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Hui Ma

Curve and Surface Framing for Scientific Visualization 
and Domain Dependent Navigation

Curves and surfaces are two of the most fundamental types of objects in computer 
graphics. Most existing systems use only the 3D positions of the curves and surfaces, 
and the 3D normal directions of the surfaces, in the visualization process. In this 
dissertation, we attach moving coordinate frames to curves and surfaces, and explore 
several applications of these frames in computer graphics and scientific visualization.

Curves in space are difficult to perceive and analyze, especially when they are 
densely clustered, as is typical in computational fluid dynamics and volume defor­
mation applications. Coordinate frames are useful for exposing the similarities and 
differences between curves. They are also useful for constructing ribbons, tubes and 
smooth camera orientations along curves.

In many 3D systems, users interactively move the camera around the objects with 
a mouse or other device. But all the camera control is done independently of the 
properties of the objects being viewed, as if the user is flying freely in space. This 
type of domain-independent navigation is frequently inappropriate in visualization 
applications and is sometimes quite difficult for the user to control. Another produc­
tive approach is to look at domain-specific constraints and thus to create a new class 
of navigation strategies. Based on attached frames on surfaces, we can constrain the 
camera gaze direction to be always parallel (or at a fixed angle) to the surface normal. 
Then users will get a feeling of driving on the object instead of flying through the 
space. The user’s mental model of the environment being visualized can be greatly 
enhanced by the use of these constraints in the interactive interface.

Many of our research ideas have been implemented in MeshView, an interactive 
system for viewing and manipulating geometric objects. It contains a general purpose 
C + +  library for nD geometry and supports a winged-edge based data structure. 
Dozens of examples of scientifically interesting surfaces have been constructed and 
included with the system.

vu
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Chapter 1

Introduction

Curves and surfaces are two of the most fundamental types of objects in computer 

graphics. In this dissertation we attach moving coordinate frames to curves and 

surfaces, and explore several applications of such frames in computer graphics and 

scientific visualization.

Most of today’s computer graphics applications use only the 3D positions of the 

curves and surfaces and the 3D normal directions of the surfaces in the visualization 

process. By studying the properties of the coordinate frames determined by the 

geometry of curves and surfaces, and finding numerical algorithms to generate them, 

we can attach frames to each point of any curve or surface. We will show that one 

can use these frames to develop original tools to visualize the properties of curves 

and surfaces, to construct new objects associated with the curves and surfaces, and 

to control the camera orientation when we navigate through a scene of curves and 

surfaces.

We will explore three major applications of coordinates frames:

1
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G e n e ra tin g  rib b o n s , tu b e s  an d  sm o o th  cam era  o rie n ta tio n s  a long a  curve.

After we attach coordinate frames to the points of a curve, it is straightforward 

to construct ribbons, tubes and forward-facing camera orientations along the curve. 

These will have certain properties related to the framing method we choose. For 

example, we may want to minimize camera rotation so the user will be less apt to 

experience motion sickness, or we may want some extra twist which is constrained to 

return to the initial orientation after the camera travels once around a closed curve.

V isu a liza tio n  o f dense  se ts  o f curves. Curves in space are difficult to perceive 

and analyze, especially when they form dense clusters, as is typical in computational 

fluid dynamics (CFD) and volume deformation applications. Coordinate frames are 

useful for exposing the differences between curves, even when the curves appear almost 

identical. Powerful curve analysis tools can thus be built based on these frames.

D om ain  d e p e n d e n t n av ig a tio n  o f curves and  surfaces. In many 3D systems, 

users interactively move the camera around the objects using a mouse, a joy-stick 

or other device. Users can translate and rotate the camera around the objects, or 

change various camera parameters, like focal length, near and far clipping planes, field 

of view, etc. However, all the camera control is done independently of the properties 

of the objects being viewed. This kind of camera control is based on the assumption 

that the users are flying freely in space. This assumption of domain-independent 

navigation is frequently inappropriate in visualization applications and is sometimes 

quite difficult for the user to control.

Another productive approach is to look at domain-specific constraints and thus to 

create a new class of navigation strategies. A domain-specific movement may depend
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on the particular local or global geometric properties of the object being viewed. We 

can use frames attached to the surfaces to constrain the camera gaze direction to 

always be parallel to (or a t a fixed angle to) the surface normal. Then the user will 

get a feeling of driving on the surface instead of flying through the space. The local 

properties of the surface, e.g., the curvatures, will directly affect the navigation. The 

user’s mental model of the environment being visualized can be greatly enhanced by 

the use of these constraints in the interactive interface.

1.1 Contributions of the Dissertation

The primary contributions of this dissertation are an investigation of the mathe­

matical foundations of framing methods, and a family of novel ways of exploiting 

coordinate frames for applications in scientific visualization and computer graphics. 

A secondary contribution is the MeshView visualization system, an interactive sys­

tem for viewing and manipulating geometric objects, especially 4D objects such as 

quaternion-valued coordinate frames. Many of our research ideas have been imple­

mented in this system, which contains a general purpose C + +  library for nD geometry 

and supports a new object description format -  WING. Dozens of examples of sci­

entifically interesting surfaces have been constructed and included with the system. 

Most of our research has been published in refereed articles (see [34, 35, 36, 37]).

We now look at the primary contributions of this dissertation in more detail.

•  An algorithm for constructing parallel transport frames along a curve is pre­

sented, as well as a mathematical proof of its validity and an analysis of its 

rate of convergence. We compare the advantages and disadvantages of parallel
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transport frames with classical Frenet frames along curves.

•  We discuss the issues involved in constructing ribbons, tubes and smooth camera 

orientations along a curve using parallel transport frames or Frenet frames.

•  While coordinate frames are useful for exposing the similarities and differences 

between curves, it is awkward to represent frames visually in high-density data 

because a frame consists of three 3D vectors, or nine components. We present 

a technique that re-expresses the moving frame as a unit quaternion, a point in 

4D. We discuss the issues involved in assigning Frenet quaternion frames and 

parallel-transport quaternion frames to curves.

•  We present several methods for visualizing properties of the four-dimensional 

quaternion fields. We also examine an interactive technique for simultaneously 

displaying the original 3D curves and the corresponding 4D quaternion curves, 

and for visualizing the interaction between these two spaces.

•  An interactive method for exploring topological spaces based on the natural 

local geometry of the space is presented. The method is applicable to any- 

dimensional manifolds in any-dimensional ambient space. In our approach, a 

controller is used to choose a direction in which to “walk” a manifold along a 

local geodesic path (see Appendix D for a brief introduction to mathematical 

theories of tangent spaces and geodesics). The method automatically generates 

orientation changes that produce a maximal viewable region with each step of 

the walk. The proposed interaction framework has many natural properties that 

help the user develop a useful cognitive map of a space. Also, the framework
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is well-suited to haptic interfaces that can be incorporated into desktop virtual 

reality systems.

1.2 Related Work

The classical theory of Prenet frames can be found in many differential geometry 

textbooks, e.g., [19, 23, 59]. The parallel transport frame was described in Bishop 

[101.
Shoemake in [56] introduced quaternions into the computer graphics field. He 

showed how to use quaternions to interpolate (linearly or by using splines) between 

two or more 3D frames. See also Kim et al [44], Nielson [48], Schlag [52] and Shoemake 

[57],

Orientation spaces and their relationship to quaternions are described in Altmann 

[2]. An interesting approach to the visualization of the properties of quaternions was 

given by Hart, Francis, and Kauffman [40]. Systematic approaches for representing 

clusters of orientations in 3D spaces of angles have been suggested, for example, by 

Alpern et al. [1]. Gray in [17, 23] exploits the curvature and torsion scalar fields on 

a curve for visualization purposes.

Hanson and his students have done extensive work in visualization of high di­

mensional spaces, especially in 4D, see [26, 27, 29, 30, 31, 32, 33]. Several papers 

(Banchoff[3], Banchoff[4], Banks [5]) show pictures of computer generated 4D sur­

faces. In [6], Banks introduces some refinements of previous techniques on nD diffuse 

and specular illumination. Geomview ([49]) has several external modules that do high 

dimensional visualization. The 4Dview module reads 4D objects and every time the
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user moves the mouse, it creates a 3D object and sends it into Geomview. It has 

some unique features, including 4D perspective projection and 4D slicing. But its 

interactive 4D control is slow and unwieldy. Another external module of Geomview is 

Maniview ([24]). Maniview can display 3-manifolds using discrete groups. Users see 

mirror-images of the fundamental domain of the 3-manifold. The NDView module 

of Geomview provides yet another approach, with displays consisting of selected 3D 

subspaces of an nD object.

Several algorithms for finding minimal distances on polyhedral surfaces have been 

described ([47, 53, 55, 65]). Bryson in [14] presents a system for visualizing geodesics 

in gravitational spacetime that allows user control of the displayed paths in a virtual 

reality environment.

Regge in [51] extends many concepts in smooth Riemannian geometry to a flat 

polyhedral framework. This formulation of geometry is closely related to the methods 

we use to navigate tessellated geometric models in computer graphics. See Appendix 

E for a brief introduction to the Regge Calculus.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows.

In Chapter 2, we introduce the differential geometry of 3D curves. We compare the 

mathematical properties of the Frenet frame and the parallel transport frame. A nu­

merical algorithm for calculating parallel transport frames is presented. We describe 

applications to the generation of ribbons, tubes and smooth camera orientations along 

a curve.
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In Chapter 3, we present a  technique that re-expresses a frame as a unit quater­

nion, which reduces the number of components from nine with six constraints to 

four with one constraint. We study the theories of both the quaternion Frenet frame 

and the quaternion parallel transport frame. We describe several flexible approaches 

for interacting with and exploiting the properties of the resulting four-dimensional 

quaternion fields. As examples, we examine a torus knot, a spherical volume defor­

mation known as the Dirac string trick ([40]), a twisted volume used in topology to 

construct knots, and streamlines of 3D vector flow fields.

In Chapter 4, as an example of the general domain dependent navigation method­

ology, we propose an interactive method for exploring topological spaces based on 

the natural local geometry of the space. We present an algorithm to walk along a 

curve, a surface or a higher dimensional object. The algorithm automatically gener­

ates orientation changes that produce a  maximal viewable region with each step of 

the walk.

In Chapter 5, we present an overview of our MeshView visualization system. We 

describe the features of MeshView, the 3D/4D rolling ball interface, a C + +  library 

of nD geometry and a new winged-edge based data structure -  WING.

Finally, Chapter 6 presents a summary along with directions for future research.



Chapter 2

Curve Framing

In this chapter, we attack the problem of associating moving coordinate frames to 

three-dimensional space curves in ways that are well-understood mathematically and 

that have optimal behavior for certain classes of computer graphics applications. 

These frames can be used for creating ribbons, tubes, and smoothly varying camera 

orientations that are controlled by the curve geometry itself. They also form the 

foundation for visualizing densely clustered 3D curves using quaternions, a topic for 

the next chapter.

Classical differential geometry typically treats moving frames using the Frenet 

frame formalism because of its close association with a curve’s curvature and torsion, 

which are coordinate-system independent [19, 23, 59]. The Frenet frame, unfortu­

nately, has the property that it is undefined when the curve is even momentarily 

straight (has vanishing curvature), and exhibits wild swings in orientation around 

points where the osculating plane's normal has major changes in direction. We pro­

pose an alternative approach, the parallel-transport frame method (see Bishop [10]),

8
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which has a mathematically sound foundation and more appropriate behavior for 

computer graphics. We compare the properties of alternative framing methods and 

point out when the parallel-transport approach has unique advantages. In cases where 

the Frenet. frame has desirable properties, a hybrid strategy is also feasible.

Typical computer graphics applications of the parallel-transport frame include 

the generation of ribbons and tubes from 3D space curves, and the generation of 

forward-facing camera orientations given an appropriate initial camera path. If the 

curve is coarsely refined, but is smooth enough to generate appropriate frame control 

points from the parallel-transport frame algorithm, the resulting frames can be used 

as control points for any desired degree of smooth spline interpolations using the 

methods of Shoemake [56], Schlag [52], Kim et al [44] and Barr et al [7]. Rotating 

camera orientations relative to a stable forward-facing frame can be added by various 

techniques such as that of Shoemake [57].

In Section 2.1, we introduce the basic mathematics of coordinate frames on space 

curves, emphasizing the parallel-transport frame; the properties of the Frenet and 

parallel-transport frames are compared. Our algorithms are given in Section 2.2, 

which also describes how coordinate frames can be applied to the generation of rib­

bons, tubes, and camera frames. Appendices A, B and C contain proofs and deriva­

tions of useful formulas.

2.1 The Differential Geometry of Space Curves

Our first goal is to define moving coordinate frames that are attached to a curve in 3D 

space. We will assume that the curves are defined in practice by a discrete sequence of
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points connected by straight line segments; thus numerical derivatives can be defined 

at each point.

2.1.1 Frenet Frames

The Frenet frame (see, e.g., [19, 23]) is defined as follows: If x(i) 1 is any thrice- 

differentiable space curve with non-vanishing second derivative, its tangent, binormal, 

and normal vectors at a point on the curve are given by

Ti t )  «

B (t) = * '(t) x *"(*) f 2 n
W ||x '(t) x x " (t) || { }

N(f) =  B (t) x  T(t)  .

This standard frame configuration is illustrated in Figure 2.1. When the sec­

ond derivative vanishes on some interval, the Frenet frame is temporarily undefined. 

Attempts to work around this problem involve various heuristics [54].

The Frenet frame obeys the following differential equation in the parameter t 

(which is the origin of the requirement for one more order of differentiability beyond 

the second derivative):

T '(f)

i
o K(t)

o

T (t)

N '(t) =v(t) -«(*) 0 T (t) m

1
*+•» 0 - r ( t ) 0 B(t)

1In this dissertation, if indicates that if is a vector while x indicates that x is a unit vector.
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Figure 2.1: The triad of orthogonal axes forming the Frenet frame for a curve with 
non-vanishing curvature.

where v(t) =  ||x '(£ )|| is the scalar magnitude of the curve derivative (often re­

parameterized to be unity, so that t  becomes the arclength s), k(t) is the scalar 

curvature, and t (£) is the torsion. These quantities can in principle be calculated 

in terms of the parameterized or numerical local values of x(i) and its first three 

derivatives as follows:

«(t) =  

r(t)  =

\ \Z( t )xx"( t ) \ \
l|x'(t))||3

(x '(£) x  x" (£)) • x"'(t) 
| |x '( i )  X X"(t)||2

Given a non-vanishing curvature and a torsion as smooth functions of t, one can 

theoretically integrate the system of equations to find the unique numerical values of 

the corresponding space curve x(t)  (up to a rigid motion).
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2.1.2 Parallel Vector Fields

Before going on to introduce parallel-transport frames as an alternative to the Frenet 

frame, let us spend a moment looking at parallel vector fields on curves in general; 

such vector fields are typically constructed by parallel transporting vectors along a 

curve.

For a given space curve x(s) parameterized by arclength s, a vector field V (s) is 

said to be normal if it is everywhere perpendicular to the curve’s tangent T (s) =  x '(s). 

A normal vector field V ( s ) is said to be parallel to the curve x(s) if its derivative is 

tangential along the curve; that is, V '(s) j| T (s). Such a vector field turns only as 

much as is necessary for it to remain normal.

More generally, an arbitrary vector field V  along a curve x  is said to be parallel if 

its normal component is parallel and its tangential component is a constant multiple 

of the unit tangent field of x.

The curve y  =  x  +  V  is called a parallel curve of x, if V  is parallel to x.

P ro p e r tie s  o f  P a ra lle l V ecto r F ie lds. A curve x, a parallel normal vector field 

V , and the corresponding parallel curve y  have the following key properties:

(a) V  has constant length.

(b) V  is perpendicular to both x ' and y'.

(c) V  is locally a segment of minimum length between the two curves if ||V || is 

sufficiently small.

