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ABSTRACT

The wide applications of next-generation sequencing (NGS) technologies in metagenomics
have raised many computational challenges. One of the essential problems in metagenomics
is to estimate the taxonomic composition of a microbial community, which can be ap-
proached by mapping shotgun reads acquired from the community to previously charac-
terized microbial genomes followed by quantity profiling of these species based on the
number of mapped reads. This procedure, however, is not as trivial as it appears at first
glance. A shotgun metagenomic dataset often contains DNA sequences from many closely-
related microbial species (e.g., within the same genus) or strains (e.g., within the same
species), thus it is often difficult to determine which species/strain a specific read is sampled
from when it can be mapped to a common region shared by multiple genomes at high
similarity. Furthermore, high genomic variations are observed among individual genomes
within the same species, which are difficult to be differentiated from the inter-species var-
iations during reads mapping. To address these issues, a commonly used approach is to
quantify taxonomic distribution only at the genus level, based on the reads mapped to all
species belonging to the same genus; alternatively, reads are mapped to a set of represen-
tative genomes, each selected to represent a different genus. Here, we introduce a novel
approach to the quantity estimation of closely-related species within the same genus by
mapping the reads to their genomes represented by a de Bruijn graph, in which the common
genomic regions among them are collapsed. Using simulated and real metagenomic datasets,
we show the de Bruijn graph approach has several advantages over existing methods, in-
cluding (1) it avoids redundant mapping of shotgun reads to multiple copies of the common
regions in different genomes, and (2) it leads to more accurate quantification for the closely-
related species (and even for strains within the same species).
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1. INTRODUCTION

W ith the recent cost reduction, next generation sequencing (NGS) techniques have been

applied to a broad range of biological problems, including metagenomics, which aims to characterize

1School of Informatics and Computing and 2Center for Genomics and Bioinformatics, Indiana University, Bloo-
mington, Indiana.

JOURNAL OF COMPUTATIONAL BIOLOGY

Volume 19, Number 6, 2012

# Mary Ann Liebert, Inc.

Pp. 814–825

DOI: 10.1089/cmb.2012.0058

814

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUScholarWorks

https://core.ac.uk/display/213840146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the microbial composition and diversity in an environmental microbial community (Venter et al., 2004). To

achieve this primary goal, two approaches are often taken. The first approach, referred to as the 16S rRNA

profiling, amplifies variable regions in 16S rRNA genes (i.e., the amplicon) from an environmental DNA

sample by PCR, which are subsequently sequenced using NGS techniques (i.e., 454 pyrosequencing). The

resulting sequences can be used as markers to characterize the taxonomic composition within the community

by comparing their divergences with the 16S rRNA sequences from cultured species, and to estimate the

taxonomic distribution within the sample based on the relative abundances of 16S rRNA sequence markers

(Hamady et al., 2008). Although this approach has been commonly used in profiling microbial communities,

the resolution of this method is limited at the genus level owing to the relatively low resolution of amplicon

sequences, e.g., the microbial 16S rRNA sequences from different species of the same genus can be very

similar, and therefore are indistinguishable. The second approach utilizes the shotgun metagenome se-

quencing of a microbial community (Wooley and Ye, 2009), which represents the DNA sequences randomly

sampled from a mixture of many various microbial genomes. The resulting sequences can then be mapped to

previously sequenced microbial genomes to estimate the relative abundances of these microbial species.

However, reads mapping of a shotgun metagenomic dataset is not trivial. First, repetitive sequences make up

a significant fraction of almost all microbial genomes. Second, for closely-related genomes (e.g., genomes of

the species within the same genus or genomes of the strains within the same species), there are a significant

portion of homologous sequences that can be very similar or almost identical from each other (Kumar and

Filipski, 2007). Consequently, many reads can be mapped to either multiple locations of the same genome or

multiple different genomes, and are classified as the multiply mapped reads. Because it is difficult to know

which genome these reads are actually sampled from, they are usually not considered in the characterization

of taxonomic diversity. As a result, it is a common practice to limit the quantification of the taxonomic

distribution within a shotgun metagenomic dataset only at the genus level (Arumugam et al., 2011), based on

the reads mapped to all species in the same genus or alternatively to a set of representative genomes, each

selected for a different genus.

