PHYSICAL REVIEW E 85, 066405 (2012)

Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas
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We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using
two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond
angle metric. To study finite-size effects, we perform 27 648- and 55 296-ion simulations. To help monitor
nonequilibrium effects, we calculate diffusion constants D;. For the carbon-oxygen system we find that Dg
for oxygen ions in the solid is much smaller than D¢ for carbon ions and that both diffusion constants are
80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between
our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from
finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately
known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture
nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium
crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting
temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably

because of electron screening effects.
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I. INTRODUCTION

Observations of cooling white dwarf (WD) stars provide
important information on the ages and evolution of stellar
systems [1—4]. The interior of a WD is a Coulomb plasma of
ions and a degenerate electron gas. As the star cools this plasma
crystallizes. This can delay WD cooling; see, for example,
Ref. [5]. Winget et al. recently observed effects from the
latent heat of crystallization on the luminosity function of
WDs in the globular cluster NGC 6397 [6]. Winget et al.’s
observations may constrain the melting temperature of the
carbon and oxygen mixtures expected in these WD cores. In
addition, astroseismology provides an alternative way to study
crystallization in WD; see, for example, Ref. [7].

Furthermore, material accreting onto a neutron star (NS)
will freeze to form new NS crust. A variety of nuclear reactions
can take place, including rapid proton capture nucleosynthesis
(the rp process [8,9]) followed by electron captures, as the
material is advected to higher densities. Horowitz et al. studied
the crystallization of a complex rp process ash consisting of
17 chemical elements from oxygen to selenium [10]. They
found chemical separation upon freezing, with low Z elements
preferentially remaining in the liquid NS ocean while high Z
elements crystallize to form new NS crust. This change in
composition of the ocean may be important for superbursts.
These are thought to be energetic thermonuclear explosions of
carbon [11-13].

Melting temperatures and other properties of the liquid-
solid phase diagram for multicomponent plasmas have
been determined from computer simulations. Segretain and
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Chabrier calculated the carbon-oxygen phase diagram assum-
ing a local density model for the free energy of the solid [14],
while, Ogata et al. [15,16] and DeWitt et al. [17,18] calculated
the phase diagram based on Monte Carlo or molecular
dynamics (MD) simulation free energies for both the liquid
and solid phases. Recently Potekhin ef al. have made accurate
calculations of the free energy of liquid mixtures [19,20] and
Medin and Cumming calculated the phase diagram for both
binary mixtures such as carbon and oxygen and much more
complicated multicomponent mixtures [21].

All of these works determine liquid-solid phase equilibria
by equating liquid and solid free energies that have been
calculated separately. This procedure allows the use of smaller
Monte Carlo or MD simulations where only a single phase
is present at a time. However, it may be very sensitive
to any small errors in the free energy difference between
liquid and solid phases. Indeed for the carbon-oxygen system,
Segretain and Chabrier predict higher melting temperatures
and a spindle-type phase diagram, while both Ogata et al.
and Medin and Cumming predict lower melting temperatures
and an azeotrope-type phase diagram. In a spindle-type phase
diagram the melting temperature of the mixture is always
greater than the melting temperature of pure carbon, while
in an azeotrope-type phase diagram the melting temperature
of the mixture can be lower than that of pure carbon. This
difference in phase diagrams could be due to small errors in
Segretain and Chabrier’s solid free energies.

Furthermore, equating the free energies of liquid and
solid phases provides no information on the dynamics of
the phase transition. For example, although there have been
some studies of nucleation for one-component plasma systems
[22,23], there have been almost no studies of nucleation for
multicomponent plasmas. Finally, interface properties are not
addressed. For one-component systems there has been some
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work on surface properties; see, for example, Ref. [24,25].
For multicomponent systems there is, in general, a gradient
in composition across the liquid-solid interface. However, the
spatial extent of this gradient has not been determined.

Recently, we performed direct two-phase molecular dy-
namics simulations of liquid-solid phase equilibria both for
carbon-oxygen mixtures in WDs [26] and for a complex 17-
component mixture modeling the crust of an accreting neutron
star [10]. These simulations have both liquid and solid phases
present simultaneously. This allows a direct determination of
the melting temperature, and the composition of the liquid
and solid phases from a single simulation. Furthermore, phase
equilibria for very complicated systems can be simulated in
this way.

However, direct simulations need to address potential
systematic errors from finite-size effects and from the lack
of thermodynamic equilibration. Finite-size effects are po-
tentially important because one must fit not only liquid
and solid phases but also two liquid-solid interfaces within
the simulation volume. This, in general, requires a larger
simulation volume than for simulations of only a single phase.
However, recent computer advances have dramatically reduced
the computational limitations on these larger simulations. It
is now “easy” to simulate much larger systems than have
typically been run in the past.

One must run these two-phase simulations long enough
to ensure that the phases have come into thermodynamic
equilibrium. This may require impurities to diffuse throughout
the solid phase. However, diffusion in the solid phase is
relatively fast, for these Coulomb systems, because the ions do
not have hard core interactions. There is only a relatively soft
1/r interaction between ions. As a result, ions can move past
one another. We have studied diffusion in Coulomb crystals in
arecent paper [27]. If finite-size and nonequilibrium effects are
addressed, direct two-phase simulations should yield accurate
results. The systematic errors from two-phase simulations are
likely very different from previous free energy calculations.
Therefore, comparing the two methods provides an important
check on both approaches.

In the laboratory, one can observe complex (or dusty)
plasma crystals. Complex plasmas are low-temperature plas-
mas containing charged microparticles; for a review, see Fortov
et al. [28]. Often the microparticles are micrometer-sized
spheres that acquire large electric charges and the strong
Coulomb interactions between microparticles can lead to crys-
tallization. Indeed, two-dimensional plasma crystals were first
observed in the laboratory in 1994 [29]. Three-dimensional
plasma crystals can be studied under microgravity conditions;
see, for example, Ref. [30]. Alternatively, one can study
systems of charged colloidal spheres. For example, Lorenz
and Palberg observed melting and freezing lines for a binary
mixture of colloidal spheres [31].

In this paper we study freezing of binary mixtures of
carbon and oxygen as well as of oxygen and selenium. The
carbon-oxygen system is important for white dwarfs while the
oxygen-selenium system provides a simple binary model of
the complex rp ash composition in accreting NSs. We perform
MD simulations with both 27 648 and 55 296 ions. This allows
us to study finite-size effects. We discuss our MD formalism
in Sec. II, present results in Sec. III for the carbon-oxygen,
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and Sec. IV for the oxygen-selenium system, and conclude in
Sec. V.

II. FORMALISM

In Sec. IIA we describe our two-phase MD simulation
formalism. This is very similar to what we used earlier
for the freezing of rapid proton capture nucleosynthesis ash
on accreting neutron stars [10] and for carbon and oxygen
mixtures in WDs [26]. Next, in Sec. II B, we describe our
analysis procedure for determining if a given region of the
simulation is in a liquid or solid phase.

