
HTRC Data API Performance Study

Yiming Sun∗, Beth Plale†, Jiaan Zeng†
∗Amazon

†Indiana University Bloomington
{plale, jiaazeng}@cs.indiana.edu

Abstract—HathiTrust Research Center (HTRC) allows users
to access more than 3 million volumes through a service
called Data API. Data API plays an important role in HTRC
infrastructure. It hides internal complexity from user, protects
against malicious or inadvertent damages to data and separates
underlying storage solution with interface so that underlying
storage may be replaced with better solutions without affecting
client code. We carried out extensive evaluations on the HTRC
Data API performance over the Spring 2013. Specifically, we
evaluated the rate at which data can be retrieved from the
Cassandra cluster under different conditions, impact of differ-
ent compression levels, and HTTP/HTTPS data transfer. The
evaluation presents performance aspects of different software
pieces in Data API as well as guides us to have optimal settings
for Data API.

Keywords-Cassandra; performance;

I. INTRODUCTION

The Data API is a key component of the HathiTrust
Research Center (HTRC) [1] cyberinfrastructure that it al-
lows a client to request and retrieve a large number of full
volumes or select pages via a RESTful service interface. The
returned volumes or select pages are streamed to the client
as a ZIP file, so that the page and/or volume structures are
maintained, and data may also be compressed to reduce the
size.

The Data API is placed in front of a cluster of NoSQL
servers that stores and replicates the volume OCR text.
Currently the NoSQL solution we are using is Apache
Cassandra [2]. By requesting for data via the Data API
instead of directly from the storage cluster, the client pro-
grams are spared from having to deal with the complexity
of communicating directly to the NoSQL stores, the OCR
text are better protected against malicious or inadvertent
damages, the client activities can be audited, and the un-
derlying storage solution as well as the Data API layer
of abstraction implementation may be replaced with better
solutions without affecting client code.

Figure 1 is a high-level architecture and data flow diagram
of the Data API. The Data API is implemented as a RESTful
web service using the Jersey framework. It is hosted on
a production VM server with 4 Intel Xeon X7560 cores
each clocked at 2.27GHz and 32GB of memory. A client
requests for volumes or pages by sending a list of IDs to

Work done while Yiming Sun was at Indiana University.

the Data API. A request handler is instantiated for the client
request, which parses the IDs into entries and adds them to
a global queue. At the other end of the queue, a number of
asynchronous retrievers take entries off the queue and fetch
data from the Cassandra cluster. The fetched data are fed
into a ZIP Maker that was instantiated for that client. The
ZIP Maker aggregates the data into a ZIP file according to
the volume and page to which the data belong, and streams
the ZIP file back to the client.

Figure 1. Architecture of Data API

This performance test focuses on the data bandwidth at
key points, which are:

1) The rate at which data can be retrieved from the
Cassandra cluster

2) The rate at which data can be aggregated into a ZIP
stream

3) The rate at which ZIPped data can be retrieved via the
Tomcat server

4) The rate at which ZIPped data can be retrieved from
a client node

For all parts of this performance test, with the exception of
Tomcat [3] HTTP streaming rate, we use a fixed set of 5000
volumes that are pre-selected randomly. The total amount

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUScholarWorks

https://core.ac.uk/display/213841421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of raw data from these volumes is 4.3GB. For the Tomcat
HTTP streaming rate test, we use a fixed set of randomly
chosen 500 volumes instead so that the total raw data is
about 466MB which can fit entirely into memory.

