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Abstract— This paper provides an overview of the Apache 
Airavata software system for science gateways.  Gateways use 
Airavata to manage application and workflow executions on a 
range of backend resources (grids, computing clouds, and local 
clusters).  Airavata’s design goal is to provide component 
abstractions for major tasks required to provide gateway 
application management. Components are not directly accessed 
but are instead exposed through a client Application 
Programming Interface.  This design allows gateway developers 
to take full advantage of Airavata’s capabilities, and Airavata 
developers (including those interested in middleware research) to 
modify Airavata’s implementations and behavior.  This is 
particularly important as Airavata evolves to become a scalable, 
elastic “platform as a service” for science gateways. We illustrate 
the capabilities of Airavata through the discussion of usage 
vignettes.  As an Apache Software Foundation project, Airavata’s 
open community governance model is as important as its 
software base.  We discuss how this works within Airavata and 
how it may be applicable to other distributed computing 
infrastructure and cyberinfrastructure efforts. 

Keywords—science gateways; distributed computing 
infrastructure; cyberinfrastructure; open source software  

I. INTRODUCTION 
This paper provides an overview of the Apache Airavata 

project, which provides science gateways with an abstraction 
layer for managing the execution and provenance of both 
single applications and workflows over many types of 
computational resources.  Our purpose in this paper is to 
review the design of the software, discuss recent developments 
and innovations, and indicate where we expect future 
developments and research to take place within the Airavata 
framework.  In particular, we want to push the project’s design 
so that it can serve as the basis for a multi-tenanted service that 
can act as a “platform as a service” that gateways can use for 
outsourcing their task execution requirements.  This paper 
presents for the first time an overview of the API Server and 

the Orchestrator and their relationships with other components. 
We also clarify changing roles of previous component.  We 
provide an overview of how the project is managed using open 
governance mechanisms and how its collaborations with 
stakeholder gateways drives the project’s evolution.  

II. AIRAVATA SOFTWARE DESIGN 

A. Airavata, Gateways, and Cyberinfrastructure 
Science gateways provide user interfaces and supporting 

services to scientific communities. As such, gateways have two 
important properties that contribute to Airavata’s overall 
design. First, gateways use ad-hoc resource collections and act 
(in effect) as a federating over-layer over many different types 
of resources. A gateway may include access to multiple grids, 
to campus clusters, and to commercial clouds.  The resources 
may not themselves be federated through standard-based Grid 
middleware in any way; the campus cluster, for example, may 
have no middleware at all other than SSH.   Second, there are 
many ways to build successful user-facing services.  Web 
technologies evolve rapidly and mobile devices are as 
important as traditional laptops and desktops for interacting 
with the Web.  Below this level, however, science gateways 
need many common services such as application management 
and system metadata management.  

Airavata’s overall design goal is to address both these 
problems. It strives to be a general-purpose collection of 
services that can work with a wide range of programming 
languages and development frameworks on one end and with a 
wide range of resources and associated access mechanisms on 
the other. 

B. System Components 
Airavata has evolved from initial work in the Linked 

Environments for Scientific Discovery (LEAD) Science 
Gateway [1] and the generalization of the LEAD components 



to other scientific disciplines through the Open Gateway 
Computing Environments projects [2]. The original 
architecture of the Airavata followed the “everything is a 
service” principle. This architecture has well served the needs 
of the complex system and played a key role in applying the 
software to multiple science gateways. In our earlier 
conceptions of Airavata, this approach facilitated the 
framework to not just be used as a turnkey solution, but 
allowed us to offer individual components of Airavata as 
standalone services.  

However, as we gained experience from integrating and 
operating gateways through the full life cycle of development, 
integration and operation, we learned that the community 
support required by a “bag of services” approach does not scale 
for reasons elaborated in Section III. We need a way to 
scalably support both coherent development within an open 
source project and coherent usage by downstream clients.  The 
former (component developers) need ways to experiment with 
different implementations without disturbing the architecture as 
a whole. The latter (gateway developers) are downstream users 
who typically do not need to do more than configure some 
Airavata options. Thus we have devoted significant effort to 
unifying the way gateways interact with Airavata into a single 
programming interface that mediates the interactions with 
Airavata’s internal components, which are no longer directly 
exposed to client users. Airavata’s internal components 
themselves are sharply defined through programming 
interfaces and interact through overall integration patterns.  
This is to support open development within the software 
system itself.  

