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INTRODUCTION 

The recognition of handwritten digits is very challenging and it has been the subject of 

much attention in the field of handwriting recognition. Recognizing digits is a problem 

that at first seems simple, but it is a very difficult task to program a computer to do it. 

The difficulties and complexity of this task lie in the fact that a computer program must 

be able to recognize handwritten digits produced by different people, using different 

instruments. The system has to deal with widely different sizes and slants, with different 

shapes and widths of the strokes. Handwritten digit recognition has been an especially 

active topic in the field of pattern classification and learning. Many approaches and 

methods have been proposed for pre-processing, feature extraction, classification and/or 

learning of handwritten digit images. Researchers have also compiled widely used 

standard image databases to evaluate the performance of these approaches and methods. 

The four most important and widely used databases are CENPARMI, CEDAR, MNIST, 

and the United States Postal Service (USPS) database. 

The United States National Institute of Science and Technology (NIST) 

constructed their first database from NIST’s Special Database 3 (SD-3) and Special 

Database 1 (SD-1). The training set of the modified database, MNIST, has 60,000 images 

of  handwritten digits from approximately 250 writers and a testing set of 10,000 [17]. 

The Centre for Pattern Recognition and Machine Intelligence (CENPARMI) digit 

database contains 6,000 digit images collected from the envelope images obtained by the 

USPS. The digits are scanned in 166 DPI [16]. The CEDAR ZIP codes were scanned in 

300 DPI from mail images obtained by USPS [3]. The USPS database contains 9298 

handwritten digits (7291 for training, 2007 for testing) [18].  
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Handwritten digit recognition research concentrates on either individual digits or 

digit strings. With respect to machine recognition of individual handwritten digits, 

researchers have achieved an accuracy of 99.58% [8]. Such performance compares 

favorably to human performance. In fact, two experiments have been conducted to 

evaluate the human error rate on the USPS test data set. The first experiment reported a 

2.5% error rate [2]1, while the second experiment reported an error rate of 1.51% [4]. The 

first experiment was published as a proprietary report and is not readily available for 

public consumption. The second experiment suffered from two major methodological 

flaws. The experiment was conducted using four subjects and each was given 2007 test 

patterns which were printed on white paper. Each page had approximately 120 images of 

handwritten digits separated by white space. Each subject was asked to identify each 

pattern and then to clearly label the pattern on the paper. The results were “carefully” 

entered into an Excel file manually [4]. The first flaw of the experiment is what I call 

association. When a subject is looking at a sheet of paper that has 120 images on it, it is 

possible that when a subject encounters a difficult image to identify, this subject might 

associate this particular image with other images on the page in deciding on a response. 

The second flaw comes from the fact that the subjects are writing the ir responses on the 

papers they were given. How do we know that the person entering the results into Excel 

is reading the results (which are handwritten digits) correctly?   It seems that the problem 

is being regenerated by the subjects, and now the person entering the results into Excel 

must solve the problem. Due to these two flaws in the design of the second experiment 

and the lack of availability of the report for the first experiment, I have run my own 

                                                 
1  My advis or and I tried our best to locate a copy of this proprietary report, but we were unsuccessful. We 
contacted the authors, but neither were able to produce a copy of the report. 
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experiment to determine human performance in recognition of individual handwritten 

digits. 

Many domains require recognition of digit strings, as opposed to individual digits. 

Some examples are automated sorting of mail by postal code [1], automated reading of 

checks [19] and tax returns, and data entry for hand-held computers. In these domains, 

handwritten digits rarely appear isolated.  Instead they appear as part of a string of digits 

where some digits may touch and/or overlap. In many of these real world applications, 

the images are processed by human operators. However, automation may improve 

production and cut costs. For this to happen, performance of an automated system must 

compare favorably to human performance. Such comparison is an essential component in 

determining whether the problem has been solved or not. An automated system cannot be 

fully integrated into real world applications until the performance gap between humans 

and machines is sufficiently minimal.  Morita and colleagues [11] developed a system 

that uses the Hidden Markov Model (HMM) and the Multilayer Perceptron (MLP) to 

segment and recognize unconstrained handwritten dates on Brazilian bank checks. The 

system processes the three subfields that make up the date (day, month, and year). In 

order to reduce the date lexicon size, Morita and colleagues used domain knowledge, 

which enabled them to reduce the complexity of the recognition process. This was 

possible because the lexicons for day and year are known. For example, in a two digit day 

the first digit can only be 0, 1, 2, or 3, while the second digit can range from 0 to 9. A 

similar approach was applied to two/four digit years. They restricted checks to just those 

written after 1990 and before 2029. In a two digit year the first digit can then be 0, 1, 2, 

or 9. The second digit can range from 0 to 9. In a four digit year, the first digit can only 
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be 1 or 2; similarly the second digit can only be 0 or 9. They used five MLP neural 

networks each using only one hidden layer to classify the different metaclasses of digits. 

For example, one MLP network classified the digits 0, 1, 2 and 3. It had one hidden layer 

with 70 hidden units. Another network classified the digits 0 through 9 using one hidden 

layer with 80 hidden units, and so forth.  The hidden layer in each network contained an 

empirically determined number of hidden units, each of which connected to all input and 

output units. The performance of this system on four digit years was 100%. On two digit 

days performance was 93.2%, and on two digit years performance was 97.2%.  The 

discrepancy between performance on two digit years and two digit days can also be 

explained by their use of domain knowledge. Specifically, they exploited the fact that 

year always appears at the end of a date. They used this knowledge to improve 

segmentation of the year from the rest of the date, and the improved segmentation led to 

improved recognition. 

