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The effects of perturbative Lorentz and CPT violation on neutrino oscillations are studied. Features

include neutrino-antineutrino oscillations, direction dependence, and unconventional energy behavior.

Leading-order corrections arising from renormalizable operators are derived in the general three-flavor

effective field theory. The results are applied to neutrino-beam experiments with long baselines, which

offer excellent sensitivity to the accompanying effects. Key signatures of Lorentz and CPT violation using

neutrino beams include sidereal variations in the oscillation probabilities arising from the breakdown of

rotational symmetry, and CPT asymmetries comparing neutrino and antineutrino modes. Attainable

sensitivities to coefficients for Lorentz violation are estimated for several existing and future experiments.
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I. INTRODUCTION

Experimental investigations of neutrino properties have
provided crucial insights into particle physics since the
existence of neutrinos was first proposed in 1930 by
Pauli [1] to explain the spectrum of beta decay. In recent
years, the confirmed observation of neutrino oscillations
has established the existence of physics beyond the mini-
mal standard model (SM) [2]. The interferometric nature of
the oscillations makes them highly sensitive to new phys-
ics, including potential low-energy signals that may origi-
nate in a fundamental theory unifying quantum physics and
gravity at the Planck scale mP ’ 1019 GeV.

In this work, we investigate the experimental implica-
tions for neutrino oscillations of Lorentz and CPT viola-
tion, which is a promising category of Planck-scale signals
[3]. The SM is known to provide a successful description of
observed phenomena at energies well below mP. As a
consequence, the manifestation of Planck-scale effects in-
volving Lorentz and CPT violation is expected to be well
described at accessible energy scales by an effective field
theory containing the SM [4,5].

The comprehensive effective field theory describing
general Lorentz violation at attainable energies is the
standard-model extension (SME) [6,7]. It incorporates
both the SM and general relativity, serving as a realistic
theory for analyses of experimental data. In the SME
Lagrange density, each Lorentz-violating term is an ob-
server scalar density constructed as the product of a
Lorentz-violating operator with a controlling coefficient.
Under mild assumptions, CPT violation in effective field
theory is accompanied by Lorentz violation [8], so the
SME also describes general breaking of CPT symmetry.
These ideas have triggered a wide variety of tests over the
past decade [9]. Several experimental searches have been
performed using neutrino oscillations, yielding high sensi-
tivities to SME coefficients for Lorentz and CPT violation
[10–12].

Since both Lorentz-violating operators and mass terms
can induce neutrino mixing, one way to classify neutrino
models with Lorentz and CPT violation is in terms of their
neutrino-mass content. Three categories exist: massless
Lorentz-violating models, in which no neutrinos have
mass; hybrid Lorentz-violating models, with mass terms
for a subset of neutrinos; and massive Lorentz-violating
models, where all neutrinos have conventional masses.
In massless Lorentz-violating models, all observed neu-

trino oscillations are attributed to nonzero coefficients for
Lorentz violation rather than to masses. Certain coeffi-
cients can combine via a Lorentz-seesaw mechanism to
produce pseudomasses that mimic the behavior of mass
terms for a range of neutrino energies [13]. The prototyp-
ical example is the bicycle model [14] which uses two
nonzero coefficients for Lorentz violation to reproduce the
expected behavior of atmospheric neutrinos. This model
agrees well with atmospheric data from the Super-
Kamiokande experiment [11]. However, a combined
analysis of neutrino data excludes both the bicycle model
in its simplest form and a five-parameter generalization
[15]. Massless models may also predict sidereal signals
arising from the violation of rotation invariance [16]. The
corresponding coefficients for Lorentz violation have been
constrained in experimental analyses by the Liquid
Scintillator Neutrino Detector (LSND) [10] and the Main
Injector Neutrino Oscillation Search (MINOS) [12]. At
present, it is an interesting open challenge to construct a
massless Lorentz-violating model that is globally compat-
ible with existing neutrino data.
For hybrid Lorentz-violating models, the tandem model

[17] is the sole exemplar. It is a three-parameter model
containing one neutrino mass, one coefficient for
CPT-even Lorentz violation, and one coefficient for
CPT-odd Lorentz violation. The model appears globally
compatible with existing experimental data, including the
LSND anomaly [18]. The tandem model predicted a low-
energy excess in the Mini Booster Neutrino Experiment
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(MiniBooNE) prior to its discovery, although the observed
excess is quantitatively greater [19]. This success suggests
that further theoretical investigations of hybrid Lorentz-
violating models would be of definite interest.

Massive Lorentz-violating models are the primary focus
of the present work. Most existing data from neutrino
oscillations are consistent with oscillation phases propor-
tional to the baseline L and inversely proportional to the
energy E. This is conventionally interpreted as a conse-
quence of mixing induced by a nondegenerate mass matrix.
In massive Lorentz-violating models, the mixing due to
mass is assumed to dominate over that due to Lorentz
violation. Our goal here is to present a general study of
perturbative Lorentz and CPT violation on mass-induced
mixing, valid over a wide range of L and E.

The analysis presented here incorporates all coefficients
for Lorentz violation associated with quadratic operators of
renormalizable dimension in the neutrino sector [13].
Using notation reviewed in Sec. II, these coefficients are

ðaLÞ�ab, ðcLÞ��ab , ~g��a �b
, and ~H�

a �b
. Both ðaLÞ�ab and ~g��

a �b
also

control CPT violation. Taken alone, the coefficients ðaLÞ�ab
and ~H�

a �b
generate oscillation phases proportional to L but

independent of E, while ðcLÞ��ab and ~g��
a �b

produce phases

proportional to the product LE. This indicates that experi-
ments with long baselines or high energies are of special
interest for studies of massive Lorentz-violating models.
However, the techniques outlined in this work apply for
any baseline for which the perturbative approximation is
valid, including ones where oscillations due to mass are
negligible. Indeed, the expressions for oscillation proba-
bilities presented here reduce to those obtained for mass-
less Lorentz-violating models [16] in the limit of vanishing
mass mixing.

Massive Lorentz-violating models can exhibit effects
lying in any of the six classes of physical effects due to
Lorentz and CPT violation [13]. All coefficients affect the
spectral dependence in at least some part of the energy
range. Many of the associated operators violate rotation
invariance, which can produce direction-dependent oscil-
lations. For some experiments, including ones with neu-
trino beams, the daily rotation of the Earth induces
variations in time of the probabilities at multiples of the
sidereal frequency. Both CPT violation and neutrino-
antineutrino mixings can occur.

In this work, we show that for massive Lorentz-violating

models the coefficients ðaLÞ�ab and ðcLÞ��ab primarily affect

neutrino-neutrino and antineutrino-antineutrino mixings,
with ðaLÞ�ab controlling first-order differences between

the two mixings due to perturbative CPT violation. Since
the original introduction of these SME coefficients [6], a
substantial theoretical literature has developed concerning
their implication for neutrino behavior in the context of
massive Lorentz-violating models. Many works restrict
attention to the special isotropic limits with only ðaLÞTab
or ðcLÞTTab nonzero and real [20–33], and in some cases also

to two flavors. A few consider also anisotropic effects
[13,34–38]. Here, we treat the general case, allowing all

components of ðaLÞ�ab and ðcLÞ��ab to be nonzero.

In contrast, the dominant effects from ~g��
a �b

and ~H�
a �b

in

massive Lorentz-violating models arise only at second
order. They involve neutrino-antineutrino mixing and
also nonconservation of lepton number. A single flavor
can therefore suffice to produce oscillations. Indeed, a
simple analytical form is known for the mixing probability
for the general one-flavor case including mass [13]. A few
theoretical works have considered special massive
Lorentz-violating models of this type [39,40]. At present,
there are no published experimental constraints on any of

the coefficients ~g��
a �b

and ~H�
a �b
. In this work, we investigate

the general case and identify some potential signals for
experimental searches.
Overall, most massive Lorentz-violating models remain

viable. Only a few percent of the available coefficient
space has been explored experimentally [10–12]. The
methods described in the present work demonstrate that
access to essentially the whole coefficient space is avail-
able via a combination of existing and future experiments.
This paper is organized as follows. The basic theory and

notation is presented in Sec. II. Section II A reviews the
properties of the Hamiltonian governing Lorentz and CPT
violation in neutrino oscillations. The perturbation series
for the transition amplitude is derived in Sec. II B, while
the resulting oscillation probabilities are obtained in
Sec. II C. Section III considers first-order effects involving
the coefficients ðaLÞ� and ðcLÞ��. The directional and
sidereal dependences of the probabilities are discussed in
Sec. III A. Examples are provided for the case of three
generations and its two-generation limit in Sec. III B.
Asymmetries characterizing violations of the discrete sym-
metriesCP andCPT are discussed in Sec. III C. Section IV
investigates the second-order effects involving the coeffi-
cients ~g�� and ~H�. Oscillations with lepton-number vio-
lation are studied in Sec. IVA, while others are considered
in Sec. IVB. Section V concludes with a summary.

II. BASIC THEORY

This section begins with a brief review of the description
of Lorentz and CPT violation in neutrino oscillations,
assuming three generations of left-handed neutrinos and
their antineutrinos. We then use time-dependent perturba-
tion theory to derive expressions for the transition ampli-
tudes and oscillation probabilities valid for small Lorentz
and CPT violation.

A. Hamiltonian

Violations of Lorentz and CPT invariance in oscillations
of left-handed neutrinos and their antineutrinos can be
characterized by a 6� 6 effective Hamiltonian ðheffÞAB
taking the form [13]
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ðheffÞAB ¼ ðh0ÞAB þ �hAB: (1)

Here, h0 describes conventional Lorentz-invariant neutrino
oscillations, while �h includes the Lorentz-violating con-
tributions. The uppercase indices take six values,
A; B; . . . ¼ e, �, �, �e, ��, ��, spanning the three flavors of
neutrinos and antineutrinos.

Under typical assumptions, the conventional term h0
induces no mixing between neutrinos and antineutrinos.
It is therefore block diagonal, and we write it as

h0 ¼ ðh0Þab 0
0 ðh0Þ �a �b

� �
¼ 1

2E

�m2
ab 0

0 �m2
�a �b

 !
; (2)

where E is the neutrino energy, lowercase indices
a; b; . . . ¼ e,�, � indicate neutrinos, and lowercase barred
indices �a; �b; . . . ¼ �e, ��, �� indicate antineutrinos. The two
3� 3 mass matrices are related by

�m2
�a �b

¼ �m2�
ab; (3)

as required by the CPT theorem [8]. Note that contribu-
tions to the Hamiltonian proportional to the unit matrix
generate no oscillation effects, but they may nonetheless be
relevant to stability and causality of the underlying theory
[41].

The Lorentz-invariant Hamiltonian h0 can be diagonal-
ized using a 6� 6 unitary matrix U,

ðh0ÞA0B0 ¼ X
AB

UA0AU
�
B0Bðh0ÞAB; (4)

where primed indices indicate the diagonal mass basis. The
absence of mixing between neutrinos and antineutrinos
implies the mixing matrix is block diagonal,

U ¼ Ua0b 0
0 U �a0 �b

� �
; (5)

with vanishing 3� 3 off-diagonal blocks,

Ua0 �b ¼ U �a0b ¼ 0: (6)

Since the mass matrices for neutrinos and antineutrinos are
related by complex conjugation, we also have

U �a0 �b ¼ U�
a0b: (7)

The diagonal 3� 3 blocks of h0 can therefore be written as

ðh0Þab ¼ ðh0Þ��a �b
¼ X

a0¼1;2;3

U�
a0aUa0bEa0 ; (8)

where Ea0 are the usual three neutrino eigenenergies. In
what follows, we assume that these three eigenenergies are
nondegenerate. Note that this implies there are three two-
fold degeneracies in the full 6� 6 Hamiltonian ðh0ÞAB.

The Lorentz-violating term �h in Eq. (1) can be written
in the form

�h ¼ �hab �ha �b

�h �ab �h �a �b

� �
: (9)

For Lorentz-violating operators of renormalizable dimen-
sion, the upper-left diagonal block takes the form

�hab ¼ 1

E
½ðaLÞ�p� � ðcLÞ��p�p��ab (10)

and leads to mixing between neutrinos, where the neutrino
energy-momentum 4-vector is denoted p� ¼ ðE;� ~pÞ �
Eð1;�p̂Þ and ðaLÞ�ab, ðcLÞ��ab are complex coefficients for

Lorentz violation [13]. Hermiticity implies

�hab ¼ �h�ba; (11)

which imposes the conditions

ðaLÞ�ab ¼ ðaLÞ��ba ;
ðcLÞ��ab ¼ ðcLÞ���ba :

(12)

Similarly, the lower-right diagonal block of �h produces
mixing between antineutrinos,

�h �a �b ¼ 1

E
½ðaRÞ�p� � ðcRÞ��p�p�� �a �b

¼ 1

E
½�ðaLÞ�p� � ðcLÞ��p�p���ab: (13)

The off-diagonal 3� 3 blocks of �h, �ha �b and �h �ba,
lead to neutrino-antineutrino mixing, an unconventional
effect. These blocks obey the Hermiticity condition

�ha �b ¼ �h��ba (14)

and can be written as [13]

�ha �b ¼ �i
ffiffiffi
2

p ð�þÞ�½~g��p� � ~H��a �b;

�h �ab ¼ i
ffiffiffi
2

p ð�þÞ��½~g��p� � ~H�� �ab
¼ i

ffiffiffi
2

p ð�þÞ��½~g��p� þ ~H���
a �b
:

(15)

In these equations, the complex coefficients for Lorentz

violation ~g��
a �b

and ~H�
a �b

obey the relations

~g��
a �b

¼ ~g��b �a ¼ ~g����ba
;

~H�
a �b

¼ � ~H�
b �a ¼ ~H��

�ba
:

(16)

The complex 4-vector ð�þÞ� ¼ ð0;� ~�þÞ represents the
helicity state. Introducing the local beam direction êr and
other unit vectors associated with local spherical coordi-
nates as

êr ¼ ðsin� cos�; sin� sin�; cos�Þ;
ê� ¼ ðcos� cos�; cos� sin�;� sin�Þ;
ê� ¼ ð� sin�; cos�; 0Þ;

(17)

the 3-vector ~�þ can be expressed as

~�þ ¼ 1ffiffiffi
2

p ðê� þ iê�Þ: (18)
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The coefficients ðaLÞ�ab and ~H�
a �b

have dimensions of

mass, and each taken alone leads to oscillation effects
that are energy independent. In contrast, the coefficients

ðcLÞ��ab and ~g��
a �b

are dimensionless, so their effects naturally

scale with energy. Note, however, that combinations of
coefficients can produce involved energy dependences,
including mimicking conventional mass terms via the
Lorentz-violating seesaw mechanism [13,14,17].