The latest generation of Airavata architecture packages the 
components based on functional areas, uniformity of access, 
and reliability needs into the following major components. This 
builds on and modifies the system described in [3].  We 
describe here only the separation of concerns and their 
associated components at the most abstract level.  See Figure 1 
for a summary.   Each component is or will be the subject of 
more detailed descriptions in separate publications. All 
components are implemented in Java. 

The API Server is the public face of Airavata and is based 
on Apache Thrift, which gives Airavata a strongly typed, 
programming language independent way of defining its 
interfaces.  From the API definitions, we generate client 
packages in Java and PHP and are experimenting with other 
language bindings.  Client gateways access Airavata through 
the API Server through a secure channel (SSL sockets or 
HTTPS). The API Server implements the Thrift-defined API. 
The API Server maps the client request into one or more calls 
to internal components, described next.   

The Airavata Registry is the repository for all gateway 
metadata. This includes descriptions of applications and hosts, 
workflow templates, and workflow instances.  The Registry 
does not manage actual data sets (such as files) and does not 
manage data movement.  The current registry implementation 
is based on OpenJPA over a relational database backend, with 
both Derby and MySQL supported. Going forward, we identify 
several challenges with the Registry. First, its design is 
currently overloaded with too many distinct capabilities 

(application descriptions, workflows, user data, etc) that can be 
decoupled. We are designing multiple modules to efficiently 
demarcate application and workflow catalog, metadata catalog 
for recording application and workflow executions, monitoring 
database for archiving real-time information streams, and 
provenance data catalog for capturing the trace of executions.  
Second, the current implementation cannot directly store and 
retrieve Thrift-generated Java objects, creating an 
implementation friction at the Object-Relational Mapping 
level. We are investigating solutions to this problem, as has 
been discussed on the Airavata architecture mailing list.  

The Orchestrator provides an abstract scheduling layer for 
individual and workflow submissions, which it does by 
managing interactions with the Application Factory and 
Workflow Interpreter.  This component is also responsible, as a 
client to the Registry, for persistently storing all user requests. 
In the event of failure, the Orchestrator handles recovery of the 
system using Registry information.   The Orchestrator is a new 
Airavata component, summarized here for the first time.  The 
Orchestrator was introduced for the following reasons. First, 
Airavata needed a simpler way to provide an API to gateways 
who only wish to run single applications rather than 
workflows. In previous versions, Airavata required a definition 
of a workflow (stored in the Registry) for even the simplest 
applications. This made the definition of the API cumbersome. 
Second, we introduced the Orchestrator to consolidate 
functionality such as resource selection and integration with 
information services provided by different Grids.  Thirdly, the 
Orchestrator’s responsibility is to explicitly contain the per-
submission decision-making making capabilities within 
Airavata for handling fault-tolerance strategies such as 
resubmission of failed jobs and recovery of failed services. 

The Workflow Interpreter handles submissions that 
involve more than a single application. The Interpreter can 
submit and manage pipelines and graphs, but we also have 
examined its use in managing jobs that require iterative loops, 
conditionals, and human-in-the-loop executions [4][5].   

The Application Factory (also known as GFAC) [6] 
manages the submission and monitoring of individual 
applications on remote resources. GFAC is designed around a 
Handler-Provider model that allows it to work with different 
grid and cloud middleware.  In summary, providers are clients 
to different middleware and handlers supplement the provider 
submission with stage-in, stage-out, and related requests.  
Handlers also can be used to further customize submissions to 
specific resources that are not sufficiently abstracted by the 
generic provider.  The Orchestrator directly interacts with 
GFAC for managing individual jobs; for workflows, the 
Interpreter invokes GFAC for each component step.   

There has been substantial work on Grid job submission 
and Grid federation [16][17][18][19].  We view these as 
important foundations over which GFAC operates to 
accomplish its primary purpose of managing application 
submissions.  As stated in Section IIA and illustrated in Section 
III, gateways may need to bridge over multiple 
cyberinfrastructure installations that are not otherwise 
federated.   GFAC along with the Credential Store (below) 
provide this over-layer of application management.  Current 



GFAC plugins available in the source code include GRAM, 
BES/JSDL, SSH, LOCAL, HADOOP, GSISSH, and EC2.   