A. MD formalism

We consider a system of ions, of two different charges,
and electrons. The electrons are assumed to form a degenerate
Fermi gas. The ions are fully pressure ionized and interact with
each other via screened Coulomb interactions. The potential
between the ith and jth ion is assumed to be

2
vy (r) = L2 i, )
Here the ion charges are Z; and Z ;, r is their separation, and the
electron screening length is A. For cold relativistic electrons,
the Thomas-Fermi screening length is A~ = 2a!/%ky /7'/?
where the electron Fermi momentum ky is kr = (372%n,)"/3
and « is the fine structure constant. Finally, the electron density
n, is equal to the ion charge density, n, = (Z)n, where n is
the ion density and (Z) is the average charge.

We cut off the potential for r > r. = 8A. We note that
this is a relatively large distance. For example, for a pure
carbon system this corresponds to 7.y & 24a with a the ion
sphere radius a = (3/4mn)'/3. At this point the potential is
only 1.4 x 107 Z2¢?/a. Our simulations are classical and we
have neglected the electron mass (extreme relativistic limit).
This is to be consistent with our previous work on neutron stars.
However, the electron mass is important at the lower densities
in WDs and this may change our results slightly [32]. Also
quantum effects could play some role at high densities [33,34].

The simulations can be characterized by an average
Coulomb parameter T’,

5/3y ,2
ro 20 @)
a,T
Here (Z°/3) is an average over the ion charges, T is the temper-
ature, and the electron sphere radius a, is a, = (3/4mn,)'/.
Time can be measured in units of one over the plasma
frequency w,. Long-wavelength fluctuations in the charge
density can undergo oscillations at the plasma frequency. This
depends on the ion charge Z and mass M. For mixtures we
define a hydrodynamical plasma frequency @), from the simple
averages of Z and M,

_ |:47re2(Z)2ni|1/2

% == 3)

Note that other choices for the average over composition in
Eq. (3) are possible. However, they are expected to give very
similar results for the average plasma frequency.
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All of our carbon-oxygen simulations are run for the
same electron density of n, = 5.026 x 107* fm™3, while
the oxygen-selenium simulations are run for n, = 2.254 x
1073 fm~3. Since the pressure is dominated by the electronic
contribution, constant electron density corresponds, approxi-
mately, to constant pressure. The density can be scaled to any
desired value by also changing the temperature 7" so that the
value of I" [see Eq. (2)] remains the same.

B. Interface-finding algorithm

In this section we describe an algorithm for specifying if a
given region of the simulation belongs to the bulk liquid or bulk
solid phase or if the region belongs to a liquid-solid interface.
Often determining whether a cluster of ions is a liquid or
a bec solid is simple when the cluster is visually inspected.
However, this determination is difficult to obtain numerically.
For an entire system, phase determination can be accomplished
by computing the global order parameter Q¢ [35]; see below.
In this work, we use the prescription laid out in Ref. [36] to
determine whether individual ions are liquidlike or solidlike.

For each ion i, an ion j is defined as a neighbor if it is
within a given radius r, = 4a with a the ion sphere radius
a = (3/47n)'/3. The vectors f;; joining neighbors are called
bonds. The direction of these vectors can be described by 6;;
and ¢;; in the frame of ion i. The local structure around ion
i can be characterized using spherical harmonics Y;,,(6;;,%;;)
by

Zf’i(f) a(rij) Y, (0;,¢i;)

Gim(@) = A 4)
S ary)
where N, (i) is the number of ions bonded with ion i and
= (4 5)
a(ri)=|——
/ 4a

if r;; < 4a and a(r;;) = 0 otherwise.

These local order parameters are large in both the solid and
the liquid. The global order parameter Qg is calculated from
an average over all of the N ions,

N
1 Z _
dom = ﬁ - q6m(l)» (6)
A 6 172
4 *
Qs = |:1—3 _2_65]6m6]6mi| . (N

This is large in the solid due to the fact that the g¢, (i) add

up coherently. In the liquid, ge,, (i) add incoherently, so Qg is

small. This coherence is exploited to determine local order.
For each gg,, (i) a normalization is applied,

Gom (i)
[0 ¢ 1den@I?]"?

A dot product can now be defined of the vectors q, for
neighboring particles i and j,

q~6m (l) = (8)

6
460 - a6 = Y Gon()dgn (). ©)

m=—6

By construction, q4(i) - q¢(i) = 1.
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We use the same criterion as Ref. [36] for determining
whether two particles are connected, namely, q¢(i) - q¢(j) >
0.5. This criterion will be met for most of the bonds in the solid.
In the liquid, two neighbors may be in phase and considered
connected, but that is unlikely to be true for all of the neighbors.
Therefore, we use a threshold on the number of connections to
determine if an ion is solidlike or liquidlike. This threshold is
20 connections. An ion is considered solidlike if it is connected
to 20 or more neighbors. Otherwise the ion is considered
liquidlike. Note that on average an ion in the carbon-oxygen
system has about 62 neighbors.

Now that each ion is tagged as either solidlike or liquidlike,
the interface in our two-phase simulations can be found. Deep
in the solid, a vast majority of the ions within a certain radius
of a given ion are identified as solidlike. In the bulk of the
liquid a similar majority is identified as liquidlike. Along the
interface, there is a mixture of solidlike and liquidlike ions.
For this reason, we tag an ion as being in the solid or liquid if
a large majority (>80%) of the ions within 4a of a given ion
are the same phase. If this criterion is not met, then the ion is
determined to be in the interface. Performing this identification
leads to results that will be shown in Fig. 2 of Sec. III. Notice
that ions determined to be in the interface are found where one
would expect them, along the border of the solid and liquid
phases.

Note that this procedure is slightly modified for the
oxygen-selenium system. Bonds involving oxygen ions, in
a predominantly selenium crystal, are not as well ordered
as selenium-selenium bonds. Therefore, for this system we
consider only selenium-selenium bonds, as discussed in
Sec. IV.

III. RESULTS FOR THE CARBON AND OXYGEN SYSTEM

In this section we present results for the phase diagram
and diffusion constants for carbon and oxygen systems. Our
previous carbon and oxygen results in Ref. [26] were based
on MD simulations with 27 648 ions. Here we perform three
larger simulations with 55 296 ions in order to study finite-size
effects. In addition we calculate diffusion constants in order to
monitor nonequilibrium effects.

To minimize finite-size effects, we use a rectangular
simulation volume that is twice as long in the z direction
compared to the x and y directions. We use periodic boundary
conditions in this rectangular box. Note that we evaluate the
interaction between two particles as the single interaction with
the nearest periodic image. We do not include an Ewald sum
over further periodic images because our box is so large that
interactions with periodic images other than the nearest one
are very small. The initial conditions consist of a cube of
crystalline phase that is stacked together in the z direction
with an equal-sized cube of liquid phase. This rectangular
geometry increases the distance between the two liquid-solid
interfaces compared to a cubical simulation volume.

A. Run with 75% oxygen

Our first simulation has an average composition of 75%
oxygen and 25% carbon (by number). We independently
prepare solid and liquid initial conditions and then combine
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them to obtain the full 55296-ion initial conditions. Based
on our earlier results suggesting that the solid phase will
be enriched in oxygen from [26], we prepare the liquid
configuration with 70% oxygen, 30% carbon and the solid
configuration with 80% oxygen, 20% carbon. We start with a
3456-ion configuration with random positions and velocities
and cool the system until it solidifies. We then combine
eight copies of this 3456-ion solid to make a 27 648-ion
solid configuration and continue to evolve this 27 648-ion
system for a time t@, = 8900 at I' = 213.1. We form a liquid
configuration by starting with an independent 3456-ion system
with random coordinates and evolve the system for a time
tw, = 4400 at the same I". We combine eight copies of this
liquid configuration to make a 27 648-ion liquid and evolve
for a further &, = 8800. Finally we combine the 27 648-ion
solid configuration with the 27 648-ion liquid configuration to
form the full 55 296-ion initial condition.

