
Apache Airavata: Design and Directions of a
Science Gateway Framework

Marlon E. Pierce
Indiana University &

Apache Software Foundation
Bloomington, IN 47408 USA

marpierc@iu.edu

Suresh Marru
Indiana University &

Apache Software Foundation
Bloomington, IN 47408 USA

smarru@iu.edu

Lahiru Gunathilake
Indiana University &

Apache Software Foundation
Bloomington, IN 47408 USA

Thejaka Amila Kanewala
Indiana University &

Apache Software Foundation
Bloomington, IN 47408 USA

Raminder Singh
Indiana University &

Apache Software Foundation
Bloomington, IN 47408 USA

Saminda Wijeratne
Indiana University &

Apache Software Foundation
Bloomington, IN 47408 USA

Chathuri Wimalasena
Indiana University &

Apache Software Foundation
Bloomington, IN 47408 USA

Chathura Herath
Knight Capital Group &

Apache Software Foundation
New York, NY 10174 USA

Eran Chinthaka
Work Day Inc. &

Apache Software Foundation
San Francisco, CA, USA

Chris Mattmann
NASA JPL &

Apache Software Foundation
Pasadena, CA ,USA

Aleksander Slominski
IBM Research &

Apache Software Foundation
New York, NY, USA

Patanachai Tangchaisin
Wize Commerce &

Apache Software Foundation
San Mateo, CA USA

Abstract— This paper provides an overview of the Apache
Airavata software system for science gateways. Gateways use
Airavata to manage application and workflow executions on a
range of backend resources (grids, computing clouds, and local
clusters). Airavata’s design goal is to provide component
abstractions for major tasks required to provide gateway
application management. Components are not directly accessed
but are instead exposed through a client Application
Programming Interface. This design allows gateway developers
to take full advantage of Airavata’s capabilities, and Airavata
developers (including those interested in middleware research) to
modify Airavata’s implementations and behavior. This is
particularly important as Airavata evolves to become a scalable,
elastic “platform as a service” for science gateways. We illustrate
the capabilities of Airavata through the discussion of usage
vignettes. As an Apache Software Foundation project, Airavata’s
open community governance model is as important as its
software base. We discuss how this works within Airavata and
how it may be applicable to other distributed computing
infrastructure and cyberinfrastructure efforts.

Keywords—science gateways; distributed computing
infrastructure; cyberinfrastructure; open source software

I. INTRODUCTION
This paper provides an overview of the Apache Airavata

project, which provides science gateways with an abstraction
layer for managing the execution and provenance of both
single applications and workflows over many types of
computational resources. Our purpose in this paper is to
review the design of the software, discuss recent developments
and innovations, and indicate where we expect future
developments and research to take place within the Airavata
framework. In particular, we want to push the project’s design
so that it can serve as the basis for a multi-tenanted service that
can act as a “platform as a service” that gateways can use for
outsourcing their task execution requirements. This paper
presents for the first time an overview of the API Server and

the Orchestrator and their relationships with other components.
We also clarify changing roles of previous component. We
provide an overview of how the project is managed using open
governance mechanisms and how its collaborations with
stakeholder gateways drives the project’s evolution.

II. AIRAVATA SOFTWARE DESIGN

A. Airavata, Gateways, and Cyberinfrastructure
Science gateways provide user interfaces and supporting

services to scientific communities. As such, gateways have two
important properties that contribute to Airavata’s overall
design. First, gateways use ad-hoc resource collections and act
(in effect) as a federating over-layer over many different types
of resources. A gateway may include access to multiple grids,
to campus clusters, and to commercial clouds. The resources
may not themselves be federated through standard-based Grid
middleware in any way; the campus cluster, for example, may
have no middleware at all other than SSH. Second, there are
many ways to build successful user-facing services. Web
technologies evolve rapidly and mobile devices are as
important as traditional laptops and desktops for interacting
with the Web. Below this level, however, science gateways
need many common services such as application management
and system metadata management.

Airavata’s overall design goal is to address both these
problems. It strives to be a general-purpose collection of
services that can work with a wide range of programming
languages and development frameworks on one end and with a
wide range of resources and associated access mechanisms on
the other.

