
Evaluation of Data Storage in HathiTrust Research Center
Using Cassandra

Guangchen Ruan
Data to Insight Center

School of Informatics and Computing
Indiana University

gruan@indiana.edu

Beth Plale
Data to Insight Center

School of Informatics and Computing
Indiana University

plale@indiana.edu

ABSTRACT
As digital data sources grow in number and size, they pose an op-
portunity for computational investigation by means of text min-
ing, NLP, and other text analysis techniques. The HathiTrust Re-
search Center (HTRC) was recently established to provision for au-
tomated analytical techniques on the over 11 million digitized vol-
umes (books) of the HathiTrust digital repository. The HTRC data
store that hosts and provisions access to HathiTrust volumes needs
to be efficient, fault-tolerant and large-scale. In this paper, we pro-
pose three schema designs of Cassandra NoSQL store to represent
HathiTrust corpus and perform extensive performance evaluation
using simulated workloads. The experimental results demonstrate
that encapsulating the whole volume within a single row with reg-
ular columns delivers the best overall performance.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications; D.2.8 [Software Engineering]:
Metrics—performance measures

General Terms
Experimentation, Performance, Schema design

Keywords
Cassandra, schema design, performance evaluation

1. INTRODUCTION
HathiTrust Digital Library [10] is a digital preservation repository
that provides long-term preservation and access services for public
domain and in copyright content from a variety of sources. As of
2014, HathiTrust has digitized just over 11 million volumes (books)
from research libraries across the country. The HathiTrust Research
Center (HTRC) [11] was recently established to provision for au-
tomated analytical techniques on the text data of the HathiTrust
digital repository. Due to the scale of the HathiTrust corpus and the
stringent performance requirement imposed by HTRC data services
(i.e. the caller), it has been very challenging to design a successful
data store. The challenges include:

• Large-scale and Scalability — HTRC data store needs to
handle the TB scale HathiTrust corpus data and to easily
scale up to accommodate forthcoming corpus (e.g. copy-
righted content).

• Availability and Fault tolerance — HTRC is committed to
provision production services which require HTRC data store
be able to deliver an “always-on” service or degrade ele-
gantly even under the circumstance of nodes failure.

• Efficiency — HTRC data store needs deliver efficient reads
and writes operations to meet the performance requirement
of HTRC RESTful data services, in other words, HTRC data
store should satisfy the service-level agreement (SLA) con-
tracted with HTRC data services.

Since traditional data store solutions such as pairtree [16] and re-
lational databases [5, 17] have scalability and availability issues,
choosing a NoSQL [3] solution becomes straightforward and we
use Cassandra, an exemplary and powerful extensible record store
to host HathiTrust volumes. However, it is still uncertain which
schema should be used to represent the corpus data and what is
the expected performance. To answer these questions, in this paper
we propose three column family schemas and conduct extensive
performance evaluations under various simulated workloads. The
experimental results demonstrate that encapsulating the whole vol-
ume within a single row with regular columns achieves the best
overall performance amongst all three schemas whilst keeping the
representation concise and clear. Our evaluation also demonstrates
Cassandra’s capability of handling massive workload in concurrent
access scenario.

The remainder of the paper is organized as follows: Section 2 dis-
cusses related work. Section 3 presents the proposed schemas. Sec-
tions 4 and 5 present experimental results under concurrent read-
ers/writers access scenario and user query scenario, respectively.
Section 6 presents and discuss experimental results on simulated
workloads. Finally we conclude the paper in Section 7.

2. RELATED WORK
In this section we discuss the issues of pairtree [16] and relational
databases [5, 17] when facing large-scale and size growing data.
We present the rationales behind the design of NoSQL data stores
and elaborate some exemplary NoSQL solutions.

Pairtree [16] is a file system hierarchy for the organization of a
digital object store used by digital libraries. The pairtree algo-
rithm maps an arbitrary UTF-8 encoded object identifier string into

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUScholarWorks

https://core.ac.uk/display/213840196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a file system directory path based on successive pairs of charac-
ters. An object directory holds all the files that comprise the object.
Any file system can be employed as the underlying storage and
backup and restore can simply be performed with native file sys-
tem tools. Pairtree has two major limitations: 1) Pairtree does not
scale well when the number of objects is tremendous. The system
cost of maintaining the whole tree structure can be prohibitive, e.g.,
Linux inodes may consume more storage space than files them-
selves when most of the files are small. Retrieval can also be in-
efficient when accessing deep branches; and 2) since the mapping
between the object identifier and the file system directory is rule-
based and does not consider the distribution of identifiers, pairtree
can be quite imbalanced and therefore no consistent performance
can be guaranteed, e.g., like an AVL tree.

Relational databases [5, 17] are very good at solving certain data
storage problems, but because of their focus, several issues emerge
when it is time to scale. Expensive joins need to be minimized,
which means denormalizing the data, which means maintaining
multiple copies of data and seriously disrupting the design, both
in the database and in the application. Making schema changes
without taking shards “offline” is also a challenge. Experience has
shown that data stores that provide ACID guarantees tend to have
poor availability. This has been widely acknowledged by both the
industry and academia [8].

To address these issues, quite a few NoSQL systems have been de-
signed and they can be roughly classified into the following three
categories: 1) key-value stores, which include Dynamo [8], Volde-
mort [22], Scalaris [19], and Riak [18]; 2) document stores, which
include CouchDB [7], MongoDB [15], SimpleDB [20], and Terras-
tore [21]; and 3) extensible record stores, which include BigTable [4],
Cassandra [14], HBase [12], HyperTable [13], and PNUTS [6].
These NoSQL systems are designed to be distributed, decentral-
ized, elastically scalable, highly available, fault-tolerant, and tun-
ably consistent. They restrict the traditional notion of ACID trans-
actions by allowing only single-record operations to be transactions
and/or by relaxing ACID semantics, for instance, supporting only
“eventual consistency” on multiple versions of data. Below we
elaborate the design and implementation details of some of them.

Bigtable [4] is a distributed storage system for managing structured
data that is designed to scale to a very large size. A Bigtable is a
sparse, distributed, persistent multi-dimensional sorted map. The
map is indexed by a row key, column key, and a timestamp; each
value in the map is an uninterpreted array of bytes. Bigtable is
built on several other pieces of Google infrastructure. Bigtable uses
the distributed Google File System (GFS) [9] to store log and data
files and relies on a highly-available and persistent distributed lock
service called Chubby [2].