This initial condition is not equilibrated for a number of
reasons. First the two interfaces between liquid and solid
may have high energies because we have simply combined
two different initial conditions. There may be liquid and
solid ions close to each other. In addition, the solid part of
the initial condition may not be equilibrated because it has
carbon and oxygen ions positioned on lattice sites more or
less at random. The equilibrated solid may have important
correlations between ions of different charges. Finally, the
compositions of the liquid and solid phases may be wrong.
Therefore, carbon ions may diffuse into or out of the solid
region until the compositions of the liquid and solid phases
equilibrate. This may require evolving the system for a
considerable time.

We evolved the full 55 296-ion system for a total time 2.8 x
106/(2),, using a velocity Verlet [37] time step of 0.177/®,,. We
employed a simple hybrid OpenMP/MPI computer code and use
about 768 cores on the Cray XT5 system Kraken [38]. This
evolution took a total of about 2 weeks. During the run we
rescaled the velocities every 100 time steps in order to keep
the temperature approximately constant. We slowly adjust the
temperature so that approximately half of the system remains
liquid and half solid. In Fig. 1 we show the final configuration
of the 55296 ions. The bottom half of the simulation volume
is seen to contain a crystalline region. We use the procedure
of Sec. II B to determine which parts of the system are liquid,
solid, or belong to the two liquid-solid interfaces. This is shown
in Fig. 2. Note that the interface regions are not rectangular
and show some fluctuations.

In Fig. 3 we show the fluctuations in I'" (or equivalently
1/T) during the run. We calculate the final T value as the
average of I' over the last third of the run; see Table I. We
define the scaled fluctuations in I" as 8T,

sr= LT 10

=5 (10)

As the run started, it was necessary to use a low temperature
(high I') in order to keep the badly nonequilibrated solid
frozen. However, as the system rapidly equilibrated the temper-
ature could be quickly reduced towards its final equilibrated
value. The temperature is then seen to fluctuate around this
value at the 0.5% level or less. Figure 3 also shows the fraction
of the system that is solid, liquid, or interface vs time. The
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FIG. 1. (Color online) Final configuration of carbon ions (light
red) and oxygen ions (black) in a 55 296-ion simulation that consisted
of 75% oxygen and 25% carbon.

interface fraction is very constant (since the thickness of the
interface depends on our definition in Sec. IIB but is time
independent). The temperature is adjusted to keep the fraction
liquid and fraction solid more or less constant.

In Fig. 4 we show the composition (oxygen number fraction
xo) of the solid x{, liquid xé), and interface xé) regions as a
function of time. The interface composition is seen to remain
near the average value x) ~ 0.75 while the solid becomes
enriched in oxygen so that x§, ~ 0.8 and the liquid is depleted
in oxygen xé) ~ 0.7. The compositions, averaged over the final
third of the run, are collected in Table 1.

In Fig. 5 we show the oxygen composition xg Vs position in
the simulation volume at the end of the run. We divide up the
simulation volume into 50 slices according to the z coordinate,
with slice 1 being at the bottom of Fig. 1 and slice 50 being at
the top. For reference we show in Fig. 5 the fraction of ions in
a given slice that are in the solid, liquid, and interface regions.
For example, we see that slices 6 to 21 are all solid. We note
that there are some fluctuations in the composition of the solid
region, as a function of position, and there are gradients in
composition across the interface regions.

We calculated diffusion constants using the methods of
Ref. [27] in order to check on equilibration. Figure 5 shows
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FIG. 2. (Color online) Final configuration of liquid (dark purple),
interface (light red), and solid (black in bottom half) ions from a
55 296-ion simulation that consisted of 75% oxygen and 25% carbon.
These liquid, solid, and interface, regions are determined using a bond
angle metric as discussed in Sec. II B.

diffusion constants compared to a reference value Dy,

35)pa2
Dy = Tan (1)

1000T

105w,t

FIG. 3. (Color online) Fractional fluctuations in the Coulomb
parameter, §I" (solid black line and right hand scale) [see Eq. (10)],
vs simulation time ¢ for a 55296-ion system with 75% oxygen and
25% carbon. Also shown are the fractions of the system that are solid
(red squares), liquid (blue circles), or interface (brown triangles).
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TABLE 1. Equilibrium compositions of our 55 296-ion runs. The
oxygen number fraction of the whole system is xp; the Coulomb
parameter averaged over the last third of the run I" (determined from
the final temperature and xo). The composition of the solid is xg), that
of the liquid is x/), and that of the interface regions is x{. Statistical
errors in the last digit are quoted in parentheses.

X0 r X5 x! x5

0.75 204.5(8) 0.806(1) 0.699(3) 0.740(7)
0.50 221.7(9) 0.552(1) 0.454(3) 0.494(8)
0.25 213.2(7) 0.250(2) 0.249(2) 0.252(6)

for both carbon and oxygen ions at various positions in the
simulation volume; see also Table II. Diffusion is seen to be
relatively fast in the liquid region with DlC for carbon being
only slightly larger than D}, for oxygen ions. This is consistent
with the results of Ref. [39]. In contrast, D¢, in the solid is
almost 100 times smaller than in the liquid. This is similar
to the one-component solid diffusion results of Ref. [27].
Furthermore, in the solid, Dp is much smaller than Dg.
The composition of the solid can equilibrate by carbon ions
diffusing in to reduce x} or diffusing out to increase x{,. One
may not need to wait for the oxygen ions to diffuse throughout
the solid. Therefore, we expect the equilibration time of our
system to be determined by D¢ in the solid instead of the
smaller D). We find that diffusion is isotropic in the interior
of the liquid and solid regions and somewhat nonisotropic near
the interfaces.

B. Run with 50% oxygen

Our second 55 296-ion run has an overall composition of
50% oxygen and 50% carbon. We started it in a very similar
manner as for the 75% oxygen run except that the initial
composition of the solid was assumed to be 55% oxygen, while
the liquid was assumed to be 45% oxygen. This is based on our
earlier results [26]. Figure 6 shows the fluctuations in I', and
the fractions of the system that are liquid, solid, and interface
as a function of time. The compositions of these regions vs
time are shown in Fig. 7 and the compositions averaged over
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FIG. 4. (Color online) Number fractions of oxygen vs simulation
time for liquid xé) (blue circles), solid x{ (red squares), and interface
x¢, (brown triangles) regions. This is for a 55296-ion simulation that
is overall 75% oxygen and 25% carbon.
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FIG. 5. (Color online) Number fractions of oxygen xo for
different slices (or regions, see text) of the simulation volume (middle
panel). Also shown in the top panel are diffusion constants D for
carbon ions (open squares) and for oxygen ions (filled squares).
Finally the bottom panel shows the fraction of ions that are solid
(squares), liquid (circles), or interface (triangles). This is averaged
over the last third of the run of the 55296-ion simulation that is
overall 75% oxygen and 25% carbon.

the final third of the run are collected in Table I. We note that
there is very little time dependence to these compositions.

