frequency representation is shown in 

the bottom left panel of Figure 43. Small differences can be seen between task 1 and task 

2. 

Bottom right panel of Figure 43 displays results from the group-level ITPC analysis. No 

statistically significant time-frequency points are found. 

 

 

Figure 43 – ITPC results for comparison between Task 1 and Task 2. TOP panels display 
time-frequency representations of observed data for Task 1 (top left) and task 2 (top right). 
BOTTOM LEFT. Observed difference between Task 1 and Task 2. BOTTOM RIGHT. 



 146 

Cluster-corrected time-frequency representation of z-map obtained after 10,000 
permutations. No supra-threshold clusters are found 

4.4 ISPC results 
 

Clear phase clustering in time and frequency are quantified by ISPC. Figure 44 

displays a grand average of all trials and all participants of ISPC between the estimated 

 electrode (Oz) and all other electrodes. Presentation of both standard and test 

composite images was followed by broadband phase clustering starting at ~150 ms post-

stimuli onset extending between 4 and ~25 Hz. In the high-frequency spectrum (>30 Hz) 

a more diverse behavior is seen. Presentation of the standard image is preceded by 

increments in phase consistency with diverse time and frequency distribution. In contrast, 

presentation of the test image is preceded by 3 bouts of gamma phase consistency seen at 

~100, ~200, and ~300 ms between 50 and 70 Hz  (Figure 44). 

 

R!
2
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Figure 44 – Grand average ISPC for all trials and participants between the estimated R!
2 –

optimized electrode Oz and all other sensors. Periods of phase consistency are seen after 
presentation of both standard and test stimuli 
 

4.4.1 Sensitivity to Task Demands 
 

Between-subject analysis suggests that 7 out of 31 electrodes present supra-

threshold inter-site phase clustering with the R2-optimized electrode Oz. Supra-threshold 

electrodes are FP1, F7, F3, and FC5 in the left anterior scalp around 270 ms at ~45 Hz 

post-standard onset (yellow window in Figure 45). Green window in Figure 45 and Figure 

46 display temporal and spatial distribution of supra-threshold inter-areal gamma phase 

synchrony (~30 - ~60 Hz) at ~250 ms post-test onset over left frontocentral (FP1, F7, F3, 

and FC5) and posterior sensors (O1, O2, and PO8). Near the end of the epoch supra-

threshold inter-areal gamma phase synchrony (~25 - ~65 Hz) clusters at ~900 ms are 

found for electrodes are FP1, F7, F3, FC5, Fz, and FP2 in the frontal scalp (magenta 

window in Figure 45). 
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Results for anterior supra-threshold electrodes are shown in Figure 45. Results for 

posterior supra-threshold electrodes are shown in Figure 46.  

Top panels in Figure 45 display phase clustering between the estimated R!
2  

electrode (Oz) and all supra-threshold electrodes located in the left frontal scalp (FP1, F7, 

F3, FC5, Fz, and FP2). In order to avoid displaying data from 4 different electrodes for 

the first ~850 ms and data from 6 electrodes for the rest of the epoch, the individual beta 

weights displayed are averages of individual beta weights quantified by all anterior supra-

threshold electrodes (i.e. FP1, F7, F3, FC5, Fz, and FP2). 
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Figure 45 – TOP panels. Grand average ISPC between Oz and all supra-threshold anterior 
electrodes (FP1, F7, F3, FC5). Periods of phase consistency are seen after presentation of 
both standard and test stimuli. Topographic representation shows electrodes locations 
included in the average with respect to Oz. MIDDLE panels. Observed difference (left) and 
cluster-corrected z-map obtained after 10,000 permutations (right). Highlighted areas show 
statistically significant time-frequency points. Overlaid rectangles indicate time-frequency 
windows of supra-threshold clusters. BOTTOM panels. Topographical representations of 
supra-threshold cluster time-frequency windows, colored rectangles represent temporal 
windows in middle right panels 

 

Inter-electrode clustering of low frequency phases across trials follows a very 

similar pattern for both tasks after the presentation of both images. In contrast, high-

frequency phase clustering follows more diverse distributions in time and frequency. 

Specific time-frequency points are found to be above threshold for statistical significance 

after 10,000 permutations and correction for multiple comparisons. Middle left panel in 
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Figure 45 displays the observed difference between ISPC between Oz and all supra-

threshold anterior electrodes (FP1, F7, F3, FC5, Fz, and FP2) for task 1 and task 2. In 

order to avoid displaying data from 4 different electrodes for the first ~850 ms and data 

from 6 electrodes for the rest of the epoch, the observed difference displayed is an 

average of the observed differences of all anterior supra-threshold electrodes (i.e. FP1, 

F7, F3, FC5, Fz, and FP2). 

Middle right panel in Figure 45 displays the cluster-corrected z-map obtained after 

10,000 permutations. Likewise, in order to avoid displaying data from 4 different 

electrodes for the first ~850 ms and data from 6 electrodes for the rest of the epoch, the z-

map displayed is an average of z-maps generated for electrodes FP1, F7, F3, FC5, Fz, and 

FP2. Colored windows indicate time-frequency windows where supra-threshold clusters 

were found and the time-frequency ranges that were integrated in order to generate the 

displayed topographical representations in bottom panel of Figure 45. Highlighted areas in 

the middle right panel in Figure 45 represent the actual supra-threshold time-frequency 

clusters found at individual electrodes. In order to generate the middle right panel in 

Figure 45, supra-threshold clusters belonging to electrodes FP1, F7, F3, FC5, Fz, and FP2 

were overlaid on top of each other.  

Supra-threshold clusters are found at ~270 ms (yellow window), ~850 ms (green 

window), and ~900 ms (magenta window) after standard onset. Topographical 

representations of these windows are shown in the bottom panel of Figure 45. White lines 

overlaid in topographical maps indicate statistically significant phase synchrony between 

electrodes. For visualization purposes, all supra-threshold phase synchrony occurring 

during the green time-frequency window is shown. 
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Top panels in Figure 46 display phase clustering between the estimated R!
2  

electrode (Oz) and all supra-threshold electrodes located in the occipital scalp (i.e. O1, 

O2, and PO8). In order to avoid displaying data from 3 different electrodes, the 

individual beta weights displayed are averages of individual beta weights quantified by 

all posterior supra-threshold electrodes (i.e. O1, O2, and PO8). Inter-electrode clustering 

of low frequency phases across trials is strong and follows a very similar pattern for both 

tasks after the presentation of standard and test images. In contrast, high-frequency phase 

clustering follows more diverse distributions in time and frequency. 

Middle left panel in Figure 46 displays the observed difference between ISPC 

between Oz and all supra-threshold posterior electrodes for task 1 and task 2. In order to 

avoid displaying data from 3 different electrodes, the observed difference displayed is the 

average observed difference of all supra-threshold posterior electrodes (i.e. O1, O2, and 

PO8). Middle right panel in Figure 46 displays the cluster-corrected z-map obtained after 

10,000 permutations. In order to avoid displaying data from 3 different electrodes, the z-

map displayed is an average of z-maps for electrodes O1, O2, and PO8. The colored 

window indicates time-frequency windows where supra-threshold clusters were found for 

these electrodes.  
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Figure 46 – TOP panels. Grand average ISPC between Oz and all supra-threshold posterior 
electrodes (O1, O2, PO8). Topographic representation signals the location of electrodes 
included in the average with respect to Oz. MIDDLE panels. Observed difference (left) and 
cluster-corrected z-map obtained after 10,000 permutations (right). Overlaid rectangles 
indicate time-frequency windows of supra-threshold clusters. BOTTOM panels. 
Topographical representations of supra-threshold cluster time-frequency windows, colored 
rectangles represents temporal windows in middle right panels 
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Highlighted areas in the middle right panel in Figure 46 represent the actual supra-

threshold time-frequency clusters found at individual electrodes. In order to generate the 

middle right panel in Figure 46, supra-threshold clusters belonging to electrodes O1, O2, 

and PO8 were overlaid on top of each other. 