(d) For an arbitrary normal vector Vo at a point x (s0), there exists a unique par­

allel field V (s) on x(s) such that V(sq) =  Vq. A numerical algorithm will be
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V(l)

u < i )

'X(l)U{s),

V(s)

I
original curve XV(0)U(0)

X(0)

Figure 2.2: Properties of parallel vector fields.

presented in Figure 2.7.

(e) If two arbitrary normal vectors Vo and Uo generate parallel fields V (s) and U(s) 

respectively, the angle between V (s) and U (s) is constant along the curve. That 

is V (s) ■ U (s) =  V 0 • U 0 for all s.

These properties are illustrated in Figure 2.2.

2.1.3 Parallel-Transport Frames

The parallel-transport (PT) frame is an alternative approach to defining a moving 

frame tha t is well-defined even when the curve has vanishing second derivative. Be­

cause of the property (e) of parallel vector fields, we can parallel transport an or­

thonormal frame along a curve simply by parallel transporting each component of 

the frame.

The PT  frame is based on the observation that, while T(£) for a given curve
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model is unique, we may choose any convenient arbitrary basis (N i(f), N 2(0) f°r the 

remainder of the frame, so long as it is in the normal plane perpendicular to T (t) at 

each point. If the derivatives of (N i(i), N 2 (*)) depend only on T (t) and not each 

other, we can make N j (t) and N 2 W vai7  smoothly throughout the path regardless 

of the curvature. We therefore have the alternative frame equations

(2.3)

T ' 0 ki k% T

N'i =  V I ?T“ O o N r

1--
---

-

S3
 

*-

l 1
1 ?r- to O o >

One can show (see, e.g, Bishop [10]) that

K(t)

m

r(t)

((^ l)2 +  (^2)2) 

arctao ( h  j

d6{t)
dt

so that k\ and k? effectively correspond to a Cartesian coordinate system for the polar 

coordinates k, 9 with 6 = — f  r ( t)  dt. The orientation of the PT  frame includes the 

arbitrary choice of integration constant 60, which disappears from r  (and hence from 

the Frenet frame) due to the differentiation.

As with the Frenet equations, we can begin with a pair of functions (ki(t), M *)) 

and an initial frame, and then integrate any alternate form of the frame equations to 

find the curve £(t) up to a rigid motion.

These equations also give an abstract construction for a PT  frame. In Section 

2.2, we will present a much simpler numerical method. In Appendix C, we give a
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(a) (b) (c)
Figure 2.3: Comparing the Frenet and PT frames on plane curves, (a) Convex curve; 
both frames are identical, with the third component of the frame pointing out of the 
paper, (b) The Frenet frame on a non-convex curve (with inflection points) reverses 
the direction of the normal fields at each inflection point, so the direction of B is 
into the paper on the indented portion of the curve, (c) A PT frame on the same 
non-convex curve maintains continuity in the direction of the third component of the 
frame throughout the curve.

proof showing that the frame field generated by our algorithm correctly approximates 

the PT frame of an underlying smooth curve as the curve segment length approaches 

zero.

2.1.4 Comparison of Frenet and Parallel-Transport Frames

The contrast between the properties of the Frenet frame and the PT  frame is best 

seen by looking at some examples.

Figure 2.3a shows the frames for a convex plane curve; the Frenet and PT  frames 

are identical. However, as soon as the curve has inflection points in the plane, as 

shown in Figure 2.3b, one sees that the Frenet frame’s normal components instantly 

switch sign a t each inflection point, while the PT  frame has no such discontinuities; if 

the curvature remains zero along a straight line segment, the Frenet frame provides no
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N2

N2
N2

N2

N2

???,

Figure 2.4: Comparing the Frenet and PT frames on a “roof-top.” (a) The Frenet 
frame becomes undefined on the straight line at the peak, then changes abruptly as 
the curve descends the right side, (b) The PT  frame is smooth throughout. (Note: 
the initial orientation of the normal plane is arbitrary.)

prescription for defining a smooth transition from the frame coming into the straight 

segment and the (possibly radically different) frame leaving the straight segment.

Next, we look at a non-planar curve drawn on a “roof-top," which exhibits mo­

mentarily vanishing curvature and a  radical change in the normal to the osculating 

circle; again, as illustrated in Figures 2.4 a,b, the PT  frame is well-behaved and the 

Frenet frame is not smooth enough to be used as the basis for a ribbon or tube 

construction.

Finally, we look at a cylindrical helix, which has the property th a t the torsion 

is a  constant along the whole curve. In this case the Frenet frame returns to the 

same orientation each time the helix passes through the same axial line on the tube, 

as shown in Figure 2.5a. This behavior is in fact desirable in some applications. 

However, at the same time, it hides an essential property: non-zero torsion means the



CH APTER 2. CURVE FRAMING 17

(a) (b)

Figure 2.5: (a) The Frenet frame of a 3D helix, which has constant torsion; the frame 
is identical after each turn, (b) The PT  frame on a helix, showing how the torsion 
produces a constant angular velocity or “spin” about the moving tangent vector. The 
total amount of spin experienced after each turn depends on the pitch of the helix, 
which determines the torsion.

PT  frame is rotating with a constant angular velocity that washes out the torsion in 

such a way as to reduce the total change in the frame orientation at the end of one 

circuit! Viewed in terms of the quaternion picture of rotations (see Chapter 3), the 

path traveled in the space of unit quaternions will be shorter. Figure 2.5b illustrates 

the way in which the PT  frame changes by a  constant rotation in the normal plane 

with each cycle around the cylinder.

We note that, since we can create a closed curve by attaching a planar curve to 

two points of the helix tangent to a single plane, it is possible for closed curves to have 

PT  frames that do not match up after one full circuit of the curve; we will discuss a
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simple correction procedure for this situation below (see Section 2.2.3).

2.2 Algorithms and Implementation Issues

In this section, we present our parallel transport algorithm and compare it with 

another algorithm (see Section 2.2.2). We will also discuss implementation issues 

dealing with closed curves, spinning, non-uniform tubing and camera animations.

2.2.1 The Parallel Transport Algorithm

In practice, we never have smooth curves in numerical applications, but only piecewise 

linear curves that are presumed to be approximations to differentiable curves. We 

will need to compute the tangents to a curve given by the set of points {x,}. W ithout 

making any assumptions about the shape of the curve approximated by the points, 

the best we can do is to compute the tangent using a formula involving neighboring 

points such as

T  =  *»+1 -  Xj—i
ii£i+i - X j _ i i r

If we are willing to make some assumptions, such as taking any three neighboring 

points to represent the arc of a circle, we may compute the tangent to that circle at 

the middle point; this osculating circle [59], whose center lies on the intersection line 

of the planes perpendicular to each chord is discussed in detail in Appendix B.

If the curve is locally straight, i.e., x"(t) =  0 or T <+1 =  i \ ,  then there is no 

locally-determinable coordinate frame component in the plane normal to T; a non-
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IN PU T : (1) A list of unit tangent vectors {T*}, i = 0 , . . . ,  iV;
(2) An initial normal vector Vo, Vo X T 0.

O U T P U T : A list of parallel-transported normal vectors {V,},
» =  1, . . . , JV,  V i X T i .

ALGORITHM:

for i 4- 0 to  N  — 1 step 1 
B Ti x T i+1; 
if ||B|| =  0 then

V i+1 -  V<;
else

B ^ B / | |B | |;
0 *— arccos(Tj * Ti+i); / /  0 < 8 < 7T 
V j+1 +- R (B , 0) * _
/ /  Rotate by 6 about B (see Appendix A for R) 

end if 
end for

Figure 2.6: Parallel-transport algorithm

local definition must be used to decide on the remainder of the frame once T  is 

determined, and this is what the PT algorithm provides.

The basic steps of the PT algorithm for piecewise linear curves can be formulated 

as in Figure 2.6 and the diagram in Figure 2.7. Notice that the input to the algorithm 

is a  list of tangent vectors. The tangent vectors can be computed either numerically 

as mentioned above, or analytically if the mathematical model for the curve is known.

R em arks.

•  If Ti is nearly parallel to T i+i, then 0 is close to zero, so the rotation matrix R  

is close to the identity, making the value of B irrelevant.



CHAPTER 2. CURVE FRAM ING 20

Vi+1

i+1 T | + l

B l T j , B l T i+1

Figure 2.7: Diagram illustrating the geometric quantities used in the parallel trans­
port algorithm.

•  Since all actions are rotations, the length of any transported vector is preserved 

automatically. In fact, the input of the algorithm is not restricted to normal 

vectors; the method correctly parallel transports any vector. W hat happens, in 

effect, is that the normal component of the vector is parallel transported, while 

the tangential component is repeatedly rotated to coincide in direction with the 

current tangent vector.

• Given an initial frame with one vector in the direction of the curve tangent 

and two normal vectors, we can thus construct the PT  frame field by applying 

the algorithm to each of the normal components separately. Orthonormality 

is automatically preserved due to property (e) in Section 2.1.2. Alternatively, 

since the third component of the triad is dependent on the other two, we may 

parallel transport only one component and compute the second by taking the 

cross-product of the first with the tangent vector.
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•  The long chain of matrix multiplications may incur some numerical error. This 

error can be reduced by representing the initial frame as a quaternion (see, 

e.g., [56]). Since each rotation R* can be expressed directly in terms of a 

quaternion using the same parameters q = (cos f , B sin f ), one can carry out the 

numerical computation of the frame change over the entire curve by quaternion 

multiplication instead of 3 x 3 matrix multiplication.

•  One can show that as the tessellation of the curve becomes finer and finer, the 

resulting vectors {V*} approximate the smooth parallel vector field defined in 

Section 2.1.2. See Appendix C.

2.2.2 The Projection Method

A common method for the generation of tubes is what might be called the “projection 

method.” In this approach, one takes the current unit normal vector V t, the current 

unit tangent vector Tj, and the next unit tangent vector T i+1, and computes V i+1 

as follows:

V  +i =  ~  ‘ (2 4)
,+ I I V ^ - T ^ . i W O I I  •

Compared with the parallel transport method, the projection method has several 

drawbacks:

•  It requires renormalization at every step, while parallel transport explicitly pre­

serves the length of the vector.

» ■*« A fS
•  If Tj X T i+i and V< =  Tj+i, we get a zero vector.

•  Because the value of Vj+i doesn’t change if we replace T j+i with —T I+i in
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Eq. 2.4, it behaves undesirably when the angle 6 between T* and T i+i is > tt/2. 

It gives the same result as if $ =  tt — 6. The parallel transport algorithm can 

naturally handle any 6 6 [0, tt] .

•  One can prove that as the tessellation of a smooth curve becomes finer and 

finer, the results of the projection method also approach the smooth parallel 

vector field. But our parallel transport method (Figure 2.6) converges faster. 

See Appendix C.3.

Therefore, we are going to use the parallel transport algorithm throughout this dis­

sertation.

2.2.3 Closed Curves and Spinning

For closed curves, we let xyv+ 1 =  xo. The Frenet frame, which is defined only by local 

curve properties, returns to its initial value. In contrast, the parallel-transport frame 

will in general not return to its initial orientation. The angular difference a  between 

the initial and final frames is determined by the torsion,

a  = — £  r(s )  ds mod (27t) (2.5)

where s is the arclength.

We can heuristically create a continuous frame that is aligned after one trip around 

the closed curve by adding an additional "spin” around the tangent direction at each 

vertex. For example, if the curve is described by a set of points { x i} ^ 1, where
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x/v+i =  Xo, and the partial curve lengths are

j=i

then for i =  1 , . . . ,  N  we can choose

U
OCi = OL-----

-k/V+1
V, = R ( T it<*i)*Vi.

Examples are shown in Color Plate G.l.

2.2.4 Sweeping Tubes and Ribbons

To generate a ribbon or tube, we can use the parallel transport method to create a 

complete structure by sweeping an initial cross-section composed of vectors {V* }; k =  

0 , . . . ,  K  through a  curve. A thickness function {r*}; i — 0 , . . . ,  N, k  =  0 , . . . ,  K  can 

also be applied as

V- =  r V  .v X 9 X v » •

Examples are shown in Color Plate G.2.

S m o o th in g  co rn ers . Creating tessellations of ribbons and tubes is complicated 

by the fact th a t the outside corners can be handled easily without introducing self­

intersections, while the inside corners may have colliding normal line segments if the 

lengths of the normal segments are longer than the radii of the osculating circles (see 

Appendix B). For the purposes of this dissertation, we assume that the burden is on
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the user to supply a curve that is sufficiently detailed and sufficiently smooth, as well 

as a tube or ribbon cross-section that does not unreasonably cause self-intersections 

when swept along the curve.

2.2.5 Parallel Transport Camera Frames

In many (though not all) applications of camera animation, it is desirable to have 

the camera gaze direction pointing forward along a space curve throughout the mo­

tion. Typical examples would include a flight looking through the front window of 

an airplane cockpit, riding on a roller coaster, or sliding down a bannister. Other ap­

plications require the camera gaze direction to remain in some fixed skew orientation 

relative to the camera path, e.g., a  passenger looking out an airplane window. All 

such applications are easily accommodated using the parallel transport mechanism 

applied to an initial camera orientation. An example is shown in Color Plate G.3. 

In this figure, we started with a closed curve, the trefoil knot, and a parallel trans­

port frame that did not return to its initial value after one circuit; we then used the 

method described in Section 2.2.3 to adjust the frame field. The resulting frame is 

distinct from the Prenet frame for this curve.

Smooth Orientation Changes. If the discrete points on the camera path are not 

closely spaced, using the discrete rotations of the basic parallel transport algorithm 

will result in unacceptably jerky camera motion. This is easily corrected by reinter­

preting the camera frame fields at each curve vertex as key frames for a quaternion 

interpolation [7, 52, 56]; then the camera orientations will move smoothly throughout 

the curve, passing through or near the vertex frame fields, depending on the particular
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spline chosen.

In addition, certain classes of camera rolls and spins can be handled naturally as 

well. The simplest such case is the one in which the additional motions take place 

with respect to the PT  frame of the curve. More complex motions can be handled by 

a variety of interpolation methods (see, e.g., [57]).

2.3 Conclusion

In this chapter, we have introduced a coherent method for generating smoothly 

moving frames based on the geometry of a space curve. Our principal new tool is 

the parallel-transport frame, supplemented when appropriate by the classical Frenet 

frame. The tools we have introduced provide a number of mathematically well-defined 

options for producing ribbons, tubes, and camera orientation sequences automatically 

from the intrinsic geometry of a given space curve.

Possible topics for future investigation include the treatment of parallel transport 

on higher dimensional manifolds such as surfaces and volumes, parallel transport 

along curves restricted to  such manifolds (that is, curves in curved ambient spaces), 

and a variety of problems having to do with creating mathematically satisfactory 

smoothed corners for tubes and ribbons derived from piecewise linear curves.

In Chapter 3, we will study the problem of visualizing dense sets of curves. Since 

the Frenet and PT  frames represent the intrinsic properties of the curves, they are 

very useful for exposing the similarities and differences of the curves.



Chapter 3 

Curve Visualization Using 

Quaternions

Curves in space are difficult to perceive and analyze, especially when they form dense 

sets as in typical 3D flow and volume deformation applications. In the previous 

chapter, we discussed methods that expose essential properties of space curves by at­

taching an appropriate moving coordinate frame to each point. This chapter presents 

techniques that re-express that moving frame as a unit quaternion, and support user 

interaction with the resulting quaternion field. The original curves in 3-space are 

associated with piecewise continuous 4-vector quaternion fields, which map into new 

curves lying in the unit 3-sphere in 4-space. Since 4-space clusters of curves with sim­

ilar moving frames occur independently of the curves’ original proximity in 3-space, 

a powerful analysis tool results. We discuss two separate moving-frame formalisms, 

the Frenet frame (introduced in Section 2.1.1) and the parallel-transport (PT) frame 

(introduced in Section 2.1.3). We describe several flexible approaches for interacting

26
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with and exploiting the properties of the four-dimensional quaternion fields.