The coefficients ðaLÞ�ab and ~g��
a �b

control CPT-odd ef-

fects, while ðcLÞ��ab and ~H�
a �b

govern CPT-even ones.

Consequently, CPT symmetry holds when ðaLÞ�ab and

~g��
a �b

vanish, and we find the oscillation probabilities obey

the relationship

P	a!	b ¼ P �	b! �	a
ðCPT invarianceÞ: (19)

The CP symmetry may nonetheless be violated, so the
relation P	a!	b

¼ P �	a! �	b
may fail. Further discussion of

CP and CPT tests is provided in Sec. III C below.
All the coefficients discussed here are taken to be space-

time constants, so that translational symmetry and energy-
momentum conservation hold. If the Lorentz violation is
spontaneous [3], which may be ubiquitous in effective field
theories [42], then the coefficients can be understood as
expectation values of operators in the fundamental theory.
Under these circumstances, requiring constancy of the
coefficients is equivalent to disregarding soliton solutions
and massive or Nambu-Goldstone (NG) modes [43]. When
gravity is included, the NG modes can play the role of the
graviton [44], the photon in Einstein-Maxwell theory [45],
or various new spin-dependent [46] or spin-independent
[47] forces. The presence of gravity can also produce
additional Lorentz-violating effects on neutrino oscilla-
tions [7,48].

When neutrinos propagate in matter, the resulting for-
ward scattering on electrons, protons, and neutrons can
affect neutrino oscillations [49]. In the rest frame of the
matter, this adds to the effective Hamiltonian ðheffÞAB terms
equivalent to CPT-odd coefficients given by [13]

ðaL;effÞ0ee ¼ GFð2ne � nnÞ=
ffiffiffi
2

p
;

ðaL;effÞ0�� ¼ ðaL;effÞ0�� ¼ �GFnn=
ffiffiffi
2

p
;

(20)

where ne and nn are the number densities of electrons and
neutrons in the matter and GF is the Fermi coupling
constant. For example, in neutrino-oscillation experiments
with long baselines, the propagation is over comparatively
long distances in the Earth’s crust. In this case, the den-
sities ne and nn can be taken equal and constant to a

good approximation, with
ffiffiffi
2

p
GFne ’ 2:1� 10�22 GeV ’

ð940 kmÞ�1. In the perturbative analysis of Lorentz viola-
tion that follows, any matter effects can be taken as part of
the unperturbed Hamiltonian ðh0ÞAB. In situations where
mass oscillations dominate, the matter effects could alter-

natively be treated as perturbative and included as part of
the Lorentz-violating term �hAB.

B. Perturbation series

In this subsection, we use standard techniques of time-
dependent perturbation theory to derive a perturbative
series for the transition amplitudes. We treat the
Hamiltonian component �h describing Lorentz and CPT
violation as small compared to 1=L.
The time-evolution operator SðtÞ is written in the form

SðtÞ � e�iheff t

¼ ðe�iheff teih0tÞSð0ÞðtÞ
¼ Sð0ÞðtÞ þ Sð1ÞðtÞ þ Sð2ÞðtÞ þ � � � ; (21)

where SðnÞ is the nth-order perturbation in �h. The con-
ventional term is given by

Sð0Þ ¼ e�ih0t: (22)

The higher-order terms are obtained using the integral
relation

e�iheff teih0t ¼ 1þ
Z t

0
dt1ð�iÞ�hðt1Þ

þ
Z t

0
dt2

Z t2

0
dt1ð�iÞ�hðt1Þð�iÞ�hðt2Þ

þ � � � ; (23)

where

�hðtÞ ¼ e�ih0t�heih0t: (24)

The integrals (23) can conveniently be performed in the
mass-diagonal basis. To second order in Lorentz-violating
coefficients, the results take the form

Sð0Þ
A0B0 ¼ �A0B0�ð0Þ

A0 ðtÞ;
Sð1Þ
A0B0 ¼ �it�hA0B0�ð1Þ

A0B0 ðtÞ;
Sð2Þ
A0B0 ¼ � 1

2
t2
X
C0
�hA0C0�hC0B0�ð2Þ

A0B0C0 ðtÞ:
(25)

All sums over flavor indices are written explicitly through-
out this work. The time dependence is contained in the

factors �ð0Þ
A0 , �

ð1Þ
A0B0 , and �

ð2Þ
A0B0C0 . The zeroth-order factor is the

usual expression

�ð0Þ
A0 ðtÞ ¼ expð�iEA0 tÞ: (26)

The first-order term is given by

�ð1Þ
A0B0 ðtÞ ¼ 1

t
expð�iEB0tÞ

Z t

0
dt1 expð�i�A0B0t1Þ

¼
� expð�iEB0tÞ; EA0 ¼ EB0 ;
expð�iEA0 tÞ�expð�iEB0 tÞ

�i�A0B0 t
; otherwise;

(27)

where
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�A0B0 ¼ EA0 � EB0 (28)

are the standard eigenenergy differences. The second-order
factor is given by the integral

�ð2Þ
A0B0C0 ðtÞ ¼ 2

t2
expð�iEB0tÞ

�
Z t

0
dt2

Z t2

0
dt1 expð�i�A0C0t1Þ

� expð�i�C0B0t2Þ

¼
8<
:
expð�iEB0tÞ; EA0 ¼ EB0 ¼ EC0 ;

2
�ð1Þ
A0B0��ð1Þ

C0B0
�i�A0C0 t

¼ 2
�ð1Þ
A0C0��ð1Þ

A0B0
�i�C0B0 t

; otherwise:

(29)

We give two expressions in the last case so that expressions
for the limiting cases EA0 ¼ EC0 and EB0 ¼ EC0 can readily

be extracted. Note that both �ð1Þ
A0B0 and �ð2Þ

A0B0C0 are dimen-

sionless functions of EA0 t that are totally symmetric in
mass-basis indices.

Transforming to the flavor basis, the Lorentz-invariant
transition amplitude is found to be

Sð0ÞAB ¼ X
A0
U�

A0AUA0Be
�iEA0 t: (30)

This leads to the usual oscillation probabilities for the
Lorentz-invariant case of massive neutrinos. At first order,
we choose to express the transition amplitude in the con-
venient form

Sð1ÞABðtÞ � �itH ð1Þ
ABðtÞ

¼ �it
X
CD

ðMð1Þ
ABÞCD�hCD; (31)

where the factors

ðMð1Þ
ABÞCDðtÞ ¼

1

t

Z t1

0
dt1S

ð0Þ
ACðt1ÞSð0ÞDBðt� t1Þ

¼ X
A0B0

�ð1Þ
A0B0 ðtÞU�

A0AUA0CU
�
B0DUB0B (32)

depend on the energy and baseline of the experiment and
also on the conventional masses and mixing angles. For
given mass spectrum and mixing angles, these factors
determine the sensitivity of an experiment. They are inde-
pendent of the direction of the neutrino propagation and of
the coefficients for Lorentz violation. As a result, they
remain unchanged as the Earth rotates. The quantity

H ð1Þ
AB defined in Eq. (31) is a linear combination of these

factors and the Lorentz-violating perturbation �h. It plays
a key role in the expressions for the oscillation probabil-

ities derived in the next subsection. Note thatH ð1Þ
AB reduces

to �hAB in the limit of negligible mass mixing.
The second-order result for the transition amplitude can

be written in a similar form. We define

Sð2ÞABðtÞ � � 1

2
t2H ð2Þ

AB

¼ � 1

2
t2
X

CDEF

ðMð2Þ
ABÞCDEF�hCD�hEF; (33)

where the experiment-dependent factors

ðMð2Þ
ABÞCDEFðtÞ

¼ 2

t2

Z t

0
dt2

Z t2

0
dt1S

ð0Þ
ACðt1ÞSð0ÞDEðt2 � t1ÞSð0ÞFBðt� t2Þ

¼ X
A0B0C0

�ð2Þ
A0B0C0 ðtÞU�

A0AUA0CU
�
C0DUC0EU

�
B0FUB0B (34)

again determine the combinations of coefficients relevant
for oscillation effects. In this case, however, the quantity

H ð2Þ
AB defined in Eq. (33) is a quadratic combination of

coefficients. This leads to sidereal variations in neutrino
oscillations at higher multiples of the Earth’s rotation

frequency. Note that H ð2Þ
AB reduces to ð�h2ÞAB in the limit

of negligible mass mixing.

C. Probabilities

Using the above results for the transition amplitudes, we
can derive the oscillation probabilities. At zeroth order, the
transition amplitudes are Lorentz invariant and take the

usual block-diagonal form, Sð0Þ
a �b

¼ Sð0Þ�ab ¼ 0. So the zeroth-

order probabilities for neutrino-antineutrino oscillations
vanish,

Pð0Þ
�	b!	a

¼ Pð0Þ
	b! �	a

¼ 0: (35)

Since CPT is conserved whenever Lorentz symmetry

holds [8], we have Sð0Þab ¼ Sð0Þ�b �a
. This implies

Pð0Þ
	b!	a

¼ Pð0Þ
�	a! �	b

¼ jSð0Þab j2; (36)

which leads to the usual results for Lorentz-invariant os-
cillation probabilities in terms of mass-squared differences
and mixing angles.
The full mixing probability is given by

P	B!	A
¼ jSð0ÞAB þ Sð1ÞAB þ Sð2ÞAB þ � � � j2: (37)

At second order in �h, this gives

Pð0Þ
	B!	A

¼ jSð0ÞABj2;
Pð1Þ
	B!	A

¼ 2ReððSð0ÞABÞ�Sð1ÞABÞ
¼ 2t ImððSð0ÞABÞ�H ð1Þ

ABÞ;
Pð2Þ
	B!	A

¼ 2ReððSð0ÞABÞ�Sð2ÞABÞ þ jSð1ÞABj2;
¼ �t2 ReððSð0ÞABÞ�H ð2Þ

ABÞ þ t2jH ð1Þ
ABj2: (38)

These equations involve the six-dimensional space
spanned by A. They can be decomposed into oscillation
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probabilities expressed in terms of the neutrino and anti-
neutrino subspaces spanned by a and �a.

At first order, a short calculation shows that the proba-
bilities can be written

Pð1Þ
	b!	a

¼ 2t ImððSð0ÞabÞ�H ð1Þ
abÞ;

Pð1Þ
�	b! �	a

¼ 2t ImððSð0Þ
�a �b
Þ�H ð1Þ

�a �b
Þ;

Pð1Þ
	b! �	a

¼ Pð1Þ
�	b!	a

¼ 0:

(39)

No neutrino-antineutrino mixing occurs because Sð0Þ
a �b

¼
Sð0Þ�ab ¼ 0. Only the combinations H ð1Þ

ab and H ð1Þ
�a �b

obtained

from the definition (31) contribute to these probabilities.
Explicitly, we find

H ð1Þ
ab ¼ X

cd

ðMð1Þ
abÞcd�hcd;

H ð1Þ
�a �b

¼ X
�c �d

ðMð1Þ
�a �b
Þ �c �d�h �c �d;

H ð1Þ
�ab ¼ X

�cd

ðMð1Þ
�abÞ �cd�h �cd;

H ð1Þ
a �b

¼ X
c �d

ðMð1Þ
a �b
Þc �d�hc �d:

(40)

Although H ð1Þ
�ab and H ð1Þ

a �b
are absent from the first-order

probabilities, we include their expressions here because
they enter the second-order probabilities below. Since the
first-order results involve the diagonal blocks of �h, only

the coefficients ðaLÞ�ab and ðcLÞ��ab play a role.