The Messaging System [7] is a topic-based publish-
subscribe system that is used to send system messages to 
multiple, interested components.  It can also deliver messages 
to external clients that choose to be notified. This component 
incorporates an Airavata-wide information model that 
encompasses all system actions as well as used for provenance 
tracking.   

The Credential Store [8] manages user credentials needed 
by a gateway to securely interact with remote distributed 
computing infrastructure.  In particular, the Credential Store 
can be used to manage different credentials associated with 
different cyberinfrastructure systems. 

Within these components, there are multiple areas for 
research and improvements. Many individual components have 
been re-implemented over time and continue to evolve.  
Furthermore, the specific sequence of interactions between 
components may also be rewired as we improve fault tolerance, 
redesign the system to allow it to be more elastic for 
deployments on clouds, and so on.  In order to allow this 
evolution, and to move towards a “DevOps” approach when 
dealing with running Airavata instances, we have defined 
Component Programming Interfaces (CPIs) for each of the 
above components. These are currently Java interfaces, but we 
plan to translate these into Apache Thrift interface definitions 
in order to allow the components to be decoupled into 
separately running JVMs on different servers, while retaining 
the option of running everything in a single JVM.  The future 
promise of Thrift-based CPIs is that they may be used to 
support non-Java component implementations.  We note that 
CPIs are not exposed to end user gateways but are instead 
supersets of the API, also defined in Thrift’s IDL.  

The CPI approach allows us to dramatically change 
component implementations while not disturbing the rest of the 
system.  For example, the Registry has undergone significant 
changes within the Airavata project, and we expect further 
evolution: its current implementation uses a relational database 
with an OpenJPA-based object-relational mapping layer, but 
we would like to experiment with triple stores, object stores, 
and NoSQL data stores such as Apache Cassandra.  The 
messaging system also is a good candidate for upgrading. 
While it has been very stable and its codebase is the least 
touched of all the Airavata components, it is based on Web 
service notification and eventing standards that are not widely 
adopted. High quality open source messaging systems such as 
Apache Qpid and Apache Kafka are available, so Airavata 
should not need to maintain its own implementation, although 
it still needs its CPI and internal information model. 

In addition to allowing Airavata to gracefully evolve, the 
CPI approach allows Airavata to support multiple 
implementations of a component that are needed for different 
uses and deployment scenarios.  The Orchestrator is an 
important example. In a simple deployment scenario (such as 
basic testing), the Orchestrator needs only to communicate 
with a single Application Factory component instance, but in 
more complicated scenarios requiring load balancing and 
failover, we need to replace the “basic” Orchestrator CPI 

implementation with a “multi-threaded” implementation. These 
are standard object-oriented concepts extended to distributed 
systems. 

C. Client and Component Interactions 
The CPI provides a required internal layer of abstraction 

that allows components to change or have alternative 
implementations.  The CPI is also useful because we continue 
to evolve the interactions between the components to improve 
Airavata’s overall fault tolerance and elasticity without 
breaking the client API. 

Figure 1 summarizes the current path through the components 
components for job submission and monitoring. Airavata 
supports two major roles from the calling gateway: end user 
scientists and gateway administrators. The steps for a gateway 
administrator using Airavata are the following. First, the 
administrator registers the Gateway with Airavata system 
initializing the required security credentials and registry 
workspace. Second, the administrator registers scientific 
applications, workflows, and computational hosts with 
Airavata. When combined, these provide all the information 
necessary to execute the application on the remote resource.  
This typically involves deployment and testing of applications 
on the target resources as well. Third, the administrator 
configures GFAC with appropriate handlers and providers for 
the target resources.  Airavata comes with many preconfigured 
handlers and providers for different Grids, clouds, and non-
Grid resources (as listed earlier), but gateway operators need to 
make specific configuration choices.  In some instances, the 
gateway operator may need to write new providers or handlers.  
Fourth, the administrator manages community security 
credentials using the credential store. Finally, the administrator 
configures third-party User Identity and Data Management 
systems so Airavata could as an optional step could directly 
deposit data as opposed to fetched on request.   