Here we introduce a novel approach to quantitatively estimating closely-related genomes (e.g., from the

species within the same genus or the strains within the same species). Instead of mapping each read to

multiple genomes individually, we first represent multiple closely-related genomes by a de Bruijn graph, in

which the common genomic regions among them are collapsed. De Bruijn graph is employed as an efficient

data structure for most short read assemblers (e.g., Velvet [Zerbino and Birney, 2008], ALLPATHS-LG

[Gnerre et al., 2011], and SOAPdenovo [Li et al., 2010]). It was originally proposed to replace the traversal

of Hamiltonian paths in the overlap graph by the traversal of Eulerian paths (Pevzner et al., 2001). Utilizing

this data structure, we aim to convert the problem of mapping short reads to multiple related genomes to the

problem of mapping reads to a de Bruijn graph of these genomes, in which each edge represents either an

unique segment in a single genome (i.e., the unique edges), or a common segment shared by more than one

genome (i.e., the degenerate edges), and each genome is then represented by a path in the graph (Fig. 1). To

FIG. 1. Reads mapping to multiple closely-related

genomes. (a) Short reads aligned to individual reference

genomes. Only sufficiently similar reads can be re-

cruited. (b) Short reads aligned to both closely related

genomes separately. Reads from divergent region can

be mapped to one of the two reference genomes, but

reads from common regions will be mapped to both

genomes. (c) Short reads aligned to a graph incorpo-

rating known polymorphisms. Reads from divergent

regions will be recruited, but reads from repeats still

result in redundant alignment. (d) Short reads aligned to

a de Bruijn graph. Not only it considered divergence

between the two genomes, but also it glues all similar

repeats, further reducing the size of the reference.
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map short reads to the de Bruijn graph, we concatenate the edges in the graph, and map the reads against the

concatenated sequences. In this way, we can utilize the existing reads mapping algorithms, such as BWA

(Li and Durbin, 2009), mrFAST (Alkan et al., 2009), or Bowtie (Langmead et al., 2009). We note that a few

reads mapping algorithms supporting simultaneous mapping of reads to multiple genomes, including

GenomeMapper (Schneeberger et al., 2009) and DynMap (Flouri et al., 2011). But these methods only

handle small genomic variations, such as single nucleotide substitutions, insertions or deletions. For ex-

ample, GenomeMapper was developed to take into consideration the polymorphisms found in plant ge-

nomes; and the performance of DynMap was demonstrated on the genomes of multiple E. coli strains,

among which, however, only single nucleotide polymorphisms were present. In comparison, by using the

de Bruijn graph representation, in addition to single nucleotide variations, we are able to handle large-scale

variations (such as long insertions/deletions, inversions and duplications) among the genomes of closely-

related species.

Based on the reads mapping on the de Bruijn graph, we are able to improve the abundance estimation for

each of the closely-related genomes. We tested two methods for this purpose. In the first method, we

estimate the abundance of each genome based on the normalized number of reads that can be mapped to the

unique edges from this genome (referred to as the unique region approach). In the second method, we use a

Poisson distribution model that utilizes the reads mapped to both the unique and degenerate edges (referred

to as the redundant approach). We tested our methods on both simulated and real metagenomic datasets,

and the results show that our methods provide fast reads mapping onto a group of closely-related genomes

by avoiding redundant mapping of short reads to the shared genomic segments, and accurate estimates of

the quantitative distribution of closely-related species (or different strains in the same species) within a

community.

2. METHODS

Given a collection of reference genomes, our pipeline for the species quantification consists of two steps:

(1) the construction of a de Bruijn graph, based on all-against-all pairwise alignments of the genomic

sequences (by using BLASTN [Altschul et al., 1997]); and (2) the estimation of relative abundances of the

genomes based on the number of mapped reads on unique or degenerate edges in the de Bruijn graph, as

illustrated in Figure 2.

