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Analytical construction of a nonperturbative vacuum for the open bosonic string
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Using analytical methods, a nonperturbative vacuum is constructed recursively in the field theory for the
open bosonic string. Evidence suggests it corresponds to the Lorentz-invariant end point of tachyon conden-
sation on a D25-brane. The corresponding string field is a twisted squeezed state.
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I. INTRODUCTION

The physical behavior of strings can be investigated i
variety of ways. Much of the existing lore is based on p
turbative studies of single strings in relativistic quantum m
chanics. However, it is likely that a satisfactory understa
ing of the subject requires also mastering nonperturba
and collective string behaviors.

String field theory offers one framework within which t
investigate nonperturbative many-body string phenome
An essential feature of any field theory is the structure of
vacuum, and it is of particular interest to establish the ex
tence of any nonperturbative vacua. A relatively simp
string field theory describes the open bosonic string@1#, and
for this case the existence of at least one nonperturba
vacuum has been established@2–4#. The procedure involves
a level-truncation scheme in which successive approxi
tions to the full theory are made according to the mass le
of the particle fields and the terms in the action. Analytic
methods at low truncation orders and a combination of a
lytical and numerical methods at higher orders can determ
the structure of the string fieldN for the nonperturbative
vacuum in terms of expectation values of particle fields.

The nonperturbative vacuumN has been conjectured b
Sen to be the end product of tachyon condensation o
D25-brane@5#. Strong support in favor of this conjectur
exists from explicit calculations using the level-truncati
scheme in the field theory for the open bosonic string@6–8#,
with these now having reached level~10, 20! in the notation
of Ref. @4#. Analogous calculations for the superstring pr
vide further support for the idea that the tachyon effect
potential has a minimum where the D-brane tension is
actly cancelled@9–12#.

In this work, we present an analytical approach to co
structing the nonperturbative vacuumN. We obtain a series
representation forN and compare it to the numerical solutio
obtained via the truncation scheme. The methodology
results offer several interesting possibilities for future exp
ration. In the remainder of this introduction, we provide
brief summary of the steps involved in the construction ofN,
and we offer some motivation for our procedure.

The steps involved in the construction ofN are as fol-
lows. First, note thatN is to be determined as a set of co
0556-2821/2001/63~4!/046007~14!/$15.00 63 0460
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stant expectation values satisfying the string-field equati
of motion:

QN1ga8N!N50. ~1!

The requirement of spacetime independence ofN makes it
useful to transform the cubic vertex to a form in which t
oscillator zero modes are converted into the momentum
resentation, so that the momentum may be set to van
Once this form of the cubic vertex is obtained, we search
a string fieldS obeying

S!S5c0S, ~2!

which serves as the basic object upon which the solution i
be constructed. We next perform a Bogoliubov transform
tion to a new oscillator basis for whichS is the vacuum state
In this new basis, the string fieldN can be expanded in
particle-field modes and the conditions determining th
constant values can be extracted from the equations of
tion ~1!. These conditions form a recursive set that is am
nable to a formal solution forN. Certain features of the
solution can be compared to those already established via
level-truncation scheme, with good agreement.

The above procedure may appear somewhat convolute
first sight, so we provide some heuristic physical and ma
ematical motivation before detailing the calculations in t
following sections. On the physical side, one intuitively e
pectsN to describe a situation in which the whole string fie
has condensed to the vacuum. It is therefore plausible tha
infinite number of particle fields acquire vacuum values
the nonperturbative vacuumN. In fact, it has been shown
@13# that no nontrivial finite linear combination of expect
tion values for the particle fields can satisfy Eq.~1!. Intuition
suggests that the lighter modes should play a greater ro
the development of the string-field condensate, so one m
anticipate expectation values inN to drop with mass level.
This is supported by evidence from numerical calculatio
with the level-truncation scheme. Furthermore, physical
tuition about harmonic oscillators and the formation of
©2001 The American Physical Society07-1
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V. ALAN KOSTELECKÝ AND ROBERTUS POTTING PHYSICAL REVIEW D63 046007
coherent condensate in the perturbative vacuum also
gests the natural form of the string fieldN is likely to be
closely related to a generalized coherent or squeezed
@14#. These notions are echoed in our construction, since
solution we obtain forS in fact is a squeezed state and t
nonperturbative vacuumN is developed by twistingS with
oscillator factors controlled by the BRST operatorQ.

On the mathematical side, we observe that the usual
scription in terms of perturbative oscillator modes and
level-truncation scheme itself use a basis for the Fock sp
in which Q is essentially diagonal and the star product ha
complicated realization. However, the structure of the str
field equations can be viewed as analogous to a Riccati
ferential equation, involving a single derivative operator~ba-
sically, L0C!, a linear term~the factor2C!, and a quadratic
term ~the productC!C! @15#. In such equations the nonlin
ear term represents the greatest complication, and it is th
fore natural to seek a representation in which the star pro
has a relatively simple structure. The ideal case would b
convert the quadratic term to linear form. This can be
proximated by finding a string stateS satisfying Eq.~2! and
converting to a basis in whichS is the basic~ground! state,
so that the star product has a relatively simple realizat
The expression forQC becomes complicated in the ne
basis, so it might seem that little has been gained. Howe
the net effect of the manipulations is that the difficulty h
been moved from the nonlinear part of the equation to
linear part, which provides just enough advantage to m
possible the construction of a solution.

The remainder of the paper is organized as follows.
Sec. II, some preliminaries are discussed, including the c
version of the oscillator zero modes to the momentum r
resentation and some properties of coherent and sque
states. The reader uninterested in these details may wis
pass directly to Sec. III, in which the squeezed string fieldS
is obtained. Section IV converts to the squeezed-oscilla
basis. The construction of the nonperturbative vacuumN is
presented in Sec. V, along with some of its properties. T
results are discussed in Sec. VI. Finally, the Appendix c
tains a derivation of a useful identity. Throughout much
this work, the string couplingg as defined in Ref.@2# and the
string tensiona8 are set to one, although they are explicit
displayed in certain formulas for clarity.

II. PRELIMINARIES

A. Momentum representation

The equations of motion of the string field can be e
pressed in terms of particle fields using a Fock-space re
sentation @16–18#. We are interested in spacetim
independent solutions of these equations, so it is usefu
express the spacetime dependence of the vertex in the
mentum representation rather than in the representation
oscillator zero modes. Following the approach of Ref.@16#,
we require the three-vertexV3 involving the vertex functions
Vmn8rs to satisfy
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V35expS 2
1

2 (
r ,s

(
m,nÞ0

am
r†Vmn8rsan

s†

2(
r ,s

(
nÞ0

a0
r†V0n8

rsan
s†2

1

2 (
r

a0
r†V008

rr a0
r†D u0&123

[E dp1 dp2 dp3 expS 2
1

2 (
r ,s

(
m,nÞ0

am
r†Vmn

rs an
s†

2(
r ,s

(
nÞ0

prV0n
rs an

s†2
1

2 (
r

prV00
rr pr D u0,p&123, ~3!

where the vertex functionsVmn
rs determineV3 in the momen-

tum representation of interest. As usual, ther, s superscripts
are understood to take values modulo 3.

Rewriting the right-hand side using

up&5~2p!21/4exp@2 1
4 p21a0

†p2 1
2 ~a0

†!2#u0&, ~4!

we find the relations

Vmn8rs5Vmn
rs 22(

t

Vm0
rt V0n

ts

2V00
tt 11

, m,nÞ0,

V0n8
rs5

2V0n
rs

2V00
rr 11

, nÞ0, ~5!