B. System Components
Airavata has evolved from initial work in the Linked

Environments for Scientific Discovery (LEAD) Science
Gateway [1] and the generalization of the LEAD components

to other scientific disciplines through the Open Gateway
Computing Environments projects [2]. The original
architecture of the Airavata followed the “everything is a
service” principle. This architecture has well served the needs
of the complex system and played a key role in applying the
software to multiple science gateways. In our earlier
conceptions of Airavata, this approach facilitated the
framework to not just be used as a turnkey solution, but
allowed us to offer individual components of Airavata as
standalone services.

However, as we gained experience from integrating and
operating gateways through the full life cycle of development,
integration and operation, we learned that the community
support required by a “bag of services” approach does not scale
for reasons elaborated in Section III. We need a way to
scalably support both coherent development within an open
source project and coherent usage by downstream clients. The
former (component developers) need ways to experiment with
different implementations without disturbing the architecture as
a whole. The latter (gateway developers) are downstream users
who typically do not need to do more than configure some
Airavata options. Thus we have devoted significant effort to
unifying the way gateways interact with Airavata into a single
programming interface that mediates the interactions with
Airavata’s internal components, which are no longer directly
exposed to client users. Airavata’s internal components
themselves are sharply defined through programming
interfaces and interact through overall integration patterns.
This is to support open development within the software
system itself.

The latest generation of Airavata architecture packages the
components based on functional areas, uniformity of access,
and reliability needs into the following major components. This
builds on and modifies the system described in [3]. We
describe here only the separation of concerns and their
associated components at the most abstract level. See Figure 1
for a summary. Each component is or will be the subject of
more detailed descriptions in separate publications. All
components are implemented in Java.

The API Server is the public face of Airavata and is based
on Apache Thrift, which gives Airavata a strongly typed,
programming language independent way of defining its
interfaces. From the API definitions, we generate client
packages in Java and PHP and are experimenting with other
language bindings. Client gateways access Airavata through
the API Server through a secure channel (SSL sockets or
HTTPS). The API Server implements the Thrift-defined API.
The API Server maps the client request into one or more calls
to internal components, described next.

The Airavata Registry is the repository for all gateway
metadata. This includes descriptions of applications and hosts,
workflow templates, and workflow instances. The Registry
does not manage actual data sets (such as files) and does not
manage data movement. The current registry implementation
is based on OpenJPA over a relational database backend, with
both Derby and MySQL supported. Going forward, we identify
several challenges with the Registry. First, its design is
currently overloaded with too many distinct capabilities

(application descriptions, workflows, user data, etc) that can be
decoupled. We are designing multiple modules to efficiently
demarcate application and workflow catalog, metadata catalog
for recording application and workflow executions, monitoring
database for archiving real-time information streams, and
provenance data catalog for capturing the trace of executions.
Second, the current implementation cannot directly store and
retrieve Thrift-generated Java objects, creating an
implementation friction at the Object-Relational Mapping
level. We are investigating solutions to this problem, as has
been discussed on the Airavata architecture mailing list.

The Orchestrator provides an abstract scheduling layer for
individual and workflow submissions, which it does by
managing interactions with the Application Factory and
Workflow Interpreter. This component is also responsible, as a
client to the Registry, for persistently storing all user requests.
In the event of failure, the Orchestrator handles recovery of the
system using Registry information. The Orchestrator is a new
Airavata component, summarized here for the first time. The
Orchestrator was introduced for the following reasons. First,
Airavata needed a simpler way to provide an API to gateways
who only wish to run single applications rather than
workflows. In previous versions, Airavata required a definition
of a workflow (stored in the Registry) for even the simplest
applications. This made the definition of the API cumbersome.
Second, we introduced the Orchestrator to consolidate
functionality such as resource selection and integration with
information services provided by different Grids. Thirdly, the
Orchestrator’s responsibility is to explicitly contain the per-
submission decision-making making capabilities within
Airavata for handling fault-tolerance strategies such as
resubmission of failed jobs and recovery of failed services.

The Workflow Interpreter handles submissions that
involve more than a single application. The Interpreter can
submit and manage pipelines and graphs, but we also have
examined its use in managing jobs that require iterative loops,
conditionals, and human-in-the-loop executions [4][5].

The Application Factory (also known as GFAC) [6]
manages the submission and monitoring of individual
applications on remote resources. GFAC is designed around a
Handler-Provider model that allows it to work with different
grid and cloud middleware. In summary, providers are clients
to different middleware and handlers supplement the provider
submission with stage-in, stage-out, and related requests.
Handlers also can be used to further customize submissions to
specific resources that are not sufficiently abstracted by the
generic provider. The Orchestrator directly interacts with
GFAC for managing individual jobs; for workflows, the
Interpreter invokes GFAC for each component step.

