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Abstract

This article considers the nonlinear regression with integrated regressors that
are contemporaneously correlated with the regression error. We, in particular,
establish the consistency and derive the limit distribution of the nonlinear least
squares estimator under such endogeneity. For the regressions with various types
of regression functions, it is shown that the estimator is consistent and has the
same rate of convergence as for the case of the regressions with no endogeneity.
Whether or not the limit distribution is affected by the presence of endogeneity,
however, depends upon the functional type of the parameter derivative of re-
gression function. If it is asymptotically homogeneous, the limit distribution of
the nonlinear least squares estimator has an additional bias term reflecting the
presence of endogeneity. On the other hand, the endogeneity does not have any
effect on the nonlinear least squares limit theory, if the parameter derivative of
regression function is integrable. Regardless of the presence of endogeneity, the
least squares estimator has the same limit distribution in this case. To illus-
trate our theory, we consider the nonlinear regressions with logistic and power
regression functions with integrated regressors that have contemporaneous cor-
relations with the regression error.
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1. Introduction

The asymptotic theory for nonlinear regressions with integrated regressors has been devel-
oped by Park and Phillips (1999, 2001), and extended later by several authors including
Park and Phillips (2000), Chang and Park (2003) and Chang et al. (2005), among oth-
ers. The asymptotic properties of the nonlinear least squares (NLS) estimators are now
well known. In particular, the NLS estimators are consistent under very mild conditions.
The convergence rates and limit distributions are, however, dependent upon the regression
function, especially upon what function class its parameter derivative belongs to. If the pa-
rameter derivative of regression function is integrable, the convergence rate is 4

√
n and the

limit distribution is mixed normal. If, on the other hand, it is asymptotically homogeneous
with asymptotic order κ̇, then the exact convergence rate is given by

√
nκ̇(

√
n) and the

limit distribution is generally not mixed normal. The asymptotic results for the regressions
with mixtures of integrable and asymptotically homogeneous functions are also available in
Chang et al. (2001).

Virtually all the previous work, however, does not allow for contemporaneous correlation
between the regressors and regression errors.2 The effect of the presence of endogeneity on
the nonlinear regression with integrated regressor is therefore largely unknown except for
some simple cases. For the linear model with integrated regressors, however, it is well known
that the endogeneity only has a second-order effect on its asymptoics. The convergence rate
is n, regardless of the presence or absence of the contemporaneous correlation between the
regressors and regression error. The endogeneity affects the limit distribution, but not in any
critical manner. The limit distribution of the ordinary least squares (OLS) estimator is not
mixed normal, unless the regressors are strictly exogenous, having zero longrun covariance
with the regression error. It is therefore interesting to see whether this extends to the
nonlinear regressions with integrated regressors.

In this article, we consider the nonlinear regression with integrated regressors that are
contemporaneously correlated with the regression error. In particular, we establish the con-
sistency and obtain the limit distribution of the NLS estimator. We consider both cases
where the parameter derivative of regression function is integrable and asymptotically ho-
mogeneous. Our results show that the NLS estimator is generally consistent in both cases,
even in the presence of endogeneity. Indeed, the NLS estimator has exactly the same rate
of convergence as for the regression with no endogeneity. However, whether or not the limit
distribution of the NLS estimator is affected by the presence of endogeneity depends upon
the types of the parameter derivative of regression function. If it is asymptotically homoge-
neous, the limit distribution of the NLS estimator has an additional bias term reflecting the
endogeneity. If it is integrable, however, the limit distribution of the NLS estimator remains
the same, having no additional bias term. The presence of endogeneity does not have any
effect even on the limit distribution of the NLS estimator, if the parameter derivative of

2An exception is de Jong (2002), which independently develops the asymptotics under endogeneity for
the regression with regression function that is more explosive than linear function. His model, in particular,
does not include the regression with bounded regression function which we believe to be the most interesting
case.
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regression function is integrable.3

There are some important implications of the results we obtained in the article. First,
the presence of endogeneity in general does not affect the convergence rate for the NLS es-
timator. This implies in particular that the nonlinear regression with integrated regressors
is not identified by the usual orthogonality condition between the regressors and regression
errors. Rather, it is identified by the nonlinear cointegrating relationship, i.e., by the resid-
uals being stationary. Second, it has long been believed that endogeneity does not cause
inconsistency in the linear cointegrating regression, mainly because the OLS estimator is
super-consistent and converges at a faster rate. Our results in the article clearly show that it
is not the faster convergence rate, but the magnitude of the signal provided by the stochas-
tic trend in the integrated regressor, which makes the estimator robust to the presence of
endogeneity. Indeed, the signal robustifies the NLS estimator against the presence of en-
dogeneity even more effectively in the regression with regression function having integrable
parameter derivative, which has a reduced convergence rate 4

√
n.

