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Analytical construction of a nonperturbative vacuum for the open bosonic string
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Using analytical methods, a nonperturbative vacuum is constructed recursively in the field theory for the
open bosonic string. Evidence suggests it corresponds to the Lorentz-invariant end point of tachyon conden-
sation on a D25-brane. The corresponding string field is a twisted squeezed state.

DOI: 10.1103/PhysRevD.63.046007 PACS nuniderl1.25.Sq

[. INTRODUCTION stant expectation values satisfying the string-field equations
of motion:

The physical behavior of strings can be investigated in a
variety of ways. Much of the existing lore is based on per-
turbative studies of single strings in relativistic quantum me- QN+ga' N*xN=0. )
chanics. However, it is likely that a satisfactory understand-
ing of the subject requires also mastering nonperturbative
and collective string behaviors. The requirement of spacetime independenceVofakes it

String field theory offers one framework within which to use_ful to transform the cubic vertex to a form in which the
investigate nonperturbative many-body string phenomené?sc'”ato_r zero modes are converted into the momentum rep-
An essential feature of any field theory is the structure of jtg€Sentation, so that the momentum may be set to vanish.
vacuum, and it is of particular interest to establish the exis-onc{,e th's.’ form of th_e cubic vertex is obtained, we search for
tence of any nonperturbative vacua. A relatively simplea string fieldS obeying
string field theory describes the open bosonic stfibjgand
for this case the existence of at least one nonperturbative
vacuum has been establishgd-4]. The procedure involves
a level-truncation scheme in which successive approxima-

tions to thg full 'theory are made acgordmg to .the mass l.everhich serves as the basic object upon which the solution is to
of the particle fields and the terms in the action. Analytical

thods at low i d d binati ¢ be constructed. We next perform a Bogoliubov transforma-
Metnods at low truncation orders and a combination of andgqn, 14 4 new oscillator basis for whichis the vacuum state.
lytical and numerical methods at higher orders can determing, ihis new basis. the string field/ can be expanded in

the structure of the string field for the nonperturbative 5 ticle-field modes and the conditions determining their
vacuum in terms of expectation values of particle fields.  constant values can be extracted from the equations of mo-
The nonperturbative vacuuh” has been conjectured by tion (1). These conditions form a recursive set that is ame-
Sen to be the end product of tachyon condensation on gable to a formal solution fo\. Certain features of the
D25-brane[5]. Strong support in favor of this conjecture solution can be compared to those already established via the
exists from explicit calculations using the level-truncationlevel-truncation scheme, with good agreement.
scheme in the field theory for the open bosonic stfig8], The above procedure may appear somewhat convoluted at
with these now having reached lev&D, 20 in the notation first sight, so we provide some heuristic physical and math-
of Ref.[4]. Analogous calculations for the superstring pro-ematical motivation before detailing the calculations in the
vide further support for the idea that the tachyon effectivefollowing sections. On the physical side, one intuitively ex-
potential has a minimum where the D-brane tension is expects\ to describe a situation in which the whole string field
actly cancelled9-12]. has condensed to the vacuum. It is therefore plausible that an
In this work, we present an analytical approach to condinfinite number of particle fields acquire vacuum values in
structing the nonperturbative vacuuki We obtain a series the nonperturbative vacuumv. In fact, it has been shown
representation fah"and compare it to the numerical solution [13] that no nontrivial finite linear combination of expecta-
obtained via the truncation scheme. The methodology antlon values for the particle fields can satisfy Ef). Intuition
results offer several interesting possibilities for future explo-suggests that the lighter modes should play a greater role in
ration. In the remainder of this introduction, we provide athe development of the string-field condensate, so one might
brief summary of the steps involved in the constructiol\gf — anticipate expectation values X to drop with mass level.
and we offer some motivation for our procedure. This is supported by evidence from numerical calculations
The steps involved in the construction 4f are as fol-  with the level-truncation scheme. Furthermore, physical in-
lows. First, note that\'is to be determined as a set of con- tuition about harmonic oscillators and the formation of a

SxS=¢,S, 2
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coherent condensate in the perturbative vacuum also sug- 1
gests the natural form of the string field is likely to be V3= exy{ E R a:’rTVr,nrr?arS;r
closely related to a generalized coherent or squeezed state
[14]. These notions are echoed in our construction, since the r,r s ST 1 it grt
solution we obtain foiS in fact is a squeezed state and the ~ = Von 52 ap Voo o |10)123
nonperturbative vacuunV is developed by twistings with
oscillator factors controlled by the BRST opera€r 1
On the mathematical side?lwe observe E)hat the usual de- Ef dp'dp®dp’ex rz; m%o an Vinen
scription in terms of perturbative oscillator modes and the
level-truncation scheme itself use a basis for the Fock space —E E VIS, ST 1 |10 3
in which Q is essentially diagonal and the star product has a = & 24 VooP' |[0P)1za: (3)

complicated realization. However, the structure of the string

field equations can be viewed as analogous to a Riccati difyhere the vertex functiong'S, determineVs in the momen-
ferential equation, involving a single derivative operdtma-  tym representation of interest. As usual, the superscripts
sically, LoW), a linear term(the factor—W¥), and a quadratic gre understood to take values modulo 3.

term (the product¥« W) [15]. In such equations the nonlin- Rewriting the right-hand side using

ear term represents the greatest complication, and it is there-

fore natural to seek a representation in which the star product |py=(2m7) Y*exd — % p?+alp—1 (a})?]|0), (4
has a relatively simple structure. The ideal case would be to

convert the quadratic term to linear form. This can be apwe find the relations

proximated by finding a string statgsatisfying Eq.(2) and

converting to a basis in whic8 is the basidground state, LE.ngSn
so that the star product has a relatively simple realization. Vin=Vin— 22 10 Mn#0,

The expression foQW¥ becomes complicated in the new
basis, so it might seem that little has been gained. However,
the net effect of the manipulations is that the difficulty has VIS — On n+0 (5)
been moved from the nonlinear part of the equation to the on '
linear part, which provides just enough advantage to make
possible the construction of a solution. 2V” 1

The remainder of the paper is organized as follows. In Voo =
Sec. I, some preliminaries are discussed, including the con-

version of the oscillator zero modes to the momentum reps . . .
resentation and some properties of coherent and squeezN§Xt’ we use these relatl'ons to derive some properties of the
ﬁ nsformed vertex functions.

states.'The reader unmterested In these details may WISh First, we note that the ‘double square’ of the vertex func-
pass directly to Sec. Ill, in which the squeezed string field ons V'™ generates the identifL6]:
is obtained. Section IV converts to the squeezed- oscnlator mn
basis. The construction of the nonperturbative vacuris
presented in Sec. V, along with some of its properties. The E VIV S= 6565, mn=0,1,... (6)
results are discussed in Sec. VI. Finally, the Appendix con-
tains a derivation of a useful identity. Throughout much of o N ]
this work, the string coupling as defined in Ref2] and the This leads to the following identities for the vertex functions
string tensiona’ are set to one, although they are explicitly in the momentum representation:
displayed in certain formulas for clarity.
k; Z VILVES = 575, mn=1.2..,