In its current form, Airavata does not directly manage users 
or groups.  Instead, it establishes a trust relationship with the 
gateway and trusts the gateway’s authorization and 
authentication decisions.  A fuller discussion of Airavata’s 
security model is given in [8].   

End user scientists interact with Airavata through their 
gateway to create online experiments, submit and monitor jobs, 
and analyze or download outputs. The steps for a scientist 
using a gateway to perform a computational experiment are the 
following.  

First, the end user interacts with a science gateway through a 
a Web browser to create and submit an online experiment.    
Second, the gateway collects this information and passes it to 
the Apache Airavata server through the API Server.  Note the 
API Server is not a traditional Web server. Interactions 
between the gateway client and the API Server use TCP/IP on 
a configurable port.  Third, the gateway creates an experiment 
through the API Server, which invokes the Registry’s CPI to 
create a new record.  Airavata returns a unique handle 
(generated by the Registry) that can be used to access the 
experiment. Fourth, the gateway user uploads any input data 
needed by the experiment, specifies input parameters, 
optionally selects the resources to be used, and submits the 



experiment.  Within Airavata, these are handled by the 
Orchestrator, which the gateway accesses through the API 
server. The Orchestrator pulls together all information and files 
needed to run the job or jobs on a selected resource and passes 
this information to GFAC (in the case of single jobs) or to the 
Workflow Interpreter (in the case of workflows).  

Fifth, within Airavata, GFAC is responsible for staging input 
input files and for preparing and launching the jobs on the 
remote resource.  GFAC providers are clients to various Grid 
and cloud submission mechanisms. Sixth, the gateway user can 
monitor the progress of the job through Airavata’s monitoring 
API.  The API also provides access to intermediate data.  
Within Airavata, the Job Monitor provides this capability. The 
Job Monitor is decoupled from the submission mechanisms in 
GFAC, allowing us to have multiple monitoring mechanisms.  
For example, on XSEDE, we may monitor jobs with both pull 
approaches (“qstat” or similar Grid mechanisms) and push 
messaging [9].  Seventh, if the job completes successfully, the 
gateway user can download outputs from the remote resource 
via Airavata.  GFAC is responsible for staging files off the 
machine and back to the gateway.  This is accomplished 
through various mechanisms that the gateway may select: by 
using GlobusOnline or direct GridFTP clients, by using SCP, 
and by using HTTP.  Eighth, in cases of job failures, Airavata 
will also preserve intermediate outputs and standard error files. 

Airavata’s component interaction design is the outcome of 
an ongoing effort within the Airavata project to provide greater 
fault tolerance by centralizing system state within the Registry.  
The challenge for Airavata state management is that it must act 
as a bridge between the client (left side of Figure 1) and the 
computing resources (right side of Figure 1), both of which are 
outside of Airavata’s direct control.  In particular, a job 
submitted to a resource (an XSEDE supercomputer, for 
example) has a state (queued, executing, completed or failed) 
that evolves independently of Airavata, is only accessible 
through monitoring mechanisms, and may last for minutes, 
hours, or days.  This individual job may be part of a workflow 
as well, introducing another layer of statefulness.  Because of 
this, we have introduced a three level state model in our Thrift 
data model for managing applications. A full description is out 
of scope for the current paper, but we provide a short summary. 
“Job” state is a mapping to specific job submission states on a 
target machine.  “Task” state is associated with the Job state 
and any “handler” states surrounding the Job; a Job can 
succeed but its Task can fail.  Lastly, Experiments can contain 
multiple Tasks and have their own state. The full state model is 
described explicitly in Airavata’s Thrift file definitions 
available through the project’s public code repository.  

While centralization of state management in the Registry is 
an important recent effort, it is not desirable to think of all 
Airavata components as completely stateless.  For example, the 
GFAC component may need to do several preprocessing steps 
to complete job submission, such as stage in a file or provision 
a virtual machine.  Deciding when to recover a partial GFAC 
submission, for example, is still an open problem. 

III. SCIENCE GATEWAY CASE STUDIES 
We now summarize two gateway collaborations and 

illustrate how they have contributed to Airavata’s design.  We 
use these to illustrate the balance we must make between 
custom integration on the one hand and scalable support on the 
other.  For a list of collaborating projects, see 
http://airavata.apache.org/community/projects-using.html.  