2.1. Construction of the de Bruijn graph from genomic sequences

2.1.1. Grouping reference genomes based on MUMi distances. In order to collapse similar

genomic segments (e.g., the repeats) in the same genome as well as homologous regions among multiple

genomes, we first need to cluster closely-related genomes into groups so that the genomes in the same

group tend to share highly homologous (and even nearly identical) sequences, and hence the de Bruijn

graph built from them will be more compact than individual genomes. Furthermore, we need to choose the

parameters for building the de Bruijn graph of each group based on the overall similarity among these

genomes. We calculate the similarity between genomic sequences using the maximal unique matches index

FIG. 2. The de Bruijn graph ap-

proach to estimating the relative

abundances of closely-related spe-

cies in a microbial community. (a)

Construction of de Bruijn graph

from a collection of genomic se-

quences. (b) Reads mapping by

BWA (Li and Durbin, 2009) and

species quantification based on the

number of reads mapped to unique

and degenerate edges.
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(MUMi) distance, which was devised to measure the similarity level between two microbial genomes from

closely-related species (e.g., within a genus) or strains of the same species (Deloger et al., 2009). For two

genomes to be compared, MUMi can be calculated as

MUMi = 1 - Lmum=Lav (1)

where Lmum represents the sum of the lengths of all non-overlapping MUMs between two genomes, and Lav

is the average length of the two genomes.

2.1.2. Construction of an A-Bruijn graph. As closely related species often do not share identical

genomic sequences, the de Bruijn graph directly built from these genomes may contain many detailed

structures (like bulges and cycles) introduced by the non-identical sequences even within the nearly

identical genomic segments. To address this issue, we use the A-Bruijn graph approach (Pevzner et al.,

2004), in which nearly identical sequences, defined by a similarity threshold in the pairwise alignment,

are all collapsed into a single edge. Subsequently, we use the consensus sequences derived from all the

sequences collapsed into the same edge to represent the edge, and then the reads are mapped to the

consensus sequences in the graph. In the end, we can obtain a compact de Bruijn graph representation of a

collection of genomes. Specifically, the procedure consists of two steps: (1) BLASTN [Altschul et al.,

1997] is used to identify similar subsequences between every pair of genomes in input set of selected

genomes; and (2) a A-Bruijn graph is built by gluing all pair of positions in the input genomes that are

aligned together for the alignments longer than a threshold (default 100 nts) and with similarity higher than

a threshold (default 97%) (Pevzner et al., 2004).

2.1.3. Generation of consensus edges of the A-Bruijn graph. After the construction of an A-

Bruijn graph, the segments collapsed into the same edge should be represented by the same sequence, i.e.,

the consensus sequence of all these segments. The Consensus Alignment (CA) algorithm (Ye, 2010) was

used in this step for each edge in which multiple genomic segments are collapsed (i.e., the multiplicity of

the edge ‡ 1). According to our experiment, using consensus sequences to represent edges improves the

downstream reads mapping, because this reduces the average distance between the representative sequence

of the edge and each genomic segment.

2.1.4. Construction of the de Bruijn graph. After obtaining the consensus edges from A-Bruijn

graph, we can ‘‘reconstruct’’ the sequence of each input genome by traversing the A-Bruijn graph and

concatenating the consensus sequence of each edge in the path. We then use the reconstructed genome

sequences as input to build a de Bruijn graph. We set k-mer size for the de Bruijn graph equal to or greater

than the length of short reads (e.g., l = 100 for Illumina reads) to be mapped onto the graph: k ‡ l. By

setting a large k, we can then simply use the sequences of all edges in a de Bruijn graph for downstream

reads mapping without explicitly considering the junctions of the genomic segments in the graph.

2.2. Reads mapping and relative-abundance estimation

2.2.1. Reads mapping via BWA. As we mentioned above, we can collect the edges from the de

Brujin graph for reads mapping (there is no need to explicitly consider the edge junctions in the graph). The

advantage of this approach is that we can then utilize the best mapping tools available (which are typically

developed for mapping reads onto linear sequences). After experimenting with different available mapping

algorithms, we chose BWA (Li and Durbin, 2009) for our purpose, because it provided an accurate

mapping results in a way that can be used in our downstream analyses. As BWA reports mapping positions

for both strands of input reads, we use only the the edges from one (i.e., the plus) strand as the reference.

