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The role of the gravitational sector in the Lorentz- aBT-violating standard-model extensigS8ME) is
studied. A framework is developed for addressing this topic in the context of Riemann-Cartan spacetimes,
which include as limiting cases the usual Riemann and Minkowski geometries. The methodology is first
illustrated in the context of the QED extension in a Riemann-Cartan background. The full SME in this
background is then considered, and the leading-order terms in the SME action involving operators of mass
dimension three and four are constructed. The incorporation of arbitrary LorentCRmdsiolation into
general relativity and other theories of gravity based on Riemann-Cartan geometries is discussed. The domi-
nant terms in the effective low-energy action for the gravitational sector are provided, thereby completing the
formulation of the leading-order terms in the SME with gravity. Explicit Lorentz symmetry breaking is found
to be incompatible with generic Riemann-Cartan geometries, but spontaneous Lorentz breaking evades this
difficulty.
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[. INTRODUCTION these lines has been performed, and in fact the Lorentz-
violating gravitational sector was among the first pieces of
The combination of Einstein’s general relativity and thethe SME to be studie#]. However, an explicit construction
standard modelSM) of particle physics provides a remark- of all dominant gravitational couplings in the SME action
ably successful description of nature. The former theory dehas been lacking to date.
scribes gravitation at the classical level, while the latter en- The investigation of local Lorentz violation in non-
compasses all other phenomena involving the basic particlédinkowski spacetimes requires a geometrical framework al-
and forces down to the quantum level. These two field theolowing for nonzero vacuum quantities that violate local Lor-
ries are expected to merge at the Planck scafg, entz invariance but preserve general coordinate invariance.
=10" GeV, into a single unified and quantum-consistentThe Riemann-Cartan geometry is well suited to this task, and
description of nature. it also naturally handles minimal gravitational couplings of
Uncovering experimental confirmation of this idea is spinors[5,6]. The present work studies the SME in a general
challenging because direct experiments at the Planck scaRiemann-Cartan spacetime, allowing for dynamical curva-
are impractical. However, suppressed effects emerging frorture and torsion modes. The general-relativistic version of
the underlying unified quantum gravity theory might be ob-this theory is readily recovered in the limit of zero torsion.
servable in sensitive experiments performed at our presently The Lorentz-violating terms in the SME take the form of
attainable low-energy scales. One candidate set of Planck-orentz-violating operators coupled to coefficients with Lor-
scale signals is relativity violations, which are associatectntz indices. Nonzero coefficients of this type could emerge
with the breaking of Lorentz symmetfit]. in various ways. One attractive and generic mechanism is
Any observable signals of Lorentz violation can be de-spontaneous Lorentz violation, studied in string theory and
scribed using effective field theof2]. To ensure that known field theories with gravity4,7]. Noncommutative field theo-
physics is reproduced, a realistic theory of this type musties also contain Lorentz violation, with realistic models in-
contain both general relativity and the SM, perhaps togethevolving a subset of SME operators of higher mass dimension
with suppressed higher-order terms in the gravitational anfig]. Other suggestions for sources of Lorentz violation in-
SM sectors. Incorporating in addition terms describing arbiclude, for example, various nonstring approaches to quantum
trary coordinate-independent Lorentz violation yields an ef-gravity [9], random dynamics model40], multiverseq 11],
fective field theory called the standard-model extensiorbrane-world scenario§12], and cosmologically varying
(SME). At the classical level, the dominant terms in the SMEfields[13,14.
action include the pure-gravity and minimally coupled SM In the Minkowski-spacetime limit of the SME, the
actions, together with all leading-order terms introducingLorentz-violating terms can be classified according to their
violations of Lorentz symmetry that can be constructed fromproperties undeCPT. Indeed, sinceCPT violation implies
gravitational and SM fields. Lorentz violation in this limit[15], the SME also incorpo-
The SME has been extensively studied in the Minkowski-rates generaCPT breaking. To determine tHePT properties
spacetime limit, where all terms expected to dominate at lovof a given operator in Minkowski spacetime, it suffices in
energies are knowf8]. A primary goal of the present work is practice to count the number of indices on the corresponding
to construct explicitly the modifications appearing in non-coefficient for Lorentz violation. A Lorentz-violating term
Minkowski spacetimes, including both those in the pure-breaks CPT when this number is odd. However, in non-
gravity sector and those involving gravitational couplings inMinkowski spacetimes, establishing a satisfactory definition
the matter and gauge sectors. Some previous work alongf CPT and its properties is challenging, and a complete
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understanding is lacking at present. In this work, a practicavature and torsion. One well-known gravitation theory based
definition is adoptedCPT-odd operators are taken to be on Riemann-Cartan geometry is the Einstein-Cartan theory,
those with an odd total number of spacetime and local Lorwhich has gravitational action of the Einstein-Hilbert form.
entz indices. This suffices for present purposes and ensurestae torsion in this theory is static, and in the absence of
smooth match to the Minkowski-spacetime limit. With this matter the solutions of the theory are equivalent to those of
understanding, the SME serves as a realistic general basis fgeneral relativity. However, more general gravitation theo-
studies of Lorentz violation in Riemann-Cartan spacetimesyies in Riemann-Cartan spacetime contain propagating vier-
with or without CPT breaking. bein and spin-connection fields, describing dynamical torsion
Since no compelling experimental evidence for Lorentzand curvaturd6].
violation has been uncovered as yet, it is plausible to assume The vierbein formalism has a close parallel to the descrip-
that the SME coefficients for Lorentz violation are small in tion of local symmetry in gauge theory. A key feature is the
any concordant framgl6]. Indeed, sensitivity to the SME separation of local Lorentz transformations and general co-
coefficients has attained Planck-suppressed levels in a nurardinate transformations. At each spacetime point, the action
ber of experiments, including ones with mes¢@sl7-19,  of the local Lorentz group allows three rotations and three
baryons[20-22, electrons[23-28, photons[13,26-29,  boosts, independent of general coordinate transformations.
and muons[30], and discovery potential exists in experi- This situation is ideal for studies of local Lorentz violation in
ments with neutrino$3,31,32. Only a comparatively small - which it is desired to maintain the usual freedom of choice of
part of the coefficient space has been explored to date, angbordinates without affecting the physics. Within this frame-
the present work is expected eventually to provide furtheivork, local Lorentz violation is analogous to the violation of
directions in which to pursue experimental searches for Loriocal gauge invariance.
entz violation. The presence of Lorentz violation in a local Lorentz
The organization of this paper is as follows. The frame-frame is signaled by a nonzero vacuum value for one or more
work for local Lorentz violations is discussed in Sec. Il A, quantities carrying local Lorentz indices, called coefficients
while the structure of the action and the derivation of covafor Lorentz violation. As a simple example, consider a toy
riant conservation laws in the presence of Lorentz violationtheory in which a nonzero timelike vacuum valug,
are provided in Sec. I B. Section Il considers the QED ex-=(b,0,0,0) exists in a certain local Lorentz frame at some
tension with gravitational couplings, and contains separatgoint P. One explicit theory of this type is the bumblebee
subsections devoted to the fermion and photon actions. Theodel described in Appendix B. The presence of the coeffi-
SME in a Riemann-Cartan background is presented in Segientb, for Lorentz violation implies that a preferred direc-
IV. The leading-order terms in the pure-gravity sector aretion is selected aP within the local Lorentz frame, leading
constructed in Sec. VA, while the limiting Riemann- to equivalence-principle violations. Physical Lorentz break-
spacetime case is considered in Sec. VB. Section VC adng occurs aP whenever particles or fields have observable
dresses the issue of the compatibility of explicit Lorentz vio-interactions withb, .
lation with the underlying Riemann-Cartan geometry. The Rotations or boosts of particles or localized field distribu-
body of the paper concludes with a summary in Sec. Vltions in a given local Lorentz frame & can be performed
Appendix A lists conventions adopted in this work and somethat leaveb, unaffected. Lorentz transformations of this kind
key results for Riemann-Cartan geometry. Appendix B pregre called locaparticle Lorentz transformations, and under
sents a class of models for Lorentz violation used to iIIustratQhemba behaves as a set of four scalars. However, the choice

various concepts throughout this work. of the local Lorentz frame itself remains arbitrary up to
spacetime rotations and boosts. Rotations or boosts changing
Il. FRAMEWORK the local Lorentz frame are called locabserverLorentz

transformations, and under thdm behaves covariantly as a
four-vector. The theory thus maintains local observer Lorentz

The classic description of gravity in a Riemann spacetimecovariance, despite the presence of local particle Lorentz
invokes a metric and a covariant derivative that acts on vecviolation.
tor or tensor representations of GIR4, However, GI(4R) The conversion from the local Lorentz frame to spacetime
has no spinor representations, whereas the fundamental coteordinates is implemented via the vierbein,=e,%b,. A
stituents of ordinary matter, leptons and quarks, are known tehange of the observer’s spacetime coordinatemduces a
be spinors. One framework that incorporates spinors and disonventional general coordinate transformationbgn The
tinguishes naturally between local Lorentz and general coordescription of the physics is therefore invariant under general
dinate transformations is the vierbein formalifsi, whichis  coordinate transformations, as is to be expected for
adopted in the present work. coordinate-independent behavior.

In the vierbein formalism, the basic gravitational fields Different local observer Lorentz frames can be reached
can be taken as the vierbe&),® and the spin connection using different vierbeins, related by local observer Lorentz
wﬂab. The corresponding Riemann-Cartan spacetimes aransformations. In a local neighborhood containihd , is
determined by the curvature tensBf, ,, and the torsion typically a functionb,,(x) of position. Assuming for definite-
tensorT”W. The usual Riemann spacetime of Einstein’sness thatb, has constant magnitude“b,,, the local ob-
general relativity can be recovered in the zero-torsion limitserver Lorentz freedom in the vierbe?®(x) can be used to
while Minkowski spacetime is a special case with zero curchooseb,=(b,0,0,0) everywhere in the neighborhood. This

A. Local Lorentz violation
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defines a preferred set of frames over the neighborhood. D,by=03,b,— wﬂbabb:o, (1)
Note that the existence of preferred frames is a special

feature of this simple model. Extending the model to oneygwever, the integrability conditions for this equation can be
with a second nonzero coefficient for Lorentz violatiop  satisfied globally only for special spacetimes, in particular,
typically destroys the existence of preferred frameB and  for parallelizable manifolds. Such manifolds have zero cur-
in the neighborhood. Observer Lorentz transformations havgatyre, are comparatively rare in four or more dimensions,
only six degrees of freedom, which are used in selecting thgnd appear of lesser interest for theories of gravity. It is
preferred frame fob, at P. In this preferred framec, ge-  therefore reasonable to suppose tBgfb,+0 at least in
nerically has the arbitrary forns,=(c;,cz,c3,C4). More-  some region of spacetime. This in turn implies nontrivial
over, oncee,*(x) has been selected to maintain the preferrectonsequences for the energy-momentum tensor. Section 11 B
position-independent form df, over a neighborhood d?,  discusses these consequences and obtains the covariant con-
C, can vary with position. Although another frameRitan  servation law in the presence of Lorentz violation. In any
be found in whichc, does have a preferrd¢timelike, space-  case, an arbitrarg priori specification ofb,,(x) in a given
like, or lightlike) form, thenb, no longer has the preferred spacetime can be expected to be inconsistent with the simple
form b,=(b,0,0,0). The notion of preferred frame therefore condition (1).
loses meaning in the generic case. A consistent prescription for determining,(x) and