A. The UltraScan Science Gateway 
The UltraScan Science Gateway [10] is an XSEDE science 

gateway that enables experimental biophysicists to use high 
performance computing resources to perform data analysis on 
analytical ultracentrifugation experiments as well as manage 
their data sets through a laboratory information system. 
UltraScan is also being extended to support modeling and 
simulation for related experimental techniques like small angle 
scattering.  UltraScan’s use case can be summarized as follows. 
First, users select samples and create input packages from the 
UltraScan database using desktop tools. Second, users stage 
their inputs, run their analysis on supercomputers, and stage out 
their results using a Web-based gateway. Analysis can take 
place on the XSEDE, on campus resources provided by the 
UltraScan principal investigator, or on the Juropa 
supercomputer resource. Third, While running, the application 
generates status updates via UDP messages. Fourth, when the 
job completes, data is staged off the resource. 

Thus UltraScan provides a driving use case for running 
single applications for multiple users on multiple, 
uncoordinated resources. Even the simple “happy path” above 
has many pitfalls resulting from heterogeneity of grid resources 
and middleware.  UltraScan requirements have had significant 
impact on the design of Airvata’s Orchestrator and GFAC 
components.  UltraScan has also influenced our API Server. In 
our initial integration with UltraScan, we focused exclusively 
on exposing the GFAC component.  Other components 
(particularly the Registry) were still needed internally but not 
exposed to the gateway developers. This led to a very 
customized integration between UltraScan and Airavata that 
included several supplemental services outside the core of 
Airavata, some of which duplicated Registry services.  This 
custom integration, while useful in a one-off case, segregates 
gateway-Airavata integration into code extensions that are 
outside the main framework and well understood only by a 
subset of Airavata developers.   This results in un-scalable 
support effort for readily apparent reasons.  By switching to a 
common API and removing supplemental services, any 
Airavata developer can diagnose problems with UltraScan 
operations. 

B. The ParamChem Science Gateway 
The ParamChem Science Gateway [5] uses Apache 

Airavata to address the computational intensive needs of 
empirical force field parameter optimization for chemical 
systems. ParamChem use case of Apache Airavata workflow 
capabilities can be summarized as follows. First, an expert user 
constructs workflows to models energy functions or 
Hamiltonians and registers with Workflow Catalog within the 
Airavata Registry. The commonly used workflow wraps 
molecular dynamics applications as workflow tasks to perform 



atom typing; generation and optimization of initial guess 
charges and Lennard-Jones parameter assignment; generation 
and optimization of target data for charge optimization; 
generation and optimization of target data for optimization of 
bond, angle, dihedral and improper dihedral parameters; and 
generation and optimization of target data for optimization of 
dihedral parameters about rotatable bonds. 

Next, using a workflow template from the Registry, the user 
first visually constructs the specified molecule on their desktop 
and interact with with ParamChem CGenFF Service to obtain 
the initial guess parameters. Next, the user then walks through 
steps in the ParamChem user interface to launch the Dihedral 
Optimization process. The Paramberoo GUI bundles an 
Airavata Client SDK that interacts with the Airavata Server to 
configure and launch and monitor the optimization workflow. 
Finally, the user fetches the optimized results through the 
Airavata Registry and visualizes the results to obtain plots such 
as the comparison of QM and MM energy.  

From this description, it is clear that ParamChem 
requirements have influenced the Workflow Interpreter’s 
design. However, ParamChem has also influenced our overall 
design philosophy for client interactions as well: Airavata 
services need to be accessed through a single API that exposes 
the full functionality of the system rather than individual 
pieces. Finally, ParamChem also presented an interesting set of 
requirements for acting as a desktop rather than Web-based 
gateway.  Proper support for desktop clients using Apache 
Thrift is an active current effort. 

C. Experiences from Use Cases 
Apache Airavata has been applied to a number of different 

scientific domains to act as both a scientific workflow engine 
for small research groups (for example [4]) and as an online 
service that powers science gateway application management.  
One of the challenges we find with gateways (as illustrated in 
the UltraScan case) is scaling our operations and support 
efforts, not just scaling our software.   