2.2.2. Abundance estimation based on reads mapping. In theory, if the genomes are divergent

enough from each other, reads mapping is independent from one genome to another and abundance

estimation becomes trivial. However, multiple closely-related genomes are often present in a metagenomic

dataset. Hereby we propose two quantification approaches to address this issue: the unique region ap-

proach, and the redundant approach. The unique region approach utilizes only the reads mapped to the

unique edges in the de Bruijn graph. And the relative abundance of each genome in the sample is inferred

by computing the total number of mapped reads to the genome per kilobase of the genome length per
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million mapped reads (RPKM), a commonly used quantitative measure. The redundant approach uti-

lizes the reads mapped to both the unique and degenerate edges. For this approach, we adopt a Poission

model and use hill climbing method to make point estimation of the relative abundances of each genome,

similar to the method used for the inference of the abundance of splicing isoforms from RNA-seq data

( Jiang and Wong, 2009). Our experiments show that both methods work well for simple cases, whereas the

redundant approach has superior statistical power over the simpler unique region approach for complex

cases.

In the redundant approach, a Poisson model is used to model the random sequence. Let G be a set of

groups of closely-related genomes. For a group of closely-related genomes (i.e., from species within the

same genus or strains within the same species), let Sg = fsg‚ iji 2 [1‚ ng]g be the genomes in the group, where

ng is a positive integer. Also, let S = fsg‚ ijg 2 G‚ i 2 [1‚ ng]g be the set of all genomes in the sample being

sequenced. For any genome s 2 S, let ls be its genome length, and let ks be the abundance (copy number) of

s in the sample. Based on the above notation, the total length of the genomes in the sample is
P

s2S (ksls).
The sequencing process can be modeled as a simple random sampling, in which every read is sampled

independently and uniformly from every possible nucleotide in the sample. Therefore, the probability that a

read comes from the genome s is ps = (ksls)=
P

s2S (ksls). By defining hs = ks=
P

s2S ksls (representing the

relative abundance of the genome s), we can rewrite ps as ps = hsls , with
P

s2S (hsls) = 1.

Let r be the total number of mapped reads. Given a genome s, and a genomic segment of length l in s, the

number of reads sampled from this segment, denoted by some random variable X, follows a binomial

distribution with parameters r and p = hsl. Since usually r is very large and p is small, the binomial

distribution here can be approximated well by a Poisson distribution with parameter k = rhsl. Given all

the groups of genomes (and the genomes in each group), and the sequencing reads, i.e., G, S, l, r are

all known, the problem is to estimate hs for all s 2 S. Given a group, suppose the relative abundances of the

genomes in a sample are Y = [h1‚ h2‚ . . . ‚ hn], and the genomes in the group are represented as a de Bruijn

graph of m edges with lengths L = [l1‚ l2‚ . . . lm]. Let X = fXeje 2 Eg be the set of observations, where E is

an index set of all the de Bruijn graph edges, and x 2 X is a random variable representing the number of

reads mapped onto a particular edge. For every x 2 X, it follows a Poisson distribution with parameter k.

For each edge, k = ljr
Pn

i = 1 cijhi, where cij = 1 if the genome of strain i contains edge j and 0 otherwise.

From the probability mass function of the Poisson distribution, the likelihood of having Y given an

observation x is

L(Yjx) = P(X = xjY) =
e - kkx

x!
(2)

Assuming the samplings of reads from each edge (and junction) are independent from each other, the joint

log-likelihood over the whole set of observations X = fXeje 2 Eg can then be computed as,

log(L(Yjxe‚ e 2 E)) =
X

e2E

log(L(Yjxe)) (3)

and the maximum likelihood estimation (MLE) can be obtained by

Ŷ = argmax
Y

log(L(Yjxe‚ e 2 E)) (4)

Note that Jiang and Wong (2009) proved that the joint log-likelihood function (equation 3) is

concave. As a result, one can use any optimization method to compute the parameters Y, as any local

maximum is guaranteed to reach the global maximum. In our case, coordinate-wise hill climbing was

used for solving this optimization problem, and individual parameters are optimized in turn until

convergence.

