
A Credential Store for Multi-tenant Science
Gateways

Thejaka Amila Kanewala
Research Technologies, UITS

Indiana University, USA
thejkane@iu.edu

Suresh Marru
Research Technologies, UITS

Indiana University
smarru@iu.edu

Jim Basney
NCSA

University of Illinois, USA
jbasney@illinois.edu

Marlon Pierce
Research Technologies, UITS

Indiana University, USA
marpierc@iu.edu

Abstract—Science Gateways bridge multiple computational
grids and clouds, acting as overlay cyberinfrastructure. Gateways
have three logical tiers: a user interfacing tier, a resource tier and
a bridging middleware tier. Different groups may operate these
tiers. This introduces three security challenges. First, the gateway
middleware must manage multiple types of credentials associated
with different resource providers. Second, the separation of
the user interface and middleware layers means that security
credentials must be securely delegated from the user interface
to the middleware. Third, the same middleware may serve
multiple gateways, so the middleware must correctly isolate
user credentials associated with different gateways. We examine
each of these three scenarios, concentrating on the requirements
and implementation of the middleware layer. We propose and
investigate the use of a Credential Store to solve the three security
challenges.

Index Terms—Science Gateways, Security, OA4MP, Apache
Airavata, Credential Store

I. INTRODUCTION

Science Gateways [1] hide complexities in accessing and us-
ing cyberinfrastructure resources while providing application-
centric or science-specific user interfaces to scientists. Gate-
ways typically support communities of scientists, enabling
them to run computational experiments on remote computing
resources and to manage and share data and metadata in a
secured and controlled fashion. Gateways are typically devel-
oped as a 3-tiered architecture with a portal layer handling
the user interface as one tier, a middle tier that is responsible
for the data and execution management, and a resource tier
that provides the computing and storage resources. These
logical tiers may be further subdivided or merged in actual
implementations. As illustrated in Figure 1, we refer to the
middle tier as the Gateway Middleware Tier. The Gateway
Middleware Tier is increasingly hosted as a separate set of
services that is distinct from the user interfaces and resource
layers. Further, each of these tiers may be operated by a
distinct group. Ultrascan [2], Paramchem [3], DARE [4],
and iPlant [5] are examples that follow this trend. The user
interface layer interacts with the middleware layer through
an Application Programmer Interface (API). The API cleanly
abstracts the presentation layer from the heterogeneity in
computational resource interactions. These include resource-
specific authentication, authorization mechanisms, data encod-
ings, communication protocols and execution management.

Users with security credentials must be able to authorize
the middleware to act on their behalf. Science Gateways

Fig. 1: The overall structure of a Science Gateway consists of three
logical tiers. Separation of the gateway middleware from the portal
server tiers and the proliferation of different types of resource tiers

introduce security challenges.

serve communities of users who do not necessarily have
accounts on computational resources but are brokered through
community accounts allocations [6]. Gateway administrators
own and manage these community accounts. This scenario
is quite common on national grid computing infrastructures
like XSEDE [7]. This is also a good model for university
coursework, where the instructor acquires the allocation on
the grid and allows students who are taking the course to
use the allocation through a gateway. The gateway interface
enables the students to concentrate on the science problems
instead of details associated with using complicated computing
resources.

In this paper we discuss the challenges faced by the
science gateway infrastructure and the need for a secured
Credential Store to manage diverse resource credentials, to
map end user identities with community accounts and to
enable credential delegation without human interaction while
creating a trusted multi-hop authorization. Section II discusses
the related work and complementary security components
within the cyberinfrastructure ecosystem. Section III describes
the science gateway security requirements in greater detail.
Section IV introduces an abstract view and design of the
Credential Store, and Sections V and VI present a software

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IUScholarWorks

https://core.ac.uk/display/213837088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


implementation of such a component and discuss its role
in science gateway infrastructure. Section VII concludes the
paper with a discussion of future work.

II. RELATED WORK

MyProxy [8], an X.509 credential management system, is
primarily used in grid computing. For example, XSEDE [7]
uses MyProxy as a primary credentialing mechanism for users
with an approved computational allocation. The MyProxy
server generates short-lived X.509 credentials based on the
users request, authenticated by a username and password.
These credentials are authorized for use on XSEDE resources
by the XSEDE accounting system. Since MyProxy manages
only X.509 credentials, an alternate approach is required to
support heterogeneous resources and associated authentication
mechanisms like SSH (Secure Shell) keys. Also, MyProxy
does not assist gateways with mapping end users who lack
grid credentials to shared community accounts.

For a simplified gateway scenario where a portal is directly
interacting with resources, the OAuth for MyProxy (OA4MP)
service [9] provides a two-hop solution built over the OAuth
Version 1 [10] protocol. To fully enable a complex three-
tiered gateway, this solution has to be extended to three hops
where an administrator/end user can delegate credentials to
an intermediary middleware service that acts on its behalf for
an extended duration, facilitating long running computational
experiments. A comprehensive list of science gateway security
requirements and usage scenarios is discussed in [6] and [11].