V008
rr 5

2V00
rr 21

2V00
rr 11

.

Next, we use these relations to derive some properties of
transformed vertex functions.

First, we note that the ‘double square’ of the vertex fun
tions Vmn8rs generates the identity@16#:

(
k,t

Vmk8rtVkn8
ts5d rsdmn , m,n50,1,... . ~6!

This leads to the following identities for the vertex functio
in the momentum representation:

(
k>1

(
t

Vmk
rt Vkn

ts 5d rsdmn , m,n51,2,...,

(
k>1

(
t

Vmk
rt Vk0

ts 5Vm0
rs , n51,2,..., ~7!

(
k>1

(
t

V0k
rt Vk0

ts 52V00
rr d rs.

In particular, we see from the first of these relations that
vertex functionVmn

rs , for whichm, nare restricted to nonzero
level numbers, double squares to the identity in analogy w
Eq. ~6!.
7-2
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ANALYTICAL CONSTRUCTION OF A . . . PHYSICAL REVIEW D63 046007
Next, we establish some features of the structure of the tr
formed vertex functionsVmn

rs . Recall that the vertex func
tions Vmn8rs viewed as matrices can be expressed as@16#

V8rr 5 1
3 ~C1U81Ū8!,

V8rr 115 1
3 ~C1aU81a* Ū8!, ~8!

V8rr 125 1
3 ~C1a* U81aŪ8!,

where a5exp(2pi/3), Cmn[(21)mdmn , and the matrices
U8 and Ū8[CU8C satisfy

~U8!25~Ū8!251, ~U8!†5U8. ~9!

Some algebra shows that these relations imply

Vrr 5 1
3 ~C1U1Ū !,

Vrr 115 1
3 ~C1aU1a* Ū !, ~10!

Vrr 125 1
3 ~C1a* U1aŪ !,

where

Umn5Umn8 1~V00
rr 1 1

2 !Um08 U0n8 , m,n51,2,..., ~11!

and Ū5CUC. It also follows that

U25Ū251, U†5U, ~12!

as before. These equations imply that the matrixVrr C
5CVrr 5 1

3 (11UC1CU) commutes with all the vertex
function matricesVrs, while CVrs5VsrC. These identities
are used below.

The above arguments establish that the vertex funct
Vmn

rs restricted ton, m>1 have the same formal structure
the original vertex functionsVmn8rs . This means that searche
for spacetime-independent solutions to the equations of
tion involve the same formal vertex structure as spaceti
dependent ones. We return to this point in Sec. VI.

In the remainder of this paper except where otherw
stated, the indicesm, n range over 1, 2,..., so the results a
independent of momentum. Thus, for example, the boso
part of the three-vertexV3 takes the form

uV3
b&5expS 2

1

2 (
r ,s51

3

am
r†Vmn

rs an
s†D u0&123. ~13!

B. Identities for coherent and squeezed states

This section presents some identities required in sub
quent sections of the paper, where frequent use is mad
generalized squeezed states. First, recall a basic identit
coherent states in one oscillator dimension,

^0uexp~la!exp~ma†!u0&5exp~lm!, ~14!

and the corresponding identity for squeezed states,
04600
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^0uexp~ 1
2 aSa!exp~ 1

2 a†Va†!u0&5~12SV!21/2. ~15!

Combining Eqs.~14! and ~15! to an identity for displaced
squeezed states in one oscillator dimension yields

^0uexp~la1 1
2 aSa!exp~ma†1 1

2 a†Va†!u0&

5~12SV!21/2exp@l~12VS!21m

1 1
2 l~12VS!21Vl1 1

2 m~12SV!21Sm#.

~16!

The analogous identity for^0uexp(lnan1
1
2 amSmnan)

3exp(mnan
†11

2 am
†Vmnan

†)u0& in the multidimensional case i
expected to have the form

^0uexp~l•a1 1
2 a•S•a!exp~m•a†1 1

2 a†
•V•a†!u0&

5Det~12S•V!21/2exp@l•~12V•S!21
•m

1 1
2 l•~12V•S!21

•V•l1 1
2 m•~12S•V!21

•S•m#,

~17!

where the dot indicates contraction of indices. This can
shown explicitly in two dimensions, for example, by makin
repeated use of Eq.~16!.

In the fermionic case, with an anticommuting oscillat
algebra@19#

$bm ,cn
†%5$cm ,bn

†%5dmn , m,n51,2,..., ~18!

and all other anticommutators zero, the equivalent of
~17! can be found as

^0uexp~2b•S̃•c!exp~b†
•mb1mc

•c†1b†
•Ṽ•c†!u0&

5Det~12S̃•Ṽ!exp@mc
•~12S̃•Ṽ!21

•S̃•mb#. ~19!

For simplicity, we have taken the analogue of the parame
l to vanish here.

Consider next the star productS1!S2 of two squeezed

states,S1[exp(12 a1†
•S11

•a1†)u0&1 with squeeze matrixS11

and S2[exp(12 a2†
•S22

•a2†)u0&2 with squeeze matrixS22.
The result can be written as

uS1!S2&3[12̂ 0uexpS 1

2
a1
•S11

•a11
1

2
a2
•S22

•a2D
3expS m1

•a1†1m2
•a2†

1
1

2 (
r ,s51

2

ar†
•Vrs

•as†D u0&123, ~20!

wherem1[a3†V31, m2[a3†V32. Evaluating first the expec
tation value of the 1-oscillators using~17! on the level-
number indicesm, n and then evaluating the expectatio
value of the 2-oscillators produces a somewhat cumbers
expression. However, it simplifies in the special case
which the matricesS11C andS22C commute withVrs. In the
7-3
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V. ALAN KOSTELECKÝ AND ROBERTUS POTTING PHYSICAL REVIEW D63 046007
next section, it is shown that this case is the relevant one
the construction of solutions of the string field equatio
With the simplification, the result of the calculation is

uS1!S2&35@Detmn~Detrs~12SV!!#21/2

3expF (
r ,s51

2

m2@~12SV!21S# rsmsG u0&3 ,

~21!

where we have introduced a matrixS rs in the two-
dimensional string indices given by

S rs5S S11 0

0 S22D . ~22!

In Eq. ~21!, note the double determinant that occurs in ter
of the string indicesr, s and the level-number indicesm, n.

In the ghost sector, the three-vertex takes the form@20#

uV3
gh&5expF (

r ,s51

3

bm
r†~EṼrsE21!mncn

s†G u1&123, ~23!

where the matrixE is given byEmn5dmn /Am. In this equa-
tion, the matricesṼrs have the form

Ṽrr 5 1
3 ~C1Ũ1UD !,

Ṽrr 115 1
3 ~C1aŨ1a* UD !, ~24!

Ṽrr 125 1
3 ~C1a* Ũ1aUD !,

with UD 5CŨC, Ũ25UD 251, andŨ†5Ũ, in complete anal-
ogy with the bosonic sector. Introducing matricesS̃11 andS̃22

such thatS̃11C andS̃22C commute withṼrs, the star product
of two squeezed states is given in this case by

12̂ 2uexp~b1
•ES̃11E21

•c11b2
•ES̃22E21

•c2!