Il. PRELIMINARIES

n=1,2,..., (7)

A. Momentum representation s VARV VTS
t

Py

=

[y

The equations of motion of the string field can be ex-
pressed in terms of particle fields using a Fock-space repre-
eentatlon [16—18._ We are mteres_ted in _spacetlme- 2 VBthIt(sozzvgo(;rs_
independent solutions of these equations, so it is useful to =1t
express the spacetime dependence of the vertex in the mo-
mentum representation rather than in the representation wittm particular, We see from the first of these relations that the
oscillator zero modes. Following the approach of R&b],  vertex functionV[;,,, for whichm, nare restricted to nonzero
we require the three-vertéXs involving the vertex functions level numbers, double squares to the identity in analogy with
Vs to satisfy Eq. (6).

=
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Next, we establish some features of the structure of the trans- (0|exp( aSaexp(} a*VaT)|O)= (1-sv)~Y2 (15

formed vertex functiond/,,. Recall that the vertex func-

tions V3 viewed as matrices can be expressef1&$ Combining Egs.(14) and (15) to an identity for displaced

_ squeezed states in one oscillator dimension yields
V'"T=1(C+U'+U"),
(OlexpAa+ 3 aSaexp na’+ 3 a'vah)|o)

rrr+1_1 ’ 11’
VT =5 (C+alU’ +a*U"), tS) =(1-SV) Y2exg\(1-VS) *u
V2= L (CHa*U'+aU'), +3 M1-VY WA +3 u(1-SV)Sul.
where a=exp(2mi/3), Cpy=(—1)"0y,, and the matrices (16
U’ andU’'=CU’C satisfy The analogous identity for{O|expAna,+3 amSnn)
L , , Xexp(unal+3alVn,ahlo) in the multidimensional case is
(U)?=(U")?=1, (U)'=U". (9 expected to have the form
Some algebra shows that these relations imply (Olexp(\-a+3 a-S-a)expu-a’+3a’-Vv-a')|o)
V=1 (C+U+U), =Det(1-S-V) "2exg\-(1-V-5) ! u
_ 3N (1-V-9) L VAA+3 u-(1-S V)L S ],
V=1 (C+aU+a*U), (10 20 ) 2 ) Sl
17)

rr+2_ 1 * I
v =3 (C+a*U+tal), where the dot indicates contraction of indices. This can be

shown explicitly in two dimensions, for example, by making

where
repeated use of E@16).
Unn=UL+(VEF DU UL, mn=12,.., (11 In the fermionic case, with an anticommuting oscillator
algebra[19]
andU=CUC. It also follows that (b el ={Cm,bl} =Sy MN=1,2,..., (18)
—1)2= T . .
u?=u?=1, U'=U, (12) and all other anticommutators zero, the equivalent of Eq.

i i 1 be found
as before. These equations imply that the maw%C (17) can be found as

=CV"=%(1+UC+CU) commutes with all the vertex- 0 z t.,b ¢ ot nt. v ot
exp—b-S-c)expb’- u+u-c'+b"-V.c")|0

function matricesv's, while CV"*=V*'C. These identities (Olexp Jexpb pt )10)

are used below. =Det(1-S-V)exg u® (1-S-V)"1.S. uP]. (19

The above arguments establish that the vertex functions
Vo, restricted ton, m=1 have the same formal structure as For simplicity, we have taken the analogue of the parameter
the original vertex function¥/,J. This means that searches A to vanish here.
for spacetime-independent solutions to the equations of mo- Consider next the star producy*S, of two squeezed
tion involve the same formal vertex structure as spacetimestates,S;=exp( al’-St*-a'")|0); with squeeze matris!!
dependent ones. We return to this point in Sec. VI. _and S,=exp( a2 a2")|0), with squeeze matrixs?

In the remainder of this paper except where otherW|se|. .

- he result can be written as

stated, the indicem, nrange over 1, 2,..., so the results are

independent of momentum. Thus, for example, the bosonic 1 1
part of the three-verte¥ takes the form |S1%xS5)5=140| ex;{ > al-stl.al+ > a’.s%2.a?
13
by _ T +
|V3>—exp< - Er;:l an Vi |10)10s. (13 xeXp( ploaltt p2. a2t
dentities for coh d d 13
B. Identities for coherent and squeezed states _1_5 D a’T'Vr5~aST)|O>123, (20)
This section presents some identities required in subse- rs=1

quent sections of the paper, where frequent use is made ofh 1- 313l 2= 23132 Evaluating first th
generalized squeezed states. First, recall a basic identity fJfN€res =a>Vv=, u"=a*v*. Evaluating first the expec-
coherent states in one oscillator dimension tation value of the 1-oscillators usin@7) on the level-

' number indicesm, n and then evaluating the expectation

<O|exp()\a)exp(uaT)|O)=exp()\,u), (14 value of the 2-oscillators produces a somewhat cumbersome
expression. However, it simplifies in the special case for
and the corresponding identity for squeezed states, which the matrice$''C andS?’C commute withV's. In the
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next section, it is shown that this case is the relevant one for
the construction of solutions of the string field equations.

With the simplification, the result of the calculation is

|S1%S,)3=[ Detyn(Dets(1-3V))] 2

2
XEXP[ 21 pH(1-3V)13]=u®||0)s,
r,s=
(21
where we have introduced a matriX™ in the two-
dimensional string indices given by
st o

In Eq. (21), note the double determinant that occurs in terms

of the string indices, s and the level-number indices, n
In the ghost sector, the three-vertex takes the ffi26j

3
IV%*‘>=eXp{r2l bi (EVE ™) iy

,S=

|+)123, (23

where the matriE is given byE,,,= 8,/ /m. In this equa-
tion, the matriced/’s have the form

Vr=1(c+0+0),
Vr+i=1(C+al+a*0), (24)
VT2=1(C+a*U+al),

with U=CcUcC, U2=02=1, andUT=0, in complete anal-
ogy with the bosonic sector. Introducing matri&é andS??

such thaS*'C andS%C commute withV', the star product
of two squeezed states is given in this case by

1 —|expbt- ESHE"t.cl+ b2 ESE 1. ¢?)

X ex% MClE*l_ ClT+ blT' Elulbl_i_MCZE*l_ CZT

2
+b2T'E,bLb2+ E b't.EVSE 1. cst |+>123
r,s=1
=[Detnn(Dets(1-2V))]
2
ce 3, ST 1),
r,s=
(25)
In this equation, we have set
5 “éll 0
2= 0 =2’ (26)

in analogy with the bosonic sector.

