COLLABORATIVE CLASSIFIER AGENTS

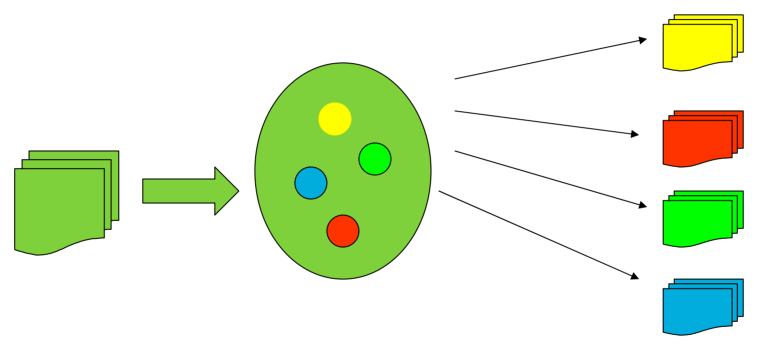
Studying the Impact of Learning in Distributed Document Classification

Weimao Ke, Javed Mostafa, and Yueyu Fu {wke, jm, yufu}@indiana.edu
Laboratory of Applied Informatics Research
Indiana University, Bloomington

RELATED AREAS

- Text Classification (i.e. categorization)
 - Information Retrieval
 - Digital library
 - Indexing, cataloging, filtering, etc.
 - Distributed Text Classification
- Multi-Agent Modeling
 - Machine Learning:
 - Learning Algorithms
 - Multi-Agent Modeling
 - Modeling Agent Collaboration

TRADITIONAL CENTRALIZED CLASSIFICATION

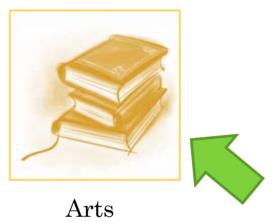


A Centralized Classifier

CENTRALIZED?

- Global repository is rarely realistic
 - Scalability
 - Intellectual property restrictions
 - •

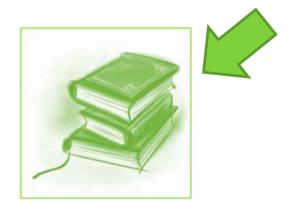
KNOWLEDGE DISTRIBUTION



Distributed

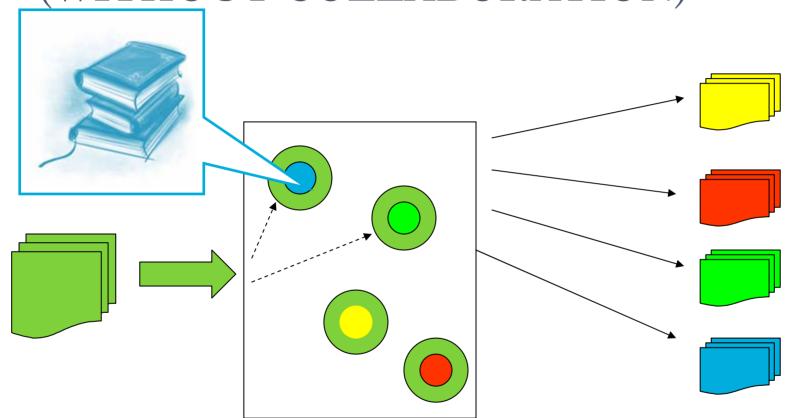
repositories

Sciences



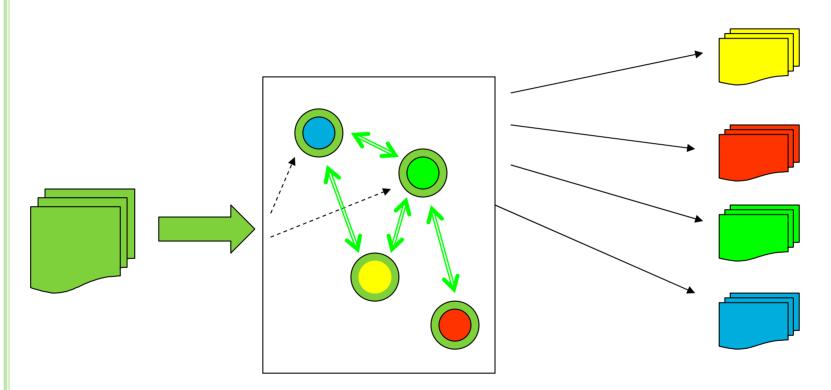
Politics

DISTRIBUTED CLASSIFICATION (WITHOUT COLLABORATION)