There has been substantial work on Grid job submission
and Grid federation [16][17][18][19]. We view these as
important foundations over which GFAC operates to
accomplish its primary purpose of managing application
submissions. As stated in Section IIA and illustrated in Section
III, gateways may need to bridge over multiple
cyberinfrastructure installations that are not otherwise
federated. GFAC along with the Credential Store (below)
provide this over-layer of application management. Current

GFAC plugins available in the source code include GRAM,
BES/JSDL, SSH, LOCAL, HADOOP, GSISSH, and EC2.

The Messaging System [7] is a topic-based publish-
subscribe system that is used to send system messages to
multiple, interested components. It can also deliver messages
to external clients that choose to be notified. This component
incorporates an Airavata-wide information model that
encompasses all system actions as well as used for provenance
tracking.

The Credential Store [8] manages user credentials needed
by a gateway to securely interact with remote distributed
computing infrastructure. In particular, the Credential Store
can be used to manage different credentials associated with
different cyberinfrastructure systems.

Within these components, there are multiple areas for
research and improvements. Many individual components have
been re-implemented over time and continue to evolve.
Furthermore, the specific sequence of interactions between
components may also be rewired as we improve fault tolerance,
redesign the system to allow it to be more elastic for
deployments on clouds, and so on. In order to allow this
evolution, and to move towards a “DevOps” approach when
dealing with running Airavata instances, we have defined
Component Programming Interfaces (CPIs) for each of the
above components. These are currently Java interfaces, but we
plan to translate these into Apache Thrift interface definitions
in order to allow the components to be decoupled into
separately running JVMs on different servers, while retaining
the option of running everything in a single JVM. The future
promise of Thrift-based CPIs is that they may be used to
support non-Java component implementations. We note that
CPIs are not exposed to end user gateways but are instead
supersets of the API, also defined in Thrift’s IDL.

The CPI approach allows us to dramatically change
component implementations while not disturbing the rest of the
system. For example, the Registry has undergone significant
changes within the Airavata project, and we expect further
evolution: its current implementation uses a relational database
with an OpenJPA-based object-relational mapping layer, but
we would like to experiment with triple stores, object stores,
and NoSQL data stores such as Apache Cassandra. The
messaging system also is a good candidate for upgrading.
While it has been very stable and its codebase is the least
touched of all the Airavata components, it is based on Web
service notification and eventing standards that are not widely
adopted. High quality open source messaging systems such as
Apache Qpid and Apache Kafka are available, so Airavata
should not need to maintain its own implementation, although
it still needs its CPI and internal information model.

In addition to allowing Airavata to gracefully evolve, the
CPI approach allows Airavata to support multiple
implementations of a component that are needed for different
uses and deployment scenarios. The Orchestrator is an
important example. In a simple deployment scenario (such as
basic testing), the Orchestrator needs only to communicate
with a single Application Factory component instance, but in
more complicated scenarios requiring load balancing and
failover, we need to replace the “basic” Orchestrator CPI

implementation with a “multi-threaded” implementation. These
are standard object-oriented concepts extended to distributed
systems.

C. Client and Component Interactions
The CPI provides a required internal layer of abstraction

that allows components to change or have alternative
implementations. The CPI is also useful because we continue
to evolve the interactions between the components to improve
Airavata’s overall fault tolerance and elasticity without
breaking the client API.

Figure 1 summarizes the current path through the components
components for job submission and monitoring. Airavata
supports two major roles from the calling gateway: end user
scientists and gateway administrators. The steps for a gateway
administrator using Airavata are the following. First, the
administrator registers the Gateway with Airavata system
initializing the required security credentials and registry
workspace. Second, the administrator registers scientific
applications, workflows, and computational hosts with
Airavata. When combined, these provide all the information
necessary to execute the application on the remote resource.
This typically involves deployment and testing of applications
on the target resources as well. Third, the administrator
configures GFAC with appropriate handlers and providers for
the target resources. Airavata comes with many preconfigured
handlers and providers for different Grids, clouds, and non-
Grid resources (as listed earlier), but gateway operators need to
make specific configuration choices. In some instances, the
gateway operator may need to write new providers or handlers.
Fourth, the administrator manages community security
credentials using the credential store. Finally, the administrator
configures third-party User Identity and Data Management
systems so Airavata could as an optional step could directly
deposit data as opposed to fetched on request.