Decomposing the results (38) reveals that the second-
order probabilities are

Pð2Þ
	b!	a

¼ �t2 ReððSð0ÞabÞ�H ð2Þ
abÞ þ t2jH ð1Þ

ab j2;
Pð2Þ

�	b! �	a
¼ �t2 ReððSð0Þ

�a �b
Þ�H ð2Þ

�a �b
Þ þ t2jH ð1Þ

�a �b
j2;

Pð2Þ
	b! �	a

¼ t2jH ð1Þ
�ab j2;

Pð2Þ
�	b!	a

¼ t2jH ð1Þ
a �b
j2;

(41)

where Sð0Þ
a �b

¼ Sð0Þ�ab ¼ 0 is used to simplify the last two. The

probabilities Pð2Þ
	b!	a

and Pð2Þ
�	b! �	a

include both leading-order

contributions fromH ð2Þ
ab andH ð2Þ

�a �b
as well as higher-order

contributions from the combinationsH ð1Þ
ab andH

ð1Þ
�a �b
. Also,

nonzero mixing between neutrinos and antineutrinos ap-

pears, giving sensitivity to the linear combinations H ð1Þ
�ab

and H ð1Þ
a �b
. This shows that the dominant effects of the

coefficients ~g��
a �b

and ~H�
a �b

appear only at second order.

Moreover, ðaLÞ�ab or ðcLÞ��ab play no role in neutrino-

antineutrino mixing at this order.

Explicit expressions forH ð2Þ
ab andH

ð2Þ
�a �b

can be obtained

by decomposing the quadratic combinations H ð2Þ
AB defined

in Eq. (33). The structure of the factors ðMð2Þ
ABÞCDEF and the

form of the mixing matrix U reduce the number of terms

that contribute. In particular, we find that ðMð2Þ
ABÞCDEF

vanishes unless the index pairs fACg, fBFg, and fDEg lie
in the same subspace. This leads to

H ð2Þ
ab ¼ X

cdef

ðMð2Þ
abÞcdef�hcd�hef

þ X
c �d �e f

ðMð2Þ
abÞc �d �e f�hc �d�h �ef;

H ð2Þ
�a �b

¼ X
�c �d �e �f

ðMð2Þ
�a �b
Þ �c �d �e �f�h �c �d�h �e �f

þ X
�cde �f

ðMð2Þ
�a �b
Þ �cde �f�h �cd�he �f;

H ð2Þ
�ab ¼ X

�cdef

ðMð2Þ
�abÞ �cdef�h �cd�hef

þ X
�c �d �e f

ðMð2Þ
�abÞ �c �d �e f�h �c �d�h �ef;

H ð2Þ
a �b

¼ X
cde �f

ðMð2Þ
a �b
Þcde �f�hcd�he �f

þ X
c �d �e �f

ðMð2Þ
a �b
Þc �d �e �f�hc �d�h �e �f:

(42)

Note thatH ð2Þ
�ab andH

ð2Þ
a �b

are absent from the second-order

probabilities but are included here for completeness. This
implies that no cross terms between �hab, �h �a �b, and
�ha �b ¼ �h��ba appear at second order. In particular, all

appearances of the coefficients ~g��
a �b

and ~H�
a �b

arise as

squares or as quadratic products with each other, without

accompanying factors of ðaLÞ�ab or ðcLÞ��ab .

III. COEFFICIENTS ðaLÞ�ab AND ðcLÞ��ab
In this section, we consider effects originating from the

coefficients ðaLÞ�ab and ðcLÞ��ab . These contribute only to

neutrino-neutrino mixing and to antineutrino-antineutrino
mixing. We focus here on the dominant signals, which

arise from the first-order oscillation probabilities Pð1Þ
	b!	a

and Pð1Þ
�	b! �	a

given in Eq. (39).

The theoretical analysis presented in the previous sec-
tion applies to any scenario involving neutrino propaga-
tion. However, the key experimental signals are different
for beam experiments, solar-neutrino studies, and cosmo-
logical observations. For definiteness in this work, we
provide results in the context of beam experiments.
Section III A establishes the key expressions describing

sidereal variations in the oscillation probabilities.
Illustrative examples involving all three generations are
provided in Sec. III B, while the two-flavor case is consid-
ered in Sec. III B 3. The construction of CP and CPT
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asymmetries to characterize the effects is considered in
Sec. III C.

A. Sidereal variations

The combinations of coefficients for Lorentz and CPT
violation entering the nonzero first-order probabilities (39)

are controlled by the experimental factors ðMð1Þ
abÞcd and

ðMð1Þ
�a �b
Þ �c �d entering Eq. (40). These factors can be calculated

from Eq. (32). The time t can be set equal to the baseline
distance L because any difference between the two is small
and leads only to suppressed higher-order corrections. For
given values of E and L, the nine complex constants

ðMð1Þ
abÞcd determine the coefficient combinations relevant

for 	 $ 	 mixing, while the nine complex constants

ðMð1Þ
�a �b
Þ �c �d determine those for �	 $ �	 mixing. If CP is

conserved in the usual mass matrix, as occurs in the two-
generation limit, then the mixing matrices are real and

obey Uab ¼ U �a �b. We then find ðMð1Þ
abÞcd ¼ ðMð1Þ

�a �b
Þ �c �d, so

a single set of nine constants determines the experimen-
tally relevant combinations for both neutrinos and
antineutrinos.

The specific combinations of ðaLÞ�ab and ðcLÞ��ab appear-

ing in the transition probabilities can be found by consid-
ering the forms of the relevant blocks of the Hamiltonian,
Eqs. (10) and (13). In this context, it is convenient to define
the linear combinations

ð~aLÞ�ab ¼ X
cd

ðMð1Þ
abÞcdðaLÞ�cd;

ð~cLÞ��ab ¼ X
cd

ðMð1Þ
abÞcdðcLÞ��cd ;

ð~aRÞ��a �b
¼ X

�c �d

ðMð1Þ
�a �b
Þ �c �dðaRÞ��c �d

;

ð~cRÞ���a �b
¼ X

�c �d

ðMð1Þ
�a �b
Þ �c �dðcRÞ���c �d

:

(43)

These are experiment-dependent combinations of the fun-

damental coefficients ðaLÞ�ab and ðcLÞ��ab . Using ð~aLÞ�ab,
ð~aRÞ�ab, ð~cLÞ��ab , and ð~cRÞ��ab , the combinations H ð1Þ

ab and

H ð1Þ
�a �b

controlling the first-order probabilities can be written

in a form that mimics the Hamiltonian perturbations �hab
and �h �a �b,

H ð1Þ
ab ¼ 1

E
½ð~aLÞ�p� � ð~cLÞ��p�p��ab;

H ð1Þ
�a �b

¼ 1

E
½ð~aRÞ�p� � ð~cRÞ��p�p�� �a �b:

(44)

This form reveals the explicit 4-momentum dependence of
the transition probabilities.
The momentum dependence implies that the mixing

behavior can depend on the direction of neutrino propaga-
tion. For Earth-based experiments, the source and detector
rotate at the sidereal frequency !� ’ 2
=ð23 h 56 minÞ,
which can induce sidereal variations in the oscillation
probabilities. Since the first-order probabilities are linear

in H ð1Þ
ab or H ð1Þ

�a �b
, each of which has both linear and

quadratic terms in the 3-momentum, sidereal variations

controlled by the coefficients ð~aLÞ�ab and ð~cLÞ��ab can occur

at the frequencies !� and 2!�.
To display explicitly these variations, a choice of inertial

frame must be specified. By convention and convenience,
the standard inertial frame is taken as a Sun-centered
celestial-equatorial frame with coordinates ðT; X; Y; ZÞ
[9,50]. The Z axis of this frame is directed north and
parallel to the rotational axis of the Earth. The X axis
points from the Sun toward the vernal equinox, while the
Y axis completes a right-handed system. The origin of the
time coordinate is chosen as the vernal equinox 2000. The
Earth’s rotation causes the neutrino 3-momentum to vary in
local sidereal time T� at the frequency !� in the Sun-
centered frame, unless it happens to lie along the Z axis.
For neutrino-neutrino mixing, we can display explicitly

the sidereal variation by expanding H ð1Þ
ab as

H ð1Þ
ab ¼ ðCð1ÞÞab

þ ðAð1Þ
s Þab sin!�T� þ ðAð1Þ

c Þab cos!�T�

þ ðBð1Þ
s Þab sin2!�T� þ ðBð1Þ

c Þab cos2!�T�: (45)

Suppose the neutrinos of interest are emitted in a definite
direction relative to the Earth, perhaps as a neutrino beam

from an accelerator. Let the vector ðN̂X; N̂Y; N̂ZÞ represent
the propagation direction in the Sun-centered frame at
local sidereal time T� ¼ 0. We can write this vector in
terms of local spherical coordinates at the detector. Denote
by � the colatitude of the detector. Introduce at the detector
the angle � between the beam direction and vertical, and
also the angle � between the beam and east of south. The
components of the vector can then be written as

N̂X ¼ cos� sin� cos�þ sin� cos�;

N̂Y ¼ sin� sin�;

N̂Z ¼ � sin� sin� cos�þ cos� cos�:

(46)

Using these expressions, the amplitudes in the expansion
(45) are specified in terms of coefficients for Lorentz
violation in the Sun-centered frame as
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ðCð1ÞÞab ¼ ð~aLÞTab � N̂Zð~aLÞZab �
1

2
ð3� N̂ZN̂ZÞEð~cLÞTTab þ 2N̂ZEð~cLÞTZab þ 1

2
ð1� 3N̂ZN̂ZÞEð~cLÞZZab ;

ðAð1Þ
s Þab ¼ N̂Yð~aLÞXab � N̂Xð~aLÞYab � 2N̂YEð~cLÞTXab þ 2N̂XEð~cLÞTYab þ 2N̂YN̂ZEð~cLÞXZab � 2N̂XN̂ZEð~cLÞYZab ;

ðAð1Þ
c Þab ¼ �N̂Xð~aLÞXab � N̂Yð~aLÞYab þ 2N̂XEð~cLÞTXab þ 2N̂YEð~cLÞTYab � 2N̂XN̂ZEð~cLÞXZab � 2N̂YN̂ZEð~cLÞYZab ;

ðBð1Þ
s Þab ¼ N̂XN̂YEðð~cLÞXXab � ð~cLÞYYab Þ � ðN̂XN̂X � N̂YN̂YÞEð~cLÞXYab ;

ðBð1Þ
c Þab ¼ �2N̂XN̂YEð~cLÞXYab � 1

2
ðN̂XN̂X � N̂YN̂YÞEðð~cLÞXXab � ð~cLÞYYab Þ:

(47)

The form of the above expansion matches that used in Ref. [16] in the context of short-baseline neutrino experiments.

The sidereal variation inH ð1Þ
ab leads to a corresponding variation in the probabilities. We parametrize these variations as

Pð1Þ
	b!	a

2L
¼ ImððSð0ÞabÞ�H ð1Þ

abÞ
¼ ðPð1Þ

C Þab þ ðPð1Þ
As

Þab sin!�T� þ ðPð1Þ
Ac

Þab cos!�T� þ ðPð1Þ
Bs
Þab sin2!�T� þ ðPð1Þ

Bc
Þab cos2!�T�; (48)

where

ðPð1Þ
C Þab ¼ ImððSð0ÞabÞ�ðCð1ÞÞabÞ;

ðPð1Þ
As

Þab ¼ ImððSð0ÞabÞ�ðAð1Þ
s ÞabÞ;

ðPð1Þ
Ac

Þab ¼ ImððSð0ÞabÞ�ðAð1Þ
c ÞabÞ;

ðPð1Þ
Bs
Þab ¼ ImððSð0ÞabÞ�ðBð1Þ

s ÞabÞ;
ðPð1Þ

Bc
Þab ¼ ImððSð0ÞabÞ�ðBð1Þ

c ÞabÞ

(49)

are combination of coefficients for Lorentz violations.
Note that the sidereal amplitudes ðPð1Þ

C Þab, ðPð1Þ
As

Þab,
ðPð1Þ

Ac
Þab, ðPð1Þ

Bs
Þab, and ðPð1Þ

Bc
Þab are tiny, with size deter-

mined by ðaLÞ�ab and ðcLÞ��ab . The expression (48) reveals
that the experimental sensitivity to perturbative Lorentz
and CPT violation increases with the baseline L.

For antineutrino-antineutrino oscillations, analogous re-

sults hold. We can expandH ð1Þ
�a �b

in the form (45), replacing

the indices fabg with f �a �bg. The amplitudes again take the
form (47), but with the substitutions ð~aLÞ ! ð~aRÞ, ð~cLÞ !
ð~cRÞ, fabg ! f �a �bg. Similarly, the sidereal variation in the
probabilities can be written as Eq. (48) by replacement of
the indices.

B. Illustrations

In this subsection, the first-order perturbative formalism
derived above is applied to several illustrative situations.
Following some comments about the methodology, we
consider an example involving mixing of all three flavors
of neutrinos and then discuss the limiting case of two
flavors.