Our fundamental idea is that quaternion frame coordinates are useful for exposing 

the similarities and differences of sets of streamlines. Good analytic and visual mea­

sures for revealing similarities of curve shapes are rare. Because of the existence of a 

uniform distance measure in the quaternion space that we use, orientation similari­

ties in the evolution of flow fields appear automatically in meaningful spatial groups. 

Identification of these similarities is useful for applications such as finding repeating 

patterns and related curve shapes, both on single curves and within large collections 

of curves. Conversely, if a large set of nearly-identical curves contains a small number 

of significant curves that differ from their neighbors due to subtle changes in their 

frame orientations, our method will distinguish them.

Orientation spaces and their relationship to quaternions are described in Altmann 

[2|; an interesting approach to the visualization of the properties of quaternions was 

given by Hart, Francis, and Kauffman [40]. Systematic approaches for representing 

clusters of orientations in 3D spaces of angles have been suggested, for example, by 

Alpern et al. [1]. Among previous approaches to visualizing the geometry of space 

curves, we note the work of Gray [17, 23], which exploits the curvature and torsion 

scalar fields on a curve for visualization purposes; this method extends naturally to 

higher-dimensional manifolds with well-defined local curvature. We will give some 

examples of the application of curvature and torsion fields for completeness here, but 

will not pursue this approach in detail.

The rest of this chapter is organized as follows. Section 3.1 introduces the mathe­

matical properties of quaternions and how they are related to 3D coordinate frames. 

The procedures for assigning smooth quaternions to points on space curves are dis­
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cussed in Section 3.2. Some typical examples of streamline data are presented in 

Section 3.3. Section 3.4 presents various visualization methods for the exploitation 

of the quaternions. A variety of interactive techniques for exploring quaternion fields 

are described in Section 3.5. Finally, we conclude this chapter in Section 3.6.

3.1 Theory of Quaternions

It is awkward to represent moving frames visually in high-density data because a frame 

consists of three 3D vectors, or nine components, yet it has only three independent 

degrees of freedom. Some approaches to representing these degrees of freedom in a 

three-dimensional space were suggested by Alpern et al. [1]. We propose instead to 

systematically exploit the representation of 3D orientation frames in four dimensions 

using equivalent unit quaternions that correspond, in turn, to points on the three- 

sphere (see, e.g., [56]). A collection of oriented frames such as those of a  crystal 

lattice can thus be represented by mapping their orientations to a point set in the 4D 

quaternion space. The moving frame of a 3D space curve can be transformed into a 

path in quaternion space corresponding pointwise to the 3D space curve.

The quaternion representation of rotations re-expressing a moving frame of a 3D 

space curve is an elegant unit four-vector field over the curve; the resulting quaternion 

frames can be displayed as curves in their own right, or can be used in combination 

with other methods to enrich the display of each 3D curve, e.g., by assigning a coded 

display color representing a quaternion component.
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3.1.1 Properties of Quaternions

A quaternion is a four-vector q =  (ft, ft, ft, f t)  =  (ft, q) characterized by the following 

properties:

Unit Norm The inner product of two quaternions is defined as

q • P  ~  9oPo +  9 iP i +  Q2P2 +  f t P 3 , 

so the components of a unit quaternion obey the constraint

9 * q  —  (?o) 2 +  (q i )2 +  (q2)2 +  (q3)2 =  1 ,

and therefore lie on S3, the three-sphere, which is embedded in four-dimensional 

Euclidean space R4. In fact, all unit quaternions form a Lie group H, which is 

isomorphic to the 2 x 2  complex matrix group SU(2).

M ultiplication rule The quaternion product of two quaternions q and p, which is 

written as q* p ,  takes the form

[q * p] o qoPo “  ? ip i — Q2P2 —  Q3P3

[q * p \\ Q0P1 +  Q1P0 +  Q2P3 ~  Q3P2

[q * p }2 Q0P2 +  Q2P0 +  f t  P i -  91P3

[Q *  Pla qoP3 +  93P0 +  qiP2 -  Q2P1

This rule is isomorphic to multiplication in the group SU(2), the double covering of 

the ordinary 3D rotation group SO (3). If two quaternions a and b are transformed by
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multiplying them by the same quaternion q, their inner product a • b transforms as

{q*a) ■ (q*b) = (a • b)(q • q) 

and so is invariant if q is a unit quaternion.

M ap p in g  to  3D ro ta tio n s  Every possible 3D rotation R  (a 3 x 3 orthogonal 

matrix) can be constructed from either of two related quaternions, q = (?o, 9 i, f/2 i q3) 

or —q — (-qo, - q i ,  ~q2 , - 9 3 ), using the quadratic relationship

R  =

9o +  9i “  92 ~  93 29i92 -  2q0q3 2q3qx +  2 ^ 2

2qxq2 +  2q0q3 9o “  9i +  <l\ ~  Q3 2q2q3 -  2g0?i

2^39i “  2<7q92 2(72(73 +  2q0qi ql -  q \ -  q\ +  q\

(3.1)

When we substitute q = ( c o s |,n s in |)  into Eq. (3.1), where n  • n  =  1 is a unit 

3-vector lying on the 2-sphere S2, R(h, 9) becomes the standard m atrix for a rotation 

by 9 in the plane perpendicular to n  (see Appendix A). The quadratic form ensures 

that the two distinct unit quaternions q and —q in S3 correspond to the same SO(3) 

rotation.

M ap p in g  fro m  3D  ro ta tio n s  Conversely, given any 3 x 3  rotation m atrix
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w2 = (1 +  R oq +  +  i?22)/4
if w2 > 0 then

9o =
/  9

9i = (R 21 — #i2)/(4go)
92 = (Rq2 — R2o)/(4qo)
93 = (Rio — Roi)/(4q0)

else
9o = 0
x2 = —(R n  +  R ^ ) /2
if x2 > 0 then

9! =  V x 2
92 =  ^io/(2gi)
93  =  -^20 / ( 2 9 1 )

else
91 =  0

y2 =  ( 1  +  R n ) / 2

if y2 > 0 then
92  =
93 —  -^21/ ( 2 9 2 )

else

0II§

93 -  1
end

end
end

Figure 3.1: Mapping from 3D rotation m atrix R  to unit quaternion q

we can use Eq. (3.1) to find one of the two corresponding quaternions q =  (g0, 9i, 9 2 , 9 3 ) 

(the other one is —q). An algorithm to do this is outlined in Figure 3.1.

3.1.2 Quaternion Frenet Frames

All 3D coordinate frames can be expressed in the form of quaternions using Eq. (3.1). 

If we assume the columns of Eq. (3.1) are the vectors (T, N , B), respectively, one can
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show from Eq. (2.2) that [g'(t)] takes the form (see [28])

4o 0 — T 0 - K

4l V r 0 K 0

~  2 0 —AC 0 T

43 K 0 — T 0

40

41

42

43

(3 .2)

This equation has the following key properties:

•  The matrix on the right hand side is antisymmetric, so that q(t) • q'(t) =  0 by 

construction. Thus all unit quaternions remain unit quaternions as they evolve 

by this equation.

•  The number of equations has been reduced from nine coupled equations with 

six orthonormality constraints to four coupled equations incorporating a single 

constraint that keeps the solution vector confined to the 3-sphere.

We verify that the matrices

A  =

B =

4o 4i “ 42 - 4 3

43 42 4i 4o

-4 2 43 - 4 o 4l

-4 3 42 4i —4o

4o —4i 42 - 4 3

4i 4o 43 42
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C  =

92 93 9o 9i

- 9i ~9o 93 92

9o —9i —92 93

explicitly reproduce Eq. (2 .2 ),

2 - [A] - [9 '] =  T ' =  v k N  

2 - [ B } -  [9'] =  N '  =  - v k T  +  v t B  

2 - [CJ • [9 '] =  B ' =  - i i r N ,

where we have applied Eq. (3.2) to get the right-hand terms.

Just as the FVenet equations may be integrated to generate a unique moving 

frame with its space cmve for non-vanishing /c(t), we may integrate the much simpler 

quaternion equations (3.2).

3.1.3 Quaternion Parallel-Transport Frames

Similarly, a parallel-transport frame system given by Eq. (2.3) with ( N i , T ,  N 2) (in 

that order) corresponding to the columns of Eq. (3.1) is completely equivalent to the 

following parallel-transport quaternion frame equation for [9 '(f)]:

9o 0 -* 2 0 ki

Qi V *2 0 -A* 0

?2
~  2 0 fcl 0 k2

93 - h 0 - k 2 0

‘

9o

9i

92

93

(3.3)
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where antisymmetry again guarantees that the quaternions remain constrained to the 

unit 3-sphere. The correspondence to Eq. (2.3) is verified as follows:

2 ■ [B\ •[?'] =  T ' =  ufciNj +  vk2N 2 

2 • [A] ■ [?'] =  N ; =  - v k i t  

2 ■ [C] • [,'] =  NJ =

3.2 Assigning Smooth Quaternion Frames

Given a particular curve, we are next faced with the task of assigning quaternion 

values to whatever moving frame sequence we have chosen.

3.2.1 Assigning Quaternions to Frenet Frames

The Frenet frame equations are pathological, for example, when the curve is perfectly 

straight for some distance or when the curvature vanishes momentarily. Thus, real 

numerical data for space curves will frequently exhibit behaviors that make the as­

signment of a smooth Frenet frame difficult, unstable, or impossible. In addition, 

since any given 3 x 3  orthogonal matrix corresponds to two quaternions that differ in 

sign, methods of deriving a quaternion from a Frenet frame are intrinsically ambigu­

ous. Therefore, we prescribe the following procedure for assigning smooth quaternion 

Frenet frames to points on a space curve:

(a) Select a numerical approach to computing the tangent T  at a given curve point 

S; this typically depends on the chosen curve model and the number of points 

one wishes to sample.
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(b) Compute the remaining numerical derivatives at a given point and use those 

to compute the Frenet frame according to Eq. (2.1). If any critical quantities 

vanish, tag the frame as undefined (or as needing a heuristic fix).

(c) Check the dot product of the previous binormal B(i) with the current value; if it 

is near zero, choose a correction procedure to handle this singular point. Among 

the correction procedures we have considered are (1) simply jump discontinu- 

ously to the next frame to indicate the presence of a point with very small 

curvature; (2) create an interpolating set of points and perform a geodesic in­

terpolation , [56); or (3) deform the curve slightly before and after the singular 

point to “ease in” with a gradual rotation of the frame or apply an interpolation 

heuristic (see, e.g., [54]). Creating a jump in the frame assignment is our default 

choice, since it does not introduce any new information.

(d) Apply a suitable algorithm such as the one in Figure 3.1 to compute a candidate 

for the quaternion corresponding to the Frenet frame.

(e) If the 3 x 3  Frenet frame is smoothly changing, make one last check on the 4D 

inner product of the quaternion frame with its own previous value: if there is a 

sign change, choose the opposite sign to keep the quaternion smoothly changing 

(this will have no effect on the corresponding 3 x 3  Frenet frame). If this inner 

product is near zero instead of ±1, you have detected a radical change in the 

Frenet frame which should have been noticed in the previous tests.

(f) If the space curves of the data are too coarsely sampled to give the desired 

smoothness in the quaternion frames, but are still close enough to give consistent 

qualitative behavior, one may choose to smooth out the intervening frames
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using the desired level of recursive slerping [52, 56] to get smoothly splined 

intermediate quaternion frames.

In Color Plate G.4, we plot an example of a torus knot, a smooth space curve 

with everywhere nonzero curvature, together with its associated Frenet frames, its 

quaternion frame values, and the path of its quaternion frame field projected from 

four-space. Color Plate G.5 plots the same information, but this time for a curve 

with a discontinuous frame that flips too quickly at a zero-curvature point. This 

space curve has two planar parts drawn as though on separate pages of a partly-open 

book and meeting smoothly on the “crack” between pages. We see the obvious jump 

in the Frenet and quaternion frame graphs at the meeting point; if the two curves 

are joined by a long straight line, the Frenet frame is ambiguous and is essentially 

undefined in this segment. Rather than invent an interpolation, we generally prefer 

to use the parallel transport method described next.

3.2.2 Assigning Quaternions to Parallel Transport Frames

In order to determine the quaternion frames of an individual curve using the parallel 

transport method, we follow a similar, but distinct, procedure:

(a) Select a numerical approach to assigning a tangent at a given curve point as 

usual.

(b) Assign an initial reference orientation to each curve in the plane perpendicular to 

the initial tangent direction. The entire set of frames will be displaced from the 

origin in quaternion space by the corresponding value of this initial orientation 

matrix, but the shape of the entire curve will be the same regardless of the
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initial choice. This choice is intrinsically ambiguous and application dependent. 

However, one appealing strategy is to base the initial frame on the first well- 

defined Prenet frame, and then proceed from there using the parallel-transport 

frame evolution; this guarantees that identical curves have the same parallel- 

transport frames.

(c) Compute the angle between successive tangents, and rotate the frame by this 

angle in the plane of the two tangents to get the next frame value (see the 

parallel-transport algorithm in Figure 2.6).

(d) If the curve is straight, the algorithm automatically makes no changes.

(e) Compute a candidate quaternion representation for the frame, applying consis­

tency conditions as needed.

Note that the initial reference orientation and all discrete rotations can be rep­

resented directly in terms of quaternions, and thus quaternion multiplication can be 

used directly to apply frame rotations. Local consistency is then automatic.

An example is provided in Color Plate G.6, which shows the parallel transport 

analog of Color Plate G.4 for a torus knot. Color Plate G.7 is the parallel trans­

port analog of the pathological case in Color Plate G.5, but this time the frame is 

continuous when the curvature vanishes.

3.3 Examples

We next present some typical examples of streamline data represented using the basic 

geometric properties we have described. Each data set is rendered in the following
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alternative modes: (!) as a 3D Euclidean space picture, pseudo-colored by curvature 

value; (2) as a 3D Euclidean space picture, pseudo-colored by torsion value; (3) as a 

four-vector quaternion Frenet frame field plotted in the three-sphere; (4) as a four- 

vector quaternion parallel-transport frame field plotted in the three-sphere.

•  C olor P la te  G .8 . A complicated set of streamlines derived from twisting a 

solid elastic Euclidean space as part of the process of tying a topological knot.

•  C olor P la te  G .9. The “Dirac string trick” deformation ([40]) of a spherical 

solid consisting of concentric spheres in Euclidean space.

•  C olor P la te  G .10. An AVS-generated streamline data set; the flow is ob­

structed somewhere in the center, causing sudden jumps of the streamlines in 

certain regions.

While our focus is specifically on the frames of space curves, we remark that 

collections of frames of isolated points, frames on stream surfaces [41], and volumetric 

frame fields could also be represented using a similar mapping into quaternion space. 

See [38].

3.4 Visualization Methods

Once we have calculated the quaternion frames, the curvature, and the torsion for a 

point on the curve, we have a family of tensor and scalar quantities th a t we may exploit 

to expose the intrinsic properties of a single curve. Furthermore, and probably of 

greater interest, we also have the ability to make visual comparisons of the similarities 

and differences among families of neighboring space curves.
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The moving frame field of a set of streamlines is potentially a rich source of 

detailed information about the data. However, the 9-component frame is unsuitable 

for direct superposition on dense data due to the high clutter resulting when its three 

orthogonal 3-vectors are displayed; direct use of the frame is only practical at very 

sparse intervals, which prevents the viewer from grasping im portant structural details 

and changes at a glance. Displays based on 3D angular coordinates are potentially 

useful, but lack metric uniformity [1],

The 4-vector quaternion frame is potentially a more informative and flexible ba­

sis for frame visualizations; below, we discuss several alternative approaches to the 

exploitation of quaternion frames for data consisting of families of smooth curves.

3.4.1 Direct Three-Sphere Plot of Quaternion Frame Fields

We now repeat the crucial observation: For each 3D space curve, the moving quater­

nion frames define completely new 4D space curves lying on the unit three-sphere 

embedded in 4D Euclidean space.