The Java Keystore [12] is a well-known mechanism for
storing keys. There are also a number of repositories (such
as LDAP) capable of storing keys. But science gateways
must deal with heterogeneous credential types. For example, a
gateway will use X.509 credentials to communicate with grid
resources and SSH credentials to communicate with Amazon
EC2 services [13]. We conclude that what is needed is a
Credential Store to persistently store any type of credential
so those resources can be easily integrated with the gateway
middleware.

III. PROBLEM STATEMENT

We can summarize the challenges for science gateway
computational resource credential management as a) credential
delegation for gateway systems that separate the user interface
components and gateway middleware services into separate
network services; b) management of multiple credentials asso-
ciated with a heterogeneous collection of grids, clouds, and lo-
cal resources; and c) gateway middleware services potentially
serving multiple gateway user interfaces, requiring the gateway
middleware to support multi-tenant credential management.

First we consider the delegation problem, for example,
when gateway user interface components are separated from
gateway middleware services (which manage job executions,
file management and similar headless tasks). These interfaces
and services may be operated by separate groups a desirable
separation for many reasons, as gateways can outsource their

generic tasks to centralized services and concentrate on user-
facing capabilities. But this brings up a design challenge; since
the credentials are associated with the end user, we need
a mechanism to securely delegate credentials to middleware
layer.

The traditional MyProxy [8] approach is for the user to
enter the MyProxy username and password via the UI so
the middleware can get short-lived certificates from MyProxy.
In this case, no hard-coded authentication data is stored on
the file system. The user provides the authentication data
(username/password) via the UI when launching jobs. But
for many grid resources, particularly XSEDE, community
credentials [6] are widely used to share cost (that is, charge
to the same account) across multiple end users who do not
have personal allocations on the Grid. Community credentials
are usually managed by Gateway Administrators or other
privileged users. We need a secure way of delegating resource
credentials to end users. Since community credentials are
needed to make secure invocations on the resource layer, those
credentials need to be managed at the gateway middleware
layer, not at the gateway user-interface layer. Therefore we
need a mechanism to directly provision credentials to gateway
middleware without embedding credential information in each
request sent from the portal.

Straightforward solution this problem is to provide re-
source authentication data (that is, the MyProxy username and
password) to the operators of the gateway middleware tier
(Figure 2). But hard coding authentication data will forfeit
the flexibility of the gateway middleware. Also, managing
this authentication information in a file system will require
sufficient security. If we use community credentials, we will
lose the audit trails about the originating user, as many portal
end users will be mapped to single community credentials (see
Figure 3).

Fig. 2: Straightforward solution to credential transferring problem

Gateway middleware will use community credentials to
authenticate to resources. Once the execution path passes gate-
way middleware, information about who invoked the operation
will be lost unless the gateway adds per-user information to the
community credential [6]. This means a loss of accountability
at the resource level. If a resource is attacked through the
gateway middleware we won’t have a way to backtrack to the



Fig. 3: Mapping multiple users to the same community account user

responsible attacker without consulting the gateway middle-
ware.

Managing authentication data for heterogeneous resources
at the gateway middleware layer is a challenge since there
are many different authentication mechanisms (see Figure 3).
For example, Indiana University’s Big Red II supercomputer
uses SSH keys as an authentication mechanism, whereas
XSEDE Trestles uses X.509 credentials that are part of the
XSEDE single sign-on infrastructure. Cloud services such as
Amazon EC2 [13] use Public Key Infrastructure as the primary
authentication mechanism and SSH as an access mechanism.
The Globus Toolkit [14], UNICORE [15], HTCondor [16] and
gLite [17] are also middleware systems that can be used to
run operational cyberinfrastructure. The gateway middleware
should have a mechanism to efficiently manage credentials
from these heterogeneous sets of resources.

Gateway providers may rely on third-party services to
provide general-purpose applications and data management
services in the gateway middleware tier. This relieves providers
from operating these services themselves. From the gateway
middleware providers point of view, it is preferable to concen-
trate gateways into a single, multi-tenanted service to obtain
better operational scalability. In this multi-tenant scenario, we
need to manage credentials for each portal server separately.
Each gateway will be concerned about their credential usage.
The gateway middleware needs to guarantee that credentials
owned by a particular gateway are used only for jobs submitted
through that gateway. The audit logs need to be managed
separately for each gateway. We need to make sure each portal
server is handled individually when it comes to credential
management at the gateway middleware layer. This behavior
is depicted in Figure 4.

IV. DESIGN

To solve problems described in Section III, we propose
to create a Credential Store, a secure database for storing
authentication data with added utilities for performing dele-
gation and key generation. The Credential Store is developed
as a pluggable module for gateway middleware and provides a
component interface for such operations as persistently storing

Fig. 4: Multiple gateway portal servers connecting to the same
gateway middleware

and renewing credentials. Any gateway middleware can use
the Credential Store as a library.