ZIP code recognition is another very interesting problem, due to the benefits of 

having an accurate automated system that can sort letters at a high rate.  On average a 

postal worker can sort about 800 letters an hour. On the other hand, an automated sorting 

machine, reading printed ZIP codes with an optical scanner is estimated to process about 

37 times more than the postal worker at a fraction of the cost [10]. Such performance is 

also desired for handwritten ZIP codes. Liu and colleagues [8] compared different 

classifiers and learning methods in the recognition of handwritten ZIP codes. The 

classifiers compared were single- layer perceptron (SLP), multi- layer perceptron (MLP), 

radial basis function classifier (RBF), polynomial classifier (PC), learning vector 

quantization (LVQ), modified quadratic discriminant function (MQDF), and learning 
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quadratic discriminant function (LQDF). Each classifier had two or three variations 

depending on the learning method, such as maximum likelihood estimation (MLE), 

discriminative learning (DL), or enhanced discriminative learning (EDL). The method of 

maximum likelihood is a general method of estimating parameters of a population by 

values that maximize the likelihood of a sample [9]. The discriminative learning method 

on the other hand, updates parameters iteratively to separate the patterns of different 

classes. The enhanced version of discriminative learning is equivalent to DL, except that 

in EDL the training is done with outliers [8]. The first classifier they tested was the SLP. 

A single layer perceptron has an input and output layer. Each neuron in the output layer 

of their network was connected to each input neuron. When trained with the EDL method 

and forced to make a decision without rejection, this network’s correct recognition rate 

was 74.31%.  This is probably because this type of network is limited to only a single 

layer. They also tested a MLP network. With one or two hidden layers, this network can 

approximate virtually any input-output map, by learning to transform input data into a 

desired response. The MLP’s correct recognition was 89.22% without rejection using the 

same learning method. When using the EDL method, both the RBF and PC produced 

similar results to that of the MLP. The RBF correct rate without rejection was 87.84%, 

and the PC had a correct rate of 89.91% without rejection. The LVQ classifier was also 

tested. LVQ is a competitive learning algorithm, described sometimes as the supervised 

version of Kohonen’s Self-Organizing Map [7]. Percent correct for the LVQ classifier 

was 87.61% with no rejections. The MQDF classifier described by Liu et al. [8] as the 

MLE version of LQDF was also tested, and it had a correct rate of 87.61% without 
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rejection. Finally, the LQDF classifier was tested to reveal a 90.37% correct rate without 

rejection.  

In order to test these classification methods, Liu and colleagues [8] developed a 

new model. First, the model pre-processed the string image to prepare it for pre-

segmentation. In the pre-segmentation stage, connected component labeling was applied. 

To handle the cases of touching digits, the model analyzed the upper and lower profile 

curves of any touching digits in order to generate a candidate cut. Heuristic rules were 

also applied to ensure that the candidate cut would not split a single digit. Their pre-

segmentation stage was followed by an integrated segmentation and recognition (ISR) 

stage. In this stage Liu et al. [8] combined dynamic programming (DP) search and digit 

recognition. Each of the character classifiers described earlier was used to assign class 

scores to the candidate patterns generated in the previous stage. The optimal pattern was 

then found by DP search based on class scores given by the classifier. The ISR stage, as 

claimed by Liu and colleagues [8], is the most essential part of their system due to the 

variability in size, interval, and breaking/touching of digits in a ZIP code. Therefore, 

according to them, the digits in a ZIP code cannot be reliably segmented in a distinct 

stage prior to recognition. This implies that the problem can only be solved by integrated 

segmentation and recognition.  The recognition portion of this integrated segmentation 

and recognition process tested the different types of classification methods described 

above. The LQDF classifier was chosen because it had the best performance.  The system 

was tested on 436 5-digit ZIP code images from CEDAR CDROM-1. The ZIP code 

images were obtained by USPS from actual mail images. A number of these ZIP codes 

have digits which touch, making recognition more challenging.  They reported a correct 



  7  

rate of 90.37%. Unlike the system of Morita et al. [11] they did not use prior domain 

knowledge. So, incorporating prior domain knowledge into the system of Liu et al. [8] 

might have yielded an even better recognition rate. Still, their system has achieved the 

best performance to date. It is unknown how this system compares to human performance 

because no human recognition rate on handwritten ZIP codes has been established. 

Therefore, I have performed an experiment to establish human performance in 

recognizing handwritten ZIP codes. In the next two sections I describe the two human 

experiments conducted. In the section after that, I describe my model and its performance 

on the CEDAR CDROM-1 test database. In the final section I draw conclusions and 

make suggestions for future work.  

EXPERIMENT 1 
 
There have been two experiments conducted on the United States Postal Service (USPS) 

database to establish human performance on recognizing individual handwritten digits. 

Bromley and Sackinger [2] reported a 2.5% error rate, and Dong, Xiong, and Suen [4] 

reported a 1.51% error rate. However the former experiment is not in the public domain, 

and as mentioned, the latter experiment had two major flaws. The present experiment was 

performed to clearly establish human performance on recognition of individual 

handwritten digits.  

Method 

Subjects 



  8  

Four undergraduate IUSB students participated in this experiment2. Subjects were at least 

18 years old and had normal (20/20) or corrected-to-normal vision in both eyes. For 

completing the experiment each subject was paid $30.00. 

Stimuli 

As stimuli, I used the digits in the USPS database. This database was also used in the 

studies of Bromley and Sackinger [2] and Dong et al. [4]. The USPS database was 

originally collected by CEDAR. Then it was modified by LeCun’s research group [18]. 