II. RETRIEVING DATA FROM CASSANDRA

The corpus data is currently stored in a 6-node Cassandra
cluster with a replication factor of 2. The nodes that host the
Cassandra servers are VM instances on the same VLAN.
Each node has 4 Intel Xeon X7560 cores each clocked
at 2.27GHz. Five (5) of the nodes have 16GB of physical
memory, and one (1) has 32GB. The data storage is a NAS
consisting of an array of 15,000RPM SCSI disks totaling
13TB of space and is mounted on every VM instance via
NFS. Each physical host is connected to the network via
two 10Gbit Ethernet cards. The version of Cassandra we
are using is v1.1.1. Currently there are close to 2.6 million
volumes in our corpus. The OCR text data is stored in a
single Column Family, where each row corresponds to a
volume, and the row key is the volume ID. Each page of the
volume is a column in that row, but additional columns are
added to hold metadata such as the METS file accompanying
each volume, copyright information and page count of each
volume, as well as byte count and MD5 checksum of each
page. While each volume may contain a different number of
pages (and thus different number of columns), the majority
of the rows are in tens of MBs.

In order to measure the maximum pull rate from Cassan-
dra, we pre-select a random set of 5000 volumes, and fix
this set for repeated runs. For each volume, the performance
test retrieves only the content of all pages using exactly one
request, and in order to do this, the number of pages that
each volume has is pre-determined.

Cassandra servers support the optional use of two different
caches in memory, a key cache, and a row cache, which can
be enabled to speed up the read performance under certain
circumstances. The key cache keeps the index of frequently
accessed row keys in memory, but access of the columns
still goes to the disk; the row cache keeps the data from an
entire accessed row in memory so subsequent access to the
same row is from memory instead of from disk. If both are
enabled, the row cache is checked first for data, and upon
a miss, the key cache is then checked (see Figure 2), but
typically only one of these caches is enabled. In addition,
modern operating systems also utilize free system memory
as page cache to keep disk-backed pages for faster access.

We fetch a fixed set of 5000 volumes from Cassandra
varying the number of asynchronous fetcher threads (1, 4,
8, 12, and 16). Each scenario is run under different cache
setting combinations (the only omitted scenario is enabling
both row cache and key cache), and for each run, the
performance test takes 5 trials.

1Image source: www.datastax.com/wp-content/uploads/2011/04/cache_
hits.png

Figure 2. Order in which row cache and key cache are checked.1

Figure 3 plots the average data read rate from Cassandra
under varying number of asynchronous fetch threads and
settings. Each line is a different cache setting combination.
From this plot, we can see a clear impact of warm OS page
cache. Figure 3 also shows an increase in data read rate
with additional asynchronous fetch threads. The impact of
OS page cache can also be seen in Figure 4 where the key
cache and row cache settings are fixed, and the OS page
cache varies between warm to cold using different number
of asynchronous fetch threads.

Figure 3. Data read rate from Cassandra with different number of
asynchronous threads. Each line is a different cache setting combination.

But on the other hand, the effects of key cache and row
cache on data read rate are insignificant, and sometimes,
even negative. Figure 5 shows the effect of key cache on
the data rate, and Figure 6 shows the effect of row cache on
the data rate.

In Cassandra, the key cache is enabled by default. As the
data size is about 4.3GB, the caching of row keys in memory
does not add significant performance gain. Cassandra ships
with row cache disabled by default because row cache costs
both memory and CPU, and should only be enabled when



Figure 4. With key cache warm and row cache off, the effect of OS page
cache and number of asynchronous fetch threads on the data read rate.

Figure 5. The effect of key cache on the data read rate is insignificant,
and for a larger number of threads it has a negative impact. Row cache and
OS page cache both disabled.

the usage pattern clearly shows a small set of hot entries that
are frequently accessed. Also as row cache stores the entire
row in memory, having wider rows also reduces the number
of entries a row cache of a given size can hold. Cassandra
documentation advises to turn off row cache entirely unless
the usage pattern is well understood and shows hot entries.

III. PERFORMANCE TEST OF ZIP MAKERS

After an asynchronous fetcher thread in the Data API
retrieves data from Cassandra, it feeds the data into a ZIP
Maker that aggregates the data from different volumes and
pages and sent to the client as a ZIP stream.