1. Methodology

Since the effects from Lorentz and CPT violation are
perturbative, an explicit analysis must specify the conven-

tional mass spectrum and mixing angles. In the standard
three-neutrino massive model [2], the usual 3� 3 effective
Hamiltonian ðh0Þab for neutrino-neutrino vacuum mixing
appears as the upper-left block of Eq. (2). It can be written
as

ðh0Þab ¼ 1

2E
�m2

ab ¼
1

2E

X
a0b0

U�
a0aUb0b�m

2
a0b0 ; (50)

where �m2
a0b0 is the diagonal mass matrix. Only two mass-

squared differences contribute to oscillations. Without loss
of generality, we can therefore express the diagonal mass
matrix as

m2
a0b0 ¼

0 0 0
0 �m2	 0
0 0 �m2

atm

0
@

1
A: (51)

For a normal mass hierarchy, the quantity �m2	 is the
smaller of the two mass-squared differences. It is of par-
ticular relevance in situations involving low-energy oscil-
lations such as solar-neutrino measurements. The larger
mass-squared difference �m2

atm plays a central role where
mixing of high-energy neutrinos occurs, such as
atmospheric-neutrino experiments. The mixing matrix
Ua0b can be written as

Ua0b ¼
c12 �s12 0

s12 c12 0

0 0 1

0
BB@

1
CCA

c13 0 �s13e
�i�

0 1 0

s13e
i� 0 c13

0
BB@

1
CCA

�
1 0 0

0 c23 �s23

0 s23 c23

0
BB@

1
CCA; (52)

where cij ¼ cos�ij, sij ¼ sin�ij, and � is the CP-violating

phase. For antineutrino-antineutrino mixing, the conven-
tional effective Hamiltonian for vacuummixing is obtained
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by complex conjugation of the above results, which is
equivalent to changing the sign of �.

In the presence of matter, the 3� 3 effective
Hamiltonian ðh0Þab for neutrino-neutrino mixing acquires
an additional term from Eq. (20) and becomes

ðh0Þab ¼ 1

2E
�m2

ab þ ðaL;effÞTee�ae�be; (53)

where the index e refers to the electron-neutrino flavor. The
additional term changes the eigenvalues of ðh0Þab and
hence the explicit values of the components of the overall
mixing matrix. Note that the expression (53) is strictly
valid only in the rest frame of the matter. For the specific
scenarios considered below, this frame comoves with the
Earth as it rotates on its axis and revolves about the Sun.
These motions are nonrelativistic, however, so the comov-
ing frame can be identified with the Sun-centered frame of
Sec. III A to an accuracy of parts in 104. We adopt this
identification in what follows.

In performing an analysis for Lorentz and CPT viola-
tion, the appropriate methodology depends on the location
of the experiment in L-E space and on the presently
unknown value of �13. Consider, for example, three hypo-
thetical beam experiments with the same long baseline L

200 km but with differing energies E1 
 10 MeV, E2 

1 GeV, E3 
 100 GeV. The first lies in a region where
mass oscillations involve all three flavors, so the treatment
of Lorentz and CPT violation requires the three-flavor
formalism of the previous section. The same is true of
the second experiment for large �13. However, if �13 is
small or zero, then significant mass mixings in this second
experiment involve only two generations. Lorentz-
violating effects within these two generations can then be
studied using a two-flavor limit of the previous section,
while effects involving the third flavor are well described
using the procedures for negligible mass mixing presented
in Ref. [16]. For the third experiment, no significant mass
mixings occur and so the methods of Ref. [16] are appli-
cable for Lorentz and CPT violation in all flavors of
oscillations.

High sensitivity to operators for Lorentz and CPT vio-
lation of mass dimension three, such as those controlled by
the coefficients ðaLÞ�ab, can be achieved in experiments

with long baselines L. Similarly, high sensitivity to opera-
tors of mass dimension four, such as those governed by

ðcLÞ��ab , can be obtained via long baselines L, high energies
E, or both. At present, most existing or planned long-
baseline experiments have baselines L
 200–1500 km
and energies E
 1–10 GeV and hence lie in a region of
L-E space analogous to that of the second hypothetical
experiment above.

For illustrative purposes, we consider here a variety of
beam experiments involving long baselines L and seeking
	e appearance in 	� beams or studying 	� disappearance.

Existing experiments in this category include KEK to

Super-Kamiokande (K2K) with baseline L ’ 250 km
[51], the MINOS far detector with baseline L ’ 750 km
[52], and the Oscillation Project with Emulsion-Tracking
Apparatus (OPERA) [53]. The latter has essentially iden-
tical baseline L ’ 750 km to the Imaging Cosmic and Rare
Underground Signals experiment (ICARUS) [54]. The
Fermilab E929 experiment (NO	A) [55] with baseline L ’
800 km is currently under construction, while the Tokai to
Kamioka (T2K) experiment [56] with baseline L ’
300 km has recently begun data taking. Other experiments
with even longer baselines are under consideration, includ-
ing one at the Deep Underground Science and Engineering
Lab (DUSEL) [57] using a neutrino beam from Fermilab
and baseline L
 1300 km, and the Tokai to Kamioka and
Korea (T2KK) experiment [58] using the same neutrino
beam as T2K but with baseline L ’ 1000 km. All of these
experiments have excellent sensitivity to perturbative
Lorentz and CPT violation.
For definiteness in what follows, we consider two ex-

plicit scenarios. In the first, discussed in Sec. III B 2, we
take a comparatively large value of �13 and consider the
effects of Lorentz and CPT violation for studies of 	e

appearance. For this situation, mass mixing involving all
three flavors occurs and so the full formalism of the pre-
vious section is appropriate for the analysis. In the second
scenario, considered in Sec. III B 3, we suppose �13 is
negligible and investigate the effects of Lorentz and CPT
violation on 	� disappearance. For this case, only 	� $
	� involves significant mass mixing and so a two-flavor
limit of the previous section can be applied.
We can also identify two interesting regions of L-E

space that could benefit from the development of new
experiments. The first is the region of long baselines L *
200 km with low energies E & 100 MeV. This is of par-
ticular interest if �13 ’ 0�, since it provides an opportunity
for clean studies of three-flavor mixings that are otherwise
challenging to perform. A comparatively intense source is
needed due to the long baseline and the cross-section fall-
off with energy. One possibility is a setup similar to the
Kamioka Liquid Scintillator Antineutrino Detector
(KamLAND) [59] but with a single source, directional
sensitivity, or both. For longer baselines, a beta beam
[60] may be an interesting option. A low-energy beta
beam has been studied in the context of short-baseline
experiments [61]. Another possibility might be an intense
pulsed neutrino beam such as that proposed for a neutrino
facility at the Spallation Neutron Source (	-SNS) [62] and
lying in the 10–50 MeV energy range.
The second interesting region lies at high energies E *

100 GeV, even for comparatively short baselines L &
10 km. Neutrino beams at these energies have been used
in the Neutrinos at the Tevatron (NuTeV) [63] and
Chicago-Columbia-Fermilab-Rochester (CCFR) [64] ex-

periments. For studies of the coefficients ðcLÞ��ab for

Lorentz and CPT violation, a high energy compensates
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for a shorter baseline and so oscillation experiments in this
region could have a competitive reach. Since mass mixing
is negligible, the methods of Ref. [16] are applicable for
analyzing Lorentz and CPT violation in this case.

2. Example: 	e appearance

Consider first searches for Lorentz and CPT violation
via 	e appearance in a 	� beam, within the assumption of a

comparatively large �13. This requires a full three-flavor
analysis. We incorporate effects from matter-induced mix-
ing via Eq. (53), and we adopt explicit parameter values for
vacuum mixing compatible with the observed three-flavor
oscillations in solar, atmospheric, reactor, and accelerator
experiments [2],

�m2	 ’ 8:0� 10�5 eV2;

�m2
atm ’ 2:5� 10�3 eV2;

�12 ’ 34�; �23 ’ 45�; �13 ’ 12�; � ’ 0�:

(54)

Together with the matter effects, the values (54) determine

the linear combinations of coefficients ðaLÞ�ab and ðcLÞ��ab
relevant for any given experiment. Note that both magni-
tudes and signs are significant. For example, the above
values hold for a normal mass hierarchy. Our general
expressions for oscillation probabilities are valid for any
magnitudes and signs, but the numerical results for the
illustrative examples below assume the specific choices
(54). For a comprehensive exploration of the space of
coefficients for Lorentz and CPT violation, distinct analy-
ses of the same data must be performed for each acceptable
choice of parameter values and must be reported as such.
Note also that the approximation � ’ 0� made in Eq. (54)
implies that there is little or no CP violation in standard
oscillations, although perturbative CP violation from
Lorentz and CPT violation can still appear.

The anisotropies introduced by nonzero coefficients for
Lorentz violation can lead to sidereal variations, which are
the primary signals of interest here. The sidereal decom-
position of the probability takes the form (48) with fabg ¼
fe�g. The four amplitudes ðPð1Þ

As
Þe�, ðPð1Þ

Ac
Þe�, ðPð1Þ

Bs
Þe�, and

ðPð1Þ
Bc
Þe� are linear combinations of coefficients for Lorentz

violation given by Eqs. (47) and (49), and they can be
measured by studying the variations of the neutrino mixing
with sidereal time. The effects from the combination

ðPð1Þ
C Þe� are more challenging to detect experimentally

because they have no accompanying time variation.
The amplitudes of the sidereal-variation probabilities

depend on the quantities ð~aLÞ�e� and ð~cLÞ��e� , which are

linear combinations of fundamental coefficients for
Lorentz and CPT violation,

ð~aLÞ�e� ¼ X
cd

ðMð1Þ
e�ÞcdðaLÞ�cd;

ð~cLÞ��e� ¼ X
cd

ðMð1Þ
e�ÞcdðcLÞ��cd :

(55)

The results of an experimental analysis can therefore be
expressed in terms of the fundamental coefficients ðaLÞ�cd
and ðcLÞ��cd by calculating the relevant complex factors

ðMð1Þ
e�Þcd for the given experiment.

Table I presents approximate numerical values of the
real and imaginary parts of these factors for the eight long-
baseline experiments K2K, MINOS, OPERA, ICARUS,
NO	A, T2K, DUSEL, and T2KK. The entries are obtained
assuming the parameter values (54) and incorporating
effects of matter-induced mixing. The factors vary with
the experiment, reflecting their dependence on the baseline
L and the neutrino energy E. Since the experiments are
clustered in a single region of L-E space, the correspond-
ing numerical values for each factor are roughly compa-

rable and so the four sets of ð~aLÞ�e�, ð~cLÞ��e� obtained from

Eq. (55) are roughly comparable combinations of the

fundamental coefficients ðaLÞ�ab, ðcLÞ��ab . The table reveals
that each experiment can measure particular combinations

of ð~aLÞ�e� and ð~cLÞ��e� , which can then be used to constrain

the coefficient space of ðaLÞ�ab and ðcLÞ��ab . The large

number of coefficients for Lorentz and CPT violation
and the limited number of observables for a given experi-
ment imply that multiple experiments are needed to ex-
plore the entire coefficient space. In performing the
analysis, it is of practical value to obtain an estimated
maximal sensitivity to each individual component of the

fundamental coefficients ðaLÞ�ab and ðcLÞ��ab in turn, by

allowing only that component to be nonzero and using
the data to constrain it.
We can use Eqs. (47) and (49) to calculate estimated

first-order sensitivities to ð~aLÞ�e� and ð~cLÞ��e� for each of

these experiments. Table II lists the four amplitudes

ðPð1Þ
As

Þe�, ðPð1Þ
Ac

Þe�, ðPð1Þ
Bs
Þe�, and ðPð1Þ

Bc
Þe� as explicit linear

combinations of the real and imaginary parts of ð~aLÞ�e� and

ð~cLÞ��e� . The linear combinations typically differ for each
experiment and for each amplitude because they depend on
the beam energy E and direction p̂. Note that the two
experiments OPERA and ICARUS have approximately
the same baseline, orientation, and energy, so they can be
listed together for our purposes. As an example, the table

reveals that in GeV units the amplitude ðPð1Þ
As

Þe� for the

K2K experiment is approximately

ðPð1Þ
As

Þe� � �0:1Reð~aLÞXe� þ 0:4Reð~cLÞTXe�
þ 0:1 Imð~aLÞXe� � 0:3 Imð~cLÞTXe�: (56)

Using Table I, all these combinations can be written in
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terms of the fundamental coefficients ðaLÞ�ab and ðcLÞ��ab for

Lorentz and CPT violation.
To obtain a crude estimate of the sensitivities for each

experiment, we suppose that a 10% sidereal variation in the
oscillation probability can be detected. This leads to a
sensitivity of order 10%=2L. The last row of Table II lists
these values for each experiment. In conjunction with the
other entries in Table II and with the factors listed in
Table I, these values can be used to obtain the estimated
first-order reach for any desired coefficient for Lorentz and
CPT violation.

Table II shows that long-baseline experiments have the
potential to achieve extreme sensitivities to Lorentz and
CPT violation in the 	� ! 	e appearance mode if there is

appreciable mass mixing arising from a comparatively
large value of �13. Since some of the predicted effects
are small, second-order effects may also play a role and
may need to be incorporated in a comprehensive analysis
of real data. If instead �13 is tiny or zero, studies of Lorentz
and CPT violation in the 	� ! 	e appearance mode can

be performed using the methodology of Ref. [16], as dis-
cussed in the previous subsection.

In the event that the listed experiments run in antineu-
trino mode, the attainable reach can be estimated similarly.

In the vacuum, the factors ðMð1Þ
�a �b
Þ �c �d are unaffected because

the parameter values (54) imply CP invariance, so the
corresponding amplitudes of the sidereal-variation proba-

bilities can be found by replacing ð~aLÞ�e� and ð~cLÞ��e� with

ð~aRÞ��e �� and ð~cRÞ���e ��. However, the contribution from mass-

induced mixing in Eq. (53) enters with opposite sign, so the
estimated amplitudes in Table II acquire corresponding
changes.