In Fig. 8 we show composition vs position. Again there are
some fluctuations in the composition of the solid. Diffusion
constants D are collected in Table II. In general D as a function
of position is very similar to our results from the 75% oxygen
simulation. However, we note that D in the solid is somewhat
smaller than for the 75% oxygen run.

C. Run with 25% oxygen

Our final 55 296-ion run has an overall composition of 25%
oxygen and 75% carbon. We started it in a very similar manner
as for the 75% oxygen run except that the initial composition
of the solid was assumed to be equal to that of the liquid, with

TABLE II. Diffusion coefficients of liquid and solid phases
averaged over the last third of the runs. Results are expressed as
D,‘; in units of Dy. The letter p denotes the phase, s for solid and /
for liquid, while X stands for the ion species, C for carbon and O for
oxygen. Statistical errors in the last digit are quoted in parentheses.

PHYSICAL REVIEW E 85, 066405 (2012)

1000T"

1.5 2.0 2.5 3.0
105wyt

FIG. 6. (Color online) Fractional fluctuations in Coulomb pa-
rameter, 6I" (solid black line and right hand scale) [see Eq. (10)],
vs simulation time ¢ for a 55296-ion system with 50% oxygen and
50% carbon. Also shown are the fractions of the system that are solid
(red squares), liquid (blue circles), or interface (brown triangles).

both at 25% oxygen. This is because our earlier simulations
found only small chemical separation [26]. Figure 9 shows the
fluctuations in I', and the fractions of the system that are liquid,
solid, and interface as a function of time. The compositions of
these regions vs time are shown in Fig. 10 and the compositions
averaged over the final third of the run are collected in Table I.
We note that all compositions are near 25% oxygen. However,
there is a small tendency for the interface regions to be slightly
enriched in oxygen compared to both the liquid and solid
regions. Note that the fluctuations in the interface composition
are larger than the fluctuations in the compositions of the liquid
and solid regions because the interface contains fewer ions.
The composition of the liquid is very close to that of the
solid although, at some times, there are small fluctuations in
these compositions. Of course in the thermodynamic limit
the composition of the interface is not relevant. Nevertheless,
our MD simulation could be showing a real effect where the
interface is enriched in oxygen even if the liquid and solid have
nearly equal compositions.

In Fig. 11 we show composition vs position. The compo-
sition is nearly constant independent of position. However,
again there are some fluctuations in the composition of the
solid. Diffusion constants D are collected in Table II. Now D
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%o D. D, D: D}, 10°yt
0.75 0.80(1) 0.64(1) 0.011(3) 0.0017(1) FIG. 7. (Color online) Number fractions of oxygen vs simulation
0.50 0.67(1) 0.55(1) 0.0070(4) 0.0012(1) time for liquid xé) (blue circles), solid x{ (red squares), and interface
0.25 0.64(1) 0.52(1) 0.0031(2) 0.0007(1) x¢, (brown triangles) regions. This is for a 55296-ion simulation that

is overall 50% oxygen and 50% carbon.
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FIG. 8. (Color online) Number fractions of oxygen xo for
different slices (or regions, see text) of the simulation volume (middle
panel). Also shown in the top panel are diffusion constants D for
carbon ions (open squares) and for oxygen ions (filled squares).
Finally the bottom panel shows the fraction of ions that are solid
(squares), liquid (circles), or interface (triangles). This is averaged
over the last third of the run of the 55296-ion simulation that is
overall 50% oxygen and 50% carbon.

in the solid, for both carbon and oxygen, is smaller than in the
75% or 50% oxygen runs.

D. Carbon-oxygen phase diagram

We now present the liquid-solid phase diagram implied
by the simulations in Secs. IIT A, III B, and I C. Figure 12
shows the phase diagram as a function of xg. The y axis is the
melting temperature 7' divided by the melting temperature 7¢

0.6 1.0
0.5 |
105
0.4 ;
v 03 100 1006T
0.2
105
0.1
0.0 ‘ ‘ L ‘ )
0.0 0.5 1.0 L5 2.0 25
105w,t

FIG. 9. (Color online) Fractional fluctuations in Coulomb pa-
rameter, 6I" (solid black line and right hand scale) [see Eq. (10)],
vs simulation time ¢ for a 55296-ion system with 25% oxygen and
75% carbon. Also shown are the fractions of the system that are solid
(red squares), liquid (blue circles), or interface (brown triangles).
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FIG. 10. (Color online) Number fractions of oxygen vs simula-
tion time for liquid x(l) (blue circles), solid x{, (red squares), and
interface x{, (brown triangles) regions. This is for a 55296-ion
simulation that is overall 25% oxygen and 75% carbon.

for pure carbon. We assume the pure carbon system melts at
I, = 178.4[26]. This differs slightly from the one-component
plasma result because we include the effects of electron
screening.

The points plotted in Fig. 12 are listed in Table I. Overall
our 55296-ion results are close to our previous results that
used 27 648-ion simulations [26]. However, there are some
noticeable differences. The 25% oxygen simulation with
55296 ions has nearly equal liquid and solid compositions,

10°
1071
D 2
= 10 o .
D(C)/DO
1073 F ..II.-IIII.. D / Dy

10—4 1 1 1 1
0.29 T T T T

m O
A

0.27
o

0.23
1.00

0.80
0.60 - 1
0.40 k
0.20
i}
0.00

slices

FIG. 11. (Color online) Number fractions of oxygen xo for
different slices (or regions, see text) of the simulation volume (middle
panel). Also shown in the top panel are diffusion constants D for
carbon ions (open squares) and for oxygen ions (filled squares).
Finally the bottom panel shows the fraction of ions that are solid
(squares), liquid (circles), or interface (triangles). This is averaged
over the last third of the run of the 55296-ion simulation that is
overall 25% oxygen and 75% carbon.
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FIG. 12. (Color online) Carbon-oxygen phase diagram plotting
the composition of the liquid phase (upper red curve or circles) that is
in equilibrium with the solid phase (lower blue curve or squares). Our
present results from 55 296-ion simulations are filled symbols while
the open symbols are our previous results with 27 648 ions from
Ref. [26]. The curves are the results of Medin and Cumming [21].

while the previous 27 648-ion simulation found the solid
slightly enriched in oxygen and found a slightly lower melting
temperature. The 50% oxygen simulation with 55296 ions
has a slightly larger difference in composition between the
liquid and solid than previous 27 648-ion simulations. Finally
the 75% oxygen simulation with 55296 ions has a slightly
higher melting temperature than the previous 27 648-ion result.
This suggests that finite-size effects, while not zero for the
27 648-ion simulations, are relatively small.

The agreement between our 55296-ion results and the
model of Medin and Cumming is excellent. All three liquid
compositions, and two of the three solid compositions, from
Table I are very close to Medin and Cumming’s results. The
only small difference is that our solid composition from the
75% oxygen simulation is not quite as oxygen rich as that of
Medin and Cumming. This one difference could be due to a
small remaining systematic error in our simulation, or to a
small error in the model liquid and solid free energies used
by Medin and Cumming. In any case, the small finite-size
corrections in going from 27 648-ion to 55 296-ion simulations
improve the agreement between our MD simulations and
Medin and Cumming’s results.