PHYSICAL REVIEW D63 046007

Ill. THE SQUEEZED STRING FIELD S

In this section, we obtain squeezed-state solutions of Eq.
(2). The nonperturbative vacuun is constructed in Sec. V
using these solutions.

We have shown in Eq$21) and(25) that the star product
of two squeezed states is again a squeezed state. To solve Eg.
(2), we require invariance of the matrix defining the width of
the squeezed state. In the bosonic sector, this leads to the
condition

V21
CSC=(V2 V2 (1-3V) 13 ( Vlz) +Vi @2

where we have chosen
PR >0 28

=lo sl (28)
In Eq. (27), the matricesv*?=V3! and V2'=V?? and their
conjugates arise from the coefficienis=a3"v® in (21).
The term (:3V) '3 is to be interpreted as carrying both
level-number indicesm, n=1,2,... and string indices, s
=1,2. TheC matrices multiplyingS on the left-hand side
emerge from the application of the two vertex on the original
state.

The challenge is to solve EQR7) for S, thereby determin-
ing the width of the squeezed state satisfying B). It is
convenient first to develop some machinery controlling the
commutation of the various matrices on the right-hand side
of Eq. (27).

Using the decomposition of the vertex functioW& in
terms of the matrice€ and U, the following identities can
be shown to hold:

VisC=CVe',
Vll V12
(VlZ,V21)( V21 Vll) — _ Vll( V12,V21),
Vll V12
(V21,V12)( V21 V]_]_) — 2V11(V12,V21) + C(le’VlZ) .

(29

To simplify the structure of the calculation, we introduce a
two-dimensional space

A
EA(VlZ,VZ:L) 4 B(V211V12)1

B (30

whereA andB are scalars assumed to commute with all other
expressions. In terms of this formalism, the relati@®® are

Al B

(B)c—c A), (31)
A _Vll 2\/11 A

I [
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These equations can be used to determine the result of coramall x, while T, =1/T_ behaves asx 1. A numerical

muting theC andV matrices in Eq(27) to the left. check on the eigenvalues ¥f= CV*! shows they are smaller
As a further simplification, we make the ansatz than one and converge toward zero, with the three largest
being 0.21, 0.09, 0.03. Since the presence of any eigenvalue
S=CT, (33)  of T with absolute value greater than or equal to one leads to

an unnormalizable state, we consider only the solulian
In the ghost sector, a similar construction can be per-
formed. Starting with a general squeezed state defined by the

matrix S and requiring that its width be invariant under the

whereT is taken to commute witN/'s. This implies only the
productCV need be moved to the left in ER7). Combining
Egs.(31) and(32) gives

A 2viic —vHC)\ /A A star product generates the condition
(B)CVZ< 1 0 )(B)=A<B)' 34 Jar
= (7125721 1 S\ - 1S fyzk!

Commuting (=-3V) '=(1-CTV) ! to the left yields CSC=(VEVH(I-2V) 2<v12 TVE 40
(1—TA) %, which can be explicitly evaluated by diagonal-
izing the matrixA. In particular, in the case of interest  \where
=1, B=0 one finds

1 -1 1 a1 Sre= 59 (41)

0](1-CTV) *=[1+V IcT(T-2)] Tl (39 03

We thus obtain the result Note the minus sign on the left-hand side of E40), ap-

21) pearing because conjugation using the two-vertex introduces

(V2 v2h(1— CT\/)1CT(V a relative minus sign for thb andc oscillators.

v The solution of Eq.(40) is completely analogous to the
=[1+VYMCT(T-2)] 'CT(VZ, V) solution of Eq.(27). This is because the matric&4® are
V2l defined through matriceS andU as in the bosonic case, and
+T(V12,V21)](V12) so all iden.tities leading to Eq$38) and (39) have ghost-
sector equivalents.
=[1+VICT(T-2)] CT[2(ViY2—2vilc Writing S=CT andX=CV"%, one obtains
+T(1— (V)] (36)

(T+D[T?+ (X 1=3)T+1]=0. (42)
Here, we used the identities ) )
This has solutions
(V21)2:(V12)2:(Vll)2_vl1C,

(37 ~ ~ 1 = ~
VIA2LE 212 | (A2 T=-1, T.=—(@X-1=V(1-X)(1-5%)). (43
2X
which can be proved via the explicit expressions in terms of
U andnC. Note that the result in Eq36) involves onlyT, C  The expected piece of the unnormalizable identity functional
andV=. N 26) ) btai is again found as a solution, correspondingite — 1.
We can use the resulB6) in Eq. (27) to obtain an equa- The two solutionsT . are real for allX except for eigen-

tion for T. Some rearrangement of terms yields . ~ ~ .
valuesx in the ranget <X< 1. For smali, T, ~ — X is small
(T-D[T*=(1+X HT+1]=0, (389  while T_~X"1!is large. Since the eigenvalues ¢t* con-
verge toward zero, only , can lead to a normalizable solu-
tion to the ghost sector of Eq2). One might wonder
1 whether some of the eigenvalugsof X lie in the interval
T=1, To=on (1 XEV(143X)(1-X)), (89  L<x<1, which would lead to complex eigenvalues Tor .
However, all théx are negative, with the largest three eigen-
validating the ansatz33). The T=1 solution givesS=C,  values being-0.66, —0.25, and—0.08.
and the corresponding string field is the identity functional Combining the above results provides the squeezed state
restricted to the bosonic sector. This solution is expectedbeying Eq.(2) as
and its appearance serves as a nice check on the formalism.

whereX=CV*. This generates three solutions far

However, it is physically irrelevant because it is unnormal- |S)=Det(1—82)1’4De1(1—~82)*1’2
izable.

The other two solutions are real for eigenvaluesf X 1 it Y

L . X = +).
satisfying —$<x=<1. The solutionT_ behaves asX for exy{ a'sd |exp(b'ESE™ )| +) (44)
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By construction, it is an element of the star subalgebra of Va)ocexn & st HUrssshy|o 51
string fields. A family of wedge states also lying in this sub- IVa) Lk )10)s 125 61
algebra was recently introduced in R¢R2]. It would be  \ypere

interesting to determine explicitly the relationship &fto

these wedge states. V=(1-V9 XV-5) (52

IV. CONVERSION TO THE SQUEEZED BASIS is the transformed three-vertex function.

Next, we investigate the properties ¥f Using the ex-

Since the star product is idempotent on the string figld - 's . . : g
one can expect the form of the vertex function to be substanQIICIt fqrm (10).' M . canible d'ﬁgona“md in thes indices by
a matrix O satisfyingO™~=0":

tially simplified in a new oscillator basis chosen such that the
squeezed statgS) plays the role of the ground state. As V=0"W.0 (53)
before, we begin our considerations in the bosonic sector and b=

subsequently extend them to the ghosts. with

Observing that §— Sa')exp( a'Sd)|0)=0, we are moti-

vated to define a new annihilation operasdsy the Bogoliu- c 00 1 1 11
bov transformation Vp=[ 0 U O o=—"|a" a 1]. (59
_ V3 .
s=w(a—Sa’), a=w(s+Sg), (45) 0 0 v a «a
where For the transformed three-vert&% we find
_ _Q2\—1/2 ~
w=(1-59""% (46) V=0"11-VpS) UVp—90 (55)

