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Topological exciton condensate of imbalanced electrons and holes
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I study the effects of particle-hole imbalance on the exciton superfluid formed in a topological insulator thin
film and obtain the mean-field phase diagram. At finite imbalance a spatially modulated condensate is formed,
akin to the Fulde-Ferrell-Larkin-Ovchinnikov state in a superconductor, which preempts a first-order transition
from the uniform condensate to the normal state at low temperatures. The imbalance can be tuned by changing
the chemical potential at the two surfaces separately or, alternatively, by an asymmetric application of Zeeman
fields at constant chemical potential. A vortex in the condensate carries a precisely fractional charge half of that
of an electron. Possible experimental signatures for realistic parameters are discussed.
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I. INTRODUCTION

The Cooper pairs in superconductors known so far have
zero center-of-mass momentum and, consequently, the order
parameter is spatially uniform. In a singlet superconductor
the two electrons in a pair carry opposite spin and supercon-
ductivity may be understood as an instability of their nested
Fermi surfaces. The nesting is lost when the Fermi surfaces
are different in size (e.g., due to the Zeeman interaction in
a magnetic field). But the instability may still be recovered
by translating the Fermi surfaces in momentum space so
that they are partially nested. The pairs will then carry a
finite center-of-mass momentum equal to the momentum shift
and the order parameter will be spatially modulated, as first
suggested theoretically by Fulde and Ferrell1 and, separately,
by Larkin and Ovchinnikov2 (FFLO).

No conclusive experimental evidence for the FFLO state
has been found so far.3 Recently, there has been an effort4

in realizing the FFLO state in imbalanced two-species Fermi
gases with magnetically tuned interaction between the two
species. A different approach is via electron-hole bilayers
where a neutral exciton superfluid is formed by the Coulomb
interaction between the two layers. A double-layer graphene
structure where electrons and holes are hosted on opposite
surfaces in an external electric field is a candidate with a
potentially high critical temperature.5,6 Also, a thin film of
a strong topological insulator (STI) was argued7 to realize
a novel form of the exciton superfluid, dubbed topological
exciton condensate (TEC), where the special topology of the
bulk results in fractionally charged vortices and protection
against weak disorder.8 Recent material improvements9 bode
well for the experimental realization of TEC. On the theoretical
side, the realization of monopoles by vortices,10 their effective
theory,11 and the effects of screening in orbitally coupled
magnetic field12 have been studied. But these studies only
consider a uniform condensate, requiring the mean surface
chemical potential to be fine tuned to the Dirac node (hereafter
set as zero of energy) to obtain electron-hole balance.

In this work, I study the effect of electron-hole imbalance
on the TEC. I show that a FFLO state is realized for a finite
electron-hole imbalance. The imbalance can be achieved by
tuning the mean surface chemical potential away from zero
by external gates or, as I show in this paper, also by an
asymmetric Zeeman field normal to the layers. Unlike the

uniform state, the gap equation for the FFLO state in a
STI thin film is different from the superconducting analog
or the semiconductor bilayers due to the spinor structure
of the Dirac dispersion of the STI surface states. However,
for small imbalance, a similar phenomenology is obtained:
there is a first-order transition from the uniform to the FFLO
condensate with the wave vector of spatial modulations set
by the particle-hole imbalance at low temperatures, followed
by a continuous transition to the normal state. The results
are summarized in the phase diagram shown in Fig. 1. I also
show that a vortex in the FFLO condensate carries a fractional
charge.

This study suggests that the FFLO condensate is generically
present when the electrons and holes on the two surfaces
are slightly imbalanced. Therefore, the topological insulator
thin film is a playground where the FFLO state inherits
the topological features of the parent structure, making it
unique among current proposals. It also offers several control
knobs (separate surface chemical potentials, film thickness,
and Zeeman fields) to explore excitonic condensates and
fractionalization in the absence of complications arising from
the orbital effects of the magnetic field.

II. GENERALIZED GAP EQUATION

In order to describe an inhomogeneous condensate, I define
a four-spinor

�T
p (k) = [

ψT
1

(
k + 1

2 p
)
,ψT

2

(
k − 1

2 p
)]

,

where ψα = (ψα↑,ψα↓) is the two-spinor electron annihilation
operator at surface α = 1,2 and spin projection ↑ , ↓ normal
to the surface, and p is the wave vector of the spatial
modulations of the condensate order parameter. Then, the
noninteracting Hamiltonian of the two surfaces of the STI
is H0 = ∑

k �p(k)†h0�p(k), with

h0 = vF τzσ · k + 1
2vF σ · p − �μτz − μ̄, (1)

where τ and σ are Pauli matrices acting at the surface and spin
space, respectively, �μ = 1

2 (μ1 − μ2) and μ̄ = 1
2 (μ1 + μ2)

with the chemical potential μα at surface α. In a continuum
description the sums are replaced by integrals appropriately. I
set h̄ = kB = 1 throughout.