A supra-threshold cluster is found at ~250 ms after test onset (green window). A 

topographical representation of this window is shown in the bottom panel of Figure 46. 

White lines overlaid in topographical maps indicate statistically significant phase 

synchrony between electrodes. For visualization purposes, all supra-threshold phase 

synchrony occurring during this time-frequency window is shown. 

4.5 ERPAC results 
 

Few time-frequency specific changes in coupling strength were quantified by 

event-related phase-amplitude coupling (ERPAC) in all my analyses. Grand average 

ERPAC across all trials and participants shows small changes in coupling strength 

between the selected low frequency phases in the theta and alpha range and high-

frequency power (Figure 47).  

A summary of between-subject analyses results for both theta- and alpha-based phase-

amplitude coupling analysis is presented in Figure 48. After 10,000 permutations, no 

supra-threshold clusters are found. 
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Figure 47 – LEFT panel. Grand Average theta-based ERPAC for all trials and participants at the 
R2–optimized electrode Oz. RIGHT panel. Grand Average alpha-based ERPAC for all trials and 
participants at the R2–optimized electrode Oz 
 
 

 

 

 

 

Figure 48 – Theta- and alpha-based summary of results. No supra-threshold clusters are 
found 
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5. Discussion  
  

The general goal of this dissertation is to provide an in-depth analysis of scalp-

recorded neurophysiological signals associated with the time-course of perceptual 

decisions. Thus I used a semi-exploratory approach in order to explore the temporal 

dynamics of perceptual decisions. Healthy human volunteers performed 2 tasks based on 

different perceptual judgments using the same physical stimuli (Figure 28). I controlled 

available perceptual evidence in each trial (Figure 27). Thus, I implemented a blocked 

dual-task two-interval parametric design using composite images. 

Different neural time series analyses were implemented on the acquired data. 

Each one of the quantified measures models particular dimensions of the 

electrophysiological signal (Figure 3, see 2. Exploring Cognitive Dynamics Using Scalp-

Recorded Neural Signals). From the implementation of linear and non-linear measures of 

brain activity emerges a problem related to the analysis search space. An increased 

number of points in the time, frequency, and space dimensions require mining and further 

statistical testing. The present parametric design allowed me to implement a linear model 

in order to mine linear measures at the single-subject and single-trial level (Figure 33) (S. 

J. Kiebel & Friston, 2004a, 2004b; Litvak et al., 2011; Pernet et al., 2011). Moreover, the 

coefficient of determination (R2) quantifying goodness of fit of the model per measure is 

used as a dimensionality reduction technique. Thus, an R2-optimized electrode was 

identified using the maximum R2 value per measure (Figure 22, Figure 34). Furthermore, 

the non-parametric permutation testing framework was used in order to implement robust 
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statistics (Wilcox, 2005a) and appropriate multiple comparison correction procedures 

(Maris & Oostenveld, 2007; Pernet et al., 2011). 

In the following sections I will discuss the grand average of the data and the 

results obtained by between-subject analyses. 

5.1 Grand Average Measures 

5.1.1 Event-Related Potentials (ERP) 
 

Event-related potential (ERP) analysis revealed strong amplitude changes from 

baseline following the presentation of standard and test stimuli (Figure 35). A very small 

C1 at 60 ms, a P1 at 100 ms, a N1 at 155 ms, a large P2 at 220 ms, and two late positive 

components peaking at 320 and 420 ms (LPC3, LPC4) follow the presentation of the 

standard composite images. Likewise, a large C1 at 60 ms, a small P1 at 100 ms, N1 at 

150 ms, a large P2 at 210 ms, and a late positive component at 320 ms follow the 

presentation of the test composite images (Figure 35).  

Importantly, no late positive potential at 420 ms is seen after the presentation of 

the test image. This suggests that LP4 might be a specific38 response elicited by the 

standard image, possibly related to memory processes. In memory tasks, it has been 

observed that recognized items elicited larger ERP amplitude in contrast to unrecognized 

items. Amplitude increments are seen during the encoding phase only for the recognized 

items extending between 400 to 1000 ms over frontal left scalp sensors (Friedman & 

Trott, 2000). Such associations between late ERP components and memory have also a 

functional magnetic resonance imaging (fMRI) counterpart (Thompson-Schill, 
                                                             
38 The words “specific”, “selective”, and “preferential” will be italicized and will follow the logic 
presented by (Fodor, 2001) 
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D'Esposito, Aguirre, & Farah, 1997). Likewise, late positive potentials (LPC) over 

parietal scalp within the 400 to 800 ms range have been reported (Addante, Ranganath, & 

Yonelinas, 2012; Finnigan, Humphreys, Dennis, & Geffen, 2002; Friedman & Johnson, 

2000; Johnson, Pfefferbaum, & Kopell, 1985; Neville, Kutas, Chesney, & Schmidt, 

1986). The amplitude of these LPCs is increased to new words in contrast to old words. 

Thus, these late positive modulations of ERP amplitude in memory contexts have been 

associated with some kind of elaborative processing leading towards recognition of items 

with associated contextual details (Addante et al., 2012; Friedman & Johnson, 2000; Yu 

& Rugg, 2010).  

Therefore, the average ERP waveform suggests that a neural process, possibly 

linked to memory, occurs around 400 ms specific for the standard image. This prediction 

is congruent with oscillatory power results discussed later (5.7 Decision-relevant 

cognitive and neural events depend on the alpha cycle). Furthermore, a follow-up 

analysis is suggested to address this issue (see 7. Future Directions). 

Finally, the excellent temporal resolution of the unfiltered ERP gives insight into 

a time-course of neural events linked to perceptual decision-making. Thus, 60± 25 ms, 

100± 30 ms, 150± 50 ms, 220± 45 ms, 320± 20 ms, and 420± 20 ms post-stimulus 

onset39 will be used as reference for the less temporally precise time-frequency analyses. 

5.1.2 Event-Related Spectral Power (ERSP) 
 

The event-related spectral power (ERSP) analysis revealed strong mean spectral 

power deviations from baseline following the presentation of standard and test stimuli 

                                                             
39 Timing measured across subjects and trials composing the grand average ERP shown in Figure 35 
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(Figure 37). Standard composite images are followed by strong broadband power 

increment starting at ~60 ms extending from ~6 to ~35 Hz. At ~100 ms a smaller 

broadband power increment starts, extending for ~100 ms within 4 and ~20 Hz with 

maximum power at ~150 ms. A final broadband power increment within 4 and ~20 Hz 

starts at ~200 ms, extends for about 100 ms, and peaks at ~220 ms.  

These increments in spectral power are followed by broadband power decrease in 

the theta and alpha bands (4 - ~14 Hz) starting at ~300 ms and extending for ~250 ms. 

The peak of this power decrease occurs around 8 Hz and coincides with the presentation 

of the test images at 500 ms after test image onset. This event is followed by a 2 

consecutive broadband power increments in the theta and alpha bands (4 - ~14 Hz) 

occurring at ~150 and ~220 ms after test onset. At ~300 ms, strong broadband power 

decrease within ~10 and ~45 Hz extends up until the end of the epoch. Interestingly, the 

peak of this power decrement occurs in similar time-frequency space than the previous 

power decrement (Figure 37).  

Thus, temporal dynamics of EEG spectral power within 4 and ~35 Hz suggest the 

occurrence of specific neural events, possibly neural synchrony, unfolding in time and 

frequency. These events are congruent for both standard and test images. However, 

standard images are followed by 3 discrete broadband power increments (~60, ~150, and 

~220 ms) whereas test images lack the earlier broadband spectral component at ~60 ms 

(Figure 37). Interestingly, the discreteness of the spectral power components occurring at 

~150 and ~220 ms is suggested by a brief return to baseline at ~180 ms seen in the alpha 

and beta bands (~10 - ~25 Hz). 
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Spectral events in the gamma band (>30 Hz) have an interesting relationship with 

the timing suggested by the lower-frequency spectrum (<30 Hz). Power increments 

around 60 ms post stimuli onset are seen extending from ~30 to ~35 Hz. For the standard 

image, this early spectral component might be a residual from lower-frequency 

broadband power at ~60 ms. However, this conclusion is not so straightforward for the 

test image-related gamma band counterpart at ~60 ms. Thus it might be the case that 

these gamma band components are a stand-alone neural event and do not form part of the 

lower-frequency broadband component. Early gamma-band synchronization before 100 

ms after stimulus onset has been suggested as an early correlate of attention as quantified 

by intracranial recordings in macaque (Fries, Reynolds, Rorie, & Desimone, 2001).  