The operatoss annihilatesS), so the latter can be identified

. . f with the rr elements of the diagonalized form given b
as the vacuuniO); in the s-oscillator basis: 9 g y

10)4= Detfw)~“exp(} a'Sa)|0), ((1-VpS) HVp—9)H=(1-C9 1 C-9)=C,
10),= Det(w)~ expy — & s'S¢)[0).. (47) (1-VpS) Y(Vp—9)#=(1-Ug) HU~-9), (56)
Applying this transformation to the bosonic sector of the (1=VpS) H(Vp—8)*=(1-US) " HU-S).

three vertex, we find The diagonal elements of the transformed vertex function

Vo) =exn & a"'vrsash) |0 V's are all equal and given as one-third of the sum of its
[Vs)=explz )10a.125 eigenvalues in Eqg56), in analogy withV's. Multiplying
scexp($aT(Ve— S5r5)as1“)|0>s‘123 any one diagonql elemewt’ from the left and from the right
. . with (1-US) gives V*{(1+5?)—VICS—S, which van-
xexfd (s'+s9{w(V-S)w}'(s"+59°]|0)s 123 ishes for the solutiorS=CT_ in Eq. (39). This is to be

(48)  expected, since the vacuum can satisfyy0)sx|0)s=|0)s
only if indeed the diagonal elements \Gfvanish.

In the last line of this equation and in what follows, itis . off-diagonal elements of are also of interest. Ex-

understood that the symb8lis to be interpreted aS,,,5".

In the Appendix, the useful identity plicitly, we find
/12 \s21
expa'Aa’+a'Ca+aBa) 0 vE v
N/ 721 /12
—Def (1-C)e®] Y2exfa’(1-C)Aal] V=L Ve oovEL (57
viz g2l 0
xexd —a'ln(1-C)alexgaB(1-C) ta]
(49  where
is shown to hold for multidimensional oscillators, where the V=1 (C+aA+a* A),
matricesA, B, andC satisfy
AT=A, BT=B, ACT=CA, BC=C'B, C2?=4AB. VH=5 (C+a*A+ad),
50 (58)
50 A=(1-US)"Y(U-9),
The identity(49) can be used to rewrite E¢48), since the - - -
appropriate identifications o4, B, C satisfy the conditions A=(1-US)"{U-S)=CAC.
(50). Noting that exponentials involving the annihilation op-
erators act as the identity on the vacuum, we find It can be shown that

046007-6



ANALYTICAL CONSTRUCTION OF A.. ..

C+A+A=0, A2=A2=1. (59

Using these results, some straightforward algebra yields

(\'\/12\'\/21)2: \"/12\'\/21, (\'\/21\'\/12)2: \'\/21\"/12, (60)
demonstrating that
P, =VA2,  p,=V212 (61)

are projection operators. It also follows thet+P,=1,

which impliesP, and P, are conjugate. Other useful identi-

ties are

P1=\A/12C=C</21, P2:\A/210:C{/12,

Vi2=V12p,=p, V12 VA=V2p, =P,V (62

(\'\/12)2: (\'\/21)2: 0.

We interpret the physical meaning of Ed60) through
(62) in terms of the behavior of the left half1” ) and the

right half (“2” ) of the string. ThusV*2 maps the right half

onto the left half and annihilates the left half, whiié* does
the converse. The operatdPs and P, project onto the left

PHYSICAL REVIEW D63 046007

V" cexd (t'E—tES) [W(V-9)%]"
X (E~ MM+ SE1W)%)|+ )y u103- (65)

We find that the ghost version of the ident{#9) for multi-
dimensional oscillators is

exp(bTAc'+b'Cc+c'Cbh+bBc)
=Def (1-C)e’lexgb’(1—C) *Ac']
xexg —b'In(1—C)c—c'In(1—C)b]

xexgbB(1-C) !c], (66)

where the matriced, B, andC satisfy
AT=A, B"=B, AC'=CA, BC=C'B, C2?=-AB.
(67)

Using the identity(66) in Eq. (65) yields
Ve ocexf t'E(L—VS) HV=5)E "u"]|+)1u 125

In analogy with the bosonic sector, it can be shown that
the transformed ghost vertex

V=(1-V3) {(V-73) (69)

and right halves of the string, respectively. This interpretahas zero diagonat elements. Its off-diagonal elements can

tion is consistent with the identity*?+V?'=C, since the

be used to define projection operators

operatorC indeed interchanges the left and right halves of

the string. The existence of such an interpretation is to be

R L VR e 70

expected because the action of the three vertex is to map the

left half of stringr onto the right half of string +1 modulo
3. The Bogoliubov transformation to theoscillator basis

The interpretation in terms of left and right halves of the
string also holds here.

apparently generates a structure reminiscent of the comma

representation proposed in RE23]. It would be interesting

to obtain explicitly the relation between the two formula-

tions.

V. THE NONPERTURBATIVE VACUUM N

A. Construction

Turning next to the ghost sector, we define new fermionic We next consider the equations of motion for the string
ghost oscillatorg andu through the Bogoliubov transforma- field and construct a solution for the nonperturbative vacuum

tions

t=(bE-b'ESQWE"!, u=EWE c—SE ich),

b=(E+t'ESWE L, c=EWE 'u+SE uh),
(63
W=(1-59) "2

The oscillatord, u satisfy the same algebra as thec oscil-

lators. Also,t, u annihilate the state exp{&c")|+ )¢, so we
identify the vacuunj+), , as

|+ )¢.u=DetW)exp(bTESE ") |+ )p .,
(64)
|+ )p,c=DetW)exp —t'ESE " 2u")|+),,-

N. To simplify the notation in expansions of string fields, we
use Greek indices to indicate a composite index containing
both level-number indices and spacetime Lorentz indices. In
the squeezed-state basis, a general string ffietéin then be
expanded as

]

)= 2

,n=0

fAAmiave Bt
m,n

t AT Tt
szl'"Sxmt#luvl'"tﬂnuun|1_>s,t,u-

(71
Here, f,,, is a tensor that is totally symmetric iy-- -\,
and totally antisymmetric inuq---u,, and invy---v,. The
indicesm, nhere label the number of composite bosonic and
ghost indices rather than oscillator numbers, the latter being
subsumed into Greek indices as explained above.