3expS mc1E21
•c1†1b1†

•Emb11mc2E21
•c2†

1b2†
•Emb21 (

r ,s51

2

br†
•EṼrsE21

•cs†D u1&123

5@Detmn~Detrs~12S̃Ṽ!!#

3expF (
r ,s51

2

mcr@~12S̃Ṽ!21S̃# rsmbsG u1&3 .

~25!

In this equation, we have set

S̃ rs5S S̃11 0

0 S̃22D , ~26!

in analogy with the bosonic sector.
04600
or
.

s

III. THE SQUEEZED STRING FIELD S
In this section, we obtain squeezed-state solutions of

~2!. The nonperturbative vacuumN is constructed in Sec. V
using these solutions.

We have shown in Eqs.~21! and~25! that the star produc
of two squeezed states is again a squeezed state. To solv
~2!, we require invariance of the matrix defining the width
the squeezed state. In the bosonic sector, this leads to
condition

CSC5~V12,V21!~12SV!21SS V21

V12D1V11, ~27!

where we have chosen

S rs5S S 0

0 SD . ~28!

In Eq. ~27!, the matricesV125V31 and V215V32 and their
conjugates arise from the coefficientsm r[a3†V3r in ~21!.
The term (12SV)21S is to be interpreted as carrying bot
level-number indicesm, n51,2,... and string indicesr, s
51,2. TheC matrices multiplyingS on the left-hand side
emerge from the application of the two vertex on the origin
state.

The challenge is to solve Eq.~27! for S, thereby determin-
ing the width of the squeezed state satisfying Eq.~2!. It is
convenient first to develop some machinery controlling
commutation of the various matrices on the right-hand s
of Eq. ~27!.

Using the decomposition of the vertex functionsVrs in
terms of the matricesC and U, the following identities can
be shown to hold:

VrsC5CVsr,

~V12,V21!S V11 V12

V21 V11D 52V11~V12,V21!,

~V21,V12!S V11 V12

V21 V11D 52V11~V12,V21!1C~V21,V12!.

~29!

To simplify the structure of the calculation, we introduce
two-dimensional space

S A
BD[A~V12,V21!1B~V21,V12!, ~30!

whereA andB are scalars assumed to commute with all oth
expressions. In terms of this formalism, the relations~29! are

S A
BDC5CS B

AD , ~31!

S A
BDV5S 2V11 2V11

0 C D S A
BD . ~32!
7-4
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ANALYTICAL CONSTRUCTION OF A . . . PHYSICAL REVIEW D63 046007
These equations can be used to determine the result of c
muting theC andV matrices in Eq.~27! to the left.

As a further simplification, we make the ansatz

S5CT, ~33!

whereT is taken to commute withVrs. This implies only the
productCV need be moved to the left in Eq.~27!. Combining
Eqs.~31! and ~32! gives

S A
BDCV5S 2V11C 2V11C

1 0 D S A
BD[LS A

BD . ~34!

Commuting (12SV)215(12CTV)21 to the left yields
(12TL)21, which can be explicitly evaluated by diagona
izing the matrixL. In particular, in the case of interestA
51, B50 one finds

S 1
0D ~12CTV!215@11V11CT~T22!#21S 1

TD . ~35!

We thus obtain the result

~V12,V21!~12CTV!21CTS V21

V12D
5@11V11CT~T22!#21CT@~V21,V12!

1T~V12,V21!#S V21

V12D
5@11V11CT~T22!#21CT@2~V11!222V11C

1T~12~V11!2!#. ~36!

Here, we used the identities

~V21!25~V12!25~V11!22V11C,
~37!

V12V211V21V12512~V11!2,

which can be proved via the explicit expressions in terms
U andC. Note that the result in Eq.~36! involves onlyT, C
andV11.

We can use the result~36! in Eq. ~27! to obtain an equa-
tion for T. Some rearrangement of terms yields

~T21!@T22~11X21!T11#50, ~38!

whereX[CV11. This generates three solutions forT:

T51, T65
1

2X
~11X6A~113X!~12X!!, ~39!

validating the ansatz~33!. The T51 solution givesS5C,
and the corresponding string field is the identity function
restricted to the bosonic sector. This solution is expec
and its appearance serves as a nice check on the forma
However, it is physically irrelevant because it is unnorm
izable.

The other two solutions are real for eigenvaluesx of X
satisfying 2 1

3 <x<1. The solutionT2 behaves asX for
04600
m-

f

l
d,
m.

-

small x, while T151/T2 behaves asX21. A numerical
check on the eigenvalues ofX5CV11 shows they are smalle
than one and converge toward zero, with the three larg
being 0.21, 0.09, 0.03. Since the presence of any eigenv
of T with absolute value greater than or equal to one lead
an unnormalizable state, we consider only the solutionT2 .

In the ghost sector, a similar construction can be p
formed. Starting with a general squeezed state defined by
matrix S̃ and requiring that its width be invariant under th
star product generates the condition

2CS̃C5~Ṽ12,Ṽ21!~12S̃Ṽ!21S̃S Ṽ21

Ṽ12D 1Ṽ11, ~40!

where

S̃ rs5S S̃ 0

0 S̃
D . ~41!

Note the minus sign on the left-hand side of Eq.~40!, ap-
pearing because conjugation using the two-vertex introdu
a relative minus sign for theb andc oscillators.

The solution of Eq.~40! is completely analogous to th
solution of Eq.~27!. This is because the matricesṼrs are
defined through matricesC andŨ as in the bosonic case, an
so all identities leading to Eqs.~38! and ~39! have ghost-
sector equivalents.

Writing S̃5CT̃ and X̃5CṼ11, one obtains

~ T̃11!@ T̃21~X̃2123!T̃11#50. ~42!

This has solutions

T̃521, T̃65
1

2X̃
~3X̃216A~12X̃!~125X̃!!. ~43!

The expected piece of the unnormalizable identity functio
is again found as a solution, corresponding toT̃521.

The two solutionsT̃6 are real for allX̃ except for eigen-
valuesx̃ in the range1

5 , x̃,1. For smallx̃,T̃1'2X̃ is small
while T̃2'X̃21 is large. Since the eigenvalues ofṼ11 con-
verge toward zero, onlyT̃1 can lead to a normalizable solu
tion to the ghost sector of Eq.~2!. One might wonder
whether some of the eigenvaluesx̃ of X̃ lie in the interval
1
5 , x̃,1, which would lead to complex eigenvalues forT̃1 .
However, all thex̃ are negative, with the largest three eige
values being20.66,20.25, and20.08.

Combining the above results provides the squeezed s
obeying Eq.~2! as

uS&5Det~12S2!1/4Det~12S̃2!21/2

3expS 1

2
a†Sa†Dexp~b†ES̃E21c†!u1&. ~44!
7-5
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V. ALAN KOSTELECKÝ AND ROBERTUS POTTING PHYSICAL REVIEW D63 046007
By construction, it is an element of the star subalgebra
string fields. A family of wedge states also lying in this su
algebra was recently introduced in Ref.@22#. It would be
interesting to determine explicitly the relationship ofS to
these wedge states.

IV. CONVERSION TO THE SQUEEZED BASIS

Since the star product is idempotent on the string fieldS,
one can expect the form of the vertex function to be subs
tially simplified in a new oscillator basis chosen such that
squeezed stateuS& plays the role of the ground state. A
before, we begin our considerations in the bosonic sector
subsequently extend them to the ghosts.