It is natural and convenient, although not necessary, thenceD ,b, exists in some cases. For example, this is true
assume ,(x) is a smooth vector field over the neighborhoodwhenb,,(x) arises through a dynamical procedure, such as
of P and over most of the spacetime, except perhaps fofhe development of a vacuum expectation value in the con-
singularities. Since most applications involve second-ordetext of spontaneous Lorentz breaking. The dynamical equa-
differential equationsC> smoothness suffices. However, a tions for the spacetime curvature and torsion can then be
smooth extension df,,(x) over theentire spacetime may be = solved simultaneously with the dynamical equationstfpr
precluded by topological conditions analogous to the Hopkjielding a self-consistent solution. As usual, appropriate
theorem, which states that smooth vector fields can exist onjgoundary conditions are needed for all variables to fix the
compact manifold if and only if its Euler characterisiic  solution. In the case of asymptotically Minkowski space-
vanishes. Note that, if indeed singularitiesbgf occur, their  times, which are relevant for many experimental purposes, it
location can differ from those of singularities in the curva- may be physically reasonable to adopt as part of the bound-
ture and torsion. Note also that some standard topologicalry conditions the criteriofil) in the asymptotic limit where
constraints on the spacetime itself are implied by the generahe curvature and torsion vanish. Solutions of this form then
framework adopted here. For example, the presence of spin@fierge with those of the SME in Minkowski spacetime. More
fields requires a spinor structure on the spacetime, so théomplicated solutions involving asymptotic coefficients
corresponding manifold must be a spin manifold and havesarying with spacetime position could also be considered.
trivial second Steifel-Whitney class. The corresponding potential experimental signals would in-

Studies of Lorentz violation in the Minkowski-spacetime clude violations of energy-momentum conservation. In most
limit commonly assume that the coefficients for Lorentz vio- of what follows, no particular special assumptions about the
lation are constants over the spacetime, which ensures thgiobal structure of the spacetime or about asymptotic prop-
useful simplifying physical consequence that energy and moerties of the coefficients are made, and in particular(Exgjs
mentum remain conserved. Various physical arguments cafiot assumed.
be used to justify this assumption. For example, some For illustrative purposes, the above discussion uses a
mechanisms for Lorentz violation may attribute higher over-simple toy model with a single coefficieh(x) that behaves
all energy to coefficients with nontrivial spacetime depen-like a vector under local observer Lorentz transformations.
dence, so that constant coefficients are naturally preferrediiore generally, there can be(finite or infinite) number of
More generally, if the Lorentz breaking originates at thecoefficients for Lorentz violation, each transforming as a
Planck scale and there is an inflationary period in cosmologyspecific representation of the local observer Lorentz group.
then a present-day configuration with constant coefficientsn what follows, a generic coefficient with compound local
over the Hubble radius is a plausible consequence. Also, farorentz indexx transforming in the representatioX ()",
sufficiently slow spacetime variation of the coefficients, thejs denotedk,. The considerations presented above tigr
assumption of constancy can be viewed as the leading appply to the more general . In any case, the introduction of
proximation in a series expansion. However, all arguments ofoefficients for Lorentz violation suffices to encompass the

this type are ultimately physical choices. From the formaldescription of Lorentz violation from any source that main-
perspective, any vector or tensor field with smooth integratains coordinate independence of physics.

curves is also an acceptable candidate. The choice of con-
stant coefficients for Lorentz violation can therefore be
viewed as a kind of boundary condition for the theory.

For the simple toy model in the present example, the con- From the perspective of physics at our present compara-
dition of constant coefficients in Minkowski spacetime cantively low energies, the underlying fundamental theory of
be written 4,b,=0. In a more general Riemann-Cartan nature appears as a four-dimensional effective field theory.
spacetime, it might seem natural to impose the covarianthe action of this theory is expected to incorporate the stan-
generalization of this, dard model(SM) of particle physics, including gravitational

B. Action and covariant conservation laws
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couplings and a purely gravitational sector. Assuming thasmaner’oand a Lorentz-violating paSaer1y- 1N accordance
gravity can be described using the vierbein and spin connewith the above discussion, any term in the latter then has the
tion, it is reasonable to suppose that the action of the effecgeneral form
tive theory also contains the usual minimal gravitational cou-
lings and the Einstein-Hilbert action among its terms.

i V?/hatever the underlying structure, the p%ysics of the ef- S“aﬂef’LV:f dAXG&JX(fy’eMaDufy)’ ©)
fective field theory is also expected to be coordinate inde-
pendent. This corresponds to covariance under general coorhere the operatal* can in this case be viewed as a current
dinate and local observer Lorentz transformations. Thenformed from matter field§¥ and their covariant derivatives,
assuming the fundamental theory indeed incorporates assuming minimal couplings for simplicity. The desired
mechanism for Lorentz violation, it follows that the action energy-momentum conditions follow from the properties of
contains terms involving operators with nontrivial local Lor- these terms under local Lorentz and general coordinate trans-
entz transformations contracted with coefficients for LorentAormations when the vierbein and spin connection are treated
violation. The resulting effective field theory is the SME, as@S background couplings fixing the Riemann-Cartan space-
already mentioned in the Introduction. time. _ _ o _

The present work considers the structure and some impli- Consider in particular a special variation of the action

cations of the SME in Riemann-Cartan spacetime. As an efomateer i Which all fields and backgrounds are allowed to

fective field theory, the SME action contains an infinite num-vary: including the coefficients for explicit Lorentz violation,

; I ; but in which the equations of motion are obeyed for the
ber of terms, but typically the physics is dominated by . . " ) . .
operators of low mass dimension. In addition to the usua ynamical fieldsf™. The resulting change in the action takes

SM and Einstein-Hilbert terms, possible higher-order termshe form
involving SM fields, and possible higher-order curvature and

torsion couplings, the terms of comparatively low mass di- 5smatter:J d*xe
mension include ones violating local Lorentz symmetry.

Later sections of this work explicitly display the dominant )
Lorentz-violating terms involving the vierbein, spin connec-
tion, and SM fields. It is straightforward to extend the analy-
sis to include Lorentz-violating couplings of other hypoth-

esized fields. is cautioned that in a Riemann-Cartan spacetiig®’ typi-

_ The Lorentz-violating piec&,y of the SME effective ac- ¢4y giffers from the(Belinfante energy-momentum tensor
tion Sgye consists of a series of terms, each of which can ber vv piained by variation with respect to the metric,

expressed as the observer-covariant integral of the product Hhether or not Lorentz violation is present. Similarly, the
a coefficientk, for Lorentz violation with an operatal*: definition of S,*,, differs from those of the spin-density

tensorsS;*,,, andSy*,,, obtained by varying with respect to
SLVDJ d*xekJ*. (2)  the torsion and contortion, respectively. The tensors defined
here are the most convenient for practical purposes because
they are the sources in the equations of motion for the vier-
bein and the spin connection. The usual Einstein general
relativity involving coupling to the symmetric energy-
momentum tensoflf “" is contained in this discussion as a

1
Te"eade,’+ 5 S, apdw 20+ eaxakx) .

This expression can be taken to define the energy-momentum
tensorT #” associated with the vierbein and the spin-density
tensorS,*,, associated with the spin connection. The reader

The coefficientk, transforms in the covariant representa-
tion of the observer Lorentz group, while the operaidr
transforms in the corresxp_onding contravariant representatiogpecia| case with vanishing torsion.

In the present contexd” is understood to be formed from = \ypen the special variatiof#) is induced by infinitesimal
the vierbein, spin connection, and SM fields and is invarianjy ., | orentz transformations parametrized &, the rel-
under general c_oordm_ate transformations. T,h_'s structure 0fvant infinitesimal changes in the vierbein, spin connection,
the effective action is independent of the origin of the Lor- 5, coefficients for Lorentz violation take the form

entz violation, and in particular it is independent of whether

the violation in the underlying theory is spontaneous or ex-
plicit. In practice, for many(but not al) calculations, the
coefficientk, can be treated as if it represents explicit viola-
tion even when its origin lies in the development of a 5wl‘ab:_6a°wﬂCb+ EwaﬂaCJral’ﬁab’
vacuum value.

The covariant energy-momentum conservation law and
the symmetry property of the energy-momentum tensor are
modified in the presence of explicit Lorentz violation. To
obtain these conditions, separate the ac8gy into a piece A suitable substitution of these results into E4). followed
Syravity iNvolving only the vierbein and spin connection and aby some manipulation then yields the desired condition on
piece S,aier CONtaining the remainder. The matter actionthe symmetry of the energy-momentum ten3gt” in the
Smatter IN turn can be split into a Lorentz-invariant part presence of coefficients for explicit Lorentz violation:

a_ _ _a b
oe, =—€%e,’,

1
oky=— 2 e‘ab(x[ab])yxky- )
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T =T = (D = TF 5 S, ¥7 + 48"k, (X 4p)%, V. lll. QED EXTENSION

6) The basic nongravitational fields for the Lorentz- and
CPT-violating QED extension in Riemann-Cartan spacetime
are a Dirac fermiony and the photo\, . The action for the
@Cw_@CW:%SCWVJFkx(x[ﬂp])nyy, @) theory can be expressed as a sum of partial actions of the

form

In the Minkowski-spacetime limit, this equation becomes

where ® #” is the canonical energy-momentum tensor and
SM is the canonical spin-density tensor. With appropriate
substitutions for the matter fields and coefficients for Lorentzrne fermion pars, of the actionS contains terms dominat-

violation, Eq. (7) correctly reproduces the results in jhg ot |ow energies that involve fermions and their minimal
Minkowski spacetime obtained in Ref]. couplings to photons and gravity. The photon pBxtcon-

If instead the special variatiod) is induced by a general (5ing terms dominating at low energies that involve only pho-
coordinate transformation with parametef, the relevant iong and their minimal couplings to gravity, while the pure-
field variations are the Lie derivatives gravity partSy.,iy involves only the vierbein and the spin
connection. The ellipsis represents higher-order terms, in-
cluding ones involving fermions and photons that are non-
renormalizable in the Minkowski-spacetime limit, ones in-

S=S,+ S+ Syraviyt - (11)

oel=Le,=efd,e"+0,e, €,

b_ b_ b b . L . c .
00,2 =L.0,*"= 0,2, ,€"+d,0, €, volving nonminimal and higher-order  gravitational
couplings, and ones involving field operators of dimension
oky=LKky=€"3,ky. (8) greater than 4 that couple curvature and torsion to the matter

and photon fields. Other possible nonminimal operators

Substituting these expressions appropriately into(8gma-  formed from the fermion and photon fields, such as ones
nipulating the result, and incorporating the conditi®®  breaking U1) gauge invariance, may also be of interest for
yields the covariant energy-momentum conservation law ircertain considerations and can be included as appropriate.
the presence of coefficients for explicit Lorentz violation: This section presents the explicit form of the two partial
L actionsS,, andS, and some of their basic physical implica-

(D= T Te ot T ek + —Rabﬂysw”ab— 7D k,=0. goerf.vllmscussmn of the gravity partial action is deferred to

