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Revival structure of Stark wave packets
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The revival structure of Stark wave packets is considered. These wave packets have energies depending on
two quantum numbers and are characterized by two sets of classical periods and revival times. The additional
time scales result in revival structures different from those of free Rydberg wave packets. We show that Stark
wave packets can exhibit fractional revivals. We also show that these wave packets exhibit particular features
unique to the Stark effect. For instance, the wave functions can be separated into distinct sums over even and
odd values of the principal quantum number. These even and odd superpositions interfere in different ways,
resulting in unexpected periodicities in the interferograms of Stark wave packets.@S1050-2947~97!02501-8#

PACS number~s!: 32.80.Bx, 03.65.2w
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A free Rydberg wave packet initially follows the motio
of a charged particle in a Coulomb field. However, af
several cycles it collapses and a cycle of full and fractio
revivals and superrevivals commences@1–6#. This behavior
holds not only for hydrogenic wave packets but also
wave packets in alkali-metal atoms@7#, where the energies
have quantum defects causing shifts in the classical pe
and in the revival and superrevival times. Theoretical
scriptions of these wave packets as squeezed states
known @8#.

In this paper we examine the revival structure of Sta
wave packets, which evolve in the presence of a static e
tric field. We prove below that under certain conditions Sta
wave packets can exhibit full and fractional revivals. Mor
over, we show the existence of new wave-packet beha
that does not occur for free wave packets and that is exp
mentally accessible.

To create a Stark wave packet, an atom is first placed
static electric field that splits and shifts the energy levels
short laser pulse is then applied in the presence of the ele
field, resulting in a coherent superposition of Stark leve
For a hydrogen atom in a small electric field, the energie
atomic units areEnk52(1/2n2)13nkF/2, wheren is the
principal quantum number,k5n12n2 with n1 andn2 being
parabolic quantum numbers, andF is the magnitude of the
electric-field strength.

Stark wave packets have been produced and studied
perimentally. The production of wave packets consisting o
superposition ofk states in one Stark manifold with a fixe
value ofn is described in Ref.@9#. The oscillation of these
parabolic wave packets corresponds to an oscillation of
eccentricity of the orbit. The dynamics of Stark wave pack
above the classical field-ionization thresholdFc is examined
in Refs. @10,11#. Simultaneous quantum beats in both t
radial motion and angular motion are observed.

Stark wave packets with long lifetimes can be created
forming combinations of states below the classical fie
ionization threshold. Superpositions ofk states withn523–
25 have recently been produced in cesium@12#. Although the
Stark spectra for alkali-metal atoms show strong avoid
crossings, experiments indicate the behavior of these S
wave packets is similar to ones in hydrogen. This is beca
551050-2947/97/55~1!/819~4!/$10.00
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on average the energy spacings between states of an a
metal atom are similar to those in hydrogen, and it is th
spacings that determine the motion of the wave packet.

We are interested in the revival structure of a Stark wa
packetC(t) formed as a coherent superposition of statesfnk
with energiesEnk . This is an example of a quantum syste
with energies depending on two quantum numbersn andk
@13#. We write C(t)5(n,kcnkfnkexp@2iEnkt#. Here, the
quantum numberk is even or odd according to whethern is
odd or even. The two-unit jump of adjacent values ofk for
fixed n requires special handling in the treatment of fra
tional revivals and results in additional interference effects
the interferograms of Stark wave packets. We suppose
the superposition is weighted around central valuesn̄ and k̄
of the two quantum numbers. The energy can then be
panded in a Taylor series aroundEn̄ k̄ .

For definiteness, consider an expansion centered aro
the valuesn5n̄ andk5 k̄50, and take the quantum numbe
m associated with the third component of the angular m
mentum to be zero. In this case, we introduce

Tcl
~n!5

2p

~]E/]n! n̄ , k̄
52pn̄3, Tcl

~k!5
2p

2~]E/]k! n̄ , k̄
5

2p

3Fn̄
,

~1!

t rev
~n!5

2p
1
2 ~]2E/]n2! n̄ , k̄

5
4p

3
n̄4,

t rev
~nk!5

2p

2~]2E/]n]k! n̄ , k̄
5
2p

3F
. ~2!

There is no revival timet rev
(k) associated with the quantum

number k since ]2E/]k250. Note that the definitions for
Tcl
(k) and t rev

(nk) contain factors of 2 that compensate for t
two-unit jumps of adjacentk values. Note also that the
mixed-derivative term generates a time scalet rev

(nk) , which we
call the cross-revival time. Substituting these definitions in
C(t) and keeping terms to second order yields the exp
sion
819 © 1997 The American Physical Society
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C~ t !5(
n,k

cnkfnkexpF22p i S ~n2n̄!t

Tcl
~n! 1

kt

2Tcl
~k!