Dynamo [8] is a highly available key-value storage system that is
used in some of Amazon’s core services to provide an “always-on”
experience. Dynamo employs consistent hashing as the partition
scheme to distribute the load across multiple storage hosts. Nodes
are logically organized in a ring. A gossip based protocol propa-
gates membership changes and helps every node maintain informa-
tion about every other node. In this manner, request routing can
be done with at most one-hop. Dynamo detects updated conflicts
using a vector clock scheme, but prefers a client side conflict reso-
lution mechanism. Dynamo is quite flexible to meet different per-
formance requirement. Service owners can customize their storage
system to meet their desired performance, durability and consis-

tency SLAs simply by tuning the corresponding parameters.

Cassandra [14] is an open source distributed database management
system. It is designed to handle very large amounts of data spread
out across many commodity servers while providing a highly avail-
able service with no single point of failure. Cassandra is a highly
scalable, eventually consistent, distributed, and structured extensible-
record store, which brings together the distributed systems tech-
nologies from Dynamo and the data model from Google’s BigTable.
Like Dynamo, Cassandra is eventually consistent. Like BigTable,
Cassandra provides a column family-based data model richer than
typical key/value systems.

3. COLUMN FAMILY DESIGN
The original volumes are stored in pairtree in HathiTrust’s filesys-
tem where each volume corresponds to a directory. Under each
directory there is a mets xml file which contains all metadata infor-
mation about the volume and a zipped file which contains the raw
.txt files for individual pages. Before ingesting data into Cassandra,
a schema needs to be designed to represent the volume. There are
two sorts of data, i.e., page level data and volume level data; and
the principle we adopt is to group logically related fields together.
In Cassandra, there are two sorts of columns, i.e., regular column
and super column. Regular column can be simply viewed as a map-
ping between the column name and the column value; while a super
column is a collection of sub-columns/regular-columns. Therefore
several choices can be made on how to organize the information
together. Based on aforementioned principle and Cassandra’s data
model, we propose three column family designs which differ from
each other in terms of the granularity and the compactness in data
representation.

Cassandra is actually schema-less and for convenience in the fol-
lowing sections we still use the term “schema” in relational database
field to refer to the design of column families. We define keyspace
(analogous to database in RDBMS) “HTRCCorpus”, within which
three column families (analogous to table in RDBMS), i.e., “Vol-
umeContents”, “Collections” and “CollectionNames” are defined.
The “Collections” column family keeps track of copyright infor-
mation. It consists of two rows which record IDs of public domain
and in-copyright domain volumes, respectively. As in Cassandra
there is no easy or inexpensive means to list all row keys within
a column family, “CollectionNames” is employed as a dedicated
column family to record all volume IDs. It is composed of a single
row whose column names are volume IDs and column values are ir-
relevant and only serve as place holders. The “VolumeContents” is
the core column family which carries the real “payload”, i.e. stor-
ing the actually volume metadata and content. In below we present
three proposed schemas for “VolumeContents” column family.

3.1 Encapsulating the Whole Volume within a
Single Row with Super Columns

In this schema, each volume is stored within a single row in “Vol-
umeContents”, which in turn consists of multiple super columns;
one super column for metadata and one super column for each page
(referred to as schema 1 henceforth). The schema of each column
family is listed in Fig. 1.

3.2 Encapsulating the Whole Volume within a
Single Row with Regular Columns

In contrast with schema 1 which groups related information into
a super column, in this design “VolumeContents” uses only stan-

--keyspace
“HTRCCorpus” {

--the master super column family, which
contains all volume and page contents and
metadata
“VolumeContent” {

--row key, which is the volume ID
“volumeID” {

--super column key for volume metadata
“metadata” {

--sub column for volume copyright info
“copyright”; <PUBLIC | IN-COPYRIGHT>

--sub column for number of pages in the volume
“pageCount”; <page_count>

--sub column for publish date of volume
“publishDate”; <publishDate of volume>

--sub column for genre of volume
“genre”; <genre of volume>

--sub column for zip file of volume
“wholeVolume”; <zip file of volume> }

--super column key for the first page
“00000001” {

--sub column for page contents
“contents”; <page_text>

--sub column for number of bytes in page
contents
“byteCount”; <byte_count> }
} }

--column family for themed collections
“Collections” {

--row containing public volumes
“public” {

--valueless column where column key is the
volume ID
“volumeID” }

--row containing in-copyright volumes
“in-copyright” {

--valueless column where column key is the
volume ID
“volumeID” }
}

--column family with one row listing all
available collections
“CollectionNames” {

“name” {

--valueless column where column key is a named
collection
“collectionName” }
}

}

Figure 1: Schemas of three column families within the “HTR-
CCorpus” keyspace. “VolumeContent” column family encapsu-
lates the whole volume within a single row with super columns.
“Collections” column family keeps track of copyright infor-
mation and “CollectionNames” column family is employed to
record all volume IDs. Blue colored lines are comments.

dard or regular columns to organization information (referred to
as schema 2 henceforth). In schema 2 basically sub columns in
schema 1 are extracted from super columns and are treated as reg-
ular columns, and each volume still corresponds to a single row
within the column family. Naming in schema 2 is simple and straight-
forward, i.e., the names of the belonging sub column and the super
column in schema 1 are concatenated to name the regular column.
The schema of “VolumeContents” is shown in Fig. 2.

“HTRCCorpus” {

“VolumeContent” {

--row key, which is the volume ID
“volumeID” {

--info for metadata

--standard column for volume copyright info
“metadata.copyright”; <PUBLIC | IN-COPYRIGHT>

--standard column for number of pages in the
volume
“metadata.pageCount”; <page_count>

--standard column for publish date of volume
“metadata.publishDate”; <publishDate of volume>

--standard column for genre of volume
“metadata.genre”; <genre of volume>

--standard column for zip file of volume
“metadata.wholeVolume”; <zip file of volume>

--info for the first page

--standard column for page contents
“00000001.contents”; <page_text>

--standard column for number of bytes in page
contents
“00000001.byteCount”; <byte_count> }

}
}

Figure 2: Schema of “VolumeContent” column family which
encapsulates the whole volume within a single row with regular
columns.