In humans, early gamma band responses around ~100 ms are associated with the 

encoding of stimulus features. Busch, Debener, Kranczioch, Engel, and Herrmann (2004) 

parametrically manipulated size, duration, and eccentricity. Their results show a 

monotonic relationship between gamma-band power and such stimulus properties 

extending from ~40 to ~120 ms post stimulus onset mostly around 40 Hz (although 

effects are seen within 30 and 100 Hz depending on manipulation and subjects). 

Furthermore, early gamma band has been also shown to be sensitive to memory (C. S. 

Herrmann, Lenz, et al., 2004), being larger for know objects in comparison to unknown 

objects. Thus, previous literature suggests that these early gamma-band responses are 

indeed separate neural events probably linked to the encoding of visual stimulus 

properties and not residuals from the broadband synchronization occurring at lower 

frequencies. 
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At ~150 ms, gamma band power slightly decreases between ~30 and ~45 Hz after 

standard onset. In contrast, a larger power decrement is seen post-test onset. At 200 ms a 

high-frequency gamma component between ~50 and ~70 Hz peaks after onset of both 

images. This gamma component temporally coincides with the return to baseline in the 

lower-frequencies and with an increment in power at ~30 Hz. Interestingly, gamma band 

returns to baseline at ~220 ms and is followed by power decrement part of a broadband 

event. Gamma-band synchronization strongly increases at 300 ms and >400 ms post-

standard onset. The first increment also occurs after test onset but is smaller whereas the 

later increment is not present for the test image (Figure 37). 

5.1.3 Inter-Trial Phase Clustering (ITPC) 
 

Inter-trial phase clustering (ITPC) analysis revealed strong phase consistency 

following the presentation of standard and test stimuli (Figure 42). Standard and test 

composite images are followed by strong phase consistency starting at ~60 ms extending 

until ~300 ms within ~4 to ~60 Hz. It is not clear if these are broadband responses or 

individual bouts of phase clustering. Given the timing of events provided by ERP (Figure 

35) it is likely that ITPC quantifies at least 3 processes occurring below ~30 Hz. The first 

increment in phase consistency starts smaller around 100 ms and extends from ~5 to ~25 

Hz. A large increment in phase consistency with the same frequency distribution occurs 

around 150 ms. Finally, a large increment in theta/alpha (4 - ~15 Hz) phase clustering 

occurs at ~220 ms.  

In contrast, gamma phase dynamics display only 2 clear increments in phase 

consistency. The first event at ~100 ms corresponds to the “early” evoked gamma 
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component and it has been indirectly studied using evoked power (Busch et al., 2004). 

The second event at ~200 ms corresponds to the “late” gamma, often accompanied with 

evoked and induced gamma power (Gruber, Muller, & Keil, 2002). “Late” gamma phase 

synchrony has been suggested to be a signature of cortical object representation (Gruber 

et al., 2002). 

5.1.4 Inter-Site Phase Clustering (ISPC) 
 

Inter-site phase clustering (ISPC) analysis shows long-range phase consistency 

patterns congruent with what is seen in local measures such as ERP, ERSP, and ITPC. 

Figure 44 displays that the inter-site phase clustering in the frequency spectrum below ~30 

Hz is congruent with results found in ERSP and ITPC. Thus, increments in phase 

consistency starting at ~60 ms extending until ~300 ms within ~4 to ~25 Hz are seen 

following the presentation of standard and test stimuli. Given the timing of events 

provided by ERP (Figure 35) it is likely that just like local phase clustering, ISPC 

quantifies at least 3 processes occurring below ~25 Hz. The first increment in phase 

consistency is seen at ~100 ms and extends from ~5 to ~25 Hz. The second increment in 

phase consistency shares the same frequency distribution and occurs around 150 ms. A 

final clustering is seen in theta/alpha (4 - ~15 Hz) at ~220 ms. Although both patterns are 

shared by activity following standard and test images, the test image presents lower inter-

site phase clustering than the standard (Figure 44).  

In contrast, gamma phase dynamics display very diverse behavior. Furthermore 

the strength of these inter-site phase dynamics in the gamma band is very weak. This is 

due to the extra constraint imposed by ISPC itself. Phase at a given time-frequency point 
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has to be consistent across trials and for 2 different electrodes. Moreover this grand 

average combines values from Oz and all other electrodes. Given these 2 reasons, high 

frequency phase is spuriously reduced in this graph. 

5.1.5 Event-Related Phase-amplitude Coupling (ERPAC) 
 

Grand averages for theta- and alpha-based event-related phase-amplitude coupling 

are shown in Figure 47. Coupling strength is very weak, in the order of 0.003, rendering 

these results unintelligible. This failed result is product of a blind and an arbitrary 

decision I made.  

First, for the sake of consistency, the same wavelet parameters were blindly used 

for all time-frequency analyses. These parameters were originally optimized for ERSP, 

ITPC, and ISPC analyses not for cross-frequency coupling. Keeping parameters equal is 

recommended good practice for ERSP, ITPC, and ISPC because they can be understood 

as “extensions” of one another (M. X. Cohen & Gulbinaite, 2014; Christoph S Herrmann 

et al., 2005). However, cross-frequency coupling analysis implies a whole different set of 

assumptions, processes, and computations (see 2.3.2 Cross-Frequency Coupling (CFC) 

and the methods section on Event Related Phase-amplitude Coupling (ERPAC) analysis). 

Second, I arbitrarily chose the “source” low-frequency phase as the centroid of the theta 

and alpha band so as to reduce the search space. 

The impact of these decisions is clearly seen in the poor performance of the linear 

model for the ERPAC measure (Figure 34). R2 for ERP reached a very good value of 0.38 

while ERSP is expected to be lower due to the integration across several frequencies; it 

still reaches a very good value of 0.3. R2 for ERPAC was very small (~0.05). Thus, it is 
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not surprising that grand average ERPAC denotes the “unhealthiness” of the computed 

ERPAC (Figure 47). Furthermore this is evidenced in the full set of null results displayed 

in Figure 48. I return to this failed outcome and propose a solution in 7. Future Directions. 

In the next sections, I will discuss the obtained results using ERP, ERSP, ITPC, 

and ISPC divided per analysis. 

5.2 No impacts of systematic low-level differences in stimuli are seen in my 
results 

 

Between-subject analyses suggest that no supra-threshold temporal clusters are 

seen for ERP (Figure 36) or for ERSP (Figure 38). Although no significant results were 

obtained for the analysis of beta weight dynamics for stimulus sensitivity (!w3" ) the 

obtained null results are informative nonetheless.  

A small ERP preferential response to stimulus mixing level (Parameter 2, Figure 

27) is seen between ~60 and ~220 ms following the presentation of both images (top 

panel Figure 36). These increments in ERP amplitude are not statistically significant. I 

interpret these null results as indicative of the success of the present experimental design. 

This is, although composite image mixing was manipulated (Parameter 2, Figure 27), the 

image statistics across images were kept as equal as possible. Thus, any systematic 

physical stimulus differences as evidenced by ERPs were eliminated. The impact of low-

level stimulus features is a well-documented topic in ERP research (Celesia & Peachey, 

1993) and has been pointed out as the main cause of false-alarm ERP modulation 

(Rousselet & Pernet, 2011; Vanrullen, 2011). 
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Despite not having supra-threshold clusters, ERSP provides additional 

information about the impact of stimulus properties on temporal brain dynamics (!w3" , 

Figure 38). Cluster-corrected z-map in Figure 38 displays 2 under-threshold clusters in the 

gamma band (~50 to ~65 Hz). Although they are not statistically significant, these high-

frequency components at 200 ms are interesting because (i) given that high-frequency 

spectral components are highly affected by temporal jitter, gamma at 200 ms is seen even 

after 10,000 trial permutations with small temporal shifts and (ii) these components are 

present in the grand average ERSP (Figure 37). However, these preferential spectral 

components occur too late to be product of low-level systematic differences in stimuli 

(Pulvermüller, Keil, & Elbert, 1999).  