3. RESULTS

We tested our methods using both simulated and real metagenomic datasets. The results show that our

methods provide both fast mapping of reads to a collection of closely-related genomes, and accurate

quantification of the underlining species, in comparison to existing methods such as GenomeMapper and

DynMap.
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3.1. A simulated microbial community with five E. coli strains

E. coli is a well studied model prokaryotic organism and high variations among different E. coli strains

were observed. Considering that some of the reference E. coli genomes are extremely similar to each other

(and thus indistinguishable based on reads mapping), we first selected 5 most divergent E. coli genomes

based on their MUMi measures, and simulated reads from these genomes to create a simulated dataset to

test our method (Touzain et al., 2010) (Fig. 3a).

The de Bruijn graph. We used 97% and 100 nts as the identity and length thresholds, respectively, for

constructing the de Bruijn graph of the five genomes. The resulting de Bruijn graph is composed of 30,324

edges of average length 698 bp, the longest of which is 70,418 bp and the shortest 101 bp. The total base of

the edges is 10,823,143 bp, 57% shorter than the total length of all 5 E. coli genomes. As a result, the de

Bruijn graph representation reduces over half of the total length of the reference sequences for reads

mapping.

Reads mapping and abundance estimation. We randomly sampled 260,000 reads of 100 bps at a 1.5%

substitution error rate using MetaSim (Richter et al., 2008), with 0% reads from MG1655, 10% from IAI1,

20% from Sakai, 30% from UMN026, and 40% from CFT073 (i.e., the average coverages are 0, 0.5, 1, 1.5,

and 2 in these genomes, respectively). For this simulation, 188,373 out of 260,000 reads were uniquely

mapped to the de Bruijn graph at a maximum edit distance of 3 by BWA. We also aligned the simulated

reads to individual genomes (Table 1). In total, 260,000 reads can be mapped onto the five E. coli genomes

at 391,238 locations, indicating that many reads are mapped to the non-unique regions in these genomes.

As a result, the quantification of the five genomes based on the reads mapping on individual genomes will

lead to incorrect estimation of the species (for example, there are no reads sampled from MG1655 in the

simulation, but still this genome recruited 112,455 reads as it shares a large fraction of genomic sequences

with other E. coli strains). Moreover, if we simply assume that reads mapping are independent using each

individual genome as the reference (Naive method), the computed RPKM will be inconsistent with the

expected values (Table 1). On the other hand, both the unique region approach and the redundant approach

can successfully estimate the relative abundance of each genome (Fig. 4). Similar performance was

FIG. 3. Neighbor-joining trees

based on MUMi measures for three

microbial communities: five most

divergent E. coli genomes (a), six

closely related E. coli genomes (b)

and nine Treponema genomes (c).

Table 1. Comparison of Quantifying Five E. coli Genomes Using Different Approaches

Strain MG1655 IAI1 Sakai UMN026 CFT073

Relative abundance 0 1 2 3 4

Reads uniquely mapped to individuals 156,429 160,321 172,985 185,128 188,202

Naive method 39.06 39.52 36.45 41.23 41.68

Estimated abundance (unique region approach) 1.19 20.46 33.59 60.49 81.21

Estimated abundance (redundant approach) 0.81 14.90 34.13 57.17 83.93
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observed when we simulated short reads from the 5 E. coli genomes using different coverages ranging from

0 to 40 · .