3.3 One Row for Metadata and One Row for
Each Page with Regular Columns

In this design, instead of using a single row to encapsulate all vol-
ume information (i.e. metadata and pages), metadata and each page
correspond to a single row composed of regular columns. Virtually
each super column in schema 1 is represented as a separate row
in this schema (referred to as schema 3 henceforth). Naming for
regular columns in schema 3 is done by simply using sub column
names in schema 1. To name rows, we concatenate the original row
name (i.e. the volume id) with the name of the super column. The
schema of VolumeContents under this design is shown in Fig. 3.

Since all three proposed schemas separate the content (or metadata)
for different pages into different super/regular columns, they allow
fast locating and retrieving when the user only interests in a partic-
ular set of pages such as preface or table of contents. However, the
drawback is that when the user needs the whole volume we have
to retrieve each page one by one, which is not quite efficient. The
workaround is that compressing all pages and metadata files into a
single zipped file and store that file in a separate column in Cassan-
dra. In such a means, the whole volume can be obtained by access-
ing only one sub/regular column (i.e. the “wholeVolume” column).
Here, we trade space for access time and the cost of adding extra
storage is a small price to pay for the performance.

4. EXPERIMENTAL RESULTS OF CONCUR-
RENT READS/WRITES

Apache Cassandra is a free, open source and distributed data stor-
age system that differs sharply from relational database manage-
ment systems. It evolves rapidly and makes minor releases from
time to time. As we started this work, the most stable version is
0.8.2, and later Cassandra releases version 1.0.1 with many opti-
mization and enhanced features. Therefore we switch to version
1.0.1 at that point and all subsequent performance evaluations are
conducted based on that version. A 3-node Cassandra cluster is set
up for performance evaluation. Each node is a commodity work-
station with following specifications: 2 Intel (R) Xeon (R) cores
of 2.40 GHz, 6 GB main memory and 460 GB hard disk. The
Cassandra cluster is configured with replication factor of two and
each node hosts equal share of data. Each cassandra instance uses
25% available memory as JVM heap, which is 1.5 GB. Two cor-
pora are used for evaluation: a medium size corpus—Indiana Uni-
versity collection which contains 28,896 volumes and a large size
corpus—nongoogle collection which contains 256,451 volumes.

“HTRCCorpus” {

“VolumeContent” {

--row key, which is the metadata for volum with
ID “volume ID”
“volumeID.metadata” {

--info for metadata

--standard column for volume copyright info
“copyright”; <PUBLIC | IN-COPYRIGHT>

--standard column for number of pages in the
volume
“pageCount”; <page_count>

--standard column for publish date of volume
“publishDate”; <publishDate of volume>

--standard column for genre of volume
“genre”; <genre of volume>

--standard column for zip file of volume
“wholeVolume”; <zip file of volume> }

--info for the first page

--row key, the first page of volume with ID
“volume ID”
“volumeID.00000001” {

--standard column for page contents
“contents”; <page_text>

--standard column for number of bytes in page
contents
“byteCount”; <byte_count> }

}
}

Figure 3: Schema of “VolumeContent” column family which
uses one row for metadata and one row for each page with reg-
ular columns.
Concurrent readers/writers experiments simulate the read/write con-
flict in real world applications. There are three scenarios, (1) multi-
ple readers only; (2) multiple writers only; and (3) both readers and
writers. For each run, firstly a subset is randomly selected from
the whole corpus. Each reader/writer then randomly accesses a
portion of volumes from this subset in the following means: read-
ers read the whole record of the volume (all metadata and con-
tent of each page); and writers update the volume with the same
content, in other words, the whole record of the volume is sim-
ply rewritten without any change. The subset is chosen as 5% of

the whole corpus and readers/writers randomly access 60% of the
subset, which is roughly 3% of the corpus (5% * 60% = 3%) or
867/7694 (IU/nongoogle) volumes. Under this setting two clients
will have at least 20% overlap on accessed volumes (i.e. the con-
flict). As the subset is selected randomly and in order to obtain
reliable results, the results showed in following figures for each
condition are actually the averaged results over 5 independent runs.

Figure 4(a) shows the performance comparison of three schemas on
IU collection under multiple readers case. Each reader reads 887
volumes (3% of the corpus) from the same subset. X-axis shows
the number of readers and Y-axis shows the time consumed to read
the 887 volumes. We can observe from Fig. 4(a) that schemas 1
and 2 provision much more efficient read operation than schema
3. In order to retrieve the content of a volume, schema 3 has to
invoke one row access for each page while schemas 1 and 2 only
need one. Excessive row accesses greatly degrade the read perfor-
mance of schema 3. Schema 1 performs slightly better than schema
2 and our explanation is that schema 1 has less sorting cost com-
pared with schema 2: Cassandra executes a sort operation on results
before returning them back to the client. In schema 1, sort is exe-
cuted on super column level, which is much cheaper than schema
2, where the sort has to be conducted on regular columns whose
number is much greater than that of super columns in schema 1.
Another observation we have is that Cassandra shows good linear
scalability, i.e., there is no noticeable performance degradation as
the number of readers increases.

Figure 4(b) shows the performance comparison under multiple writ-
ers case. Each writer writes 887 volumes (3% of the corpus) from
the same subset. X-axis shows the number of writers and Y-axis
shows the time consumed to write the 887 volumes. We can ob-
serve from Fig. 4(b) that schema 2 is the best one in terms of write
operation. Schema 3 is still the worst one because of too many
row accesses. The performance of schema 1 is inferior to schema
2 in that composing super columns is more expensive than regu-
lar columns. We also observe linear scalability in this concurrent
writes scenario.

Figure 4(c) shows the performance comparison under multiple read-
ers / writers case. Each reader (writer) reads (writes) 887 volumes
(3% of the corpus) from the same subset. X-axis shows the number
of readers (writers) and Y-axis shows the time consumed to read
(write) the 887 volumes. The results are consistent with those ob-
served in Figures 4(a) and 4(b). Schema 2 achieves the best overall
performance amongst all three in terms of both reads and writes.