3. Example: 	� disappearance

Beams of 	� also provide opportunities to search for 	�

disappearance. The probability of 	� oscillating into other

neutrinos is given by

P	�!	X
¼ 1� P	�!	�

: (57)

The correction introduced by ðaLÞ�ab and ðcLÞ��ab coeffi-

cients is therefore given by

Pð1Þ
	�!	X

¼ �Pð1Þ
	�!	�

¼ �2L ImððSð0Þ��Þ�H ð1Þ
��Þ; (58)

where H ð1Þ
�� is defined in Eq. (44). Again, sidereal varia-

tions can arise from the anisotropies introduced by Lorentz

violation, and H ð1Þ
�� can be expanded in sidereal time

according to Eq. (45).

TABLE I. Approximate numerical values of experiment-dependent dimensionless factors

ðMð1Þ
e�Þcd for the experiments K2K, MINOS, OPERA, ICARUS, NO	A, T2K, DUSEL, and

T2KK. Numerical values are computed via Eq. (32) adopting the parameters (54), using
estimated beam baselines L and neutrino energies E for each experiment. Within this approxi-

mation, the antineutrino factors ðMð1Þ
�e ��Þ �c �d are identical.

Experiment K2K MINOS OPERA, ICARUS NO	A T2K DUSEL T2KK

ReðMð1Þ
e�Þee �0:05 �0:10 �0:01 �0:17 �0:16 �0:08 �0:11

ReðMð1Þ
e�Þe� 0.84 0.63 0.88 0.38 0.48 0.38 0.41

ReðMð1Þ
e�Þe� �0:13 �0:24 �0:02 �0:46 �0:46 �0:35 �0:39

ReðMð1Þ
e�Þ�e 0.00 0.00 0.00 0.00 0.00 0.01 0.01

ReðMð1Þ
e�Þ�� �0:05 �0:09 �0:01 �0:15 �0:15 �0:09 �0:11

ReðMð1Þ
e�Þ�� �0:01 �0:02 0.00 �0:01 �0:01 0.04 0.03

ReðMð1Þ
e�Þ�e 0.00 0.00 0.00 0.00 0.00 0.00 0.00

ReðMð1Þ
e�Þ�� �0:05 �0:08 �0:01 �0:14 �0:14 �0:06 �0:08

ReðMð1Þ
e�Þ�� �0:01 �0:01 0.00 0.00 0.00 0.03 0.02

ImðMð1Þ
e�Þee �0:08 �0:06 �0:02 �0:03 �0:08 0.10 0.07

ImðMð1Þ
e�Þe� �0:39 �0:62 �0:44 �0:61 �0:43 �0:34 �0:32

ImðMð1Þ
e�Þe� �0:24 �0:24 �0:06 �0:21 �0:27 0.17 0.12

ImðMð1Þ
e�Þ�e 0.00 0.01 0.00 0.02 0.03 �0:04 �0:03

ImðMð1Þ
e�Þ�� �0:07 �0:06 �0:02 �0:02 �0:02 �0:05 �0:05

ImðMð1Þ
e�Þ�� 0.01 0.02 0.00 0.07 0.08 �0:08 �0:06

ImðMð1Þ
e�Þ�e 0.00 0.01 0.00 0.02 0.02 �0:05 �0:04

ImðMð1Þ
e�Þ�� �0:06 �0:05 �0:02 0.00 0.00 �0:02 �0:02

ImðMð1Þ
e�Þ�� 0.01 0.02 0.00 0.06 0.07 �0:12 �0:10
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TABLE II. Estimated amplitudes of sidereal-variation probabilities ðPð1Þ
As

Þe�, ðPð1Þ
Ac

Þe�, ðPð1Þ
Bs
Þe�, and ðPð1Þ

Bc
Þe� for appearance

experiments with 	� ! 	e. The numerical value is listed for the estimated contribution to each amplitude from the real and imaginary

parts of the combinations ð~aLÞ�e� and ð~cLÞ��e� of fundamental coefficients for Lorentz and CPT violation. Values are given to one

decimal place, in dimensionless units for ð~aLÞ�e� and in units of GeV for ð~cLÞ��e� . A value of 0.0 indicates rounding to zero at this

precision, while a dash implies the value is identically zero. The last row lists the approximate sensitivity in GeVof each experiment.

Experiment K2K MINOS OPERA, ICARUS

Amplitude Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Reð~aLÞXe� �0:1 0.0 — — 0.0 0.1 — — 0.0 0.0 — —

Reð~aLÞYe� 0.0 0.1 — — 0.1 0.0 — — 0.0 0.0 — —

Reð~cLÞTXe� 0.4 0.0 — — 0.2 �0:3 — — �1:0 0.6 — —

Reð~cLÞTYe� 0.0 �0:4 — — �0:3 �0:2 — — 0.6 1.0 — —

Reð~cLÞXXe� — — 0.0 0.1 — — 0.1 0.0 — — 0.2 0.1

Reð~cLÞXYe� — — 0.0 �0:1 — — �0:1 0.0 — — �0:2 �0:1

Reð~cLÞXZe� 0.0 0.0 — — �0:1 0.2 — — �0:4 0.2 — —

Reð~cLÞYYe� — — 0.2 0.0 — — 0.0 �0:1 — — 0.3 �0:4

Reð~cLÞYZe� 0.0 0.0 — — 0.2 0.1 — — 0.2 0.4 — —

Imð~aLÞXe� 0.1 0.0 — — 0.1 �0:1 — — 0.0 0.0 — —

Imð~aLÞYe� 0.0 �0:1 — — �0:1 �0:1 — — 0.0 0.0 — —

Imð~cLÞTXe� �0:3 0.0 — — �0:4 0.5 — — 0.5 �0:3 — —

Imð~cLÞTYe� 0.0 0.0 — — 0.2 �0:3 — — 0.2 �0:1 — —

Imð~cLÞXXe� — — 0.0 �0:1 — — �0:1 0.0 — — �0:1 �0:1

Imð~cLÞXYe� — — 0.0 0.1 — — 0.1 0.0 — — 0.1 0.1

Imð~cLÞXZe� 0.0 0.0 — — 0.2 �0:3 — — 0.2 �0:1 — —

Imð~cLÞYYe� — — �0:1 0.0 — — 0.1 0.2 — — �0:1 0.3

Imð~cLÞYZe� 0.0 0.0 — — �0:3 �0:2 — — �0:1 �0:2 — —

Sensitivity <8� 10�23 <3� 10�23 <3� 10�23

Experiment NO	A T2K DUSEL T2KK

Amplitude Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Reð~aLÞXe� 0.0 0.0 — — 0.0 0.0 — — �0:1 0.0 — — �0:1 0.0 — —

Reð~aLÞYe� 0.0 0.0 — — 0.0 0.0 — — 0.0 0.1 — — 0.0 0.1 — —

Reð~cLÞTXe� 0.0 0.0 — — 0.0 0.0 — — 0.1 0.0 — — 0.1 0.0 — —

Reð~cLÞTYe� 0.0 0.0 — — 0.0 0.0 — — 0.0 �0:1 — — 0.0 �0:1 — —

Reð~cLÞXXe� — — 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0

Reð~cLÞXYe� — — 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0

Reð~cLÞXZe� 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0 — —

Reð~cLÞYYe� — — 0.0 0.0 — — 0.0 0.0 — — 0.1 0.0 — — 0.1 0.0

Reð~cLÞYZe� 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0 — —

Imð~aLÞXe� 0.2 �0:2 — — 0.3 0.0 — — 0.1 0.0 — — 0.2 0.0 — —

Imð~aLÞYe� �0:2 �0:2 — — 0.0 �0:3 — — 0.0 �0:1 — — 0.0 �0:2 — —

Imð~cLÞTXe� �0:6 0.8 — — �0:4 0.0 — — �0:3 0.0 — — �0:3 0.0 — —

Imð~cLÞTYe� 0.4 �0:5 — — 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0 — —

Imð~cLÞXXe� — — �0:2 0.1 — — 0.0 �0:1 — — 0.0 �0:1 — — 0.0 �0:1

Imð~cLÞXYe� — — 0.2 �0:1 — — 0.0 0.1 — — 0.0 0.1 — — 0.0 0.1

Imð~cLÞXZe� 0.4 �0:5 — — 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0 — —

Imð~cLÞYYe� — — 0.1 0.4 — — �0:2 0.0 — — �0:1 0.0 — — �0:2 0.0

Imð~cLÞYZe� �0:5 �0:4 — — 0.0 0.0 — — 0.0 0.0 — — 0.0 0.0 — —

Sensitivity <2� 10�23 <7� 10�23 <2� 10�23 <2� 10�23
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For 	� disappearance experiments, the sidereal decom-

position of the probability is given by Eq. (48) with fabg ¼
f��g. The four amplitudes ðPð1Þ

As
Þ��, ðPð1Þ

Ac
Þ��, ðPð1Þ

Bs
Þ��,

ðPð1Þ
Bc
Þ�� of the sidereal-variation probabilities are provided

in Eqs. (47) and (49). Their exact expressions in terms of

the combinations ð~aLÞ��� and ð~cLÞ���� of fundamental co-

efficients for Lorentz and CPT violation take the form

ð~aLÞ��� ¼ X
cd

ðMð1Þ
��ÞcdðaLÞ�cd;

ð~cLÞ���� ¼ X
cd

ðMð1Þ
��ÞcdðcLÞ��cd :

(59)

If needed, the experiment-dependent complex factors

ðMð1Þ
��Þcd controlling these linear combinations can be

obtained using Eq. (32).
In scenarios with oscillations occurring primarily be-

tween 	� and 	�, the probability for 	� disappearance

can be well approximated by restricting attention to two-
flavor vacuum mixing. This limit involves only one mass-
squared difference and one mixing angle, and it offers
another useful illustration of the general analysis given in
Sec. III A. In the event of tiny or zero �13, it is also the
relevant limit for the eight experiments considered above.
We adopt this case as our second illustrative example.

In the Lorentz-invariant two-flavor limit, an overall
diagonal term can be removed from the Hamiltonian
ðh0Þab because it is irrelevant for oscillations. This gives
a 2� 2 mass matrix of the form

ðh0Þab ’ 1

2E
Uy 0 0

0 �m2
32

� �
U: (60)

The flavor indices are now restricted to two generations,
a; b; . . . ¼ �, �. The mixing matrix U depends on the
mixing angle �23 according to

Ua0a ¼ c23 �s23
s23 c23

� �
: (61)

Note that CP violation due to mass mixing is strictly
unobservable in this limit. The single mass difference is
then given by

�m2
32 ¼ �m2

atm � �m2	 ’ �m2
atm: (62)

For the explicit estimations in this subsection, we choose
for �m2

atm and �23 the values

�m2
atm ’ 2:5� 10�3 eV2;

�23 ’ 45�;
(63)

which are consistent with the three-flavor parameter values
(54).

In the presence of Lorentz and CPT violation, the two-
generation approximation simplifies the expression (39)
for the first-order oscillation probabilities. With the two
flavors being 	� and 	�, we have

Sð0Þe� ¼ Sð0Þe� ¼ Sð0Þ�e ¼ Sð0Þ�e ¼ 0: (64)

This implies no mixing with electron neutrinos occurs in
the first-order perturbation. Also, inspection of the form of

ðMð1Þ
abÞcdðtÞ given in Eq. (32) reveals that only those co-

efficients for Lorentz violation lying in the two-flavor f��g
subspace can lead to first-order effects.
Explicitly, we find the first-order oscillation probabil-

ities are

Pð1Þ
	�$	�

¼ �Pð1Þ
	�!	�

¼ �Pð1Þ
	�!	�

¼ 2L ImððSð0Þ��Þ�H ð1Þ
��Þ

� Reð�h��ÞL sinð�m2
32L=2EÞ: (65)

We assume maximal mixing in the last expression, in
accordance with the parameter values (63). Note that
only the real part of ð�hÞ�� contributes to first-order mix-

ing in this limit. Also, the corresponding antineutrino
mixing probabilities are found by the index replacements
f��g ! f �� ��g, which is equivalent to changing the sign of
the coefficient ðaLÞ��� in ð�hÞ��.

The oscillation probability (65) can be decomposed into
sidereal amplitudes according to Eq. (48). The amplitudes
take the form (49) with the definitions (47). The two-flavor
approximation makes it straightforward to express the
latter directly in terms of the real parts of the fundamental

coefficients ðaLÞ��� and ðcLÞ���� rather than the intermediate

combinations ð~aLÞ��� and ð~cLÞ���� . We can use these results

to estimate experimental sensitivities to the real parts of

ðaLÞ��� and ðcLÞ���� for any specified experiment.

Table III presents the results of estimates for the eight
long-baseline beam experiments considered above. In each
experiment, numerical values are listed for the weighting

of the real parts ðaLÞ��� and ðcLÞ���� in the four amplitudes

ðPð1Þ
As

Þ��, ðPð1Þ
Ac

Þ��, ðPð1Þ
Bs
Þ��, and ðPð1Þ

Bc
Þ��. The last row

provides a rough approximation to the attainable sensitiv-
ity, based on assuming that a 10% sidereal variation in the
oscillation probability can be detected. The results indicate
that all these experiments can achieve impressive sensitiv-
ities to perturbative Lorentz and CPT violation.