The Coulomb interaction has both an intralayer
and an interlayer component. I will not consider the
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FIG. 1. (Color online) The mean-field phase diagram. The axes
are the interaction strength g, temperature T , and the mean chemical
potential of the two surfaces μ̄. The solid (dashed) lines indicate
a continuous (first-order) phase transition. The nonuniform state
is labeled FFLO and shaded (blue). The dotted line separates the
continuous and first-order transitions at a critical line (thick green).
The insets show projections on constant T (top) and g (bottom)
planes.

intralayer interaction explicitly, assuming its effects are taken
into account by renormalizing the Fermi velocity. The inter-
layer Coulomb interaction is

U = 1

N

∑
k

gkn1(k)n2(−k), (2)

where nα = ψ†
αψα is the electron density in surface α, N is

the number of sites, and gk = 2πe2 exp(−kd)/ε	2k, with 	 the
lattice spacing, d the distance between the layers, and ε the
dielectric constant of the intermediate medium.

I will now derive the mean-field Hamiltonian describing the
exciton condensate. The order parameter is

mq,p = 1

N

∑
k

gk−q〈ψ1(k + p)ψ†
2(k)〉. (3)

The mean-field Hamiltonian is then HMF = E0 +∑
k �

†
p(k)h(k)�p(k) where the reduced Hamiltonian h

is

h = h0 + Re(mk,p)τx − Im (mk,p)τy, (4)

and E0 = ∑
r Tr[mp(r)g−1(r)m†

p(r)] (the trace is over spin) is
the kinetic energy associated with the order parameter mp(r) ∝
g(r)

∑
x〈ψ1(x)ψ†

2(x − r)〉e−ip·x.
The gap equation is found by minimizing the free energy

F = −T ln〈e−HMF/T 〉 with respect to mq,p. Assuming mk,p ∝
1 in spin space,7 the result at T = 0 is

mq,p = − 1

4N

∑
ks

′
(
E2

ks,p − ε2
k,p + 1

2v2
F p2

)
gk−qmk,p

Eks,p
(
E2

ks,p − ε2
k,p

) + v2
F �μ p · k

. (5)

Here Eks,p is the eigenenergy of the reduced Hamiltonian
(4) with momentum k and spin/surface index s, ε2

k,p =
v2

F (k2 + 1
4 p2) + �μ2 + |mk,p|2, and the sum is restricted to

occupied states with Eks,p < μ̄. The analytical form of Eks,p �=0

is complicated, but it is straightforward to visualize, as shown
in Figs. 2(a) and 2(b).
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p

FIG. 2. (Color online) The spectrum of energy (vertical) vs
momentum (horizontal). The black (gray) solid lines show the
spectrum for finite (zero) m. The dashed (green) horizontal line shows
the chemical potential at the Dirac nodes for reference. (a) p = 0; the
particle and hole Fermi surfaces are fully nested. (b) p �= 0. The two
Dirac cones in each surface are shifted by ± 1

2 p; the solid (green)
horizontal line marks the chemical potential μ̄ = 1

2 vF |p| for which
partial nesting between particle and hole Fermi surfaces is obtained.
(c) B,�B �= 0 and p = 0; the solid (green) horizontal line marks the
chemical potential μ̄ = B�B/�μ where particle-hole symmetry is
obtained.

In the following, I will assume for simplicity a constant
gk = g. Then mq,p = mp independent of q. Passing to finite
temperature by introducing the Fermi-Dirac distribution func-
tion nF (z) = (1 + ez/T )−1, the gap equation reads

1 = − g

4N

�∑
ks

(
E2

ks,p − ε2
ks,p + 1

2v2
F p2

)
nF (Eks,p − μ̄)

Eks,p
(
E2

ks,p − ε2
ks,p

) + v2
F �μ p · k

, (6)

where � is a momentum cutoff. This is one of the main results
of this paper.

First, let us note that for p = 0 we recover the gap equation
in Ref. 7. Second, I note that the functional form of the gap
equation is different when p �= 0. This is caused by the distinct
spinor structure of the surface Hamiltonian and is in contrast to
the superconducting case where the FFLO state is governed by
the same gap equation as the uniform state. However, for small
vF |p|/m0 (where m0 is the uniform condensate at T = 0) the
deviations are small and we obtain a similar phenomenology.