The gateway middleware can decide whether to use a sep-
arate or shared database (with Middleware) for the Credential
Store. In deployment, we need to make sure database files are
properly secured using file access control mechanisms pro-
vided by the operating system, and database access is secured
using proper authentication and authorization mechanisms.

We also require that the gateway portal and gateway mid-
dleware trust each other. That is, the gateway portal authenti-
cates end users and passes user information to the gateway
middleware. We must trust the gateway portal not to give
a malicious or incorrect user id and the Credential Store to
generate correct audit data (for more on this, see Section
IV-C). Trust between the gateway portal and middleware can
be achieved by a deployment model such as the one shown in
Figure 5. This is based on TLS (Transport Layer Security) [18]
mutual authentication. The Credential Store operation can be

Fig. 5: A deployment model that trusts gateway portal server and
gateway middleware

divided into three steps.
1) Initialize a Credential Store for each gateway portal layer

when it registers with the gateway middleware layer.
2) Place credentials in the Credential Store. This can be

done using a delegation mechanism such as OAuth [10],
generating a key pair (explained below), or manually
calling a service interface method in the gateway mid-
dleware.

3) Query appropriate credentials from the Credential Store
during a job submission request.

The following sections discuss each step in detail.



A. Store Initialization during Gateway Registration

The gateway middleware hides complexities in resource
communication. The gateway portal needs to go through a
registration process with the gateway middleware. During
registration we establish trust between the gateway middleware
and the gateway portal. The main step in registration is
setting up mutual TLS authentication through a public key
exchange. Vetting between the gateway and the middleware
is done through human interaction by administrative users,
and humans are responsible for depositing keys. During the
registration phase, the gateway middleware needs to call the
Credential Store with certain parameters. In general we expect
the following parameters to be passed to the Credential Store:

1) Gateway Id: A unique id the middleware assigns to the
gateway that is used to uniquely distinguish gateways;

2) Gateway portal administrator ”portal user id”; and
3) Gateway administrator email: We need gateway portal

administrator information for auditing purposes and also
for notifications. (Section IV-E discusses notifications.)

Figure 6 shows Credential Store operation during gateway
registration.

Fig. 6: Store initialization for a newly registered gateway

B. Persisting Credentials in the Credential Store

Fig. 7: Credential persistence overview

This section discusses various ways of provisioning creden-
tials in the Credential Store (Figure 7 provides an overview.)
Each time the store receives new credentials, it generates a
token that is returned to the gateway portal. At the portal
server this token is associated with users in the user store.

Later, when invoking a job, the associated token is sent in the
request.

Credentials can be deposited into the Credential Store in
three ways:

1) Delegation-based credential persistence;
2) Generating SSH keys (based on credential persistence);

and
3) Invoking a gateway middleware service API method

(raw credential persistence)
Discussions of each mechanism follow.

Delegation-based credential mechanisms: These can be
easily plugged into the Credential Store. A credential del-
egation mechanism for grids is “OAuth for My Proxy”
(OA4MP) [9]. Figure 8 illustrates how OA4MP can be in-
tegrated with the Credential Store. In this scenario resource
credentials are directly retrieved into the Credential Store
on behalf of the credential owner (usually the gateway ad-
ministrator). Figure 8 depicts how credentials are persisted

Fig. 8: Persisting community credentials using OA4MP delegation

using OA4MP delegation. It also shows OAuth protocol steps.
The gateway administrator, who knows the MyProxy user-
name and password for the community credential, requests
credentials from the Credential Store. The OAuth protocol
retrieves certificates without passing the MyProxy password to
the gateway middleware. The retrieved certificates are stored
in the Credential Store in an encrypted form along with their
private keys and a token is generated, which is a random value
generated to encrypt data in the Credential Store (using AES
encryption). The token is then passed to the science gateway
portal through the callback URI registered during the gateway
initialization.

Figure 8 shows how we persist community credentials.
Individual credentials are also persisted in the same manner,
but the process is performed by the actual user, not by an
administrator. In the case of individual credentials, the token
received by the portal server is associated with a single user,
whereas in a community account, the token is associated with
multiple users.

OA4MP presumes that the resources are associated with
a grid security domain: the credential that is returned can
be used to access one or more resources by an appropriate



client program. This is the case, for example, with the X.509-
based security systems used by XSEDE. Gateways, however,
are not tied to a specific grid infrastructure operator and can
also provide access to applications running on campus clusters
and supercomputers. In such cases, we also need to support
SSH-based access through public-private key pairs.

SSH key generation-based credential persistence: Cloud
resources such as Amazon EC2 [13] and campus computing
resources such as Indiana University’s Big Red II support
SSH-based authentication. Those resources do not provide
delegation mechanisms, and every user must have an account
on the resource authentication system (LDAP or database) to
communicate with the resource.