C. CP and CPT asymmetries

In this subsection, we discuss the effects of Lorentz
violation on tests of the discrete symmetries CP and
CPT using neutrino oscillations. Experimentally, nature
is known to break CP invariance in the weak interactions,
although no CP violation in neutrino oscillations has yet
been detected. In contrast, compelling evidence for viola-
tion of CPT symmetry in any system is lacking to date. On
the theoretical front, CPT invariance has a profound con-
nection to Lorentz invariance in quantum field theory,
where the CPT theorem shows that under mild assump-
tions CPT violation is accompanied by Lorentz violation
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[8]. No such relationship exists forCP, and indeedCPmay
be violated even when Lorentz invariance holds.

Consider first CP violation. The CP transformation
interchanges oscillation probabilities according to

P	a!	b
$CPP �	a! �	b

; (66)

so CP violation can be revealed as differences in neutrino
and antineutrino probabilities. A generic measure of CP
violation for mixing involving flavors fa; bg is the asym-
metry

A CP
ab ¼ P	a!	b

� P �	a! �	b

P	a!	b
þ P �	a! �	b

; (67)

which is zero when CP is a symmetry of the oscillations.
Similar results hold for CPT. Under the CPT trans-

formation, the probabilities exchange according to

P	a!	b
$CPTP �	b! �	a

: (68)

For mixing involving flavors fa; bg, we can therefore define
the asymmetry

A CPT
ab ¼ P	a!	b

� P �	b! �	a

P	a!	b
þ P �	b! �	a

: (69)

This asymmetry vanishes if CPT invariance holds. Note,
however, that the converse is false: models can be con-
structed in which CPT is violated even when the asymme-
try ACPT

ab vanishes [13]. In such cases, detailed studies of

energy and direction dependences may be required to
reveal CPT violation.
For the special case of two-flavor models, the probabil-

ities are blind to possible T violation, so P	a!	b
¼ P	b!	a

and P �	a! �	b ¼ P �	b! �	a
. Consequently, the CP and CPT

asymmetries are identical in the two-flavor limit,

TABLE III. Estimated amplitudes of sidereal-variation probabilities ðPð1Þ
As

Þ��, ðPð1Þ
Ac

Þ��, ðPð1Þ
Bs
Þ��, and ðPð1Þ

Bc
Þ�� within the two-

generation approximation. The numerical value is listed for the estimated contribution to each amplitude from the real parts of the

fundamental coefficients ðaLÞ��� and ðcLÞ���� for Lorentz and CPT violation. Values are given to one decimal place, in dimensionless

units for ðaLÞ��� and in units of GeV for ðcLÞ���� . A value of 0.0 indicates rounding to zero at this precision, while a dash implies the

value is identically zero. The last row lists the approximate sensitivity in GeV of each experiment. Analogous results for possible

experiments with antineutrinos can be obtained by replacing ðaLÞ��� and ðcLÞ���� with ðaRÞ��� �� and ðcRÞ���� ��.

Experiment K2K MINOS OPERA, ICARUS

Amplitude Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

ReðaLÞX�� �0:5 0.0 — — �0:2 0.2 — — 0.1 �0:1 — —

ReðaLÞY�� 0.0 0.5 — — 0.2 0.2 — — �0:1 �0:1 — —

ReðcLÞTX�� 1.2 �0:1 — — 0.7 �1:0 — — �3:5 2.0 — —

ReðcLÞTY�� �0:1 �1:2 — — �1:0 �0:7 — — 2.0 3.5 — —

ReðcLÞXX�� — — 0.0 0.3 — — 0.2 �0:1 — — 0.8 0.5

ReðcLÞXY�� — — 0.0 �0:3 — — �0:2 0.1 — — �0:8 �0:5

ReðcLÞXZ�� �0:1 0.0 — — �0:4 0.6 — — �1:4 0.8 — —

ReðcLÞYY�� — — 0.6 �0:1 — — �0:1 �0:4 — — 0.9 �1:6

ReðcLÞYZ�� 0.0 0.1 — — 0.6 0.4 — — 0.8 1.4 — —

Sensitivity <8� 10�23 <3� 10�23 <3� 10�23

Experiment NO	A T2K DUSEL T2KK

Amplitude Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

Pð1Þ
As

Pð1Þ
Ac

Pð1Þ
Bs

Pð1Þ
Bc

ReðaLÞX�� �0:1 0.2 — — �0:2 0.0 — — �0:5 0.0 — — �0:5 0.0 — —

ReðaLÞY�� 0.2 0.1 — — 0.0 0.2 — — 0.0 0.5 — — 0.0 0.5 — —

ReðcLÞTX�� 0.6 �0:8 — — 0.2 0.0 — — 1.0 0.0 — — 0.8 0.1 — —

ReðcLÞTY�� �0:8 �0:6 — — 0.0 �0:2 — — 0.0 �1:0 — — 0.1 �0:8 — —

ReðcLÞXX�� — — 0.2 �0:1 — — 0.0 0.1 — — 0.0 0.2 — — 0.0 0.2

ReðcLÞXY�� — — �0:2 0.1 — — 0.0 �0:1 — — 0.0 �0:2 — — 0.0 �0:2

ReðcLÞXZ�� �0:4 0.5 — — 0.0 0.0 — — �0:2 0.0 — — 0.1 0.0 — —

ReðcLÞYY�� — — �0:1 �0:3 — — 0.1 0.0 — — 0.5 0.0 — — 0.4 0.1

ReðcLÞYZ�� 0.5 0.4 — — 0.0 0.0 — — 0.0 0.2 — — 0.0 �0:1 — —

Sensitivity <2� 10�23 <7� 10�23 <2� 10�23 <2� 10�23
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A CP
ab ¼ ACPT

ab ; a; b ¼ �; �: (70)

Note, however, that CPT violation may present itself in
other ways, such as unconventional energy and direction
dependence.

The above asymmetries can be used to test both CP and
CPT in neutrino-oscillation experiments. In the Lorentz-
invariant case, violation of CP symmetry occurs when both
the mixing angle �13 and the CP phase � are nonzero.
Measuring �13 and searching for CP violation are major
goals of many forthcoming oscillation experiments. Some
experiments can change polarity, choosing to focus either
positively or negatively charged mesons into the decay
pipe, and hence can run in both neutrino and antineutrino
modes. This feature may permit high-statistics direct
searches for CP violation. The nature of the beam or other
properties may also lead to accumulation of neutrino and
antineutrino data. In all these cases, both Lorentz-
conserving and Lorentz-violating situations can be ac-
cessed, thereby enabling also searches for CPT violation.

The interpretation of asymmetries constructed from ex-
perimental data requires a theoretical framework. One
phenomenological approach to CPT violation assumes
different masses and mixing angles for neutrinos and anti-
neutrinos. In the two-flavor case, for example, this ap-
proach takes a set of parameters ð�m2; �Þ for neutrinos
and a second set ð� �m2; ��Þ for antineutrinos. It is tempting
to adopt the resulting explicit expression for the asymmetry
ACPT

ab � ACP
ab for purposes of data analysis and interpre-

tation, treating the parameters �m2, � �m2, �, and �� as
Lorentz-scalar constants. However, according to the CPT
theorem this procedure is inconsistent with quantum field
theory because under mild assumptions CPT violation in
field theory must come with Lorentz violation [8], so the
parameters �m2, � �m2, �, and �� cannot be Lorentz scalars.
Instead, they must depend on the 4-momentum of the
neutrino, including both the energy E and the propagation
direction p̂ relative to the Sun-centered frame. A typical
experiment involves neutrinos spanning a spectrum of
values for E and p̂. The 4-momentum dependence of the
asymmetry therefore entails significant consequences for
data analysis and its interpretation in searches for CPT
violation.

As an illustration, we derive here the explicit first-order
form of the two-flavor CPT asymmetries ACPT

�� ¼ ACP
��

and ACPT
�� ¼ ACP

�� in the field-theoretic context. For def-

initeness we assume maximal mixing, which is consistent
with the parameter values (63). At first order, calculation
reveals these asymmetries depend on the coefficients
ðaLÞ��� for Lorentz and CPT violation but are independent

of ðcLÞ���� .
To present the asymmetries, it is convenient to introduce

the CPT-odd part ð�hÞCPT�� of the perturbative Hamiltonian

ð�hÞ�� with coefficients expressed in the Sun-centered

frame,

ð�hÞCPT�� � ð�hÞ��jcL!0

¼ ðaLÞT�� � N̂ZðaLÞZ��

þ ðN̂YðaLÞX�� � N̂XðaLÞY��Þ sin!�T�
� ðN̂XðaLÞX�� þ N̂YðaLÞY��Þ cos!�T�: (71)

In terms of this quantity, we find that the CPT asymmetry
ACPT

�� is

A CPT
�� ¼ ACP

�� � 2L cot

�
�m2

32L

4E

�
Reð�hÞCPT�� : (72)

This result is valid provided the experiment operates away
from the region of parameter space leading to small oscil-
lations, sinð�m2

32L=4EÞ å 0. For the second CPT asym-

metry ACPT
�� , we obtain

A CPT
�� ¼ ACP

�� � �2L tan

�
�m2

32L

4E

�
Reð�hÞCPT�� ; (73)

where now we assume the experiment operates away from
the region of parameter space leading to large oscillations,
sinð�m2

32L=4EÞ å 1. Inspection of these results reveals

that the two asymmetries ACPT
�� in Eq. (72) and ACPT

��

in Eq. (73) contain the same essential information about
CPT violation but are valid in different regions of parame-
ter space. In practice, at least one of the two asymmetries
can be applied for a given experiment.
The results (72) and (73) display several interesting

features. The asymmetries grow with baseline L, so experi-
ments with comparable statistical power but longer base-
lines have improved sensitivity. According to Eq. (71), the
asymmetries also vary with sidereal time T� and depend on
the direction of the neutrino beam. Both these effects are
features of CPT violation and its accompanying Lorentz
breaking. We remark in passing that the structure of the
above equations bears a close similarity to that of the
analogous measures for CPT violation in studies of neutral
mesons. For example, the dependence of ð�hÞCPT�� on the

coefficients ðaLÞ��� in Eq. (71) parallels that of the measure

of CPT violation given in Eq. (14) of Ref. [65].
In a given experiment, measuring the amplitudes of the

sidereal variations in the asymmetries (72) and (73) may
produce interesting sensitivities to the coefficient combi-

nations ðN̂YðaLÞX�� � N̂XðaLÞY��Þ and ðN̂XðaLÞX�� þ
N̂YðaLÞY��Þ. These combinations are independent of the

coefficients ðcLÞ���� for CPT-even Lorentz violation.
Inspection of Eq. (71) reveals that each asymmetry also
depends on the coefficients ðaLÞT�� and ðaLÞZ��, which are

inaccessible via direct sidereal decomposition of the oscil-
lation probabilities or asymmetries. One way to extract
sensitivity to these coefficients is to average the data over
time, in analogy to the extraction of the corresponding
coefficients for CPT violation in experiments with neutral

mesons [66]. The time-averaged asymmetry ACPT
�� is
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ACPT
�� � 2L cot

�
�m2

32L

4E

�
Re½ðaLÞT�� � N̂ZðaLÞZ���;

(74)

while the time-averaged asymmetry ACPT
�� is

ACPT
�� � �2L tan

�
�m2

32L

4E

�
Re½ðaLÞT�� � N̂ZðaLÞZ���:

(75)

Note that these results remain dependent on the beam
direction despite the time averaging. Each asymmetry
therefore typically has distinct physical meanings for dif-

ferent experiments. For example, the directional factor N̂Z

is N̂Z ’ 0:1 for K2K, N̂Z ’ 0:6 for MINOS, N̂Z ’ �0:4 for

OPERA and ICARUS, N̂Z ’ 0:6 for NO	A, N̂Z ’ �0:01

for T2K, N̂Z ’ 0:2 for DUSEL, and N̂Z ’ �0:1 for T2KK.
While experiments capable of CP tests necessarily test

for CPT signals in the two-flavor approximation, the CPT
signature P	a!	b

� P �	b! �	a may be more challenging to

detect in three-neutrino scenarios. Data from the accelera-
tor experiments discussed above or from next-generation
studies using a beta beam [60] or a dedicated neutrino
factory [67] could be well suited for seeking three-flavor
CPT violation through direct comparisons of neutrinos and
antineutrinos using the asymmetry ACPT

ab of Eq. (69).

Suitable comparisons of neutrinos and antineutrinos, per-
haps including time averaging as above, could also lead to
measurements of coefficient combinations without accom-
panying sidereal variations.

IV. COEFFICIENTS ~g��
a �b

AND ~H�
a �b

In this section, we discuss the dominant effects on

neutrino oscillations arising from the coefficients ~g��
a �b

and ~H�
a �b
. As shown in Eq. (39), these coefficients leave

the oscillation probabilities unaffected at first order. The
dominant effects appear at second order, where the prob-
abilities are given by Eq. (41).