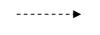
Distributed Classification without Collaboration

DISTRIBUTED CLASSIFICATION WITH COLLABORATION



Distributed Classification with Collaboration

Knowledge



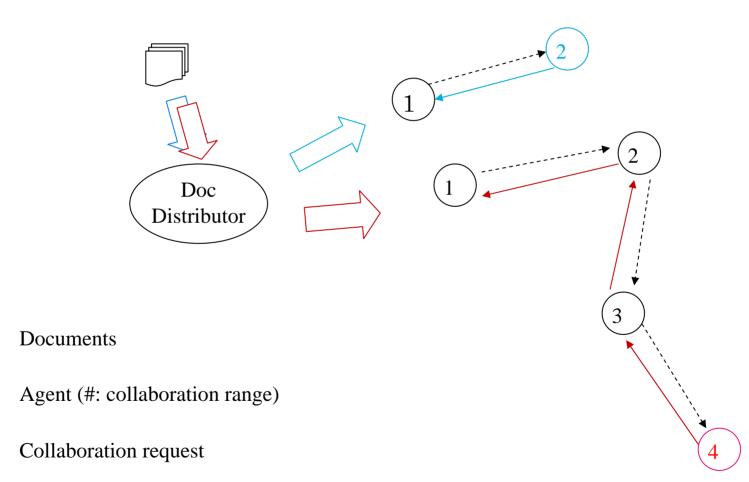
Doc Assignment Collaboration

RESEARCH QUESTIONS

- Motivation: Why distributed text classification?
 - Knowledge is distributed
 - No global knowledge repository
 - o e.g. individual digital libraries
 - Advantages of distributed methods:
 - o fault tolerance, adaptability, flexibility, privacy, etc.
- Agents simulate distributed classifiers
- Problems/Questions
 - Agents have to learn and collaborate. But how?
 - Effectiveness and efficiency of agent collaboration?

DISTRIBUTED + COLLABORATION

Collaboration response



METHODOLOGY

- Compare
 - Traditional/centralized approach (upper-bound)
 - Distributed approach without collaboration (lower-bound)
 - Distributed approach with collaboration
 - Two learning/collaboration algorithms:
 - Algorithm 1: Pursuit Learning
 - Algorithm 2: Nearest Centroid Learning
 - Two parameters
 - or: Exploration Rate
 - og: Maximum Collaboration Range
- Evaluation Measure
 - Effectiveness: precision, recall, F measure
 - Efficiency: time for classification

EXPERIMENT & EVALUATION

- Reuters Corpus Volumes 1 (RCV1)
- Training set: 6,394 documents
- Test set: 2,500 documents
- Feature selection: 4,084 unique terms
- Evaluation measures

Table 1	: A	contingency	$_{ m table}$
---------	-----	-------------	---------------

	Expert Says Yes	Expert Says No
System Says Yes	a	b
System Says No	С	d

- Precision = a / (a + b)
- Recall = a / (a + c)
- $F_1 = 2 * P * R / (P + R)$

EXPERIMENTAL RUN

1 agent

Knowledge division

Upper bound baseline

2 agents

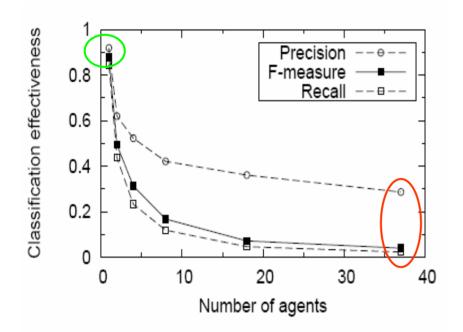
4 agents

Without collaboration

• • •

Lower bound baseline

RESULTS - EFFECTIVENESS BASELINES WITHOUT COLLABORATION



O.1

Precision ————
F-measure
Recall ————
Recall ————
Number of agents

Figure 2: Classification effectiveness baseline

Figure 3: Effectiveness baseline (log/log)