2
©)
In the limiting case of Minkowski spacetime, where the cur-

vature and torsion vanish, this equation becomes a modifie it
conservation law for the canonical energy-momentum tensof " "€M as

A. Fermion sector

d The fermion partial action for the QED extension can be

1 . _
3,0H"=39"Ky. (10 S¢:J d4x<§iee"a¢/xFaDM1p—e¢M¢/l : (12

Explicit substitution for the fields and currents shows that . . .
thisl,3 result agrees with the Minkowski-spacetime results oi’n this equation, the symbol® andM are defined by
Ref.[3], as expected. The interesting issue of the compatibil-
ity of the relations(6), (9) with the underlying geometrical
assumptions of the Riemann-Cartan spacetime is discussed ) 1
in Sec. V. - IfueﬂayS_ Eg)\,uvevaekbeﬁco-bc (13)
A similar chain of reasoning can be adopted to obtain the
symmetry property of the energy-momentum tensor and thgng
covariant energy-momentum conservation law relevant in the
case of spontaneous Lorentz violation. Since spontaneous i a 2 1 ab
violation of a symmetry leaves unaffected the associated =M+iMsys+a,e”ay*+Db, e ysy"+ 5 H 88" 0™
conserved currents, it is to be expected that in this case the (14)
terms involvingk, in Egs. (6) and (9) are absent. This is
indeed confirmed by calculation. The basic point is that co-The first term of Eq(13) leads to the usual Lorentz-invariant
efficients originating from spontaneous breaking are vacuunkinetic term for the Dirac field. Similarly, the first two terms
values of fields, and so they must obey the correspondingf Eq. (14) lead to a Lorentz-invariant mass. In the absence
equations of motion. Just as the variatioff$ of other dy-  of anomalies, the coefficienhs can be chirally rotated to
namical fieldsf* have vanishing coefficients in E¢4) and  zero in Minkowski spacetime without loss of generality. The
so provide no contributions to the covariant energy-same holds here provided suitable redefinitions of certain
momentum and spin-density conservation laws, no contribueoefficients are made. The coefficients for Lorentz violation
tions arise from the variatiodk, when Lorentz symmetryis a,, b,, c,,, d,,, €,, f,, O\, H,, typically vary with
spontaneously broken. position, in accordance with the discussion in Sec. Il A. They

a— .a a b a b a
ré=y%*-c,,e"e"yy’—d, e”e“,ysy°—e, e’
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have no particular symmetry, except for the defining anti-and light-cone structure of the theory, which remains the
symmetry ofH,, and ofg, ,, on two indices. By assump- subject of discussion even for Lorentz-invariant radiative
tion, the action(12) is hermitian, which constrains the coef- correctiong 35].
ficients for Lorentz violation to be real. Relaxing the latter  One difference between the QED extension in Minkowski
constraint would permit the formalism to describe also non-and Riemann-Cartan spacetimes is that the presence of even
hermitian Lorentz violation. Note the use of an uppercaseveak gravitational couplings can change the effective prop-
letter forH ,,,, which avoids conflicts with the metric fluc- erties of certain coefficients for Lorentz violation. Adopting
tuationh,,, . the weak-field form of the vierbein and spin connection
The action(12) is also locally W1) invariant, by construc- given in Eq.(A20) of Appendix A and extracting from the
tion. The covariant derivativ® , appearing in it is under- Lagrangian only terms that are linear in small quantities, one
stood to be a combination of the spacetime covariant derivafinds
tive, discussed in Appendix A, and the usudlllJcovariant

derivative: LD —i1(Cei) uu by y— (D) ubysy™sh,  (19)
1 . ) where
D y=3d,4+ 219u Tapy— 1A 3. (15
1
(Ceff),quC/w_ E h,u.V+X,uV '

It is convenient to introduce the symboﬁﬂ) for the action
of the covariant derivative on a Dirac-conjugate figid

! B ! B
L 1 - - (beﬁ)#Eb#_Z(?aX yfalg,y#+ gTa yeaﬁ‘y/.l,'
(YD)=0,4— Fiw, PPoaptiaAy. (16 (20

rIn this expression, leading-order terms arising from the scal-
iﬁg of the vierbein determinamtare neglected because they
are Lorentz invariant.

Equations(20) show that at leading order a weak back-
ground metric appears ascg, term, while the dual of the
antisymmetric part of the torsion behaves likdaterm, a
result already noted elsewhef86]. The latter is aCPT-
violating term, so the presence of background torsion can
mimic CPT violation. Experimental effects from these terms
have been estimated for some situations, including hydrogen
1 spectral line shifts in the solar gravitational figld7] and
ie#, D ,y—My— =iT, ,e* 2y reinterpretations of various recent resui88]. Note, how-

2 ever, that these gravitational couplings are flavor indepen-

In terms of these quantities, the covariant derivative appea
in the action(12) in a combination defined by

X120 ,y=xT"2D ,¢y— (XD, )I'2y. (17)

This definition is understood to hold even whéi is
spacetime-position dependent.

The generalized Dirac equation arising from the acign
is

1 1 dent,_ whereqs the \./allues bf, andc,, can depend on the
+ zie“awﬂbc 720+ Zi[ch,Fa] =0. fermion species. This implies caution is required in interpret-
ing the existing experimental sensitivities ltg in terms of
(18) torsion, since some experiments are sensitive only to a non-
zero difference in the value df, for two fermion species. It
As might be expected from nonderivative couplings, thefurther suggests that careful comparative experiments could
Lorentz-violating terms involvingM just add to the Dirac distinguish background curvature and torsion effects from
equation in a minimal way. However, those involvilift  other sources of Lorentz an@dPT violation. Note also that
appear both minimally and through commutation with thethe inclusion of subleading terms in the derivation would
Lorentz generators in the covariant derivative. In particularyield additional Lorentz-violating effects. For example, at
the Lorentz-invariant parts of the last two terms in Etg)  this level all dimension-one effective coefficients for Lorentz
cancel, but the terms involving coefficients for Lorentz vio- violation acquire a torsion dependence that can vary with
lation yield nonzero results. flavor. Couplings of this type may play an important role in
Many physical features of this theory are expected to beegions of possibly large torsion, such as spinning black
similar to the QED extension in Minkowski spacetime intro- holes or the early Universe.
duced in Ref[3]. Although beyond the scope of the present  Another issue worth mention is the observability of vari-
work, it would be of definite interest to investigate the cor-ous types of Lorentz violation. A given coefficiekry for
rections to established resu[&13,16,27,29,3farising from  Lorentz violation leads to observable effects only when the
the Riemann-Cartan couplings. A detailed study of quantuntheory contains another conventional or Lorentz-violating
corrections and renormalization issues may be particularlgoupling that precludes the elimination lof through field or
challenging, since a satisfactory description of these is agoordinate redefinitions. In the Minkowski-spacetime limit
open issue even for conventional Lorentz-invariant theoriesf the QED extension, the comparatively small number of
in curved spacetimg34]. Similar remarks apply to the causal couplings leaves the freedom to eliminate some Lorentz-
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violating termq 3,39,4(. As might be expected, the presenceIn the QED extension there are comparatively few such non-
of the additional curvature and torsion couplings in theminimal operators, and the only gauge-invariant ones are
Riemann-Cartan spacetime reduces this freedom, but sonpgoducts of the torsion with fermion bilinears. The Lorentz-

options remain. invariant possibilities are
As a first example, consider a position-dependent redefi- o -
nition of the phase of the spinor: guzae-r%w,/,ywﬁ beﬁwm,syﬂ,/,
Y(x)=exilif (0]x(). (21 258 T e 50, Uy -t bse T Ve 5, UYs Y.
This is not a gauge transformation, singg, remains un- (23

changed. In the single-fermion Minkowski-spacetime limit ) . )
with constanta,, the choicef(x)=a,x* can be used to The last of thgse _already occurs in the minimal couplings.
eliminate all four coefficienta,,, soa,, is unphysical. How- ~ The Lorentz-violating possibilities are

ever, in Riemann-Cartan spacetime, the redefinition can typi- _ _

cally be used to eliminate only one of the four coefficients Liv=eKyp, TPV ih+ €Ksop, TPV hysih

a, - An exception to this occurs for special models in which

aBy,; 0 afy,r, S
a, arises as the four-derivative of a scalar, in which aage +eKupyos TPy Ut €hsapys TP Uysy
is unphysical and can be removed. wBy o€
Another useful class of redefinitions consists of ones tak- tekegyo T oY (24)

ing the general form If Lorentz violation is suppressed as expected and the torsion

() =[1+v(x)-T]x(x). (22) !s also small, .then all five of the_lgtter are subdomir)ant. Also,
if the torsion is constant or sufficiently slowly varying, only
Here,v(x) is a set of complex functions with appropriate the last three are relevant. Nonetheless, all the above opera-
local Lorentz indices and, for this equation orlytepresents tors may be of interest in more exotic scenarios. Note that
one ofy?, y5¥?, 2. These redefinitions can be regarded asthe presence of fundamental scalars, such as the Higgs dou-
position-dependent mixings of components in spinor spacel€t in the SME, permits other types of nonminimal gravita-
They can be used to show that, at leading order in coeffitional couplings of dimension four or less, including ones
cients for Lorentz violation, there are no physical effectsinvolving both curvature and torsion. Note also that any op-
from the coefficient®,,, f, or from the antisymmetric parts erators of dimension greater than four must come with one or
of c,,, d,,. However, attempting to remove the antisym- more inverse powers of mass, which may represent supstan—
metric and trace parts ofy,,, generically introduces tial Planck-scale suppression. However, some care is re-
spacetime-dependent mass terms proportional to the covafuired in determining the relative dominance of operators.
ant derivative ofv, a feature absent in the Minkowski- FOr example, a dimension-five Lorentz-invariant operator
spacetime limit. suppressed by the Planck mass would produce effects
The freedom to redefine spacetime coordinates, perhag®mparable in magnitude to those of a dimension-four op-
accompanied by field and coupling rescalings, can also bgrator involving a coefficient for Lorentz violation sup-
viewed as a means of eliminating or interrelating certain coPressed byny.
efficients for Lorentz violation. The symmetric piece of the B. Photon sector

coefficientsc,,,, and the Q part of the photon-sector coeffi- . L
cient (Kg) a0y » Which is introduced in the next subsection, _ The photon part of the action for the QED extension in

appear in the action in a form similar to parts of the metricRiemann-Cartan spacetime can be separated into two pieces,

coupling. Appropriate coordinate choices can therefore ap-
pear to move the Lorentz violation from one sector to the SA=f d*X(Le+ Lp), (25
other, or perhaps act to cancel effects between sectors. The
coordinate frame used in reporting experimental results i%vhere
often implicitly fixed by the experimental setup, for example,
by the choice of a standard clock or rod. Particular care is 1 1
therefore required in claiming or interpreting sensitivities to Lp=—-eF, Fr'— —e(kF)KwyF“F’”, (26)
these types of coefficients. An explicit example of this type 4 4
of redefinition is given for the case of Minkowski spacetime
in Sec. Il C of Ref[29], where a constant coefficient of the
type Cqp is converted into the combinatiorkg)g;o; . When
background curvature and torsion fields are present, the po-
sition dependence can complicate the analysis of these typd$ie Lagrangian terms are hermitian provided the coefficients
of redefinitions and can introduce other effects such asor Lorentz violation Kg) .., (Kap),., and ka), are real.
spacetime-varying couplings. The electromagnetic field strengH),, is defined by the lo-

To conclude this subsection, here are a few remarks abowglly U(1)-invariant form
nonminimal gravitational couplings. For simplicity, attention
is restricted here to operators of mass dimension four or less. F.=D,A,—D,A, + T”WAA= d,A,—d,A

1
Lp= Ee(kAF)KGK)\,U,VA)\FMV—e(kA)KAK' (27

(28)

e
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By definition, all curvature and torsion contributions cancelshift of «. The couplings of the remainings9and 1Q

in the field strength. Gravitational effects in the photon-Lorentz-violating terms are similar to those in Minkowski
sector Lagrangian therefore are associated with the appeapacetimd3,29] but now typically vary with position. These
ance of the metric in the index contractions and with thel9 coefficients control the leading-ord€PT-even Lorentz
scaling by the vierbein determinaat violation in the photon sector.