To further evaluate the performance of schema 2, we scale to the
larger nongoogle collection and repeat the above three cases. Fig-
ure 5(a) shows the performance of schema 2 on nongoogle collec-
tion under multiple readers case. Each reader reads 7,694 volumes
(3% of the corpus) from the same subset. X-axis shows the number
of readers and Y-axis shows the time consumed to read the 7,694
volumes. Although the size of the volumes (7,694) being read is
roughly 8.7 multiples of the IU collection case (887), the time con-
sumed (66s) is only 4.7 multiples of the IU collection case (14s),
which demonstrates another dimension of linearity.

Figure 5(b) shows the multiple writers case. Each writer writes
7,694 volumes (3% of the corpus) from the same subset. X-axis
shows the number of writers and Y-axis shows the time consumed
to write the 7,694 volumes. As the size of the data becomes large,
we observe more outliers than in the IU collection case. However,

15

20

25

30

35

40

45

50

of readers
5 10 15 20

T
im

e
in

 s
ec

on
ds

Multiple readers performance test on iu collection
of volumes = 867 (%3 of the corpus)

Schema 1
Schema 2
Schema 3

(a)

60

70

80

90

100

110

120

130

of writers
5 10 15 20

T
im

e
in

 s
ec

on
ds

Multiple writers performance test on iu collection
of volumes = 867 (%3 of the corpus)

Schema 1
Schema 2
Schema 3

(b)

20

40

60

80

100

120

of readers/writers
5/5 10/10 15/15 20/20

T
im

e
in

 s
ec

on
ds

Multiple readers/writers performance test on iu collection
of volumes = 867 (%3 of the corpus)

Schema 1 Reader
Schema 1 Writer
Schema 2 Reader
Schema 2 Writer
Schema 3 Reader
Schema 3 Writer

(c)

Figure 4: Performance comparison of three schemas under concurrent readers and/or writers access, IU collection used. (a) readers
only, (b) writers only, and (c) both readers and writers.

63

64

65

66

67

68

69

70

5 10 15 20
of readers

T
im

e
in

 s
ec

on
ds

Multiple readers performance test on non−google collection
of volumes = 7694 (%3 of the corpus)

Schema 2

(a)

500

1000

1500

2000

2500

5 10 15 20
of writers

T
im

e
in

 s
ec

on
ds

Multiple writers performance test on non−google collection
of volumes = 7694 (%3 of the corpus)

Schema 2

(b)

500

1000

1500

2000

2500

3000

3500

4000

of readers/writers
5/5 10/10 15/15 20/20

T
im

e
in

 s
ec

on
ds

Multiple readers/writers performance test on non−google collection
of volumes = 7694 (%3 of the corpus)

Schema 2 Reader
Schema 2 Writer

(c)

Figure 5: Performance of schema 2 under concurrent readers and/or writers access, nongoogle collection used. (a) readers only, (b)
writers only, and (c) both readers and writers.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Run Sequence ID

T
im

e
In

 S
ec

on
ds

Performance Test : Get Volume IDs By Publish Date

schema type = 1
schema type = 2
schema type = 3

(a)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Run Sequence ID

T
im

e
In

 S
ec

on
ds

Performance Test : Get Volume IDs By Genre

schema type = 1
schema type = 2
schema type = 3

(b)

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Run Sequence ID

T
im

e
In

 S
ec

on
ds

Performance Test : Get Whole Zip File By Volume ID

schema type = 1
schema type = 2
schema type = 3

(c)

Figure 6: Performance comparison of three schemas under three user queries. (a) retrieve volume IDs by publish date, (b) retrieve
volume IDs by genre, and (c) retrieve the whole volume content by volume ID.

as the box is actually the averaged results over 5 independent runs,
outliers only account for a small portion.

Figure 5(c) shows the multiple readers/writers case. Each reader
(writer) reads (writes) 7,694 volumes (3% of the corpus) from the
same subset. X-axis shows the number of readers (writers) and
Y-axis shows the time consumed to read (write) the 7,694 vol-
umes. We see more outliers when the number of readers and writers
increases. The time consumed for read (write) operations, how-
ever, doesn’t increase linearly as the number of readers and writers,
which is a desired scalability property.

Discussion. From the concurrent readers/writers experiments we
can observe that schema 2 achieves the best overall performance
amongst all three proposed schemas. Below we discuss pros and
cons of each schema in detail. Encapsulating a whole volume
within a single row with super columns (schema 1) is quite straight-
forward and has a better hierarchical structure, i.e., one super col-
umn for metadata and one super column for each page. Related
information is grouped together within one super column which
consists of multiple regular columns. However, decomposing su-
per column is a costly operation and thus accessing sub-columns
within super columns is far less efficient than directly accessing
regular columns. Schema 1 achieves compact and concise repre-
sentation at the expense of performance. In schema 3 we employ
one row for metadata and one row for each page, all with regu-
lar columns. Under this design, there is no “fat” row as each row
only represents a limited amount of information. Accessing a sin-
gle row becomes very fast and this property can be quite beneficial
when clients only need to retrieve a small number of rows. For in-
stance, clients only care about metadata or a particular set of pages
such as preface or table of contents. However, when dealing with
cases that clients need to conduct analysis over the whole content
of the volume, this approach can be quite inefficient. Although it
is cheap to access a single row, the total cost is still high because
there are huge number of rows need to be accessed for a given vol-
ume. Another drawback of schema 3 is that due to the partitioning
mechanism in Cassandra, multiple rows belonging to the same vol-
ume can be distributed amongst different nodes, which may incur
further delay in processing. In our user requirement analysis, we
found that in most cases clients request the whole volume content
for processing and this is how schema 2 comes. In schema 2, we
encapsulate the whole volume within a single row but only using
regular columns. In this manner regular columns can be accessed
efficiently while still keeping all accesses to a volume within one
row. Experimental results demonstrate that schema 2 has superior
performance over other two schemas.

5. EXPERIMENTAL RESULTS OF QUERIES
For public domain collections, the user is allowed to retrieve partial
content or the whole volume to client side where further analysis or
processing can be made. The typical use case or query is that the
user specifies filtering conditions (normally against metadata) and
then the data store retrieves all qualified volume records based on
user specified volume IDs. We note that in practice HTRC lever-
ages Solr [1] to index metadata and full text and to provision query
interfaces to users. This is because Solr’s index capability is much
more powerful than Cassandra. However, in this paper we focus on
evaluating Cassandra’s performance, therefore in the following we
define three query cases that are issued to Cassandra directly.