These curves can have entirely different geometry from the original space curve, 

since distinct points on the curve correspond to distinct orientations. Families of 

space curves with exactly the same shape will map to the same quaternion curve, 

while curves that fall away from their neighbors will stand out distinctly in the three- 

sphere plot. Regions of vanishing curvature will show up as discontinuous gaps in the 

otherwise continuous quaternion Frenet frame field curves, but will be well-behaved in 

the quaternion parallel transport frame fields. Straight 3D lines will of course map to 

single points in quaternion space, which may require special attention in the display. 

Color Plates G.4d and G.5d present elementary examples of the three-sphere
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plot for the Prenet frame, while Color Plates G.6d and G.7d illustrate the parallel- 

transport frame. Color Plates G.8c,d, G.9c,d and G.10c,d present more realistic 

examples.

The quaternion frame curves displayed in these plots are 2D projections of two 

overlaid 3D solid balls corresponding to the “front” and “back” hemispheres of S3. 

The 3-sphere is projected from 4D to 3D along the 0-th axis, so the “front” ball has 

points with 0 <  go <  +1, and the “back” ball has points with - 1  < qQ < 0. The q0 

values of the frame at each point can be displayed as shades of gray or pseudo-color. In 

the default view projected along the qo-axis, points tha t are projected from 4D to the 

3D origin are in fact identity frames, since unit length of q requires q =  (±1,0,0,0) at 

these points. In Color Plate G. l l ,  we show a sequence of views of the same quaternion 

curves from different 4D viewpoints using parallel projection; Color Plate G.12 shows 

the additional contrast in structure sizes resulting from a 4D perspective projection.

3.4.2 Scalar Geometric Fields

Gray [17, 23] has advocated the use of curvature and torsion-based color mapping to 

emphasize the geometric properties of single curves such as the torus knot. Since this 

information is trivial to obtain simultaneously with the Prenet frame, we also offer 

the alternative of encoding the curvature and torsion as scalar fields on a volumetric 

space populated either sparsely or densely with streamlines; examples are shown in 

Color Plates G.8a,b, G.9a,b and G.10a,b.
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3.4.3 Similarity Measures for Quaternion Frames

Quaternion frames carry with them a natural geometry that may be exploited to 

compute meaningful similarity measures. Rather than use the Euclidean distance in 

four-dimensional Euclidean space R4, one may use the magnitude of the four-vector 

scalar product of unit quaternions

d { q , p ) ~ \ q - p \  = koPo +  QiPi + QiPi +  q m \  , 

or the corresponding angle,

8(q,p) = arccos(<%p)) ,

which is the angular difference between the two 4D unit vectors and a natural mea­

sure of great-circle arc-length on S3. Choosing this as a distance measure results in 

a quantity that is invariant under 4D rotations, invariant under 3D rotations repre­

sented by quaternion multiplication, and is also insensitive to the sign ambiguity in 

the quaternion representation for a given frame. Thus it may be used as a quan­

titative measure of the similarity of any two 3D frames. This is a natural way to 

compare either successive frames on a single streamline or pairs of frames on different 

streamlines.

3.4.4 Probing Quaternion Frames with 4D Light

We next explore techniques developed in the literature for dealing with 4D objects 

(see [30], [31] and [33]). When dealing with 4D geometry and lighting, the critical
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observation is that 4D light can be used as a probe of geometric structure provided 

we can find a way (such as thickening curves or surfaces until they become true 3- 

manifolds) to define a unique 4D normal vector that has a well-defined scalar product 

with the 4D light; when that objective is achieved, we can interactively employ a mov­

ing 4D light and a generalization of the standard illumination equations to produce 

images that selectively expose new structural details.

Given a quaternion field, we may simply select a 4D unit vector L to represent 

a “light direction” and employ a standard lighting model such as /( t)  =  L • q(t) to 

select individual components of the quaternion fields for display using pseudo-color 

coding for the intensity.

Color Plate G.13 shows a streamline data set rendered by computing a pseudo­

color index a t each point using the 4D lighting formula and varying the directions of 

the 4-vector L.

3.4.5 True 4D Illumination

The quaternion curves in 4D may also be displayed in an entirely different mode by 

thickening them to form 3-manifolds using the method of Hanson and Heng [31, 33] 

and replacing q(t) in the 4D lighting formula and its specular analogs by the 4D 

normal vector for each volume element or vertex. The massive expense of volume 

rendering the resulting solid tubes comprising the 4D projection to 3D can be avoided 

by extending the “bear-hair” algorithm to 4D curves [6 , 30, 43] and rendering the 

tubes in the limit of vanishing radius.
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3.5 Interactive Interfaces

We next describe a variety of specific interactive techniques that we have examined 

as tools for exploring quaternion fields.

3.5.1 4D Light Orientation Control

Direct manipulation of 3D orientation using a 2D mouse is typically handled using 

a rolling ball [25] or virtual sphere [16] method to give the user a feeling of physical 

control. This philosophy extends well to 4D orientation control (see [18, 29]), giving 

a practical approach to interacting with the visualization approaches of Sections 3.4.4 

and 3.4.5.

A 3D unit vector has only two degrees of freedom, and so is determined by picking 

a point within a unit circle to determine the direction uniquely up to the sign of its 

view-direction component. The analogous control system for 4D lighting is based on 

a similar observation: since the 4D normal vector has only 3 independent degrees of 

freedom, choosing an interior point in a solid sphere determines the vector uniquely 

up to the sign of its component in the unseen 4th dimension (the “4D view-direction 

component”).

Color Plate G.13 shows an example with a series of snapshots of this interactive 

interface at work. An additional information display shows the components of the 

4D light vector a t any particular moment.
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3.5.2 4D Viewing and Three-Sphere Projection Control

Actually displaying quaternion field data mapped to the 3-sphere requires us to choose 

a particular projection from 4D to 3D and a  method for displaying the features of the 

streamlines. In order to expose all possible relevant structures, the user interface must 

allow the viewer to freely manipulate the 4D projection parameters. This control is 

easily and inexpensively provided using the 4D rolling ball interface [18, 29]. A special 

version of our “MeshView” 4D viewing utility (see [46] and Chapter 5) has been 

adapted to support real-time interaction with quaternion frame structures. Color 

Plates G .ll and G.12 show snapshots from this interactive interface for 4D rotations 

using parallel and polar 4D projections, respectively.

The simplest viewing strategy plots wide lines that may be viewed in stereo or 

using motion parallax. A more expensive viewing strategy requires projecting a line 

or solid from the 4D quaternion space and reconstructing an ideal tube in real time 

for each projected streamline. The parallel transport techniques introduced in this 

paper are in fact extremely relevant to this task, and may be applied to the tubing 

problem as well (see, e.g., [12, 35]).

3.5.3 3D Rotations of Quaternion Displays

Using the 3D rolling ball interface, we can generate quaternion representations of 3D 

rotations of the form q =  (cos nsin  f) and transform the entire quaternion display 

by quaternion multiplication, i.e., by changing each point to p' = q*p. This effectively 

displaces the 3D identity frame in quaternion space from (1 ,0 ,0 , 0 ) to q. This may be 

useful when trying to compare curves whose properties differ by a rigid 3D rotation
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(a common occurrence in the parallel-transport frame due to the arbitrariness of the 

initial condition).

Other refinements might include selecting and rotating single streamlines in the 

quaternion field display to make interactive comparisons with other streamlines differ­

ing only by rigid rotations. One might also use automated tools to select rotationally 

similar structures based on minimizing the 4D scalar product between quaternion 

field points as a measure of similarity.

3.5.4 Exploiting or Ignoring Double Points

The unique feature of quaternion representations of orientation frames is that they 

are doubled. If we have a single curve, it does not m atter which of the two points in 

S3 is chosen as a starting point, since the others follow by continuously integrating 

small transformations. A collection of points with a uniform orientation as an initial 

condition similarly will evolve in tandem and normally requires only a single choice 

to see the pattern.

However, it is possible for a  frame to rotate a  full 2tt radians back to its initial 

orientation, and be on the opposite side of S3, or for a collection of streamlines to 

have a wide range of starting orientations that preclude a locally consistent method 

for choosing a particular quaternion q over its “neighbor” —q. We then have several 

alternatives:

•  Include a reflected copy of every quaternion field in the display. This doubles the 

data density, but ensures that no two frame fields that are similar will appear 

diametrically opposite; the metric properties of similar curves will be easy to 

detect. In addition, 4D rotations will do no damage to the continuity of fields
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that are rotated to the outer surface and pass from the northern to the southern 

hyper-hemisphere. If 4D depth is depicted by a color code, for example, a point 

tha t rotates up to the surface of the displayed solid ball will smoothly pass to 

the surface and then pass back towards the center while its color changes from 

positive to negative depth coding.

• Keep only one copy, effectively replacing q by — q if it is not in the default viewing 

hyper-hemisphere. This has the effect that each data point is unique, but that 

curve frames very near diametrically opposite points on the S2 surface of the 

solid ball representing the north hyper-hemisphere will be close in orientation 

but far away in the projection. In addition, when 4D rotations are applied, 

curves that reach the S2 surface of the solid ball will jump to the diametrically 

opposite surface instead of passing smoothly “around” the edge to the southern 

hyper-hemisphere.

3.5.5 Reciprocal Similarities and Differences

One of the most interesting properties of the quaternion frame method is the appear­

ance of clusters of similar frame fields in the 3-sphere display. Two reciprocal tools 

for exploring these properties immediately suggest themselves. In Color Plate G.14, 

we illustrate the effect of grabbing a cluster of streamlines that are spatially close in 

3D space and then highlighting their counterparts in the 4D quaternion field space, 

thus allowing the separate study of their moving frame properties. This technique 

distinguishes curves that are similar in 3D space but have drastically different frame 

characteristics.
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Color Plate G.15, in contrast, shows the result of selecting a cluster of curves with 

similar frame-field properties and then highlighting the original streamlines back in 

the 3D space display. This method assists in the location of similar curves that could 

not be easily singled out in the original densely populated spatial display. Future 

work would include examining a variety of alternative approaches to the design of 

such tools.

3.6 Conclusion

In this chapter, we have introduced a visualization method for distinguishing char­

acteristic features of streamline-like volume data by assigning to each streamline a 

quaternion frame field derived from its moving Frenet or parallel-transport frames; 

curvature and torsion scalar fields may be incorporated as well. The quaternion 

frame is a four-vector field that is a piecewise smoothly varying map from each orig­

inal space curve to a  new curve in the three-sphere embedded in four-dimensional 

Euclidean space. This four-vector field can be probed interactively using a variety 

of techniques, including 4D lighting, 4D view control, and interaction with selected 

portions of the data in tandem 3D streamline and 4D quaternion field displays.



Chapter 4 

Space Walking

In this chapter, we propose an interactive method for exploring topological spaces 

based on the natural local geometry of the space. Examples of spaces appropriate 

for this visualization approach occur in abundance in mathematical visualization, 

surface and volume visualization problems, and scientific applications such as general 

relativity. Our approach is based on using a controller to choose a direction in which to 

“walk” a manifold along a local geodesic path. The method automatically generates 

orientation changes that produce a maximal viewable region with each step of the 

walk. Properties of surfaces with high complexity due to  strong curvature or self­

intersections can be explored dynamically and pieced together mentally by the user 

in a manner that is difficult to achieve with standard graphical representations alone. 

The proposed interaction framework has many natural properties to help the user 

develop a useful cognitive map of a space and is well-suited to haptic interfaces that 

can be incorporated into desktop virtual reality systems.

This work originates philosophically in our attem pts to develop increasingly deeper

48
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understanding of the properties of complex geometric objects (for a general overview, 

see [39]). Examples of other work in this area are the Geomview system and its aux­

iliary modules [24, 49], and Bryson’s system for visualizing geodesics in gravitational 

spacetime metrics [14]. However, highly tuned interaction with objects represented 

by multiple coordinate patches in three, four, or more dimensions requires additional 

special tools: our own MeshView system (see [46] and Chapter 5) was developed 

precisely to enable enhanced 4D interaction, flexible 4D depth cues, and especially 

to display the relationship between a point on an abstract parameter mesh and its 

mapping onto a self-intersecting surface in a computer graphics image. 4D lighting 

methods can also supply additional cues [33]. Long experience viewing and manip­

ulating manifolds such as projective planes, everting spheres, and Riemann surfaces 

(see, e.g., [15, 21, 26]) suggests the need for additional intuitive tools for exploring 

such spaces. The techniques described here comprise another powerful, interaction- 

based approach for developing mental models of such structures (see, e.g., Tversky 

[61]).

Geodesic polyhedral paths have been studied (see, e.g., [47, 55, 65]) mostly for sur­

faces in 3D. Our algorithms presented in this chapter apply naturally to surfaces em­

bedded in 3D or higher dimensional spaces and to 3-manifolds and higher-dimensional 

manifolds. Furthermore, we generate not only the geodesic paths on manifolds, but 

also the local coordinate frames along the geodesics.

Section 4.1 describes the techniques in the simplest case: walking a curve. Then 

Section 4.2 extends the basic concepts of curve walking to surfaces and higher dimen­

sional manifolds. In Section 4.3, we discuss the issues involved in smooth interpolation 

and present a smooth interpolation method for surfaces in 3D. Interactive interfaces
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ID ScreenID Screen
(a)

Figure 4.1: (a) A 2D curve with interest point P as it might intersect a ID display, 
(b) The curve rotated so the tangent vector at the interest point is aligned with the 
screen, giving a maximal projection.

are discussed in Section 4.4. Several examples of walking on 3D and 4D surfaces are 

presented in Section 4.5. We conclude this chapter in Section 4.6.

4.1 Walking a Curve

In this section, we introduce the reader to space walking using the traversal of a space 

curve, a simple example that exposes the richness of the approach.

Assume that we have a closed 2 D space curve along with a particular point of 

interest P on th a t curve as shown in Figure 4.1. Now imagine projecting that curve 

to a single scan-line of a CRT screen. To traverse or “walk” the curve, we must 

determine both a  display strategy that represents the current interest point P in 

a natural manner, and we must specify how to rigidly transform the full curve to 

make a transition from P to a neighboring interest point P'. In this simple case, the 

controller can be thought of as a slider, ID  mouse, or ID  joystick.



CHAPTER 4. SPACE WALKING 51

i

P ’

edge

(c)(b)

Figure 4.2: (a) Controller motion d x  initiating transition from interest point P  to 
the next interest point P '. (b) Rolling the curve to present a maximal projection at 
the new interest point, (c) Detail of the geometry involved in the transition using a 
discrete curve tessellation.

4.1.1 Positioning the Interest Point Using Maximal Projec­

tion

As shown in Figure 4.1a, it does not make sense to let the 2D projection of the curve 
—*

at P  have an arbitrary oblique orientation with respect to the screen face; our first 

assumption, which we will maintain throughout, is that we should always attem pt to 

orient the tangent to the curve parallel to the screen face a t the interest point P , as 

indicated in Figure 4.1b. We will call this choice the maximal projection.

4.1.2 Positioning the Curve

Now let d x  be the interactive controller input, which is interpreted to mean “move 

along the curve in the direction d x  by arc length ||dx ||.” The resulting action changes 

the interest point from P  to P  as we slide along the curve as shown in Figure 4.2a,b.
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Suppose for simplicity that the curve is represented as discrete line segments, as 

shown in Figure 4.2c. If P  +  d x  does not reach the edge vertex P e(jge> simplest 

motion is to translate by d x  in the screen tangent direction. Otherwise, we take

a  ~  P edge “  P> 9  =  P ' -  P ed ge’ set Hd x ll =  ll“ ll +  ll$l» translate ^ ed g e  t0 the

origin, rotate by cos 9 = a - /? /||a || ||/3||, and make a final translation by ||/3|| to place P ' 

at the screen center, where it becomes the new interest point P . One obvious strategy 

for smoothing this transition is to do the rotation in finite time using 6(t) = tO with 

t increasing from zero to one.