Comparison between BWA and BLAST in reads mapping. Throughout this article, we used BWA, a

fast read alignment algorithm for mapping short reads onto the reference microbial genomes. To study the

impact of the read alignment algorithm in the species quantification, we compared the results of BWA with

the conventional alignment tool BLAST, in terms of the number of mapped reads and the quantification

results. We simulated 2,500,000 short reads with an error rate of 0.01 and 0.03, respectively. To mimic the

error model in Illumina sequencing that is commonly used in metagenomics, we set the ratio of indel and

substitution errors at 2:3. Table 2 shows the comparison results. As we expected, BLAST can map more

reads when the error rate is high (0.03), whereas BWA and BLAST perform similarly when the error rate is

low (0.01). However, the quantification results are almost the same in both cases, indicating BWA can

achieve accurate quantification results even when the difference between the reads and the reference

genome is high. Therefore, we employed BWA in our analytical pipeline because it runs much (1–2

magnitudes) faster than BLAST.

3.2. A simulated community with six closely-related E. coli strains

We further tested the methods on a simulated dataset sampled from 6 relatively more closely-related E.

coli strains (Fig. 3b, Table 3).

The de Bruijn graph. Using 97% and 100 nts as the identity and length thresholds, we built the de Bruijn

graph of these 6 E. coli strains, which has 9,578 edges of average length of 1,448 bp, with the longest edge

of 81,443 bp, and the shortest 101 bp. The concatenated edges are 67.8% shorter than the total length of the

individual genomes.

Reads mapping and abundance estimation. The 6 E. coli genomes in this experiment are more similar

to each other as compared to the previous simulation study (so they share more common regions in their

genomic sequences). Although we expected that the quantification of these E. coli genomes would be even

more difficult, our methods still give satisfactory results as shown in Figure 5.

3.3. Quantification of Treponema species in real human microbiome datasets

The NIH Human Microbiome Project (HMP) has resulted in several hundred metagenomic datasets,

enabling the studies of many functional elements in human-associated microbial communities (Peterson

et al., 2009). Here, we present the identification of oral spirochetes, some of which are implicated in

periodontal disease (Seshadri et al., 2004), in normal human individuals using the mapping of short reads

FIG. 4. Scatter plots of the ex-

pected (x-axis) and estimated

abundance (y-axis) of the species in

the simulated community of five

divergent E. coli strains using the

unique region approach (a) and the

redundant approach (b).

Table 2. Comparison Between BWA and BLAST in Short Reads Mapping

Error rate: 0.03 Error rate: 0.01

BWA BLAST BWA BLAST

No. reads recruited (%) 60.06 82.39 89.22 86.35

Quantification (R2) 0.9884 0.9924 0.9923 0.99
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onto the reference Trepnoma genomes that are available. We collected 9 Treponema genomes: 6 have

complete genomic sequences whereas the other 3 only have draft sequences (contigs/scaffolds). We in-

cluded the draft genome sequences as they appear to have good coverages (as compared to complete

Treponema genomes) (Table 4). The selected Treponema strains are isolated from various environments,

and we expect they are present at different abundances in human microbiome samples.

The de Bruijn graph. Using 0.97 and 100 nt as the identity and length thresholds, we built a de Bruijn

graph for the 9 Treponema genomes. The resulted de Bruijn graph has 30,592 edges in total, with an

average length of 1,693 bp. The genomes are so divergent that the concatenated edges are only 4.3% shorter

than the total length of the reference genomes.

Reads mapping and abundance estimation. Before employing our methods to the real metagenomic

sequences, we tested it on simulated datasets with reads sampled from the Treponema genomes. We

simulated 1.25 millon error-free reads from the 9 genomes (Table 5), with coverage ranging from 1 to 9.

Over 96% of reads are uniquely mapped to the de Bruijn graph at a maximum edit distance of 3 (which is

expected, as these 9 Treponema genomes are rather divergent, except the two denticola genomes). If we do

not try to distinguish the reads mapped to the two denticola genomes (MUMi = 0.21), we achieved almost

perfect quantification of the Treponema genomes with reference to each individual genome for this sim-

ulated dataset (Fig. 6a). However, as shown in Figure 6b,c, our methods can even distinguish the two

Table 3. Comparison of Quantifying Six E. oli Genomes Using Different Approaches

Strain 55989 REL606 E24377A IAI1 MG1655 SE11

Relative abundance 1 2 3 4 5 6

Reads uniquely mapped to individuals 84,143 80,382 86,051 85,774 82,876 87,745

Naive method 32.2 34.25 34.09 35.99 35.23 35.41

Estimated abundance (unique region approach) 7.96 18.57 27.12 36.53 44.16 52.94

Estimated abundance (redundant approach) 8.51 20.21 29.02 40.90 51.15 58.92

FIG. 5. Scatter plots of the ex-

pected (x-axis) and estimated

abundance (y-axis) of the species in

the simulated community of six

closely related E. coli strains using

unique region approach (a) and re-

dundant approach (b).

