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Quantum defects and the long-term behavior of radial Rydberg wave packets
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We show that a theoretical description of radial Rydberg wave packets in alkali-metal atoms based solely on

hydrogenic wave functions and energies is insufficient to explain data that could be obtained in pump-probe
experiments with current technology. The modifications to long-term revival times induced by quantum defects
cannot be obtained by direct scaling of the hydrogenic results. Moreover, the effects of laser detuning and

quantum defects are different. An alternative approach providing analytical predictions is presented.

PACS number(s): 32.80.—t, 03.65.Ge, 11.30.Pb

Radial Rydberg wave packets are produced when a short
laser pulse excites a coherent superposition of states with no
other fields present [1,2]. A single pulse produces a packet
with p-state angular distribution but localized in the radial
coordinate. Initially, the packet moves between the apsidal
points of a classical Keplerian orbit. The radial-coordinate
uncertainty product brhp„c roresp nodi gnly oscillates be-
tween values large compared to 6 and values close to mini-

mum uncertainty. Such oscillations are characteristic of a
squeezed state. Indeed, a hydrogenic radial Rydberg wave
packet at its first pass through the outer apsidal point may be
modeled as a type of squeezed state, called a radial squeezed
state [3].The motion of a radial squeezed state undergoes
a cycle involving collapse and fractional and full revivals
characteristic of Rydberg wave packets [1,2,4—10].

Experiments on single-electron radial Rydb erg wave
packets typically involve alkali-metal atoms. It turns out that
radial Rydberg packets in alkali-metal atoms can also be
modeled using radial squeezed states [11].In general, the
core electrons of an alkali-metal atom cause deviations of the
eigenenergies from hydrogenic values, which can be charac-
terized by quantum defects 8(n, l) depending on the princi-
pal quantum number n and the angular-momentum quantum
number l. For Rydberg states n is large and the 8(n, l) attain
asymptotic values 8(l) independent of n. The energies in
atomic units are then E„*=—1/2n*, where n*=n —b(l).

Recently, the revival structure of Rydberg wave packets
both in hydrogen and in alkali-metal atoms has been studied
for times tnuch greater than the full revival time t„,[12—14].
On a time scale t„&&t„„anew cycle of fractional and full
revivals commences. At times tf,„equal to linear combina-
tions of t„andt„,the packet takes the form of a sum of
macroscopically distinct subsidiary packets. In certain cases,
only one subsidiary packet forms, more closely resembling
the initial packet than the full-revival one. The motion of the
packet at times near tf,

„

is periodic, with period Tf,„given
as a linear combination of the revival time t„„andthe clas-
sical orbital period T,&. The autocorrelation function exhibits
peaks near times tf,„with periodicities Tf„,.

In this paper, we consider predictions for experimental
results from different theoretical descriptions of the long-
term evolution and revival structure of a radial Rydberg
wave packet in an alkali-metal atom. In particular, we exam-

ine the suitability of an analysis of the long-term behavior
based entirely on hydrogenic wave functions and energies,
which is commonly used to describe such a wave packet. We
show that this approach is inadequate for a complete descrip-
tion of phenomena accessible to the present generation of
pump-probe experiments. For wave packets in alkali-metal
atoms, where quantum defects are present, we also show that
effects arising from laser detuning and from quantum defects
are different.

For definiteness, we assume an experimental configura-
tion with pump-probe detection involving either time-
delayed photoionization [2] or phase modulation [15—17].In
either case, we take the packet to be produced by single-
photon excitation from the ground state, yielding a p-state
angular distribution. The superposition of eigenstates result-
ing from the initial laser pulse is characterized by a distribu-
tion c„~.The quantity ~c„*~ describes the relative contribu-
tions of eigenstates with energies E„~.A short pulse
produces a distribution of states with finite width centered on
a value N*, which need not correspond to an exact atomic
resonance.