What are the nature of the errors from finite-size and/or
nonequilibrium effects? Although small, the errors appear
to go in different directions for our three simulations. For
the 25% oxygen run the 55296-ion simulation has a higher
melting temperature and much smaller difference between the
composition of the liquid and solid compared to 27 648-ion
results. This is in a region of the phase diagram where the
melting temperature is almost independent of composition.
Therefore the equilibrium compositions may be very sensitive
to any small errors.

For 50% oxygen, the 55296-ion simulation has a larger
difference between the compositions of the liquid and solid
compared to 27 648-ion results. Perhaps the simplest finite-size
effect would arise if the composition gradient across an
interface extended over a distance comparable to the box size.

PHYSICAL REVIEW E 85, 066405 (2012)

In this case simulations with small boxes might have more
nearly equal liquid and solid compositions than simulations
with larger boxes. For example, in Fig. 9 the gradient in
composition extends over a distance up to perhaps as many
as 10 slices and the distance between the two liquid-solid
interfaces is 25 slices. In contrast, the 27 648-ion runs from
Ref. [26] are in a cubical box where the distance between the
two liquid-solid interfaces is a factor of 2 smaller (equivalent
to of order 12.5 slices). Thus, there could be some small
finite-size effects for 27 648-ion runs.

Finally, there could be a statistical component to the errors
coming from a variety of nonequilibrium effects. For example,
fluctuations in the location of an interface could create a
new solid region and the composition of this region might
not have time to equilibrate. Alternatively there could be
composition changes from large fluctuations. One could test
for a variety of errors of this type by simply repeating these
simulations a number of times with different initial conditions.
Unfortunately, we have not had time to do this for the present
paper. However, we plan to do this in the future.

The good agreement between our phase diagram and that
of Medin and Cumming strongly suggests that the remaining
errors in our direct MD simulation approach are small. And, in
addition, it suggests that the model free energies employed by
Medin and Cumming are good, at least for the carbon-oxygen
system. Furthermore, we conclude that the phase diagram
for the carbon-oxygen system may be accurately known. We
emphasize that our direct MD simulations only work at all
because diffusion in the solid phase is relatively fast [27]. Had
diffusion been slow then it would be very difficult to equilibrate
the solid phases.

We find that direct two-phase MD simulations can accu-
rately determine liquid-solid phase equilibria. This result is
very useful because direct MD simulation can be applied to
many other systems, including very complex ones. Further-
more, direct MD simulations for a few compositions may
provide very helpful benchmarks for simpler models. Note
that simulations with a somewhat large number of particles
may be necessary and these may have to be run for extended
simulation times. However, rapid advances in computer power
should make such simulations even easier in the future.

IV. RESULTS FOR OXYGEN AND SELENIUM SYSTEMS

In this section we present results for the phase diagram and
diffusion constants for oxygen and selenium systems. This
two-component system has a much larger ratio of charges,
and this leads to a very different phase diagram, than for
the carbon and oxygen system of Sec. III. We perform
MD simulations with both 27648 and 55296 ions in order
to monitor finite-size effects. In general we present figures
for the larger 55296-ion simulations and then include both
27648- and 55296-ion results in tables. These simulations
follow closely the formalism of Sec. II and the procedures
of Sec. III.

However, the interface-finding algorithm in Sec. IIB is
slightly modified. The bond angles for oxygen ions can be
liquidlike (more random) even in the solid phase. Therefore,
we only take into account selenium ions in the bond angle
algorithm. By ignoring all oxygen ions in the system we

066405-8



DIRECT MOLECULAR DYNAMICS SIMULATION OF ...

determine whether a selenium ion is solidlike or liquidlike
by analyzing how it bonds to its neighboring selenium ions.
Asin Sec. II B, ions are considered neighbors if they are within
a distance r;; < 4a of each other. Once all selenium ions have
been identified as solidlike or liquidlike we tag an ion (oxygen
or selenium) as being in the bulk of the solid or liquid if a
large majority (>80%) of the selenium ions within 4a of it
are the same phase. If this criterion is not met, then the ion is
determined to be in the interface.

We now discuss runs with 98%, 90%, 80%, 70%, 60%,
and 50% selenium and then we will collect results for the
oxygen-selenium phase diagram. Although most runs appear
to be equilibrated by the end of the simulations, we note that
the 60% and 50% selenium runs are not equilibrated after using
areasonable amount of computer time. We discuss this below.

A. Run with 98% selenium

As for the carbon-oxygen systems we prepare solid and
liquid initial conditions separately and then combine them to
obtain the full 55296-ion initial conditions. To prepare the
solid we start with a 432-ion system that is composed of
98% selenium ions with random positions and velocities. The
system is evolved at a temperature close to its expected melting
temperature for t@, = 4500 using a time step of 0.11®,,. Due
to finite-size effects it solidifies. We then make eight copies of
this 432-ion system to obtain a 3456-ion solid and evolved it
for t@, =~ 20000 keeping a time step of 0.11&,,. Eight copies
of this system are made to obtain a 27 648-ion solid. This solid
is evolved for t@, >~ 20000 with a time step of 0.22®,,.

The liquid is prepared in a similar fashion. We start with
a 3456-ion system that is 98% selenium ions with random
positions and velocities. This system is evolved for t@®, >~
20000 with a time step of 0.11@,,. Eight copies of this system
are made to obtain a 27 648-ion liquid which is evolved for
tw, >~ 20000 using a time step of 0.22&, . Finally, we place the
27 648-ion liquid configuration on top of the 27 648-ion solid
configuration to form the full 55 296-ion initial conditions.

The temperature was adjusted during the run to keep
approximately equal volume fractions of solid and liquid as
shown in Fig. 13. The number fractions of selenium xg. in
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FIG. 14. (Color online) Number fractions of selenium xg, in the
solid (squares), liquid (circles), and interface (triangles) versus time
for a 55296-ion simulation that is overall 2% oxygen and 98%
selenium.

the solid, liquid, and interface are shown in Fig. 14 versus
simulation time; see also Table III. These fractions do not
change much in the second half of the run, suggesting that the
system is (at least approximately) equilibrated.

In Fig. 15, in the middle panel, we show the number fraction
of selenium xg, for different slices (regions) of the simulation
volume. This is at the end of the simulation. In the solid, xg.
is seen to be nearly constant and independent of position. This
is consistent with the system having reached equilibration.
Diffusion constants D are also shown in Fig. 15 in the top
panel and listed in Table I'V. For selenium D in the solid is seen
to be three orders of magnitude smaller than D in the liquid.
However, the behavior is very different for oxygen. Diffusion
is nearly the same in the liquid and solid regions. Indeed in the
solid, D for oxygen is over three orders of magnitude larger
than D for selenium. Presumably the effective size of oxygen
ions in the solid (ion sphere radius) is small enough so that the
oxygen can diffuse relatively easily through the larger crystal
lattice of selenium ions. Note that this behavior for oxygen in
a selenium crystal is very different from that for carbon in an
oxygen crystal as found in Sec. III; see Fig. 5.