Remark: Self-intersecting curves are treated naturally in this framework by re­

quiring local continuity of the tangent vector. A natural source of interesting self- 

intersecting curves is the class of non-self-intersecting 3D curves that possess a self- 

intersecting 2D projection. Accordingly, we next examine 3D space curves, and find 

that they introduce new interesting issues and intrinsic properties that generalize 

easily to ND space curves. 3D subspaces turn out to play a special role in walking 

curves. Later, we will see that 4D subspaces play a similar special role in the analysis 

of surface walking.

4.1.3 Extension to 3D Space Curves

First suppose we have a 3D space curve, but are still restricted to a ID display screen, 

and have chosen a 2D projection. When we restrict the tangent to the interest point 

of the curve’s 2D projection to lie in the ID screen face, we see that the 3D curve will 

be tangent to the plane perpendicular to the line of sight through the interest point, 

but may make an oblique angle to the ID screen line drawn in this plane. We then 

have the following choices for positioning the 3D curve:
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2D ta n g e n t Ignore 3D altogether, make the 2D projection tangent to the ID 

screen’s center at the interest point P  and walk the 2D projection only, as in Figure 

4.2.

3D ta n g e n t, 2D a d ju s tm e n t If the 3D curve’s tangent at P ' does not lie in the 

projection plane, first align it with the projection plane as shown in Figure 4.3a,b. 

Then rotate the result in the projection plane to produce the maximal projection at
w

P ' as shown in Figure 4.3c.

3D ta n g e n t, 3D a d ju s tm e n t Alternatively, ignore the 2D projection altogether, 

translate directly from P  to P ', and rotate the entire 3D curve so that the tangent at 

P ' aligns with the ID  screen line. The only change is that now P ' is a 3D vector and 

the rotation is in the 3D plane defined by the three (assumed non-collinear) points 

( P ,P ecjge, P '). The angle of rotation corresponds to the 3D dot product, with the 

geometry as in Figure 4.2c.

At this point, there is an arbitrary rotational degree of freedom about the curve’s 

new tangent vector, the screen line; we have the choice of leaving the orientation where 

it falls after aligning the tangent, which is quite arbitrary, or choosing a geometrically 

motivated orientation. Provided the curve’s second derivative does not vanish, we can 

choose an intrinsic orientation based on the Frenet frame (see Eq. 2.1). A natural 

choice is to force the tangent circle spanned by T  and N  at P  to lie entirely in the 

2D projection plane.

Another choice, especially good for curves with long straight sections causing the 

Frenet frame to be undefined, is the parallel transport frame (see Chapter 2 and [1 0 ]). 

This frame is defined incrementally by integrating along the entire curve from some
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(out of plane in 3D)
(below plane 

in 3D)

Gaze direction1D Screen

(b)

Figure 4.3: One possible approach to maintaining maximal projection of a 3D space 
curve during the transition between facets, (a) Maximal projection of a tessellated 
section of a 3D space curve is aligned so that the triangle (x0, x i, £ 2 ) lies in the plane 
defined by the screen and the gaze direction, (b) Rocking P ' into the screen plane by 
rotating around £ 2  — £ 1 . (c) Rotate in screen plane to achieve maximal projection of 
the segment containing P '.

arbitrarily defined starting point and orientation. It has the property that, while it 

does not have discontinuities when the curve has vanishing derivatives, it also does 

not provide a natural mechanism for maintaining the locally tangent circle in the 

projection plane.

4.1.4 Curves in Dimensions Higher Than Three

In higher dimensions, we note the remarkable fact that the local characteristics of the 

curve tha t concern us lie within a 3D subspace: the points (£0 , £ 1 , £ 2 , £ 3 ) defining the 

tangents to the sequence of interest points as indicated in Figure 4.3 define a tetra­

hedron, a 3-simplex, regardless of the dimension of the four /V-dimensional vectors 

describing the endpoints of the three edges. Thus we may rephrase the alignment of 

the Frenet curve normal N  with the 2D projection plane for arbitrary dimension as 

follows: (1 ) define the plane containing the screen vector and the gaze vector to be 

aligned with the edges containing (xo,Xj,X2). The desired new orientation has the
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tangent at P ' parallel to the screen vector; furthermore, we want the plane contain­

ing the screen vector and the gaze vector to be aligned with the plane of the edges 

(xi,X 2 iX3 ). Since this transformation is strictly in a 3D subspace, one has several 

choices: (1 ) align P ' with the screen direction first and then rotate about the line 

containing P  to place the line containing P  back in the projection plane; (2) rotate 

about the line containing P  until the line containing P ' is in the projection plane, 

then rotate in that plane until P ' is in the screen tangent direction; (3) better yet, 

one can perform a geodesic quaternion interpolation between the two frames within 

the 3D subspace [56].

The strategies tha t align the 3D tangent instead of the simpler 2D projected 

tangent have the effect of “pulling the curve through a  tube” surrounding the ID 

screen line. Also note th a t in these algorithms the curve may rotate rapidly about 

the ID screen line if the maximal projection aligning the curve’s Frenet normal with 

the 2D projection plane containing the gaze vector and the ID scan line is always 

enforced.

4.2 Walking in Space

We next outline the extension of the basic concepts of curve walking to surfaces and 

higher dimensional manifolds. From this point on, we will assume that we have a 2D 

screen space with a well-defined normal gaze direction, and tha t surface patches are 

projected from a 3D graphics space, the “projection volume,” onto this 2D screen. 

Higher dimensional objects will typically first be transformed to the 3D projection 

volume in a manner analogous to the projection of a 3D curve to a 2D projection plane
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Facet

Gaze Direction

2D Screen

Figure 4.4: Surface facet with interest point P  maximally projected onto a 2D screen 
from an implicit 3D graphics space behind the screen.

noted earlier. We begin by examining surfaces (2-manifolds) with vertex coordinates 

in 3D Euclidean space. We assume that a surface is defined by a collection of vertices 

{xj} with a data  structure such as a winged edge data  structure that allows one to 

determine the faces adjoining each edge and each vertex (see Section 5.4).

4.2.1 Paths on a Surface in 3D

First, we consider a surface represented by triangular facets in ordinary 3D space. 

Our basic hypothesis of maximal projection then requires that the facet of interest 

lies completely in the screen plane.

Next, as illustrated in Figure 4.4, we choose a point of interest P  in the facet and 

give an algorithm for transforming the display as we move to a new interest point P ;. 

Assuming a 2 D controller motion dx, we proceed as follows:

C lip . First, we clip the vector P + d x  to the triangle containing P . That is, working 

within the 2D screen coordinate system with triangle coordinates (xo, x lt x 2), compute



CHAPTER 4. SPACE WALKING 57

(b)(a)

Figure 4.5: (a) Flattened facet-to-facet transition, (b) 3D facet rotation, 

each normal fioi — (—(2/1 — 2/0 ), (2:1 -  £0 )), etc., and each t = noi • (x 0 -  P ) /n 0i • dx,
■ 1 ^  ^

etc.; if all positive t ’s are greater than one, P ' =  P  +  dx  lies in the face; otherwise 

the minimum positive t  gives the intersection point P e(jge =  P  +  tdx .

If P ' lies in the current face, simply translate that point to the screen center. If 

P ' lies in the adjacent face, rotate as prescribed below and then translate P ' to the 

screen center. If P ' crosses the clipping boundary of the adjacent face, repeat the 

clipping and rotation procedure until it lies within a face. This procedure amounts 

to flattening the neighboring facets as shown in Figure 4.5a to find the destination 

interest point P ' in the local 2D coordinate system of the final face.

R o ta tin g  b e tw een  facets. In the facet model, vertices are points of vanishing 

measure tha t in fact carry the Gaussian curvature in their angular deficits (see Ap­

pendix E). For now, we assume we never actually pass through a vertex; all paths 

will be across edges from one face to another; smoothing models can in principle 

distribute the curvature across the faces and permit direct traversal of vertices.
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We now compute the transition across a given edge, assuming we know the unit 

vectors A and B  perpendicular to the transition edge, as indicated schematically in 

Figure 4.5b. We want to translate the origin to the point P ecige and rotate by the 

angle cos 9 =  A ■ B in the plane containing A  and B so that B ' now lies in the screen 

plane and is identical to the original A.

We use a Gram-Schmidt procedure to derive the norm-preserving rotation using 

the orthonormal basis vectors A  and C  =  ( B -  A  cos $)/ sin 6. (If A and B are 

parallel, no rotation takes place and we translate directly to P ' in the plane of the 

original facet.) Every vertex V  in the entire data structure undergoes the following 

rotation:

V ' =  V  -  A (A  • V) -  C (C  • V)

A C
cos t9 sin t6 

— sin t9 cos t9

A - V
A ^

C V
(4.1)

where we may vary t slowly between zero and one to avoid sudden jumps in the 

orientation.

Remark: One cannot use the vectors P e(jge “  P  and ^  -  ^edge to define the 

rotation plane, since, although P ' would end up in the screen plane, the resulting 

rotation would in general tilt the common edge out of the screen plane.

4.2.2 Surfaces in Dimensions Higher Than Three

The equations presented so far in fact extend trivially to arbitrary dimensions for 

the vertex coordinates. The only essential difference is that the vector B  may have a
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component in some direction w outside the projection volume spanned by (x ,y , z), 

and the procedure given so far rotates only the projection of the face of the new 

interest point P ' into the screen plane. That projection may be slightly tilted and 

therefore not maximal unless we make an additional rotation in the z-w  plane to line 

it up and eliminate the w  component; we may use Gram-Schmidt to define w in any 

dimension as follows:

B -  x (x  • B)

(1 - (x - B )2 )V2

B ' -  y(y • B ')

(1 - (y • B ' ) 2 ) 1/ 2

B" -  z(z • B")

(1 - (z • B " ) 2 ) 1/ 2

Tessellated surfaces in arbitrary dimensions N  > 3 can therefore be handled in 

a manner similar to our discussion for curves in dimensions N  >  2. The essence of 

the argument, represented in Figure 4.6, is that the two triangles and four vertices 

of a winged edge in any dimension define a 3D subspace that we can require to be 

aligned with the 3D volume that eventually projects to the 2D screen. When making a 

transition to a new interest point P ',  we introduce a new 3D subspace tha t shares the
r-t *

x-y  plane with the facet containing P  and has a new component in the B direction. 

If B has components only in the (x, y, z) subspace, we are done.

If not, we rotate the entire object and generate a maximal projection that not only 

has P Ms face lying in the screen x-y  plane, but also has the tetrahedron containing 

P  and P  contained completely in the 3D projection volume. This is the analog 

for surfaces of computing the Prenet frame curve normal and readjusting the curve
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(below the 
volume in 4D)

(below the 
volume in 4D)

volume in 4D)

(a) (b) (c)

Figure 4.6: One possible approach to maintaining maximal projection of a 4D surface 
during the transition between facets, (a) Maximal projection of a tessellated section 
of a 4D surface is aligned so that the tetrahedron (xo, x i, x 2, x3) lies in the projection 
volume defined by the screen and the gaze direction, (b) Rocking P ' into the projec­
tion volume by rotating around the plane defined by (x i,x 2 ,x 3). (c) Rotate in the 
projection volume to achieve maximal projection of the facet containing P '.

normal to lie in the plane normal to the screen.

As in the space curve treatment, we have three alternatives: (1 ) Apply the analog 

of Eq. (4.1) to rotate B in the z-w  plane so that it has no w component, then perform 

the standard 3D facet transition to align the new B with the original A. (2) First 

align the new B  with the original A , then apply Eq. (4.1) in the z-w  plane to eliminate 

the w  component. (3) Identify the 4D subspace (the 4-simplex) generated by the 5 

vertices shown in Figure 4.6, compute the 4D frame with normal m  to the 3-simplex 

defined by the “old” winged edge faces, compute the distinct 4D frame with normal n 

relative to the 3-simplex defined by the “new” winged edge faces containing P  and P ', 

then perform a geodesic rotation between the two 4D frames. Details of the required 

methods may be found in [27, 29].

Remark: Earlier, we showed how the Frenet-frame treatment of space curves is 

essentially exhausted in 3D. The method just described shows how a winged-edge
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treatment of arbitrary surfaces naturally leads to 4D subspaces, and tha t no further 

complexities arise in developing an analogous treatment of surface geometry in higher 

dimensions. Extending this treatment to winged faces for walking three-manifolds 

intrinsically requires 5D subspaces; A-manifolds whose tessellated geometry is de­

scribed by winged {K  — l)-planes will require (K  +  2 )-dimensional subspaces to treat 

the most general maximal projection requirements in arbitrary dimensions.

4.3 Facet-based vs Smoothly Interpolated Control

Our approach so far has treated manifolds as locally planar segments in the manner of 

flat-shaded polyhedral computer graphics models and the Regge calculus treatment 

of Riemannian geometry (Appendix E). Thus all transitions between facets across 

winged edges are indistinguishable from walking on flat space; all the curvature is 

contained in the “angular deficits,” the difference between 27T and the actual sum of 

facet angles at each vertex. For relatively dense manifold triangulation, the angular 

deficit at each vertex is very small, and navigation of the manifold appears fairly 

smooth (see the examples in Figures G.16, G.17, and G.18). However, just as we 

may wish to approximate the appearance of smooth shaded surfaces starting from an 

underlying discrete tessellation, we may wish to extend the walker application with 

an interpolation scheme that makes the manifold appear to be smooth. For example, 

we see in Figure 4.3 that we really want a curve’s segment-based Frenet normal and 

tangent aligned in the screen projection plane at x i, not at P , which should already 

be interpolating between the orientations at x i and X2 ; a similar observation holds 

for surface walking as well.
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The first step in generating a  smoothly-varying manifold walk is to produce a 

local tangent line at each vertex of a curve, a local tangent plane at each vertex 

of a surface, and so on. The second, and more problematic, task is to produce a 

compelling interpolation procedure that connects these tangent frames continuously 

to one another over the entire manifold.

4.3.1 Surfaces in 3D

In 3D, we can use the standard interpolated shading algorithm that computes a vertex 

normal by averaging the normals to the surrounding faces; this normal defines the 

3D tangent plane at the vertex. Then we can use bilinear interpolation of the vertex 

normals to generate face-interior normals a t every point on the surface.

We modify the facet-based surface walking algorithm as follows (see Figure 4.7). 

Assume we start from point P  on a facet and walk in a particular direction. We first 

find the edge point S  as before. Then we calculate vp and va, the point normals at 

P  and S  respectively, by linearly interpolating vertex normals at xq, and x 2- If 

the distance between P  and S  and the angle between vp and vs are not big, we first 

translate from P  to S  and then do a 3D facet rotation in the winged-edge determined 

by vectors vp, vs and points P , 5  (the edge of the winged-edge is (5 , S  +  up}, and 

the two triangles of the winged-edge are {P , S, S  + vp} and {S, S  +  vp, S  +  u*}).

If the distance between P  and S  or the angle between vp and va is too big, we can 

devide the path between P  and S  into smaller steps, as indicated by points Q and 

R  in Figure 4.7. We then calculate the point normals at Q and R  and do transitions 

from P  to Q , from Q to R  and from R  to S  in the same way as described in the 

previous paragraph. Because we use linear interpolation, the point normals vpt vg, vr
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* L

Figure 4.7: A smooth interpolation method for surfaces in 3D. We can either take one 
big step of translation (from P  to S) and rotation (at the point S), or take smaller 
steps from P  to Q, from Q to R  and from R  to S. Each step consists of a small 
translation and rotation. In this diagram, V q ,  v ^ ,  v2 and v2 are vertex normals at x q ,  

Xi , x<i and £3 , respectively. vp, vq, vr and va are point normals that are bilinearly 
interpolated using Vq̂ Vi , v2 and the relative positions of P ,Q , R  and S  in the triangle 
xqXi X2. vpq and vpl are the same as vp.



CH APTER 4. SPACE WALKING 64

and vs are in the same 2D plane. So all the 2D rotations at points Q, R  and S  can be 

combined and the combined 2D rotation is the same as the one when we take one step 

from P  to S  as in the previous paragraph. Hence, we achieve smoother animation 

while keeping the overall transformation the same.