One approach is to directly get a user’s SSH keys (private
and public) and store them in the Credential Store. But end
users should not be required to give their keys to a third party.
Instead we generate a key pair within the Credential Store and
deposit that key pair in the store. The public key is returned
back to the portal server along with the token. The gateway
portal server is responsible for displaying public keys to the
user. The sequence of actions involved in key generation and
key persistence is depicted in Figure 9. The user is required
to deploy SSH public keys to the actual resource by manually
logging into the resource. This is a one-time step.

Fig. 9: Sequence of actions taking place when persisting generated
SSH keys

Raw credential persistence: If we cannot retrieve creden-
tials using a delegation mechanism or generate credentials (like
SSH keys), we can use a direct method to deposit credentials
into the Credential Store. Here, the user contacts the resource
service/server directly, gets credentials, and deposits them in
the Credential Store by calling an API method in the gateway
middleware. Once the user calls the gateway middleware with
the credentials, the gateway middleware invokes the Credential
Store component interface to deposit credentials. As Figure 10
shows, first the user requests and receives credentials for
a particular resource, and the Credential Store component
interface provides methods to persist and retrieve them. The
user can safely transfer credentials over the network to the
gateway middleware because we have established mutual trust
between the gateway portal server and gateway middleware
server.

Fig. 10: Raw credential deposit

C. Job Invocation with Credentials

When a credential is persisted into the Credential Store,
the Credential Store returns a token to the gateway portal.
The portal server associates the retrieved token with portal
users, and can decide the strategy for associating tokens with
the user store. For example, if credentials are retrieved for a
community user in a given project, the portal can associate
a token with all the users in the project. If a credential is
retrieved for an individual user, the portal server can decide to
associate that token with the individual user alone. Once the
token is associated with the user, the portal can access remote
resources securely through the gateway middleware layer.

Fig. 11: Component interaction while executing a job using
persisted credentials

During job execution, the portal server needs to submit
the token associated with the user and metadata needed to
execute the job. Middleware will extract the token from the
job execution request, confirm that the token is owned by the
portal (i.e., matches the portal identity from TLS [18] mutual
authentication as per Figure 5), and invoke the Credential
Store to get the appropriate credentials. Figure 11 shows
how credentials are retrieved from the Credential Store while
executing a job. Figure 12 depicts the sequence of actions
performed at each entity when retrieving credentials from
the Credential Store. If credentials are X.509 certificates, we
decorate the retrieved credentials (certificates) with end-user



Fig. 12: Operations performed at each entity during credentials
retrieval

information, and the portal server sends the end users portal
username and email. Since we have mutual trust between
the portal server and gateway middleware, we rely on the
portal server to send correct information about the user who is
executing the job. For X.509 credentials (MyProxy credentials)
we embed portal user information along with other metadata
in the certificate in the form of an SAML [19] attribute token.
To do this we use GridShib [20] tools.

For SSH credentials, we write an audit record about the
portal user who accessed the credentials (along with other
access data, such as time accessed, from which IP address
the request came, etc.).

D. Credential Renewal

By default, we honor the policy defined by the credential-
issuing entity on the credential’s lifespan and expiration time.
It is up to the manager of the credential to renew it. In
the Credential Store we calculate and record the credential’s
expiration time when it is deposited. Before expiration, we
send notifications to the user who deposited those credentials
(the lead time for these notifications is a configurable param-
eter in our implementation). Currently, the Credential Store
can send notifications in the form of email. The notification
methodology is configurable and new delivery methods can
easily be plugged into the Credential Store. Further, we can
configure notifications to be sent after a defined period.

For non-interruptive operations, we may need to renew
credentials programmatically, overriding the default behavior
described above. We can implement renewal by registering a
“renewer” for a credential type.

When a credential renewer is registered for a particular
type of resource, the execution order is depicted in Figure 13.
Credentials must be renewed before they expire. The Creden-
tial Store consists of a component called a Notifier (explained
in Section IV-E), which notifies when a credential nears its
expiration. The renewer registers itself with the Notifier. When
the Notifier indicates that a particular credential is about to
expire, the renewer is notified. The renewer checks whether
there is a renewer implementation registered for the type of
credential. If so, the appropriate renewer implementation is

Fig. 13: How credential ”renewer” is executed during a job
submission

invoked to renew credentials. If the renewer is able to suc-
cessfully renew credentials, the Credential Store will update
stored credentials against its indexed token.

Our implementation includes the MyProxy-based credential
renewer, discussed in the following paragraphs. SSH keys do
not expire, but stay in the Credential Store until they are
deleted. They will be reused when submitting jobs.

MyProxy based credential renewer: The MyProxy-based
credential renewer requires following a deployment function
pattern. To renew proxy credentials, we follow an approach
similar to the way the WMS [21] system renews its credentials.
We register the gateway middleware as a trusted renewer.
The gateway middleware registers with MyProxy server and
can retrieve credentials for some time (a year, for example).
This process may need additional permissions. The long-
term credentials are deposited into a Credential Store under
a special token, accessible only through gateway middleware.
The renewer then uses the special token to renew the portal-
persisted credentials.