Airavata is a complicated collection of software that is still 
best operated by our group at this stage of its development, 
suggesting we adopt a service model for dealing with 
collaborating gateways.  Even with this constraint, problems 
can arise.  First, we must understand the gateway’s use case in 
some detail from the beginning.  Otherwise, it is likely that we 
will evolve many workarounds and gateway-specific solutions 
for common problems. Second, excessive, unnecessary 
customization for a specific gateway decreases reliability.  
Customized gateway-Airavata integrations result in too many 
deployed services that do not pass through the regular Airavata 
development and release processes. Third, customized 
interactions between the gateway and Airavata decrease 
sustainability.  Operating a gateway with a very customized 
interface to Airavata services becomes specialized knowledge 
of a subset of the development team.  This results in only a 
subset of an operations team being able to troubleshoot a 
particular problem. Finally, customizations result in 
unnecessary duplication of effort.  We must instead look for 
generalizations that can be incorporated into Airavata’s core 
code base and expressed through the Airavata API.  These also 

help us integrate with new gateways by articulating common 
use cases to the gateway developers, encouraging them to 
develop their gateways following common patterns.   

IV. PROJECT GOVERNANCE AND SUSTAINABILITY 
Apache Airavata is a top-level project within the Apache 

Software Foundation (ASF).  We have made 11 releases (0.1 
through 0.11) through the Apache Software Foundation 
mechanisms, which includes proper binary and source 
packaging along with necessary licensing and notification files.  
Release 0.12 is in preparation at the time of writing.  Our 
release 1.0 will be determined by community vote when the 
API is sufficiently stable. Following the 1.0 release, we will 
adopt semantic versioning (that is, all 1.X.Y releases will have 
a compatible API).  

It has been the authors’ goal to bring the ASF’s open 
governance principles to academic research software 
development and management.   Open governance goes 
beyond the usual open source metrics [11] and beyond simply 
taking advantage of free services (such as GitHub) that support 
open source projects.  Projects with open governance have the 
usual open source characteristics but also make decisions 
through public forums with voting by stakeholders.  Important 
characteristics of openly governed projects are the diversity of 
their stakeholders and the willingness of the project to add new 
stakeholders via a well-defined process.  We believe this is an 
important complementary effort to the open standards work 
that have been pursued by the Open Grid Forum and other 
venues. Openly governed software encourages open, 
community-wide reference implementations of the standards, 
allowing the cyberinfrastructure development community to 
both collaborate (on the reference implementation and common 
features) and compete (on extensions and advanced 
capabilities). 

Sustainability is a challenge for many academic software 
projects.  Specific strategies (like commercialization) aside, 
academic software must a) demonstrate relevance to user 
communities; b) provide a way to transform users into 
stakeholders who contribute to the project in addition to using 
it; and c) foster a pipeline of developers and architects at all 
skill levels who can directly contribute to the software.  
Airavata’s strategy for solving these problems has been to 
adopt the Apache Software Foundation’s “community over 
code” open project governance approach.  The core idea from 
the point of view of academic software projects is that 
sustainability comes from a diversity of stakeholders (that is, a 
community), and a diversity of stakeholders requires a 
governance model to work.   

ASF methods are simple but profound: projects make 
decisions openly on archived mailing lists; all discussions 
occur or are summarized on mailing lists or other open venues 
(like IRC channels and Google Hangouts); and projects have a 
flat hierarchy.  Typical decisions include when to release 
software, priorities for project features and improvements, and 
design changes.   All decisions are public with two exceptions: 
if a contributor has earned enough merit to warrant 
committership (that is, write access to the code base) or not, 
and if a committer has deserves promotion to the Project 



Management Committee (that is, given full voting writes) or 
not. Voting in the strictest sense can go be straight up or down 
tallies, but Airavata and other projects typically seek to achieve 
consensus.  

V. RELATED WORK 
Science gateways and science gateway frameworks are 

numerous and have been the subject of several workshops.  
Gateways are supported by both the XSEDE science gateway 
program [12] and the EGI through SCI-BUS [13]. Several 
efforts to provide “as a service” gateways are directly 
comparable. The HUBzero project [14] provides a turnkey 
gateway hosting solution that includes extensive collaboration 
capabilities as well as application execution management; 
HUBzero is also available as an open source package.  The 
iPlant Agave project [15] provides a REST-based Platform as a 
Service as well as client building tools for the Life Sciences 
community.  The Globus team has developed a cloud-style 
model for reliably managing data transfers and for sharing data 
[16].   