Observing that (a2Sa†)exp(12 a†Sa†)u0&50, we are moti-
vated to define a new annihilation operators by the Bogoliu-
bov transformation

s5w~a2Sa†!, a5w~s1Ss†!, ~45!

where

w5~12S2!21/2. ~46!

The operators annihilatesuS&, so the latter can be identifie
as the vacuumu0&s in the s-oscillator basis:

u0&s5Det~w!21/2exp~ 1
2 a†Sa†!u0&a ,

~47!
u0&a5Det~w!21/2exp~2 1

2 s†Ss†!u0&s .

Applying this transformation to the bosonic sector of t
three vertex, we find

uV3&5exp~ 1
2 ar†Vrsas†!u0&a,123

}exp~ 1
2 ar†~Vrs2Sd rs!as†!u0&s,123

}exp@~s†1sS!r$w~V2S!w% rs~s†1Ss!s#u0&s,123.

~48!

In the last line of this equation and in what follows, it
understood that the symbolS is to be interpreted asSmnd

rs.
In the Appendix, the useful identity

exp~a†Aa†1a†Ca1aBa!

5Det@~12C!eC#21/2exp@a†~12C!21Aa†#

3exp@2a† ln~12C!a#exp@aB~12C!21a#

~49!

is shown to hold for multidimensional oscillators, where t
matricesA, B, andC satisfy

AT5A, BT5B, ACT5CA, BC5CTB, C254AB.
~50!

The identity~49! can be used to rewrite Eq.~48!, since the
appropriate identifications ofA, B, C satisfy the conditions
~50!. Noting that exponentials involving the annihilation o
erators act as the identity on the vacuum, we find
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uV3&}exp~ 1
2 sr†V̂rsss†!u0&s,123, ~51!

where

V̂5~12VS!21~V2S! ~52!

is the transformed three-vertex function.
Next, we investigate the properties ofV̂. Using the ex-

plicit form ~10!, Vrs can be diagonalized in ther, s indices by
a matrixO satisfyingO215O†:

V5O21VDO, ~53!

with

VD5S C 0 0

0 U 0

0 0 Ū
D , O5

1

) S 1 1 1

a* a 1

a a* 1
D . ~54!

For the transformed three-vertexV̂, we find

V̂5O21~12VDS!21~VD2S!O ~55!

with the rr elements of the diagonalized form given by

~~12VDS!21~VD2S!!115~12CS!21~C2S!5C,

~~12VDS!21~VD2S!!225~12US!21~U2S!, ~56!

~~12VDS!21~VD2S!!335~12ŪS!21~Ū2S!.

The diagonal elements of the transformed vertex funct
V̂rs are all equal and given as one-third of the sum of
eigenvalues in Eqs.~56!, in analogy withVrs. Multiplying
any one diagonal elementV̂rr from the left and from the right
with (12US) gives V11(11S2)2V11CS2S, which van-
ishes for the solutionS5CT2 in Eq. ~39!. This is to be
expected, since thes vacuum can satisfyu0&s!u0&s5u0&s

only if indeed the diagonal elements ofV̂ vanish.
The off-diagonal elements ofV̂ are also of interest. Ex-

plicitly, we find

V̂5S 0 V̂12 V̂21

V̂21 0 V̂12

V̂12 V̂21 0
D , ~57!

where

V̂125 1
3 ~C1aL1a* L̄ !,

V̂215 1
3 ~C1a* L1aL̄!,

~58!
L5~12US!21~U2S!,

L̄5~12ŪS!21~Ū2S!5CLC.

It can be shown that
7-6
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C1L1L̄50, L25L̄251. ~59!

Using these results, some straightforward algebra yields

~V̂12V̂21!25V̂12V̂21, ~V̂21V̂12!25V̂21V̂12, ~60!

demonstrating that

P1[V̂12V̂21, P2[V̂21V̂12 ~61!

are projection operators. It also follows thatP11P251,
which impliesP1 andP2 are conjugate. Other useful ident
ties are

P15V̂12C5CV̂21, P25V̂21C5CV̂12,

V̂125V̂12P25P1V̂12, V̂215V̂21P15P2V̂21, ~62!

~V̂12!25~V̂21!250.

We interpret the physical meaning of Eqs.~60! through
~62! in terms of the behavior of the left half~‘‘1’’ ! and the
right half ~‘‘2’’ ! of the string. Thus,V̂12 maps the right half
onto the left half and annihilates the left half, whileV̂21 does
the converse. The operatorsP1 and P2 project onto the left
and right halves of the string, respectively. This interpre
tion is consistent with the identityV̂121V̂215C, since the
operatorC indeed interchanges the left and right halves
the string. The existence of such an interpretation is to
expected because the action of the three vertex is to map
left half of stringr onto the right half of stringr 11 modulo
3. The Bogoliubov transformation to thes oscillator basis
apparently generates a structure reminiscent of the com
representation proposed in Ref.@23#. It would be interesting
to obtain explicitly the relation between the two formul
tions.

Turning next to the ghost sector, we define new fermio
ghost oscillatorst andu through the Bogoliubov transforma
tions

t5~bE2b†ES̃!w̃E21, u5Ew̃~E21c2S̃E21c†!,

b5~ tE1t†ES!w̃E21, c5Ew̃~E21u1SE21u†!,
~63!

w̃5~12S̃2!21/2.

The oscillatorst, u satisfy the same algebra as theb, c oscil-
lators. Also,t, u annihilate the state exp(b†S̃c†)u1&b,c , so we
identify the vacuumu1& t,u as

u1& t,u5Det~w̃!exp~b†ES̃E21c†!u1&b,c ,
~64!

u1&b,c5Det~w̃!exp~2t†ES̃E21u†!u1& t,u .

The ghost three-vertex can be expressed in terms of
new oscillators:
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uV3
gh&}exp@~ t†E2tES̃!r@w̃~Ṽ2S̃!w̃# rs

3~E21u†1SE21u!s#u1& t,u,123. ~65!

We find that the ghost version of the identity~49! for multi-
dimensional oscillators is

exp~b†Ac†1b†Cc1c†Cb1bBc!

5Det@~12C!ec#exp@b†~12C!21Ac†#

3exp@2b† ln~12C!c2c† ln~12C!b#

3exp@bB~12C!21c#, ~66!

where the matricesA, B, andC satisfy

AT5A, BT5B, ACT5CA, BC5CTB, C252AB.
~67!

Using the identity~66! in Eq. ~65! yields

uV3
gh&}exp@ t†E~12ṼS̃!21~Ṽ2S̃!E21u†#u1& t,u,123.

~68!

In analogy with the bosonic sector, it can be shown t
the transformed ghost vertex

V̂̃5~12ṼS̃!21~Ṽ2S̃! ~69!

has zero diagonalrr elements. Its off-diagonal elements ca
be used to define projection operators

P̃15 V̂̃12V̂̃21, P̃25 V̂̃21V̂̃12. ~70!

The interpretation in terms of left and right halves of t
string also holds here.

V. THE NONPERTURBATIVE VACUUM N
A. Construction

We next consider the equations of motion for the stri
field and construct a solution for the nonperturbative vacu
N. To simplify the notation in expansions of string fields, w
use Greek indices to indicate a composite index contain
both level-number indices and spacetime Lorentz indices
the squeezed-state basis, a general string fielduf& can then be
expanded as

u f &5 (
m,n50

`

f m,n
l1 ...lmm1n1¯mnnn

3sl1

†
¯slm

† tm1

† un1

†
¯tmn

† unn

† u12&s,t,u . ~71!