For example, a user is assigned to the middleware during
deployment and this user is registered as a trusted renewer in
the MyProxy server and gets credentials that are valid for one
year. Now, the middleware gets an 11-hour certificate from
the portal in a request. To renew the 11-hour certificate, the
middleware sends a renewal request to the MyProxy server
with the assigned user’s credentials. (depicted in Figure 14).

E. Credential Store Object Model

The basic structure of the Credential Store is depicted in
Figure 15. We explain each sub-component below.

1) Store - This is the secure database that stores credentials.
As the store should be able to store any type of cre-
dentials, it is designed to ignore the structure of actual
credentials (e.g.: an X.509 credential or an SSH key).
Credentials are secured in 3 layers. First: The data store
is deployed in a host with restricted access to its file sys-
tem. Second: The database is secured using an available
authentication mechanism (username/password). Third:
The credential is encrypted using a strong symmetric key
algorithm (AES [22]). The key for the symmetric key



Fig. 14: MyProxy credential (X. 509 Certificate) renewing example,
where x is a trusted renewer

Fig. 15: The component view of the Credential Store and how it
interacts with gateway middleware

algorithm is generated based on a passphrase provided
by the administrator. The passphrase can reside in a con-
figuration file or be input when the gateway middleware
initializes. We recommend supplying a passphrase at the
start of the gateway middleware.

2) Credential - This is an abstract representation of the
credentials that the Credential Store handles. The core
of the Credential Store is aware of this abstract im-
plementation only. All specific implementations can be
plugged into the Credential Store with minor configu-
ration changes and a jar containing the implementation.
So far, we have Credential implementations of X.509
certificates and SSH Keys. If we want to add a new
Credential implementation (such as a SAML authenti-
cation token) we add it as a plugin to the Credential
Store.

3) Delegator - A simple approach of using the Credential
Store is to deposit a username/password pair for access
to a particular resource. Since we do not wish to send
a username/password (such as a MyProxy username/-
password) to a third party, we need a way to persist
credentials on behalf of the user. In other words we
need a mechanism to delegate credentials to a trusted
third party to perform operations. For a particular type
of resource, if a delegation mechanism is available, we
can interface that with the Credential Store. Currently we

have a delegation mechanism only for MyProxy creden-
tials OAuth for MyProxy (OA4MP) [9]. We discussed
OA4MP integration with the Credential Store in Section
IV-B.

4) Key Generator - Many resources, such as clouds and
campus clusters, use SSH keys as a primary authen-
tication mechanism. Transmitting private keys over the
network is not a good practice. We need a mechanism at
the middleware layer to generate keys and deploy them
in the appropriate resource. Key generation is handled
by the Key Generator component.

5) Interface - The Store Interface hides details about the
Credential Store operations and provides an easy API-
like interface to the gateway middleware. This Interface
is divided into two sub-components: CredentialReader
and CredentialWriter. CredentialReader is responsible
for reading credentials for a given token, while Creden-
tialWriter deposits credentials into the Credential Store
and provides interface methods to delete and decorate
credentials.

6) Notifier - The gateway administrators will want to know
a whether particular credential will expire in order to re-
new credentials and continue gateway operations without
interruption. We have configured email notifiers to send
events, based on certain rules. If a particular credential
is expiring within a configured time period, the Notifier
sends email to the gateway administrators. The Notifier
can be configured to receive other types of events based
on certain actions. For example, we can send notification
messages whenever credentials are queried. As with
other components, the implementation of notifier is
pluggable. Internally the Renewer (explained in item 7)
uses the Notifier to get notifications about credentials
that are about to expire.

7) Renewer - This component handles renewing creden-
tials. Like other sub- components, concrete renewer im-
plementations can be plugged into the Credential Store.
In this case we use the MyProxy credential renewer,
which renews X.509 credentials. If the Notifier indicates
expiring credentials, the Renewer is invoked. The Cre-
dential Store searches the plugged-in concrete renewer
implementation needed to initiate the process. MyProxy
renewer implementations must satisfy the deployment
requirements discussed in section IV-A or the credential
renewal will fail. In such cases the renewer will throw
an exception to the caller with the proper error message.

V. IMPLEMENTATION

We implemented the Credential Store as a module in
Apache Airavata [23]. In our implementation the Creden-
tial Store is a relational database. We tested it with both
MySQL [24] and Derby [25]. Implementations of credentials
are serialized and the serialized stream is encrypted using the
AES [22] algorithm. The encrypted stream is stored in the
databases as a BLOB [26] type, along with the associated
token and metadata. When retrieving credentials by token, the



Credential Store will decrypt the stream and de-serialize it to
get the actual object implementation. For example, in the case
of OA4MP, we convert X.509 certificate and its private key
into a serialized form, encrypt it, and store in the database.
We used standard Java security packages. BouncyCastle [27]
handles certificates and other security keys; and JCraft [28]
and JGlobus [29] are used for SSH and MyProxy operations,
respectively. The key for the AES algorithm is generated based
on passphrase input by the administrator. The passphrase can
reside in a configuration file, or it can be input when the
Credential Store initializes. The recommended approach is
to provide the passphrase as an input when the middleware
starts and pass it to the Credential Store during initialization.
For attribute decoration of credentials we used the GridShib
tools [20].