Therefore, along with my null ERP results, the ERSP sensitivity to stimulus 

properties analysis confirms the success of the experimental manipulation. 

5.3 Sensitivity to Behavioral Outcome 
 

Between-subject analyses suggest that no supra-threshold clusters are seen for 

ERP (Figure 36) or for ERSP (Figure 38). Although no significant results were obtained 

for the analysis of beta weight dynamics for behavioral outcome (!w4RT ) the obtained 

null results of ERP are nonetheless informative. 

The beta weight associated with ERP sensitivity to behavioral outcome shows no 

increments in amplitude from baseline after the presentation of the standard image (

!w4RT , middle bottom panel Figure 36). In contrast, a specific response following the 

presentation of the test image is seen between ~60 and ~250 ms. This response has no 
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consistent polarity between subjects and no statistically significant temporal clusters are 

found. However, the fact that this small potential deflection is specific for the test image 

presentation indicates that trial-by-trial variation of response times has a potential relation 

with the first ~250 ms after test image onset. In contrast, it is possible that a small to no 

relationship might exist between the trial-by-trial response time variation and other time 

periods during the epoch. Importantly, such relationships cannot be described by the 

current analysis. 

The idea of a specific ERP response linked to reaction time variability is 

consistent with literature suggesting that neural events linked to information 

accumulation/processing start around ~80 ms after stimulus onset (Schyns et al., 2007; 

VanRullen & Thorpe, 2001). Furthermore, it has been suggested that decision-related 

neural events start around 150 ms after stimulus onset and extend for about 100 ms 

(Philiastides et al., 2006; VanRullen & Thorpe, 2001). Likewise, Smith and Ratcliff 

(2004) suggest that evidence accumulation towards a decision happens during the time 

period comprised between ~150 and ~350 ms post-stimulus onset.  

Thus my semi-exploratory ERP analysis generates a specific hypothesis about the 

time-course of events that have an impact in response times and dictates a follow-up 

analysis testing the specific ERP response to behavioral outcome (see 7. Future 

Directions). 

5.4 Task demands do not modulate ERP and ITPC 
 

Beta weights associated with task 1 and task 2 (!w1T1 ,!w2T2 ) were compared 

against each other in order to assess ERP and ERSP sensitivity to task demands (Figure 36 
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and Figure 39). Furthermore non-linear measures were separated into trials belonging to 

task 1 and task 2 and compared. 

Figure 36 shows strong ERP amplitude modulations following the presentation of 

both images resembling the grand average shape. A classic tri-phasic visual ERP shape 

follows presentation of the standard image presentation is followed by (P1 ~100 ms, N1 

~155 ms, P2 ~220 ms). In contrast, test image presentation elicits an early C1 (~60 ms) 

followed by the tri-phasic response. No supra-threshold temporal clusters were found in 

this analysis. The lack of statistically significant differences in this analysis reveals that 

ERPs are not sensitive to task demands which can be understood as a high-level cognitive 

process. Thus, although preferential ERP responses associated to task demands are seen 

these are not selective to the different judgments.  

The presence of the C1 ERP component ~60 ms after test image onset is 

interesting (middle top panel Figure 36). C1 is thought to represent early responses in the 

visual cortex and the beginning of bottom-up feedforward processing (Martinez et al., 

1999). Therefore, ERP amplitude increments starting ~60 ms after test image onset may 

reflect attentional processes linked to perception of task-relevant information (Kanwisher 

& Wojciulik, 2000). Importantly, the effects of attention at this early stage of visual 

processing would be present for the test image and not for the standard. Putatively, C1 

might indicate differential task-related early processing of information. However, the 

present analysis cannot reveal such interaction. Therefore, my current semi-exploratory 

ERP analysis suggests a specific follow-up analysis where ERP waveforms elicited by 

the test image are compared against the ERP time series elicited by the standard image 

(see 7. Future Directions). 
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Results show that no statistically significant differences in phase clustering are 

found between tasks. These null results can be interpreted in two ways. First, oscillatory 

phase dynamics might not be affected by task demands. It is thought that the clustering of 

phases across trials represents two dimensions40 of functional organization of neural 

networks triggered by perceptual or cognitive events (F. Varela et al., 2001). So it is 

plausible that although different judgments are required in the implemented tasks, these 

are not modeled by phase clustering. By definition, ITPC has an intrinsic technical flaw; 

it requires phase angles to be clustered across trials with regard to the stimulus onset. 

Thus, any phase dynamics that have a trial-by-trial variation but not locked to the 

stimulus onset, will be missed by ITPC. A solution for this issue was unknown to me at 

the time of these analyses (see 7. Future Directions). 

The second interpretation relies on putative missed effects. In order to implement 

a consistent approach throughout the dissertation, the electrode with maximum mean R2 

across linearly modeled measures was used (Figure 34). Inter-site phase clustering 

analysis reveals that increased phase dynamics in the posterior electrodes is shifted 

towards the right hemisphere (topographical maps in Figure 45 and Figure 46). It could 

well be that Oz might not be the best electrode for ITPC analysis. Furthermore, non-

linear measures did not benefit from the linear model. Ideally, single-trial analysis should 

be applied to non-linear measures in order to better link it to behavior (see 7. Future 

Directions). Thus, it is possible that phase consistency dynamics might be an appropriate 

measure of the neural basis of perceptual decision-making; I might have just missed the 

effect due to arbitrary decisions. 

                                                             
40 Time as measured by phase and frequency 
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5.5 Decision-specific cognitive demands modulate early gamma power 
 

Top panels of Figure 39 display time-frequency representations of individual beta 

weights associated with task 1 and task 2 (!w1T1 ,!w2T2 ). Supra-threshold clusters are 

found in the ERSP sensitivity to task demands analysis comparing beta weights for task 1 

and task 2. This indicates that in contrast to ERP, high-level cognitive processes such as 

different judgments regarding the same physical stimuli are effectively modeled by 

oscillatory power.  

Spectral behavior within 4 and ~30 Hz is very similar to the one observed in the 

grand average ERSP (Figure 37, 5.1.2 Event-Related Spectral Power (ERSP)) this is 

furthermore reflected by the lack of supra-threshold clusters under 35 Hz. In contrast, 

gamma-band power (>30 Hz) present two overall characteristics. First, stronger gamma 

power is elicited by task 1 in comparison to task 2 throughout the epoch. Second, some of 

these power increments are statistically significant (Figure 39). 

Overall differences in gamma power between tasks are not surprising. It has been 

shown that in general, cognitive tasks consistently augment gamma power (Fitzgibbon, 

Pope, Mackenzie, Clark, & Willoughby, 2004). The nature of the judgments in the tasks 

is very different. Task 1 requires participants to use specific composite image features 

from the standard presentation in order to judge if the test image contains more car or 

more face in comparison to the standard. In contrast, task 2 requires participants to judge 

if the test image is the same as or different than the standard (Figure 28). It could be 

argued that the more car/more face judgment is more demanding than the same/different 

judgment. Gamma power increments have been reported for increased task difficulty in 
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auditory (Mulert et al., 2007), visual (Fitzgibbon et al., 2004), and working memory tasks 

(Meltzer et al., 2008). Thus, the increased overall gamma-band power for task 1 in 

contrast to task 2, might indicate that the more car/more face judgment is indeed more 

demanding. 