1
~n2n̄!2t

t rev
~n! 1

~n2n̄!kt

2t rev
~nk! D G . ~3!

For small t, the first two terms of the time-depende
phase in Eq.~3! dominate. They represent beating betwe
the two classical periodsTcl

(n) and Tcl
(k) . We call Tcl

(n) and
Tcl
(k) commensurate ifTcl

(n)5aTcl
(k)/b, wherea andb are rela-

tively prime integers. If this relation holds, the time evol
tion of C(t) on short-time scales exhibits a periodTcl
5bTcl

(n)5aTcl
(k) .

For larger times, the revival time scalest rev
(n) and t rev

(nk) be-
come relevant and modulate the initial behavior, causing
wave packet to spread and collapse. We find that the w
packet undergoes full revivals provided the revival tim
t rev
(n) and t rev

(nk) are commensurate and obeyt rev
(n)5rt rev

(nk)/s,
wherer ands are relatively prime integers. If this relation
satisfied, then there exists a revival timet rev5strev

(n)5rt rev
(nk) at

which both second-order terms in the phase are integer m
tiples of 2p. Near t rev, the phase is again controlled by th
first-order terms, and the shape and motion of the w
packet resembles that of the initial wave packet, i.e., a
revival occurs.

The commensurability of the time scales depends on̄
andF. RestrictingF to below the classical field-ionizatio
thresholdFc51/16n̄4 places limits on the ratiosa/b andr /s.
We finda/b,3/16 andr /s,1/8. By tuningF, specific com-
mensurabilities and different types of revival structure can
selected.

To illustrate some of the possibilities, consider two e
amples. Let one havea/b52/13, corresponding to a period
icity Tcl52Tcl

(k) , while the other hasa/b51/6, correspond-
ing toTcl5Tcl

(k) . In the first case, peaks in the autocorrelati
function should appear every two cycles in the periodTcl

(k) ,
while in the second peaks should appear every cycle. S
a/b53Fn̄4, these two different types of commensurabili
can be obtained using two values of the field strength in
ratio 12/13.

Behavior of this type has been seen experimentally
Stark wave packets of cesium withn̄.24 @12#. Two different
commensurabilities were observed in measured interf
grams, one with peaks every otherTcl

(k) cycle, and the other
with peaks every cycle. The ratio of the two measured fi
strengths agrees with the ratio 12/13.

These features can be displayed in plots of the abso
square of the autocorrelation function uA(t)u2
5z^C~0!uC(t)&z2 as a function oft. We consider two plots of
uA(t)u2 for wave packets with values ofF having the ratio
12/13. With n̄524, this requires usingF.794.8 V/cm for
a/b52/13 andF.861.0 V/cm fora/b51/6. The superposi-
tion of interest lies nearn̄524 with m50 and k̄50, so the
sum in uA(t)u2 can be restricted to the threen valuesn523,
24, and 25 with only the upper part of then523 manifold
and the lower part of then525 manifold included. For the
distribution in k, we choose a broad Gaussian centered
k̄50 with sk56. This distribution matches the shape of t
weighting coefficients obtained in a short-pulse laser exc
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tion from a low-energyp state to a superposition of Star
states withs character. A similar distribution would also oc
cur in a superposition ofm51 states in an excitation from a
low-energys state to a superposition of Stark states withp
character.

Figure 1 displaysuA(t)u2 as a function oft for the case
where a/b52/13. As expected, the periodicity equa
2Tcl

(k) , with odd multiples suppressed. Figure 2 shows t
plot for a/b51/6. In this case, there are peaks every cy
with periodTcl

(k) . In both figures, there is an overall decrea
in the size of the peaks as the time increases. This is cau
by the revival times, which destroy the initial periodic mo
tion. Our analysis here uses hydrogenic energies, and eff
of core scattering to the continuum as would occur in a St
wave packet for an alkali-metal atom are ignored. A mo
detailed theoretical treatment incorporating higher-ord
Stark effects and quantum defects could be performed a
lytically using the methods of Ref.@14#, but this lies outside
the scope of the present work.

For fractional revivals to form in Stark wave packets, th
wave functionC(t) in Eq. ~3! must be expressible as a su
of distinct subsidiary wave functions. This can only occur
times t5t frac that are simultaneously irreducible ration
fractions of the two revival times scales. We define

t frac5
p1
q1

t rev
~n!5

p12
q12

t rev
~nk! . ~4!