The generalized Maxwell equations obtained from the ac- Next, consider the Lagrangiaf), in Eq. (27), which con-
tion (25 are conveniently written using the standardsists of CPT-odd terms. The corresponding partial action is
Riemann-spacetime covariant derivatii,, described in U(1) gauge invariant only under special circumstances. As-
Appendix A. They consist of the homogeneous equations Suming no monopoles, as before, the coefficients for Lorentz

violation must obey
D,F,,+D,F,+D,F,, =0, (29 - -
n o " D ,(Kap),—D,(Kap) ,=0,

which follow from the definition(28) of the field strength,
and the inhomogeneous equation obtained by varying the BM(kA)MZOa (32)
sum of the fermion actioi12) and the photon actio(25):

where the tilde again indicates the zero-torsion limit. These
FBV+(kA)# conditions must be satisfied in addition to any dynamical or
other equations determining the form &xg),, and Ka),, -

BaF;La+ Ba[(kF),u,aﬂyF'By] + (kAF)aep,aBy

- (30 For (Kar) ., an example of this is known: the mechanism for
. . o Lorentz violation in the supergravity cosmology of REf3]
In this equation, the currert, is enforces kag) ,=d,¢ for an axion scalat, which satisfies
. — th i 32. H , for th fficient ,
jh=qer gy, (31) e requirement32). However, for the coefficientk,),

Eq. (32) implies (ka) ,= (ko) ./€, Where ko), is a constant
4-vector. Generic manifolds do not admit such vectors, so
(kA)M must typically vanish. This is consistent with other
requirements emerging in the Minkowski-spacetime limit
[3].

As in the fermion sector, the presence of weak gravita-
etional couplings can affect the interpretation of certain coef-
ficients for Lorentz violation. The leading-order weak-field
couplings can be extracted from the Lorentz-invariant part of

These results correctly reduce to the usual QED extension i
the Minkowski-spacetime limit.

Consider first the Lagrangiafiz, which is invariant un-
der local U1) transformations by construction. The first term
in Lg is the Lorentz-invariant action for photons in a
Riemann-Cartan background, while the second term violat
Lorentz invariance. Both terms a@PT even. The coeffi-

cient (kg) .., for Lorentz violation is antisymmetric on the the LagrangianCe using the expressiot20) of Appendix

first two and on the last two indices, a’?d Itis _symmetrch_ The result is a contribution that has the operator structure
under interchange of the first and last pair of indices. These

symmetries reduce the number of independent componen?g the (ke) or, term, with an effective coefficienk ef) o

of (Kg) oy to 21. Decomposing into irreducible Lorentz given by
multiplets gives 2&1,+ (1+9+10). 1
The antisymmetric singletprovides a Lorent;-inyariant (Ke &) inpir = (KE) senpon + E( PPN/ N1 P
parity-odd coupI|ng<1Ee“WV(kF)KMV. Its coupling in the
Lagrangian is therefore proportional emlF#VﬁMV, whereF — Nl M) (33

is the dual field strength. Integrating by parts and discarding
the surface term under the usual assumption of no monopolésweak-field background metric can therefore partially simu-
converts this into an expression proportional tolate the effect of the coefficienkf),,,, for Lorentz viola-
e(DMkl)A,,T:/“’. In the Minkowski-spacetime limit with con- tion. Somg of the physical !mpllcanons of thls coupling can
stant Kg) «.v, NO Net effect results. In the present more P& appreciated by converting to the notation of Res].
general case with position-dependekg), ., the expres- Setting Kar) » a”ﬁ'( Ke) Khgag to zero for simplicity, only the
sion can instead be absorbed into the term involving th&oefficients ke )", (%o+)", &y acquire nonzero contribu-
coefficient kag),, in L. This conversion of a scalar into a 1ONS; given by
Lorentz-violating coefficient has features in common with 1
the generation of a nonzerd4f) , through the gradient of (Re_ ) k= —hik4+ Zh!l 5ik,
the axion in supergravity cosmolod§3]. 3

Of the remaining 20 independent coefficients, the sym- , ,
metric singlet 1 is the irreducible double trace, which is (Ko )K= —€Xn0,
Lorentz invariant. It can be regarded as renormalizing the
Lorentz-invariant kinetic term. IfKg) ., ., varies with posi-
tion, this renormalization corresponds to a spacetime varia-
tion of the fine structure constaat If instead Kg) )., is
constant, as is usually assumed in the Minkowski-spacetim®ne consequence is that both polarizations of light are af-
limit, then the 1 generates only an unobservable constanfected in the same way, so no birefringence occurs. Experi-

Ky = 2 h'! (34)
tr 3 .
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ments with sensitivity to these coefficients could therefore b&J ,=(us)gr, Da=(da)r. The left-handed leptons and
adapted to study the background-metric fluctuatigp, pro-  quarks form SW2) doublets, Lo=[(va), (AT, Qa
vided the signals in question involve no complete cancella=[(ua),,(da). ]".
tion of the effects. In the boson sector, the Higgs doublgis taken to have
As a final remark, note that the combined acti@@) and  the form¢=(0,,)"/v2 in unitary gauge, and the conjugate
(25 for the leading-order QED extension can be used tadoublet is denotedC®. The color gauge fields are denoted by
obtain a general classical action for the Lorentz-violating bethe hermitian S(B) adjoint matrixG,,. The SU2) gauge
havior of point test particles and electrodynamic fields in afields also form a hermitian adjoint matrix denot&d, ,
Riemann-Cartan background. Although its explicit form lieswhile the hermitian singlet hypercharge gauge fields.
beyond the scope of the present work, the resulting theorfhe associated field strengths a8, W,,, andB,,.
would represent a useful test model for Lorentz-violatingThey are defined by expressions of the standard form in
physics. For example, it could be used to provide insight intaviinkowski spacetime, except that the Riemann-Cartan cova-
the interpretation of classical concepts such as mass, velogiant derivative is used and a torsion term is added in analogy
ity, and geodesic trajectories, each of which typically is splitto Eq. (28). This ensures that all spacetime curvature and
by Lorentz violation into distinct notions that merge in the torsion contributions cancel in the field strengths, which
Lorentz-invariant limit[3]. It would also be of interest to therefore have conventional SUBU(2)xU(1) proper-
obtain the connection between this theory and Théeu ties.
formalism[41,42, which is a widely used model involvinga  The covariant derivativ® . and its conjugat® , are now
four-parameter aqtion with modified qlassical test partides,tmderstood to be both s/f)acetime covarian? and SU(3)
and electrodyr)am!c fields in a conventional static and spheris, SU(2)XU(1) covariant, in parallel with the
cally symmetric Riemann background. electromagnetic-(1) and spacetime covariant derivative
(15) and its conjugatél6). The definition(17) is maintained.
IV. STANDARD-MODEL EXTENSION As usual, the coupling strengths for the three group$3gU
SU(2), and U1) areg;, g, andg’, respectively. Also, the

The actionSgye for the full SME in a Riemann-Cartan chargeq for the electromagnetic (1) group and the angle
spacetime can conveniently be expressed as a sum of part@l are defined through =g sin Ay =g’ cosfy
actions w .

Consider first the actioi®sy, for the SM in a Riemann-
Cartan background. The corresponding Lagrangfiagy, is
SU(3)XSU(2)XU(1) gauge invariant, and it is convenient

, . . n to separate it into five parts:
The termSgy, is the SM action, modified by the addition of

gravitational couplings .appropriate for a ba_lckground Lsm= Liepton™ Lauarkct Lvikawat Lhiiggst Loauge  (36)
Riemann-Cartan spacetime. The ter§), contains all

Lorentz- andCPT-violating terms that involve SM fields and The lepton sector has Lagrangi@fon given by
dominate at low energies, including minimal gravitational

couplings. The tern8, .y represents the pure-gravity sec- ) — o 1. — o

tor, constructed fronrig the vierbein and the spin connection  Llepion=5 1€€“aLaAY*DLa+ 51€€5RAY*D R,

and incorporating possible Lorentz a@PT violation. The (37)
ellipsis represents contributions &,z that are of higher

order at low energies, some of which violate Lorentz sym-while the quark sector Lagrangiatyar iS

metry. It includes terms nonrenormalizable in the

Minkowski-spacetime limit, nonminimal and higher-order 1 — = _ — =
gravitational couplings, and operators of mass dimension Equarkzi'eeMaQAV DMQA+§'ee’LaUA7 DU
greater than four coupling curvature and torsion to SM fields.

Ssme= Ssmt Sy + Syraviy T - (39

Other possible nonminimal operators formed from SM fields, 1 — Lo
such as ones that break the SUSBU(2)xU(1) gauge +§'eeMaDA7aD#DA' (38)
invariance, can be included as needed. For example, these
could play a significant role in the neutrino secf8g]. The Yukawa couplings are
In this section, the explicit forms o%gy, and S;,, are
presented, while discussion of the gravity act®ayy is Lyukawa= —L(GL) ag€LadRe+ (Gy) ag€ QadUg
deferred to Sec. V. The notation adopted for the basic SM .
fields is as follows. First, consider the fermion sector. Intro- +(Gp)ageQadDg]+H.c., (39

duce the generation index=1,2,3, so that the three charged
leptons are denoteld=(e,x,7), the three neutrinos are, ~ where G )ag, (Gu)as, (Gp)ag are the Yukawa-coupling

=(ve,v,,v,), and the six quark flavors ane,=(u,c,t), matrices. The Higgs sector has Lagrangian
d,=(d,s,b). The color index on the quarks is suppressed for

simplicity. Define as usual the left- and right-handed spinor _ t ot Ny
componentsyy =3(1- ye) i, Yo=3(1+y5)y. The right:  Friess ~SDu@ DIGFuTe dmFreld @)%
handed leptons and quarks are (3Usinglets,Ry=(la)Rr, (40)
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while the gauge sector is Remarks analogous to those for the lepton-sector coefficients
for Lorentz violation also hold for the quark-sector coeffi-
cients in these equations.
The CPT-even Lorentz-violating Yukawa-type operators
(41)  have the usual Yukawa gauge structure but involve different
fermion bilinears. The Lagrangian for these terms is

1 1 1
Lgauge™ — 5 €TH(G,,,G*") = 5 €TH(W,, WH") — 7eB, B"".