The rest of the article is organized as follows. In Section 2, we introduce the model and
assumptions. The function classes and preliminary asymptotics are presented in Section 3.
These are the results that we need to develop our main asymptotics. The main asymptotics
for the NLS estimator under endogeneity are provided in Section 4. Some specific examples
are given in Section 5, which show how our results may be used to obtain the explicit
asymptotics for the NLS estimators. In Section 6, we present some simulation results to
show the performance of the NLS estimators in finite samples. Our simulation results are
largely consistent with the asymptotic results. Section 7 concludes the article.

2. The Model and Assumptions

We consider the model given by

yt = f(xt, θ0) + εt (1)

where (xt) is a univariate integrated regressor and given by

xt = xt−1 + vt (2)

and (εt) is the regression error that we further specify as

εt =
√

1 − ρ2 ut + ρ vt (3)

for some constant ρ such that |ρ| ≤ 1.
We assume that the function f : R×R

m → R is known, and θ0 is an m-dimensional true
parameter vector that lies inside the parameter set Θ. Moreover, the following statement
is assumed throughout the article, unless stated otherwise, that

3Strictly speaking, this is only true in our simple i.i.d. setup. In general, it is expected to have a scale
effect, as we may well infer from the recent related study by Jaganathan (2008) for dependent processes.
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Assumption 2.1 Let (ut) be independent of (vt), and independent and identically dis-
tributed with mean zero and finite variance σ2

u.

Assumption 2.2 Let (vt) be independent and identically distributed with mean zero and
variance σ2

v, and have finite ν-th moment.

Some of our subsequent results require additional conditions on the distribution of (vt),
which is given by

Assumption 2.3 We assume that the characteristic function ϕ of (vt) satisfies either (a)
|ϕ(s)| = 1 if and only if s is a multiple of 2π or (b)

∫∞
−∞ |ϕ(s)|2ds < ∞, depending upon

whether the distribution of (vt) is of discrete type or of continuous type.

In the subsequent development of our theory, we denote by µ the Lebesgue or counting
measure, depending upon whether the distribution of (vt) is of continuous or of discrete type,
and the probability density of (vt) with respect to µ is signified by p. For the expositional
simplicity, we assume σ2

u = σ2
v = 1 for the rest of the article. Their variances only have trivial

scaling effect, which is unimportant for analyzing the effect of the presence of endogeneity.
Under our construction, the variance of (εt) also becomes unity regardless of the value of ρ.

The nonlinear regression model in (1) is considered earlier by Park and Phillips (2001).
They, however, only consider the models with exogenous errors. This amounts to assuming
ρ = 0 in our specification (3). The lack of contemporaneous correlation between the regres-
sor and the regression error is crucial for the derivation of their results. On the contrary, the
regressor and the error are contemporaneously correlated in our model, except for the case
of ρ = 0. In our model, ρ measures the contemporaneous correlation coefficient between the
regressor and the regression error. The value of ρ signifies the fraction of the endogenous
component of the regression error, and hence, we might say that the degree of endogeneity
increases as |ρ| → 1. The endogeneity becomes maximal when |ρ| = 1.

Our assumptions on the innovation (vt) of the regressor are rather stringent, and in par-
ticular, stronger than those used in Park and Phillips (2001). Such stringent assumptions
are introduced here to highlight and fully analyze the effects of the presence of endogene-
ity. Our assumption of independent and identical distribution for the innovation (vt) of
the regressor is indeed unnecessarily strong for many of the subsequent results.4 Some of
them can be derived under a weaker set of conditions, which allow in particular for the
presence of serial correlation. Others require some modifications, but they are simple and
straightforward. At least qualitatively, we may expect in all cases similar results to hold
for more general (vt). These will be pointed out along the way, as we develop our theory.
We may allow (ut) to be a more general martingale difference sequence with respect to a
filtration (Ft), say, as long as (xt) is adapted to (Ft−1).