FIG. 1. The autocorrelation vs time in picoseconds for a St
wave packet withn̄524. The electric-field strength isF.794.8
V/cm, corresponding to the ratioTcl

(n)/Tcl
(k).2/13.

FIG. 2. The autocorrelation vs time in picoseconds for a St
wave packet with n̄524. Here, the electric-field strength i
F.861.0 V/cm, corresponding to the ratioTcl

(n)/Tcl
(k).1/6.
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Here, the pairs of integers (p1 ,q1) and (p12,q12) are rela-
tively prime.

In the Appendix, we outline a proof that subsidiary wav
form at the timest frac and discuss some additional effects d
to the parity ofk and the extra factors of 2 in the phase. W
also show thatC(t) in Eq. ~3! can be written as a sum
Codd(t)1Ceven(t) consisting of separate sums over odd a
even values ofn.

At the fractional revivals, each of the wave functio
Codd(t) andCeven(t) can be written as a sum of subsidia
wavesccl

~odd! andccl
~even! , respectively, with arguments shifte

relative tot by certain fractions of the corresponding period
At the timest5t frac, the result is

C~ t !5 (
s150

l121

(
s250

l221

as1s2
~odd!ccl

~odd!S t1 s1
l 1
Tcl

~n! ,t1
s2
l 2
Tcl

~k!D
1e2 ip~p12trev

~nk!/q12Tcl
~k!

! (
s150

l1821

(
s250

l2821

as1s2
~even!ccl

~even!

3S t1 s1
l 18
Tcl

~n! ,t1
s2
l 28
Tcl

~k!D . ~5!

The functionsccl
~odd! and ccl

~even!, the coefficientsas1s2
(odd) and

as1s2
(even), and the integersl 1, l 2, l 18 , and l 28 are defined in the

Appendix.
The functionsccl

~odd! andccl
~even! are doubly periodic func-

tions with periodsTcl
(n) andTcl

(k) . The evolution of the wave
packet exhibits the beating of these two classical periods
the fractional revivals, the sums in Eq.~5! exhibit periodici-
ties that are fractions of the time scalesTcl

(n) andTcl
(k) . The

behavior of the quantum numberk causes the function
ccl

~odd! andccl
~even! to obey

ccl
~odd!~ t1 1

2Tcl
~n! ,t !52ccl

~odd!~ t,t !,

ccl
~even!~ t1 1

2Tcl
~n! ,t !5ccl

~even!~ t,t !. ~6!

This additional dependence onTcl
(n)/2 causes the unconven

tional revival structure of Stark wave packets.
As an illustrative example, consider the casen̄524, and

set t rev
(n)/t rev

(nk)5r /s51/12 by tuning the electric-field strengt
to F.645.8 V/cm. For this example,t rev5t rev

(nk)512t rev
(n) . Us-

ing the expressions in the Appendix, fort't rev we find
C(t)'ccl

~odd!(t,t)1ccl
~even!(t,t). These sums are in phase a

combine as a single total wave packet, producing the
revival at t rev.

At t5t rev/2, however, we find a time phase betwe
Codd(t) andCeven(t), with the full wave function reducing to

C~ t !'ccl
~odd!~ t,t1 1

2Tcl
~k!!1ccl

~even!~ t1 1
4Tcl

~n! ,t !. ~7!

We see that this fractional revival consists of two subsidi
wave functions out of phase with each other.

Figure 3 shows the absolute square of the autocorrela
function as a function of time. Here,t rev.403.4 psec,Tcl

(n)

.2.1 psec, andTcl
(k).16.8 psec. SinceTcl

(k) is an integer
multiple ofTcl

(n) , we expect peaks at times equal to multipl
of Tcl

(k) . These are apparent in Fig. 3. The full revival
s

d

.

t

ll

y

n

evident and has the anticipated periodicity. The fractio
revival neart5t rev/2 has peaks corresponding to those fro
two wave packets half a classical periodTcl

(k) out of phase, in
agreement with our predictions.

For the odd-n superposition in the Stark wave packe
additional interference occurs at thet5t rev/2 revival. The
additional interference is caused by the antiperiodic behav
of ccl

~odd! and can be seen explicitly from the form of th
autocorrelation function. The subsidiary wave functio
ccl

~odd! andccl
~even! are orthogonal since they consist of separa

sums over odd and evenk. We can therefore calculateA(t)
5^C(0)uC(t)& using Eq.~7! for times t't rev/2, disregard-
ing the cross terms. This gives

A~ t !5^ccl
~odd!~0,0!uccl

~odd!~ t,t1 1
2Tcl

~k!!&

1^ccl
~even!~0,0!uccl

~even!~ t1 1
4Tcl

~n! ,t !&. ~8!