4.3.2 In Dimensions Higher Than Three

In dimensions higher than three, there is no longer a normal vector to a surface, but 

a normal subspace of dimension N  — 2.

Here is one way to find the “average” tangent plane. In 4D, we take two neighbor­

ing facets to define a 3-simplex, and take the 4D normal to that 3-simplex as a “facet 

normal.” Repeating the procedure for successive pairs of facets around a vertex yields 

a set of 4D normals tha t can be averaged as in the 3D case. The resulting 4D vertex 

normal defines a 3D tangent hyperplane at the vertex. We then project the vertex 

and its surrounding facets into this 3D subspace and repeat the usual averaging of 

3D face normals in this subspace to get a candidate for the tangent plane. We note 

that a 3-facet vertex is effectively in a 3D subspace to start with, so we need a 4-facet 

vertex to perform the 4D procedure. In 5D, a 4-facet vertex reduces to the 4D case, 

so the analogous procedure would start with 5-facet vertices and then iterate down 

through dimensions.

4.4 Interactive Interfaces

The interactive interfaces for the algorithms presented in the previous sections can 

be extended in many ways for particular applications and virtual reality devices.
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4.4.1 User Alignment with Maximal Projection

The plane in which the maximal projection is enforced can be oriented arbitrarily in 

the 3D graphics coordinates of the projection volume. This plane is exactly analogous 

to the tube y2 + z2 = r2 through which a space curve is forced to pass to align it with 

the i-axis of a ID  screen; the flat facets of a surface are effectively drawn through a 

hypertube z 2 +  w2 =  r 2 in 4D and thus forced into the x-y plane. But this x-y plane 

can be oriented with the screen coordinate system, in which case we are “walking” on 

the surface with gravity pulling us in the gaze direction, or it could be oriented with 

the floor, in which case the maximal projection is aligned with the gaze direction and 

we get the impression of walking on a treadmill oriented to the gravitational pull of 

the outside world as we sit at the computer console.

4.4.2 Extension to Haptic Interfaces

Given any 3D haptic interface, we can make the surface, in either screen or treadmill 

orientation, an impenetrable barrier or a cage constraining our motion to 2D. In static 

mode, one could keep the object fixed with the center maximally projected and allow 

the user to feel a limited continuous neighborhood of the center point, thus getting 

a tactile sense of the surface shape. In dynamic mode, one can assign a velocity and 

direction to  the displacement of the tactile probe from the center, thus empowering 

the user effectively to drive around the manifold while feeling the changes in shape 

and slope a short distance away from the central maximal projection point.
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4.4.3 Direct Manipulation Characteristics

The interface we have described is a generalization of a context-free, direct manipu­

lation 3D rolling-ball orientation controller (see, e.g., [25]) to arbitrary manifolds and 

dimensions. Properties such as non-commutativity of paths between points that are 

observed in this style of orientation control are transformed into the rich geometric 

properties and symmetry transformations of arbitrary topological spaces. In addition, 

just as a scene controlled by a rolling ball can move either in the same direction as 

the controller motion or in the opposite direction, we can traverse a manifold either 

way: walking forward to a new position on the manifold, or pushing the manifold in 

the controller direction.

4.4.4 Hansel and Gretel Navigation

A classic problem in the navigation of spaces is to determine where one has been and 

how to return to the starting point. Laying a trail of “bread crumbs” in the manner 

of the fairy tale of Hansel and Gretel is one approach to helping the user maintain 

his or her orientation in the space. A good user interface exploiting this technique 

would have a mode where all travel is marked and can be constrained to a ID motion 

along the path already traversed. That way one can trivially return to any visited 

point without even watching where one is going. One-sided surfaces of course require 

distinct markings on opposite sides of the same facet.
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4.4.5 Extension to Three-manifolds and Wands

The approach can be naturally extended to three-manifolds with winged faces, and 

so on.

In contrast to the Maniview [24] approach, which uses an “insider’s” view em­

phasizing discrete symmetry groups and face identifications by producing repeated 

copies of the manifold sewn to itself in the 3D viewing space, we would navigate 

specific embedding of 3-manifolds in four or more dimensions.

This approach would fit well with applications treating 3D scalar fields as 4D ter­

rain elevation maps [32], and would be ideally adapted to 4D orientation control using 

three-degree-of-freedom control devices such as a wand [18, 29]. Natural applications 

of this technique occur not only in topology and volume visualization, but also in the 

Regge calculus approach to general relativity [51].

4.5 Examples

We conclude with several visual examples. In practice, the concepts presented are 

strongly dependent on motion cues and the sense of direct manipulation, and so are 

difficult to represent with static images.

• In Figure G.16, we show a family of geodesic paths that would be taken by a 

walker exploring an ordinary 3D torus.

•  We display in Figure G.17 selected geodesic paths resulting from walking on 

the spun trefoil knotted sphere embedded in 4D, projected to 3D. Note how the 

paths follow the continuous surface in 4D despite the presence of self-intersecting
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surfaces in the 3D projection. The color coding on the 3D surface denotes the 

4D depth from which it was projected, with blue near and red far in 4D.

• Figure G.18 shows a family of walker trajectories on the one-sided projective 

plane embedded in 4D and projected to 3D. The chosen projection results in 

a surface that it is part way between a cross-cap and Steiner’s Roman surface. 

Here 4D depth is also denoted by color. One-sided surfaces present interesting 

logistical problems for path-tracing strategies, but the paths themselves are 

straightforward.

4.6 Conclusion

In this chapter, we have introduced a method for visualizing topological data struc­

tures by “walking” their geometry in a way that we feel has much potential for 

enhancing users’ cognitive maps of a space. It is uniquely adapted to exploring 

high-dimensional mathematical data structures because of its ability to continuously 

flatten out the local neighborhood into the user’s viewing space while maintaining a 

global context. For surfaces that appear self-intersecting in a particular projection, 

the method’s locally-continuous traversal of the surface provides information interac­

tively that is hidden even in a stereographic display. One can imagine many other 

applications, such as relational databases, 2D scalar fields, 3D scalar fields, and lat­

tice models of general relativity. Furthermore, the method is ideally adaptable for 

newly-available haptic technologies, since it relies on local continuity that embodies 

an intrinsic model for force-feedback and tactile navigation.
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MeshView Visualization System

The purpose of this chapter is to present an overview of MeshView, an interactive 

system for viewing and manipulating objects embedded in 3D or 4D.

MeshView is in the public domain. It is available via anonymous ftp from 

f t p . c s . in d ia n a . edu: /pub/hma (see [46]). It is relatively small (the size of the whole 

compressed package is under 1 MB) and is fine-tuned for speed. It is portable, written 

in OpenGL and X/Motif.

MeshView is not only a general-purpose visualization system, but also serves as 

a prototyping system for our ongoing research. It supports several unique features, 

such as the 4D rolling ball algorithm, context-free manipulation, color maps for 4th- 

dimensional depth, two-sided coloring for faces, a parametric space picker. It also 

supports momentum  options for all motion controls and the 3D rolling ball algorithm. 

See Section 5.1 for more details. The package also comes with dozens of 3D and 4D 

data  files, including hypercube, Klein bottle, torus, Fermat surfaces, projective

planes, etc.

69
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In many aspects, MeshView resembles Geomview ([49]). It reads Geomview data 

files (OFF, MESH, LIST) and has similar momentum features for motion controls. 

But MeshView provides many more specific tools for various types of objects, and 

has much faster 4D control.

In Section 5.1, we look at the features in version 1.0 and those that will be sup­

ported in a future release. Section 5.2 describes the philosophy and control of the 

3D/4D rolling ball interface. We discuss the general-purpose C + +  library NL and 

winged-edge based data structure WING in Sections 5.3 and 5.4 respectively.

5.1 Features

5.1.1 Version 1.0

We released the first version (version 1.0) of MeshView in July 1994. Color Plates 

G.19 and G.20 show the user interface and several 4D objects from the released 

package. Among other things, version 1.0 has the following features.

• Reads Geomview/OOGL (developed at the Geometry Center, University of 

Minnesota) MESH, OFF and LIST file formats.

•  Rotates/translates/scales objects in 3D and 4D interactively under mouse con­

trol.

•  Applies 3D and 4D rolling ball models to accomplish rotations, (see Section 5.2 

for a description, also see [25, 29]).

•  Momentum option available on all motions.
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• Optionally draws faces, edges, vertices, normals, palette, lighting vectors, and 

a reference set of 4D axes.

• Supplies a wide range of color palette options for 4D depth color coding.

• Supplies an interactive parametric space “picker” (or point locator) for a MESH 

file or list of MESH files. Any individual mesh in a set of loaded patches can 

be selected in turn.

•  Saves system state for later recovery, including current 3D and 4D viewing 

matrices, camera setting, background color, light direction and rendered ppm 

image of the current scene. This is useful for reconstructing the state of an 

illustration for a publication.

• Loads palettes and saved system states.

•  Uses two different colors (or one color) for front-facing and back-facing surfaces. 

This feature is quite useful for surfaces embedded in 4D with self-intersecting 

3D projections.

•  Supports 3D perspective and orthogonal projections.

•  Supports a choice between applying the 4D rolling ball to the current screen 

coordinates of the object’s 3D projection (context-free, the default), or applying 

to the object’s local 3D coordinate system context (use the “axes” display to 

help show the context). The latter is useful for looking at different sides of the 

object’s 3D projection while performing a 4D rotation. This is needed mostly 

to accommodate a  2D mouse interface, and would not be as useful for a 3D 

mouse interface.
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• Includes a selection of example geometry files, including 4D flat torus, Steiner 

surface (R P 2 embedded in 4D), 4D Fermat surfaces and a lot more, (see the 

README file in the distribution package for details)

• Supplies online help.

5.1.2 Version 2.0

In the next release (version 2.0, expected February 1996), the following features will

be added.

• Supports 4D polar (perspective) projection.

•  Supports a new data file format WING and provides converters from MESH 

and OFF file format.

•  Supplies automatic manifold patch sewing and optimization to support compli­

cated ad hoc topologies.

•  Supplies 3D/4D geodesic generator.

•  Supplies 3D/4D manifold walker.

•  Supports interactive curve tubing and ribboning.

• Supplies tools for creating movies.

5.2 The Rolling Ball Interface

This section explains the rolling ball interface in MeshView.
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To understand the basic philosophy of the rolling ball interface, s tart with a 3D 

object such as square.3mesh in the distribution package. Use only the left mouse 

button (3D rolling ball): pulling the mouse in the +x (screen-right) direction tilts 

the 2D object so that the left edge comes towards the viewer, acquiring positive z- 

components, and the right edge dips away from the viewer into the screen, acquiring 

negative values of z. Pushing the mouse in the +y direction (screen-up) tilts the 

lower edge out into positive z and the upper edge into the screen in the negative z 

direction.

Now load a solid 3D object like sphere.3mesh or torus.3mesh. These objects 

automatically have vanishing 4th components (call it w) at every point when loaded, 

just as the flat objects had vanishing z-components. Now use only the SHIFT-LEFT 

(4D rolling ball) mouse button: pulling the mouse in the + X  (screen-right) direction 

tilts the 3D object in 4D so that the left side is acquiring a positive w component and 

getting squashed in x, while the right side is tilting away in w, getting a negative w 

component. Turn on 4D depth pseudo- coloring to make this dramatically apparent 

(Ctrl+3, C trl+b) - the left side turns red while the right turns blue with the default 

colormap. Pulling the mouse in the +y direction (screen-up) gives the bottom a 

positive w and the top a negative w component while squashing the whole object in 

the y direction. The shift-left mouse control generates x-w and y-w 4D rolling ball 

rotations. Now use only the SHIFT-MIDDLE mouse button, which generates x-w 

and z-w 4D rolling ball rotations. Moving the mouse in the + x  direction has the 

same effect as shift-left, but pulling the mouse down (screen-down direction) pushes 

the BACK side of the object out into positive w, and the FRONT side acquires a 

negative w component; pushing the mouse up (screen-up direction) has the opposite
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effect.

If a 3D mouse is available, all 3 of these motions, or any linear combination, are 

available at once and the splitting into the two shift-left and shift-middle controls is 

not needed. The default mode, in which all 4D rolling ball motions are referred to the 

screen-based xyz coordinate system with z out of the screen, is the most natural one 

to emulate a 3D mouse. However, when only a 2D mouse is available, an alternate 

mode is provided that can be quite useful: deactivate the “Context-free” check box 

on the “Motion” menu. This will allow the user to rotate the object to any 3D 

orientation (using mouse-left or mouse- shift-right), but now shift-left will follow the 

object’s original x-y axes, and rotate the object in 4D as though the 2D mouse were 

a 3D mouse moving in the object’s own original x-axis direction, NOT the current 

screen x. Analogous behavior occurs for y motions and for shift-middle x and y mouse 

motions. Turn on the drawing of xyzw axes to see the different effects.

5.3 NL — An nD Mathematics C + +  Library

NL is a C + +  template library of nD vectors and nD matrices. It uses templates, 

inheritance, operator overloading and other features of C + +  to support abstractions 

for the creation of and operations on nD vectors and matrices.

Figure 5.1 shows the hierarchies of classes in NL. In the base class n lV ector< in t> , 

we provide general implementations of nD vector operations. These methods are 

overridden by faster implementations in the derived classes nlV ector3, nlHPoint3 

and nlV ector4. The same methodology has been applied to the matrix hierarchy.

The NL library also contains the n lQ uatern ion  class, which is derived from
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nlMatrixnlVector3 nlHPoint3 nlVector4 nlVectorN<int>

nlQuaternion nlMatrix3 nlHMatrix3 nlMatrix4 nlMatrixN
(a) (b)

Figure 5.1: (a) Class hierarchy of nlVector, (b) Class hierarchy of nlMatrix.

nlV ector4. It supports operations like multiplication, division, conjugation, expo­

nential functions and logarithmic functions, and conversions to and from nlM atrix3 

and nlHMatrix3.

The following is a complete list of the header files in the NL library: 

n lB oolean.h  nlM acros.h

n lV ec to r.h  n lV ec to r3 .h  n lV ecto r4 .h  nlV ectorN .h

nlH Point3 .h  n lP o in t3 .h  n lP o in t4 .h  n lQ u atern io n .h

n lM atrix .h  n lM atrix 3 .h  n lM atrix 4 .h  nlH M atrix3.h

5.4 WING -  Winged-edge Data File Format

In this section, we describe the WING data format and compare it with another 

data format which is popular in several commercial and non-commercial packages. 

The winged-edge data structure was first introduced by Baumgart in [8], and further

edge library. Our data  structure is simpler because we only allow triangles as faces.

explored in [45, 63]. Glassner in [22] solved some problems in implementing a winged-
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(0, 1, 0) (1, 1, 0)
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(0, 0 ,0) (1, 0, 0)

Figure 5.2: A simple object: a rectangle or two triangles.

OFF 
4 2 5 # Nvertices, Nfaces, Nedges (optional)
0.0 0.0 0.0 # vertexO coordinates
0.0 1.0 0.0 # vertexl coordinates
1.0 1.0 0.0 # vertex2 coordinates
0.0 1.0 0.0 # vertex3 coordinates
3 0 1 2 # faceO, connects vertices 0, 1 and 2
3 0 2 3 # facel, connects vertices 0, 2 and 3

Figure 5.3: A simple OFF object

5.4.1 An Example

Let’s first look at how to represent the simple object in Figure 5.2. In most graphics 

packages, such as Geomview and SGI/WaveFront, the description of an object like 

this is usually a list containing information about each vertex, followed by another list 

containing information about each face. The information about a vertex may include 

coordinates, normals and colors; the information about a face may include indices to 

the vertices on the face. Figure 5.3 shows a valid Geomview OFF description for the 

object in Figure 5.2.