Although we assume that (vt) is given by a sequence of independent and identically
distributed random variables, the underlying distribution is allowed to be of discrete type,

4This is clear from Jaganathan (2008) and de Jong (2002), which show that some of our results can be
extended to models driven by a dependent process (vt).
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as well as of continuous type. Our assumptions on the underlying distribution are rather
mild and hold for a wide class of distributions. The asymptotic theory developed in Park
and Phillips (1999, 2001) and others on the asymptotics for the integrable transformations
of integrated time series all require the underlying distribution to be of continuous type.
This is because all the previous works rely on Akonom (1993), while our theory is built
upon Borodin (1986). The former gives some basic asymptotic theories for the integrated
processes driven by the linear processes having innovations with continuous distributions,
but in contrast the latter provides more comprehensive asymptotics for the simple random
walks generated by independent and identically distributed innovations with both discrete
and continuous distributions.

Here we consider a simple regression, which has only a single regressor. This is solely for
expositional purpose. Although simple, the model we introduced in (1) - (3) has all essential
features that we need to analyze the effect of the presence of endogeneity in nonlinear
regressions with integrated time series. Therefore, it serves our purpose very well. Our
subsequent results are applicable not only for the model considered here, but also for a
wide class of more general nonlinear regression models with various additional regressors,
stationary as well as integrated, deterministic as well as stochastic. The required extension
is indeed rather straightforward and can easily be done following the earlier work by Chang
et al. (2001). The details of the results for more general models will be given as we develop
the theory for our simple model.

In the article, we consider the estimation of (1) by nonlinear least squares (NLS). If we
let

Qn(θ) =

n
∑

t=1

(yt − f(xt, θ))
2

then the NLS estimator θ̂n of θ is defined as the minimizer of Qn(θ) over θ ∈ Θ, i.e.,

θ̂n = argmin
θ∈Θ

Qn(θ) (4)

An error variance estimate is given by

σ̂2
n =

1

n

n
∑

t=1

ε̂2
t (5)

where ε̂t = yt − f(xt, θ̂n).
Under Assumptions 2.1 and 2.2 with ν = 2, an invariance principle holds jointly for (ut)

and (vt). In particular, if we let Un(r) = n−1/2
∑[nr]

t=1 ut and Vn(r) = n−1/2
∑[nr]

t=1 vt, then we
have

(Un, Vn) →d (U, V ) (6)

where U and V are independent standard Brownian motions. These are the Brownian
motions that we use to represent the asymptotics for θ̂n. Using the so-called Skorohod
representation theorem, we may redefine (Un, Vn) up to the distributional equivalence so that
(Un, Vn) and (U, V ) are defined on a common probability space, and (Un, Vn) →a.s. (U, V ).
This is well known. The stochastic process (Un, Vn) takes values in D[0, 1]2, where D[0, 1]
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is the space of cadlag functions defined on the unit interval [0, 1]. For our purpose, it is
convenient to endow D[0, 1] with the uniform metric.

Our limit theory also involves the local time L of the Brownian motion V , which is given
by

L(t, x) = lim
ǫ→0

1

2ǫ

∫ t

0
1{|V (s) − x| < ǫ} ds

Roughly, L(t, x) measures the rate of time spent by V in a neighborhood of x, up to time
t. In our subsequent theory, in particular, frequently appears L(1, 0), i.e., the rate of time
spent by V in an immediate vicinity of the origin in the unit time interval. The reader is
referred for the details of the Brownian local time L to Park and Phillips (1999) and the
references cited there.

3. Function Classes and Preliminary Asymptotics

In this section, we introduce the function classes and their asymptotics that are needed for
the development of our theory on nonlinear regressions with integrated time series.

3.1 Regular and Strongly Regular Functions

First we consider the asymptotics for normalized integrated time series, and introduce
the required regularity conditions. Obviously, the presence of endogeneity only affects the
covariance asymptotics, which we will mostly look at here. The same results as in Park and
Phillips (2001, PP henceforth) apply for the mean asymptotics.5

Definition 3.1 A transformation T on R is said to be regular if
(a) it is locally bounded and Riemann-integrable,6 and
(b) it is (i) bounded by c|x|a for all x ∈ R\{0} in a neighborhood of the origin for some

constants a > −1 and c > 0, and (ii) continuously differentiable for all x ∈ R\{0} with
derivative bounded by c|x|b for some constants b and c > 0 in a neighborhood of the origin.

If, in addition to (a) and (b),
(c) it either has vanishing derivative on R\{0} or is continuous at the origin,

then it is said to be strongly regular.