We are interested in solving the string equation of motion

The ghost three-vertex can be expressed in terms of th@W¥ +ga’¥xW¥ =0, which for g=a’'=1 reduces in the

new oscillators:

Feynman-Siegel gaudel] to
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Co(Lo— 1)V +WxW=0. (72 spin J=s's/2 characterizes the representations. This means
that states of excitation numberconstitute a representation

Restricting attention first to the bosonic sector, the action obf the excitation S(R) symmetry with spin]=n/2.
Lo in the s-oscillator basis is found to be In general, the star product between states of excitation
numbersm and n contains only minf,n)+1 nonzero states
of the mn possibilities, consisting of states of excitation
|m—n| throughm+n. As an example, Eq.75) shows the
star product of twoJ=1/2 representationff)=1f}s!|0)

Lo/f)= Z [(s'wSE 2wshf L Ams{l---s{m

_ 2 N Amet Lot
Fmm-DWSE W) o S8y, and|g)e=0lsl[0)s is
A At + .
Tm(s'W(E 2+ SEFSw), fii s, sy [Fxg) =gt (V2 + (P1s,(Pos),1[0)s.  (77)
AN
+AfG msx sy ]|0>5 (73 Two nonzero states remain, one of excitation 0 and one of
) ) excitation 2.

Here, A is the energy of the squeezsglt, uvacuum relative The above discussion suggests it may be useful to distin-

to the usuak, b, cvacuum, as measured by the actiorLgf  guish even and odd excitation numbers. In particular, the
and arising from normal ordering in the squeezed vacuum. laction of bothL, and the star operator are closed in the
is given by subsector of even excitation number. In the remainder of this
section, we restrict attention to this subsector.

— S t,u
A=26A%+A, Despite the simplifications offered by the squeezed basis,
obtaining an explicit exact solution to E¢72) remains a
AS=Tr(WSE *Sw)=Ti{S*(1-S°) 'E?], somewhat formidable task given the complexity of ETS)
~ - and(75). The approach we adopt here relies on the observa-
AM=-2T{S(1-S)'E7?. (74 tion that the matrixS appears in the definition df,. Fol-
lowing the discussion in Sec. lll, it can be shown that the

The star product of two statd§ and |g) restricted to the

. ) eigenvalues ofs are small. The largest eigenvalues are ap-
bosonic sector is

proximately—0.21, 0.09, and-0.03, displaying an alternat-

min(m,n) ing series converging to zero. It is therefore a reasonable
|fxg)= E 2 [(V2Y, u N ] strategy to solve Eq.72) perturbatively inS
v KK We expand the desired string fieM as
X[(Pl))\k+l)\k+l..-(Pl))\m)\m] |M:|MO)>+|M1)>+|M2)>+ , (78)
X[(Pz)M “é*l"'(Pz)Mn"rq] where the superscript indicates the orde&itsubstitution in
N, ; - : Eq. (72) at orderS® gives
Xfl mA M1 Mn N , 'S, .
g S +1 S)‘ms'ukJrl S”‘n|0>s 0
fE-2— T “Am(0)
(75) mZ: (mS'E~2-s"), s] -+l AL %0),
Define the excitation numbemn of a term in the field
+ VO N =0 (79

expansion as the associated numbes’ofactors acting on
thesvacuum. Then, Eq.73) reveals that. , maps excitation
numberm to excitation numbersn—2, m, andm+ 2, while
Eq. (75 shows that the star operator connects excitatior]
numbersm and n to a combination of excitation numbers
m-+n,m+n—2,...m—n|. The latter is reminiscent of the 0 0 N
combination of tho ang|ular momenta. This is no accident, as NO) M)+ A1) =0. (80)
we demonstrate next.
In the s-oscillator basis, the existence of the projection
operatord?; andP, separates the Greek indices into degrees IMO)=|S)=]|0) (81)
of freedom pertaining to left and right halves of the string. s
This split enables the realization of an @Jsymmetry as- ¢4 that
sociated with excitation number. Consider the operators
Jp=1(s"Pys-5'Pys), =1 NRH=N =m0 (82)
J,=si%, J =sM2s, (78 There may also be other possible choices producing different
solutions to the string equations of motion. We return to this
These form the generators of the excitatiori2swalgebra. issue in the next section.
Note that thel. connect left and right oscillators. The total At order St, one obtains

Note that the energy of the squeezed vaculmO(S?) is
irrelevant at this order. One solution is obtained by setting to
zero all terms withm+0, yielding

We can use the analysis in Sec. IV to set
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on the squeezed field and with net field values dropping
(STSEZST)NE%) more rapidly with excitation number than an exponential at
this order of approximation.
The orderS solution can now be used to advance to order

fE-2_ ofy o ...t A1) . ) )
+§ (ms'E"“—s )xlsxz"'skm'/\/\mlo ™ |0)s S?. A nonzero contribution tdVi?) arises at this level, along
with corrections to the lower-order results. This pattern con-
+ | MY x | MOY + | MOy | MDY =0, (83  tinues at higher orders, with the first contribution AGy o

being at orderSY. It would be interesting to determine

where the star product is understood to be expanded in comvhether a mechanism analogous to that described above
ponents at the appropriate order, according to(Z§). Note  causes higher-order expectation values also to approach zero
that the star product diV®)=|0), with a term inAM) of  faster than an exponential as the excitation level increases.
excitation numbem yields a result with the same excitation A complete treatment at ordé&? requires developing a
numbem. The presence of the firihhomogeneoyserm in ~ method to handle divergent traces that appear in some terms.
Eg. (83) means that the only nonvanishing contribution atFor example, a contribution arises to the vacuum-energy
order S involves excitation number 2. In particulan$y)  shift A in Eq.(74) that is proportional to T’E~?) and that
=0. appears to have a linear divergence. It is possible that com-

The exp|icit solution of Eq(83) for |/\/(l)> y|e|ds a some- blnlng this Wlth the gh_ost contribution would yleld a finite
what cumbersome expression, involving left and right pro-fésult, but in general it may be necessary to regulate such
jection operators. However, the solution at or8eimplifies ~ terms. Zeta-function regularization may be most appropriate,
greatly in the limit of high mass level, because the singleSince it is known to avoid an associativity anomaly in the
term involvingmE 2 dominates all terms other than the first. Vertex in related calculatior{24].