In its current form, Airavata does not directly manage users
or groups. Instead, it establishes a trust relationship with the
gateway and trusts the gateway’s authorization and
authentication decisions. A fuller discussion of Airavata’s
security model is given in [8].

End user scientists interact with Airavata through their
gateway to create online experiments, submit and monitor jobs,
and analyze or download outputs. The steps for a scientist
using a gateway to perform a computational experiment are the
following.

First, the end user interacts with a science gateway through a
a Web browser to create and submit an online experiment.
Second, the gateway collects this information and passes it to
the Apache Airavata server through the API Server. Note the
API Server is not a traditional Web server. Interactions
between the gateway client and the API Server use TCP/IP on
a configurable port. Third, the gateway creates an experiment
through the API Server, which invokes the Registry’s CPI to
create a new record. Airavata returns a unique handle
(generated by the Registry) that can be used to access the
experiment. Fourth, the gateway user uploads any input data
needed by the experiment, specifies input parameters,
optionally selects the resources to be used, and submits the

experiment. Within Airavata, these are handled by the
Orchestrator, which the gateway accesses through the API
server. The Orchestrator pulls together all information and files
needed to run the job or jobs on a selected resource and passes
this information to GFAC (in the case of single jobs) or to the
Workflow Interpreter (in the case of workflows).

Fifth, within Airavata, GFAC is responsible for staging input
input files and for preparing and launching the jobs on the
remote resource. GFAC providers are clients to various Grid
and cloud submission mechanisms. Sixth, the gateway user can
monitor the progress of the job through Airavata’s monitoring
API. The API also provides access to intermediate data.
Within Airavata, the Job Monitor provides this capability. The
Job Monitor is decoupled from the submission mechanisms in
GFAC, allowing us to have multiple monitoring mechanisms.
For example, on XSEDE, we may monitor jobs with both pull
approaches (“qstat” or similar Grid mechanisms) and push
messaging [9]. Seventh, if the job completes successfully, the
gateway user can download outputs from the remote resource
via Airavata. GFAC is responsible for staging files off the
machine and back to the gateway. This is accomplished
through various mechanisms that the gateway may select: by
using GlobusOnline or direct GridFTP clients, by using SCP,
and by using HTTP. Eighth, in cases of job failures, Airavata
will also preserve intermediate outputs and standard error files.

Airavata’s component interaction design is the outcome of
an ongoing effort within the Airavata project to provide greater
fault tolerance by centralizing system state within the Registry.
The challenge for Airavata state management is that it must act
as a bridge between the client (left side of Figure 1) and the
computing resources (right side of Figure 1), both of which are
outside of Airavata’s direct control. In particular, a job
submitted to a resource (an XSEDE supercomputer, for
example) has a state (queued, executing, completed or failed)
that evolves independently of Airavata, is only accessible
through monitoring mechanisms, and may last for minutes,
hours, or days. This individual job may be part of a workflow
as well, introducing another layer of statefulness. Because of
this, we have introduced a three level state model in our Thrift
data model for managing applications. A full description is out
of scope for the current paper, but we provide a short summary.
“Job” state is a mapping to specific job submission states on a
target machine. “Task” state is associated with the Job state
and any “handler” states surrounding the Job; a Job can
succeed but its Task can fail. Lastly, Experiments can contain
multiple Tasks and have their own state. The full state model is
described explicitly in Airavata’s Thrift file definitions
available through the project’s public code repository.

While centralization of state management in the Registry is
an important recent effort, it is not desirable to think of all
Airavata components as completely stateless. For example, the
GFAC component may need to do several preprocessing steps
to complete job submission, such as stage in a file or provision
a virtual machine. Deciding when to recover a partial GFAC
submission, for example, is still an open problem.

III. SCIENCE GATEWAY CASE STUDIES
We now summarize two gateway collaborations and

illustrate how they have contributed to Airavata’s design. We
use these to illustrate the balance we must make between
custom integration on the one hand and scalable support on the
other. For a list of collaborating projects, see
http://airavata.apache.org/community/projects-using.html.