The Credential Store database lies in the file system on
the server side and should be secured using standard Unix
file access control mechanisms. Database connections are also
secured using a provided authentication (username / password)
mechanism. The damage done by an attacker getting into
the system is minimized by enforcing Unix system security
and database security. Even a person who has access to the
database will not be able to see credentials as they are in
encrypted format.

Each sub-component in the Credential Store is implemented
as a pluggable module. We use Java class loading [30]
mechanisms with configurations to achieve pluggability. For
example if we want to add a new credential type we can
implement the Credential interface (Java) provided by the
Credential Store, package it as a jar, and place it in the class
path. In the Credential Store configuration we then specify
which implementations should be loaded to the memory.

Operations related to handling authentication information
are logged in a separate audit log. The log file should be
secured using Unix access control mechanisms and streamed
to a dedicated, secure log server for an independent audit
log. For each request, we record information on the machine
originating the request, the gateway id, the portal user invoking
the request, the DNs (Domain Names) and serial numbers of
credentials (in the case of MyProxy), SSH public keys, and
SSH user names.

In a multi-tenant deployment, the middleware layer enforces
isolation across the portal instances, i.e., each portal instance
authenticates to the middleware layer, so the middleware layer
can ensure credentials are not improperly shared across portal
instances. Each gateway needs to go through a registration
process and establish trust as described in Section IV-A.
During the registration each gateway is assigned a unique ID
which is later used to distinguish gateways from one another.
For each request processed by the Credential Store we create
a context indexed by gateway ID. Each context will carry
the state information needed for a single gateway. During
persistence and credential retrieval we use the gateway ID
to isolate credentials related to a gateway. The audit logs are
separately managed for each gateway and the Credential Store
component interface takes the gateway id as a parameter for

each method of invocation.

VI. USE CASES - INTEGRATION WITH APACHE AIRAVATA
SCIENCE GATEWAYS

The credential store is integrated with the Apache Aira-
vata [23] science gateway framework. Gateways using Aira-
vata are transitioning to take advantage of the capabilities
discussed in Section IV. In this section we discuss two com-
plementary use cases in detail: 1) the integration of MyProxy
with the ParamChem [3] gateway and 2) the use of the SSH
Key-based approach in the Indiana University Cyber Gateway.

A. ParamChem Science Gateway using Apache Airavata

ParamChem users use the desktop tool Paramberoo to
perform dihedral angle parameter optimization. A significant
group of users may use XSEDE HPC resources to execute
workflows that involve computationally intensive reference
data generation, while non-XSEDE users can provide their
own reference data and run short-lived workflows on the
computing resources provided by ParamChem. Paramberoo is
integrated with Apache Airavata for workflow management
and XSEDE job handling capabilities.

The ParamChem gateway administrator initializes the gate-
way with Apache Airavata during the bootstrap step. In this
process, the XSEDE X.509 short-lived credentials issued by
the MyProxy server are stored. In the traditional approach
the ParamChem gateway is used to store the MyProxy user-
name and password in a properties file trusted by the file
system security. With the integration of the Credential Store,
the ParamChem gateway administrator never needs to store
authentication data in configuration files.

The gateway administrator logs into the XSEDE OAuth [10]
portal and initiates the transaction. The transaction is com-
pleted when the handle is passed to the Credential Store,
which interacts with the OAuth server, retrieves the certificate,
and deposits it. The Credential Store-generated token is then
passed to the Science Gateway portal through a callback URI.
These steps are illustrated in Figure 8 and discussed in detail
in Section IV-B.

Once credentials are deposited, end users can execute
parametrization workflows using the molecular editor client.
Users use the client to navigate through the wizard interface
to select a dihedral parameter, configure parameterization
options, and launch the parametrization workflow. During this,
Paramberoo passes the Credential Store token retrieved during
credential persistence. This token is propagated to the Airavata
job management framework, which consults the Credential
Store to retrieve credentials. Those credentials are then used
to execute jobs and move data. Users retrieve their results,
and data is archived on mass storage devices for persistence.
These steps are the same among all gateways that use XSEDE
resources through Apache Airavata.

B. IU Cybergateway SSH Credentials

The Indiana University (IU) Cyberinfrastructure Gateway
provides a consolidated, web-based gateway to the IU research



computing infrastructure: Big Red II, Quarry, and Mason [31].
Users can get summary views of resource loads, information
about their submitted and running jobs, searchable lists of
available software on these research computing resources, and
interactive plots of the usage statistics. Users can also transfer
data from their laptops and desktop machines to storage
systems, and between IU and other computing resources such
as XSEDE. Here, we focus on the gateway’s ability to launch
applications directly through the gateway web interface and to
build custom, science-centric web gateways from the gateway
services. This use case illustrates the use of auto-generated
SSH keys, as illustrated in Figure 9 and described in Section
IV-B.