The binary patterns were transformed into a 16 × 16 pixel box that kept the same aspect 

ratio and centered the patterns. The resulting patterns were gray- level and scaled and 

translated to fall within the range from -1 to 1. When translating the vector into a 16 × 16 

image I found that the digits were in white and the background in black. So I reversed the 

colors to match what would normally appear on an envelope (black text on white paper). 

The database contains 9298 handwritten digits 7291 for training and 2007 for testing. The 

test set of 2007 was used here (as in the previous studies). The files containing the 

vectors of these images can be found at [18]. 

Procedure 

Each subject attended 3 sessions of approximately one hour each. In the first two sessions 

there were 700 trials, and in the third session there were 607 trials, for a total of 2007 

trials. In each session the subject sat in front of a computer screen and used software 

especially created for this experiment (Figure 1). A subject’s task was to identify a series 

of handwritten digits randomly presented on the computer screen, using the mouse to 

                                                 
2 All human experiments reported here were first approved by the IUSB Institutional Review Board. 
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respond. Subjects were asked to respond even if a stimulus was ambiguous. At the end of 

each session the software calculated the percent correct. 

Results and Discussion 

As reported in the experiment of Dong et al. [4] there are four labeling errors in the USPS 

database (Table 1). Without taking those labeling errors into consideration, the average 

percent error was 2.57% (Table 2). After removing the four incorrectly labeled digits, the 

average percent error rate was 2.37% (Table 3). This is comparable to the error rate of 

2.5% found by Bromley and Sackinger [2] and higher than the error rate of 1.51% 

reported by Dong et al. [4]. Since these two reports presented considerably different error 

rates, my experiment helps decide which is correct. The results of my experiment 

confirmed two things: Bromley and Sackinger’s error rate is very close to the actual error 

rate and the error rate of Dong et al. is inaccurate (as expected) due to the methodological 

flaws in their experiment.    

EXPERIMENT 2 

In Experiment 1, I measured human performance in recognition of individual handwritten 

digits. For this experiment, I will establish human performance in recognition of 

handwritten ZIP codes. I expect that my results will serve as a benchmark for machine 

performance in recognition of handwritten ZIP codes.  

Method 

Subjects 

Four undergraduate IUSB students participated in this experiment. Subjects were at least 

18 years old and had normal (20/20) or corrected-to-normal vision in both eyes. For 

completing the experiment each subject was paid $10.00. 

Stimuli 
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For this experiment I used the 436 5-digit ZIP code images available from the CEDAR 

CDROM-1 in the testing folder under the BINZIPS directory. These ZIP codes were used 

in Liu’s study to test various classification methods [8]. The ZIP codes were segmented 

from mail images obtained by the USPS, and they are in binary format. In this database, 

some ZIP codes have digits that are touching and/or overlapping. This makes the task of 

recognition more challenging. Figure 2 shows examples of handwritten ZIP codes used in 

this experiment. 

Procedure 

Each subject attended one session in which he/she sat in front of a computer screen and 

used software especially created for this experiment (Figure 3). A subject’s task was to 

identify a series of handwritten ZIP codes randomly presented on the computer screen, by 

using a mouse/keyboard.  For an ambiguous stimulus, a subject was instructed to do their 

best, but to still respond. At the end of the session the software calculated percent correct.  

Results and Discussion 

The average percent error of the four subjects was 3.44% (Table 4).  Due to the ease of 

the task, the legibility of most ZIP codes, and the performance of subjects 1, 2, and 4, the 

result of subject 3 appears to be an outlier. Subject number 3 apparently had some lapses 

of attention because some of his/her errors were on easy ZIP codes. The average percent 

error with this outlier removed was 1.61% (Table 5). Until now, no human recognition 

rate on handwritten ZIP codes had been established. Therefore, this experiment is 

significant because it establishes human performance in recognizing handwritten ZIP 

codes. The results of this experiment will allow researchers to compare their models to 

the ultimate ZIP code recognition system – that of the human visual system. However, 
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due to the small number of subjects, one must be cautious about over generalizing the 

results. 

MODEL 

 A unique feature of my model is that it incorporates domain knowledge. For 

instance, the structure of ZIP codes and the state of destination could be exploited to 

make the segmentation and recognition processes more accurate. Understanding the 

structure of ZIP codes can significantly reduce the range of possible classes to consider 

during the recognition process, thereby increasing accuracy. For example, in a five digit 

ZIP code, the first digit indicates one of ten large geographic areas in the country. It 

represents a certain group of U.S. states, ranging from zero in the Northeast to nine in the 

far West. The second and third digits indicate metropolitan areas and sectional centers. 

The fourth and fifth digits represent more specific areas such as local post offices or 

postal zones in larger cities [20]. Combining this knowledge with the state of destination 

radically reduces the number of ZIP codes to consider during classification. 

 My model consists of two stages: a segmentation stage and a recognition stage. In 

the segmentation stage the ZIP code patterns are segmented by applying a few simple 

techniques and by explo iting the fact that a ZIP code is composed of 5 digits. Utilizing 

the destination state, the recognition stage will try to recognize the five segments derived 

from the segmentation stage, as shown in Figure 4. 

Segmentation 

The main challenge of classifying handwritten ZIP codes is the fact that in real 

applications the image extracted from a piece of mail will not necessarily appear as five 

separated digits. This is due to imperfect handwriting, as shown in Figure 5. In addition, 
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extra noise, (such as bar codes, stamps and other markings made by the post office) is 

added to the image during processing. Further, moisture and handling may smear or 

smudge the handwriting on an envelope. To overcome these challenges and to achieve 

segmentation, a ZIP code pattern goes through three phases in my model (see Figure 4).  