Here, f m,n is a tensor that is totally symmetric inl1¯lm
and totally antisymmetric inm1¯mn and in n1¯nn . The
indicesm, nhere label the number of composite bosonic a
ghost indices rather than oscillator numbers, the latter be
subsumed into Greek indices as explained above.

We are interested in solving the string equation of mot
QC1ga8C!C50, which for g5a851 reduces in the
Feynman–Siegel gauge@21# to
7-7



o

.

io
s

, a

on
e
g

al

ans
n

tion

n

of

tin-
the
he
this

sis,

rva-

he
p-

-
ble

to

rent
his
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c0~L021!C1C!C50. ~72!

Restricting attention first to the bosonic sector, the action
L0 in the s-oscillator basis is found to be

L0u f &5 (
m50

`

@~s†wSE22ws†! f m0
l1¯lmsl1

†
¯slm

†

1m~m21!~wSE22w!lm21lm
f m0

l1¯lmsl1

†
¯slm22

†

1m~s†w~E221SE22S!w!lm
f m0

l1¯lmsl1

†
¯slm21

†

1D f m0
l1¯lmsl1

†
¯slm

† #u0&s . ~73!

Here,D is the energy of the squeezeds, t, uvacuum relative
to the usuala, b, cvacuum, as measured by the action ofL0
and arising from normal ordering in the squeezed vacuum
is given by

D526Ds1D t,u,

Ds5Tr~wSE22Sw!5Tr@S2~12S2!21E22#,

D t,u522 Tr@S̃2~12S̃2!21E22#. ~74!

The star product of two statesuf& and ug& restricted to the
bosonic sector is

u f !g&5(
m,n

(
k50

min~m,n!

@~V̂21!l1m1
¯~V̂21!lkmk

#

3@~P1!lk11

lk118
¯~P1!lm

lm8 #

3@~P2!mk11

mk118
¯~P2!mn

mn8#

3 f m0
l1¯lmgn0

m1¯mns
l

k118
†

¯s
l

m8
†

sm
k118

†
¯sm

n8
† u0&s .

~75!

Define the excitation numberm of a term in the field
expansion as the associated number ofs† factors acting on
thes vacuum. Then, Eq.~73! reveals thatL0 maps excitation
numberm to excitation numbersm22, m, andm12, while
Eq. ~75! shows that the star operator connects excitat
numbersm and n to a combination of excitation number
m1n,m1n22,...,um2nu. The latter is reminiscent of the
combination of two angular momenta. This is no accident
we demonstrate next.

In the s-oscillator basis, the existence of the projecti
operatorsP1 andP2 separates the Greek indices into degre
of freedom pertaining to left and right halves of the strin
This split enables the realization of an SU~2! symmetry as-
sociated with excitation number. Consider the operators

J05 1
2 ~s†P1s2s†P2s!,

~76!
J15s†V̂12s, J25s†V̂21s.

These form the generators of the excitation su~2! algebra.
Note that theJ6 connect left and right oscillators. The tot
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spin J5s†s/2 characterizes the representations. This me
that states of excitation numbern constitute a representatio
of the excitation SU~2! symmetry with spinJ5n/2.

In general, the star product between states of excita
numbersm and n contains only min(m,n)11 nonzero states
of the mn possibilities, consisting of states of excitatio
um2nu throughm1n. As an example, Eq.~75! shows the
star product of twoJ51/2 representationsu f &s[ f 10

l sl
†u0&s

and ug&s[g10
l sl

†u0&s is

u f !g&5 f 10
l g10

m @~V̂21!lm1~P1s†!l~P2s†!m#u0&s . ~77!

Two nonzero states remain, one of excitation 0 and one
excitation 2.

The above discussion suggests it may be useful to dis
guish even and odd excitation numbers. In particular,
action of bothL0 and the star operator are closed in t
subsector of even excitation number. In the remainder of
section, we restrict attention to this subsector.

Despite the simplifications offered by the squeezed ba
obtaining an explicit exact solution to Eq.~72! remains a
somewhat formidable task given the complexity of Eqs.~73!
and~75!. The approach we adopt here relies on the obse
tion that the matrixS appears in the definition ofL0 . Fol-
lowing the discussion in Sec. III, it can be shown that t
eigenvalues ofS are small. The largest eigenvalues are a
proximately20.21, 0.09, and20.03, displaying an alternat
ing series converging to zero. It is therefore a reasona
strategy to solve Eq.~72! perturbatively inS.

We expand the desired string fieldN as

uN&5uN~0!&1uN~1!&1uN~2!&1¯ , ~78!

where the superscript indicates the order inS. Substitution in
Eq. ~72! at orderS0 gives

(
m50

`

~ms†E222s†!l1
sl2

†
¯slm

† Nm0
l1¯lm~0!u0&s

1uN~0!&!uN~0!&50. ~79!

Note that the energy of the squeezed vacuumD;O(S2) is
irrelevant at this order. One solution is obtained by setting
zero all terms withmÞ0, yielding

uN~0!&1uN~0!&!uN~0!&50. ~80!

We can use the analysis in Sec. IV to set

uN~0!&5uS&[u0&s , ~81!

so that

N00
~0!51, N20

l1l2~0!
5N40

l1¯l4~0!
5¯50. ~82!

There may also be other possible choices producing diffe
solutions to the string equations of motion. We return to t
issue in the next section.

At order S1, one obtains
7-8
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F ~s†SE22s†!N00
~0!

1(
m

~ms†E222s†!l1
sl2

†
¯slm

† Nm0
l1¯lm~1!G u0&s

1uN~1!&!uN~0!&1uN~0!&!uN~1!&50, ~83!

where the star product is understood to be expanded in c
ponents at the appropriate order, according to Eq.~75!. Note
that the star product ofuN(0)&5u0&s with a term inN(1) of
excitation numberm yields a result with the same excitatio
numberm. The presence of the first~inhomogeneous! term in
Eq. ~83! means that the only nonvanishing contribution
order S involves excitation number 2. In particular,N00

(1)

50.
The explicit solution of Eq.~83! for uN(1)& yields a some-

what cumbersome expression, involving left and right p
jection operators. However, the solution at orderSsimplifies
greatly in the limit of high mass level, because the sin
term involvingmE22 dominates all terms other than the firs
In this limit, we find

N20
l1l2~1!

'2 1
2 Sl1l2. ~84!

Reconverting to thea-oscillator basis gives

uN&'~12 1
2 s†Ss†!u0&s

'~12 1
2 a†Sa†!~11 1

2 a†Sa†!u0&a1O~S2!

5u0&a1O~S2!. ~85!