B. Run with 90% selenium

The inital conditions for the 90% selenium simulations were
prepared similarly to the 98% ones. The only difference was

TABLEIII. Equilibrium compositions of our 55 296-ion runs. The
selenium number fraction of the whole system is xs,, and the Coulomb
parameter averaged over the last third of the run is " (determined from
the final temperature and x¢). The composition of the solid is x;, of
the liquid is x;, and of the interface regions is x;. Statistical errors are
quoted in the last digit in parentheses.

L L L -1.0

1

0.0 0.1 0.2 0.3 0.4 s I e *se Tse
100@,t 0.98 201.1(6) 0.9926(5) 0.966(1) 0.975(2)
0.90 213.4(8) 0.9708(7) 0.843(1) 0.884(4)
FIG. 13. (Color online) Volume fractions of solid (squares), liquid 0.80 252.5(6) 0.968(1) 0.681(1) 0.762(7)
(circles), and interface (triangles) versus time for a 55296-ion 0.70 289(1) 0.970(1) 0.547(1) 0.655(4)
simulation that is overall 2% oxygen and 98% selenium. Also 0.60 391(1) 0.935(2) 0.408(1) 0.513(8)
shown are fluctuations 6I" in the Coulomb parameter (solid line); 0.50 459(2) 0.902(2) 0.308(1) 0.436(9)

see Eq. (10).
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FIG. 15. (Color online) Diffusion constant D (top panel) for
selenium (open squares) and oxygen ions (filled squares) for different
slices (regions) of the simulation volume. Number fractions of
selenium xs. (middle panel) for different slices. Fractions of ions
x (bottom panel) that are in the solid (squares), liquid (circles), and
interface (triangles) for different slices. This is an average over the last
1.4 x 10°@,t of a 55296-ion simulation that is overall 2% oxygen
and 98% selenium.

that the initial compositions of the 432-ion solid and 3456-ion
liquid systems were set to 90% selenium. We then follow
the procedure laid out in Sec. IV A to obtain a 55296-ion
configuration.

The temperature was adjusted during the run to keep
approximately equal volume fractions of solid and liquid as
shown in Fig. 16. The number fractions of selenium xg, in
the solid, liquid, and interface are shown in Fig. 17 versus
simulation time. These fractions do not change much in the
second half of the run, suggesting that the system is (at least
approximately) equilibrated, as for the run with 98% selenium.

TABLE 1V. Diffusion coefficients of liquid and solid phases
averaged over the last third of the runs. Results are expressed as
D,‘; in units of Dy. The letter p denotes the phase, s for solid and / for
liquid, while X stands for the ion species, O for oxygen and Se for
selenium. Statistical errors are quoted in the last digit in parentheses.

Xse Dy Dy, Dg Dy,

0.98 3.17(1) 0.736(3) 5.66(1) 0.00080(2)
0.90 3.04(1) 0.729(2) 5.34(3) 0.00064(7)
0.80 2.88(1) 0.721(6) 4.50(9) 0.00044(7)
0.70 2.81(1) 0.771(2) 1.82(1) 0.00014(1)
0.60 2.36(1) 0.617(6) 0.18(2) 0.00002(1)
0.50 2.12(1) 0.547(2) 0.1(1) 0.00001(1)
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FIG. 16. (Color online) Volume fractions of solid (squares), liquid
(circles), and interface (triangles) versus time for a 55296-ion
simulation that is overall 10% oxygen and 90% selenium. Also
shown are fluctuations 6I" in the Coulomb parameter (solid line);
see Eq. (10).

In Fig. 18, in the middle panel, we show the number fraction
of selenium xg, for different slices (regions) of the simulation
volume. This is at the end of the simulation. In the solid, xg.
is seen to be nearly constant and independent of position. This
is consistent with the system having reached equilibration.
Diffusion constants D are also shown in Fig. 18 in the top
panel and are seen to behave in a similar way to Fig. 15.

C. Run with 80% selenium

The inital conditions for this simulation were prepared
similarly to the initial conditions for the 98% and 90%
selenium systems. However, expecting the solid to be enriched
in selenium and desiring the system to reach equilibrium faster,
we start the liquid and the solid subsystems with different ini-
tial compositions. We start with a 432-ion solid configuration
that is 90% selenium and a 3456-liquid configuration that is
70% selenium. We then follow the procedure of Sec. IV A to
obtain the 55 296-ion 80% selenium system. We note here that
due to their different initial compositions, the solid and the
liquid initially have different electron densities. However, the
electron densities quickly equilibrate.

0.98 T
R N Ty 5
0.95 | g B @, e e e ]
Ef
0.92 ]
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)

FIG. 17. (Color online) Number fractions of selenium xg. in the
solid (squares), liquid (circles), and interface (triangles) versus time
for a 55296-ion simulation that is overall 10% oxygen and 90%
selenium.
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FIG. 18. (Color online) Diffusion constant D (top panel) for
selenium (open squares) and oxygen ions (filled squares) for different
slices (regions) of the simulation volume. Number fraction of
selenium xs. (middle panel) for different slices. Fractions of ions
x (lower panel) that are in the solid (squares), liquid (circles), and
interface (triangles) for different slices. This is an average over the last
1.4 x 10°@,t of a 55296-ion simulation that is overall 10% oxygen
and 90% selenium.

The temperature was adjusted during the run to keep
approximately equal volume fractions of solid and liquid as
shown in Fig. 19. The number fractions of selenium xg. in
the solid, liquid, and interface are shown in Fig. 20 versus
simulation time. These fractions do not change much in the
second half of the run, suggesting that the system is (at least
approximately) equilibrated.
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FIG. 19. (Color online) Volume fractions of solid (squares), liquid
(circles), and interface (triangles) versus time for a 55296-ion
simulation that is overall 20% oxygen and 80% selenium. Also
shown are fluctuations §I" in the Coulomb parameter (solid line);
see Eq. (10).
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FIG. 20. (Color online) Number fractions of selenium xg, in the
solid (squares), liquid (circles), and interface (triangles) versus time
for a 55296-ion simulation that is overall 20% oxygen and 80%
selenium.

In Fig. 21, in the middle panel, we show the number
fractions of selenium xg. for different slices (regions) of the
simulation volume. This is at the end of the simulation. In
the solid, xg. is seen to be nearly constant and independent
of position. This is consistent with the system having reached
equilibration. Diffusion constants D are also shown in Fig. 21
in the top panel and are seen to behave in a similar way to
Fig. 15.
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FIG. 21. (Color online) Diffusion constant D (top panel) for
selenium (open squares) and oxygen ions (filled squares) for different
slices (regions) of the simulation volume. Number fractions of
selenium xs. (middle panel) for different slices. Fractions of ions
x (bottom panel) that are in the solid (squares), liquid (circles), and
interface (triangles) for different slices. This is an average over the last
1.4 x 10°@,t of a 55296-ion simulation that is overall 20% oxygen
and 80% selenium.
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FIG. 22. (Color online) Volume fractions of solid (squares), liquid
(circles), and interface (triangles) versus time for a 55296-ion
simulation that is overall 30% oxygen and 70% selenium. Also
shown are fluctuations 6I" in the Coulomb parameter (solid line);
see Eq. (10).

D. Run with 70% selenium

The initial conditions for this simulation were prepared
similarly to the initial conditions for the 80% selenium
system. The initial 432-ion solid was, again, composed of 90%
selenium while the 3456-ion liquid was set to 50% selenium.