Lemma 3.2 Suppose that Assumptions 2.2 with ν = 4 and 2.3 hold, and let T be a
transformation on R.

(a) If T is regular, then

1√
n

n
∑

t=1

T

(

xt√
n

)

vt = Op(1)

5As in PP, we define mean asymptotics as the asymptotics for sample means of nonlinear transformations
of integrated time series, and covariance asymptotics as the asymptotics for sample product moments of
nonlinear transformation of integrated time series and stationary innovations.

6More precisely, we require that the Riemann-integral
∫

K
T (x)dx of T exists and is finite over any compact

interval K including the origin.
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for all large n.
(b) Let T be strongly regular. If T has vanishing derivative on R\{0} and has values a

and b respectively on the positive and negative parts of R, then

1√
n

n
∑

t=1

T

(

xt√
n

)

vt →d

∫ 1

0
T (V (r)) dV (r) + (b − a)L(1, 0)

as n → ∞.
(c) Let T be strongly regular. If T is continuous at the origin and has nonvanishing

derivative ∇T on R\{0}, then

1√
n

n
∑

t=1

T

(

xt√
n

)

vt →d

∫ 1

0
T (V (r)) dV (r) +

∫ 1

0
∇T (V (r)) dr

as n → ∞.

The motivations for our definitions of regular and strongly regular functions are now
clear. For all regular functions, the cross product sum of the properly normalized and
transformed integrated process with its contemporaneous innovation is shown to be of or-
der Op(n

1/2). The regularity conditions are therefore sufficient to ensure that the required
normalization factor is

√
n for the covariance asymptotics under endogeneity. With the

strong regularity conditions, we may obtain the explicit covariance asymptotics in the pres-
ence of endogeneity. The regularity conditions required for the regular and strongly regular
functions may seem stringent. However, they are satisfied by virtually all functions that are
used in practical nonlinear analyses. They hold, for instance, for all the examples considered
in PP.

It can be easily deduced, e.g. as in PP, that

1√
n

n
∑

t=1

T

(

xt√
n

)

ut →d

∫ 1

0
T (V (r)) dU(r) (7)

as n → ∞,7 which may be regarded as the covariance asymptotics without endogeneity.
Comparing (7) with our results in Lemma 3.2, we may readily see that our regularity
conditions are sufficient to guarantee that the same

√
n-rate is applicable for the covariance

asymptotics even in the presence of endogeneity. If some additional conditions are met and
the strong regularity holds, the covariance asymptotics comparable to (7) are derived. The
presence of endogeneity affects the covariance asymptotics, producing an additional term
reflecting its presence. For instance, respectively for T (x) = 1{x ≥ 0} and T (x) = x2, it

7PP establishes the result under weaker martingale difference assumption on (ut). It also uses a slightly
different set of regularity conditions. The regularity concept in PP is equivalent to the local boundedness
and local Riemann-integrability here. For their equivalence, see the proof of Theorem 1.1, pp. 81-82, in
Borodin and Ibragimov (1995).
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follows from Lemma 3.2 that

n−1/2
n
∑

t=1

1{xt ≥ 0}vt →d

∫ 1

0
1{V (r) ≥ 0}dV (r) + L(1, 0)

n−3/2
n
∑

t=1

x2
t vt →d

∫ 1

0
V 2(r)dV (r) + 2

∫ 1

0
V (r)dr

as n → ∞. Note that for the case of ∇T = 0 the additional bias term does not vanish
unless a = b, i.e., the function T is essentially constant.

In the covariance asymptotics for the strongly regular functions, it is interesting to note
that the stochastic processes

L(r, 0) and

∫ r

0
∇T (V (s)) ds

are additive functionals whose sample paths are of bounded variation a.s., while
∫ r

0
T (V (s)) dV (s)

is a continuous martingale. The limit processes are therefore given by semi-martingales for
the covariance asymptotics under endogeneity. This is in contrast to the exogenous case,
where the limit process is represented solely by a continuous martingale. The presence
of the bounded variation components, of course, implies that their limit distributions are
biased. The presence of endogeneity thus introduces bias in the limit distributions of the
covariance asymptotics.

So far, we have assumed that the transformation T is real-valued. We may, however,
easily extend our definitions and results to the vector-valued function T . From now on, we
will say that a vector-valued function T is regular (strongly regular) if all of its component
real-valued functions are regular (strongly regular) in the sense of Definition 3.1. For such
vector-valued functions, the covariance asymptotics obtained in Lemma 3.2 continue to hold.
Of course, in this case, the integrals

∫ 1
0 T (V (r)) dV (r) and

∫ 1
0 ∇T (V (r)) dr are understood

to be vector-valued, and a and b to be vectors. It should however be emphasized that we
continue to assume in this article that there is a single integrated time series (xt) and V is
a scalar.