This shows that at high mass levels the fieldS dominating
the lowest-order solution is cancelled. This is consistent w
the expected structure of the nonperturbative vacuumN,
with low-mass levels taking values near the squeezed fieS
and high-mass levels taking ones close to the usual vacu

The contributions to excitation number two arising fro
the last star-product term in Eq.~83! consist ofP2 projec-
tions on each index ofN20

l1l2(1) . Similarly, the preceding
term involvesP1 projections. Moreover, the contributions o
unmixed projections in the term involving2s† cancel, so the
result ~84! in fact holds exactly at orderS for all mass-level
contributions involving unmixed projections. Also, at orderS
the mixed projections are absent from the final two st
product terms. However, contributions from the2s† term do
arise for the mixed projections. Schematically, one finds
this case that the result~84! for N20

(1) becomes replaced by
structure of the general form2SE22/(2E2221). For the
subleading mass level this produces a contribution2S,
thereby changing the sign of the term proportional toS in the
lowest-order approximation. Since the true state acquire
combination of contributions from mixed and unmixed pr
jections, one again can anticipate an effect intermediate
tweenS and the usual vacuum at the lowest mass levels.
see that the nonperturbative vacuumN can be regarded as
twisted squeezed state, constructed by the action of oper
04600
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on the squeezed fieldS and with net field values dropping
more rapidly with excitation number than an exponential
this order of approximation.

The order-Ssolution can now be used to advance to ord
S2. A nonzero contribution toN40

(2) arises at this level, along
with corrections to the lower-order results. This pattern co
tinues at higher orders, with the first contribution toN2N,0
being at orderSN. It would be interesting to determin
whether a mechanism analogous to that described ab
causes higher-order expectation values also to approach
faster than an exponential as the excitation level increas

A complete treatment at orderS2 requires developing a
method to handle divergent traces that appear in some te
For example, a contribution arises to the vacuum-ene
shift D in Eq. ~74! that is proportional to Tr(S2E22) and that
appears to have a linear divergence. It is possible that c
bining this with the ghost contribution would yield a finit
result, but in general it may be necessary to regulate s
terms. Zeta-function regularization may be most appropri
since it is known to avoid an associativity anomaly in t
vertex in related calculations@24#.

In the ghost sector, an analogous construction for the n
perturbative vacuumN can be performed. It is straightfor
ward to extend the formal analysis to a solution in powers
S̃ and to extract results at orderS̃. The orderS̃0 equation has
the same form as Eq.~80!, so the complete lowest-orde
solution can be taken asN00

(0)5u2&s,t,u with all other com-
ponents zero. The equivalent of Eq.~83! for the ghost sector
is

@~ t†E$S̃,E22%E21u†!N00
~0!1@~ t†E22!m1

un1

†

1tm1

† ~~u†E22!n1
!#N02

m1n1~1!
1higher-level terms#u1& t,u

1uN~1!&!uN~0!&1uN~0!&!uN~1!&50. ~86!

Contributions from excitation number greater than 2 a
from N00

(1) again can be neglected at this order.
The analogue of Eq.~84! in the limit of high mass level is

N02
m1n1~1!

'2~ES̃E21!m1n1. ~87!

Evidently, the contributions from ghost fields at excitatio
number 2 become of orderS̃2 in this limit. At low mass
levels, an intermediate effect between cancellation of
term linear in S̃ and a reversal of the sign can again
expected.

B. Properties

Since the form of our solution is Lorentz invariant b
construction, we expectN to correspond to the Lorentz
invariant nonperturbative vacuum of Refs.@2–4#. The results
in the previous subsection can be used to compare the s
tion for N with numerical values for nonperturbative sol
tions obtained in the level-truncation scheme.

In Table I we list numerical approximations for som
component bosonic-sector scalar fields in the Lore
invariant nonperturbative vacuum obtained@8# at level trun-
7-9
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cation ~10, 20!, together with the range in which theO~S!
solution forN indicates the values should lie. The discuss
in the previous subsection implies that the true values
expected to lie near the maximum of this range for low-lyi
states but to fall to the minimum of the range as the le
number increases. These results support the identificatio
N with the level-truncated Lorentz-invariant nonperturbat
vacuum.

In the ghost sector, the numerical values for the gho
oscillator fields follow a pattern similar to that in the boson
sector. However, a numerical approximation forS̃ is more
involved than forS because approximatingT̃1 by Taylor
expansion of the square root in Eq.~43! fails for the largest
two eigenvalues ofX̃, which lie outside the radius of con
vergence. It would be interesting to find a means of appro
matingS̃ with sufficient accuracy to make possible compa
sons with truncation-scheme calculations.

At order S̃2, the level of technical complication increas
and the corresponding analysis lies beyond the scope of
work. We conjecture that the cancellation mechanism occ
ring at linear order in the limit of high mass level generaliz
at higher order. This is consistent with the pattern emerg
from numerical approximations using the truncation sche

It is of interest to compare the vacuum energyEN of N to
the D25-brane massM25. In principle, it suffices to evaluate
the actionI (C) for the on-shell string fieldC5N and use
EN5I (N). In the present context, the evaluation can be p
formed directly at orderS,S̃:

EN5I ~N!5 1
2 E N!QN1 1

3 E N!N!N

52 1
6 E N!N!N

'2 1
6 E S!S!S

52 1
6 123,s,t,u^2uV3&s,t,u

'2 1
6 1O~S2,S̃2!

.20.17. ~88!

This derivation takes advantage of the vanishing of the d
onal elements of the 3-vertex in thes, t, u, basis, proved in
Sec. IV. The result is to be compared with the expected va
EN52M25522/p2'20.20. Approximating the fieldN by
S thus gives about 85% of the D-brane mass.

The string action can also provide insight into the nat
of excitations about the squeezed fieldS. Consider first a
string field C expanded about an arbitrary backgrou
CB :C5CB1D. The action forC can be written@25#

I ~C!5
1

2a8
E CB!QCB1

g

3 E CB!CB!CB

1
1

2a8
E D* QBD1

g

3 E D!D!D. ~89!
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Here, the action of the background Becchi–Rouet–Sto
Tyutin ~BRST! operatorQB on an arbitrary string fieldF of
ghost numberg(F) is given by

QBF5QF1ga8@CB!F2~21!g~F!F!CB#. ~90!

The background operatorQB is nilpotent and distributive
across the star product:QB(F1!F2)5QBF1!F21

(21)g(F1)F1!QBF2 . It also satisfies *QBF1!F25

(21)g(F1)11*F1!QBF2 . The actionI (C) is invariant un-
der

dD5
1

A2a8
QBL1gAa8

2
~D!L2L!L!, ~91!

whereL is a string gauge field.
In the special case thatCB5S, the fluctuationsD repre-

sent oscillations about the squeezed fieldS and the back-
ground BRST operatorQB5QS determines the correspond
ing spectrum. We conjecture that this operator has
tachyonic modes. This would provide further support for t
idea that the squeezed fieldS provides a useful starting poin
for investigating the nonperturbative structure of the op
bosonic string, despite not being a solution of the str
equations of motion.

As partial support for the conjecture, we verify it at ord
S for low-lying states in the bosonic sector. Consider first t
stateu0&s . The S-background BRST operatorQs acting on
this state gives

b0QSu0&s'~s†E22s21!u0&s12u0&s!u0&s

'2u0&s12u0&s!u0&s51u0&s . ~92!

TABLE I. Vacuum expectation values for bosonic-sector sca
states in the nonperturbative vacuum. For each state, the exp
tion value ^c& evaluated in the level-truncation scheme and
range allowed by the order-S calculation in the text are presente
The correct value is predicted to be near the maximum of this ra
for low-lying states but rapidly to approach the minimum as t
level number increases, in agreement with the results from
level-truncation scheme.