Depending on the options sent along the request, there are
3 different types of ZIP Maker implementations that each
aggregates the data in a different way. The Separate Page
ZIP Maker creates a directory entry for each volume, and
each page of the same volume is added to the ZIP file as
individual text files under the directory. The Combined Page
ZIP Maker creates one text file for each volume, and each
page of the same volume is appended to the volume text
file. The Word Sequence ZIP Maker creates only one text
file, and all pages of all volumes are appended into this
file. Each ZIP Maker uses the ZIP functionality provided by
Java. In ZIP, each entry or file has some additional metadata
associated which can be considered overhead in terms of
data size. The Separate Page ZIP Maker creates one entry
per page, so it has the most overhead; the Combined Page

Figure 6. The effect of row cache on the data read rate is insignificant,
and at higher thread counts it has a negative effect. Key cache and OS page
cache are both disabled.

ZIP Maker creates one entry for volume, so it has fewer
overhead; and the Word Sequence ZIP Maker has only one
entry, so its overhead is the lowest.

The ZIP functionality in Java allows 10 different levels
of compression, where 0 means no compression, and 9 the
highest compression. Although the current implementation
of the Data API uses 0, for this performance test, we try
all compression levels in order to investigate the optimal
compression level to use.

For this part of the performance test, the input data is
the same set of 5000 volumes mentioned earlier. After
all the data is retrieved from Cassandra and stored in
memory, the test client feeds the data into a ZIP Maker.
All three ZIP Maker implementations are tested, and for
each implementation, all 10 compression levels are tested,
and 5 trials are taken for each different compression level.
The measured metrics include not only the time it takes
to perform the compression, but also the data size before
and after the compression, so the compression ratio can be
calculated and used to find the optimal compression level
later.

Figure 7. Data input and output rates under different compression levels
with Separate Page ZIP Maker.

As the ZIP compression process would take a certain
amount of time, we compute the Şinput data rateŤ and



Figure 8. Data input and output rates under different compression levels
with Combined Page ZIP Maker.

Figure 9. Data input and output rates under different compression levels
with Word Sequence ZIP Maker.

Şoutput data rateŤ, where the input data rate is the size
of the original data divide by the amount of time, and the
output data rate the size of the compressed data divide by
the amount of time. Figures 7, 8, and 9 plot the input and
output data rates under different compress levels for each
ZIP Maker. One observation is that as soon as compression
is used (i.e. compression level other than 0), the data rate
drops dramatically. Another interesting observation is that
for Separate Page ZIP Maker, at compression level 0, the
output data rate appears higher than the input data rate Ű
this is an artifact of the additional metadata added for all the
entries, and with no compression, the output data size end
up larger than the input data size. This is actually true for
the other two ZIP makers as well, but just not as significant.
This is also easier to see using the compression ratio, which
is defined as

ratio =
sizecompressed

sizeoriginal
(1)

Table I lists the compression ratios under different com-
press levels with each ZIP Maker. From this table, we
can see that the lowest compression level of 1 is able to
reduce the data size to about ¡ of the original, but higher

compression levels only add marginal reductions. Compare
the compression ratio to the compress output rate for the
same ZIP Maker at the same compress level, the drop in
data output rate is more dramatic. Also the compression
ratio of the Separate Page ZIP Maker at compress level 0 is
clearly greater than 1.0, and that is because of the additional
metadata added in the output. Because of the relatively large
number of entry metadata in this ZIP Maker, it compression
ratio is also higher for each compression level than the other
two ZIP Makers.

Compression is used in many data stores internally to
reduce the data size and thus reduce the cost of data
transmission, so the Data API may also benefit from em-
ploying some compression. To determine the right level of
compression to use, we must consider the time it takes to
compress the data, as well as the time it takes to transfer
the compressed data. So the basic idea is:

Tcomp + Txc < Txo (2)

where Tcomp is the time it takes to compress the original
data, Txc is the time it takes to transfer the compressed
data, and Txo is the time it would take to transfer the
uncompressed data. To make the compression worth a while,
it should be that the time spent on compression and the time
spent transferring compressed data is less than the time it
would take to transfer the uncompressed data.