In the first phase, the ZIP code pattern is prepared for division into five separate 

patterns, each representing a digit in the ZIP code. First the pattern is converted into a 

binary image with a 0/1 representation (0 for white pixels and 1 for black). This allows 

for easy processing of patterns. Then, from the pattern a noise reduction algorithm locates 

and removes any set of connected pixels with an area-size less than an empirically 

determined threshold (3×3). This step is necessary because it helps to remove some of the 

added noise discussed earlier. Next, another algorithm is applied to the pattern to “close” 

any open gaps found in digits (see Figure 6) [6]. This step will enhance the shape of each 

digit and therefore allow for better classification later in the process [14]. 

 The second phase of segmentation finds all connected components in a given ZIP 

code pattern. A connected component is a set of pixels sharing some feature where each 

pixel in the set neighbors at least one other pixel in the set. The purpose of this step is to 

isolate the digits which make up the ZIP code pattern. Two variations of the connected 

components algorithm were tested. The first algorithm checks four neighboring pixe ls to 

determine connectivity to other pixels, while the second algorithm checks all eight 

neighboring pixels, as shown in Figure 7 [15]. Since there was no distinguishable 

difference in the outcome of the two algorithms, I chose to use the algorithm which 

checks four neighboring pixels, because of execution time efficiency.  
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Because a ZIP code is composed of 5 digits, the second phase can have three 

possible outcomes. The first outcome would be to get five connected components with a 

relatively similar size. This implies that the pattern was successfully segmented into five 

digits. The second outcome would be to get less than five connected components. This 

could mean that two or more digits in the ZIP code string are touching or overlapping. If 

so, they must be separated. The third outcome would be to get more than five connected 

components. This particular outcome suggests that there may be one or more individual 

digits that are broken into multiple pieces and therefore must be joined together.   

The third phase of segmentation involves separating connected digits (if 

necessary) or joining multiple segments of a digit (if necessary) found in a ZIP code 

string. 

Separating connected digits in a ZIP. When two or more digits are touching or 

overlapping the recognition task becomes particularly challenging. An improper 

segmentation tends to leave some of the newly segmented digits with noise or parts of the 

neighboring digit(s). In the separation process a digit might lose a piece of a stroke to a 

neighboring digit or a digit might lose a chunk because of overlapping. These problems 

arise because finding the precise splitting path that separates touching digits is nontrivial 

(see Figure 8). 

 To split touching digits I tested two algorithms. Both algorithms start by finding 

the bounding box of the entire ZIP code in a given pattern. The bounding box is a 

rectangle with horizontal and vertical sides that encloses the ZIP code and touches its 

topmost, bottommost, leftmost, and rightmost points. The first algorithm would divide 

the area of the bounding box vertically into five equal segments. This algorithm tends to 
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leave segments with noise or parts of the neighboring digit(s). In order to filter out the 

noise found in each of the five segments, the largest component is located in each 

segment and everything else (noise or parts of neighboring digits) is discarded.  The 

result of this algorithm is five noise-free segments each representing a single isolated 

digit ready to be converted into a feature vector. The second algorithm tested does the 

exact opposite of the first algorithm. Instead of segmenting the digits and then converting 

to vectors, this algorithm converts the entire ZIP code enclosed by the bounding box to 

one long vector and then divides it into five small vectors. The process of converting a 

ZIP code pattern into a vector is described in the Feature Extraction section.   

 When tested on training data the performance of the first algorithm was much 

better than the second algorithm, therefore, I chose to use the first algorithm in my model.  

Joining segments of a digit. Joining segments that belong to one digit is as challenging as 

separating touching digits. The challenges here are to determine which segment belongs 

to which digit and whether a segment is part of a digit or simply noise. Furthermore, 

using the improper joining algorithm may leave some of the digits with artifacts or noise. 

These problems arise because finding the precise technique to join segments is nontrivial. 

A digit may occur in pieces as a result of three things: not having the proper writing tool 

(dry pen), noise or extra markings added during processing, or the writer did not properly 

connect the digit. By analyzing various cases of broken digits, I found that the digit 

which often occurs in two segments is the digit 5. With the exception of the digit 4, the 

digit 5 is the only digit which often is written in two parts (see Figure 9). Therefore, the 

digit 5 is perhaps more likely to appear in two parts than any of the other digits.  
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To solve this problem I used the single line test algorithm. This algorithm is 

commonly used in mathematics [5]. It starts by drawing a vertical line and moving it 

across the entire ZIP code starting from the left-hand-side. If the line intersects the area of 

two of the connected components found earlier, then those two components are joined. In 

case of a failure to find two components to connect, the ZIP code is simply divided into 

five equal segments as described in the previous section. 

Feature Extraction 

 Since different individuals can have various writing styles, the features extracted 

from each digit must be independent of size, width of the strokes, and writing styles of 

the individuals. To extract features independent of writing styles, my model samples a 

number of pixels from each pattern. The sampled pixels are then stored in a matrix 

structure, as shown in Figure 10. The matrix is then reduced to a vector by projecting it 

onto the X-axis, as shown in Figure 11. The resulting vector will contain values which 

represent the number of black pixels found in each column of the matrix. A similar 

technique was used by Rababaah [13] to reduce the size of asphalt pavement crack 

patterns.   