The features introduced by ~g��
a �b

and ~H�
a �b

include uncon-

ventional energy and directional dependences. However,
some key differences arise compared to the case of the

coefficients ðaLÞ�ab and ðcLÞ��ab . For example, the dominant

sidereal variations include higher harmonics with frequen-
cies up to 4!�. Another example is mixing between neu-
trinos and antineutrinos [13], which violates lepton-

number conservation. This feature arises because ~g��
a �b

and ~H�
a �b

lie in the off-diagonal blocks of the perturbative

Hamiltonian (9).
In Sec. IVA, we focus on the second-order contributions

to the neutrino-antineutrino oscillation probability Pð2Þ
�	b!	a

,

which involves lepton-number violation. The second-order
effects on the neutrino-neutrino and antineutrino-

antineutrino mixing probabilities Pð2Þ
	b!	a

and Pð2Þ
�	b! �	a

are

considered in Sec. IVB.

A. Oscillations violating lepton number

In this subsection, we derive the sidereal behavior of the

second-order oscillation probability Pð2Þ
�	b!	a

for neutrino-

antineutrino mixing. Equations (40) and (41) specify this
probability in terms of the perturbative Hamiltonian �ha �b,

which itself depends on the coefficients ~g��
a �b

and ~H�
a �b

according to Eq. (15). Note that neutrino-antineutrino os-
cillations are independent of the coefficients ðaLÞ�ab and

ðcLÞ��ab at this order.

To determine the sidereal decomposition of the off-
diagonal block �ha �b of the perturbative Hamiltonian, we
note that ~H�

a �b
is an observer vector and hence induces

effects at frequency !�, while ~g��
a �b

is a 2-tensor and hence

induces effects at!� and 2!�. The sidereal decomposition
of �ha �b therefore takes the form

�ha �b � �i
ffiffiffi
2

p ð�þÞ�½~g��p� � ~H��a �b

¼ ðCÞa �b þ ðAsÞa �b sin!�T� þ ðAcÞa �b cos!�T�
þ ðBsÞa �b sin2!�T� þ ðBcÞa �b cos2!�T�: (76)

In this expression, the amplitudes ðCÞa �b, ðAsÞa �b, ðAcÞa �b,
ðBsÞa �b, and ðBcÞa �b are direction-dependent linear combi-

nations of the coefficients ~g��
a �b

and ~H�
a �b

for Lorentz

violation.
The direction dependence is governed by two vectors,

the momentum ~p and the polarization ~�þ. The momentum
is determined by the beam direction, which varies sidere-
ally and is specified at time T� ¼ 0 in the Sun-centered

frame by the vector ðN̂X; N̂Y; N̂ZÞ given in local spherical
coordinates by Eq. (46). We denote the analogous vector

for ~�þ by ðÊX
þ; Ê

Y
þ; Ê

Z
þÞ. In the same local spherical coor-

dinates, this vector has components

ÊX
þ ¼ 1ffiffiffi

2
p ðcos�ðcos� cos�� i sin�Þ � sin� sin�Þ;

ÊY
þ ¼ 1ffiffiffi

2
p ðcos� sin�þ i cos�Þ;

ÊZ
þ ¼ � 1ffiffiffi

2
p ðsin�ðcos� cos�� i sin�Þ þ cos� sin�Þ;

(77)

where we have used the expression (18) for ð�þÞj.
Some calculation reveals that the sidereal amplitudes in

Eq. (76) are given as
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ðCÞa �b ¼ �i
ffiffiffi
2

p �
ÊZ
þ ~HZ

a �b
� ÊZ

þE~gZTa �b
þ ÊZ

þN̂ZE

�
~gZZ
a �b

� 1

2
~gXX
a �b

� 1

2
~gYY
a �b

�
þ i

2
ÊZ
þEð~gXYa �b

� ~gYX
a �b
Þ
�
;

ðAsÞa �b ¼ �i
ffiffiffi
2

p ½�ÊY
þ ~HX

a �b
þ ÊX

þ ~HY
a �b

þ ÊY
þE~gXTa �b

� ÊX
þE~gYTa �b

� ÊY
þN̂ZE~gXZ

a �b
þ ÊX

þN̂ZE~gYZ
a �b

� ÊZ
þN̂YE~gZX

a �b
þ ÊZ

þN̂XE~gZY
a �b
�;

ðAcÞa �b ¼ �i
ffiffiffi
2

p ½ÊX
þ ~HX

a �b
þ ÊY

þ ~HY
a �b

� ÊX
þE~gXTa �b

� ÊY
þE~gYTa �b

þ ÊX
þN̂ZE~gXZ

a �b
þ ÊY

þN̂ZE~gYZ
a �b

þ ÊZ
þN̂XE~gZX

a �b
þ ÊZ

þN̂YE~gZY
a �b
�;

ðBsÞa �b ¼ �i
ffiffiffi
2

p �
1

2
ðÊX

þN̂X � ÊY
þN̂YÞEð~gXY

a �b
þ ~gYX

a �b
Þ � 1

2
ðÊX

þN̂Y þ ÊY
þN̂XÞEð~gXX

a �b
� ~gYY

a �b
Þ
�
;

ðBcÞa �b ¼ �i
ffiffiffi
2

p �
1

2
ðÊX

þN̂Y þ ÊY
þN̂XÞEð~gXY

a �b
þ ~gYX

a �b
Þ þ 1

2
ðÊX

þN̂X � ÊY
þN̂YÞEð~gXX

a �b
� ~gYY

a �b
Þ
�
: (78)

This completes the decomposition of �ha �b in terms of the
sidereal time T�, the coefficients ~g��

a �b
, ~H�

a �b
, and the com-

ponents N̂J, ÊJ
þ. The analogous decomposition for �h �ba is

obtained by taking the Hermitian conjugate, following
Eq. (15).

At dominant order, the neutrino-antineutrino mixing is

controlled by the linear combinations H ð1Þ
a �b

and H ð1Þ
�ab

given in Eq. (40). The sidereal dependence of �ha �b trans-
fers to these combinations, leading to the expansion

H ð1Þ
a �b

¼ ðCð1ÞÞa �b þ ðAð1Þ
s Þa �b sin!�T�

þ ðAð1Þ
c Þa �b cos!�T� þ ðBð1Þ

s Þa �b sin2!�T�

þ ðBð1Þ
c Þa �b cos2!�T�; (79)

with a similar expression for H ð1Þ
�ab . The coefficients ~g��

a �b

and ~H�
a �b

appear in this expansion in linear combinations

weighted by the complex experiment-dependent factors

ðMð1Þ
a �b
Þc �d and ðMð1Þ

�abÞ �cd given in Eq. (32). It is convenient

to introduce the definitions

~~g��
a �b

¼ X
c �d

ðMð1Þ
a �b
Þc �d~g��c �d ;

~~H
�
a �b ¼

X
c �d

ðMð1Þ
a �b
Þc �d ~H�

c �d
;

~~g���ab ¼ X
�cd

ðMð1Þ
�abÞ �cd~g���cd ¼X

�cd

ðMð1Þ
�abÞ �cd~g���d �c ;

~~H
�
�ab ¼ X

�cd

ðMð1Þ
�abÞ �cd ~H�

�cd ¼
X
�cd

ðMð1Þ
�abÞ �cd ~H��

d �c :

(80)

In terms of these, the sidereal amplitudes ðCð1ÞÞa �b,

ðAð1Þ
s Þa �b, ðAð1Þ

c Þa �b, ðBð1Þ
s Þa �b, ðBð1Þ

c Þa �b take the same form

as the corresponding amplitudes in Eq. (78) but with ~g��
a �b

and ~H�
a �b

replaced with ~~g��
a �b

and ~~H
�
a �b. For the coefficient

combinations H ð1Þ
�ba
, we can define analogous sidereal am-

plitudes ðCð1ÞÞ �ba, ðAð1Þ
s Þ �ba, ðAð1Þ

c Þ �ba, ðBð1Þ
s Þ �ba, ðBð1Þ

c Þ �ba. The
forms of these can also be obtained from Eq. (78), by first
taking the Hermitian conjugates of the expressions on the

right-hand side and then replacing ~g���ba ,
~H��

�ba
with ~~g���ba ,

~~H
�
�ba.

According to Eq. (41), the combinations H ð1Þ
a �b

contrib-

ute quadratically to the second-order neutrino-antineutrino

probabilities Pð2Þ
�	b!	a

. This implies that sidereal variations

at frequencies up to 4!� are observable. Consequently, we

expand Pð2Þ
�	b!	a

as

Pð2Þ
�	b!	a

L2
� jH ð1Þ

a �b
j2

¼ ðPð2Þ
C Þa �b þ ðPð2Þ

As
Þa �b sin!�T�

þ ðPð2Þ
Ac

Þa �b cos!�T� þ ðPð2Þ
Bs
Þa �b sin2!�T�

þ ðPð2Þ
Bc
Þa �b cos2!�T� þ ðPð2Þ

Ds
Þa �b sin3!�T�

þ ðPð2Þ
Dc

Þa �b cos3!�T� þ ðPð2Þ
F s
Þa �b sin4!�T�

þ ðPð2Þ
F c
Þa �b cos4!�T�: (81)

Each of the nine amplitudes in this equation is a quadratic

combination of the coefficients ~g��
a �b

and ~H�
a �b

for Lorentz

violation. These combinations depend on the mass matrix
and also vary with the experimental scenario through the
neutrino energy and the direction of propagation.
The explicit forms of the amplitudes in Eq. (81) are

somewhat lengthy and are omitted here. However, we
can obtain compact expressions in terms of the amplitudes

for the sidereal decomposition of H ð1Þ
a �b
, which are defined

in Eq. (79). For the harmonics up to 2!�, some calculation
yields the results

ðPð2Þ
C Þa �b ¼ jðCð1ÞÞa �bj2 þ

1

2
jðAð1Þ

s Þa �bj2 þ
1

2
jðAð1Þ

c Þa �bj2

þ 1

2
jðBð1Þ

s Þa �bj2 þ
1

2
jðBð1Þ

c Þa �bj2;
ðPð2Þ

As
Þa �b ¼ Re½2ðCð1ÞÞ�

a �b
ðAð1Þ

s Þa �b þ ðAð1Þ
c Þ�

a �b
ðBð1Þ

s Þa �b

� ðAð1Þ
s Þ�

a �b
ðBð1Þ

c Þa �b�;
ðPð2Þ

Ac
Þa �b ¼ Re½2ðCð1ÞÞ�

a �b
ðAð1Þ

c Þa �b þ ðAð1Þ
s Þ�

a �b
ðBð1Þ

s Þa �b

þ ðAð1Þ
c Þ�

a �b
ðBð1Þ

c Þa �b�;
ðPð2Þ

Bs
Þa �b ¼ Re½2ðCð1ÞÞ�

a �b
ðBð1Þ

s Þa �b þ ðAð1Þ
s Þ�

a �b
ðAð1Þ

c Þa �b�;
ðPð2Þ

Bc
Þa �b ¼ 2Re½ðCð1ÞÞ�

a �b
ðBð1Þ

c Þa �b� � jðAð1Þ
s Þa �bj2

þ jðAð1Þ
c Þa �bj2; (82)
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while for the harmonics at 3!� and 4!� we obtain

ðPð2Þ
Ds
Þa �b ¼ Re½ðAð1Þ

s Þ�
a �b
ðBð1Þ

c Þa �b þ ðAð1Þ
c Þ�

a �b
ðBð1Þ

s Þa �b�;
ðPð2Þ

Dc
Þa �b ¼ Re½ðAð1Þ

c Þ�
a �b
ðBð1Þ

c Þa �b � ðAð1Þ
s Þ�

a �b
ðBð1Þ

s Þa �b�;
ðPð2Þ

F s
Þa �b ¼ Re½ðBð1Þ

s Þ�
a �b
ðBð1Þ

c Þa �b�;
ðPð2Þ

F c
Þa �b ¼ jðBð1Þ

c Þa �bj2 � jðBð1Þ
s Þa �bj2:

(83)

The structure of these equations reflects the frequency

dependence in the sidereal decomposition (79) of H ð1Þ
a �b
.

For example, the amplitudes ðPð2Þ
F s
Þa �b, ðPð2Þ

F c
Þa �b for the

fourth harmonic 4!� of the probability Pð2Þ
�	b!	a

involve

quadratic products of the amplitudes ðBð1Þ
s Þa �b, ðBð1Þ

c Þa �b for

the second harmonic 2!� of H ð1Þ
a �b
, as expected.

Comparable expressions for the CP-conjugate transition

probability Pð2Þ
	b! �	a

can readily be obtained following the

same procedure. The results take the same form as
Eqs. (81) and (83), but with the index replacement fa �bg !
f �abg.

In the event that neutrino-antineutrino oscillations are
observed in nature, the sidereal decomposition of the

probability Pð2Þ
�	b!	a

and its CP conjugate offers a powerful

approach to identifying the relevant coefficients ~g��
a �b

and
~H�
a �b
. Each experimental analysis separating the available

sidereal harmonics would generate eight independent mea-
surements, with multiple experiments able to constrain
much of the available coefficient space.