The temperature was adjusted during the run to keep
approximately equal volume fractions of solid and liquid as
shown in Fig. 22. The number fractions of selenium xg. in
the solid, liquid, and interface are shown in Fig. 23 versus
simulation time. The fraction of selenium in the solid may be
increasing very slowly with time while xg. in the liquid may
be slowly decreasing. Because this change is very slow the
system may be near equilibration. However, it is possible that
Xse could continue to change for much longer run times.

In Fig. 24, in the middle panel, we show the number
fractions of selenium xg. for different slices (regions) of the
simulation volume. This is at the end of the simulation. In
the solid, xs. is seen to be nearly constant and independent
of position. This is consistent with the system having reached
equilibration. Diffusion constants D are also shown in Fig. 24
in the top panel and are seen to behave in a similar way to
Fig. 15. However, now D for selenium is seen to change
slightly with position in the solid near the interface regions.
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FIG. 23. (Color online) Number fractions of selenium xg. in the
solid (squares), liquid (circles), and interface (triangles) versus time
for a 55296-ion simulation that is overall 30% oxygen and 70%
selenium.
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FIG. 24. (Color online) Diffusion constants D (top panel) for
selenium (open squares) and oxygen ions (filled squares) for different
slices (regions) of the simulation volume. Number fractions of
selenium xs. (middle panel) for different slices. Fraction of ions
x (bottom panel) that are in the solid (squares), liquid (circles), and
interface (triangles) for different slices. This is an average over the last
1.4 x 10°@,t of a 55296-ion simulation that is overall 30% oxygen
and 70% selenium.

E. Run with 60% selenium

The initial conditions for this simulation were prepared
similarly to the initial conditions for the 80% selenium system.
The initial 432-ion solid was composed of 90% selenium while
the 3456-ion liquid was set to 30% selenium.

The system started with a large solid fraction. The temper-
ature was increased to bring the solid fraction approximately
equal with the liquid fraction, as shown in Fig. 25. The number
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FIG. 25. (Color online) Volume fractions of solid (squares), liquid
(circles), and interface (triangles) versus time for a 55296-ion
simulation that is overall 40% oxygen and 60% selenium. Also
shown are fluctuations §I" in the Coulomb parameter (solid line);
see Eq. (10).
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FIG. 26. (Color online) Number fractions of selenium xs. in the
solid (squares), liquid (circles), and interface (triangles) versus time
for a 55296-ion simulation that is overall 40% oxygen and 60%
selenium.

fractions of senium xg. in the solid, liquid, and interface are
shown in Fig. 26 versus simulation time. Again the fraction
of selenium in the solid may be increasing slightly over the
second half of the run.

In Fig. 27, in the middle panel, we show the number
fractions of selenium xg. for different slices (regions) of the
simulation volume. This is at the end of the simulation. In the
solid, xs. depends on position, as do the diffusion constants D
as shown in the top panel of Fig. 27. This clearly indicates that
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FIG. 27. (Color online) Diffusion constants D (top panel) for
selenium (open squares) and oxygen ions (filled squares) for different
slices (regions) of the simulation volume. Number fractions of
selenium xs. (middle panel) for different slices. Fractions of ions
x (bottom panel) that are in the solid (squares), liquid (circles), and
interface (triangles) for different slices. This is an average over the last
1.4 x 10°@,t of a 55296-ion simulation that is overall 40% oxygen
and 60% selenium.
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FIG. 28. (Color online) Volume fractions of solid (squares), liquid
(circles), and interface (triangles) versus time for a 55296-ion
simulation that is overall 50% oxygen and 50% selenium. Also
shown are fluctuations 6I" in the Coulomb parameter (solid line);
see Eq. (10).

the system has not reached equilibrium. Therefore we cannot
use this run to determine the phase diagram in Sec. IV G.
Unfortunately, the equilibration time may be very long for this
composition and therefore require an unreasonable amount of
simulation time in order to bring the system into equilibration.

F. Run with 50% selenium

The initial conditions for this simulation were prepared
similarly to the initial conditions for the 80% selenium
system. The initial 432-ion solid was, again, composed of 90%
selenium while the 3456-ion liquid was set to 10% selenium.

The system started with a large solid fraction. The temper-
ature was increased to bring the solid fraction approximately
equal with the liquid fraction as shown in Fig. 28. The number
fractions of selenium xg, in the solid, liquid, and interface are
shown in Fig. 29 versus simulation time. Now the fraction of
selenium in the solid may be decreasing slightly and xg. for
the liquid increasing slightly with time over the second half of
the run.

In Fig. 30, in the middle panel, we show the number
fractions of selenium xg. for different slices (regions) of the
simulation volume. This is at the end of the simulation. In the
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FIG. 29. (Color online) Number fractions of selenium xg. in the
solid (squares), liquid (circles), and interface (triangles) versus time
for a 55296-ion simulation that is overall 50% oxygen and 50%
selenium.

066405-13



SCHNEIDER, HUGHTO, HOROWITZ, AND BERRY

Tse .60 ]

slices

FIG. 30. (Color online) Diffusion constants D (top panel) for
selenium (open squares) and oxygen ions (filled squares) for different
slices (regions) of the simulation volume. Number fractions of
selenium xg. (middle panel) for different slices. Fractions of ions
x (bottom panel) that are in the solid (squares), liquid (circles), and
interface (triangles) for different slices. This is an average over the last
1.4 x 10°@,t of a 55296-ion simulation that is overall 50% oxygen
and 50% selenium.

solid, xs. depends on position, as do the diffusion constants D
as shown in the top panel of Fig. 30. This is similar to the run
with 60% selenium and clearly indicates that the system has
not reached equilibrium. Therefore we cannot use this run to
determine the phase diagram in Sec. IV G. Unfortunately, the
equilibration time for this composition may also be very long
and therefore require an unreasonable amount of simulation
time in order to bring the system into equilibration.

G. Oxygen-selenium phase diagram

We now present the liquid-solid phase diagram implied by
the simulations in Secs. IVA,IVB,IVC,IVD,IVE,andIVF.
We use the data in Table III. Figure 31 shows the phase diagram
as a function of xgs.. The y axis is the melting temperature 7
divided by the melting temperature Ty for pure oxygen. We
assume that the pure oxygen system melts at I',,, = 178.4 [26].
This differs slightly from the one-component plasma result
because we include the effects of electron screening.

The filled upward-pointing triangles in Fig. 31 show the
composition of the liquid phase, and the filled squares the
composition of the solid phase for 55296-ion simulations.
Also shown as filled downward-pointing triangles and filled
diamonds are the liquid and solid compositions for runs
that are clearly not equilibrated. These points should not be
used in the determination of the phase diagram. The open
triangles (liquid) and squares (solid) show results for smaller
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FIG. 31. (Color online) Selenium-oxygen phase diagram plotting
the composition of the liquid phase (upper red curve or triangles) that
is in equilibrium with the solid phase (lower blue curve or squares).
Results from 55296-ion simulations are filled symbols while the
open symbols are results with 27 648 ions. Besides results discussed
in the text there is an extra 27 648-ion simulation with xg. = 0.65.
The curves are the results of Medin and Cumming [21].