Both pump-probe methods produce an ionization signal
displaying periodicities at the revival time. Reference [8]de-
scribes the observation of the photoionization signal for
p-state radial wave packets in potassium with N*=65.2, for
delay times up to t= 2t„„.The resolution of the data is suf-
ficient to observe a relative phase shift approximately equal
to —2T,&

between the initial peaks near t=0 and the revival
peaks near t= 2t„„.More recently, fractional revivals up to
seventh order have been detected using the more sensitive
phase-modulation technique [18].These experiments, rang-
ing over times up to —,t„„,resolve peaks in the ionization
signal in rubidium with periods as small as 7T,&

for N*=53.3
and 4T,&

for N*=46.5.
For present purposes, we consider a hypothetical but fea-

sible pump-probe experiment with a delay line such that the
structure of the ionization signal can be examined at times on
the order of t„.Although the time scale t„is greater thant„„for the range of N* values of interest [12], it is still
several orders of magnitude smaller than the lifetimes of the
Rydberg states. Since the periodicities in the peaks of the
ionization signal match the periodicities of the underlying
packet, a comparison of different theoretical models with
each other and with experiment can be made by direct study
of the wave packet.
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In what follows, we take as experimental input to any
given theory the measured values of the times tz„atwhich
periodicities appear in the ionization signal, the correspond-

ing periods Tz„,and the central wavelength of the laser
used to excite the packet. From the latter, the mean value of
the energy Ez~ and hence N* = g —1/2E&~ may be deter-
mined. This mean energy may not correspond to an atomic
resonance.

The first model we consider involves hydrogenic eigenen-
ergies and eigenstates. It is conceptually simple and is often
used to study Rydberg packets. The wave function is ex-
panded as

Since by assumption N&&1, the lower limit in k is well ap-
proximated by —~. An overall complex phase has been
dropped.

With these variable changes, the wave function in Eq. (6)
has a structure similar to that used in the earlier analysis with
integer N*. However, the three key time scales are modified

by amounts depending on the laser detuning in hydrogen,
i.e., the irreducible fraction p/v. Following the approach of
Ref. [12], we can obtain the times of formation tt,„ofthe

subsidiary wave packets and their periodicities Tz„.Write
N= 4 rg+ X., where y and X are integers and X =0, 1, 2, or 3.
We then find

1 m
frac sr n rev &

3 Q

~frac trev ~cl

E„=Et',+E~,(n N*)+ —,'En, (n —N*)—+ 6E~,(n N*) . — —
(2)

This expansion in powers of the

(n N) defines —the time scales
P'*T„,and t„=4N*t„„.Introduce
k = (n —N) and define the new scales

noninteger quantity
T l=2'*, t„,
the integer quantity

P cl P clZ 3 Z

cl cl
tre + tsr /

where q„(r are p-state hydrogenic wave functions,
E„=—1/2n, and the distribution c„hasfinite width and is
centered around N*. The superposition (1) therefore has
mean energy matching that of the mean energy of the packet.
A priori, this model might appear sufficient to describe the
long-term evolution of a Rydberg wave packet in an alkali-
metal atom. However, this is incorrect, as we demonstrate
next.

The long-time revival structure of hydrogenic wave pack-
ets has already been studied for the case where the laser
excites a mean energy corresponding to N~ =N, where N is
an integer [12]. Using a Taylor expansion of the energy
shows that the evolution of the packet for times up to a time

tsr is governed by the first three terms in the expansion. At
present, we are interested in the general case with noninteger
N*. The desired results can be obtained from the earlier
analysis by a judicious choice of variables. Let us write
N* =N p, / v, whe—re N is the smallest integer greater than
or equal to N* and p, /v is an irreducible fraction less than 1.
In the present case of hydrogen, this fraction represents the
laser detuning away from the nearby atomic resonance.

Expanding the hydrogenic energies to third order gives

where q is an integer multiple of 3 and

m 3 ~ p, )
k —5— (mod 1),

n 4q( vj

u 2(ri+ k) —3

U q
(mod 1).

As expected, when p, ~0 the expressions reduce to those of
Ref. [12], corresponding to excitation on resonance.

These results show that, using a hydrogenic expansion,
the time tz„and Tz„arecompletely determined once N*
has been fixed. However, this determination has come before
specifying the alkali-metal atom in question, whereas quan-
tum defects are known to cause additional shifts in the re-
vival times [13].We have therefore shown that describing a
wave packet in an alkali-metal atom purely with hydrogenic
energies and wave functions is insufficient for a complete
treatment.

We next turn to a differential theoretical description that
does provide a more complete description and therefore also
permits an estimate of the deviations from hydrogenic be-
havior. Moreover, it allows a quantitative comparison of the
effects of laser detuning and quantum defects.