• Retrieve Volume IDs based on Given Publish Date (query

case 1) — In this scenario, the user specifies a publish date
or data range and Cassandra retrieves and returns the volume
IDs of all volumes published within that range. Publish date
is stored as metadata and in most cases it is only precise to
year. Therefore we relax the constraint when matching the
query, e.g., even though the user may specify an exact date,
all volumes published within that year will be returned. After
obtaining qualified volume IDs, the client may issue further
requests for volume contents based on volume IDs.

• Retrieve Volume IDs based on Given Genre (query case 2) —
Query case 2 is quite similar to query case 1 and both cases
follow the pattern: “Given filtering conditions on metadata,
retrieve all qualified volume IDs for possible future process-
ing”. Genre metadata can be missing for certain volumes,
under such a circumstance, we can either accept or reject vol-
umes without genre info. We adopt a conservative strategy
which simply rejects the volumes without genre info.

• Retrieve the Whole Volume Content based on Given Volume
ID (query case 3) — Below is how users make use of the
HathiTrust corpus. The user specifies filtering conditions to
retrieve desired volumes, however, the filtering conditions
may not be exact at the first trial, open or unselective queries
can bring back too many qualified records, especially when
we have a large corpus. Therefore instead of trying to re-
trieve the contents of all qualified records, only identifies
(i.e. volume IDs in our case) are returned. This strategy
allows users to make a flexible choice on further process-
ing. When the qualified set is large, user can either choose
to only select a smaller subset or to conduct further analy-
sis/processing on the whole but in a batch fashion (i.e. batch
processing of multiple smaller worksets). The former ap-
proach is particularly useful for tentative analysis/statistics
when only a rough sampling is needed. Meanwhile, we can
expect a quick turnaround time when the size of the subset
is small. Then users may choose to either further process
the whole set when some interesting results are observed or
discontinue otherwise. As mentioned easilier, another ad-
vantage of returning volume IDs only during filtering stage
is that it allows the whole large workset to be decomposed
into multiple smaller ones, which can be executed in batch
or in parallel. Furthermore, this approach allows some in-
termediate results to be generated and returned earlier along
with the processing without having to wait until the whole
processing is done. In the above sense, case 3 can be viewed
as a further query after cases 1 and 2.

To get reliable results, each user query is repeated 20 times. Fig-
ures 6(a) to 6(c) show the results of publish date (publish date set
to be ‘2009’), genre (genre set to be ‘Science & Technology’) and
whole volume content (volume id set to be ‘iu.30000099847570’)
queries, respectively. X-axis shows the sequence number of each
independent run and Y-axis shows the time consumed to fulfill the
query. In all three queries we observe a decrease in response time
after the first query request. The reason is that Cassandra caches
the query results so that subsequent queries can be directly fulfilled
by reading the cache without further processing. As we expect,
schema 2 performs the best in the three query cases.

6. EXPERIMENTAL RESULTS OF SIMULATED
WORKLOADS

In this section we present experiments on IU collection that mea-
sure fine grained system level activities such as CPU, memory and
IO usages as well as Cassandra’ internal data structures like SSTable,
MemTable and commit log, under five simulated workloads. We
first define the simulated workloads and then detail the experimen-
tal results.

6.1 Workloads Definition
The following simulated workloads are defined for performance
evaluation.

• Workload 1 — We define workload 1 as the baseline case.
We set up a moderate number of readers and writers, e.g., 10
readers and 5 writers. A writer reads first then writes, which
is how writes are performed. Under this workload 75% of
the requests are read requests and 25% are write requests.
Each request touches a random 0.5% piece (140 volumes) of
the data store, meaning each reader or writer reads or writes
an average of 280 MB of data on a data store that is 56.4
GB (28,896 volumes) in size, not counting replication. Each
reader/writer issues 20 requests before terminating. We en-
sured randomness through a random shuffle of the data set
from which volumes are drawn; the client picks the first 0.5%
piece from the data set.

• Workload 2 — Workload 2 uses the same settings as work-
load 1 except that each client accesses the same set of vol-
umes.

• Workload 3 — Workload 3 uses the same settings as work-
load 1 except that the interval of two consecutive requests is
0.1 second instead of 1 second.

• Workload 4 — Workload 4 uses the same settings as work-
load 3 except that each client accesses the same set of vol-
umes.

• Workload 5 — Workload 5 is more like the real scenario
where the volumes IDs are obtained by first querying the Solr
index. The reason why an extra index engine is introduced
is that Cassandra’s build in query language CQL and index
are still quite limited and are not powerful enough to support
various flexible queries to meet HTRC users’ need. Since
we are measuring the performance of Cassandra and do not
want to include the cost of Solr query. Solr index is queried
and the returned volume IDs are cached before clients start
to make requests to Cassandra. Also note that there can be
many qualified volumes given an open query, therefore the
client may only pick a subset to further access Cassandra. To
be more specific, workload 5 is composed of following four
sorts of clients and each client only makes read request.

Client type 1: There are 5 clients of this type. The query
retrieves the IDs of the volumes whose author name contains
keyword “edward”. The query returns 399 volumes of which
156 are accessed.

Client type 2: There are 5 clients of this type. The query re-
trieves the IDs of the volumes published between year 1970
and year 1979, both inclusive. The query returns 394 vol-
umes of which 54 are accessed.

Client type 3: There are 5 clients of this type. The query
retrieves the IDs of the volumes whose title contains keyword
“science”. The query returns 535 volumes of which 246 are
accessed.

Client type 4: There are 5 clients of this type. The query re-
trieves the IDs of the volumes whose title contains keyword
“art”. The query returns 222 volumes of which 215 are ac-
cessed.

6.2 Experimental Setup
We use the same 3-node Cassandra cluster as descried in Section 4
for workloads evaluation. To measure fine grained system level
activities, on each Cassandra node we set up a monitor which mea-
sures following five metrics at a configurable interval (set to be
0.5 second in the experiments): CPU usage in percentage, mem-
ory usage in percentage, data read in megabytes per second, data
written in megabytes per second and total IO (both read and write)
usage in percentage. Note that since each node is a two-core ma-
chine, the total available CPU is 200%. The monitor is started 3
seconds before the trial and shut down 3 seconds after the trial.
This buffering time allows us to observe the raise and drop of the
measured metrics. Furthermore, we use a sliding window of size
5 to smooth the curve, the value of the data point x(t) at time t
showed in following figures is the averaged values in the window,
i.e., 1/5∗ (x(t −2)+ x(t −1)+ x(t)+ x(t +1)+ x(t +2)).