 The size of a feature vector is related to the issue of efficient data representation. 

Determining the proper sample size means extracting meaningful features using the 

smallest sample size possible. My initial sample size was 100 pixels (5 × 20).  However, 

the sample size was not sufficient to represent complex digits. Careful evaluation of the 

size, width of the strokes, and the shapes of the training patterns indicated that a sample 

size of 208 pixels (13 × 16) would be better. The new sample size allowed extraction of 

meaningful features that better describe complex digits. However, for some small 
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extracted digits, the 13 × 16 sample size presented a problem. Because the sample size 

was greater than the size of the digit pattern in these cases, there were not enough pixels 

in the pattern from which to sample. To solve this problem I used all the pixels in the 

pattern and completed the rest of the vector with zeros.  The Results and Discussion 

section describe the results obtained from using the two sample sizes.   

Recognition 

 The task of the recognition stage is to recognize the string of individually 

segmented digits.  Utilizing the destination state, the recognition stage tries to recognize 

each digit starting with the left-most digit, as shown in Figure 12. For the first two digits 

the system will make a decision on whether it is feasible to continue or not. For example, 

if the destination state is Indiana, then the first digit must be a 4, because all ZIP codes in 

the state of Indiana start with the digit 4. Before going any further, the model must verify 

that the first digit is a 4, as shown at the top of Figure 12. If it is not, the model will stop 

and reject the ZIP code. On the other hand, if the first digit is a 4, then the model will 

proceed to classify the next digit. In this example, the model now must determine if the 

second digit is a 6 or 7, because in the state of Indiana these are the only possible digits 

after the first one. If the model classifies the second digit as a 6 or 7, then it will continue 

classifying the rest of the digits. Otherwise it will stop and reject the ZIP code, as shown 

in Figure 123. Recall that Morita and colleagues [11] used a similar strategy to classify 

handwritten dates (days/years) using domain knowledge. They were able to reduce the 

complexity of the recognition process by reducing the date lexicon size. This was 

possible because they knew the lexicons for day and year. For example, in a two digit day 

                                                 
3 Rejection does not stop the processing of a given ZIP code; instead the model passes the digits to another 
network to be classified as one of ten possible digits. This allows for seamless comparison to the results 
obtained by Liu et al. [8]. 
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the first digit can only be 0, 1, 2 or 3 while the second digit can range from 0 to 9. A 

similar approach was applied to two and four digit years. For instance, in a two digit year, 

they only allowed the first digit to be 0, 1, 2 or 9. The second digit can range from 0 to 9. 

In their model, they identified five different metaclasses of digits: one metaclass for digits 

0, 1, 2, and 3, one for digits 0, 1, 2, 9, one for digits 1, 2, one for digits 0, 9, and one for 

digits 0 through 9. In my model, knowledge of the destination state may help in the 

recognition of the first two digits, because only the first two digits uniquely identify a 

particular state. The other digits must be classified by the model without any assistance 

from domain knowledge.  

Classification Method 

The recognition portion of this model was implemented using multi- layer 

perceptron (MLP) neural networks. Each individual network classified a different 

metaclass of digits. This was inspired by the use of distinct classifiers for distinct 

metaclasses of digits in the study of Morita et al. [11]. One of ten MLP networks was 

used to classify the first digit of a ZIP code, depending on the state. One MLP network 

classified the digits 6 and 7 for the second digit for the state of Indiana. Another 

classified the digits 0, 1, and 2 for the second digit for the state of Illinois, and so forth for 

other states. This strategy required a total of twenty-six different MLP networks. Recall 

that in a five digit ZIP code the first digit corresponds to one of ten large geographic 

areas in the country. Therefore, I used ten networks to classify the first digit in a ZIP 

code. Also, by exploiting the structure and range of possible ZIP codes for each state, I 

was able to create a list of possible second digit(s) for each state, as shown in Table 6. 

This table shows how the second digit for some states can correspond to a single digit 
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(e.g. Montana – 9), two digits (e.g. Indiana – 6,7), three digits (e.g. Missouri – 3,4,5), 

four digits (e.g. Virginia – 0,2,3,4), five digits (e.g. Texas – 5,6,7,8,9) or seven digits (e.g. 

California – 0,1,2,3,4,5,6). Since some of these states share similar sets of possible 

second digit(s) - for example both Kansas and Indiana have the digits 6 and 7 as possible 

second digits - I was able to eliminate redundancies among metaclasses and compile a list 

of metaclasses needed for this model, as shown in Table 7. After ana lyzing the testing 

data found on CEDAR CDROM-1 [3] (the standard test database),  I found that the 

metaclass needed to classify whether the second digit in a California ZIP code is 0, 1, 2, 

3, 4, 5 or 6 can be eliminated due to insufficient testing data, as shown in Table 84. 

Finally, to classify the third, fourth and fifth digits of a ZIP code, I used the last metaclass 

listed in Table 7. Recall that Morita and colleagues [11] used five MLP neural networks 

in their model to classify the five different metaclasses of digits, and they had good 

success. The performance of their model on four digit years was 100%. On two digit days 

performance was 93.2% and on two digit years the performance was 97.2%. (The 

discrepancy between performance on two digit years and two digit days was explained by 

the fact that year always appears at the end of a date on Brazilian bank checks, which led 

to an improvement in the segmentation and, thus, recognition of two digit years.) Liu and 

colleagues [8] also tested a MLP network as one of the classifiers in their model to 

recognize handwritten ZIP codes. Their model integrated segmentation and a single MLP 

for recognition and did not make use of domain knowledge. When trained without 

outliers, the model’s performance was 63.99%. However, when trained with outliers the 

                                                 
4 The testing data found on CEDAR CDROM-1 [3] does not provide ZIP codes for California with 0, 1, 2, 
3, or 4 as the second digit. Therefore the 26th metaclass listed in Table 7 is not needed and can be replaced 
with the one that classifies the digits 5 and 6 instead. 
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model’s performance was 89.22%. This compares favorably to the best performance of 

90.37% obtained using the LQDF classifier in their model.  