The earliest supra-threshold cluster occurs between ~60 and ~106 ms around ~45 

Hz after standard image onset consistent with the event timings provided by ERP (C1 and 

P1 components, Figure 35). This time-frequency component is weakly seen in the grand 

average ERSP (Figure 37) but strongly present in the actual beta weight for task 1 and in 

the observed difference (Figure 39). A parsimonious explanation for this gamma-band 

response would lie on systematic differences in low-level image features. This is an 

unlikely interpretation as stated by the ERP and ERSP sensitivity to stimulus properties 

analyses (see 5.2 No impacts of systematic low-level differences in stimuli, Figure 36 and 

Figure 38). 

A more appropriate interpretation is suggested by the linear model and is based on 

task-dependent requirements. In the present paradigm, participants have to implement 

judgment-specific information acquisition strategies for the standard image. Task 1 

demands the encoding of specific image features (i.e. amount of car/face mixture, 

Parameter 1) whereas task 2 can be solved only with the gist of the standard image. It has 

been suggested that perception of global scene or object features (i.e. the gist) relies on 

particular and specific neurobiological and cognitive dynamics (Bar, 2003, 2004; Oliva & 

Torralba, 2006; Oppermann, Hassler, Jescheniak, & Gruber, 2012). Thus, the 

neurobiological mechanisms involved in information acquisition from the standard image 

in feature-based discrimination tasks might be different from those recruited when 
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performing gist-based matching tasks. Importantly, the counterpart for this gamma band 

component after test onset does not differ between tasks41. This suggests that neural 

events associated with such early gamma power increment are selective for the standard 

image in task 1 (Figure 39).  

These results indicate that neural operations correlated with early gamma power 

do not differ after test onset. This interpretation is congruent with the memory match and 

utilization model (MUM, C. S. Herrmann, Munk, et al., 2004). The “matching” process 

occurring at ~100 ms after test onset does not differ between tasks; it is relatively the 

same cognitive operation.  

However, the interpretation provided by the MUM model is not appropriate for 

early gamma power after standard onset. A study by Oppermann et al. (2012) provides 

some insights. Early gamma-band responses were compared for the perception of 

conceptually related and unrelated objects (Oppermann et al., 2012). Their results show a 

modulation of early gamma-band response at ~70 ms in the 30 to 50 Hz range stronger 

for conceptually related objects. Indicating that after the perception of physically similar 

stimuli, early gamma power is modulated by previous knowledge about stimuli 

(Oppermann et al., 2012).  

Results by Oppermann et al. (2012) are congruent with mine in the time and 

frequency domains.  Specifically for my results I suggest that early gamma power after 

standard onset is modulated by different information-acquisition strategies demanded by 

each task. In other words, encoding of the standard image is different in each task, 

                                                             
41 and actually going back to baseline, which indicates that there is no increment in oscillatory gamma 
power at this time period 
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whereas the encoding of the test image does not differ across tasks. This means that 

gamma power elicited by the standard image is functionally different from its test-related 

counterpart. 

These results furthermore provide evidence of the early availability of task-

specific knowledge in perceptual decision-making (Bar, 2004; Engel et al., 2001; Wolfe, 

Vo, Evans, & Greene, 2011). The architecture of the visual system suggests a hierarchic 

functional organization. However, the idea that concurrent bottom-up and top-down 

influence early stages in visual perception have been suggested (Bar, 2003, 2004; Engel 

et al., 2001; Grossberg, 1999; Ullman, 1995; Wolfe et al., 2011). Bar et al. (2006) 

showed that top down influences for object recognition over occipital cortex can occur as 

early as 50 ms. Furthermore, they suggest that top-down/bottom-up recurrent interactions 

are supported by orbito-frontal cortex (OFC) and the visual cortex, respectively (Bar, 

2003, 2004; Bar et al., 2006). 

In the context of this paradigm, such early top-down/bottom-up interactions 

would be of a slight different nature as the ones suggested by (Bar, 2003). I suggest that 

not only recognition-related facilitation might be at play at this time period but also task-

dependent knowledge. This is, judgment-specific information acquisition strategies for 

the standard image. 

5.6 Local and inter-areal gamma synchrony at ~200 ms reflects decision-
dependent integration of distributed neural processing  
 

The next statistically significant increment of gamma power occurs between ~170 

and ~280 ms after standard and test onset (Figure 39). Additionally, inter-site phase 



 172 

clustering (ISPC) results found phase synchrony between Oz and anterior (FP1, F7, F3, 

FC5) and posterior (O1, O2, PO8) electrodes within extending until near the end of the 

epoch (Figure 45 yellow, green and magenta windows, Figure 46 green window). Thus, 

supra-threshold power and phase clustering with ~30 to ~60 Hz is seen within between 

~230 and ~330 ms after both standard and test images onset (Figure 45 and Figure 46). 

The gamma supra-threshold cluster is “U shaped”, leaving gamma-band power 

above 50 Hz at ~200 ms out of statistical significance (Figure 39). Interestingly, this 

period of gamma power returns to baseline (Figure 39). Importantly, a gamma-band 

component above 50 Hz at ~200 ms is associated with stimulus properties (Figure 38, 5.2 

No impacts of systematic low-level differences in stimuli). It is possible that the “U 

shape” of the ~200 ms gamma supra-threshold cluster demonstrates that the linear model 

effectively separated activity related to stimulus properties from task demands.  

Furthermore, these activations occur too late so as to be modulated by low-level 

systematic differences in stimuli (Pulvermüller et al., 1999). Therefore these effects 

cannot be explained by stimulus properties; the linear model suggests they are related to 

task demands. 

Gruber et al. (2002) proposed different functional roles for induced gamma power 

and inter-site phase clustering42 co-occurring in a window extending from 180 to 300 ms 

at 32 Hz in a visual perceptual learning task43. They indicate that induced gamma power 

                                                             
42 Named “phase synchrony” in their analysis 
43 Their analysis tested the peak of gamma power and inter-site phase clustering within this window. No 
other time-frequency periods were subjected to power analysis. ISPC was tested in a previous and posterior 
window for comparison. In their results, gamma power is a clear broadband response extending from ~25 
to ~80 Hz being maximal between 30 and 40 Hz. They do not display time-frequency representations of 
ISPC (Gruber et al., 2002) 
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and phase synchronization within this time range is a signature of the integration of 

different visual processes such as the processing of image features (Gruber et al., 2002).  

Results are congruent with the interpretation provided by Gruber et al. (2002). It 

is plausible that after distributed task-mediated information-acquisition takes place 

around 100 ms post-standard onset (Bar, 2004; Wolfe et al., 2011), such processes are 

integrated at ~200 ms in a task-dependent manner. Different information-acquisition 

strategies would lead to different amounts and quality of information available (e.g. 

specific quantification of the amount of face within the standard composite image vs. 

global summary of the standard composite image). Such information-acquisition 

processes and the different visual features they acquire would require different 

integration strategies, putatively evidenced by ~200 ms supra-threshold gamma power 

and long-range phase clustering. 

Additionally, the MUM model suggests that during this time period, attentional 

and memory processes are active in order to perform operations over the acquired 

perceptual information towards the coordination of task-related action (C. S. Herrmann, 

Munk, et al., 2004). Due to the cognitive demands of task 1 these processes are different 

to those elicited by task 2. Leading to stronger gamma oscillatory amplitude and phase 

synchrony during this time period (Figure 39, Figure 45, and Figure 46). It is possible that 

task 1 requires the allocation of a larger amount of information in working memory in 

comparison to task 2, leading to increased gamma oscillations (Meltzer et al., 2008; 

Tallon-Baudry, Bertrand, & Fischer, 2001; Tallon-Baudry, Bertrand, Peronnet, & Pernier, 

1998; Tallon-Baudry, Mandon, Freiwald, & Kreiter, 2004). 
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The MUM model makes no prediction regarding phase dynamics. However, inter-

site phase synchronization has been suggested as a neural mechanism facilitating 

information transmission and integration (Engel et al., 2001; Fries, 2005, 2009; 

Rodriguez et al., 1999; F. Varela et al., 2001). Thus, it is possible that long-range gamma 

phase synchrony is a signature of the enhancement of inter-areal information 

transmission. Performance of task 1 could require facilitated neural communication 

between distributed brain regions. Such facilitation can be implemented by increasing the 

precision of synaptic inputs in the millisecond range (Fries, 2005; F. Varela et al., 2001). 