Possibled terms are omitted in the latter for simplicity.

Next, consider the partial actid® containing Lorentz- CPT+ _ _ l H e e’ Ladbo®R
and CPT-violating operators constructed from SM fields of Vikawa= ~ 5L (HL)u1ae€€a€ L ad o™ Ry
mass dimension four or less. In parallel with Eg§6), the _
corresponding Lagrangiafi,, can be decomposed as a sum +(Hy) .ape € a€"5Qad 0 Up
of terms separating the contributions from the lepton, quark, — b
Yukawa, Higgs, and gauge sectors. The Lagrangians for +(Hp) 4,aB€€*a€"Qadc* D]+ H.C. (47)

these five sectors can be further split into pieces thaC&¢€ ) ) o )
even and odd, except for the Yukawa-type couplings forlhe dimensionless coefficient$d( y p) .,as are antisym-

which noCPT-odd terms arise: metric in the spacetime indices. Like the conventional
Yukawa couplings G, p)ag, they can violate hermiticity
_ pCPT+ CPT— CPT+ CPT— CPT+ CPT+ in eneration space.
['LV_'CIepton +£Iepton +£quark +[’quark +£Yukawa+ EHiggs 9 P

The CPT-even Lagrangian in the Higgs sector is

CPT- | pCPT+_ p»CPT-
+ Liiggs T Lgauge T Lyauge - (42

1
CPT+_— v t
The Lagrangian for th€PT-even lepton sector is Liggs _2(k¢¢)ﬂ &D,4) D,p+H.C.

1 f T < 1 va st 1 va st
Licpion =~ 51(CL) .ase€aLaY*D "L =5 (kow)*"ed' W, =5 (kyp)“"e4 ¢B,, .

1 — . (48)

— 5i(Cr) ,,ap€€"aRAY? D Rg, (43

2 TRuABEE aTA ? All the coefficients for Lorentz violation in this equation are
_ _ o dimensionless. The coefficierk f,)*" can be taken to have
where the dimensionless coefficients X,,ag and Cr) .»as symmetric real and antisymmetric imaginary parts, while
can be taken to be hermitian in generation space. The spac9<¢w)uv and (,g)"” are real antisymmetric. The last two
time traces of these coefficients preserve Lorentz symmetryerms directly couple the Higgs scalar to the SUJ(1)

In the Minkowski-spacetime limit with conserved energy andfie|d strengths. They have no analogue in the usual SM. The
momentum, these traces act to renormalize the fermion fieldsp1.odd Higgs Lagrangian is

and are unobservable, but in the present context the space-
time dependence can correspond to spacetime-varying cou- Eﬁizg;:i(k¢)ﬂe¢TDﬂ¢+ H.c. (49)
plings. The Lagrangian for thEPT-odd lepton sector is
_ _ The coefficient k4)* is complex valued and has dimensions
»Cf;;ftlﬁ == (aL)MABeeMaLA'yaLB_ (aR),uABeeMaRA'yaRBi of mass.
(44) The Lagrangian for th€PT-even gauge sector is

where the coefficientsa ) ,ag @and @g) ,ag are also hermit- 1

. . . A . CPT+ _ K v

ian in generation space but have dimensions of mass. Lgauge =~ 7 (Ke) . €THG MGHY)
The quark-sector Lagrangians take a similar form:

1
- KN\ LV
1 i — P 2 (kW)K)\,MVeTr(W W )
ﬁqcuZJl:r =- E' (CQ),wABee“aQAYaD "Qg

1
L I ~ 7 (ke) 0 BB, (50
- E'(CU),WABee“aUA’Y D"Ug

All the coefficients for Lorentz violation in this equation are
c ee* D,D"Dy, 45 real._ Ez_ach is antisymmetric on th_e first two and on the last
0)uas€&aDaY B @9 1o indices, and each is symmetric under interchange of the
first and last pair of indices. Their spacetime properties are

1
_§|(

CPT—_ _ O ~2 similar to those of the coefficientk§),, ., in the photon
Lauar =~ (80)uase€'aQ27" Qe sector of the QED extension, discussed in Sec. 1l B, which is
_(aU)p,ABeeMaUA'yaUB itself a combination of Kw) ., and Kg) .\, - Note that
- possible total-derivative terms analogous to the ugdafrms
—(ap) ,ae€€“aDpAY?Dg . (46) in the SM are neglected in E¢50) for simplicity.
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It is also possible to construct some CPT-odd Lagrangian As in the case of the QED extension, care is required in
terms that under special circumstances are invariant undeletermining the observability of a given coefficient for Lor-
infinitesimal SU(3)XSU(2)xU(1) transformations. They entz violation inS;,, because there is freedom to eliminate

have the Chern-Simons form certain coefficients by appropriate field and coordinate re-
- \ 5 definitions. For example, for each fermion field there is a
Lgauge = (K3) € #"€Tr(G\G,, + 51936, G,G,) phase degree of freedom of the fof@1l) and possible rein-

. terpretations of the spinor-space components of the form
KAV 2

(ko) € TTETHWAW,,, + 5IgWAW,W, ) (22). There is also freedom in the Higgs sector, including the

+(kq) (€M7 B\B,,,+ (ko) &B". (51) phase redefinition

All the coefficients for Lorentz violation in these equations d(x)=ex —ig(x)]p(X). (52

can be taken real. The coefficients, 6 5 . have dimensions . .

of mass, while k), has dimensions of mass cubed. TheseFOr instance, the choiog(x) = (k,),x* can be used to ab-

terms are the SM analogues of those in E7) of the QED  SOrb part of the effects from the coefficierk,, . Also,

extension, which they contain as a limiting case. Their in_swta_ble CoorQ|(1ate redefln_ltlons can mterrelate some of the

variance requires that subsidiary conditions generalizin%erm'on coefficientsc,,,, Higgs coefficients K,,),.,, and

those in Eq(32) be satisfied, so Eq51) is relevant only in s Lorentz-irreducible pieces of the gauge coefficients

special circumstances. (k&) inur s (kw)ionuw s (Kg) e HOwever, the presence of
The above equations describe the acti®ag and S,  CrosS couplings between generations means that some types

prior to the breaking of the electroweak SU(Y(1) sym-  Of coefficient unobservable in the QED extension are now

metry to the electromagnetic(l) subgroup. In the minimal Physical under suitable experimental circumstances. For ex-

SM in Minkowski spacetime, arguments based on energeticdMPI€, the presence of flavor-changing weak interactions in

make this breaking plausible, at least for some range of thé® SME quark sector means that differences between con-

couplingsx and\ in Eq. (40). However, it is an open issue Stant coefficients of the,, type become observable in inter-

whether the Higgs potential in EG0) suffices to drive elec- ferometric experiments with neutral-meson oscillations, a

troweak symmetry breaking to the charge subgroup in thdeature absent in the QED extensid9].

SM in a curved spacetime backgroupt8]. Suppose this is

indeed the case for at least some types of background, per- V. GRAVITATIONAL SECTOR

haps such as weak gravitational fields. Then, the presence in

S,y of small Lorentz-violating terms involving the Higgs and

charge-neutral fields changes the pattern of expectation val- It is convenient to write the pure-gravity action as

ues that break the SU(X)U(1) symmetry. A small Lorentz-

violating expectation value emerges for the neuﬂ%llfield, Sgravity:i f d4x Lyravity» (53)

and the expectation value of the Higgs is shifted slightly. It 2k

has been shown that this breaking pattern preserves the elec- o .

tromagnetic 1) in the Minkowski-spacetime limif3]. A where the usual grawt?tlonal coupling constan_t Aal2

careful study of this issue in Riemann-Cartan spacetimé=1/16mGy=3x10% GeV* has been factored outside the

would be of interest. Note also that the standard procedure dftegral for convenience. The Lagrangiéiairy can then be

expanding the terms iSsy and S, about the vacuum ex- Separated as

pectation values generates additional effective contributions T LV

to some of the coefficients for Lorentz violation. Loravity=Le,ot Lewt (54)
The presence of weak curvature and torsion couplings in ) ) T

the actionsSey and S, can modify the interpretation of Where the LoreLr\lltz-mvanant piec€e,, and the Lorentz-

certain coefficients for Lorentz violation. The contributions Violating pieceLe, are constructed using the vierben®

of this type fromS,, are proportional to the product of weak and the spin Con”e_Ct'O‘ﬂuab- Following Sec. Il A, the latter

fields and coefficients for Lorentz violation, so they are sup-2ré viewed as basic dynamical objects for the gravitational

pressed relative to those frof,,. The expansionéA20) of field. T_he elllps_|s represents posslble dependence on other

Appendix A can be used to extract fro8, the dominant dynamical _grawtanonal fields, which could be_fund_amental

effects. The analysis follows a pattern similar to that in the®" composite and could have both Lorentz-invariant and

QED extension leading to Eq&20) and (33), with the sym- Loren.tz-wo_latmg parts. The LagrangidB4) is assumed to

metric part of the metric generating effective contributions tocombine with the matter and gauge sectors of the SME, per-

certain CPT-even Lorentz-violating terms and the torsion haps along with other modes as yet unobserved, to yield a

generating contributions t6PT-odd ones. The effects of the Smooth connection to the underlying theory at the Planck

vierbein and the torsion are independent of flavor at leadingcale- o ot _

order, but the sign of the torsion contribution depends on the The Lorentz-invariant Lagrangiaft', can be written as a

handedness of the fermion. This is reflected in &f) for ~ Series in powers of the curvature, torsion, and covariant de-

the fermion sector of the QED extension, where the coeffifivatives:

cient b,~(a)) ag— (ar) .ap is affected buta,~(a,) ,as

+(aR):AB is uﬁchangedlf . . L, =eR-2eA+::-. (55)

A. Action
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The first term in this expression is the Einstein-Hilbert La-efficients for Lorentz violation with an even number of indi-

grangianLgy in Riemann-Cartan spacetime, while the sec-ces can contribute to a position-dependent term of the same

ond contains the cosmological constantWhen coupled to  general form as the cosmological-constant term. The net ef-

matter and gauge fields with energy-momentum and spinfective cosmological constant may therefore be partially or

density tensors defined as in Ed), these two terms gener- entirely due to Lorentz violation and may vary with space-

ate field equations of the form time position. It is conceivable that a simple model could be
GHY+ Aghr= kT, fpund featuring a reaI!stlcglly small cosmological constant

tied to small Lorentz violation.