The information stored in the OFF format is enough for general rendering pur­

poses. We can easily access the information of each vertex of a triangle to draw either
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(b)(a)

Figure 5.4: Relationships between vertex, edge and face in WING data format, (a) 
A vertex contains pointers to all its neighboring faces; (b) An edge contains pointers 
to its two vertices, its two neighboring faces and corresponding third vertices; (c) A 
face contains pointers to its three vertices and three edges.

the triangle, the edges or just the vertices. But it is not enough for the walking 

interface as described in Chapter 4. We need to store more information at vertices, 

edges and faces.

For example, at a vertex we need to know which faces it connects to (see Figure 

5.4a); at an edge, we need to know the two vertices that form the edge, the two 

(or one, if the edge is a boundary edge) faces it connects and the two corresponding 

vertices on the two faces (see Figure 5.4b); a t a face, we need to know the three 

vertices and the three edges tha t form the face (see Figure 5.4c).

Figure 5.5 shows the description of the object in Figure 5.2 using WING format. 

As you can see, for each vertex, after the information about coordinates, we store the 

number of faces this vertex connects to, followed by the list of indices of the faces. 

For each edge, we store the indices of the two vertices that form the edge, the indices 

of the two faces that shared the edge (-1 means the corresponding face doesn’t exist 

and the edge is a boundary edge), and the indices of the two vertices on the two faces.
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WING
4 5 2 # Nvertices Nedges Nfaces
# vertices (coordinates, nFaces, faces)
0.0 0.0 0.0 2 0 1 # 0
0.0 1.0 0.0 1 0 # 1
1.0 1.0 0.0 1 1 # 2
0.0 1.0 0.0 2 0 1 # 3
# edges: (2 vertices, 2 faces, 2 3rd vertices)
0 2 1-1 3-1 # 0
1 3  0-1 0-1 # 1
0 1 0-1 3-1 # 2
2 3 1-1 0-1 # 3
0 3 0 1 1 2 # 4
# faces: (3 vertices, 3 edges)
0 1 3  1 2  4 # 0
0 3 2 0 3 4 # 1

Figure 5.5: A simple WING object

For each face, we store the indices of the three vertices and the three edges that form 

the triangle.

Users may find that it is tedious to create a WING object by drawing and counting. 

In MeshView, we provide converters from MESH and OFF formats to WING format. 

Users can load either MESH or OFF objects and convert them to WING format 

dynamically, or they can convert files to WING format first to save the preprocessing 

time.

In our implementation of MeshView, we store a list of vertices, a list of edges 

and a list of faces for each surface object. W ith the WING data structure, we can 

access all the information needed for the walking interface. We believe that this data 

structure could be useful in other interactive applications.
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Hark

for each pair of vertices vi and vj 
if vi and vj are very close
Check if they share an edge.

If so, delete that edge;
For all vertices w (0, 1 or 2 of them), s.t., 
both w-vi and w-vj form boundary edges, 
replace w-vj with w-vi;

Replace all the pointers to vj by vi;
Add the face list at vj to the face list at vi;
Set self-index of vj to -1; 

endif
endfor

Sweep

Find the number of valid vertices, edges and faces and 
allocate new memory for them;

Copy the old valid data structure to the new data
structure and reset the self-indices within both old 
and new data structures;

Reset pointer-indices within the new data structure;
Delete the old data structure.

Figure 5.6; A mark-and-sweep algorithm for eliminating degenerate triangles within 
a WING object.

5.4.2 Data Structure Manipulation

Both the data file stored on disk and the data structure in memory are index-based. 

We store two kinds of indices, the pointer-index as used in Figure 5.5 and the self­

index, which is stored in each vertex, edge and face. The self-index of a vertex is used 

to record the vertex’s position within a vertex list, and similarly for edges and faces.

In many situations, e.g., walking on a surface, we need to eliminate degenerate 

triangles, the triangles in which two of the three vertices are very close. We can use
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a mark-and-sweep based algorithm to do this. See Figure 5.6 for the pseudo-code.



Chapter 6

Future Research and Conclusion

6.1 Future Research

The major results of this dissertation concern the exploitation of the detailed proper­

ties of coordinate frames to study the nature of curves and surfaces. Many interesting 

questions have arisen in the course of this research that suggest challenging new topics 

for investigation. Among these directions for future research, we note the following 

topics:

6.1.1 Framing Methods

A rich set of mathematical and numerical problems related to framing methods re­

mains to be explored (also see Appendix F):

•  Extend smooth interpolation methods for frames on surfaces in 3D (see Section 

4.3) to frames on surfaces or other manifolds in higher dimensional space.
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•  Explore numerical methods for generating parallel transport frames along man­

ifolds that are embedded in non-Euclidian space.

• Explore smooth interpolation methods for high dimensional coordinate frames.

6.1.2 Applications of Coordinate Frames

Coordinate frames provide substantially more information about the surface being 

visualized than traditional surface normals. Frames can be used to enhance many 

traditional computer graphics methods. The following is one example (which is not 

examined in this dissertation).

S ta tic  an d  d y n am ic  te x tu re  m ap p in g . For texture mapping, we usually need 

to specify texture coordinates a t the vertices of the surface. This is the same as 

attaching a coordinate system to the surface. With our framing methods, we can 

assign a texture mapping that depends on the geometry of the surface, or we can 

dynamically reassign a texture mapping at every step of navigation to reflect the 

changing environment. This resembles a bump map [11] but is more general, since 

frames have one additional degree of freedom.

Essentially any application th a t requires local or global orientation alignment in 

3D space could potentially benefit from our static or dynamic framing methods. In 

particular, 4D dot products between quaternions form a uniform similarity measure 

th a t can be exploited for applications such as anisotropic shading heuristics [42, 50, 

62, 64], and forces between oriented particles in a particle system [60].



CHAPTER 6. FUTURE RESEARCH AND CONCLUSION 83

6.1.3 Domain-dependent Navigation

A picture is worth a thousand words, a movie even more. Most desktop worksta­

tions are or will soon be capable of interactive graphical animation. But the current 

navigation tools are quite primitive. We believe our domain dependent navigation 

methodology can greatly enhance the user’s mental model of the environment be­

ing visualized. We can apply this methodology to other domains besides curves and 

surfaces. For example:

N av ig a tin g  R e la tio n a l D a tab ases . We may construct a 3D scene using three 

attributes of a database table as 3D coordinates and color-code the entities using 

another attribute. When we navigate through the 3D scene, we may constrain our 

camera, both the position and the orientation, using yet another attribute or a prop­

erty which depends upon several attributes. Taking a database of stocks as an exam­

ple, when we navigate through a huge amount of stocks, we may want the camera to 

automatically stop at the stocks that have big percentage gains.

G ra p h  T raversal. When we fly through a 3D graph, we may constrain the camera 

motion using information about nearby nodes and edges.

6.2 Conclusion

In the world of computer technology, 3D graphics is playing an increasingly im portant 

role. Methods of displaying lighted objects on a 2D computer screen using their 3D 

positions and surface normals are well understood and are now supported by graphics 

hardware. But for many applications such as interactive navigation, curve tubing and
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anisotropic shading, 3D positions and surface normals are not sufficient. Users need 

to specify coordinate frames at points of interest.

In this dissertation, we have systematically studied the problem of attaching mov­

ing coordinate frames to curves and surfaces, and thus have built an important foun­

dation for a wide range of applications in computer graphics and visualization. Our 

methods of constructing the frames are based on the intrinsic geometry of the objects 

and have optimal behavior for many classes of applications.

We have made a great deal of progress on the problem of interactive tools that 

exploit coordinate frames and their quaternion forms for visualizing complex curves 

and surfaces, but there are many exciting facets yet to be explored.



Appendix A

3D Rotation M atrix

The 3D rotation matrix used in the algorithm 2.6 in Section 2.2 is (also see [20]):

R ( M )  =

c +  (7h)2(1 -  c) n in 2(l -  c) -  sn3 n3rti(l -  c) + sn2

7iin2(l -  c) 4- sn3 c + ( n 2)2( l - c )  n 3n2(l -  c) -  srii

n in 3(l -  c) -  sn2 n2n3(l -  c) +  sni c + ( n 3)2( l - c )

where c =  cos 6 and s =  sin 6 and n  ■ n  =  1 1

•in this dissertation, H indicates that ^ is a vector while x  indicates that x  is a unit vector.
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Appendix B

Computing the Tangent of 

Osculating Circle

Suppose we are given three points (xo, x i, X2) in a Euclidean space of arbitrary 

dimension. Then we may compute the center and radius of the osculating circle, as 

well as the tangent direction at x i as follows. First use a Gram-Schmidt procedure 

to compute the direction u  perpendicular to the chord (xi — xo):

v -  \ ( * 2  - X i )  • (xi - X o )
U =  ( X 2 - X 1  -  Xj  - X 0) t ^ -------- —   z r r  ■

(Xi -  X0) • ( x i  -  Xo)

Next, note that the center x c may be written as a vector from chord midpoint a  =  

(xi +  x o ) /2  in the perpendicular direction

—# —+ , 1 ax c =  a  +  tu
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where u =■ u/||u|| and t is to be computed. Then, since each of the vectors (x0, Xi, x2) 
is a distance R  from x c,

R2 =  [|xc — Xi||2 

= l|xc - x 2||2

= ||a - xi||2 + 2tu ■ (a -  x \ )  + t2 

=  ||a - x 21|2 + 2fu • (a -  x2) + 12

Since u • (3 -  Xi) =  0 by construction and the t 2 terms cancel, we find

2u • (x2 - a)

The value of R  follows at once, and the direction of the tangent vector may be 

computed by applying Gram-Schmidt to (x0 -  Xi):

\ _ (ji \ (-■* ~ \ (Xc ~ Xl) ‘ (Xo — Xl)



Appendix C

Correctness of Continuous Limit

C .l Background

For any twice-differentiable curve x ( s )  with tangent vector T (s) and any correspond­

ing coordinate frame (T(s), N (s), B(s)), the following formula holds for some func­

tions k \ (s), fc2(s), t ( s ) because of the orthonormality constraints:

T ' « 0 k i  fc2 T (»)

N '(S) = —k \  0 t N (S)

B '(S) ' 
1 s- 1 0 1 B (»)_

(C.l)

T h eo rem  1. Let V (s) be a unit normal vector field on the curve x(s), let (T(s),
*  A  *»

N (s), B (s)) be any framing on the curve, and let a(s) be the angle between V (s) 

and N (s). Then V (s) is parallel if and only if, for any st and s2,

a ( s 2) =  ^ ( s t )  -  j :  t ( s ) d s ' j  mod (2 i r )  . (C.2)
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Proof:

V  =  cos(a)N  +  sin(a)B

V ' =  cos(a)N ' -  a 's in{a)N  +  sin(a)B ' +  o ' cos(q )B

Plugging in Eq. (C .l), and remembering that, by definition, V  is parallel if and only 

if both the coefficients of N  and B are zero, we find

— sin (a)a ' — sin (a)r =  0

+  cos(a)c*' +  cos(a)r =  0,

which are equivalent to

ot =  —t ,

or
f 32a(s2) =  (a(si) -  / t ( s )  ds) mod (2tt) .

J$ i

QED.

R em ark . If the frame is a Prenet frame, r  is the classical torsion.

C.2 Proof of Smooth Limit

First, define the norm of a tessellation to be the maximum length of line segment 

in the representation of a curve. We wish to show that, as the norm of a curve’s 

tessellation approaches zero, the result of parallel transporting a normal vector using
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our algorithm (see Figure 2.6) approaches the parallel transport vector field on a 

smooth curve.

We assume th a t the input {Ti} to the algorithm are the actual tangents of the 

smooth curve.

Let

g    Tj x T t+i
J  ~  |jf* x f  *+i ||

N  i =  T  i x %  ,

then (Tj, Nj, B ^  gives a local frame at Xj.

Let

Vj =  cos(aj)Nj +  sin(ai)Bj . (C.3)

The algorithm preserves sin(ai)Bj, and rotates cos(aj)Ni to cos(ai)(Ti+i xBj) ,  hence

Vi+i =  cos(ai)(T i+i x Bi) +  sin(ai)Bj . (C.4)

A. A A

Projecting out the components of V i+i in the direction of N i+i and Bi+j,  we find, 

with cos(0j) =  B i+j • B t,

V i+i ■ Nj+i -  cos(ai)(T i+1 x Bj) • N i+i 4* sin(ai)Bi • N i+i

=  cos(ofi)(Ni+l x Ti+i • Bi) +  sin(ai)(Bi • T i+1 x B i+1)

=  cos(cti)(Bi^_i ■ Bi) -f~ sin(ai)(B i+i x Bi • Ti^i)

=  cos(ai) cos(0i) -  sin(ai) sin(0i)

=  cos(tti +  9i) ,

V i+i ■ B i+1 =  cos(ai)(T i+i x Bi) ■ B i+i 4- sin(ai)Bi • B i+i
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=  c o s^ X B i x Bj+1 • Tj+1) + sin{ai)(Bi • Bi+I)

=  cos(aj) sin(0i) +  sin(tti) cos(0i)

= sinfctj +  &i) .

Therefore a i+i =  (cti +  Qi) mod (2ir). By induction, for any indices ii < Z2 ,

* 2 - 1

« * 2  —  » » i  +  ^ 2  mô  (2?r) ■
J = »l

As the tessellation becomes finer and finer, the discrete frame field {(Ti, Nj, Bi)}-10 

approaches a framing (T, N, B) on the smooth curve. Since Bi _L Ti+i and B i+i X 

T i+1, then

B ' l T  =>■ =  0 =}> B ' — —r N  .

Since ||Bi+1 -  Bi|| «  )0j|, then

r  =  -0 '

Fixing Xi! and Xi3, and letting the norm of the tessellation approach zero, we have

i a - l

“ t a  =  ( a * i  +  J2 m o d  ( 2 7 r )  
j = i  l

— > (e*i! +  f  $'(s) ds) mod (2-k)

[%i]
=  («ij — / r(s ) ds) mod (27r) .

Hence, by T h eo rem  1, the parallel transport algorithm approaches the parallel trans­

port vector field as the norm of the tessellation goes to zero. QED.
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C.3 Comparison of the PT and the Projection Al­

gorithms

In this section, we are going to use Taylor’s expansion to show that both the PT 

algorithm (Figure 2.3) and the projection algorithm (Eq. 2.4) approach the parallel 

vector field as the norm of the tessellation approaches zero. But the PT algorithm 

converges faster than the projection algorithm.

C . 3 . 1  The Projection Algorithm

Taylor’s expansion of T  gives

Tj+i =  Tj +  T ' A s +  0 ( A s 2), (C.5)

where As is the length of the line segment.

If we let W  =  V, -  T i+1 (V i-  Tj+i) (see Eq. 2.4) and assume V i  ■ T* =  0, then

V i -  (Ti +  T 'A s +  0 (A s 2)) (Vi • (Ti +  T 'A s +  0 (A s2)))

Vi -  (Ti +  T 'A s +  0 (A s 2)) ((Vi • T ')As +  0{A s2))

Vj -  (Ti(Vi ■ T ')A s +  0 (A s 2))

Vi -  T i(V i • T ')A s +  0 (A s 2),

(W  ■ W )1/2

(Vi • V i -  2(Vi • T i)(V i • T ')A s +  0 (A s2))^ 2 

1 +  O(As),

Vi -  T i(Vi • f ')A s  +  0 (A s2).

W  =

||w|| =

ww = —Z -  
l|W ||
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Hence,
A Vi Vi+, - V i  W  -  Vi
A s As As

Therefore, as As —> 0, the component of that is not parallel to Tj linearly 

approaches zero,

C . 3 . 2  The PT Algorithm

From Eqs. C.3 and C.4, we have,

AVj -  V i+l -  Vj =  cos(ofj) (T i+1 x  B t- -  Ni)

=  (V( • Ni) ( T ,+ , x Bi -  Ti x  Bi)

=  (Vi • (Ti x  Bi)) (T i+i x  Bi -  T i x  Bi). (C.7)

Notice tha t both Ti x  Bi and T i+i x  B, live in the space spanned by Ti and Ti+i.