Oscillatory gamma phase has been shown to provide such temporal precision (Engel et 

al., 2001; Fries, 2005, 2009; F. Varela et al., 2001).  

I suggest that gamma phase synchrony elicited by the standard stimulus represents 

the facilitation of information propagation between low-level sensory processes and 

higher-level cognitive associative dynamics (Figure 45 and Figure 46, yellow and green 

windows). This interpretation is supported by results obtained by (Bar et al., 2006). Using 

MEG and fMRI they found that phase synchrony between orbitofrontal cortex (OFC) and 

the fusiform gyrus is increased during the period comprised between ~100 and ~200 ms. 

They interpret phase synchrony in this context as presumably supporting feedforward 

projections. OFC is located in the ventral regions of the frontal cortex. It is possible that 

EEG might not record its activation. However, dynamic causal modeling of EEG signals 

has shown that activations in OFC are indeed captured by EEG (Stefan J Kiebel, David, 

& Friston, 2006). Similar early long-range connections have been reported between 

frontal-eye fields and occipital regions (Gregoriou, Gotts, Zhou, & Desimone, 2009a, 
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2009b). Suggesting that attention-dependent early interactions between distant brain 

regions might be distributed networks more than specific regions (Olaf Sporns, 2011). 

A final relevant point is that this supra-threshold cluster encompasses a time-

period starting after N1 trough and extending after P2 peak (Figure 35). Suggesting that 

important cognitive neural events involving power and phase dynamics indeed occur 

beyond ERP peaks and troughs (M. X. Cohen, 2011; Rousselet & Pernet, 2011; Schyns et 

al., 2007). 

5.7 Decision-relevant cognitive and neural events depend on the alpha cycle 
 

A supra-threshold cluster extends from ~312 to ~380 ms between ~50 and 70 Hz 

in Figure 39, temporally correlating with the first late positive ERP component (Figure 35). 

The MUM model provides a specific interpretation for this spectral feature (C. S. 

Herrmann, Munk, et al., 2004). The model predicts the occurrence of a “late” gamma-

band response at >200 ms after sensory information matching (<150 ms) and 

attentional/memory processes take place (>100 to <300 ms). This “late” gamma-band 

response is thought to be a signature of distributed information “utilization” processes 

geared towards the adaptive coordination of behavior (Engel et al., 2001; C. S. Herrmann, 

Munk, et al., 2004).  

In the present paradigm, the functional “utilization” is twofold and I will refer to 

it as “the first” and “second utilization”. For the standard image, the first utilization 

implies keeping acquired visual information in working memory. This process is different 

enough so as to generate statistically significant differences between task 1 and task 2, 

possibly associated with working memory load or task difficulty (Fitzgibbon et al., 2004; 
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Meltzer et al., 2008; Tallon-Baudry et al., 2001; Tallon-Baudry et al., 1998; Tallon-

Baudry et al., 2004). In contrast, the processes involved in the second utilization are very 

different. The “utilization” process leads to a decision after the initial standard-to-test 

matching occurring at ~100 ms44. The “utilization” processes are geared towards a 

perceptual decision and the subsequent coordination of motor behavior. 

The interpretation provided by the MUM framework nicely fits with the “late” 

gamma associated with the second utilization. No statistically significant differences are 

seen between task 1 and task 2 in the late gamma-band response (Figure 39). These null 

results suggest that the “utilization” processes underlying the generation of a perceptual 

decision and the subsequent implementation as motor behavior reflected by gamma 

oscillations do not differ at this stage. 

In contrast, it is not clear that the interpretation provided by the MUM framework 

is equally appropriate for gamma power associated with the first utilization. I do think 

this component is associated with cognitive processes that are essential to accomplish the 

task at hand, however, not in the way the MUM model predicts. I therefore suggests that 

this ~300 ms component is related to the following two supra-threshold clusters. The fact 

that they share similar frequency distribution occurring at ~420 and ~500 ms after 

standard onset strongly supports this idea (Figure 39). My argument is furthermore 

advanced not only by frequency dynamics but also by the temporal dynamics of these 

three clusters. 

The first supra-threshold cluster occurs between ~312 and ~380 ms, the second 

cluster occurs between ~388 and ~456 ms, and the third cluster occurs between ~478 and 

                                                             
44 ~600 ms epoch time 
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~548 ms (Figure 39 and Figure 49). The individual extension of these clusters is 69, 69, 

and 71 ms respectively. Consequently, the total time period comprised by these 3 supra-

threshold clusters is roughly 237 ms. Within this 237 ms window, 3 equally spaced sub-

windows of 79 ms can be allocated. Considering these temporal dynamics it can be thus 

said that an ongoing process taking place every 74± 5 ms is reflected by each supra-

threshold cluster. A graphic representation of these windows can be seen in Figure 49. 

 

 

Figure 49 – LEFT. Cluster-corrected z-map for sensitivity to task demands analysis (same 
as left panel in Figure 39). White lines indicate period from ~312 to ~548 detailed in right 
panel 

 

If my argument follows, given the 74 5 ms process reflected by these 3 gamma-

band responses, it is reasonable to think that a lower-frequency oscillation underlies these 

high-frequency power increments. Thus, these 3 consecutive supra-threshold clusters 

would be parts of the same functional cluster. I therefore suggest that these rhythmic 

synchrony increments are evidence for nested oscillations. I furthermore suggest that the 

±
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specific frequency ranges for such nesting are within the alpha (~12 and ~14 Hz) and 

gamma (~45 and ~70 Hz) bands.  

Top panels in Figure 39 show clear decrements in alpha/low beta (~7 to ~16 Hz) 

synchrony in the range encompassing ~300 to ~550 ms. The functional role of alpha 

oscillations amplitude is a recurrent topic of discussion in electrophysiology (Klimesch, 

Sauseng, & Hanslmayr, 2007; S. Palva & Palva, 2007). The main interpretations suggest 

active inhibition of task-irrelevant cortical areas (Klimesch et al., 2007) or the active 

processing in task-relevant networks (S. Palva & Palva, 2007). The most widely accepted 

interpretation suggests that alpha negatively correlates with cortical activation (Handel, 

Haarmeier, & Jensen, 2011; Klimesch et al., 2007; Rihs, Michel, & Thut, 2007). Thus at 

the peak of each alpha cycle, inhibition would be strong and no neurons are able to fire. 

As the alpha cycle continues towards a trough, inhibition gets released and neurons can 

fire again. In Figure 49, each one of the gamma components would happen centered at the 

trough of each alpha cycle. Consequently, each alpha cycle would include between 3 to 5 

gamma cycles.  

Most cross-frequency coupling dynamics have been observed between theta phase 

and gamma amplitude. Several studies have linked theta:gamma phase-amplitude 

coupling to memory and navigation processes using hippocampal rat recordings (Bragin 

et al., 1995; Soltesz & Deschenes, 1993). Moreover, this observation has been also 

reported in the human cortex (Canolty et al., 2006).  

In contrast to theta:gamma coupling, occipital alpha:gamma phase-amplitude 

coupling has been linked to visual perception (Osipova, Hermes, & Jensen, 2008; Voytek 

et al., 2010). (Osipova et al., 2008) showed that the strength of alpha-gamma PAC was 
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task-dependent. Additionally, (Voytek et al., 2010) extended Osipova and collaborators’ 

(2008) results by showing that depending on the cognitive requirements, theta and alpha 

phase modulate gamma amplitude. This could be indicative of different functional roles 

for different configurations of phase-amplitude CFCs. 

Thus, the scarce literature about the functional role of nested oscillations in 

humans, suggests that an alpha:gamma oscillatory coding mechanism for the 

maintenance of task-relevant visual information is plausible. Similar oscillatory coding 

mechanisms have been suggested between theta:gamma for memory (O. Jensen & J. E. 