The Lagrangian serieg5) and (57) can be organized
according to the mass dimension of the operators or directly
for the Riemann-Cartan spacetime, where the trace-correct {j POWETS of the f|elds_. In any case, Seve"%' potential S'mp“f

A _ . i Ications can be considered. First, appropriate use of the Bi-
torsion T**" is defined in Eq(A10) of Appendix A. In the 3¢ identities for the curvature and torsion may eliminate
Lorentz-invariant Lagrangian(s5), the ellipsis represents gome combinations of operators. Second, partial integrations
possible higher-order terms in curvature, torsion, and covégn gperators with covariant derivatives can be used to inter-

riant derivatives. These terms generate corrections to thgy|ate terms if total derivatives are disregarded. In this way,
field equations(56), and they can produce independently ¢, instance, the coefficientklr) ** in Eq. (57) can be

propagating vierbein and spin-connection modes correspondy nverted into a special case of the coefficidat]“f 7",

ing to dynamical torsion and curvature. Note that terms WithAIso, general topological results such as the Gauss-Bonnet

mass dimension greater than two typically lead to highery,eqrem imply that under suitable circumstances some com-
derivative conditions. The complexity of the Lagrangian se-inations of terms form topological invariants and so could
ries is already considerable at second order in the curvatuiig, removed in the classical action.

and torsion[44_]. Ho_wever, the_ explicit form of the higher- The Lorentz-violating terms in the Lagrangiési) intro-
order Lorentz-invariant terms is unnecessary for present pugyce spacetime anisotropies in the gravitational field equa-
poses. , o , tions, which in turn could trigger various physical conse-

Following the discussion n Sec. IlA, each term in the 4 ,ences of theoretical and experimental relevance. Standard
Lorentz-violating Lagrangiaig , is constructed by combin- gravitational solutions such as those for black holes, cosmol-
ing coefficients for Lorentz violation with gravitational field ogy, gravitational waves, and post-Newtonian physics are all
operators to produce a quantity that is both local observegypected to be corrected by terms depending on the coeffi-
Lorentz invariant and general observer coordinate invariantjents for Lorentz violation in Eq557). These effects would
The relevant field operators are formed from the vierbein, thgye independent of ones induced by Lorentz violation in the
spin connection, and their derivatives. It is convenient tomqatter and gauge sectors of the SME. Both for gravitational
express these operators in terms of the curvature, torsion, aiflianta and for other fundamental particles in the SME, the
covariant derivatives wherever possible. The Lagrangiagnsuing Lorentz-violating behavior can depend on momen-
Le,, can then also be written as a series: tum magnitude and orientation, spin magnitude and orienta-

v Apv A tion, and the particle spec?es ngT prqperties.
Leo=e(kp) Tyt e(kg) Rinuv The effects of Lorentz violation are likely to be large only

Ther= kS, e (56)

afyApv in regions of large curvature and torsion, such as near black
holes or in the early Universe, or in certain cosmological
+e(kDT)"W”DKTMV+--- . (57 contexts such as those involving the cosmological constant,

dark matter, or dark energy. Nonetheless, Lorentz-violating

In this equation, all the coefficients for Lorentz violation are effects could be detectable in various situations. For ex-
real, and they inherit the symmetries of the associatedmple, the homogeneous Friedman-Robertson-Walker cos-
Lorentz-violating operators. The coefficiert{§*** has di- mological solutions may acquire anisotropic corrections, po-
mensions of mass, while the others listed are dimensionlesgntially leading to a realistic anisotropic cosmology with
The ellipsis represents higher-order terms in the curvaturesbservable signals. Candidate Lorentz-violating cosmologi-
torsion, and covariant derivatives, along with other possiblesal effects include the alignment anomalies on large angular
higher-order terms such as the gravitational analogue of thecales reported in the Wilkinson microwave anisotropy probe
Chern-Simons termés1) in the SME gauge sect¢d5]. At (WMAP) data[46], which are theoretically problematic in
low energies, the leading-order terms displayed explicitly inconventional scenaridg7]. Another example is provided by
Eq. (57) describe dominant effects of Lorentz violation. As the gravitational-wave equations, which acquire corrections
the relevant energies increase towards the Planck scalffom the coefficients for Lorentz violation in E¢57). The
higher-order terms represented by the ellipsis in(G@) are  resulting effects are compounded in certain scenarios for
expected to play an increasingly significant role. Lorentz violation. For instance, the Goldstone modes arising

Note that any coefficients for Lorentz violation liitvw from spontaneous Lorentz violation are known to affect the
with an even number of indices can also yield Lorentz-propagating degrees of freedonj4,48. Spacetime-
invariant contributions to the Lagrangi@s¥), since they can anisotropic features of gravitational modes may eventually
contain pieces proportional to products @f” and e *”. be detectable in Earth- or space-based gravitational-wave ex-
Similarly, by direct contraction witly*” and e**#*, any co-  perimentg49]. For suitable astrophysical sources, compari-
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sons of the speed of gravitational waves with the speed ofonstant terms, together with the curvature-linear Lorentz-

light and neutrinos may also eventually be feasible, whichviolating piece of Eq(57). In fact, the resulting action could

would represent direct sensitivity to a combination of coef-also be obtained directly by starting from general relativity

ficients for Lorentz violation in the gravitational, photon, and and imposing plausible constraints on the form of allowed

matter sectors of the SME. Similarly, Lorentz violation may Lorentz-violating terms. It is convenient to expand the coef-

be detectable in laboratory and space-based experimenfisient (kg)**” for Lorentz violation in Eq(57) and to write

studying post-Newtonian gravitational physics, such as testthe action in the form

of the inverse square laj®0] or of gravitomagnetic effects,

including geodetic precession and the dragging of inertial s _i

frames[51]. The detailed exploration of all these effects e AT

would be of definite interest but lies beyond the scope of the Aw

present work. +et™ Rl (58)
Experiments sensitive to Lorentz violation in the matter

and gauge sectors of the SME3,17-30 suggest that the distinguishes unconventional effects involving the Riemann,

coefficients for Lorentz violation are minuscule, which is 5. . L9 .
consistent with the notion that they arise as PIaan_RICCI, and scalar curvatures and so can simplify the consid

suppressed effects. If this feature extends to the gravitationélwratlon of certain special models. As an example, consider

sector as expected, it is likely that the many existing standar e action(B3) of the curvature-coupled bumblebee model
b ' y y 9 escribed in Appendix B. With the fielB#=b*+ §B* ex-

experimental tests of gravify42] would lack sufficient sen- ) L .
sitiF\)/ity to detect Loren%z vi?ﬁeﬁ?on although a few may ex- _panded about its Lorentz-violating vacuum value, this theory

hibit the necessary exceptional sensitivity. For the analysis Olﬂcvotrporfites only a coefficient for Lorentz violation of the
these experiments in the context of metric theories of gravity,s ype:
a widely applicable test framework exists, called the param- 1

etrized post-NewtoniafPPN formalism[52,53. A standard sk’=¢b*b"— + 2 £b2gH. (59
version of this formalisni42] that is relevant for solar sys-

tem experiments assumes a Riemann spacetime asymptofithis equation, the trace has been absorbed intoescal-

to Minkowski spacetime, a perfect fluid obeying conven-jng of R “although this could be avoided by adding an extra
tional equations for the covanam conservanon of energy Mosa y, — L£eB2R to the LagrangiariB3). In general, if indeed
mentum and for electrodynamic fields, and convenuo_nathere is Lorentz violation in nature, coefficients for Lorentz
geodgsm equations for test particles. This PPN formal|srr\1,io|ation of only thes”” or only thet** type might well
contains ten parameters, and bounds on them have been Qo 46 a5 the result of a comparatively simple mechanism at
tained in a variety of experiments. Under suitable assumpg,o pjanck scale.

tions on the SME matter sector and in the zero-torsion limit, The coefficients for Lorentz violatiog”” and t**** ap-

an explicit connection between the SME coefficients for Lor'pearing in the action(58) are real and dimensionless. By

entz violation and the PPN parameters should exist. '.A‘I'definition, s*¥ inherits the symmetries of the Ricci tensor

thpugh beyqnd the scope of the present work, dEterminIr‘gndt’”"“’ inherits those of the Riemann tensor. In consider-
this connection would also be of definite interest. ing the full theory(58), the saturated traces of these coeffi-
cients could be assumed to vanish, =t*” =0, since any
nonzero values could be absorbed into the Lorentz-invariant
coefficientu. Moreover, single traces af**” such ag™*,”

The Lorentz-violating extension of Einstein’s theory of could also be assumed zero, since nonzero contributions
general relativity is contained in the results of the previouscould be absorbed inte*”. It follows that the theory(58)
subsection as the limit in which the torsion vanishes. Thisnvolves 19 independent Lorentz-violating degrees of free-
Riemann-spacetime limit is of interest both its own right anddom, nine controlled by the trace-free coefficisfit and ten
also as a case in which the field equations remain comparaontrolled by the trace-fre&™*#”. Only one combination of
tively simple. Even in a Riemann-Cartan spacetime withthese 19 coefficients, given in a local frameggyz—sjj ,is
nonzero torsion, the relevant dominant Lorentz-violating ef{ocally rotation invariant. Note that the vanishing-trace as-
fects can under suitable circumstances be extracted from thgimptions are equivalent to replacisg” and t“*** with
zero-torsion limit because in realistic situations torsion eftheijr irreducible Ricci and Weyl pieces, whereupon the
fects are typically heavily suppressed compared to curvaturgorentz-violating part of the Lagrangian for the acti58)

f d’x[e(1-u)R—2eA +es"'R,,

The introduction of the coefficients*”, t“***, u explicitly

B. Riemannian limit

effects. could be written in the form
The remainder of this subsection assumes that quantities
such as the curvature tensor, its contractions, covariant de- L:e'wYADes‘“’R;TwnL et"“‘”CK}\W, (60)

rivatives, and the Einstein tensor are all evaluated in the

zero-torsion limit. For simplicity, the tilde notation for these where R,T“, is the trace-free Ricci tensor ar@,, ,, is the

quantities adopted elsewhere in the present work is supAfeyl tensor.

pressed throughout this subsection. The above properties af*” andt“**” are reminiscent of
The leading-order Lagrangian terms for this zero-torsiorthose for the coefficientkg),, ., in the QED extension or

theory consist of the Einstein-Hilbert and cosmological-the CPT-even coefficients in the gauge sector of the SME.
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This is because*” andt***" are extracted from the coeffi- symmetries o6*” andt“*#*. The result(64) in turn can be
cient (kg)“**” in Eq. (57), which like (Ke) or v has the sym-  used to obtain the trace-reversed version of Bg):
metries of the Riemann tensor. Among the consequences is

that the coefficiens*” can under suitable circumstances be R“V=K(T wr_ Eg“”T +(TRsur
moved to other sectors of the SME by redefining the coordi- g 2 g
nates and fields, following the discussion at the end of Sec. 1
IHA. v af aByd
. . . . . + =g*"(D D 4s**+R, 5,5t *P79). 65
Since the theory58) is torsion free, the gravitational field 2 g A Bvé ) (69

equations can be obtained directly by varying with respect to \

the metric while treating the spin connection as a dependerk’€ Presence of nonzem'” and t*#" also allows some
variable. Restricting attention for simplicity on the case withdualitatively different types of trace condition. For example,
u=A=0 but making no assumptions about the traces*f ~ contractings”” with Eq. (63) yields

andt*”, the variation of the action can be written as

S,U-VGMV~ KS/!-VTQMV (66)
5S, w:if d*xe — GH7+ (TRSY#7] 59,,+eRSs,, to first_ orde_r in the small coefficients for Lprentz v!olation.
@ 2k Acting with D, on the extended Einstein equatio(ts)

v and imposing the trace Bianchi identiy,G*"=0 yields
+EeRT Sa - 6D the condition