All clients run on a single powerful machine with 24 Intel (R) Xeon
(R) cores of 2.00 GHz, and 126GB main memory (i.e. smoke-
tree.cs.indiana.edu). The client machine and the Cassandra cluster
sit on different subnets. Clients use hector API to make read/write
requests to Cassandra with the default ‘quorum’ consistency level,
the formula used to calculate the ‘quorum’ is (replication_factor /
2) + 1, which is 2 in our case, which means that all two replicas
need to be read/written before returning success. Apart from afore-
mentioned 5 system level metrics, we also measure response time,
which is the length of time between submission of a job by a client,
and the receipt of the last byte of the response.

6.3 Results
In this section we present extensive experimental results and give
our discussion. We first detail the results on workload 1 and present
our observations by dividing the total experimental time frame into
four phases: warmup, steady state, flush to new SSTable and write
only behavior. We then compare to workload 1 when discussing
results of other workloads.

Warmup. Response time for workload 1, plotted in Figure 7(a),
shows an initial substantial drop. The server upon startup reads the
disk to load requested data from SSTables (the persistent form of
data stored on disk) into in memory structures, MemTable. This
is also reflected as a memory utilization burst in Figure 7(c) and
disk read burst in Figure 7(d) over the same initial time frame. This
cache warmup phase is dominated by intensive IO that is evidenced
elsewhere as well. In Figure 7(e), we can see disk I/O activity that
is higher during the warmup so CPU utilization is low during this
time as shown in Figure 7(b).

Steady state. After the initial “warm-up” phase, we can see a rela-
tively steady period in time frame [200 600] from Figure 7(a). As
shown in Figures 7(b) and 7(c), the server maintains high CPU and
memory utilizations in this period. Since each Cassandra node has
moderate amount of memory, cache swaps are frequent which we
see as persistent disk reads in Figure 7(d). In the meantime, we can
also observe an increasing trend of disk writes in Figure 7(e). This
is because apart from writing to the commit log, each write has also
to be written into the in-memory MemTable.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0

20

40

60

80

100

120

140

160

180

Time (sec)

R
es

po
ns

e
T

im
e

(s
ec

)

Server response time on workload 1

Reader 1
Reader 2
Reader 3
Reader 4
Reader 5
Reader 6
Reader 7
Reader 8
Reader 9
Reader 10
Writer 1
Writer 2
Writer 3
Writer 4
Writer 5

(a)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0

20

40

60

80

100

120

140

160

180

200

Time (sec)

C
P

U
 (

%
)

Cassandra Cluster CPU Usage (%) on Workload 1

Node 1
Node 2
Node 3

(b)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0

10

20

30

40

50

60

70

80

90

Time (sec)

M
em

 (
%

)

Cassandra Cluster Memory Usage (%) on Workload 1

Node 1
Node 2
Node 3

(c)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0

5

10

15

20

25

30

35

40

45

Time (sec)

IO
/R

ea
d

(M
B

/s
)

Cassandra Cluster IO/Read (MB/s) on Workload 1

Node 1
Node 2
Node 3

(d)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0

20

40

60

80

100

120

Time (sec)

IO
/W

rit
e

(M
B

/s
)

Cassandra Cluster IO/Write (MB/s) on Workload 1

Node 1
Node 2
Node 3

(e)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
0

2

4

6

8

10

12

Time (sec)

IO
 (

%
)

Cassandra Cluster IO Usage (%) on Workload 1

Node 1
Node 2
Node 3

(f)

Figure 7: Performance measures of Cassandra cluster under workload 1. (a) server response time, (b) cluster CPU usage, (c) cluster
memory usage, (d) cluster data read, (e) cluster data written, and (f) cluster IO usage.

0 100 200 300 400 500 600 700 800
10

15

20

25

30

35

40

45

50

55

60

Time (sec)

R
es

po
ns

e
T

im
e

(s
ec

)

Server response time on workload 2

Reader 1
Reader 2
Reader 3
Reader 4
Reader 5
Reader 6
Reader 7
Reader 8
Reader 9
Reader 10
Writer 1
Writer 2
Writer 3
Writer 4
Writer 5

(a)

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

160

180

200

Time (sec)

C
P

U
 (

%
)

Cassandra Cluster CPU Usage (%) on Workload 2

Node 1
Node 2
Node 3

(b)

0 100 200 300 400 500 600 700 800
35

40

45

50

55

Time (sec)

M
em

 (
%

)
Cassandra Cluster Memory Usage (%) on Workload 2

Node 1
Node 2
Node 3

(c)

0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

Time (sec)

IO
/R

ea
d

(M
B

/s
)

Cassandra Cluster IO/Read (MB/s) on Workload 2

Node 1
Node 2
Node 3

(d)

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

100

Time (sec)

IO
/W

rit
e

(M
B

/s
)

Cassandra Cluster IO/Write (MB/s) on Workload 2

Node 1
Node 2
Node 3

(e)

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

Time (sec)

IO
 (

%
)

Cassandra Cluster IO Usage (%) on Workload 2

Node 1
Node 2
Node 3

(f)

Figure 8: Performance measures of Cassandra cluster under workload 2. (a) server response time, (b) cluster CPU usage, (c) cluster
memory usage, (d) cluster data read, (e) cluster data written, and (f) cluster IO usage.