In this limit, we find In the ghost sector, an analogous construction for the non-
perturbative vacuurdV' can be performed. It is straightfor-
Ap(1 ward to extend the formal analysis to a solution in powers of
NP L @z, (84) y P

Sand to extract results at ord8r The orderS® equation has

Reconverting to the-oscillator basis gives the same form as Eq80), so the complete lowest-order

solution can be taken as{y=|-), , with all other com-
Ny ~(1—1% STSST)|O> ponents zero. The equivalent of E§3) for the ghost sector
2 s is
~(1—1atgqt 1 .tgaf 2 ~
~(l—-za'sa)(1+za'sa )|O>a+ O(s) [(tTE{S,E_Z}E_lUT) 0%)+[(tTE—2)MluIl

=[0),+O(S?). (85)
0)atO(S) +tL1((uTE*2)V1)]A@:§”1(l)+higher—IeveI termy +); .
This shows that at high mass levels the fiéldlominating 1) 0) 0) I

the lowest-order solution is cancelled. This is consistent with +|N( >*|M >+|N( >*|N( )=0.

th_e expected structure .Of the nonperturbative vaculim Contributions from excitation number greater than 2 and
with low-mass levels taking values near the squeezed fleld 1) . .
from NSy again can be neglected at this order.

and high-mass levels taking ones close to the usual vacuum. h - . .

The contributions to excitation number two arising from The analogue of Eq84) in the limit of high mass level is
the last star-pr(_)duct term 1n(ll§(t33)_ c_on5|st ofP, prOJef:- Nggvl(l)~—(E§‘1)”1V1. 87)
tions on each index o!\/;é 2%, Similarly, the preceding

term involvesP; projections. Moreover, the contributions of Evidently, the contributions from ghost fields at excitation
unmixed projections in the term involvings' cancel, so the number 2 become of ord&? in this limit. At low mass

result(84) in fact holds exactly at orde$ for all mass-level o\ els an intermediate effect between cancellation of the
contributions involving unmixed projections. Also, at orcer

the mixed projections are absent from the final two star
product terms. However, contributions from the' term do
arise for the mixed projections. Schematically, one finds in
this case that the resuB4) for ASY) becomes replaced by a
structure of the general form SE 2/(2E"2—1). For the Since the form of our solution is Lorentz invariant by
subleading mass level this produces a contributiof, construction, we expecl to correspond to the Lorentz-
thereby changing the sign of the term proportiongbta the  invariant nonperturbative vacuum of Reff2—4]. The results
lowest-order approximation. Since the true state acquires @ the previous subsection can be used to compare the solu-
combination of contributions from mixed and unmixed pro- tion for A" with numerical values for nonperturbative solu-
jections, one again can anticipate an effect intermediate bdions obtained in the level-truncation scheme.

tweensS and the usual vacuum at the lowest mass levels. We In Table | we list numerical approximations for some
see that the nonperturbative vacuwcan be regarded as a component bosonic-sector scalar fields in the Lorent-
twisted squeezed state, constructed by the action of operatarsvariant nonperturbative vacuum obtaine at level trun-

(86)

term linear inS and a reversal of the sign can again be
expected.

B. Properties
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cation (10, 20, together with the range in which th®(S) TABLE |. Vacuum expectation values for bosonic-sector scalar
solution for\indicates the values should lie. The discussionstates in the nonperturbative vacuum. For each state, the expecta-
in the previous subsection implies that the true values aréon value () evaluated in the level-truncation scheme and the
expected to lie near the maximum of this range for low-lying'ange allowed by the ord&-calculation in the text are presented.
states but to fall to the minimum of the range as the leveiThe correct value is predicted to be near the maximum of this range
number increases. These results support the identification & low-lying states but ra\_p'dW to approac_h the minimum as the
N with the level-truncated Lorentz-invariant nonperturbativel€Vel number increases, in agreement with the results from the
vacuum. level-truncation scheme.

In the ghost sector, the numerical values for the ghost-

oscillator fields follow a pattern similar to that in the bosonic State W Expected range
sector. However, a numerical approximation ®fs more |0) 1.092 59 1
involved than forS because approximating, by Taylor a';-a"y[0) 0.05723 0 to 0.069
expansion of the square root in E¢3) fails for the largest a';-a'y[0) —0.01988 —0.0531t0 0
two eigenvalues oK, which lie outside the radius of con- a:2'312|o> —0.01018 —0.02310 0
vergence. It would be interesting to find a means of approxi- afl-af5|o> 0.007 83 010 0.032
matingS with sufficient accuracy to make possible compari- aTZ'aT4|O> 0.008.23 0100031
sons with truncation-scheme calculations. a's-a'4l0) 0.00429 010 0.017

At order $?, the level of technical complication increases
and the corresponding analysis lies beyond the scope of this . )
work. We conjecture that the cancellation mechanism occur€re, the action of the background Becchi—Rouet-Stora—
ring at linear order in the limit of high mass level generalizesTYutin (BRST) operatorQg on an arbitrary string field of
at higher order. This is consistent with the pattern emergin@host numbeg(®) is given by
from numerical approximations using the truncation scheme.

It is of interest to compare the vacuum enekgy of A'to
the D25-brane masd ,s. In principle, it suffices to evaluate QeP=QP+ga'[Vgxd—(~1)9PDxWg]. (90)
the actionl (V) for the on-shell string field? =\ and use
E=1(N). In the present context, the evaluation can be per-
formed direct|y at ordesy‘é: The baCkgrOUnd Operat(QB is nilpotent and distributive
across the star product:Qg(®;xP,)=QgdxD,+
(—1)9®Vd,xQgd,. It also satisfies [Qgd *xP,=

- _1 1
Ev=1(N)=2 fN*QNJr s fN*N*N (—1)9®I*1 1D «Qpd,. The actionl (V) is invariant un-

der
Z—%f/\f*/\/’*/\/
1 a
m_%f&&s SA= WQBA+9\E(A*A—A*A), (91)

== % 123s,t,u< - |V3>s,t,u

N =0 whereA is a string gauge field.
~—s+t0(S.S) In the special case thaltg=S, the fluctuationA repre-
~—-0.17. (88) sent oscillations about the squeezed fi€ldind the back-
ground BRST operatoQg= Qg determines the correspond-
This derivation takes advantage of the vanishing of the diaging spectrum. We conjecture that this operator has no
onal elements of the 3-vertex in tiset, u basis, proved in  tachyonic modes. This would provide further support for the
Sec. IV. The result is to be Compared with the expected Va'Uﬁjea that the Squeezed ﬁ&ﬂ;brovides a useful Starting point
En=—Mgs= —2/m*~—0.20. Approximating the field'by  for investigating the nonperturbative structure of the open

S thus gives about 85% of the D-brane mass. bosonic string, despite not being a solution of the string
The string action can also provide insight into the naturesquations of motion.

of excitations about the squeezed figfd _Con5|der first a As partial support for the conjecture, we verify it at order
string field ¥ expanded about an arbitrary backgroundgfor jow-lying states in the bosonic sector. Consider first the
Wg:W=Wg+A. The action for¥” can be writter{25] state|0)s. The S-background BRST operat@, acting on
this state gives