FIG. 6. Scatter plots of the expected (x-axis) and estimated abundances (y-axis) of the species in the simulated

community of nine Treponema species using the naive mapping method (excluding the two denticola genomes) (a),

using the unique region approach (b), and the redundant approach (c).
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denticola genomes, with the redundant method showing superior statistical power over the simpler unique

region method (Table 5).

Estimation of the abundances of Treponema species in human microbiomes. We tested 6 datasets

from the Human Microbiome Project: Human Microbiome Illumina WGS Reads (HMIGWS) Build 1.0

(available at http://hmpdacc.org/HMIWGS). Three of the samples were collected from tongue dorsum and

the other three were collected from stool. From the plot, it is obvious that all six samples have extremely

low abundances of azotonutricium ZAS-9 and primitia ZAS-2 (Fig. 7). This result is expected as it has been

reported that the termite-derived strains are not closely related to other known treponema strains in terms of

their 16S rRNA sequences (Graber et al., 2004). Also, all three oral samples have high abundances of

denticola while the three stool samples nearly have no denticola species (Fig. 7). Furthermore, we can

observe a relatively high abundance of pallidum and succinifaciens in all six samples—this may be due to

the presence of closely-related genomes to pallidum or succinifaciens in the datasets (Treponema succi-

nifaciens was found in swine intestine and is involved in carbohydrates oxidization [Han et al., 2011]). In

addition, we observed that the three oral HMP samples that we tested have different proportions of the two

Tremnoma denticola strains (Fig. 7b), with sample SRS047219 having the highest denticola ATCC 35405

and lowest denticola f0402. This indicates that it is important to have a mapping/quantification method that

can distinguish different strains in the same species, which shows strain variations among multiple samples.

3.4. Comparison with GenomeMapper and DynMap

We only compared our methods with GeomeMapper and DynMap in terms of mapping results, as they

do not offer the functionality of quantification. We used the two E. coli genomes (one is K-12 MG1655 and

the other is simulated with only very minor differences from K-12) that are used for comparison between

GenomeMapper and DynMap in the DynMap paper (Flouri et al., 2011). We simulated 5,000,000 reads of

36bp using MetaSim at 1% deletion rate, 1% insertion rate and 2% substitution rate. Our method is

comparable or better than the other two methods in terms of mapping results (Table 6), although its running

time was longer than DynMap. Note that DynMap was specifically designed for the reads mapping onto

multiple genomes with only small differences, and thus runs faster than our method in these cases.

Table 4. Nine Selected Treponema Genomes

Strain Living/sampling Site Sequencing Status Genome size (bp)

Azotonutricium ZAS-9 Termite gut Complete 3,855,671

Primitia ZAS-2 Termite gut Complete 4,059,867

Denticola ATCC 35405 Homo sapiens oral cavity Complete 2,843,201

Denticola f0402-1 Homo sapiens oral cavity Contigs 2,734,980

Vincentii ATCC 35580 Homo sapiens oral cavity Contigs 2,514,590

Phagedenis F0421 Homo sapiens urogenital tract Scaffolds 2,830,421

Brennaborense DSM 12168 Bovine foot Complete 3,055,580

Pallidum Nichols Homo sapiens Complete 1,138,011

Succinifaciens Swine intestine Complete 2,731,853

Table 5. Comparison of Quantification of Nine Treponema Genomes Using Different Approaches