The change in the free energy by the condensate may be
written as13

�F ≡ F (m) − F (0) = −
∫ m

0

m̃2

g2

∂g

∂m̃
dm̃, (7)

where g = g(m,μ̄,T ) is calculated from the gap equation.
Therefore, a positive (negative) slope ∂g/∂m lowers (in-
creases) the free energy.

III. UNIFORM CONDENSATE

The dependence of g(m,μ̄,T ) on different parameters for
p = 0 is shown in Fig. 3. At T = 0 the minimum, gmin, clearly
happens at m = μ̄. At constant μ̄, the free energy �F in
Eq. (7) is lowered (increased) by g(m) for m > μ̄ (m < μ̄).
As a result, for a given g, there is a finite value μ̄ = μ̄c1,
m = mc1 > μ̄c1 where these contributions cancel each other
and there is a first-order transition to a normal state.

At T > 0 the dip in g(m,μ̄,T ) is rounded and gmin increases
with T . The upturn for m < μ̄ is also rounded and the
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FIG. 3. (Color online) Uniform solution, p = 0 (vF �/�μ = 2
and units are 	�μ/vF = 2). (a) The solution g(m,μ̄,T = 0). Clearly,
gmin is at m = μ̄. (b) The dependence of g on temperature {T0/�μ =
0.001,0.002,0.004,0.006,0.008,T ∗/�μ = 0.01} for μ̄/�μ = 0.02.

value g(0,μ̄,T ) initially decreases with increasing T. As a
result, gmin(μ̄,T ) → g(0,μ̄,T ) continuously as T approaches
a value T ∗(μ̄). For T > T ∗(μ̄), g increases monotonically
with m. For a given g = g0, let us denote by Tc(μ̄) the
temperature at which g(0,μ̄,T ) goes from below to above
g0. If T ∗(μ̄) < Tc(μ̄), the transition to the normal state will
be continuous. However, if T ∗(μ̄) > Tc(μ̄), the transition
will be first order, since before reaching Tc the gain in
free energy will be depleted by the upturn in g(m) at some
temperature Tc1(μ̄) < T ∗(μ̄). We can also see this as follows.
Take g∗(μ̄) ≡ g [0,μ̄,T ∗(μ̄)]. Given g = g0, there is μ̄∗(g0)
where g∗(μ̄∗) = gmin [μ̄∗,T ∗(μ̄∗)] = g0. For μ̄ < μ̄∗, we have
g∗(μ̄) < g0 and therefore the transition will be continuous at
some Tc(μ̄) > T ∗(μ̄). For μ̄ > μ̄∗, however, g∗(μ̄) > g0 and
the transition will turn first order at Tc1(μ̄) < T ∗(μ̄).

IV. FULDE-FERRELL-LARKIN-OVCHINNIKOV
CONDENSATE

The typical g(mp,μ̄,T ≈ 0) for fixed μ̄ and various values
of p is plotted in Fig. 4(a). The free energy change �F is
shown in Figs. 4(b), 4(c), 4(d) as a function of g, showing
that the first-order transition from the uniform condensate to
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FIG. 4. (Color online) FFLO solution for μ̄/�μ = 0.03 (� and
units are as in Fig. 3). (a) g(m,μ̄,T ) for p = (px,0), vF px/�μ =
{0.002,0.06,0.1} where p∗ = 2μ̄/vF gives the largest partial nesting
between the electron and hole Fermi surfaces in Fig. 2(b). (b), (c),
(d) The change in free energy �F for different temperatures. The
first-order transition from the uniform to the FFLO state for T < T ∗

in (b) and (c) becomes second order for T > T ∗ in (d) and directly
to the normal state.

the normal state found above is preempted by a first-order
transition to the FFLO state with 1

2vF |p∗| = μ̄ at T = 0,
followed by a continuous transition from the FFLO state to the
normal state. For T > T ∗, there is only a continuous transition
from the uniform condensate to the normal state. At finite
T , the wave vector of the spatial modulations of the FFLO
condensate acquires temperature dependence and eventually
vanishes at the critical point T = T ∗.

Overall, we obtain the phase diagram shown in Fig. 1,
where the FFLO state is shaded. I note that this analysis is
performed assuming an isotropic dispersion. As a result the
states with the same |p| are degenerate. The ground state is
then a superposition of such states, chosen by the residual
interactions in the system or the anisotropy of the dispersion
at higher momenta.