During the user registration step, the cybergateway invokes
the Credential Store to persist credentials through the gateway
middleware. Once SSH keys are deposited into the Credential
Store, the cybergateway gets a token and a public key. The
user is then required to add the generated public key to
the authorized keys file on the target compute resource. For
security purposes, the resource authentication is locked down,
allowing only the gateway middleware server to access the
resource (i.e. the host access list in authorized keys file inside
resource has only gateway middleware server address and no
outside client machine is allowed to access the resource). After
this, users can submit jobs to the gateway. The gateway, in
turn, makes a request to the Apache Airavata middleware and
Airavata invokes the Credential Store with the token. Airavata
will retrieve the SSH private key from the Credential Store
and use it to communicate with the resource.

VII. SUMMARY & FUTURE WORK

The owners of resource credentials are authorized, special
end users. In the case of community credentials, these special
users are the gateway administrators. There are also stand-
alone users who own resource credentials. Between the end
user and resource, the gateway middleware hides resource
complexities; the credentials are used by the gateway mid-
dleware. Transferring end-user resource credentials to gateway
middleware is a delegation problem in standard security terms.
But gateway middleware connects to heterogeneous resources,
and some resources do not provide a usable delegation mecha-
nism. Delegation is not always the best solution. If a delegation
mechanism is available, the Credential Store uses it to transfer
credentials. Where there is no such mechanism, the Credential
Store uses other approaches such as SSH key generation and
manual persistence of credentials.

In this section we discuss a few exceptional scenarios
that are possible during this operation. One possibility is
that credentials are compromised, and we must rely on audit
records to sort out which credentials are compromised. In this
case we go through audit records to figure out responsible
credentials (DNs, serial numbers, public keys) and delete them
from the Credential Store. The next time, the legitimate user
needs to persist new credentials before executing jobs.

As of now we do not have a mechanism to determine audit
log integrity, but are researching an efficient way to preserve

it as described in [32]. There could be cases where credentials
are compromised but audit logs do not show which ones. We
would need to remove all credentials in the Credential Store
to make sure the system is in a safe state. Every user would
then need to deposit credentials back to the Credential Store
and perhaps manually store them in the authorized keys file
(for SSH keys). Though this is cumbersome process, it is the
safest action given the situation. We do not currently have a
way to automate credential restoration, and this is an area we
would like to further investigate.

As a preventive mechanism we recommend deploying the
Credential Store database in a separate server with strong
restrictions (i.e. only the database storage is kept in a separate
host). We can implement strong file system security, make the
database accessible only to the gateway middleware, modify
firewalls (IPtables) so that only the gateway middleware can
communicate with the database, and take other standard secu-
rity measures.

We expect the gateway middleware tier to implement
standard fault-tolerant mechanisms to avoid single points of
failure. Further, the Credential Store database should also be
replicated on two servers to guard against the service being
unavailable, and should be secured using the same security
mechanisms discussed in Section IV.

An implementation of the Credential Store was tested using
Apache Airavata [23] middleware. In this implementation the
Credential Store was coupled to Apache Airavata middleware.
We plan to separate out the Credential Store and make it a
separate software component. Currently GFac (the resource
communicating module within Airavata) [23] uses the Cre-
dential Store to retrieve credentials for both grid and SSH
communication. Not all resource providers support OAuth-like
interfaces to delegate credentials. We are planning to improve
the Credential Store to work with better delegating protocols
such as OAuth Version 2 [33]. Further, for some credential
types, we do not have proper delegation mechanisms such as
OA4MP. For example, we do not have such a mechanism for
SSH. We plan to investigate how we can incorporate OAuth-
like protocols with SSH credentials.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation
under grant number ACI-1127210.

REFERENCES

[1] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, and S. Pamidighan-
tam, “Teragrid science gateways and their impact on science,” Computer,
vol. 41, no. 11, pp. 32–41, 2008.

[2] B. Demeler, “Ultrascan: a comprehensive data analysis software pack-
age for analytical ultracentrifugation experiments,” Modern analytical
ultracentrifugation: techniques and methods, pp. 210–229, 2005.

[3] J. Ghosh, N. Singh, Y. Fan, S. Marru, K. Vanomesslaeghe, and
S. Pamidighantam, “Molecular parameter optimization gateway (param-
chem),” in Proceedings of the 2011 TeraGrid Conference. ACM, 2011.

[4] S. Maddineni, J. Kim, Y. El-Khamra, and S. Jha, “Distributed application
runtime environment (dare): A standards-based middleware framework
for science-gateways,” Journal of Grid Computing, vol. 10, no. 4, pp.
647–664, 2012.



[5] E. Skidmore, S.-j. Kim, S. Kuchimanchi, S. Singaram, N. Merchant,
and D. Stanzione, “iplant atmosphere: a gateway to cloud infrastructure
for the plant sciences,” in Proceedings of the 2011 ACM workshop on
Gateway computing environments. ACM, 2011, pp. 59–64.