Strain Expected Mapped reads Naive method Unique-region Poisson-model

Azotonutricium ZAS-9 1 37,964 7.24 8.10 8.20

Brennaborense DSM 12168 2 60,255 14.50 16.19 16.41

Denticola ATCC 35405 3 155,749 40.28 14.50 20.52

Denticola f0402-1 4 163,131 43.85 18.56 26.67

Pallidum Nichols 5 56,087 36.24 41.27 41.62

Phagedenis F0421 6 168,700 43.82 48.62 49.49

Primitia ZAS-2 7 282,497 51.16 57.40 57.93

Succinifaciens DSM 2489 8 209,265 56.32 62.21 64.37

Vincentii ATCC 35580 9 226,432 66.21 74.29 74.74
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Both GenomeMapper and DynMap require predefined list of polymorphisms as input, whereas our

method offers the option to directly take genomic sequences (and their pairwise alignments) as input to

construct a de Bruijn graph, which has advantages of presenting the similarity and dissimilarity of a group

of genomes as compared to the data structures used in the other two tools.

4. DISCUSSION

Using de Bruijn graph allows for efficient mapping of short reads to multiple closely-related genomes

simultaneously. Based on the accurate and sensitive alignment of short reads, we can estimate the relative

abundance of each of the closely-related genomes in a microbial community. Currently, we used BWA to

map the reads onto a single sequence from the concatenation of sequences of all edges in the de Bruijn

graph. We plan to develop a tool allowing the direct mapping of the reads to the de Bruijn graph, which

may make the mapping process even more efficient.

Due to the limitation of memory requirement, our current tool can only handle a limited number of

closely-related genomes. Therefore, it is important to select representative genomes and to set appropriate

parameters for constructing the de Bruijn graph. We are currently constructing a library of de Bruijn

graphs, each for a selected set of representative genomes from a genus, and then we can quantify the

species (of sequenced genomes) by directly mapping reads from a metagenomic dataset to these graphs.

When genomes are divergent, accurate abundance estimation for the genomes can be reached even based

on reads mapped to individual genomes, e.g., for the divergent Treponema species. Thus, it is accurate to

compute the abundance of each genus by summing up the abundance of each species in the genus, as

commonly used in current metagenomic analysis (Arumugam et al., 2011). However, our method extended

the capability of quantification to more closely-related genomes, as shown in the two highly similar

Treponema species. It is anticipated that the unique region approach works well if the unique edges for each

genome are sufficiently long, while the redundant method works better for the genomes that have fewer

unique edges.

Our method has limitations. Based on our experience, genomes from different substrains within the same

strain are often indistinguishable because they are almost identical to each other. For example, Treponema

pallidum pallidum SS14 and Treponema pallidum pallidum Nichols both belong to the subspecies T.

pallidum subsp. pallidum with a MUMi distance of merely 0.02. In practice, it is almost impossible to

quantify each of those two genomes in the community. However, in reality, we may not need to distinguish

them, and it should be sufficient to quantify them together by selecting one of them as a representative for

reads mapping. Also, our quantification method is reference-based and relies on the available genomic

FIG. 7. The estimation of the

relative abundances of Treponema

species in six HMP datasets:

SRS019045, SRS019219, and

SRS047219 are datasets from ton-

gue dorsum, while the remaining

three datasets are stool samples (a)

and the estimated abundances of

two denticola genomes in oral

samples (b).

Table 6. Comparison Between Our Method with Genomemapper

and Dynmap on Reads Mapping

Program Alignment Total time

GenomeMapper 77.3% 5m26s

DynMap 95.71% 44s

DBGraph + BWA 97.6% 2m47s
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sequences. In principle, we can use our method to quantify each genome in the sample and therefore can

estimate the abundance at different taxonomic levels (strain, species, genus, etc.), if the existing genomes

represent all major taxonomic groups. In this case, because the representative genomic sequences may be

deviated from the sequences from the sample (as we can select a representative genome from each strain or

substrain), we may have to use rigorous but slower alignment tools like BLAST for reads mapping to

achieve more accurate quantification of species. Nevertheless, we believe our method is ready for the

quantification of known genomes, even if they are closely-related and their sequences are similar.
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