27 648-ion simulations; see Table V. In general there is very
good agreement between equilibrated 55 296- and 27 648-ion
simulations. This suggests that finite-size effects, while not
strictly zero, are small.

The blue solid lines in Fig. 31 show the solid composition,
and the dotted brown line the liquid composition, for the phase
diagram of Medin and Cumming [21]. There is qualitative
agreement between these curves and our results for the
xse > 0.5 half of the phase diagram where we have apparently
equilibrated independent results. However, there are some
differences in detail. We find a somewhat larger selenium
solid composition while our melting temperature for the liquid
is somewhat lower than that of Medin and Cumming. This
difference in melting temperature may be due to electron
screening effects that are included in our simulations and
neglected in Medin and Cumming’s free energies.

Screening depends on the ratio of ion sphere radius a to
screening length A; see Eq. (1). For a very relativistic electron

TABLE V. Equilibrium compositions of 27 648-ion runs. The
selenium number fraction of the whole system is xs.. Note that
runs with xge = 0.60 and 0.50 are not equilibrated. The Coulomb
parameter averaged over the last third of the run is I". The composition
of the solid is x,, the liquid is xi,, and the interface regions is x,.
Statistical errors are quoted in the last digit in parentheses.

T !

XSe r xge Xse 'xée

0.98 198.1(7) 0.991(1) 0.968(1) 0.976(2)
0.90 212.0(8) 0.969(2) 0.846(4) 0.888(4)
0.80 244(2) 0.966(2) 0.683(3) 0.764(6)
0.70 279(1) 0.970(2) 0.560(3) 0.650(8)
0.65 329(1) 0.973(2) 0.469(3) 0.559(6)
0.60 383(1) 0.971(2) 0.415(3) 0.487(7)
0.50 456(1) 0.959(1) 0.330(1) 0.400(6)
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gas this ratio depends only on the average ion charge (Z) and
is independent of density,

a <21/332/3

K=5=\"e

>a1/2<z>1/3. (12)

For a one-component Yukawa system the value of I' at the
melting point, ', is [40]

Tn((Z)) &~ 171.8 + 42.46K> + 3.841«*, (13)
for k < 1.4. For pure oxygen we have
I,,(8) = 178, (14)
while for pure selenium,
I, (34) = 188. (15)

Thus pure selenium melts at a 6% higher I' value than pure
oxygen because of enhanced electron screening. In order to
study the differences between our MD simulation results for
T /Ty in Fig. 31 and Medin and Cumming’s results, we rescale
Medin and Cumming’s melting temperatures according to

T Q) T

— — (16)
TO Fm(<z)) TO

and plot the rescaled results in Fig. 32. This procedure
ensures that the rescaled Medin and Cumming results will
reproduce Eq. (14) for pure oxygen and Eq. (15) for pure
selenium. In between, for a mixture of oxygen and selenium,
we somewhat arbitrarily assume that the electron screening
correction depends only on (Z).

There is good agreement between our MD results in Fig. 32
and these rescaled Medin and Cumming results for simulations
with 90% or 98% selenium. However, for simulations with
smaller xs., our MD results give somewhat lower melting
temperatures and have less oxygen in the solid phase. These
differences could be due to finite-size or nonequilibrium effects

12.0 ‘ ‘
solid - no screen correction —
11.0 } liquid - no screen correction ---
solid - screen correction ---
10.0 + liquid - screen correction
9.0 |
T -
L 80t )
7.0 | 2
6.0 | .7
50 F &
4.0 ! !
0.5 0.6 0.7

ISe

FIG. 32. (Color online) Enlargement of the large-xs. part of the
selenium-oxygen phase diagram from Fig. 31. The heavy dashed
and solid lines are the results of Medin and Cumming [21], while
the light dashed lines are our rescaling of Medin and Cumming’s
results to approximately include the effects of electron screening, as
discussed in the text.
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in our MD simulations. However, we find only very small
differences between 27 648- and 55 296-ion simulations. Fur-
thermore, except for the low-xse = 50% or 60% runs, we find
very little time dependence in our simulations. Alternatively,
the differences could be due to electron screening effects for
mixtures that are not well described by the rescaling in Eq. (16).
Finally, the differences could be due to limitations in the liquid
and solid free energies used by Medin and Cumming.

Unfortunately our simulations with 50% and 60% sele-
nium did not reach equilibrium. Therefore we are not able
to effectively study the phase diagram for low selenium
concentrations. Medin and Cumming predict regions of the
phase diagram with equilibria between different solid phases.
Perhaps by carefully preparing initial conditions that include
two solid phases of different compositions, one may be able
to study solid-solid phase equilibria with our direct MD
simulation procedure. However, the small diffusion constants
for selenium in the solid have made it difficult for us to
equilibrate the simulations with small selenium concentrations
presented here. Note that this region of the phase diagram, with
small xg., may not be important in applications for neutron
stars.

The complex rapid proton capture nucleosynthesis ash
composition considered in Ref. [10] was predominantly
selenium, with only small concentrations of oxygen and a
number of other impurities. We modeled this 17-component
composition with a binary system of oxygen impurities mixed
with the dominant element selenium. Direct MD simulations
of the full rp ash composition in Ref. [10], Table I, found
the concentration of oxygen in the liquid phase to be six
times larger than the oxygen concentration of the solid phase.
While we find, in the first two rows of Table III, that the
oxygen concentration of the liquid phase, for our simplified
binary mixture simulations, is five times larger than that in
the solid phase. We conclude that this binary mixture model
provides a reasonable description of the freezing behavior of
the rp ash.

V. SUMMARY AND CONCLUSIONS

We have determined the liquid-solid phase diagram for
carbon-oxygen and oxygen-selenium plasma mixtures using
two-phase MD simulations. We identified liquid, solid, and
interface regions in our simulations using a bond angle
metric described in Sec. IIB. To study finite-size effects,
we performed both 27 648- and 55296-ion simulations. To
help monitor nonequilibrium effects, we calculated diffusion
constants D;. For the carbon-oxygen system, we find that D},
for oxygen ions in the solid is much smaller than D¢ for
carbon ions and that both diffusion constants are 80 or more
times smaller than diffusion constants in the liquid phase.
There is excellent agreement between our carbon-oxygen
phase diagram and that predicted by Medin and Cumming [21].
This suggests that errors from finite-size and nonequilibrium
effects are small, and that the carbon-oxygen phase diagram
may be accurately known.

The oxygen-selenium system, with a larger ratio of charges
than the carbon-oxygen mixture, can serve as a simple two-
component model of the complex rapid proton capture ash
composition on an accreting neutron star. We find that diffusion
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of oxygen in a predominantly selenium crystal is remarkably
fast and is comparable to diffusion in the liquid phase. Our
MD simulations have a somewhat lower melting temperature
for the oxygen-selenium system than that predicted by Medin
and Cumming. This is in part due to electron screening effects,
which are included in our simulations and may be neglected
by Medin and Cumming. In the future, we will present MD
simulations of the phase diagram for the three-component
carbon-oxygen-neon system to include the effects of neon
impurities in carbon-oxygen white dwarfs. In addition, we

PHYSICAL REVIEW E 85, 066405 (2012)

will describe the structure of the carbon-oxygen and oxygen-
selenium Coulomb crystals.
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