Table 2: Baselines and some results for 37 agents

Method	g	r	R	Р	F	Time (s)		
Centralized				0.919	0.880	839		
Non-collab			0.023	0.286	0.040	841		
PL	8	.05	0.544	0.806	0.645	1022		
NCL	8	.0	0.596	0.771	0.670	4205		
PL	32	.1	0.681	0.753	0.715	1142		
NCL	32	.1	0.558	0.719	0.628	7444		

EXPERIMENTAL RUN

Knowledge division

Upper bound baseline

- With collaboration
 - Pursuit leaning
 - Nearest centroid learning
 - Parameters
 - Exploration rate
 - Max collaboration range

37 agents

Lower bound baseline

RESULTS – EFFECTIVENESS OF LEARNING

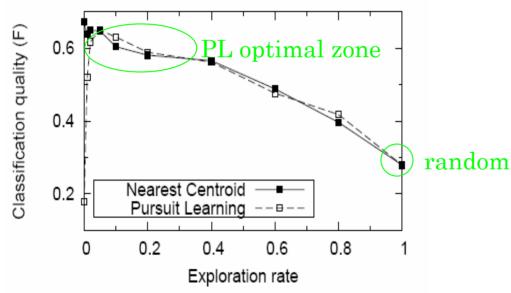


Figure 5: Classification effectiveness vs. exploration rate (#agents = 37, g = 8 while $r \in [0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0]$)

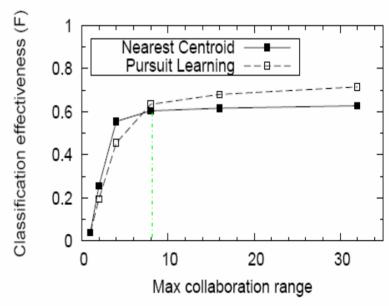


Figure 4: Classification effectiveness vs. max collaboration range (#agents = 37, r = 0.1 while $g \in [2^0, 2^1, ..., 2^5]$)

RESULTS – CLASSIFICATION EFFICIENCY

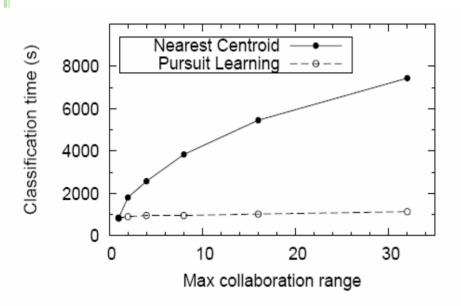


Figure 11: Classification efficiency vs. Max collaboration range (#agents = 37, r = 0.1)

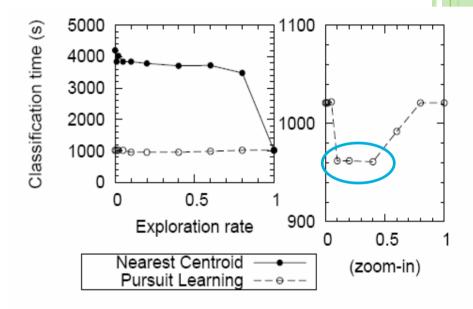


Figure 12: Classification efficiency vs. Exploration rate (#agents = 37, g = 8)

Right: zoom-in of the Pursuit Learning curve.

RESULTS – EFFICIENCY VS. EFFECTIVENESS

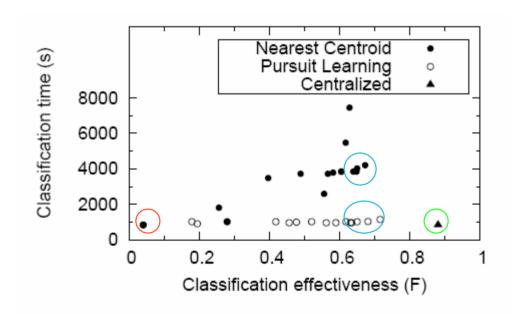


Figure 13: Classification efficiency vs. Effectiveness

SUMMARY

- Classification effectiveness decreases dramatically when knowledge becomes increasingly distributed.
- Pursuit Learning
 - Efficient without analyzing contents
 - Effective, although not content sensitive
 - "The Pursuit Learning approach did not depend on document content. By acquiring knowledge through reinforcements based on collaborations this algorithm was able to construct/build paths for documents to find relevant classifiers effectively and efficiently."
- Nearest Centroid Learning
 - Inefficient analyzing content
 - Effective
- Future work
 - Other text collections
 - Knowledge overlap among the agents
 - Local neighborhood