Compared to these other efforts, Apache Airavata focuses 
on using a Thrift-based “RESTless” approach to client 
development. We are interested in Airavata as a “Platform as a 
Service” and collaborate with other gateways to provide 
domain-specific frontends.  There are strategic reasons as well 
as technical reasons for this: successful gateways need 
champions who interact with their communities.   Airavata’s 
goal is to provide very targeted services that help gateways 
while being as flexible as possible on how gateways can 
integrate the Airavata clients.  

Scientific workflow systems share many commonalities 
and generally encapsulate the science gateway’s usage scenario 
as an execution pattern, and also map that execution pattern to 
the atomic functionalities of grids.  Airavata’s approach is 
similar to SCI-BUS in this regard. Workflow systems and 
science gateways, generally treated as separate tools within the 
cyberinfrastructure software layer, are actually mutually 
beneficial.  Workflow systems by themselves can be too 
abstract and far removed from the scientific use cases of a 
specific domain to provide ready accessibility for community 
members. Successful gateways on the other hand connect 
direct with scientific users but may not be able to support the 
complicated execution patterns supported by workflow 
engines. 

VI. FUTURE DIRECTIONS 
Our main challenge in Airavata is to design the software so 

that it can work as a hosted cloud service that is both elastic 
and fault tolerant.  That is, we must be able to isolate system 
state (which includes proxies for applications on remote 
resources) into a single component, the Registry, while keeping 
other parts as stateless as possible.  This means that we can 
more easily create and destroy other parts of Airavata (such as 
GFAC) as needed to handle load spikes and recover from 
failures.  It will also be necessary to explore how best to handle 
per-gateway configurations, as different gateways will want to 
use different resources in different ways through the same 
Airavata service.  We currently accommodate this with editable 

configuration files, but this assumes each gateway has full 
access to its own Airavata instance. This approach will not 
scale. We anticipate that Apache ZooKeeper will be useful here 
for tracking running component instances and plan to explore 
this.    

Airavata also must be a platform for distributed computing 
research for its own sake.  Our use of CPIs enables us replace 
different component implementations. For example, the 
Orchestrator CPI may include “simple” implementations for 
quick testing and conservative “production” implementations 
that are used in deployment as well as “research” 
implementations that incorporate smarter (or at least more 
complicated) scheduling algorithms using externally supplied 
information services.  Likewise, the Messenger component, 
while reliable, is an in-house implementation that predates the 
availability of high quality messaging systems such as 
RabbitMQ, Apache QPid, and Apache Kafka.  

The Registry is also subject for significant revisions.  One 
long-standing design choice is that we overload the Registry 
with many different types of data and provide strong 
relationships between different data. This is a consequence of 
carrying XML data structures and their tree structures forward 
from Airavata’s predecessors.  The explicit use of XML has 
ended in the current versions (0.12 and higher) of Airavata, and 
we need to rethink how we can make more modular data 
models by examining use cases.  There is a temptation to jump 
to NoSQL solutions, but the strong theme on Airavata 
architecture discussion threads is to carefully think through our 
requirements first, since our data sizes are not likely to be 
large. 

VII. CONCLUSIONS 
This paper has surveyed the Apache Airavata project and 

its software framework. The key contributions of this paper are 
the description of Airavata’s overall design as a general 
purpose application and workflow management framework for 
science gateways, an examination of its integration with 
science gateways through usage scenarios, a discussion of how 
these case studies drive Airavata’s evolution, and the authors’ 
use of Apache Software Foundation open governance 
mechanisms. The core theme of this paper is the balance 
between distributed computing research and operational usage. 
This balance requires thoughtful governance. 

This paper presents for the first time two new Airavata 
components: the API Server and the Orchestrator. More 
detailed descriptions of these components are the subject of 
future publications. Here our goal is to show the relationships 
of these components to the other parts of Airavata. We also 
summarized significant design changes in the Registry, with 
are needed both to support the use of Apache Thrift and to 
centralize Airavata state management. The latter is required to 
make Airavata more elastic. Finally, we identified future 
development work for the Registry, GFac, and Messenger 
components. 
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Figure 1 Airavata component interactions. See text for a full description. 



 