0 10020030040050060070080090010001100120013001400150016001700180019002000
0

20

40

60

80

100

120

140

160

180

200

Time (sec)

R
es

po
ns

e
T

im
e

(s
ec

)

Server response time on workload 3

Reader 1
Reader 2
Reader 3
Reader 4
Reader 5
Reader 6
Reader 7
Reader 8
Reader 9
Reader 10
Writer 1
Writer 2
Writer 3
Writer 4
Writer 5

(a)

0 10020030040050060070080090010001100120013001400150016001700180019002000
0

20

40

60

80

100

120

140

160

180

200

Time (sec)

C
P

U
 (

%
)

Cassandra Cluster CPU Usage (%) on Workload 3

Node 1
Node 2
Node 3

(b)

0 10020030040050060070080090010001100120013001400150016001700180019002000
35

40

45

50

55

60

65

70

75

80

85

Time (sec)

M
em

 (
%

)

Cassandra Cluster Memory Usage (%) on Workload 3

Node 1
Node 2
Node 3

(c)

0 10020030040050060070080090010001100120013001400150016001700180019002000
0

10

20

30

40

50

60

Time (sec)

IO
/R

ea
d

(M
B

/s
)

Cassandra Cluster IO/Read (MB/s) on Workload 3

Node 1
Node 2
Node 3

(d)

0 10020030040050060070080090010001100120013001400150016001700180019002000
0

10

20

30

40

50

60

70

80

90

100

Time (sec)

IO
/W

rit
e

(M
B

/s
)

Cassandra Cluster IO/Write (MB/s) on Workload 3

Node 1
Node 2
Node 3

(e)

0 10020030040050060070080090010001100120013001400150016001700180019002000
0

1

2

3

4

5

6

Time (sec)

IO
 (

%
)

Cassandra Cluster IO Usage (%) on Workload 3

Node 1
Node 2
Node 3

(f)

Figure 9: Performance measures of Cassandra cluster under workload 3. (a) server response time, (b) cluster CPU usage, (c) cluster
memory usage, (d) cluster data read, (e) cluster data written, and (f) cluster IO usage.

Flush to new SSTable. As the size of MemTable reaches a thresh-
old, they are flushed onto disk in the form of new SSTables. This
activity is evidenced in Figure 7(a) during the time frame [600 800],
where all readers finish their requests at around timestamp 650 and
another drop in response time for writers, which benefits from read-
ers’ completion, since server can utilize all resources to serve writes
since then.

Write only behavior. Once the readers complete, which happens
at around the 700th second of execution, only the write workload
remains. The absence of readers has the effect of freeing MemTable
spaces that can then be used for writes (not all reads are halted since
a writer also generates read requests), which would in turn gener-
ates more MemTable flushes. Meanwhile, the frequency of writes
to commit log and to MemTables goes up since CPU resource are
also dedicated to writers. At the same time, the MemTable spaces
released by readers can allow new data to be in and thus generating
further disk reads.

At 900 seconds into the experiment, there is a marked increase in
response time (shown in Figure 7(a)) and drop in CPU utilization
(shown in Figure 7(b)). I/O write is in a trough at that time too
(shown in Figure 7(e)). But memory utilization for Node 1 is just
coming off a big spike (shown in Figure 7(c)). It is difficult to
know exactly what causes this behavior. It appears to be memory
contention at Node 1 for the 5 writers that are remaining after the
workers have finished.

Figure8(a) shows response time for workload 2. Different from
workload 1, each client in workload 2 requests the same set of vol-

umes. Under such a setting, Cassandra cluster is able to cache most
read requests in MemTable after initial misses. Figure 8(d) shows
that after the initial bursts the subsequent read IO activities are very
low. For the write operation, different write requests modify the
same portion of Memtable, which greatly reduces the number of
disk writes caused by Memtable flush. However, writes to commit
log are inevitable, hence we still observe continuous disk write ac-
tivities in Figure 8(e). Also because Memtable almost always has
available space, the cluster is able to acknowledge write success
to clients immediately after writing the commit log and updating
the Memtable without having to wait previous writes to be flushed
first in order to get free spaces in Memtable, which is the case in
workload 1. Therefore workload 2 has faster write response time
than workload 1. The memory consumption of workload 2 is lower
than workload 1 as shown in Figure 8(c), which benefits from being
able to cache most read requests. As workload 2 requires less IOs,
we also observe higher CPU usage than workload 1. Since read re-
quests are faster than write requests, most readers finish earlier than
writers and since then the load on the cluster is alleviated. Subse-
quent write requests thus can use more cluster resources, leading to
a drop in the response time. The drop of writers’ response times is
observed in Figure 8(a) when most readers are done.

Workload 3 is similar to workload 1 but with more intensive re-
quest rate, which makes the competition of memory and disk IO
on Cassandra cluster more intense. Compared with workload 1,
we observe more intensive activities in IO (shown in Figures 9(d)
and 9(e)) and more CPU idle times (shown in Figure 9(b)). The
writers’ response times (shown in Figure 9(a)) also have larger vari-
ation due to more intense resource competition.

0 100 200 300 400 500 600 700 800
15

20

25

30

35

40

45

50

55

Time (sec)

R
es

po
ns

e
T

im
e

(s
ec

)

Server response time on workload 4

Reader 1
Reader 2
Reader 3
Reader 4
Reader 5
Reader 6
Reader 7
Reader 8
Reader 9
Reader 10
Writer 1
Writer 2
Writer 3
Writer 4
Writer 5

(a)

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

140

160

180

200

Time (sec)

C
P

U
 (

%
)

Cassandra Cluster CPU Usage (%) on Workload 4

Node 1
Node 2
Node 3

(b)

0 100 200 300 400 500 600 700 800
34

36

38

40

42

44

46

48

Time (sec)

M
em

 (
%

)

Cassandra Cluster Memory Usage (%) on Workload 4

Node 1
Node 2
Node 3

(c)

0 100 200 300 400 500 600 700 800
0

2

4

6

8

10

12

14

16

18

Time (sec)

IO
/R

ea
d

(M
B

/s
)

Cassandra Cluster IO/Read (MB/s) on Workload 4

Node 1
Node 2
Node 3

(d)

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

90

Time (sec)

IO
/W

rit
e

(M
B

/s
)

Cassandra Cluster IO/Write (MB/s) on Workload 4

Node 1
Node 2
Node 3

(e)

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8

Time (sec)

IO
 (

%
)

Cassandra Cluster IO Usage (%) on Workload 4

Node 1
Node 2
Node 3

(f)

Figure 10: Performance measures of Cassandra cluster under workload 4. (a) server response time, (b) cluster CPU usage, (c) cluster
memory usage, (d) cluster data read, (e) cluster data written, and (f) cluster IO usage.