A. The UltraScan Science Gateway
The UltraScan Science Gateway [10] is an XSEDE science

gateway that enables experimental biophysicists to use high
performance computing resources to perform data analysis on
analytical ultracentrifugation experiments as well as manage
their data sets through a laboratory information system.
UltraScan is also being extended to support modeling and
simulation for related experimental techniques like small angle
scattering. UltraScan’s use case can be summarized as follows.
First, users select samples and create input packages from the
UltraScan database using desktop tools. Second, users stage
their inputs, run their analysis on supercomputers, and stage out
their results using a Web-based gateway. Analysis can take
place on the XSEDE, on campus resources provided by the
UltraScan principal investigator, or on the Juropa
supercomputer resource. Third, While running, the application
generates status updates via UDP messages. Fourth, when the
job completes, data is staged off the resource.

Thus UltraScan provides a driving use case for running
single applications for multiple users on multiple,
uncoordinated resources. Even the simple “happy path” above
has many pitfalls resulting from heterogeneity of grid resources
and middleware. UltraScan requirements have had significant
impact on the design of Airvata’s Orchestrator and GFAC
components. UltraScan has also influenced our API Server. In
our initial integration with UltraScan, we focused exclusively
on exposing the GFAC component. Other components
(particularly the Registry) were still needed internally but not
exposed to the gateway developers. This led to a very
customized integration between UltraScan and Airavata that
included several supplemental services outside the core of
Airavata, some of which duplicated Registry services. This
custom integration, while useful in a one-off case, segregates
gateway-Airavata integration into code extensions that are
outside the main framework and well understood only by a
subset of Airavata developers. This results in un-scalable
support effort for readily apparent reasons. By switching to a
common API and removing supplemental services, any
Airavata developer can diagnose problems with UltraScan
operations.

B. The ParamChem Science Gateway
The ParamChem Science Gateway [5] uses Apache

Airavata to address the computational intensive needs of
empirical force field parameter optimization for chemical
systems. ParamChem use case of Apache Airavata workflow
capabilities can be summarized as follows. First, an expert user
constructs workflows to models energy functions or
Hamiltonians and registers with Workflow Catalog within the
Airavata Registry. The commonly used workflow wraps
molecular dynamics applications as workflow tasks to perform

atom typing; generation and optimization of initial guess
charges and Lennard-Jones parameter assignment; generation
and optimization of target data for charge optimization;
generation and optimization of target data for optimization of
bond, angle, dihedral and improper dihedral parameters; and
generation and optimization of target data for optimization of
dihedral parameters about rotatable bonds.

Next, using a workflow template from the Registry, the user
first visually constructs the specified molecule on their desktop
and interact with with ParamChem CGenFF Service to obtain
the initial guess parameters. Next, the user then walks through
steps in the ParamChem user interface to launch the Dihedral
Optimization process. The Paramberoo GUI bundles an
Airavata Client SDK that interacts with the Airavata Server to
configure and launch and monitor the optimization workflow.
Finally, the user fetches the optimized results through the
Airavata Registry and visualizes the results to obtain plots such
as the comparison of QM and MM energy.

From this description, it is clear that ParamChem
requirements have influenced the Workflow Interpreter’s
design. However, ParamChem has also influenced our overall
design philosophy for client interactions as well: Airavata
services need to be accessed through a single API that exposes
the full functionality of the system rather than individual
pieces. Finally, ParamChem also presented an interesting set of
requirements for acting as a desktop rather than Web-based
gateway. Proper support for desktop clients using Apache
Thrift is an active current effort.

C. Experiences from Use Cases
Apache Airavata has been applied to a number of different

scientific domains to act as both a scientific workflow engine
for small research groups (for example [4]) and as an online
service that powers science gateway application management.
One of the challenges we find with gateways (as illustrated in
the UltraScan case) is scaling our operations and support
efforts, not just scaling our software.

Airavata is a complicated collection of software that is still
best operated by our group at this stage of its development,
suggesting we adopt a service model for dealing with
collaborating gateways. Even with this constraint, problems
can arise. First, we must understand the gateway’s use case in
some detail from the beginning. Otherwise, it is likely that we
will evolve many workarounds and gateway-specific solutions
for common problems. Second, excessive, unnecessary
customization for a specific gateway decreases reliability.
Customized gateway-Airavata integrations result in too many
deployed services that do not pass through the regular Airavata
development and release processes. Third, customized
interactions between the gateway and Airavata decrease
sustainability. Operating a gateway with a very customized
interface to Airavata services becomes specialized knowledge
of a subset of the development team. This results in only a
subset of an operations team being able to troubleshoot a
particular problem. Finally, customizations result in
unnecessary duplication of effort. We must instead look for
generalizations that can be incorporated into Airavata’s core
code base and expressed through the Airavata API. These also

help us integrate with new gateways by articulating common
use cases to the gateway developers, encouraging them to
develop their gateways following common patterns.