3.2 I-Regular and H-Regular Functions

We now consider the family of functions defined on a parameter set, say, Π. Let F be
a vector-valued function defined on R × Π. We introduce two classes of such families: I-
and H-regular functions. As in PP, I-regular function is a family of integrable functions
satisfying certain regularity conditions, and H-regular function is a family of asymptotically
homogeneous functions with required regularity conditions. The asymptotically homoge-
neous functions, introduced first by Park and Phillips (1999), are the functions that behave
as homogeneous functions asymptotically. The parameter set Π may be a singleton set, in
which case I- and H-regularities become the characteristics of functions rather than families
of functions.
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Definition 3.3 We say that F is I-regular on Π if
(a) for all π0 ∈ Π, there exists a neighborhood N0 of π0 such that ‖F (x, π)−F (x, π0)‖ ≤

‖π − π0‖T (x) for all π ∈ N0, where T : R → R satisfies |T (x)| < c(1 + |x|−1−ǫ) for some
c > 0 and ǫ > 0 and

∫

|T (x)|µ(dx) < ∞, and
(b) for all π ∈ Π, F (·, π) is bounded and

∫

|x|1/2+ǫ‖F (x, π)‖µ(dx) < ∞ for some ǫ > 0.

Definition 3.4 Let
F (λx, π) = κ(λ, π)H(x, π) + R(x, λ, π)

where κ is nonsingular. We say that F is H-regular on Π if
(a) H(·, π) is strongly regular for each π ∈ Π, and for all x ∈ R, F (x, ·) is equicontinuous

in a neighborhood of x, and
(b) ‖R(x, λ, π)‖ ≤ ̟(λ, π)Q(x), where ̟(λ, π) is such that (κ−1̟)(λ, π) → 0 uniformly

in π ∈ Π as λ → ∞ and Q is regular.
We call κ the asymptotic order and H the limit homogeneous function of F . If κ does

not depend upon π, then F is said to be H0-regular.

Definitions 3.3 and 3.4 are comparable to Definitions 3.3 and 3.5, respectively, in PP. The
required conditions are, however, somewhat different. Here we modified the conditions in PP
so that we may accommodate the integrated processes driven by innovations having discrete
distributions and effectively deal with endogeneity. Our conditions for the I-regularity in
Definition 3.3 are similar to those used in Definition 3.3 of PP. The differences are mainly
due to the necessary modifications that we need in order to use the results of Borodin
(1986), in place of Akonom (1993). The conditions for the H-regularity in Definition 3.4
are more distinctive from those in Definition 3.5 of PP. In this article, we impose the
strong regularity on the limit homogeneous function to derive the limit distributions under
endogeneity. Moreover, here we do not allow for the presence of integral functions in the
residual term. This is just to simplify the exposition of our theory. Any integral component
included in the asymptotically homogeneous function becomes negligible in the limit, and
hence, it can be ignored in our asymptotic analyses.

Though our regularity conditions are different from those used in PP, we may easily
deduce the mean and covariance asymptotics in PP for I- and H-regular functions. If F is
I-regular on a compact set Π, then

1√
n

n
∑

t=1

F (xt, π) →p L(1, 0)

∫ ∞

−∞
F (x, π)µ(dx) (8)

uniformly in π ∈ Π. Moreover, if F (·, π) is I-regular,

1
4
√

n

n
∑

t=1

F (xt, π)ut →d MN

(

0, L(1, 0)

∫ ∞

−∞
F (x, π)F (x, π)′µ(dx)

)

(9)

The mean and covariance asymptotics in (8) and (9) require that Assumptions 2.1, 2.2 with
ν = 3 and 2.3 hold.
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Similarly, if F is H-regular on a compact set Π, then

1

n
κ(
√

n, π)−1
n
∑

t=1

F (xt, π) →a.s.

∫ 1

0
H(V (r), π) dr (10)

uniformly in π ∈ Π. Moreover, if F (·, π) is H-regular, then we have

1√
n

κ(
√

n, π)−1
n
∑

t=1

F (xt, π)ut →d

∫ 1

0
H(V (r), π) dU(r) (11)

The mean and covariance asymptotics in (10) and (11) hold under Assumptions 2.1 and 2.2
with ν = 2.