There exist real numbers a, b, c and d such that:

Ti x  B," ~  o Ti +  b T i+i (C.8)

T i+i x B,- =  c T i  +  d T i +i. (C.9)

If we let cos0 =  Ti • T i+i and apply dot products to both sides of Eq. C.8 with 

Ti and T,+i, then

(Tj x Bi) • Ti =  a Ti • Ti +  ft Tj+i • Ti

(TixBi )-Ti+1 = c f i -T i+ i+ d T i+ i  - Ti+i,
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or

0 =  a +  b cos 9

— sin2 6 =  a cos 9 +  b.

We get a =  1 — cos 9 and b = — 1, so

T* x Bj =  (1 — cosfl) Tj — Tj+i. (C.10)

Similarly, we can get:

Tj+i x Bi =  Tj -  cos0 Tj+i, (C. l l )

If we now apply Eqs. C.10 and C .ll  to Eq. C.7 and assume Vi ■ T,- =  0, we have

AVj =  (Vj • ((1 -  cos0)Tj -  T i+1)) (cos9  Tj + (1 -  cos9 )  Tj+i)

=  -(V j • T i+i) (cos0 Tj +  (1 -  cos0) Ti+i)

=  -(V j • (Tj +  T ' As +  0 (A s2)) (cos9  Tj + (1 -  cos9 )  T  j

+(1 -  cos0)T' As +  0 (A s2))

=  -((V j • T ') As +  0 (A s2)) (Tj +  (1 -  cos9 )  T ' As +  0 (A s2))

=  -((V j * T ') As +  0 (A s2)) Tj -  (1 -  cos0) 0 (A s2),

=  —(Vj • f ' +  O(As)) Ti — (1 — cos 9) O(As). (C.12)

But 1 -  cos9 =  1 -  f  j • Ti+i =  1 -  (Tj • Tj +  Tj • T ' As + 0 (A s2)) = - (T j  ■

T ') As +  0 (A s 2) =  O(As), so Eq. C.12 becomes:

=  -((V j • T ') +  O(As)) Tj +  0 (A s2). (C.13)
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Therefore, as As —► 0, the component of tha t is not parallel to T* quadratically 

approaches zero, and thus is faster than the projection method.

The projection method also has other disadvantages, see Section 2.2.2.



Appendix D

Tangent Spaces and Geodesics

For every point p on a surface M  in R n, let TPM  be the tangent plane of M  at p. 

The disjoint union of all the tangent planes of M  forms the tangent bundle T M  of 

M.  The induced Riemannian metric (from the ambient space f?3) on M  is called the 

first fundamental form  of M, and is denoted by ds2. ds2 is used to measure lengths 

on M. One can also define the second fundamental form  of M ,  denoted by II, which 

describes the shape of M  in R 3. II allows a quantitative study of the shape of M  

in the neighborhood of a point. It measures how far M  is from being a plane: If II 

is identically zero, M  is a plane, and vice versa. It is also used in calculating the 

curvatures of curves on M.  Combining ds2 and II, we can compute the two principal 

curvatures and the mean curvature of M. Another im portant invariant of M  is the 

Gaussian curvature (also called total curvature). The Gaussian curvature turns out 

to be determined by the first fundamental form ds2.

Similar to the definition of a parallel normal vector field on a curve, a tangent 

vector field on M  is said to be parallel along a curve on M  if its derivative along the
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curve is everywhere perpendicular to M. And a curve on M  is called a geodesic if the 

tangent vector field determined by the curve itself is parallel along the curve itself. 

The shortest path on M  that connects two points on M  is a geodesic. Some geodesic 

paths on 3D and 4D surfaces generated by the algorithms in Chapter 4 are shown in 

Color Plates G.16, G.17 and G.18.

For a surface in a higher dimensional space, we can still define the tangent bun­

dle, the first fundamental form, the second fundamental form, the geodesics, mean 

curvature and Gaussian curvature (everything mentioned above except the principal 

curvatures). But the curvatures are no longer scalar values, they are vectors that are 

perpendicular to the surface. The mathematical theory of surfaces is far too rich to 

fit in this article, even very briefly. There are many good books on this subject, [9] 

is an example.

For higher dimensional manifolds, most of these concepts still exist, especially the 

tangent bundle and the geodesics.

The above is a very brief introduction to the theory of differential geometry. For 

more information, read [23] if you like figures and Mathematica, or [58] for the most 

comprehensive introduction.



Appendix E

Regge Calculus

Consider the dome that covers a big auditorium, made of many flat triangles joined 

edge to edge and vertex to vertex. Similarly in the Regge calculus, manifolds are 

made of flat simplexes (two dimensions, triangle; three dimensions, tetrahedron; four 

dimensions, 4-simplex and so on) joined face to face, edge to edge, and vertex to 

vertex. To specify the lengths of the edges is to give the engineer all he needs in 

order to know the shape of the roof, and the scientist all he needs in order to know 

the geometry of the manifold under consideration. A smooth auditorium roof can 

be approximated arbitrarily closely by a dome constructed of sufficiently small trian­

gles. A smooth manifold can be approximated arbitrarily closely by a locked-together 

assembly of sufficiently small simplexes.

Figure E .l shows how a smoothly curved surface can be approximated by flat 

triangles. For the smooth surface on the left, the curvature exists everywhere on the 

surface and varies continuously. But after tessellation (on the right), all the curvature 

is concentrated at the vertices. No curvature resides on the triangle faces or the edges.
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Deficit angle, 8

Figure E .l: A surface with continuously varying curvature can be approximated arbi­
trarily closely by a polyhedron built of triangles. The curvature of the surface shows 
up in the amount of deficit angle at each vertex (portion ABODE  of the polyhedron 
laid out above on a flat surface).

A vector carried by parallel transport along a closed route that doesn’t encircle any 

vertices (e.g, A to B to C and back to B to A) will remain unchanged in direction, as 

one sees most easily by laying out this complex of triangles on a flat surface. Only if 

the route encircles the vertex common to A, B, C, D and E does the vector experience 

a net rotation. The magnitude of the rotation is equal to the indicated deficit angle, 

8, at the vertex. The sum of the deficit angles over all the vertices has the same 

value, 4tt (2tt x the Euler characteristic of the surface), as does the integral of the 

continuously distributed curvature taken over the original smooth figure.

Generalizing from two dimensional surfaces, the Regge calculus approximates a 

smoothly curved n-dimensional manifold as a collection of n-dimensional blocks, each 

free of any curvature at all, joined by (n—2)-dimensional regions in which all the 

curvature is concentrated. So as an example, for the four-dimensional spacetime of
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general relativity, where it was originally invented, the “hinge” a t which the curvature 

is concentrated has the shape of a triangle. See [51] for Regge’s original paper.



Appendix F

Grassmann and Stiefel Manifolds

The Grassmann manifold Gk(R n) is the space of all fc-planes containing 0 in R n 

(0 < k <  n). The Lie group 0 (n )  (all the n x n  othorgonalmatrices) acts transitively 

on G/c(Rn), and the action gives Gk(R n) a differentiable structure:

Gk(Rn) “  0 (n ) /(0 (k )  x 0 (n  -  *)),

with dimension k(n  -  k).

The Stiefel manifold V*(i?n) is the space of all orthonormal fc-frames in R n. The 

Lie group 0 ( n ) also acts transitively on 14(i?n), but the action results in a different 

differentiable structure:

Vk(R n) 2  0 ( n ) /0 ( n  -  k),

with dimension -  ( " - ^ “* - 0 .

In computer graphics, Grassmann manifolds can be used in shading calculations. 

Because in shading, we need to know where the plane lies. But we don’t care about
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rotations within the plane. For smooth shading, we need to find the approximate 

plane, which may be obtained by averaging or interpolating among existing planes. 

The popular 3D Phong shading and Phong normal interpolation methods can be 

viewed as interpolation methods over the special Grassmann manifold, C?2 (f?3) (tan­

gent planes in 3D, or equivalently G i(R 3), normal vectors in 3D), which is the same 

as (diffeomorphic to) S2, the ordinary sphere.

At the mean time, Stiefel manifolds can be used in camera controls. Because when 

we control a camera, we need to know the complete orientation of the camera in the 

viewing space. The special case, V ^P 3) (=  SO (3) =  RP3>) for 3D camera frames, 

has been studied by Shoemake ([56]). Shoemake uses unit quaternions, which is the 

universal covering space of f2P3, to interpolate camera frames and achieve smooth 

animations of rotations.

Generalization of these applications to n  >  3 requires more understanding of the 

metrics on Grassmann and Stiefel manifolds, and Lie groups and Lie algebras. [13] is 

a good geometric introduction to Lie groups.
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(a) (b) (c)

Figure G.l: (Section 2.2.3) Parallel transport on closed curves, (a) A ribbon pro­
duced by parallel transport of an initial vector does not generally return to the same 
orientation after one circuit, (b) Closure can be enforced by distributing the angular 
deficit around the curve, (c) Adding multiples of tt to the total axial rotation gives 
any desired amount of twisting (this example adds 6tt).

(a) (b) (c)

Figure G.2: (Section 2.2.4) Creating ribbons and tubes using parallel transport, (a) 
A ribbon generated by a pair of vectors, (b) A tube with a circular cross-section, (c) 
A tube with a star-shaped cross-section and a varying radius.
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Figure G.3: (Section 2.2.5) An application of the parallel transport frame to the 
generation of a moving camera orientation automatically determined by the geometry 
of the flight path itself. In this illustration, the orientation of the aircraft represents 
the camera orientation. When the ribbon appears blue, the top of the aircraft is facing 
us, while when the ribbon is green, we are looking at the bottom  of the aircraft.
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imm

(c) (d)

Figure G.4: (Sections 3.2.1, 3.2.2 and 3.4.1) Quaternion-Frenet frame on a 3D torus 
knot, (a) Projected image of a  3D (3,5) torus knot, (b) Selected Frenet frame 
components displayed along the knot, (c) The corresponding smooth quaternion 
frame components, (d) The path of the quaternion frame components in the three- 
sphere projected from four-space. Color scales indicate the 0-th component of the 
curve's four-vector frame (upper left graph in (c)).



APPENDIX G. COLOR PLATES 107

mmm m

w H i

(c) (d)

Figure G.5: (Sections 3.2.1, 3.2.2 and 3.4.1) Quaternion-Frenet frame on a pathologi­
cal curve segment, (a) Projected image of a  pathological curve segment, (b) Selected 
Frenet frame components, showing a sudden change of the normal, (c) The quater­
nion frame components, showing discontinuity in values, (d) The discontinuous path 
of the quaternion frame components in the three-sphere. Color scales indicate the 
0-th component of the curve’s four-vector frame (upper left graph in (c)).
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(c) (d)

Figure G.6: (Sections 3.2.2 and 3.4.1) Quaternion-Parallel-transport frame on a  3D 
torus knot, (a) Projected image of a 3D (3,5) torus knot, (b) Selected parallel 
transport frame components displayed along knot, (c.) The corresponding smooth 
quaternion frame components, (d) The path of the quaternion frame components in 
the three-sphere projected from four-space. Color scales indicate the 0-th component 
of the curve’s four-vector frame (upper left graph in (c)).
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(c) (d)

Figure G.7: (Sections 3.2.2 and 3.4.1) Quaternion-Parallel-transport frame on a 
pathological curve segment, (a) Projected image of a pathological curve segment,
(b) Selected parallel transport frame components, showing smooth change of the nor­
mal. (c) The quaternion frame components, showing continuity in values, (d) The 
continuous path of the quaternion frame components in the three-sphere. Color scales 
indicate the 0-th component of the curve’s four-vector frame (upper left graph in (c)).
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Figure G.8: (Sections 3.3, 3.4.1 and 3.4.2) Quaternion frames on curves related with 
tying a  knot, (a) Deformed volume related to tying a  knot, color coded by curva- 
ture. (b) Deformed volume related to tying a knot, color coded by torsion, (c) The 
corresponding quaternion field paths for the Frenet frames, (d) The corresponding 
quaternion field paths for the parallel transport frames. The color code is keyed to 
the value of the quaternion component qo that is collapsed in the projection from 4D 
to 3D.
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(c) «1)

Figure G.9: (Sections 3.3, 3.4.1 and 3.4.2) Quaternion frames on Dirac strings, (a) 
Dirac strings color coded by curvature, (b) Dirac strings color coded by torsion, (c) 
The corresponding quaternion field paths for the Frenet frames, (d) The correspond­
ing quaternion field paths for the parallel transport frames. The color code is keyed 
to the value of the quaternion component qo that is collapsed in the projection from 
4D to 3D.
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(c) (d)

Figure G.10: (Sections 3.3, 3.4.1 and 3.4.2) Quaternion frames on vector field stream­
lines. (a) Vector field streamlines, color coded by curvature, (b) Vector field stream­
lines, color coded by torsion, (c) The corresponding quaternion field paths for the 
Frenet frames, (d) The corresponding quaternion field paths for the parallel transport 
frames. The color code is keyed to the value of the quaternion component gQ that is 
collapsed in the projection from 4D to 3D. (AVS data set.)
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Figure G .ll: (Sections 3.4.1 and 3.5.2) Successive frames in a 4D rotation of the 
parallel projected 3-sphere display of the quaternion fields for a set of streamline 
data.

Figure G.12: (Sections 3.4.1 and 3.5.2) Successive frames in a 4D rotation of the polar 
projected 3-sphere display of the quaternion fields for a set of streamline data.

Figure G.13: (Sections 3.4.4 and 3.5.1) Color coding a streamline da ta  set using 
an interactively moving 4D “light” as a  probe to isolate similar components of the 
quaternion fields associated to each point of each curve.
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Figure G.14: (Section 3.5.5) (a) Selecting stream fields that are close in the original 
3D data display and (b) echoing them in the 4D quaternion Frenet frame display. The 
moving frames of these two curves are drastically different even though the curves 
appear superficially similar in 3D. The unseen component of 4D depth, with a range 
-1 .0  to 1.0, is mapped to the color index.

«  (b)

Figure G.15: (Section 3.5.5) (a) Selecting stream fields that are close in the 4D 
quaternion Frenet frame display and (b) echoing them in the original 3D data display, 
thus showing the locations of similar curves that could not be easily singled out in 
the original 3D spatial display. The unseen component of 4D depth, with a range 
-1 .0  to 1.0, is mapped to the color index.
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(a) (b)

Figure G.16: (Sections 4.3 and 4.5, Appendix D) (a) Families of geodesic paths 
followed by the space walker algorithm on an ordinary torus in 3D. (b) The 3D paths 
on the torus with the surface removed.

(a) (b)

Figure G.17: (Sections 4.3 and 4.5, Appendix D) (a) Selected geodesic paths on the 
spun trefoil knotted sphere embedded in 4D. Note how the paths follow the continuous 
surface in 4D despite the presence of self-intersecting surfaces in this 3D projection, 
(b) The 3D paths with the surface removed.
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( a ) ....................................................... 0>)

Figure G.18: (Sections 4.3 and 4.5, Appendix D) (a) Families of geodesic paths on a 
projective plane embedded in 4D and projected to 3D so that it is part way between 
a cross-cap and Steiner’s Roman surface, (b) The 3D paths on the projective plane 
with the surface removed.
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(b) (c)

Figure G.19: {Section 5,1) MeshView 1.0 interfaces, (a) Main interface. The yellow 
cube on the object is centered at the vertex whose parametric coordinates are indi­
cated in the picker panel (b). If pseudo-color were being used, we could display the 
colormap as shown on the left, (b) Parametric space picker; (c) Color panel.
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(i) GO (i)

Figure G.20: (Section 5.1) MeshView 1.0 snapshots, (a) A flat 4D torus, (b) The 
projective plane, (c) The projective plane with a different 4D —* 3D projection, (d) 
An un-knotted sphere in 4D. (e) The wire frame of the surface on the left, (f) An 
apparently knotted sphere in 4D, generated by rotating and twisting a 3D trefoil knot, 
(g) Part of the solution surface to the complex equation Z i*  Z2 = 1. (h) A knotted 
sphere in 4D. (i) Part of the solution surface to the complex equation Z\ * Zf =  1.
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