Classifier structure. The input to each network used for classification is a vector of 13 

features.  The hidden layer in each network contains an empirically determined number 

of hidden units, each of which is connected to all input and output units. The number of 

hidden units for all of the networks is five, with the exception of the last two networks 

(26 , 27) shown in Table 7. The network numbered 26 requires seven hidden units while 

the one numbered 27 requires nine hidden units. The output layer for each of the MLP 

networks contains a number of output units corresponding to the number of digits in each 

metaclass. For instance, a MLP network intended to classify whether a given digit is a 4 

must have two output nodes in the output layer, one for the digit 4 and one for any other 

digit.  A MLP network intended to classify a particular digit as 6 or 7 must have three 

nodes in the output layer, one for the digit 6, one for the digit 7, and one for any other 

digit, for example. 

Training data. To train the classifiers I used the same dataset used by Liu et al. [8]. The 

classifiers were trained on data compiled from the NIST Special Database 19 (SD19). I 

used 66,214 digit samples from the segmented hand-printed digits found in SD19. I also 

generated 16,000 outlier training patterns from the training digit data. The idea of 

combining outliers with the training data was introduced by Liu et al. [8]. They showed 

that it improves classification.  I generated outlier patterns, using their technique, by 

merging and splitting training images. A pair of digit images generated four outlier 

patterns: full- full combination, full-half combination, half- full combination, and half-half 

combination as shown in Figure 13. The patterns were generated by first arbitrarily 
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selecting two digits (see top of Figure 13). The first digit is split vertically into two parts, 

A and B. The second digit is also split vertically into two parts, C and D. In order to 

generate four outliers, parts must be joined together as follows: A, B, C will make one 

outlier (Full, Half). Then, B, C, D will make another outlier (Half, Full). Then A, B, C, D 

combined together make another outlier (Full, Full). Finally, I combined B and C (Half, 

Half).   

Testing data. The system was tested on 436 5-digit ZIP code images found on CEDAR 

CDROM-1 in the Binary ZIP code directory (BINZIP). These strings were used by Liu et 

al. [8] to test their classification methods. The string images were extracted from live 

mail images of USPS [18].  

Results and Discussion 

The performance of ZIP code recognition was evaluated using the same dataset 

used by Liu and colleagues [8] to test their system. Since my model relies on prior 

knowledge of destination state, this information had to be identified beforehand. To 

achieve recognition of a given ZIP code, the segmented vectors for a ZIP code, along 

with the destination state, are passed to a recognition script (see Appendix). The script 

classifies digits by calling the appropriate neural network for a given state and digit 

position. 

The performance of my model has been evaluated over three different versions. 

Recall from the Feature Extraction section that meaningful features are vital to achieving 

high performance, and acquiring meaningful features depends primarily on the sample 

size. The first version of my model was tested using 5 × 20 sample size, while the second 

version used a sample size of 13 × 16. The correct recognition rate achieved by the first 
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version was 65.6% with no rejection. The correct recognition rate achieved by the second 

version was 88.76%, also with no rejection. Clearly, using the larger sample size 

facilitated capturing the features necessary for recognition of handwritten ZIP codes.  

The third version of my model was created to compare against the second version, 

in order to measure the effectiveness of applying domain knowledge to the recognition of 

handwritten ZIP codes. This third version applied domain knowledge in the segmentation 

stage only and ignored any information attained from the destination state or ZIP code 

structure in the recognition stage. The model’s performance was 75.69% with no 

rejection. Compared to the second version, which had performance of 88.76% with no 

rejection, it is clear that domain knowledge improves the recognition of handwritten ZIP 

codes. 

To my knowledge, the best recognition performance achieved on the CEDAR 

dataset was reported by Liu and colleagues [8]: 90.37% correct rate with no rejection 

using the LQDF classifier. More importantly for this study, Liu et al. [8] achieved 

89.22% correct recognition with no rejection using the MLP classifier in their model. 

This compares favorably with the performance I found – 88.76% with no rejection. 

Despite our comparable performance, I believe that my model has revealed two 

interesting new concepts. First, a complex problem such as recognizing ZIP codes can 

have a simple, easy, and straightforward solution. Recall that Liu and colleagues [8] 

claimed that the problem could not be solved without having an integrated segmentation 

and recognition system. I have shown that this is not true. My model uses a distinct 

segmentation stage followed by a recognition stage, and it performed comparably to their 

model. Compared to their system, my model took a simpler approach to solve the 



  22  

problem. My segmentation stage is straightforward, including some of the same elements 

of their “pre-segmentation” stage. In the recognition stage, even though I used 26 neural 

networks in my model, these networks are not complex and were easy to train.  