B. Oscillations conserving lepton number

The analysis in the previous subsection demonstrates
that the detection of 	 $ �	 oscillations is a unique signal

for nonzero coefficients ~g��
a �b

and ~H�
a �b
. However, these

coefficients also contribute at second order to the more
conventional 	 $ 	 and �	 $ �	 mixings. For complete-
ness, we present the associated equations in this subsec-

tion. Effects quadratic in the coefficients ðaLÞ�ab and ðcLÞ��ab
also appear at this order. Inspection of Eq. (41) reveals that
these contribute independently to the oscillation probabil-
ities, so we set them to zero here for simplicity.
The probabilities for 	 $ 	 and �	 $ �	 mixing are

affected at second order by �ha �b through its quadratic

appearance in the quantities H ð2Þ
ab and H ð2Þ

�a �b
defined in

Eq. (42). This produces sidereal variations at harmonics up

to frequency 4!�. We can therefore decompose H ð2Þ
ab as

the sidereal expansion

H ð2Þ
ab � X

c �d �e f

ðMð2Þ
abÞc �d �e f�hc �d�h �ef

¼ ðCð2ÞÞab þ ðAð2Þ
s Þab sin!�T� þ ðAð2Þ

c Þab cos!�T�

þ ðBð2Þ
s Þab sin2!�T� þ ðBð2Þ

c Þab cos2!�T�

þ ðDð2Þ
s Þab sin3!�T� þ ðDð2Þ

c Þab cos3!�T�

þ ðF ð2Þ
s Þab sin4!�T� þ ðF ð2Þ

c Þab cos4!�T�: (84)

The nine amplitudes in the above expression can be written
as combinations of the experiment-dependent factors

ðMð2Þ
abÞc �d �e f and the five sidereal coefficients for the per-

turbative Hamiltonian �ha �b listed in Eq. (78). For the
amplitudes of the harmonics with frequencies 2!� or
less in the expansion (84), we find the results

ðCð2ÞÞab ¼
X
c �d �e f

ðMð2Þ
abÞc �d �e f

�
ðCÞc �dðCÞ �ef þ

1

2
ðAsÞc �dðAsÞ �ef þ 1

2
ðAcÞc �dðAcÞ �ef þ 1

2
ðBsÞc �dðBsÞ �ef þ 1

2
ðBcÞc �dðBcÞ �ef

�
;

ðAð2Þ
s Þab ¼

X
c �d �e f

ðMð2Þ
abÞc �d �e f

�
ðCÞc �dðAsÞ �ef þ ðAsÞc �dðCÞ �ef �

1

2
ðAsÞc �dðBcÞ �ef þ 1

2
ðAcÞc �dðBsÞ �ef þ 1

2
ðBsÞc �dðAcÞ �ef

� 1

2
ðBcÞc �dðAsÞ �ef

�
;

ðAð2Þ
c Þab ¼

X
c �d �e f

ðMð2Þ
abÞc �d �e f

�
ðCÞc �dðAcÞ �ef þ ðAcÞc �dðCÞ �ef þ

1

2
ðAsÞc �dðBsÞ �ef þ 1

2
ðAcÞc �dðBcÞ �ef þ 1

2
ðBsÞc �dðAsÞ �ef

þ 1

2
ðBcÞc �dðAcÞ �ef

�
;

ðBð2Þ
s Þab ¼

X
c �d �e f

ðMð2Þ
abÞc �d �e f

�
ðCÞc �dðBsÞ �ef þ ðBsÞc �dðCÞ �ef þ

1

2
ðAsÞc �dðAcÞ �ef þ 1

2
ðAcÞc �dðAsÞ �ef

�
;

ðBð2Þ
c Þab ¼

X
c �d �e f

ðMð2Þ
abÞc �d �e f

�
ðCÞc �dðBcÞ �ef þ ðBcÞc �dðCÞ �ef �

1

2
ðAsÞc �dðAsÞ �ef þ 1

2
ðAcÞc �dðAcÞ �ef

�
:

(85)

For the remaining harmonics in the expansion (84) with frequencies 3!� and 4!�, the results for the amplitudes are
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ðDð2Þ
s Þab ¼

X
c �d �e f

ðMð2Þ
abÞc �d �e f �

1

2
½ðAsÞc �dðBcÞ �ef þ ðAcÞc �dðBsÞ �ef þ ðBsÞc �dðAcÞ �ef þ ðBcÞc �dðAsÞ �ef�;

ðDð2Þ
c Þab ¼

X
c �d �e f

ðMð2Þ
abÞc �d �e f �

1

2
½�ðAsÞc �dðBsÞ �ef þ ðAcÞc �dðBcÞ �ef � ðBsÞc �dðAsÞ �ef þ ðBcÞc �dðAcÞ �ef�;

ðF ð2Þ
s Þab ¼

X
c �d �e f

ðMð2Þ
abÞc �d �e f �

1

2
½ðBsÞc �dðBcÞ �ef þ ðBcÞc �dðBsÞ �ef�;

ðF ð2Þ
c Þab ¼

X
c �d �e f

ðMð2Þ
abÞc �d �e f �

1

2
½�ðBsÞc �dðBsÞ �ef þ ðBcÞc �dðBcÞ �ef�:

(86)

Analogous expressions for the sidereal decomposition of the quantitiesH ð2Þ
�a �b

and the resulting amplitudes can be obtained
by substituting barred for unbarred indices and vice versa.

The second-order probability for neutrino-neutrino oscillations inherit the same sidereal-frequency structure.
Introducing the expansion

Pð2Þ
	b!	a

L2
� �ReððSð0ÞabÞ�H ð2Þ

abÞ
¼ ðPð2Þ

C Þab þ ðPð2Þ
As

Þab sin!�T� þ ðPð2Þ
Ac

Þab cos!�T� þ ðPð2Þ
Bs
Þab sin2!�T� þ ðPð2Þ

Bc
Þab cos2!�T�

þ ðPð2Þ
Ds
Þab sin3!�T� þ ðPð2Þ

Dc
Þab cos3!�T� þ ðPð2Þ

F s
Þab sin4!�T� þ ðPð2Þ

F c
Þab cos4!�T�; (87)

we find the nine corresponding amplitudes for the proba-
bility are given by the equations

ðPð2Þ
C Þab ¼ �ReððSð0ÞabÞ�ðCð2ÞÞabÞ;

ðPð2Þ
As

Þab ¼ �ReððSð0ÞabÞ�ðAð2Þ
s ÞabÞ;

ðPð2Þ
Ac

Þab ¼ �ReððSð0ÞabÞ�ðAð2Þ
c ÞabÞ;

ðPð2Þ
Bs
Þab ¼ �ReððSð0ÞabÞ�ðBð2Þ

s ÞabÞ;
ðPð2Þ

Bc
Þab ¼ �ReððSð0ÞabÞ�ðBð2Þ

c ÞabÞ;
ðPð2Þ

Ds
Þab ¼ �ReððSð0ÞabÞ�ðDð2Þ

s ÞabÞ;
ðPð2Þ

Dc
Þab ¼ �ReððSð0ÞabÞ�ðDð2Þ

c ÞabÞ;
ðPð2Þ

F s
Þab ¼ �ReððSð0ÞabÞ�ðF ð2Þ

s ÞabÞ;
ðPð2Þ

F c
Þab ¼ �ReððSð0ÞabÞ�ðF ð2Þ

c ÞabÞ:

(88)

The probability for antineutrino-antineutrino oscillations
can be found from the above equations by replacing all
indices fabg with f �a �bg.

The calculations in this subsection demonstrate that
searches for sidereal variations in 	 $ 	 and �	 $ �	 oscil-
lations at the higher frequencies 3!� and 4!� can offer

access to the coefficients ~g��
a �b

and ~H�
a �b

for Lorentz viola-

tion without the need to study 	 $ �	 oscillations.
Moreover, in addition to studies based on the above direct
sidereal decompositions, investigation of the CP and CPT
asymmetries (67) and (69) introduced in Sec. III C pro-
vides another avenue for data analysis. As before, the time-

averaged versions of these asymmetries offer sensitivities
to coefficients that are challenging to detect in searches for
sidereal variations. In all these studies, the second-order
effects enter in conjunction with a factor of L2, so the large
baselines associated with the experiments considered in
Sec. III imply that their intrinsic sensitivities to the coef-

ficients ~g��
a �b

and ~H�
a �b

are only mildly suppressed relative to

the sensitivities to ðaLÞ�ab and ðcLÞ��ab .

V. SUMMARY

In this paper, we study the effects of perturbative
Lorentz and CPT violation on neutrino oscillations domi-
nated by mass mixing. The primary focus is on corrections
arising from renormalizable operators for Lorentz viola-
tion within effective field theory. In the neutrino sector,
these operators are controlled by SME coefficients for

Lorentz violation denoted ðaLÞ�ab, ðcLÞ��ab , ~g��a �b
, and ~H�

a �b
.

They can affect conventional oscillations in 	 $ 	 and
�	 $ �	mixing. They also can induce 	 $ �	mixing, which
violates lepton number.
Using time-dependent perturbation theory, a series ex-

pansion for the oscillation probabilities is derived in
Sec. II. To second order in coefficients for Lorentz and
CPT violation, the probabilities for a nondegenerate mass
spectrum are presented in Eqs. (35), (36), (39), and (41). At

first order, only the coefficients ðaLÞ�ab and ðcLÞ��ab contrib-

ute, and lepton number is preserved. Oscillations involving
	 $ �	 mixing appear at second order, governed by the

coefficients ~g��
a �b

and ~H�
a �b
.
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A key feature introduced by Lorentz and CPT violation
is variations in the oscillation probabilities with sidereal
time. The sidereal dependence arising from the coefficients

ðaLÞ�ab and ðcLÞ��ab is discussed in Sec. III A. It is described

by the expansion (48), which involves first and second
harmonics in the sidereal frequency. At this order, the
amplitudes for each harmonic are linear combinations of

ðaLÞ�ab and ðcLÞ��ab . Data analyses using binning in sidereal

time can therefore measure these coefficients.
Section III B addresses the methodology for data analy-

ses and provides illustrative estimates of numerical quan-
tities relevant for sidereal investigations in several long-
baseline experiments. The results are summarized in
Tables I through III. For the three-generation case, we
demonstrate the procedure to identify the relevant linear

combinations of ðaLÞ�ab and ðcLÞ��ab , using the K2K,

MINOS, OPERA, ICARUS, NO	A, T2K, DUSEL, and
T2KK experiments as examples. The two-flavor limit is
also considered. In this case, the sidereal expansion is
considerably simplified and the oscillation probability
takes the comparatively elegant form (65).

In addition to direct sidereal studies, Lorentz and CPT
violation can be sought through analysis of CP and CPT
asymmetries in experimental data. This topic is addressed
in Sec. III C. Suitable CP and CPT asymmetries are de-
fined in Eqs. (67) and (69). In the two-flavor limit, these
coincide and take the comparatively simple form (72) or
(73). Experiments running in both neutrino and antineu-
trino modes can probe CP and CPT via this route.
Analyses along the lines proposed here could provide
access to different combinations of coefficients for
Lorentz and CPT violation, including ones that are chal-
lenging to detect via studies of sidereal variations.

In Sec. IV, we consider effects arising from nonzero

coefficients ~g��
a �b

and ~H�
a �b
. Among the features is mixing

between neutrinos and antineutrinos, implying violations
of lepton number. These coefficients have no first-order
perturbative effects. Their dominant contributions arise at
second order, where the probabilities involve quadratic

combinations of ~g��
a �b

and ~H�
a �b
. This induces sidereal var-

iations with harmonics up to 4 times the sidereal frequency
in all three kinds of mixings, 	 $ 	, �	 $ �	, and 	 $ �	.
The probabilities for neutrino-antineutrino mixing are
given in Eq. (81), while those for neutrino-neutrino mixing
take the similar form (87).

Overall, we find that the dominant effects of renorma-
lizable operators for Lorentz and CPT violation in the

neutrino sector generate variations in oscillation probabil-
ities up to 4 times the sidereal frequency. Subdominant
perturbative effects may also offer useful information.
These higher-order perturbations cause sidereal effects at
higher harmonics, with signals suppressed compared to the
ones discussed here. We remark that other harmonics can
also arise from Lorentz-violating operators of nonrenor-
malizable dimensions [13]. A comprehensive SME-based
study in analogy to that performed for electrodynamics
[68] could establish the corresponding signals of Lorentz
and CPT violation in neutrinos.
The results in this work demonstrate that excellent sen-

sitivity to Lorentz and CPT violation is attainable by
studying neutrino oscillations with high energies and
long baselines. Our primary focus has been beam experi-
ments, where existing constraints [10–12] span only a few
percent of the available coefficient space. The procedures
outlined in this work provide access to essentially all the
coefficient space, and moreover at sensitivities that can
exceed the current ones by about 2 orders of magnitude.
An interesting direction for further work using a longer

baseline is a systematic investigation of perturbative ef-
fects of Lorentz and CPT violation on solar neutrinos, for
which day-night and annual signals play a role analogous
to sidereal effects in beam experiments. Future searches for
Lorentz and CPT violation using extreme baselines could
also include studies of oscillations and dispersion for su-
pernova neutrinos, for which a sufficient population over a
substantial solid angle would offer interesting sensitivity to
a significant portion of the coefficient space. A more
speculative possibility using a cosmological baseline
would be the search for anisotropies in eventual observa-
tions of the cosmic neutrino background. The maximal
baseline makes this an ideal arena for studying low-
dimension operators for Lorentz and CPT violation, in
analogy to the tight limits achieved on low-dimension
operators in the photon sector using observations of the
cosmic microwave background [69]. In the meanwhile, the
long baselines involved in the many current and near-future
beam experiments on the Earth imply impressive potential
sensitivities to the effects of Lorentz and CPT violation,
rivaling the best tests in other sectors of the SME.
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(1997); 58, 116002 (1998).
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