State ^c& Expected range

u0& 1.092 59 1
a†

1•a†
1u0& 0.057 23 0 to 0.069

a†
1•a†

3u0& 20.019 88 20.053 to 0
a†

2•a†
2u0& 20.010 18 20.023 to 0

a†
1•a†

5u0& 0.007 83 0 to 0.032
a†

2•a†
4u0& 0.008 23 0 to 0.031

a†
3•a†

3u0& 0.004 29 0 to 0.017
7-10
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This approximation suffices to show that, instead of a tac
onic mass as in the vacuumu0&a , the stateu0&s acquires a
conventional mass.

Similar reasoning supports the conjecture for the first
cited statessn

†u0&s :

b0QSsn
†u0&s'~s†E22s21!sn

†u0&s

1u0&s!sn
†u0&s1sn

†u0&s!u0&s

5~n21!sn
†u0&s1P1sn

†u0&s!u0&s

1u0&s!P2sn
†u0&s

5nsn
†u0&s . ~93!

Sincen.0, this calculation shows that the analogue of t
statesan

†u0&a that contain massless modes is here a se
purely massive statessn

†u0&s .
It is believed that the endpoint of tachyon condensat

on the D25-brane has no physical open-string excitations@5#.
The corresponding conjecture in the present context is
no normalizable states can be constructed onN. Equiva-
lently, settingCB5N in the background equations abov
one expects the background BRST operatorQB5QN to have
no normalizable physical fluctuationsD, so the coefficients
of all physical kinetic terms forD should vanish. An alter-
native would be to show there are no zeros in the euclid
propagators for physical fields in the nonperturbat
vacuum @2#. Although our construction ofN sets the mo-
menta to zero, it may be possible to generalize it to incor
rate euclidean propagators forD ~cf. remarks in the next
section!. In any event, it would be interesting to have
explicit proof of this conjecture in the context of string fie
theory.

We note in passing that states on which the action
creation and annihilation operators produces only unnorm
izable results can readily be found. For example, in the c
text of a one-dimensional bosonic oscillator the stateuc&
5Sn@(a†)n/nAn! #u0& has finite normSnn225p2/6, but the
norms of botha†uc& and auc& behave asSnn21 and so
diverge. A multidimensional version of this is the sta
PmSn@(am

† )n/nAn! #u0&, which itself is normalizable bu
produces unnormalizable states when acted on by any o
oscillator creation and annihilation operatorsam

† ,am . We an-
ticipate that the nonperturbative vacuumN has similar fea-
tures.

A related issue is the fate of the low-energy U~1! or U(N)
particle symmetry of the perturbative massless vectors in
nonperturbative vacuumN. In string field theory, the non
Abelian gauge symmetry is modified compared to the us
transformation law. It has been shown that the nonpertu
tive vacuumN maintains the string U(N) symmetry con-
tained in Eq.~91! in the sense that nonzero scalar expectat
values remain invariant under a string U(N) transformation
to all truncation orders@3#. However, this low-energy string
symmetry is distinct from the usual U(N) particle gauge
symmetry, with the two being related through a set of no
linear field redefinitions@26#. The effect of this on the gen
eration of a mass term for the U~1! field has recently been
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studied in the context of the level-truncation scheme@27#.
Confinement via the condensation of magnetically char
tachyons has been suggested@28#, the possibility of a critical
value for the U~1! field above which no solutions exist ha
been investigated@29#, and it has also been proposed that
the tachyon condenses the noncommutative gauge symm
is fully unbroken and becomes a linearly realized U~`! for-
bidding propagation of open-string modes@30#. It would be
interesting to investigate the U(N) particle symmetry in the
context of the solutionN found here. The nonzero mass fo
vector excitations about the squeezed fieldS, demonstrated
by Eq. ~93!, suggests this particle symmetry is destroyed
the nonperturbative vacuum.

VI. DISCUSSION

Using analytical methods, we have constructed a nonp
turbative vacuumN satisfying the full equations of motion
~1! of string field theory. It appears to coincide with th
Lorentz-invariant nonperturbative vacuum found using
level-truncation scheme and resulting from tachyon cond
sation on a D25-brane.

In the original~a, b, c!-oscillator basis and in the Siegel
Feynman gauge, the form ofN is given as

uN&5F~S,a†!F̃~S̃,b†,c†!uS&. ~94!

Here, the squeezed fielduS& satisfying Eq.~2! is explicitly
given in closed form in Eq.~44!. Closed-form expression
for the matricesS5CT2 and S̃5CT̃1 in terms of the
3-vertex functionsV11 andṼ11 in the momentum representa
tion are determined by Eqs.~39! and ~43!. The productFF̃

'11O(S,S̃) is constructed recursively in powers ofSandS̃
in Sec. V.

The string fieldN can be regarded as a twisted squeez
state. The construction~94! providesN in the form of a
series of creation operators acting on a squeezed fieldS. We
suspect a closed form exists for this twist series. The ra
decay of the expectation values with level number appear
be a crucial feature ofN. The occurrence of the operatorL0
in the equations of motion and its growth with level numb
makes it a natural candidate for controlling this rapid dec
and hence the twist series, and we therefore conjecture
the closed form forN is a twisted squeezed state with twi
explicitly determined byL0 . In any case, it would be o
interest to develop systematic methods for handling the tw
series. Note also that the squeezed fieldS itself may merit
further study in its own right. AlthoughS does not solve the
equations of motion, it may be a better starting point than
usual perturbative vacuum for approximation schemes stu
ing the properties ofN.

An interesting issue is whether solutions exist to Eq.~79!
other thanN. This would imply that at least some terms wi
mÞ0 in Eq.~79! are nonzero. Since the star product betwe
states with excitation numbersm1 and m2 generally yields
terms up to excitation number (m11m2), it seems likely that
nonzero terms persist for arbitrarily high excitation numb
Any other solution to Eq.~79! is therefore unlikely to be
7-11
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simple within this framework even at low order. Also, sat
fying the criterion of normalizability may be more difficu
for any such solution because Eq.~79! suggests it must be
have roughly as a functional linear inEnn

225n, and hence
linear in the mass level.

It may also be possible to obtain other solutions of inter
by modifying the construction ofN in a different way. In
Sec. V, attention was primarily restricted to states of ev
excitation number. However, more general possibilities ex
For a bosonic tensorf mn

l1¯lmm1¯mn, we can separate the in
dices according to left and right sectors so thatf mn is anni-

hilated by contracting with (P1)
m i

m i8 and (P2)
l i

l i8. The action of

L0 takesf mn to a combination of terms having indices of th
type (m22,n), (m21,n21), (m,n22), (m,n),
(m11,n21), (m21,n11), (m12,n), (m11,n11),
(m,n12). These can be regarded as a field of black squ
on a chess board: (n1m) modulo 2 is conserved. Since th
star product combines an~m, k! tensor with a~k, n! tensor to
yield an~m, n! tensor, it also preserves the sum of the indic
modulo 2. The possibility therefore exists of obtaining so
tions f mn to the equations of motion restricted to ev
(m1n) other than the nonperturbative vacuumN.

Yet another possibility is to consider solutions mixing t
colors on the chessboard. Unlike solutions restricted to e
(m1n), which in general may or may not violate Loren
symmetry, solutions with odd (m1n) would have an odd
number of oscillators and hence would necessarily vio
Lorentz symmetry. In string field theory, the occurrence
static interaction terms quadratic in tensors and linear in s
lars suggests the possibility of spontaneous breaking of L
entz symmetry@31#, which would be accompanied byCPT
violation when fields with odd level number are involve
@32#. Indeed, a family of Lorentz-violating and CPT
preserving solutions in the open bosonic string has been
covered using the level-truncation scheme in the o
bosonic string@4#. It would be interesting to construct ana
lytically the states corresponding to these solutions.