The variationsss,,, and ét,, ,,, are included in this expres- kD T =—D,(TRSY~
. . ot n'g v m v
sion for completeness. They contribute to the variational

equations fixing the coefficien&*”, t“**” for Lorentz vio- 1 oB o8 1 N
lation. In Eq.(61), the quantity TRS)#” is defined by =~ 5 RYD,Sapt R™D gSa,+ 55.,D"R
(TRS[)MVz ESQBR MV _gHaRQ V__gladRQ M4 ED D#*gav _ E RaﬁyED t +2Ra,ByéD t

- 2 aﬁg a a 2« 2 vtaBys StaByv

_ appBy
+ %DQDVS““— ;DZSNV— %g“”DaDBs“ﬁ Hapyn DR ©7
This condition can be interpreted as the statement of covari-
ant conservation of total energy-momentum, including both
aBy Eta’BwRaﬁvﬂ the matter energy-momentum tensby“" and the energy-
momentum contribution from the curvature couplings asso-
ciated withs*”, t“*+*_ The same result would also follow by
direct calculation oD, T*" using the matter-sector action,
followed by substitution of the complete variational equa-
(62) tions fors*” andt“**”. Since by definitionl’;” is indepen-

. . dent of the Lorentz-violating curvature couplings involving
mv -
Then, denoting byT¢"" the symmetric energy-momentum s#” andt“**”, all the terms on the right-hand side of Eqg.

tensor arising from varying the matter sector with respect tc%67) would then arise from the latter step. Note that Ef)

the metricg,,, , the field equations following from the varia- .- . .
tion (61) are found to be implies the matter gnergy—momentum tensqr can pe covari-
antly conserved by itself , T,#"=0, under suitable circum-
GHY— (TRSYmr= KT (63 stances. For example, this is the case for any solution to the
equations of motion obeying the conditiofg,,=0 and
These 10 extended Einstein equations incorporate the.Sg,=Datgyse=0.
leading-order effects of Lorentz violation in general relativ- An illustrative example of the above considerations is
ity, and they reduce as expected to the usual Einstein equ@IOVided by the zero-torsion limit of the curvature-coupled
tions whens*” andt**** vanish. Although beyond the scope bumblebee model described in Appendix B. This model in-
of the present work, it would be of interest and appears feavolves a traceless coefficiesg” given in Eq.(59), but the
sible to study the Cauchy initial-value problem for these ex~elevant calculations in this case can be performed for the
tended equations. The presence of coefficients for Lorentlll theory. The matter energy-momentum tenﬁy ob-
violation can be expected to modify the conventional analytained from the actioriB3) is
sis[54].
The extended Einstein equatiof@3) imply several other
results. Tracing with the metric gives

3
_ _taBym
2t R

1
+ SR 50"~ DD gt # =D D gt 1.

1
B _ a a ’
T,.=—Bu.B*— ZBaﬁB ﬁgM—VgWJrZV B.B.,,
(68)
R— DaDBSaﬁ_ Raﬁygtaﬁy(s: - KTg ’ (64)
where the prime denotes differentiation with respect to the

where Ty=g,,T,*”. This expression is comparatively argument, as usual. The equations of motion are the extended
simple because several terms vanish as a consequence of thiastein equations,
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compatible with the covariant conservation laws for the
3B*BPR,40,,~ B,B"R,,—B,B"R,, energy-momentum and spin-density tensors.
To demonstrate this, it is convenient to start with the Bi-
1 " 1 N 1, anchi identities in the form given in E¢A14) of Appendix
5DaDu(BB,)+5D.D,(BB,)~5D%(B,B,) A. Some manipulation, which includes taking traces, con-
verts the first of these into the form

_ B
G, =«T,,+¢&

J’_

1
- _g,uVDaDﬁ(BaBB) ) (69) Y 1 wBuv ”
2 D,G*'=5 TuapgRPH = TR, (73)
and the equations for the bumblebee field, ) o i .
From this expression, it is straightforward to prove the iden-
tity
D,B#"=2V'B"— éBMR’”. (70)
K

1 A
_ _ _ (D,— TN )G*+T,,"G* + SR T, 5,=0, (74)
The latter imply the covariant current-conservation law g M 2 mh

D,(2«xV'B")=D,({B,R""). (71 where the trace-corrected torsioi*“” is defined in Eq.
_ _ (A10) of Appendix A. Similarly, tracing the second Bianchi
The covariant conservation law for the energy-momentumdentity and extracting the antisymmetric part of the Einstein
tensor Is tensor yields
KDMTE,LV:gDﬂ(RaBBaBV)_%gRa'BDv(BaBﬁ)v (72) G V_GVM:DMTaav_DvTaaM_DaTa,uV—i_TBBaTa

M uv)

(75
and it can be obtained at least two ways. One follows the
derivation of Eq.(67), taking the covariant derivative of the from which follows the identity
extended Einstein equatio89) and applying the trace Bi- .
anchi identity. The other applies the procedure outlined be- GH'=G == (D~ TFg,) T (76)
low Eq. (67), involving the direct calculation dD“TEV from
the defining equatiori68), followed by substitution of the
equations of motior{70).

Note that the result&74) and(76) are a strict consequence of
the original two Bianchi identitiesA14), following from ba-
sic tensorial manipulation alone.

The identities(74) and (76) have been written so that

C. Geometry direct substitution of the field equations yields conditions on

This subsection contains some remarks about the compathe sources in the form of covariant conservation laws. Tak-
ibility of explicit Lorentz violation with the geometry of a ing A to be zero for simplicity, the field equatiorS6) be-
Riemann-Cartan spacetime. For simplicity, the arguments areome G*”= kT *” and T*= xS \"*. Substitution imme-
presented allowing for torsion but restricting Lorentz viola- diately gives
tion to the matter sector. They can be extended to other situ-
ations, including the presence of Lorentz-violating curvature
and torsion couplings, and they contain as a special limit the
case of general relativity coupled to a Lorentz-violating mat-
ter sector. Teuv_Tev,u_ (Da_T,BBa)Swa,uv: 0.

The basic chain of reasoning is as follows. The geometry (77)
of a Riemann-Cartan theory with local Lorentz and general
coordinate invariance can be regarded as a bundle of framddhese two equations have the same form as the covariant
over a base spacetime manifold endowed with a metric andonservation law$6), (9), except that the terms in the latter
with structure group being the Lorentz group. This frame-two that depend on the coefficieritg for explicit Lorentz
work offers the freedom to define certain geometrical quanviolation are missing in Eq(77). The two sets of equations
tities, notably the curvature and torsion, prior to specificationare therefore incompatible unless these terms vanish identi-
of the equations of motion that fix the spacetime. The curvacally.
ture and torsion are required by the geometrical structure to The incompatibility arises from the special geometrical
satisfy two sets of Bianchi identities. The curvature and tor-structure of the gravitational bundle of frames, which ties the
sion and hence the Riemann-Cartan spacetime are fixed Wianchi identities to the equations of motion in a nontrivial
demanding that they also solve certain other differentialvay. This can already be seen in the context of conventional
equations, the field equations. The Bianchi identities impos@eneral relativity without torsion, where the Bianchi identi-
certain conditions on the sources of the field equations, anties areD,G*”=0, the Einstein equations a@*"= xT"",
the compatibility of these conditions with properties of theand substitution of the Einstein equations into the Bianchi
sources is a necessary requirement for the theory to be selfientities yields the constrainD,T#"=0 on the energy-
consistent. However, for sources exhibiting explicit Lorentzmomentum source. In contrast, the geometrical description
violation, it turns out that these conditions are typically in- of a local gauge theory lacks this feature. For example, the

—TNI T+ T T+ SR, S =0
Au/ e v uvlie ) urSw ab ’

o
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geometry of a theory such as QED witH{1) gauge invari- VI. SUMMARY
ance is based on a principal fiber bundle witfiLlUstructure

group over a ba;e spaceti_mg manifold. The curvgture of thgnd CPT-violating standard-model extensioiSME) have
bundle is the antisymmetric field strend#),,, obeying the oo grdied. A general framework is discussed for treating
Bianchi identities d\F ,,+d,F,\+d,F,,=0. The field | grentz violation in the context of a Riemann-Cartan space-
strength and hence the bundle geometry are fixed by impOgime with curvature and torsion. This allows the description
ing equations of motion, say,F“"=j". In this instance, of gravitational couplings involving matter fields for bosons
direct attempts to substitute the equations of motion into theind fermions, with the general-relativistic and Minkowski-
Bianchi identities fail to yield the current-conservation law spacetime cases recovered as special limits.
d,j”=0, which instead follows immediately from the equa- The Lorentz- andCPT-violating QED extension incorpo-
tions of motion by virtue of the antisymmetry of the curva- rating gravitational couplings is constructed, and the domi-
ture F#”. The current sourcg” can therefore incorporate nant terms in the low-energy effective action are explicitly
explicit Lorentz violation without incompatibility. given. The partial action in the fermion sector can be found
The above clash between geometry and symmetry violain Eq. (12). Many of the properties and physical implications
tion occurs for explicit Lorentz breaking but not for sponta-are similar to those of the Minkowski-spacetime limit, but
neous Lorentz breaking. As discussed in Sec. I B,(Zd.is  SOme new features emerge in the presence of nonzero curva-
indeed valid when Lorentz symmetry is spontaneously broture and torsion. The leading terms in the photon partial ac-
ken. For example, no difficulties are encountered in the treation for the QED extension are given in E@5), and some
ment of the bumblebee model in the previous subsectiorfonSequences of the gravitational coupling are deduced.
Since in a suitable limit the effects of spontaneous symmetry | N€ action for the matter and gauge sector of the SME

breaking can be approximated by terms in the action wit ith gravitat_ional couplings is considereql in Sec. IV. _First,
explicit symmetry breaking, it is interesting to consider howthe conventional standard model of particle physics is em-

in this limit the resultg6) and(9) are recovered from the law bedded in a Riemann-Cartan spacetime. Then, the Lagrang-

(77). Suppose the spontaneous Lorentz violation occ rian terms expected to dominate Lorentz- &T-violating
- =upp P u £ violat u Bhysics at low energies are explicitly given for the case of

When_a_se_t of f|eld_sfx acquire nonzero vacuum valuis. SU(3)X SU(2)xU(1) invariance. Up to possible coordinate
The limit in question requires discarding all modes fof 5 field redefinitions, each term in the SME offers a distinct
representing fluctuations abdky, including massive modes yay for Lorentz symmetry to be violated. The presence of
and Goldstone modes or their Higgs equivalents. Discardingrayitational couplings enhances the options for experimen-
the massive modes has no untoward consequences in thg tests.
low-energy limit. However, in the case of spontaneous Lor- The pure-gravity sector of the SME is considered in Sec.
entz violation, it is known that the Goldstone modes are aby. The leading-order terms in the Lagrangian are given in
sorbed into the gravitational fields without generating a masggs. (55) and (57). These terms suggest several interesting
for the gravitonh ,, [4,48]. Discarding the Goldstone modes directions for theoretical and experimental study. The special
therefore changes certain degrees of freedom in the curvatulienit of zero torsion, which is the Lorentz-violating exten-
and torsion, and so it is unsurprising that the conditigidy ~ sion of general relativity, is comparatively simple. The
becomes modified in this limit. It would be of some interestLorentz-violating physics is dominated by the acti@®),
to demonstrate this limiting procedure in a simple modelWhich contains 19 independent coefficients for Lorentz vio-
including the explicit recovery of Eqg6) and (9), but this lation. The presence of Lorentz-violating curvature couplings
lies outside the scope of the present work. has several physical implications, such as curvature-
Another interesting question is whether there exists aflePendent modifications to the covariant conservation law. In
alternative to the geometry of the Riemann-Cartan bundle oP€¢- V C, some geometrical issues associated with explicit
frames that would yield consistent Bianchi identities in theLore_nt_z breaking in th.e effectlve field theory are addressed.
presence of explicit Lorentz violation. Intuitively, the clash EXPliCit Lorentz breaking is shown to clash with the geom-

described above arises because the Riemann-Cartan geo%[y o_f Riemann-Cartan s_pacetime, but spontaneous Lorentz
violation encounters no difficulty.