0 100 200 300 400 500 600 700 800 900 1000 1100
0

10

20

30

40

50

60

70

80

Time (sec)

R
es

po
ns

e
T

im
e

(s
ec

)

Server response time on workload 5

Reader 1
Reader 2
Reader 3
Reader 4
Reader 5
Reader 6
Reader 7
Reader 8
Reader 9
Reader 10
Writer 1
Writer 2
Writer 3
Writer 4
Writer 5
Writer 6
Writer 7
Writer 8
Writer 9
Writer 10

(a)

0 100 200 300 400 500 600 700 800 900 1000 1100
0

20

40

60

80

100

120

Time (sec)

C
P

U
 (

%
)

Cassandra Cluster CPU Usage (%) on Workload 5

Node 1
Node 2
Node 3

(b)

0 100 200 300 400 500 600 700 800 900 1000 1100
35

40

45

50

55

Time (sec)

M
em

 (
%

)
Cassandra Cluster Memory Usage (%) on Workload 5

Node 1
Node 2
Node 3

(c)

0 100 200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

20

25

30

Time (sec)

IO
/R

ea
d

(M
B

/s
)

Cassandra Cluster IO/Read (MB/s) on Workload 5

Node 1
Node 2
Node 3

(d)

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Time (sec)

IO
/W

rit
e

(M
B

/s
)

Cassandra Cluster IO/Write (MB/s) on Workload 5

Node 1
Node 2
Node 3

(e)

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.5

1

1.5

2

2.5

Time (sec)

IO
 (

%
)

Cassandra Cluster IO Usage (%) on Workload 5

Node 1
Node 2
Node 3

(f)

Figure 11: Performance measures of Cassandra cluster under workload 5. (a) server response time, (b) cluster CPU usage, (c) cluster
memory usage, (d) cluster data read, (e) cluster data written, and (f) cluster IO usage.

Workload 4 is similar to workload 2 but with more intensive re-
quest rate. However, unlike workload 3 which suffers performance
degradation due to the increased request rate, Cassandra cluster is
able to handle the requests easily since the same set of requested
volumes in workload 4 can still be cached. So the increased re-
quest rate does not have very obvious influence on workload 4. The
results are shown from Figures 10(a) to 10(f).

Workload 5 is a relatively lightweight one and is only composed
of readers. Under such settings, there are no writes to commit log
and no need to flush MemTables to disk. Therefore there are only
tiny disk write activities as shown in Figure 11(e). Moreover, af-
ter initial access to SSTables which loads data into MemTables, all
subsequent read requests can be fulfilled without issuing further
disk reads. So in Figure 11(d) we only observe IO reads bursts at
the very beginning. We can also see relatively stable CPU usage
curves from Figure 11(b) since no IO waits occur. Memory usage
also maintains at a stable level as shown in Figure 11(c).

7. CONCLUSION
The relational model of data was proposed in 1970 by Ted Codd
as the theoretical foundation for relational databases, which were
quite successful in the past few decades. However, relational model
is intended to be a useful approach of representing structure, appli-
cable to certain problems, but not to be exhaustive. Relational ap-
plications encounter scalability problems when the workload goes
up. Joins can be slow and the experience has shown that data stores
that provide ACID guarantees tend to have poor availability. As
performance and real time nature became more important than con-
sistency for real-time web applications, alternatives need to be ex-
amined.

To address these issues, quite a few new NoSQL systems have been
designed. These NoSQL systems are designed to be distributed, de-
centralized, elastically scalable, highly available, fault-tolerant, and
tuneably consistent. These characteristics make NoSQL appealing
to HTRC data store which needs to host large-scale repository of
digital content and provision efficient read/write operations, as well
as high scalability and availability. In this paper, we propose three
column family schemas and perform extensive performance eval-
uations. Experimental results demonstrate that encapsulating the
whole volume within a single row with regular columns delivers
the best overall performance. Moreover, we perform evaluations
with 5 simulated workloads and the experimental results allow us
to examine behaviors of Cassandra’s internal data structures like
SSTables, Memtable and commit log, as well as system level ac-
tivities such as CPU, memory and disk usages, which gives us a
deeper understanding of Cassandra’s working mechanisms.

8. REFERENCES
[1] Apache Solr. https://lucene.apache.org/solr/.
[2] M. Burrows. The chubby lock service for loosely-coupled

distributed systems. In Proceedings of the 7th symposium on
Operating systems design and implementation (OSDI’06),
pages 335–350, Seattle, WA, USA, Nov 2006.

[3] R. Cattell. Scalable SQL and NoSQL data stores. In ACM
SIGMOD Record, volume 39, pages 12–27, 2010.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS),
26(2), June 2008.

[5] E. F. Codd. A relational model of data for large shared data
banks. Communications of the ACM, 13(6):377–387, June
1970.

[6] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. Pnuts: Yahoo!’s hosted data serving platform.
Proceedings of the VLDB Endowment, 1(2):1277–1288, Aug
2008.

[7] CouchDB. http://couchdb.apache.org/.
[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available
key-value store. In Proceedings of 21st ACM SIGOPS
symposium on Operating systems principles (SOSP’07),
pages 205–220, Stevenson, WA, USA, Oct 2007.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. In Proceedings of the 19th ACM symposium on
Operating systems principles (SOSP’03), pages 29–43,
Sagamore, NY, USA, Oct 2003.

[10] HathiTrust Digital Library.
http://www.hathitrust.org/.

[11] HathiTrust Research Center.
http://www.hathitrust.org/htrc/.

[12] HBase. http://hbase.apache.org/.
[13] HyperTable. http://hypertable.org/.
[14] A. Lakshman and P. Malik. Cassandra: a decentralized

structured storage system. ACM SIGOPS Operating Systems
Review, 44(2):35–40, Apr 2010.

[15] MongoDB. http://mongodb.org/.
[16] Pairtree. https://confluence.ucop.edu/

display/Curation/PairTree/.
[17] R. Ramakrishnan and J. Gehrke. Database Management

Systems. McGraw-Hill, 3 edition, Aug. 2002.
[18] Riak. http://basho.com/Riak.html/.
[19] Scalaris. http://code.google.com/p/scalaris/.
[20] SimpleDB. http://amazon.com/simpledb/.
[21] Terrastore.

http://code.google.com/p/terrastore/.
[22] Voldemort. http://project-voldemort.com/.