Nonhydrogenic features of radial packets in alkali-metal
atoms can be incorporated analytically via a supersymmetry-
based quantum-defect theory (SQDT), which has analytical
wave functions with the asymptotic Rydberg series as exact
energy eigenvalues [19,20]. Since the SQDT wave functions
q&+„"(r)both incorporate quantum defects and form a com-
plete and orthonormal set, they can be used as a basis for an
expansion of a packet in an alkali-metal atom. We write

rev trev 1—3p, t„„i
V tsr ]

(4)
'qt(r, t) =g c„*q&*„*(r)exp( —iE„*t),

in terms of which qI(r, t) may be 'written in the form

Ikt kt ktI
0'(r, t) = g c~y~(r)exp —2' —,—,+

k= —~ ( &cl tr. tsr )

(6)

where c„*is a distribution in n* centered on N*.
Expanding the energy E„~ as before around

N*=N p, /v defines the s—ame three time scales as for
the hydrogenic expansion: T,l=2mN*, t„v=—,N*T,l, and
t„=-„N t„.However, in this case the expansion is in pow-
ers of (n* N*)=(k+o.//3), where w—e have—introduced
u/P= p/v —8(l) (mod 1), and k is the integer part of
(n* —N*). For excitation in alkali-metal atoms, the laser



50 QUANTUM DEFECTS AND THE LONG-TERM BEHAVIOR OF . . . R4447

detuning from the nearby atomic resonance is a/p. Excita-
tion on resonance corresponds to u=0. The quantity p, /v,
which for the above analysis in hydrogen represented the

laser detuning, is now instead the fractional part of the sum

of the laser detuning and the quantum defect.
Keeping the first three terms in the energy expansion

gives

0.8-

0.6, -

0.4

~ kt k't k't)
q'(r, t) = g cky k(r) exp —2mi, —,+

g= —oo el rev sr

(10)
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FIG. 1. Absolute square of the autocorrelation function for ru-

bidium radial squeezed states with %*=45.35 as a function of time

in nanoseconds.

( 3at„„~
rev Erev

P tsrt
(12)

Q I
sr. (13)

It is important to note that these expressions depend on both
the quantum defect 8 and the laser detuning u/P. Part of the

dependence on a/p is explicit. The remainder and the de-

pendence on 8 appear through the hidden dependence on the
irreducible fraction p/v, which enters through the definitions
of the time scales in terms of N*.

Following the analysis in Ref. [13] with N=4r/+k as
before, we find that the packet may be written as a sum of
distinct subsidiary waves at times t„,'„with periodicities
T&*„',given by

gf gl1 I
tfrac tsr ~rev &

q n

3 Q

Ttr,'c = —t,*,„'——Tct ', (14)

where

m 3 ~ p, 4a)
(mod 1),

n 4ql, v pi
u 2(r/+X) —3 2 ~ a p l

+ ———— (mod 1).
U q q~p v~

(15)

The revival times and periodicities depend on the quantum
defects. Unlike in hydrogen, specifying N* fails to determine

tz,', and Tz,', . In addition, the alkali-metal atom and the
corresponding quantum defects must be specified. Moreover,
the scales t&,', and Tz,', in the present case evidently cannot
be obtained from the corresponding hydrogenic scales t„'„
and Tz„bya simple renormalization.

Equation (15) also demonstrates that the effects of quan-
tum defects are different from those of the laser detuning.
Replacing p, /v with its definition in terms of the laser detun-

ing u/P and the quantum defect 6' shows that the time tt*„',
and the period Tz,', have different dependences on 8' and
u/p. Therefore, laser detuning cannot be mimicked by quan-
tum defects or vice versa. The differences arise because a
constant shift in the laser detuning is equivalent to a constant
(opposite) shift for all energy levels, whereas a constant shift

in the quantum defect would correspond to varying shifts

among the energy levels since E„e=— 1/2n* . Further-

more, these differences are of the order of t,*,„',representing
many classical orbital periods.