The mean and covariance asymptotics in (8) – (11) hold under much more general
conditions than we use in this article. The mean and covariance asymptotics in (8) and (9)
can be deduced for (xt) driven by general linear processes as long as the distributions of the
innovations satisfy a mild set of regularity conditions, and (ut) is a martingale difference
sequence with respect to the filtration (Ft) such that (xt) is adapted to (Ft−1). Also, we may
derive the mean and covariance asymptotics in (10) and (11) under the minimal condition
to ensure the weak convergence in (6) and the martingale difference assumption on (ut)
given above. The reader is referred to PP for the details.

We now present the covariance asymptotics for I- and H-regular functions under endo-
geneity.

Lemma 3.5 Let Assumptions 2.1, 2.2 with ν = 3 and 2.3 hold. If F (·, π) is I-regular,

1
4
√

n

n
∑

t=1

F (xt, π)vt →d MN

(

0, L(1, 0)

∫ ∞

−∞
F (x, π)F (x, π)′µ(dx)

)

as n → ∞, independently of (9).

Lemma 3.6 Let Assumptions 2.1 and 2.2 with ν = 4 hold. If F (·, π) is H-regular, then
we have as n → ∞

1√
n

n
∑

t=1

F (xt, π)vt →d

∫ 1

0
H(V (r), π) dV (r) + (b − a)L(1, 0)

1√
n

κ(
√

n, π)−1
n
∑

t=1

F (xt, π)vt →d

∫ 1

0
H(V (r), π) dV (r) +

∫ 1

0
∇H(V (r), π) dr

in the notation introduced in Lemma 3.2, depending upon whether the limit homogeneous
function H(·, π) has vanishing or nonvanishing derivative on R\{0}.

The conditions that we impose to obtain the results in Lemmas 3.5 and 3.6 are far from
being necessary. In particular, our assumptions on (vt) are overly restrictive, and we may
well expect that similar results hold for models driven by more general dependent process
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(vt). In fact, Jaganathan (2008) has recently shown that we have asymptotic results similar
to Lemma 3.5 for models with general linear process (vt). The presence of dependency in
(vt) only has a scale effect, without introducing an additional bias term. His results are
very general, allowing the limit process for the normalized (vt) to be a linear fractional
stable motion.8 Likewise, de Jong (2002) shows that the second result in Lemma 3.6 can be
extended to models with more general stationary dependent process (vt). The dependency
affects the asymptotic result also in this case. However, once again, we have the same bias
term scaled only by the one-way longrun variance of (vt).

4. Nonlinear Least Squares Asymptotics under Endogeneity

We now consider the asymptotics for the NLS estimator θ̂n of θ defined in (4) in the presence
of the contemporaneous cross correlation between the regressor and the regression error.
To present our asymptotics, we denote by ḟ and f̈ the first- and second-order derivatives
of the regression function f with respect to the parameter θ. We assume that they are
all vectorized and arranged by lexicographic ordering of their indices. For H-regular f , we
denote by κ̇ and κ̈ the asymptotic orders of ḟ and f̈ , respectively, and signify by ḣ the limit
homogeneous function of ḟ .

For the regressions with integrable regression functions, we have

Theorem 4.1 Let Assumptions 2.1, 2.2 with ν = 3, and 2.3 hold. Assume

(a) f, ḟ and f̈ are I-regular on Θ,

(b)
∫∞
−∞(f(x, θ) − f(x, θ0))

2µ(dx) > 0 for all θ 6= θ0, and

(c)
∫∞
−∞ ḟ(x, θ0)ḟ(x, θ0)

′µ(dx) > 0.

Then we have

4
√

n(θ̂n − θ0) →d MN

(

0,

[

L(1, 0)

∫ ∞

−∞
ḟ(x, θ0)ḟ(x, θ0)

′µ(dx)

]−1
)

and σ̂2
n →p σ2, as n → ∞.

For the regressions with I-regular regression functions, Theorem 4.1 shows that the NLS
estimator θ̂n is consistent with the convergence rate 4

√
n, and has a normal mixture lim-

iting distribution, even under the presence of endogeneity. The consistency of σ̂2
n is also

established. The required regularity conditions are mild. The reader is referred to PP for a
detailed discussions on them with some concrete examples.