1
I(\If):ﬁf \PB*Q\PB'F%'[ \PB*‘PB*\PB
1 g bOQS|0>s%(STE_25_ 1)|0>s+2|0>s*|0>s

046007-10



ANALYTICAL CONSTRUCTION OF A.. .. PHYSICAL REVIEW D63 046007

This approximation suffices to show that, instead of a tachystudied in the context of the level-truncation schel@&|.
onic mass as in the vacuuf),, the statg0)s acquires a Confinement via the condensation of magnetically charged

conventional mass. tachyons has been suggesf2f], the possibility of a critical
Similar reasoning supports the conjecture for the first exvalue for the W1) field above which no solutions exist has
cited state$;2|0>s: been investigatef29], and it has also been proposed that as
the tachyon condenses the noncommutative gauge symmetry
bOQSsmO)s%(sTE‘zs— 1)sl|0)S is fully unbroken and becomes a linearly realize@Ufor-

bidding propagation of open-string mode]. It would be

t t
+]0)5*$p|0)s+ 54| 0)5*[O)s interesting to investigate the N particle symmetry in the

=(n—1)st0).+P.st context of _the. solutionV found here. The_nonzero mass for
(n=1)8:/0)s+ P15;/0)e*(0)s vector excitations about the squeezed fi§lddemonstrated
+]0)¢x stmo)s by Eq.(93), suggests this particle symmetry is destroyed in

; the nonperturbative vacuum.
=ns]|0)s. (93)

Sincen>0, this calculation shows that the analogue of the V1. DISCUSSION

statesaf|0), that contain massless modes is here a set of Using analytical methods, we have constructed a nonper-
purely massive statesj|0)s. turbative vacuumV satisfying the full equations of motion

It is believed that the endpoint of tachyon condensation1) of string field theory. It appears to coincide with the
on the D25-brane has no physical open-string excitafibhs  Lorentz-invariant nonperturbative vacuum found using the
The corresponding conjecture in the present context is thdével-truncation scheme and resulting from tachyon conden-
no normalizable states can be constructed \donEquiva-  sation on a D25-brane.
lently, settingWg=\ in the background equations above, In the original(a, b, 9-oscillator basis and in the Siegel—
one expects the background BRST oper&grQ, to have  Feynman gauge, the form df is given as
no normalizable physical fluctuations so the coefficients
of all physical kinetic terms foA should vanish. An alter- IM=F(s,ahE(S,b',ch|s). (94)
native would be to show there are no zeros in the euclidean

propagators for physical fields in the nonperturbativeHere’ the squeezed field) satisfying Eq.(2) is explicitly

vacuum([2]. Although our con_strucnon oV s_ets_ the_mo- given in closed form in Eq(44). Closed-form expressions
menta to zero, it may be possible to generalize it to incorpos:

rate euclidean propagators fdr (cf. remarks in the next [0f the matricesS=CT_ and S=CT, in terms of the
section. In any event, it would be interesting to have an3-vertex functions/** andV**in the momentum representa-
explicit proof of this conjecture in the context of string field tion are determined by Eq$39) and (43). The product-F

theory. _ _ _ _ ~1+0(S,9) is constructed recursively in powers 8andS

We note in passing that states on which the action of, gec. V.
creation and annihilation operators produces only unnormal- The string field\ can be regarded as a twisted squeezed
izable results can readily be found. For example, in the congiate. The constructiof94) provides\ in the form of a
text of a one-dimensional bosonic oscillator the stat series of creation operators acting on a squeezedJdieltle
=3,[(a")"nyn!]|0) has finite nomE n~?=x2/6, but the  suspect a closed form exists for this twist series. The rapid
norms of botha'|¢) and a|y) behave ass,n™! and so  decay of the expectation values with level number appears to
diverge. A multidimensional version of this is the state be a crucial feature Q)f\/ The occurrence of the operatbé
I3[ (a)"/ny/nt]]0), which itself is normalizable but in the equations of motion and its growth with level number
produces unnormalizable states when acted on by any of th@akes it a natural candidate for controlling this rapid decay
oscillator creation and annihilation operata#,am. We an-  and hence the twist series, and we therefore conjecture that
ticipate that the nonperturbative vacuukfiihas similar fea- the closed form for\ is a twisted squeezed state with twist
tures. explicitly determined byL,. In any case, it would be of