In general, the topic of Lorentz-violating solutions a
pears to be a potentially revealing subject for future stu
Relatively little is known about the nature of these solutio
including whether they are stable. Since they are space
independent, it appears unlikely that they could corresp
to any of the lump solutions discussed in the literature
date. The ubiquitous nature of the cubic scalar-tensor-te
couplings suggests that Lorentz-violating solutions are
neric in string field theories with tachyons. In fact, the ex
tence of scalar-tensor-tensor couplings is not restricted
string field theory, since they also arise in off-shell calcu
tions of the action using renormalization-group methods
the string sigma model@26#.

Since the physical world is believed to include a tachy
in its spectrum at the electroweak scale~the Higgs field!, it is
necessary for a realistic string theory to have at least
tachyonic mode. If Lorentz-violating solutions are indeed g
neric in theories with tachyons, it is natural to speculate t
the four-dimensional Lorentz and CPT symmetries mi
also be spontaneously broken. The resulting low-energy
fects can be systematically studied@33#. The exquisite sensi
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tivity of modern experiments to such effects@34–42# means
that even effects suppressed by the Planck scale coul
detected.

Another interesting class of objects in string field theo
is the set of lump solutions. Using the level-truncati
scheme, it has been shown that bosonic Dp-branes can be
interpreted as unstable lump configurations of open-str
tachyons on a D25-brane@43#, at least for largep.
Worldsheet-boundary renormalization-group methods can
used to show that the mass of a tachyonic lump on
Dp-brane corresponds to that of a D(p21)-brane@44#. This
has also been verified numerically in a modified lev
truncation scheme incorporating derivative couplings@45#.
Some of these solutions are related to results in noncom
tative field theory@46#. Various other calculations suppo
these ideas@47,48#.

It is plausible that a variant of our methodology could
used to construct the lump solutions analytically. In partic
lar, the construction ofN depends only on the formal struc
ture of the vertex functions in terms of the matricesC andU
with properties~12!. These matrices emerge from the co
version between thea0 oscillators and the momentum repr
sentation in Sec. II A. They originate in a set of matricesC
andU8 with identical formal properties~9!. It therefore fol-
lows that any spacetime-independent solution obtained in
momentum representation has an inequivalent partner s
tion in thea0 representation. Moreover, the conversion fro
oscillator to momentum basis can be performed in any nu
ber p of spacetime dimensions desired. The construct
implemented forN therefore suggests the existence of stri
fields that are twisted squeezed states in (262p) dimensions
and are independent of the remainingp dimensions. We con-
jecture that these solutions include the Dp-branes, along with
instanton-type solutions.

Another topic of interest is the role and fate of the close
string modes inN. The Zwiebach string field theory of th
closed bosonic string is nonpolynomial@49#. Consistent
implementation of the level-truncation scheme therefore p
sents some difficulties. At the level of the cubic interaction
nonperturbative solution appears to exist in which t
closed-string tachyon and the graviton have no phys
poles@50#. We anticipate that a closed-string version of t
squeezed fieldS can be constructed for this solution. If so, i
idempotency may make possible analytical study of the n
polynomial action in the squeezed basis. It has also b
shown that macroscopic closed strings can be regarde
solitons in the nonperturbative vacuum of the open boso
string @51#. It would be interesting to study solutions of th
type in the squeezed-state basis.

The methodology in this paper could also be applied
study the nonperturbative vacua of other string field theo
with tachyons, including those for the non-GSO-project
superstring@9# and thep-adic string@52#. For the latter, it has
explicitly been proved that the extremum of the tachyon p
tential with a D25-brane is the vacuum without one and t
lump solutions are D-branes of lower dimensions@53#. In
light of the possibility of obtaining exact results, it would b
interesting to investigate our construction forN in this con-
text.
7-12
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APPENDIX: A USEFUL IDENTITY

This Appendix explicitly proves the identity~49! for mul-
tidimensional bosonic oscillators under the conditions~50!.
A similar method can be adopted to prove the result~66! for
multidimensional ghost oscillators subject to the constra
~67!.

The strategy we adopt is to seek a scalar functionh(t) of
a parametert and matrix functionsamn(t), bmn(t), gmn(t)
of the same parametert such that the equation

exp@ t~am
† Amnan

†1am
† Cmnan1amBmnan!#

5exp~h!exp~am
† amnan

†!

3exp~am
† gmnan!exp~ambmnan! ~A1!

holds. Here, the matricesA, B, andC are assumed indepen
dent of t. The idea is to take the derivative with respect tt
on both sides of the equation, commute to the left all fact
that appear, and equate the corresponding terms on
sides. This yields differential equations for the scalar a
matrix functions oft. Solving these yields the desired ide
tity by settingt51.

Adopting this procedure while keeping careful track
the index positions yields the following set of matrix diffe
ential equations:

A5ȧ22ġa14a exp~2gT!ḃ exp~2g!a,

B5exp~2gT!ḃ exp~2g!,
~A2!

C5ġ24a exp~2gT!ḃ exp~2g!,

05ḣ22 Tr@exp~2gT!ḃ exp~2g!a#,

whereT denotes the transpose. For simplicity in the abo
and in what follows, we assume
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aT5a, aCT5Ca,
~A3!

bT5b, bC5CTb

as a partial ansatz that is to be verified after the solution
constructed. The equations~A2! can be rearranged to give

ȧ5A12Ca14aBa, ~A4!

ḃ5egT
Beg, ~A5!

ġ5C14aB, ~A6!

ḣ52 Tr~Ba!. ~A7!

As initial conditions for these equations, we takea(0)
5b(0)5g(0)5h(0)50.

Taking advantage of the given conditions~50!, Eq. ~A4!
becomes

ȧ5~a1 1
4 CB21!4B~a1 1

4 CB21!. ~A8!

Its solution isa1 1
4 CB215(24Bt1Y)21, where the initial

condition fixesY54BC21. This gives

a~ t !5~12Ct!21At. ~A9!

Substituting this into Eq.~A6! gives ġ52(t2C21)21,
which has solution

g~ t !52 ln~12Ct!. ~A10!

This in turn can be substituted into Eq.~A5!, leading toḃ
5B(12Ct)22. The solution is

b~ t !5Bt~12Ct!21. ~A11!

This leaves Eq.~A7!, which becomes

ḣ5 1
2 Tr@~~12Ct!2121!C# ~A12!

with solution

h~ t !5 1
2 Tr@2 ln~12Ct!2Ct#. ~A13!

We can now verify the ansatz~A3!. Finally, settingt51
yields the desired identity~49!.
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telecký, Phys. Rev. Lett.84, 1381~2000!.

@34# KTeV Collaboration, Y. B. Hsiunget al., Proceedings of the
1999 Chicago Conference on Kaon Physics, Chicago, Illino
1999, Report No. FERMILAB-CONF-99-313-E.

@35# OPAL Collaboration, R. Ackerstaffet al., Z. Phys. C76, 401
~1997!; DELPHI Collaboration, M. Feindtet al., Report No.
DELPHI 97–98 CONF 80, 1997.

@36# L. R. Hunteret al., in CPT and Lorentz Symmetry, edited by
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