It was previously shown7 that a vortex in the uniform
condensate binds a fractional charge 1

2e due, at the mean-field
level, to a zero-energy bound state, (h + μ̄)�0 = 0, at the
vortex core.6 The spectrum is symmetric for all p since
(h + μ̄)† = −(h + μ̄), where  = τyσyK and K is the
complex conjugation. [Note that in real space k → −i∇ in
Eq. (1) but p is a fixed parameter.] That is, all states at nonzero
energies must come in pairs. So, the single zero-energy state
found for p = 0 persists when p �= 0 and a vortex in the FFLO
condensate also binds a fractional charge 1

2e.

V. ZEEMAN FIELD

A Zeeman field normal to surface α enters the Hamiltonian
(4) via a term Bασz, where Bα is the Zeeman energy at the
surface α. This can be absorbed into Eq. (1) by replacing
k and p with the three-vectors k = (k,�B/vF ) and p =
(p,2B/vF ) where �B = 1

2 (B1 − B2) and B = 1
2 (B1 + B2).

With this replacement, the gap equation in Eq. (6) remains the
same.

Due to the linear density of states of the Dirac cone,
electron-hole balance is restored for

B�B = μ̄�μ. (8)

See Fig. 2(c) for a visual representation. Therefore, in
principle, the transition to the FFLO condensates can also
be fine tuned by an asymmetric Zeeman field between the
surfaces. For instance with B = �B = 10−2 meV, and �μ ∼
1–10 meV one can achieve μ̄/�μ ∼ 10−4–10−6.

VI. DISCUSSION

Let us make some estimates of the parameters. In the
prototypical topological insulator Bi2Se3 the bulk insulating
behavior is obtained when the thin film is a few quintuple
layers, say, d ∼ 10 nm. Assuming ε ∼ 30 we find g ∼ 5
meV. The cutoff � ∼ 1/d, so taking vF ∼ 1 eVÅ, we
have vF � ∼ 10 meV. Using �μ ∼ 5 meV we find7 m0 =√

vF ��μe−v2
F �2/g�μ ∼ 0.1 meV. We should expect the FFLO

state to appear when μ̄ is near its value for the metastable first-
order transition. We can estimate this from the critical interac-
tion strength7 as μ̄ � �μe−vF �/�μ ∼ 0.1 meV, corresponding
to a wavelength of modulations λFFLO � 500 nm in the visible
range.
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I will now turn to possible experimental signatures. The
exciton condensate can sustain counterpropagating superflow
in the two surfaces, manifested in a large Coulomb drag,14

whereby electric field in one surface induces a counterflow
current in the other. The spatial profile of the current
can distinguish the uniform and FFLO condensates. Recent
improvements15 in spatial resolution of local probes of current
may be used to detect and characterize the structure of the
superposition the FFLO condensate. Such high-resolution
local probes could also be useful in detecting the counterflow
in the two surfaces. The spatial modulations would also have
optical signatures. For instance, for an FFLO condensate with a
sinusoidal modulation (similar to the Larkin-Ovchinikov state
in a superconductor), optical scattering experiments should be
able to see changes in the reflectivity or refraction index of
the surface16 as the wavelength of the incoming light is tuned
through the wavelength of the sinusoidal modulations.

Since the vortices are charged the vortex flow is accompa-
nied by a charge current, which could be detected by transport
or noise measurements. Vortices would flow in response to a
temperature gradient, and would therefore contribute to the
thermopower. A vortex-antivortex pair has two zero-energy
states and behaves as a two-level system. Moreover, a pair
carries an integral charge and has no vorticity. Therefore, the
interaction between the pairs is Coulomb, and they must be
deconfined at T > 0, contributing to heat transport. Finally, the

midgap spectrum of vortices17 can contribute to the specific
heat with a distinct temperature dependence.

I note that the mean-field study presented here tends to
overestimate the critical temperature in a two-dimensional
system, which is instead determined by a Kosterlitz-Thouless
transition. But it is expected to capture the qualitative structure
of the phase diagram. Going beyond the mean-field approxi-
mation, determining the structure of the FFLO superposition,
the effects of disorder, and the midgap spectrum of FFLO
vortices are interesting problems for future studies.

I would also like to note that I recently became aware
of Ref. 18 that suggests a FFLO state may be realized in
graphene double layer structures. However, the gap equation,
the extended phase diagram, and the experimental signatures
suggested here are not discussed by these authors. Also,
graphene is topologically trivial and does not support frac-
tionally charged vortices.6
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