A related issue is the fate of the low-energ{lJor U(N) interest to develop systematic methods for handling the twist
particle symmetry of the perturbative massless vectors in theeries. Note also that the squeezed fi8ldself may merit
nonperturbative vacuumV. In string field theory, the non- further study in its own right. Althougl$ does not solve the
Abelian gauge symmetry is modified compared to the usuadquations of motion, it may be a better starting point than the
transformation law. It has been shown that the nonperturbaisual perturbative vacuum for approximation schemes study-
tive vacuumA maintains the string UN) symmetry con- ing the properties aofV.
tained in Eq(91) in the sense that nonzero scalar expectation An interesting issue is whether solutions exist to &)
values remain invariant under a string NJ( transformation  other thanV. This would imply that at least some terms with
to all truncation order$3]. However, this low-energy string m#0 in Eq.(79) are nonzero. Since the star product between
symmetry is distinct from the usual M) particle gauge states with excitation numbers; and m, generally yields
symmetry, with the two being related through a set of nonterms up to excitation numbem(; +m,), it seems likely that
linear field redefinitiong26]. The effect of this on the gen- nonzero terms persist for arbitrarily high excitation number.
eration of a mass term for the(U field has recently been Any other solution to Eq(79) is therefore unlikely to be
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simple within this framework even at low order. Also, satis- tivity of modern experiments to such effe¢®—-42 means
fying the criterion of normalizability may be more difficult that even effects suppressed by the Planck scale could be
for any such solution because E@9) suggests it must be- detected.
have roughly as a functional linear i, 2=n, and hence Another interesting class of objects in string field theory
linear in the mass level. is the set of lump solutions. Using the level-truncation
It may also be possible to obtain other solutions of interesgcheme, it has been shown that bosonj-anes can be
by modifying the construction oV in a different way. In interpreted as unstable lump configurations of open-string
Sec. V, attention was primarily restricted to states of evenachyons on a D25-brang43], at least for largep.
excitation number. However, more general possibilities existworldsheet-boundary renormalization-group methods can be
For a bosonic tensoﬁ)‘1 AmL B e can separate the in- used to show that the mass of a tachyonic lump on a
dices according to left and rlght sectors S0 that is anni-  Dp-brane corresponds to that of ap{ 1)-brane{44]. This
has also been verified numerically in a modified level-
truncation scheme incorporating derivative couplifngs].
L, takesf,, to a combination of terms havmg indices of the Some of these solutions are related to results in noncommu-
type (m—-2n), (m—1n-1), (mn-2), (m,n), tative field theory[46]. Various other calculations support
(m+1n-1), (m—-1n+1), (mM+2n), (m+1n+1), these idea$d7,48.
(m,n+2). These can be regarded as a field of black squares It is plausible that a variant of our methodology could be
on a chess boardn@m) modulo 2 is conserved. Since the used to construct the lump solutions analytically. In particu-
star product combines a@m, K tensor with alk, n) tensor to  lar, the construction o\ depends only on the formal struc-
yield an(m, n) tensor, it also preserves the sum of the indicegure of the vertex functions in terms of the matric@andU
modulo 2. The possibility therefore exists of obtaining solu-with properties(12). These matrices emerge from the con-
tions f,, to the equations of motion restricted to even version between the, oscillators and the momentum repre-
(m+n) other than the nonperturbative vacuuv sentation in Sec. Il A. They originate in a set of matri€zs
Yet another possibility is to consider solutions mixing theandU’ with identical formal propertie€9). It therefore fol-
colors on the chessboard. Unlike solutions restricted to evelows that any spacetime-independent solution obtained in the
(m+n), which in general may or may not violate Lorentz momentum representation has an inequivalent partner solu-
symmetry, solutions with oddnf+n) would have an odd tion in theay representation. Moreover, the conversion from
number of oscillators and hence would necessarily violat@scillator to momentum basis can be performed in any num-
Lorentz symmetry. In string field theory, the occurrence ofber p of spacetime dimensions desired. The construction
static interaction terms quadratic in tensors and linear in scamplemented for\ therefore suggests the existence of string
lars suggests the possibility of spontaneous breaking of Lorfields that are twisted squeezed states in<p% dimensions
entz symmetryf31], which would be accompanied yPT  and are independent of the remainmdimensions. We con-
violation when fields with odd level number are involved jecture that these solutions include thp-Dranes, along with
[32]. Indeed, a family of Lorentz-violating and CPT- instanton-type solutions.
preserving solutions in the open bosonic string has been un- Another topic of interest is the role and fate of the closed-
covered using the level-truncation scheme in the opemstring modes inV. The Zwiebach string field theory of the
bosonic string4]. It would be interesting to construct ana- closed bosonic string is nonpolynomi@f#9]. Consistent
lytically the states corresponding to these solutions. implementation of the level-truncation scheme therefore pre-
In general, the topic of Lorentz-violating solutions ap- sents some difficulties. At the level of the cubic interaction, a
pears to be a potentially revealing subject for future studynonperturbative solution appears to exist in which the
Relatively little is known about the nature of these solutionsclosed-string tachyon and the graviton have no physical
including whether they are stable. Since they are spacetimgoles[50]. We anticipate that a closed-string version of the
independent, it appears unlikely that they could correspondqueezed fieléd can be constructed for this solution. If so, its
to any of the lump solutions discussed in the literature tadempotency may make possible analytical study of the non-
date. The ubiquitous nature of the cubic scalar-tensor-tens@olynomial action in the squeezed basis. It has also been
couplings suggests that Lorentz-violating solutions are geshown that macroscopic closed strings can be regarded as
neric in string field theories with tachyons. In fact, the exis-solitons in the nonperturbative vacuum of the open bosonic
tence of scalar-tensor-tensor couplings is not restricted tetring[51]. It would be interesting to study solutions of this
string field theory, since they also arise in off-shell calcula-type in the squeezed-state basis.
tions of the action using renormalization-group methods in  The methodology in this paper could also be applied to
the string sigma modgR6]. study the nonperturbative vacua of other string field theories
Since the physical world is believed to include a tachyonwith tachyons, including those for the non-GSO-projected
in its spectrum at the electroweak scélee Higgs field, itis  superstrind9] and thep-adic string[52]. For the latter, it has
necessary for a realistic string theory to have at least onexplicitly been proved that the extremum of the tachyon po-
tachyonic mode. If Lorentz-violating solutions are indeed ge4ential with a D25-brane is the vacuum without one and that
neric in theories with tachyons, it is natural to speculate thatump solutions are D-branes of lower dimensida§]. In
the four-dimensional Lorentz and CPT symmetries mightight of the possibility of obtaining exact results, it would be
also be spontaneously broken. The resulting low-energy efinteresting to investigate our construction figtin this con-
fects can be systematically studigg8B]. The exquisite sensi- text.

hilated by contracting with I?l)”' and (P2) . The action of
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logia. constructed. The equatioid2) can be rearranged to give
APPENDIX: A USEFUL IDENTITY a=A+2Ca+4aBa, (A4)
This Appendix explicitly proves the identiiy9) for mul- B= e’ Be? (A5)
tidimensional bosonic oscillators under the conditidb6). '
A similar method can be adopted to prove the regf) for y=C+4aB (AB)
multidimensional ghost oscillators subject to the constraints '
(67). »=2TrBa). (A7)

The strategy we adopt is to seek a scalar funciér of
a parametet and matrix functionsx,q(t), Bmn(t), Ymn(t)
of the same parametérsuch that the equation

As initial conditions for these equations, we takeO0)

=pB(0)=(0)=7(0)=0.

. - Taking advantage of the given conditio(&0), Eq. (A4)
exn:t(amAmnan+ a-mCmnan"' amanan)] becomes
=exp U)eXF(arJrna'mnag)

T
X exp(@m¥Ym n@n) XN @mBmran)

a=(a+3:CB 1)4B(a+iCB™1). (A8)

(Al)  |ts solution isa+ 2 CB~1=(—4Bt+Y) 1, where the initial

condition fixesY=4BC™ . This give
holds. Here, the matrice, B, andC are assumed indepen- Hon ixes IS gves

dent oft. The idea is to take the derivative with respect to a(t)=(1-Ct) 'At. (A9)
on both sides of the equation, commute to the left all factors

that appear, and equate the corresponding terms on bofubstituting this into Eq.(A6) gives y=—(t—C H)~1,
sides. This yields differential equations for the scalar andvhich has solution

matrix functions oft. Solving these yields the desired iden-

tity by settingt=1. y()==In(1-C1). (A10)

Adopting this procedure while keeping careful track of

the index positions yields the following set of matrix differ- 1S i turn can be substituted into EEAS), leading to
ential equations: =B(1-Ct) “. The solution is

A=a—2ya+daexp—y")Bexp—y)a, AU=BY1-CH " (A11)
T This leaves Eq(A7), which becomes
B=exp(—y")Bexpq— ), o B
_ (A2) n=3Tr[((1-Ct)~1-1)C] (A12)
C=y—daexp~ yT)'B exXp =), with solution
0=7n—-2THexp—y")Bexp —y)a], 7(t)=3 T —In(1—Ct)—Ct]. (A13)

where T denotes the transpose. For simplicity in the above We can now verify the ansatA3). Finally, settingt=1
and in what follows, we assume yields the desired identit{49).
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