IV. PROJECT GOVERNANCE AND SUSTAINABILITY
Apache Airavata is a top-level project within the Apache

Software Foundation (ASF). We have made 11 releases (0.1
through 0.11) through the Apache Software Foundation
mechanisms, which includes proper binary and source
packaging along with necessary licensing and notification files.
Release 0.12 is in preparation at the time of writing. Our
release 1.0 will be determined by community vote when the
API is sufficiently stable. Following the 1.0 release, we will
adopt semantic versioning (that is, all 1.X.Y releases will have
a compatible API).

It has been the authors’ goal to bring the ASF’s open
governance principles to academic research software
development and management. Open governance goes
beyond the usual open source metrics [11] and beyond simply
taking advantage of free services (such as GitHub) that support
open source projects. Projects with open governance have the
usual open source characteristics but also make decisions
through public forums with voting by stakeholders. Important
characteristics of openly governed projects are the diversity of
their stakeholders and the willingness of the project to add new
stakeholders via a well-defined process. We believe this is an
important complementary effort to the open standards work
that have been pursued by the Open Grid Forum and other
venues. Openly governed software encourages open,
community-wide reference implementations of the standards,
allowing the cyberinfrastructure development community to
both collaborate (on the reference implementation and common
features) and compete (on extensions and advanced
capabilities).

Sustainability is a challenge for many academic software
projects. Specific strategies (like commercialization) aside,
academic software must a) demonstrate relevance to user
communities; b) provide a way to transform users into
stakeholders who contribute to the project in addition to using
it; and c) foster a pipeline of developers and architects at all
skill levels who can directly contribute to the software.
Airavata’s strategy for solving these problems has been to
adopt the Apache Software Foundation’s “community over
code” open project governance approach. The core idea from
the point of view of academic software projects is that
sustainability comes from a diversity of stakeholders (that is, a
community), and a diversity of stakeholders requires a
governance model to work.

ASF methods are simple but profound: projects make
decisions openly on archived mailing lists; all discussions
occur or are summarized on mailing lists or other open venues
(like IRC channels and Google Hangouts); and projects have a
flat hierarchy. Typical decisions include when to release
software, priorities for project features and improvements, and
design changes. All decisions are public with two exceptions:
if a contributor has earned enough merit to warrant
committership (that is, write access to the code base) or not,
and if a committer has deserves promotion to the Project

Management Committee (that is, given full voting writes) or
not. Voting in the strictest sense can go be straight up or down
tallies, but Airavata and other projects typically seek to achieve
consensus.

V. RELATED WORK
Science gateways and science gateway frameworks are

numerous and have been the subject of several workshops.
Gateways are supported by both the XSEDE science gateway
program [12] and the EGI through SCI-BUS [13]. Several
efforts to provide “as a service” gateways are directly
comparable. The HUBzero project [14] provides a turnkey
gateway hosting solution that includes extensive collaboration
capabilities as well as application execution management;
HUBzero is also available as an open source package. The
iPlant Agave project [15] provides a REST-based Platform as a
Service as well as client building tools for the Life Sciences
community. The Globus team has developed a cloud-style
model for reliably managing data transfers and for sharing data
[16].

Compared to these other efforts, Apache Airavata focuses
on using a Thrift-based “RESTless” approach to client
development. We are interested in Airavata as a “Platform as a
Service” and collaborate with other gateways to provide
domain-specific frontends. There are strategic reasons as well
as technical reasons for this: successful gateways need
champions who interact with their communities. Airavata’s
goal is to provide very targeted services that help gateways
while being as flexible as possible on how gateways can
integrate the Airavata clients.