The second interesting concept revealed by my model is that domain knowledge 

can aid in the classification of ZIP codes. That is, the technique of Morita et al. [11] 

seems to extend beyond the classification of Brazilian check dates. Perhaps it can be 

applied to solve other digit string problems such as dollar amount on checks, and social 

security number or driver license number on forms. By utilizing domain knowledge I was 

able to simplify the structure of many neural networks. For example, a neural network 

used to classify the first digit in a ZIP code is no longer classifying the digit among 10 

classes (0 to 9), instead it is using 2 classes. An indication for the effectiveness of domain 

knowledge in recognizing handwritten ZIP codes was shown by comparing the second 

(main) version of my model to the third version (which did not use domain knowledge in 

the recognition stage). This third version simply used one MLP neural network to classify 

each digit in the ZIP code without taking into consideration the destination state and the 

structure of ZIP codes. To tie the two discoveries derived from my model together, the 

claim of Liu et al. [8] about the need for integrated segmentation and recognition seems 

reasonable if you are not using domain knowledge. A detailed comparison between the 

model of Liu et al. [8] and my third version shows that we both used MLP classifiers, and 

we both used the EDL (outlier) learning method. I trained the classifiers using the same 

MNIST dataset they did and generated outliers in the same way as they did. My 

performance of 75.69% was lower than their performance of 89.22%, probably due to the 

fact that I used a distinct segmentation stage followed by a recognition stage.  However, 
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when domain knowledge was applied, as in the second (main) version of my model, there 

was no need for a complex model that integrates segmentation with recognition.  

CONCLUSION 

 For the task of machine recognition of handwritten ZIP codes, I have shown that 

combined with simple algorithms, domain knowledge can be used to achieve good 

performance. In my Experiment 2, however, I showed that human performance in the 

task of recognizing handwritten ZIP codes is 98.39%. This indicates that there is still 

room for improvement in machine performance.  In my model, improvements can be 

made in the following areas: 

- Segmentation of digits can be improved to better handle touching and broken digits. 

Experimenting with different algorithms to isolate components and analyze digits by 

looking at their length, curvature, and area may help in identifying different digits. 

- Feature vectors can be improved by using a different sample size or by extracting 

different types of features that better represent the data such as curvature of digit, number 

of holes/corners in a digit, and so on. 

- Different classification algorithms can be tested to see if they provide better 

performance. Perhaps applying LQDF classification along with domain knowledge might 

yield better performance than that obtained by my model and by Liu et al. [8].   

The improvements suggested could bring the performance of my model closer to human 

performance and provide a solution which could be implemented in many real world 

applications. 
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Figure 1. A screenshot of the software used in Experiment 1.  
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86 – (60626) 
 
 
 
 
 
 

 
 

92 – (97222)  
 
 
 

 
119 – (82071) 

 
 

 
469 – (19801) 

 
Figure 2. Sample patterns from the CEDAR CDROM-1 database. The number at left represent s the 
pattern number. The number at right is the correct classification of the ZIP code. 
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Figure 3. A screenshot of the software used in Experiment 2.  
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Figure 4. The two stages (segmentation & recognition) of my model.  
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Figure 5. Sample patterns from the CEDAR CDROM-1 database. 
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Figure 6. Sample patterns extracted from ZIP codes found on the CEDAR CDROM-1 database. The 
patterns show how some digits are incomplete because of gaps. 
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Figure 7. The two algorithms tested for finding the connected components in a ZIP code string.   
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216 – 99503 

 
 
 

Figure 8. A sample of ZIP codes from CEDAR-CD-ROM 1. The samples show that 
finding the precise splitting path is nontrivial. 
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Figure 9. Sample patterns extracted from ZIP codes found on the CEDAR CDROM-1 database. The 
patterns show how the digit 5 is sometimes presented in two segments. 
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Original Segmented Pattern 

 

 
 

Pattern size 37 × 40 
 

Normalize the pattern by sampling: 
Sample Size 13 × 16  

 

 
13 × 16 Matrix 

 
Figure 10. Normalizing the segmented digits by sampling. 
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Figure 11. Converting the 13 × 16 matrix into a vector by projecting onto the X-axis. 

 X 

Y 

5 8 6 2 2 2 8 6 7 8 6 2 2 

 

13 × 16 Matrix 



 

  38   
  

 

 
 

Continue* - The model will classify the three remaining digits. 
 
 

Figure 12. The knowledge-based recognition model starts with five unknown segmented digits. The 
model will first attempt to classify the left-most digit. If unsuccessful the ZIP code is rejected, otherwise 
it will go on to classify the second digit. If the second digit is classified correctly the model will classify 
the remaining three digits, otherwise it will stop. (Indiana is the state assumed in this example.) 
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            First Digit          Second Digit  

 

          
 
 
 

                 A         B             C         D 

       
 
 

A    B   C    B    C   D    A   B    C    D   B   C 

      
 

Full – Half  Half – Full     Full – Full  Half – Half 
 

Figure 13. A sample of outliers generated from the NIST SD19 dataset. 
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PATTERN NUMBER 16 ×  16 IMAGE USPS LABEL 

234  1 

971  4 

994  5 

1978  5 

 

Table 1. This table shows the USPS misclassified patterns. The first column (leftmost) shows the 
pattern numbers, the middle column shows the actual 16 × 16 patterns, and the third column (rightmost) 
shows the USPS labels of the patterns. In each case, note that the USPS labeling appears to be incorrect. 
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Subject # 

Session 1 
Correct 

Responses 

Session 2 
Correct 

Responses 

Session 3 
Correct 

Responses 

Total 
Correct 

Responses 
Percent 

Error 

1 688 682 590 1960 2.34% 

2 685 683 592 1960 2.34% 

3 685 681 594 1960 2.34% 

4 681 676 585 1942 3.24% 

Total Number of 
Trials 700 700 607 2007  

Average Percent Error 2.57% 
 

Table 2. Results obtained from Experiment 1. The average percent error was 2.57%. 
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Subject # 