Lisman, 1996; Ole Jensen & John E Lisman, 1996) and alpha:gamma for unattended 

stimuli (Jensen, Bonnefond, & VanRullen, 2012).  

Furthermore, this interpretation of gamma power between ~300 and ~600 ms 

provides a clear and simple physiological mechanism for the maintenance of task-

relevant information in visual short-term memory. Furthermore, this interpretation makes 

direct predictions about neural and cognitive dynamics of perceptual decision-making: (i) 

task-relevant visual information, neuronal firing, and oscillatory gamma amplitude 

depend on alpha oscillations and (ii) successful performance on this task can be impaired 

by disrupting the alpha cycle using transcranial magnetic stimulation (7. Future 

Directions). 

5.8 The functional role of ongoing EEG phase in perception 
 

Recent experimental findings by VanRullen et al. (2011) have recently shown that 

the phase of ongoing oscillations (particularly in the alpha range, between 7 and 12 Hz) 

are mechanistically linked to perception (Drewes & VanRullen, 2011; VanRullen et al., 
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2011). These experimental findings demonstrate the discrete nature of perception (Busch 

et al., 2009; Busch & VanRullen, 2010; Chakravarthi & Vanrullen, 2012; Drewes & 

VanRullen, 2011; Dugue, Marque, & VanRullen, 2011; Jensen et al., 2012; VanRullen & 

Koch, 2003). Further suggesting that behavioral variations, such as choice uncertainty 

and reaction time variability can be understood as emergent properties of the discrete 

nature of active sensory sampling modalities (e.g. eye movements) (Bichot, Chenchal 

Rao, & Schall, 2001; J. Miller, 1988; VanRullen et al., 2011; VanRullen & Koch, 2003).  

Furthermore, it has been recently shown that ongoing oscillations are linked to the 

processes of evidence accumulation (Wyart, de Gardelle, Scholl, & Summerfield, 2012). 

Wyart et al. (2012) displayed task-relevant visual evidence at a constant rate of 4 Hz 

while recording EEG. Delta-range (1-3 Hz) ongoing oscillations were linked to 

accumulation of the presented evidence. Moreover, higher-frequency beta oscillations 

(10-30 Hz) seemed to integrate the perceived evidence. 

Thus, recent evidence suggests that evidence accumulation processes towards a 

decision might rely on ongoing rhythmic brain activity (for reviews see Uchida, Kepecs, 

& Mainen, 2006; VanRullen et al., 2011). Moreover, at present, it is not clear how 

discrete information sampling can lead to continuous integration of task-relevant (and 

important task-irrelevant) information. A possible answer may underlie on different 

frequencies of ongoing oscillatory brain activity (e.g. 1-3 Hz (Wyart et al., 2012), 5-7 Hz 

(Busch et al., 2009; Busch & VanRullen, 2010), 10-14 Hz (Drewes & VanRullen, 2011)) 

acting as flexible, context-dependent information gating mechanisms (Fries, 2005; 

Hoppensteadt & Izhikevich, 1998; Schroeder & Lakatos, 2009b; F. Varela et al., 2001).  
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For example, visual information for a simple perceptual judgment may come from 

direct sensory evidence or may come from memory. In this case, very different neural 

representations of information will be mapped onto the same motor response. I think that 

neural oscillations can support such flexible and selective neural communication. The 

results discussed in 5.7 Decision-relevant cognitive and neural events depend on the 

alpha cycle, provide indirect evidence for this idea. 

6. Conclusion 
 

I have implemented a consistent semi-exploratory framework to mine temporal 

and spatial dynamics of scalp-recorded neural signals of perceptual decision-making. The 

key aspects to this framework consist in (i) a parametric design implementing a specific 

experimental manipulation allowing me to separate stimulus properties from task 

demands (see 5.2 No impacts of systematic low-level differences in stimuli are seen in 

my results), (ii) exploring neurophysiological brain dynamics using a systematic analysis 

approach based on neural time-series analysis and the neuronal oscillations framework 

(see 2. Exploring Cognitive Dynamics Using Scalp-Recorded Neural Signals), and (iii) 

mining measures of brain activity using single-trial multiple regression in combination 

with modern statistical techniques (see 3.5.1 Analysis of linear measures). 

Although my results used several independent measures of brain activity, they are 

consistent within each other. Moreover, my results are consistent with previous literature 

and furthermore provide novel insights about the functional role of oscillatory brain 

activity in perceptual decision-making.  



 182 

More specifically, my results indicate (i) the success of the present experimental 

design (see 5.2 No impacts of systematic low-level differences in stimuli are seen in my 

results). (ii) Task-specific information might be readily available early in the sensory 

processing stream when acquiring information for perceptual decisions (see 5.5 Decision-

specific cognitive demands modulate early gamma power). (iii) Gamma phase synchrony 

might be a neurobiological mechanism supporting propagation of information between 

bottom-up and top-down factors involved in perceptual decision-making (see 5.6 Local 

and inter-areal gamma synchrony at ~200 ms reflects decision-dependent integration of 

distributed neural processing). (iv) Nested alpha and gamma oscillations might play a 

central role in short-term visual memory for perceptual decisions (see 5.7 Decision-

relevant cognitive and neural events depend on the alpha cycle and 5.8 The functional 

role of ongoing EEG phase in perception).  

Furthermore, from my results a set of novel hypotheses emerges45: (i) A 

relationship exists between single-trial ERP amplitude and single-trial variability of 

response times between ~60 and ~250 ms after test onset. (ii) The C1 ERP component is 

a specific response elicited after the test image onset reflecting task-dependent changes in 

attentional demands. (iii) Task-specific visual information, neuronal firing rate, and 

oscillatory gamma amplitude depend on oscillatory activity in the alpha range.  

Finally, the present results suggest a time-course including at least six neural 

events unfolding roughly at ~70, ~100, ~150, ~220, ~320, and ~420 ms. Results 

furthermore provide a small insight into the possible functional roles of the neural events 

occurring during the time-course of perceptual decision-making. 

                                                             
45 Along with specific follow-up analyses (see 7. Future Directions) 
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7. Future Directions  

7.1 Hypothesis-driven follow-up analyses 
 

From the present results, interesting hypotheses were drawn. Consequently, from 

these hypotheses a set of specific follow-up analyses emerges: (i) ERP sensitivity to 

behavioral outcome beta weights have to be re-epoched in order to test ERPs elicited by 

the standard image against ERPs elicited by the test image. This analysis will reveal the 

specificity of ERP amplitude occurring within ~60 and ~250 ms uncovering a putative 

exclusive interaction between information (standard/test image) and process (information 

acquisition/information matching).  

(ii) ERP sensitivity to task demands beta weights have to be re-epoched in order 

to test ERPs elicited by the standard image against ERPs elicited by the test image. This 

analysis will reveal the selectivity of the C1 ERP component amplitude uncovering a 

putative category (standard/test image) by task (information acquisition/information 

matching) interaction. This interaction will provide evidence for the attentional 

modulation of C1. Early effects of attention over striate cortex as measured by the BOLD 

signal are known (Kanwisher & Wojciulik, 2000; Martinez et al., 1999). However, 

attentional impacts in the temporal dynamics are still a heated topic of discussion in 

current attention research (Fu, Fedota, Greenwood, & Parasuraman, 2010; Rauss, 

Pourtois, Vuilleumier, & Schwartz, 2012; V. Rossi & Pourtois, 2012).  

(iii) Hypothesis-driven phase-amplitude coupling analysis has to be computed for 

a time window comprised by ~300 and ~600 ms between gamma power in the ~45 to ~70 
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Hz range and alpha phase in the ~12 to ~14 Hz range.  This analysis will provide 

evidence for a phase coding mechanism for short-term visual memory in perceptual 

decision-making. The causality and influence of this alpha-based coding mechanism over 

gamma oscillations and perceptual decision-making can be empirically tested using 

transcranial magnetic stimulation (TMS). 

7.2 Robust implementation of neural measures as standard practice 
 

 As discussed earlier, the implementation of event-related phase-amplitude 

coupling analysis failed (see 5.1.5 Event-Related Phase-amplitude Coupling (ERPAC)). 