Scientific workflow systems share many commonalities
and generally encapsulate the science gateway’s usage scenario
as an execution pattern, and also map that execution pattern to
the atomic functionalities of grids. Airavata’s approach is
similar to SCI-BUS in this regard. Workflow systems and
science gateways, generally treated as separate tools within the
cyberinfrastructure software layer, are actually mutually
beneficial. Workflow systems by themselves can be too
abstract and far removed from the scientific use cases of a
specific domain to provide ready accessibility for community
members. Successful gateways on the other hand connect
direct with scientific users but may not be able to support the
complicated execution patterns supported by workflow
engines.

VI. FUTURE DIRECTIONS
Our main challenge in Airavata is to design the software so

that it can work as a hosted cloud service that is both elastic
and fault tolerant. That is, we must be able to isolate system
state (which includes proxies for applications on remote
resources) into a single component, the Registry, while keeping
other parts as stateless as possible. This means that we can
more easily create and destroy other parts of Airavata (such as
GFAC) as needed to handle load spikes and recover from
failures. It will also be necessary to explore how best to handle
per-gateway configurations, as different gateways will want to
use different resources in different ways through the same
Airavata service. We currently accommodate this with editable

configuration files, but this assumes each gateway has full
access to its own Airavata instance. This approach will not
scale. We anticipate that Apache ZooKeeper will be useful here
for tracking running component instances and plan to explore
this.

Airavata also must be a platform for distributed computing
research for its own sake. Our use of CPIs enables us replace
different component implementations. For example, the
Orchestrator CPI may include “simple” implementations for
quick testing and conservative “production” implementations
that are used in deployment as well as “research”
implementations that incorporate smarter (or at least more
complicated) scheduling algorithms using externally supplied
information services. Likewise, the Messenger component,
while reliable, is an in-house implementation that predates the
availability of high quality messaging systems such as
RabbitMQ, Apache QPid, and Apache Kafka.

The Registry is also subject for significant revisions. One
long-standing design choice is that we overload the Registry
with many different types of data and provide strong
relationships between different data. This is a consequence of
carrying XML data structures and their tree structures forward
from Airavata’s predecessors. The explicit use of XML has
ended in the current versions (0.12 and higher) of Airavata, and
we need to rethink how we can make more modular data
models by examining use cases. There is a temptation to jump
to NoSQL solutions, but the strong theme on Airavata
architecture discussion threads is to carefully think through our
requirements first, since our data sizes are not likely to be
large.

VII. CONCLUSIONS
This paper has surveyed the Apache Airavata project and

its software framework. The key contributions of this paper are
the description of Airavata’s overall design as a general
purpose application and workflow management framework for
science gateways, an examination of its integration with
science gateways through usage scenarios, a discussion of how
these case studies drive Airavata’s evolution, and the authors’
use of Apache Software Foundation open governance
mechanisms. The core theme of this paper is the balance
between distributed computing research and operational usage.
This balance requires thoughtful governance.

This paper presents for the first time two new Airavata
components: the API Server and the Orchestrator. More
detailed descriptions of these components are the subject of
future publications. Here our goal is to show the relationships
of these components to the other parts of Airavata. We also
summarized significant design changes in the Registry, with
are needed both to support the use of Apache Thrift and to
centralize Airavata state management. The latter is required to
make Airavata more elastic. Finally, we identified future
development work for the Registry, GFac, and Messenger
components.

ACKNOWLEDGMENT
This work has been funded by NSF awards ACI-1339774,

OCI-1216730, and OCI-1127210. We thank Eroma

Abeysinghe for critical reading of the manuscript and the
Apache Airavata Program Management Committee for
contributions to the software architecture and implementation.

REFERENCES
[1] Droegemeier, Kelvin K., Dennis Gannon, Daniel Reed, Beth Plale, Jay

Alameda, Tom Baltzer, Keith Brewster et al. "Service-oriented
environments for dynamically interacting with mesoscale weather."
Computing in Science & Engineering 7, no. 6 (2005): 12-29.

[2] Alameda, Jay, Marcus Christie, Geoffrey Fox, Joe Futrelle, Dennis
Gannon, Mihael Hategan, Gopi Kandaswamy et al. "The Open Grid
Computing Environments collaboration: portlets and services for science
gateways."Concurrency and Computation: Practice and Experience 19,
no. 6 (2007): 921-942.

[3] Marru, Suresh, Lahiru Gunathilake, Chathura Herath, Patanachai
Tangchaisin, Marlon Pierce, Chris Mattmann, Raminder Singh et al.
"Apache airavata: a framework for distributed applications and
computational workflows." In Proceedings of the 2011 ACM workshop
on Gateway computing environments, pp. 21-28. ACM, 2011.