Session 1 
Correct 

Responses 

Session 2 
Correct 

Responses 

Session 3 
Correct 

Responses 

Total 
Correct 

Responses 
Percent 

Error 

1 688 682 590 1960 2.15% 

2 685 683 592 1960 2.15% 

3 685 681 594 1960 2.15% 

4 681 676 585 1942 3.05% 

Total Number of 
Trials 699 698 606 2003  

Average Percent Error 2.37% 
 
 

Table 3. Results obtained from Experiment 1. After removing the four trials with mislabeled images, the 
average percent error was 2.37%. 
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Subject # Errors Percent Error 
1 10 2.29%  

2 8 1.83%  
3 39 8.94%  

4 3 0.69%  

   
Average Percent Error 3.44% 

 
Table 4. Results from Experiment 2. The average percent error was 3.44%. 
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Subject # Errors Percent Error 
1 10 2.29%  
2 8 1.83%  
4 3 0.69%  

   
Average Percent Error 1.61% 

 
Table 5. Results from Experiment 2, with the result of subject 3 omitted. The average percent error after 
removing this outlier was 1.61%. 



 

  46   
  

 
States (ZIP code starts with 0) Possible Second digit States (ZIP code starts with 5) Possible Second digit 

CT Connecticut 6 IA Iowa 0 - 1 - 2 
MA Massachusetts  1 - 2 MN Minnesota 5 - 6 
ME Maine 3 - 4 MT Montana 9 
NH New Hampshire 3 ND North Dakota 8 
NJ New Jersey 7 - 8 SD South Dakota 7 
RI Rhode Island 2 WI Wisconsin 3 - 4 
VT Vermont 5   

  States (ZIP code starts with 6) Possible Second digit 

States (ZIP code starts with 1) Possible Second digit IL Illinois 0 - 1 - 2 
DE Delaware 9 KS Kansas 6 - 7 
NY New York 0 - 1 - 2 - 3 - 4 MO Missouri 3 - 4 - 5 
PA Pennsylvania 5 - 6 - 7 - 8 - 9 NE Nebraska 8 - 9 

    

States (ZIP code starts with 2) Possible Second digit States (ZIP code starts with 7) Possible Second digit 

DC District of Columbia 0 AR Arkansas  1 - 2 
MD Maryland 0 - 1 LA Louisiana 0 - 1 
NC North Carolina 7 - 8 OK Oklahoma 3 - 4 
SC South Carolina 9 TX Texas 5 - 6 - 7 - 8 - 9 
VA Virginia 0 - 2 - 3 - 4   

WV West Virginia 4 - 5 - 6 States (ZIP code starts with 8) Possible Second digit 

  AZ Arizona 5 - 6 
States (ZIP code starts with 3) Possible Second digit CO Colorado 0 - 1 
AL Alabama 5 - 6 ID Idaho 3 
FL Florida 2 - 3 - 4 NM New Mexico 7 - 8 
GA Georgia 0 - 1 NV Nevada 8 - 9 
MS Mississippi 8 - 9 UT Utah 4 
TN Tennessee 7 - 8 WY Wyoming 2 - 3 

    

States (ZIP code starts with 4) Possible Second digit States (ZIP code starts with 9) Possible Second digit 

IN Indiana 6 - 7 AK Alaska 9 
KY Kentucky 0 - 1 - 2 CA California 0 - 1 - 2 - 3 - 4 - 5 - 6 
MI Michigan 8 - 9 HI Hawaii 6 
OH Ohio 3 - 4 - 5 OR Oregon 7 

    WA Washington 8 - 9 
 

Table 6.  A grouping of states with same first ZIP code digit and all possible second digit(s) for each 
state [18].  
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# MLP Metaclass  
1 1 
2 2 
3 3 
4 4 
5 5 
6 6 
7 7 
8 8 
9 9 
10 0 
11 0 - 1 
12 1 - 2 
13 2 - 3 
14 3 - 4 
15 5 - 6 
16 6 - 7 
17 7 - 8 
18 8 - 9 
19 0 - 1 - 2 
20 2 - 3 - 4 
21 3 - 4 - 5 
22 4 - 5 - 6 
23 0 - 2 - 3 - 4 
24 0 - 1 - 2 - 3 - 4 
25 5 - 6 - 7 - 8 - 9 
26 0 - 1 - 2 - 3 - 4 - 5 - 6 
27 0 to 9 

 
Table 7. A list of all MLP metaclasses needed for the model, including the not needed metaclass 
numbered as 26.  
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ZIP Codes First Digit 

  0 1 2 3 4 5 6 7 8 9 
0 5 0 7 10 7 1 9 10 5 0 
1 1 7 8 0 1 0 0 1 0 0 
2 8 0 8 2 2 7 1 11 7 0 
3 6 7 0 0 13 7 11 8 6 0 
4 0 5 0 1 0 1 0 3 6 0 
5 6 0 4 7 1 7 1 0 6 8 
6 5 15 1 2 11 0 13 0 1 10 
7 5 1 2 10 0 3 0 12 6 11 
8 1 0 5 0 12 6 12 0 2 7 

S
ec

o
n

d
 D

ig
it 

9 1 8 7 9 4 2 1 0 6 13 
 

Table 8. Distribution of testing dataset found on CEDAR CDROM-1 [3], according to the first and 
second digits. A value of 0 represent s 0 ZIP codes found in the testing data with the corresponding 
column and row numbers as the first and second digits in the ZIP code.  
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