It should be noted that the asymptotics given in Theorem 4.1 are indeed exactly the same
as those obtained by PP for the regressions without endogeneity. The limiting distributions
of θ̂n are independent of ρ, the parameter which measures the contemporaneous correlation
between the regressor and the regression error. For all the values of ρ, θ̂n converges to its

8His results, however, require (vt) to have continuous distributions. In contrast, we rely on the approach
by Borodin (1986), which allows for both discrete and continuous distributions.
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true value θ0 at the same rate. Moreover, if properly standardized, θ̂n converges to a well
defined limiting distribution, which does not depend upon the value of ρ. Not surprisingly,
endogeneity also has no effect on the consistency of σ̂2

n. We may therefore see that the
presence of endogeneity does not play any role, at least for the first order asymptotics, on
the asymptotic behaviors of the NLS estimators if the regression function is integrable.9

For the regressions with homogeneous regression functions, we have

Theorem 4.2 Let Assumptions 2.1, and 2.2 with ν = 4 hold. Assume

(a) f, ḟ and f̈ are H0-regular on Θ,

(b) κ > 0 at infinity, ‖(κ̇ ⊗ κ̇)−1κκ̈‖ < ∞,

(c)
∫

|x|≤δ(h(x, θ) − h(x, θ0))
2dx > 0 for all θ 6= θ0 and δ > 0, and

(d)
∫

|x|≤δ ḣ(x, θ0)ḣ(x, θ0)
′dx > 0 for all δ > 0.

Then we have

√
n(θ̂n − θ0) →d

(
∫ 1

0
ḣ(V, θ0)ḣ(V, θ0)

′

)−1(∫ 1

0
ḣ(V, θ0) dW (ρ) + ρ(b − a)L(1, 0)

)

or

√
nκ̇(

√
n)′(θ̂n − θ0) →d

(
∫ 1

0
ḣ(V, θ0)ḣ(V, θ0)

′

)−1(∫ 1

0
ḣ(V, θ0) dW (ρ) + ρ

∫ 1

0
∇ḣ(V, θ0)

)

where
W (ρ) =

√

1 − ρ2U + ρV

depending upon whether ḣ(·, θ0) has vanishing or nonvanishing derivative on R\{0}, and
σ̂2

n →p σ2, as n → ∞.

Theorem 4.3 Let Assumptions 2.1, and 2.2 with ν = 4 hold. Assume

(a) ḟ is H-regular on Θ,
(b) for any M > 0 given, there exists ǫ > 0 and δ-neighborhood N of θ0 such that

λ−1+ǫ
∥

∥κ̇(λ, θ0)
−1
∥

∥→ 0, λǫ

∥

∥

∥

∥

∥

(κ̇ ⊗ κ̇)(λ, θ0)
−1

(

sup
|x|≤M

sup
θ∈N

|f̈(λx, θ)|
)∥

∥

∥

∥

∥

→ 0

as λ → ∞, and
(c)
∫

|x|≤δ ḣ(x, θ0)ḣ(x, θ0)
′dx > 0 for all δ > 0.

Then √
n(θ̂n − θ0) or

√
nκ̇(

√
n, θ0)

′(θ̂n − θ0)

has the same limiting distributions as in Theorem 4.2, depending upon whether ḣ(·, θ0) has
vanishing or nonvanishing derivative on R\{0}, and σ̂2

n →p σ2, as n → ∞.

9Of course, the equivalence we establish here is asymptotic. The endogeneity might still have some
significant effects in finite samples. This will be investigated through simulations in Section 6.



12

Theorems 4.2 and 4.3 provide the asymptotics for the NLS estimators θ̂n and σ̂2
n for the

regressions with H-regular regression functions. They both yield the same asymptotics.
For the regressions with H0-regular regression functions, the conditions in Theorem 4.2
are required for the derived asymptotics to hold. If the regressions have more general H-
regular regression functions, the conditions in Theorem 4.3 need to be satisfied. For a
detailed discussions on those conditions and examples, see PP. In short, virtually all the
nonlinear regression models used in practical applications satisfy the regularity conditions
in Theorems 4.2 or 4.3.

Unlike the regressions with I-regular regression functions, the presence of endogeneity
affects the asymptotics here. The NLS estimator θ̂n is consistent and the convergence rate
remains the same, regardless of the value of the endogeneity parameter ρ. We also have the
consistency of σ̂2

n despite of the contemporaneous correlation between the regressor and the
regression error. The asymptotic distribution of θ̂n, however, is given as a function of ρ. An
additional term, which reflects the presence of endogeneity, appears in the limit distribution
of θ̂n as a result of endogeneity. The added term, as we discussed earlier in the previous
section, contributes more towards the bias in its asymptotic distribution.