[4] Erickson, Brandon, Raminderjeet Singh, August E. Evrard, Matthew R.
Becker, Michael T. Busha, Andrey V. Kravtsov, Suresh Marru, Marlon
Pierce, and Risa H. Wechsler. "A high throughput workflow
environment for cosmological simulations." In Proceedings of the 1st
Conference of the Extreme Science and Engineering Discovery
Environment: Bridging from the eXtreme to the campus and beyond, p.
34. ACM, 2012.

[5] Ghosh, Jayeeta, Suresh Marru, Nikhil Singh, Kenno Vanomesslaeghe,
Ye Fan, and Sudhakar Pamidighantam. "Molecular parameter
optimization gateway (ParamChem): workflow management through
TeraGrid ASTA." In Proceedings of the 2011 TeraGrid Conference:
Extreme Digital Discovery, p. 35. ACM, 2011.

[6] Kandaswamy, Gopi, Liang Fang, Yi Huang, Satoshi Shirasuna, Suresh
Marru, and Dennis Gannon. "Building web services for scientific grid
applications."IBM Journal of Research and Development 50, no. 2.3
(2006): 249-260.

[7] Huang, Yi, Aleksander Slominski, Chathura Herath, and Dennis
Gannon. "Ws-messenger: A web services-based messaging system for
service-oriented grid computing." In Cluster Computing and the Grid,
2006. CCGRID 06. Sixth IEEE International Symposium on, vol. 1, pp.
8-pp. IEEE, 2006.

[8] Thejaka Amila Kanewala, Suresh Marru, Jim Basney, and Marlon
Pierce, “A Credential Store for Multi-Tenant Science Gateways,”

International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), May 2014, Chicago, IL. http://hdl.handle.net/2022/17379

[9] Hanlon, Matthew, Warren Smith, and Stephen Mock. "Providing
resource information to users of a national computing center." In
Proceedings of the Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery, p. 43. ACM, 2013.

[10] Demeler, Borries. "UltraScan: a comprehensive data analysis software
package for analytical ultracentrifugation experiments." Modern
analytical ultracentrifugation: techniques and methods (2005): 210-229.

[11] OSSWatch: http://oss-watch.ac.uk/
[12] Wilkins‐Diehr, Nancy. "Special issue: Science gateways—Common

community interfaces to grid resources." Concurrency and
Computation: Practice and Experience 19, no. 6 (2007): 743-749.

[13] Kacsuk, Peter, Gabor Terstyanszky, Akos Balasko, Krisztian Karoczkai,
and Zoltan Farkas. "Executing Multi-workflow simulations on a mixed
grid/cloud infrastructure using the SHIWA and SCI-BUS Technology."
Cloud Computing and Big Data 23 (2013): 141. See also
https://www.sci-bus.eu/.

[14] McLennan, Michael, and Rick Kennell. "HUBzero: a platform for
dissemination and collaboration in computational science and
engineering." Computing in Science & Engineering 12, no. 2 (2010): 48-
53.

[15] Agave API Developer Site. Available from: from: http://agaveapi.co
[16] Foster, Ian. "Globus Online: Accelerating and Democratizing Science

through Cloud-Based Services." IEEE Internet Computing 15, no. 3
(2011).

[17] Goodale, Tom, Shantenu Jha, Hartmut Kaiser, Thilo Kielmann, Pascal
Kleijer, Gregor Von Laszewski, Craig Lee, Andre Merzky, Hrabri Rajic,
and John Shalf. "SAGA: A Simple API for Grid Applications. High-
level application programming on the Grid." Computational Methods in
Science and Technology 12, no. 1 (2006): 7-20.

[18] Foster, I., A. Grimshaw, P. Lane, W. Lee, M. Morgan, S. Newhouse, S.
Pickles, D. Pulsipher, C. Smith, and M. Theimer. "OGSA® Basic
Execution Service Version 1.0." (2007).

[19] Morgan, Mark M., and Andrew S. Grimshaw. "Genesis ii-standards
based grid computing." In Cluster Computing and the Grid, 2007.
CCGRID 2007. Seventh IEEE International Symposium on, pp. 611-618.
IEEE, 2007.

Figure 1 Airavata component interactions. See text for a full description.