This inspired me to think about a way to generate a more robust implementation of this 

measure. I propose a trick that was used in this dissertation in order to test for statistical 

significance. I suggest that instead of ERPAC, a robust version of it can be calculated; 

ERPACz can be computed at each electrode (ch) using non-parametric permutation 

testing.  

I suggest quantifying ERPAC as recommended by (Voytek et al., 2013) using 

Equation 11. However, the ERPAC measure per subject can be recomputed under the null 

hypothesis that no temporal correlation existed between the chosen low-frequency phase 

and high-frequency amplitude (ERPACnull). This null-model can be simply obtained by 

shifting the power time series by a frequency-specific random amount of time while 

keeping the phase time-series constant; thus destroying any temporal relation between 

phase and amplitude. This process can be repeated 500 times per subject, generating 500 

different ERPACnull. Null models should be stored after each one of the iterations. 



 185 

Finally, the matrix containing ERPACnull can be used in Equation 16 to generate the z-

scored version of event-related phase-amplitude coupling, ERPACz:  

Equation 16 

ERPACz =
ERPAC ! 1n ERPACnulli

i=1

n

"
#

$
%

&

'
(

std ERPACnull( )  

 

This simple procedure would allow having a robust measure per subject, with 

normalized scale in comparable units across subjects and recordings. Single-subject and 

group-level analyses could be normally implemented in ERPACz. Furthermore, a robust 

version of any time-frequency measure can be computed per subject, benefiting from the 

non-parametric permutation framework from the very beginning of the analysis pipeline.   

7.3 Using weighted versions of non-linear measures to better link phase 
dynamics to behavior 

 

Using continuous and discrete variables as regressors in a linear model brought 

fruitful results in this dissertation. Unfortunately, non-linear measures were not able to 

benefit from such technique. Due to the nature of computation of ITPC and ISPC (see 

3.5.2 Analysis of Non-Linear Measures) I thought it was not possible to implement such 

analysis when using non-linear dynamics. Therefore, when these analyses were 

implemented no efforts were made in order to establish continuous relations with phase 

through reaction times or stimulus parameters. I recently found out that non-linear 

dynamics could indeed be successfully linked to trial-by-trial variables (Michael X 

Cohen & Voytek, 2013). 
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Thus, when using parametric designs such as the one implemented in this 

dissertation, an extension of ITPC should be used. Weighted inter-trial phase clustering 

(wITPC) is a way to establish a more direct link between phase angle dynamics and trial-

varying variables such as reaction times or stimulus parameters (Michael X Cohen & 

Voytek, 2013). This measure of phase dynamics addresses one of the main concerns 

about ITPC; it is unable to uncover phase dynamics that are not necessarily linked to 

stimulus onset. Thus, wITPC is a superior metric to link non-linear dynamics to behavior 

or stimulus properties.  

7.4 Zero phase-lag measures might be contaminated with volume-conducted 
signals  

 

Electrical fields spread across the scalp, producing different EEG sensors to 

potentially measure the same electrical field as two separate sources. Thus, volume 

conduction sets strong confounds to zero-phase-lag measures such as ISPC. Inter-areal 

synchrony measured at the scalp can be potentially produced by the same sources and 

spuriously appear as true functional phase-based connectivity.  

Consider two pairs of EEG electrodes. One pair is influenced by volume 

conduction; it measures spurious or conductance synchrony. The other pair records an 

actual neural coupling. If a phase consistency measure is applied, both pairs of electrodes 

will report phase synchrony with a value ranging from 0 (no synchrony) to 1 (complete 

synchronization), but only one of these is real. 

Several methods have been suggested to deal with this situation. One of them 

implies calculating ITPC in the electrodes where ISPC has been already computed. After 
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calculating ITPC between these hypothetical signals, one matrix per electrode indicating 

synchronization strength is obtained. Using this information, one could calculate phase 

difference by subtracting the ITPC on one electrode from the other. This procedure 

should yield to different results in these two cases: due to its spurious nature, 

conductance synchrony should cancel out, whereas real synchrony would still report a 

number different than zero. Unfortunately, this might not always be the case. Since the 

two electrodes record the linear combination of the sources’ amplitudes, the phase of 

these signals could be different unless the mixed sources share phase orientation. Hence, 

phase difference between conductance and real synchrony, might not be a good 

discrimination heuristic to apply (J. P. Lachaux et al., 1999). 

An alternative option is given by diffusion synchrony. This is, if the two 

electrodes affected by conductance synchrony report high ITPC, large numbers of 

surrounding electrodes will also report high ITPC (Lachaux et al., 2000; J. P. Lachaux et 

al., 1999). In contrast, real synchrony has been shown to display small-world architecture 

(Stam & Reijneveld, 2007). High-density EEG and MEG recordings directly benefit from 

this principle, and nowadays more than 64 electrodes is the gold standard for phase 

synchrony analyses (Nunez & Srinivasan, 2006). 

The application of second-order spatial filters such as Laplacians or linear data 

decomposition techniques such as principal and independent component analysis allow 

researchers to identify distinct sources of EEG signals (Makeig et al., 2004). Particularly, 

researchers have shown that ICA has a better overall performance than PCA and 

Laplacians in separating and clustering signals (Gleich & Zhukov, 2004). Therefore using 
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ICA-mined data for phase synchrony analysis has been a suggested approach (Makeig et 

al., 2004). 

Finally, using phase-lag measures of phase dynamics has been suggested as the 

safest option to avoid conductance synchrony (Stam et al., 2007; Vinck, Battaglia, 

Womelsdorf, & Pennartz, 2012). These measures are based on the idea that spurious 

synchrony will have zero-phase-lag between the tested sensors. Thus, avoiding zero-

phase-lag synchrony would prevent measuring conductance synchrony (Stam et al., 2007; 

Vinck et al., 2012). However, near-zero- and/or zero-phase-lag dynamics are a real 

phenomenon worth of study (Uhlhaas et al., 2009). Therefore, until a larger body of 

literature has been generated about the functional role of phase dynamics in cognition 

both zero-phase-lag (i.e. ISPC) and phase-lag-based measures of phase dynamics should 

be used. This approach was applied recently in order to examine the effects of context in 

perception; the article is currently in preparation (Parada et al., in preparation). 

8. Concluding remarks  
 

In this dissertation I have implemented an approach that benefits from the last 25 

years of cognitive electrophysiology (see 2.2 Neural Dynamics in the Time-Frequency 

Domain), the last 15 years of advancements in statistics (see 2.5 Non-Parametric 

Permutation Testing) and the approximately 7 years I have been thinking about these 

topics. 

I think the future of cognitive electrophysiology will rely on the proper 

understanding of analysis methods in order to generate new, more powerful approaches. 

Furthermore, the implementation of parametric experimental designs and systematic 
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analysis approaches in combination with modern robust statistics will allow a safer 

exploration of the rich multidimensional electrophysiological space. Additionally 

avoiding the danger of measuring minuscule hard-to-replicate effects or false-positives 

caused by violation of statistical test assumptions, “the dance” of p-values, or other 

artifacts. 

I think working under the neural oscillations framework allows cognitive 

neuroscientists to avoid getting stuck on an “island of knowledge” where no information 

gets transferred from or to other fields. Furthermore, due to the intrinsic existence of 

periodic phenomena in nature46, the neural oscillations framework provides a link to 

understand how evolution orchestrated environmental47, physiological48 and 

neurophysiological events49 giving way to adaptive behavior that characterizes all living 

species. 

I think the future of cognitive electrophysiology will rely on establishing a precise 

link between brain rhythms and embodied/situated cognition, perception, and behavior. 

The work presented in this dissertation is my microscopic contribution towards this goal. 

                                                             
46 Periodic phenomena that defines time itself such as circadian rhythms  
47 Periodic phenomena in the world such as movement: if it is too fast or too slow it will not be seen 
48 Periodic phenomena that is foundational to behavior such as hormonal fluctuations 
49 Periodic phenomena such as neuronal firing rates 
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