Next, we consider whether the modifications of the long-
time revival behavior are experimentally observable with
current technology. For simplicity in what follows, we take
an example for which the excitation is at resonance. Con-
sider a wave packet in rubidium with N* =45.35, which is of
the type that can readily be produced experimentally. For
definiteness set q=6, which would produce a large peak in
the ionization signal in a pump-probe experiment as it corre-
sponds to the formation of a single packet, more closely
resembling the initial packet than does the original full re-
vival. We then find that N=46, ran=11, X=2, p, =13, and
v=20. The description of long-term revivals using hydro-

genic energies and wave functions yields t&„,=2.05 nsec,
with a periodicity T&„,=215 psec. In contrast, the descrip-
tion incorporating quantum defects also requires a specifica-
tion of the quantum defect 8(1) for p states of rubidium,
which we take to be 8(1)=2.65. This gives u/P=O and

t&*„',=2.36 nsec, with periodicity Tz,',=206 psec.
This analysis shows that there is a difference of approxi-

mately 0.31 nsec between the predicted times for the occur-
rence of the q= 6 long-term revival. This is greater than 20
classical orbital periods. A discrepancy of this size should be
measurable in a pump-probe experiment with a delay line of
approximately 2.5 nsec.

Additional support for the above analysis comes from the

numerical computation of t~„',and T„*,', . The initial packet is
taken as a p-state radial squeezed state for rubidium, with
mean energy and mean radius at the outer apsidal point de-
termined by the value N*=45.35. We numerically evolve
this packet using the time-dependent Schrodinger radial
equation with the SQDT effective potential.

Figure 1 shows the absolute square of the autocorrelation
function for the radial squeezed states for times up to 3 nsec.
For this case, t„=0.43 nsec. The fractional revivals at
t=0.07, 0.11, and 0.22 nsec agree with the predicted values

6trev ~ 4trev, and 2trev, respectively. The peaks in the autocor-
relation function at the full revival time t„„arediminished
relative to those at —,'t„„dueto distortions of the packet
arising from the higher-order terms in the energy expansion.
Long-term revivals with q = 12, 9, and 6 are visible at times
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FIG. 2. Fourier spectrum for the absolute square of the autocor-
relation function of rubidium radial squeezed states with
N*=45.35. The unnormalized Fourier transform is plotted as a
function of frequency in inverse nanoseconds.

in good agreement with the predictions tf*„',=1.17, 1.57, and

2.36 nsec, respectively. Furthermore, the peaks have periods
agreeing with the predicted values Tf*„',=0.10, 0.14, and

0.21 nsec for q = 12, 9, and 6.
Figure 2 displays the Fourier transform of the numerical

data for the autocorrelation function shown in Fig. 1. The
dominant frequencies agree with those obtained from the en-

ergy spacings, v = bE„*/2m, with E„,= —I/2n*z. The
beating of these frequencies leads to the revival structure
observed in Fig. 1. This confirms that the Schrodinger equa-
tion with the SQDT effective potential generates the correct
eigenenergies for an alkali-metal atom.

Analytically, we find Arhp„=0.503 for the packet at the
outer apsidal point. The uncertainty product then oscillates as
a function of time. Near r&„',with q=6, b,rbp„is less than

its value near t„„,indicating that the q=6 long-term revival
is closer to minimum uncertainty than the full revival. Figure

r r I

0 1 1.5 2 3
t (nsec)

FIG. 3. The ratio of uncertainties br/bp, in units of 10 a.u. as

a function of time in nanoseconds for a radial squeezed state of
rubidium with N* =45.35.

I
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3 shows the uncertainty ratio b r/bp„as a function of time.
The squeezing of the wave packet is visibly more extreme
near the q=6 long-term revival at t=2.36 nsec than at the
full revival near t=0.43 nsec. The uncertainty ratio oscillates
around a mean value close to 50 000 in atomic units. This
agrees with the value of br/bp„calculated analytically in
SQDT for an energy eigenstate with n*=45 35 Ev. ide. ntly,
the long-term uncertainty ratio takes this mean value.

The analytical and numerical results we have presented in
this work show that modifications of the hydrogenic long-
term revival structure arise at an experimentally observable
level for radial Rydberg wave packets in alkali-metal atoms.
A description purely in terms of hydrogenic wave functions
and energies is insufficient for an accurate prediction of the
revival times and periodicities. Moreover, the effects of laser
detuning and the quantum defects are different. An analytical
treatment is possible within the context of SQDT. The pre-
dicted values of tf*„',and Tf*„',for rubidium agree with those
observed in the long-term behavior of a radial squeezed state.
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