The time it takes to compress the data depends on the size
of the original data (sizeoriginal) and the compressor data
input rate (rateinput):

Tcomp =
sizeoriginal
rateinput

(3)

The time it takes to transfer the compressed data depends
on the data transfer rate (ratexfer) and compressed data
size, and the compressed data size in turn depends on the
original data size (sizeoriginal) and the compression ratio
(ratio):

Txc =
sizeoriginal × ratio

ratexfer
(4)

The time it takes to transfer the original data depends on
the data transfer rate (ratexfer) and the original data size
(sizeoriginal):

Txo =
sizeoriginal
ratexfer

(5)

Substitute these back to the original inequality, we get:

sizeoriginal
rateinput

+
sizeoriginal × ratio

ratexfer
<

sizeoriginal
ratexfer

(6)

Simplify the inequality, we get:



ratio < 1− ratexfer
rateinput

(7)

Since the compression ratio cannot be negative, ra-
texfer/rateinput must be less than 1, and therefore
ratexfer < rateinput. So in other words, compression
should be used when the data transfer speed is slower than
that of data compression.

IV. PERFORMANCE TEST OF HTTP/HTTPS DATA
TRANSFER

The ZIP stream is transferred to the client via
HTTP/HTTPS. The current configuration of the Data API
uses HTTPS for security reasons, but the performance test
also tests the data transfer via HTTP in order to understand
how much drop in data transfer rate HTTPS can incur.

For this performance test, a set of 500 volumes are
randomly selected before-hand, and the data is fetched from
Cassandra and aggregated into an actual ZIP file on the disk.
The size of the ZIP file is 460MB. A special simple RESTful
service is deployed into a Tomcat server with both HTTP and
HTTPS channels enabled, and this service loads the entire
ZIP file into memory as a byte array upon startup, so that
when a client makes request to this service, it streams out
the data as fast as it can without incurring disk I/O costs.

The service is deployed on the same server (silvermaple)
that the Data API is usually hosted, and a test client is run
from several different nodes to retrieve the stream from this
service, via both the HTTP and HTTPS channels, and it runs
5 trials for each channel from each node.

Figure 10 plots the data transfer rate from silvermaple to
these different hosts, via both HTTP and HTTPS. The first
data point on the graph is a data transfer from silvermaple
to itself (through its real network interface, not the loopback
interface), which should be free of most network conditions
such as latency or congestion, and this gives us an upper
bound on the data transfer rate. As we can see, while the
transfer rate via HTTP is able to reach above 500MB/sec,
that via HTTPS is only able to reach over 70MB/sec. This
shows how expensive HTTPS is. The second data point is
taken from ginkgo, which is another VM very similar to
silvermaple and also part of the Cassandra cluster. This VM
is on the same VLAN as silvermaple, but with only 16GB
of memory. While ginkgo is only 1 hop further, its transfer
rate via HTTP drops dramatically to only 237MB/sec, which
is more than 50% of decrease, but the transfer rate via
HTTPS drops to almost 54MB/sec, which is less than 25%
of decrease.

The third data point is taken from thatchpalm, one of
the two physical machines we use to run some VMs for
our own research purpose. These machines are in the same
subdomain as our Cassandra VMs, and are also housed in the
same data center, and only 2 hops away. The rate via HTTP

Figure 10. Data transfer rate via HTTP and HTTPS from silvermaple to
other hosts.

is further reduced to only about 109MB/sec, whereas the
rate via HTTPS is only slightly reduced to about 52MB/sec.