Suppose the functionsccl
~odd! and ccl

~even! are spatially local-
ized. Then, at times that are multiples ofTcl

(k)/2,A(t) reduces
to the first term since the second term vanishes. Convers
at multiples ofTcl

(k) , A(t) reduces to the second term. Sinc
ccl

~odd! is antiperiodic in the first time argument with perio
Tcl
(n)/2.1.05 psec, we expect nodes in the autocorrelat

function occurring with this periodicity at times that are mu
tiples of Tcl

(k)/2. However, sinceccl
~even! is periodic, nodes

need not appear inA(t) at multiples ofTcl
(k) .

Figure 4 shows an enlargement of the autocorrelat

FIG. 3. The revival structure of Stark wave packets is display
in a plot of the autocorrelation function as a function of the time
picoseconds. The Stark wave packet hasn̄524. The electric-field
strength isF.645.8 V/cm, which setst rev

(n)/t rev
(nk). 1

12 and tcl
(n)/Tcl

(k)

. 1
8.

FIG. 4. An enlargement of Fig. 3 in the vicinity of the fractiona
revival at t rev/2.
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function near the fractional revival att rev/2. Alternate peaks
have different interference patterns, as expected. The p
at multiples ofTcl

(k).16.8 psec are single with no interfe
ence. These arise fromccl

~even! in Eq. ~8!. The peaks at mul-
tiples ofTcl

(k)/2 arise from theccl
~odd! terms inA(t). Nodes in

A(t) with the periodicityTcl
(n)/2.1.05 psec are apparent.

The experiment described in Ref.@12# observed Stark
wave packets for delay times of about 150 psec, after wh
the signal was lost due to dephasing. To detect the fractio
revival at t rev/2 described in this paper, the alignment of t
interferometer would need to be maintained for delay tim
of at least 200 psec. Observation of the full revival predic
would require a delay time of 400 psec. Delay times grea
than these have already been achieved in studies of Ryd
wave packets in the absence of external fields. Note that
treatment has disregarded core scattering and fine struc
The importance of these effects could therefore be de
mined in part by comparison of experiments to our pred
tions for the fractional and full revivals.

This work was supported in part by the National Scien
Foundation under Grant No. PHY-9503756.

APPENDIX

This appendix proves that fractional revivals occur
Stark wave packets. First, rewriteC(t) in Eq. ~3! by shifting
(n2n̄)→n and separating the series into odd and even s
overn. This givesC(t)5Codd(t)1Ceven(t). Then, letk→2k
in the sum over oddn, andk→2k11 in the sum over even
n. We then define the doubly periodic wave functionsccl

~odd!

andccl
~even! ,
n

ks

h
al

s
d
r
erg
ur
re.
r-
-

e

s

ccl
~odd,even!~ t1 ,t2!5 (

n odd,even
(
k
cnkfnk

3expF22p i S nt1Tcl
~n! 1

kt2
Tcl

~k!D G . ~A1!

The higher-order terms in the time-dependent phases
Codd(t) andCeven(t) at t5t frac are given by

unk
~odd!5

p1
q1

n22
r

s

p1
q1

nk, ~A2!

unk
~even!5

p1
q1

n22
r

s

p1
q1

nk2
r

s

p1
q1

1

2
n. ~A3!

Here,n is odd in Eq.~A2! and even in Eq.~A3!. We seek the
minimum periods l 1, l 2, l 18 , and l 28 such that un1 l1 ,k

~odd!

5unk
~odd! , un,k1 l2

~odd! 5unk
~odd! , un1 l

18 ,k
~even!

5unk
~even! , and un,k1 l

28
~even!

5unk
~even! . These relations yield four conditions for the pe

ods l 1, l 2, l 18 , and l 28 in terms ofn, k, and t frac. Since the
functionsccl

~odd! andccl
~even! with t shifted by appropriate frac

tions ofTcl
(n) andTcl

(k) have the same periodicities inn andk
asunk

~odd! andunk
~even! , respectively, we may use these functio

as a basis for an expansion of the wave functionsCodd(t) and
Ceven(t) at the timest frac. The result is the expansion~5!,
where the coefficientsas1s2

~odd! andas1s2
~even! are given by

as1s2
~odd!5

1

l 1l 2
(

k150

l121

(
k250

l221

exp~2p iuk1k2
~odd! !

3expS 2p i
s1
l 1

k1DexpS 2p i
s2
l 2

k2D , ~A4!

with a similar expression foras1s2
~even! in terms ofl 18 and l 28 .
n
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