[6] V. Welch, J. Barlow, J. Basney, D. Marcusiu, and N. Wilkins-Diehr,
“A aaaa model to support science gateways with community accounts,”
Concurrency and Computation: Practice and Experience, vol. 19, no. 6,
pp. 893–904, 2007.

[7] J. Towns, “Evolving from teragrid to xsede,” Bulletin of the American
Physical Society, 2011.

[8] J. Basney, M. Humphrey, and V. Welch, “The myproxy online credential
repository,” Software: Practice and Experience, 2005.

[9] J. Basney and J. Gaynor, “An oauth service for issuing certificates
to science gateways for teragrid users,” in Proceedings of the 2011
TeraGrid Conference: Extreme Digital Discovery. ACM, 2011, p. 32.

[10] B. Leiba, “Oauth web authorization protocol,” Internet Computing,
IEEE, vol. 16, no. 1, pp. 74–77, 2012.

[11] J. Basney, V. Welch, and N. Wilkins-Diehr, “Teragrid science gateway
aaaa model: implementation and lessons learned,” in Proceedings of the
2010 TeraGrid Conference. ACM, 2010, p. 2.

[12] Wikipedia. (2013) Keystore. [Online]. Available: http://en.wikipedia.
org/wiki/Keystore

[13] E. Amazon, “Amazon elastic compute cloud (amazon ec2),” Amazon
Elastic Compute Cloud (Amazon EC2), 2010.

[14] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” International Journal of High Performance Computing Appli-
cations, 1997.

[15] D. W. Erwin and D. F. Snelling, “Unicore: A grid computing environ-
ment,” in Euro-Par 2001 Parallel Processing. Springer, 2001.

[16] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of idle
workstations,” in Distributed Computing Systems, 1988., 8th Interna-
tional Conference on. IEEE, 1988.

[17] P. Andreetto, S. Andreozzi, G. Avellino, S. Beco, A. Cavallini, M. Cec-
chi, V. Ciaschini, A. Dorise, F. Giacomini, A. Gianelle et al., “The
glite workload management system,” in Journal of Physics: Conference
Series, vol. 119, no. 6. IOP Publishing, 2008, p. 062007.

[18] T. Dierks, “The transport layer security (tls) protocol version 1.2,” 2008.
[19] J. Rosenberg and D. Remy, Securing Web Services with WS-Security:

Demystifying WS-Security, WS-Policy, SAML, XML Signature, and XML
Encryption. Pearson Higher Education, 2004.

[20] T. Barton, J. Basney, T. Freeman, T. Scavo, F. Siebenlist, V. Welch,
R. Ananthakrishnan, B. Baker, M. Goode, and K. Keahey, “Identity
federation and attribute-based authorization through the globus toolkit,
shibboleth, gridshib, and myproxy,” in 5th Annual PKI R&D Workshop,
2006.

[21] D. Koufil and J. Basney, “A credential renewal service for long-running
jobs,” in Grid Computing, 2005. The 6th IEEE/ACM International
Workshop on. IEEE, 2005, pp. 6–pp.

[22] E. Whaley and D. Miller, “Aes advanced encryption standard.”
[23] S. Marru et al., “Apache airavata: a framework for distributed applica-

tions and computational workflows,” in Proceedings of the 2011 ACM
workshop on Gateway computing environments. ACM, 2011.

[24] A. MySQL, “Mysql,” 2001.
[25] Apache. (2012) Apache derby. [Online]. Available: http://db.apache.

org/derby/
[26] Wikipedia. (2013) Binary large object. [Online]. Available: http:

//en.wikipedia.org/wiki/Binary large object
[27] B. Castle, “Bouncy castle crypto apis,” U RL http://www. bouncycastle.

org/.(Cited on page 82.), 2007.
[28] D. A. Yamanaka. (2012) Jcraft. [Online]. Available: http://www.jcraft.

com/
[29] JGlobus. (2013) Jglobus github community. [Online]. Available:

https://github.com/jglobus/JGlobus
[30] S. Liang and G. Bracha, “Dynamic class loading in the java virtual

machine,” ACM SIGPLAN Notices, vol. 33, no. 10, pp. 36–44, 1998.
[31] I. University. (2013) Hpc systems. [Online]. Available: http://rt.uits.iu.

edu/systems/hps/
[32] S. Haber, Y. Hatano, Y. Honda, W. Horne, K. Miyazaki, T. Sander,

S. Tezoku, and D. Yao, “Efficient signature schemes supporting redac-
tion, pseudonymization, and data deidentification,” in Proceedings of the
2008 ACM symposium on Information, computer and communications
security. ACM, 2008, pp. 353–362.

[33] D. Hammer-Lahav and D. Hardt, “The oauth2. 0 authorization protocol.
2011,” IETF Internet Draft, Tech. Rep.