The fourth data point is taken from smoketree, a relatively
powerful physical machine we use to do tests. This machine
is housed in a different machine room near the opposite
corner of our campus, and is 5 hops away. Quite surprisingly,
the rate via HTTP seen from this machine is merely 44M-
B/sec, and the rate via HTTPS is only 27MB/sec. Smoketree
is connected to the campus backbone via a 1Gbit link, and
the same link is used to serve other servers from the School
of Informatics, so the network traffic must be the reason for
the drop in the rate.

The last data point is taken from a rather weak VM hosted
at UIUC, and it is at least 15 hops away. From this VM, it
is only able to get about 2.7MB/sec for both HTTP and
HTTPS.

V. CONCLUSION

From the Cassandra part of the performance test, we see
no immediate benefit from using CassandraŠs built-in key
cache and row cache. Instead, the OS page cache works
much better if certain entries are repeatedly requested. But
as we gather more usage data, we may be able to identify
a small set of commonly requested volumes, and if this
happens, we can investigate the optimal configuration for
Cassandra row caches.

For the Data API, we should keep the number of asyn-
chronous fetch threads to somewhere between 12 to 16 to get
the optimal performance, which may deliver a data rate at
about 60MB/sec with cold OS cache, and up to 180MB/sec
if data is in OS cache. From the ZIP part of the performance
test, we can see that compression can reduce data size close
to half, but also reduces the data flow rate by more than half.
We can also observe that with compression enabled, it is
more efficient to compress larger chunks than smaller chunks
at lower compression levels, but less efficient at higher
compression levels. In other words, when compressing larger
chunks, the efficiency decreases more as compression level
increases; and when compressing smaller chunks, although



Table I
COMPRESSION RATIOS UNDER DIFFERENT COMPRESS LEVELS.

Compression level Combine Page Separate Page Word Sequence
0 1.00028179 1.055376056 1.000152877
1 0.45224775 0.581561624 0.451995985
2 0.434348842 0.576302962 0.434015044
3 0.417780772 0.573168187 0.417371745
4 0.403689643 0.56296468 0.403398508
5 0.389947053 0.559575205 0.389606485
6 0.384062183 0.559287559 0.383691906
7 0.383005471 0.559235547 0.382628799
8 0.38240618 0.559214015 0.382034387
9 0.382341142 0.559213913 0.381967231

still on a decreasing trend, the efficiency remains relatively
stable as compression level increases.

From the HTTP/HTTPS streaming part of the perfor-
mance test, we can see that data transfer via HTTPS is much
more expensive than that via HTTP because of the overhead
in encrypting the data. In addition, we also have made some
interesting observation in the decrease of data transfer rate
as the receiving host gets further away from the service host.
Of course, we are fully aware that the hardware specs of the
different hosts vary greatly, and the number of hops is not
the only thing that can affect the data transfer rate. It would
be ideal to use hosts with similar hardware specs, but for
this performance test, we are only able to use what we have
access to.

The data transfer rate seen on ginkgo is probably the
most accurate representation of data flowing through the
VM’s NIC. The physical hosts that host these VMs are said
to have 2 10Gbit Ethernet cards to the outside world, so
getting 259MB/sec via HTTP is fine, since there are other
more limiting choke points in the Data API and the transfer
channel, and we are probably going to use only HTTPS,
which would cut down the transfer rate to 54MB/sec. In
addition, because the NICs are shared by all VMs on the
same host, other VMs may incur high network I/O traffics
that would ultimately affect the Data API’s transfer rate.

For all practical purpose, the host that is most likely to be
a real-world client machine to the Data API is thatchpalm
as it and another similar physical machine are used to carry
out our research in supporting non-consumptive text analysis
and data mining. So therefore, the more realistic data transfer
rate we can expect is about 109MB/sec via HTTP, and
52MB/sec via HTTPS.

REFERENCES

[1] HathiTrust Research Center, http://www.hathitrust.org/htrc.

[2] Apache Cassandra, http://cassandra.apache.org.

[3] Tomcat, http://tomcat.apache.org/.