e]tcry ":’t p;;edlcartsdtr?p?n thitiTlst(Tirllcet;hrou?\kllotutrtheni;utncil_e In con_clusion, relativi';y violations provide candidatt_a low-
ot certain geometrical quantities fike the curvature and 1o energy signals for a unified quantum theory of gravity and
sion. Incorporating a coefficient for Lorentz violation corre- other forces. The SME is the appropriate general framework
sponds geometrically to introducing another quantity thak,. qescribing the associated Lorentz- abBT-violating ef-
couples to the existing ones but that originates outside thgy:s. The gravitational couplings presented in this work of-
Riemann-Cartan framework and hence disrupts it. Howeveker promising directions for exploration, with the potential
it is reasonable to conjecture that a more general geometricgitimately to offer insight into physics at the Planck scale.
framework can be constructed in which the basic geometrical

entities implement directional dependences at each space- ACKNOWLEDGMENTS
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APPENDIX A: CONVENTIONS

. _ . . . D,e2=d,e,°-T?, 6,2 +w, e’ (A8)
The Minkowski metricy,y, in a local Lorentz frame is

1 0 0 0 The Cartan connection is a combination of the Levi-Civita

connection and the torsion tensor
0O +1 O 0
Tl o 0 +1 0

0 0 0 +1

(A1) \
[ =T+ 3T, = [ Iuy} T 3T,

(A9)
Note that this metric convention involves a sign relative to , o .
that adopted for the original discussion of the SME in Ref Where the first term after the second equality is the Christof-

N i i

[3]. The antisymmetric tensor in this frame is fixed &y,; (€ symblol andr™ ,,,= fT vy IS the torsion tensor. Pz_arenth_eh

= +1. The Dirac matrices in this frame are taken to satisfyfs:cstoingfgsmg pairs of indices denote symmetrization with a
E.

{92, yb}: — 27lab, (A2) In practical applications, the trace-corrected torsion tensor
defined by
with the additional definition
1 -'IL}\MVET)\MV+Taa,u,g)\v_-raavg)\;t (AlO)
o =Zily" . (A3)
is often useful. Also, equations involving torsion are some-
Latin indices are used to label local Lorentz coordinatestImes more profitably expressed in terms of the contortion

while Greek indices are used for spacetime coordinateéfensorKA defined as
However,x,y denote genericcomposite indices spanning an KN —1(Th T
irreducible representationX(,))*, of the local Lorentz w=2(T
group. The commutation relations for the Lorentz algebra arei_h . Y
e inverse relation ig*,,

wvr

N A
v —T,,'u ). (Al11)
=K*,,—K",,. The contortion
— —_ T\
[Xtab] » Xied1] = 7acXibd ™ MadXbe] ™ PocX[adi T 7oaX[ac] - tensor obey«, ,, = —K,,, . Note thatk®,,=T%,, .
(A4) The curvature tensor is defined as

For example, for the spinor repre;entatmgcb]j —urgbIZ, R = (3, T\ + T, T %0 = (nev)
while for the vector representationXfap) 4= = 72" 7bd B
+ Mag 7’ o _ =R¥),, H[(D K )+ K K oy K K )
The Minkowski metric is related to the curved-spacetime
metricg,,, by the vierbeine,®: —(nev)], (A12)
=e %’ (A5) B : -
9ur=€u €y "ap- where R*), ,, is the usual Riemann curvature tensor in the

absence of torsion, given by replacing the Cartan connec-
tions in the first expression above with the corresponding

fusion, the_ charge on the electr_on IS d_e”O_tEd bg_. The_ Christoffel symbols. The Ricci tensd®,,, the curvature
symbol D is used for all covariant derivatives, including ; . L
scalarR, and the Einstein tens@,, are defined as

spacetime, internal, and mixed covariant derivatives, with
the meaning understood from the context or otherwise speci- R —R*
fied. For the spacetime covariant derivative, the connection wyT IR kv
is assumed to be metric:

The determinant of the vierbein is denotedlo avoid con-

R=g“'R,,,
D\0,,=0, D,e,=0. (AB)

1
The spacetime covariant derivative corrects local Lorentz G, =R,,— Eg’”R' (A13)
indices with the spin connectiowﬂab. Thus, acting on a

field fY, it takes the matrix form ) ) )
The reader is cautioned that the presence of nonzero torsion

1 in a generic Riemann-Cartan spacetime means that these
(D)= 5Xya,u_§w/¢ab(x[ab])xy Y. (A7) three quantities also differ from their Riemann-spacetime
counterpart®, R,,,, andG,,, .
The covariant derivative of the conjugate representditjda The curvature and torsion tensors satisfy symmetry prop-
given by the same equation witff replaced byf, and the erties that follow directly from their definition. They also
minus sign replaced by a plus sign. obey the two sets of Bianchi identities
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; ; where the metric fluctuatioh,, is symmetric. At leading
(;) [D,R* ot T 1R ] =0, order, spacetime and local Lorentz indices can be treated as
r equivalent, and the vierbein and spin connection can be ex-
pressed in terms of small quantities:
> [D, T+ 1%, T, —R5,\,]1=0.
) v Ml AR €.a= Myat €42~ 77,ua+%h,u,a+)(,u,av

(Auv
(A14)
e~1+1h,
In these equations, the summation symbol is understood to
represent the sum over cyclic permutations of the indices in ® 42~ ~ 392N b+ 3N 42t d XapT Kaup -
parentheses. (A20)

The definition(A5) and the condition(A6) fix the rela-
tionship between the spin connection and the torsion or co
tortion. The basic variables can be taken as the vierbein a

Here, the antisymmetric part of the vierbein fluctuation is
n%enotedxﬂa. This variable can be viewed as containing the

the spin connection, and all other variables such as curvaturdX extra degrees of freedom in the vierbein _relat|ve to _the
and torsion can then be expressed in terms of these. pgpetric that transform under local Lorentz rotations, so fixing

example, the Cartan connection is Xua Can be regarded as a gauge choice. . .
Throughout most of this work, natural units with=c

FAMV:e)\a( 0,80~ wubaevb)a (A15) =¢y=1 are adopted.
while the torsion is APPENDIX B: BUMBLEBEE MODEL

Models in which the Lorentz violation arises from the
dynamics of a single vector or axial-vector fie, , called
the bumblebee field, are of particular interest because they
have a comparatively simple form but encompass interesting
features, including rotation, boost, a@dPT violations. In a
Riemann-Cartan spacetime, the field strength corresponding

T)\,uv:e)\a[(&,ueva—’_w,uabevb)_(/*"(_’v)]v (AlG)
and the curvature is

RK}\MV: eKaeAb[(a;LwVab+ w,uacwvcb) - (:U/(_) V)] .

(AL7) to B, can be defined either as
Another useful expression is the relationship between the B8,,=D,B,-D,B,+T",,B,=3,B,—4,B, (B1)
spin connection and the vierbein:
or as
ab 1 va b b 1 vb a a
w, =§e (d,.8,°—d.e, )—Ee (9,8,°—d,e,% B.=D,B,—D,B,. (B2)
1 The former is WY1) gauge invariant even in the presence of
— —e®efPe °(9 ep.—dze,0)+ K, "2 torsion while the latter is not, so the two definitions involve
2 i a<Bc BT ac VN . . . . .
qualitatively different physics. However, they coincide in

(A18)  Riemann or Minkowski spacetimes.
As an example, consider the simple model with action
In the limiting case of Riemann geometry relevant for Ein-
stein gravity, the torsion and contortion are zero. This equa- — 4
; ; ; o . Sg= | dx
tion then fixes the spin connection in terms of the metric.
Using these expressions, the standard Riemann-spacetime

1
5 (eR+ (eB'B'R,,) ~ {eB"'B,,

covariant derivativef)ﬂ involving a symmetric connection —-eV(B”B,* b?) |, (B3)
and the Christoffel symbols emerges as the zero-torsion limit
of the covariant derivative in EqA7). whereé is a real coupling constant controlling a nonminimal

Various special cases of the general Riemann-Cartapypyature-coupling term, ano? is a real positive constant.

spacetimegwhich haveRr,,,, T, both nonzerpare of  The potentialV driving Lorentz andCPT violation can be
interest. They include the Riemann spacetimes of generghosen to have a minimum @#B,+b2=0. A simple

reIativi?y mentioned above, Witm'k#,,:(). The Weitzeank choice forV(x) is V(x)=1\x2, where is a real coupling
spacetime$56] are defined byR*, ,,=0. The term “flat”is  constant. Another simple choice with similarities to a sigma
reserved for spacetimes witR*, ,,=0, which may have model isV(x)=Ax, where now\ is a Lagrange-multiplier
nonzero torsion. Finally, the Minkowski spacetimes havefield. Note that the form of the potential ensures breaking of
R, =T",,=0. the U(1) symmetry, irrespective of the definitidB1) or (B2)

It is sometimes useful to work in a Minkowski-spacetime adopted forB,,, .
background containing weak gravitational fields. Then, the In a region where the curvature and torsion vanish, the

metric can be written as potential drives a nonzero vacuum val&#=Db*, where
b*b, ==+ b2. The quantityb,, is a coefficient for Lorentz and
9uv="NuvtNyns (A19)  CPT violation. In a local Lorentz frame the condition be-
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comesB,B?=b?, and the local Lorentz coefficieby can be  V but with nonzerct has been used as an alternative theory
taken to have a preferred form as discussed in Sec. Il A. Thisf gravity in a Riemann spacetime by Will and Nordtvedt
holds in an asymptotically flat spacetime and also in thd42,53,58. The theories withE=0 were introduced in Ref.
Minkowski-spacetime limit, although the effects of the po-[4] to illustrate some ideas about spontaneous Lorentz viola-
tential may be masked for certain matter couplings and intion, and these and related models have been explored fur-
regions of strong curvature and torsion. ther in recent work$16,59,6Q. In particular, if one or more
The physical insights offered by this theory are remark-fermion fields also appear in the action, the covariant axial
ably rich. The special limit of Minkowski spacetime and the coupling to the bumblebee field induces terms with coeffi-
Lagrange-multiplier potential is equivalent to a theory stud-cients for Lorentz andCPT violation of the typeb,, in the
ied many years ago by Namip&7], who obtained an elegant fermion sector of the SMHE16]. The action(B3) with a
proof that it is equivalent to electrodynamics in a nonlinearpotentialV and nonzero curvature couplingis used as an
gauge. The case without Lorentz violation and zero potentialllustrative example in parts of the present work.
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