It should be pointed out that the consistency of the NLS estimator θ̂n here does not
necessarily require an accelerated convergence rate. As is well known, the least squares
estimator is consistent under endogeneity in linear cointegrating regression model. This,
however, has been understood as being due to the super-consistency of the least squares
estimator, i.e., the convergence rate being n, an order of magnitude greater than the usual√

n-rate. Our results here make it clear that the consistency still holds under endogeneity
when this is not the case. For the regressions with integrated time series, the consistency
continues to hold under endogeneity for the regressions with I-regular regression functions
or H-regular regression functions with vanishing or non-vanishing derivatives, for which the
convergence rate is

√
n or even slower and reduced to 4

√
n. The robustness of the consistency

in the regressions with integrated time series is not due to the accelerated convergence rate,
but to the magnitude of the signal provided by the presence of the stochastic trend in the
integrated regressor.

Nonlinear regressions with multiple regressors in an additive regression function are
considered in Chang et al. (2001). They consider nonlinear functions of stationary regres-
sors and deterministic trends, as well as integrated regressors, and study how individual
components interact in the limit. For instance, they show that in the regression

yt =
∑

i∈I

ai(xit, θi) +
∑

i∈H

bi(xit, θi) + ut (12)

the I-regular terms in the regression function, i.e.,
∑

i∈I ai(xit, θi), are asymptotically or-
thogonal to the H-regular terms, i.e.,

∑

i∈H bi(xit, θi), and the individual components
ai(xit, θi) in the I-regular terms are orthogonal to each other. This implies that the NLS
estimators θ̂in of θi, for i ∈ I, obtained from running the regression (12) are aymptotically
equivalent to the NLS estimators θ̃in of θi obtained from running yt on ai(xit, θi) separately
for each i ∈ I. The asymptotic equivalence between θ̂in and θ̃in for the I-regular components
provides a useful implication.
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For I-regular regression functions, the individual components ḟi’s of ḟ are asymptotically
orthogonal to each other as shown in Chang et al. (2001). This in particular implies that
the (m × m) matrix

∫∞
−∞ ḟ(x, θ0)ḟ(x, θ0)

′µ(dx) appearing in the definition of the limit
mixing variate of the mixed normal distribution given in Theorem 4.1 is diagonal. The
limit distribution given in Theorem 4.1 therefore reduces to

4
√

n(θ̂in − θi0) →d MN

(

0,

[

L(1, 0)

∫ ∞

−∞
ḟi(x, θ0)

2µ(dx)

]−1
)

(13)

for each individual component i = 1, . . . ,m.

5. Specific Examples

In this section, we consider some specific nonlinear regression models and obtain the explicit
asymptotics as illustrations. We consider two regression functions that seem to be of some
special interests in econometric applications. One is the power function given by

f(x, α, β) = αxβ1{x > 0} (14)

and the other is the logistic function specified as

f(x, α, β) = αeβx/(1 + eβx) (15)

Following our convention, let θ = (α, β)′ be the parameter vector, and denote by θ̂n =
(α̂n, β̂n)′ and θ0 = (α0, β0)

′ the NLS estimator and the true value, respectively.
It is straightforward to show that the power function f given in (14) is H-regular with

asymptotic order κ and limit homogeneous function h given respectively by

κ(λ, α, β) = αλβ and h(x, α, β) = xβ1{x > 0}

Moreover, we have

κ̇(λ, α, β) =

(

λβ 0

αλβ log λ αλβ

)

and

ḣ(x, α, β) =

(

xβ

xβ log x

)

1{x > 0}, ∇ḣ(x, α, β) =

(

βxβ−1

xβ−1(1 + β log x)

)

1{x > 0}

If we let Θ to be a compact subset of R\{0} × R+, then we may easily check that all the
conditions in Theorem 4.3 are satisfied for the power function. We may therefore obtain
the limiting distribution of θ̂n readily from Theorem 4.3.

In particular, if we let ḣ = (ḣ1, ḣ2)
′ and ∇ḣ = (∇ḣ1,∇ḣ2)

′, and subsequently define

Mij =

∫ 1

0
ḣi(V, θ0)ḣj(V, θ0)

Ni(ρ) =

∫ 1

0
ḣi(V, θ0) dW (ρ) + ρ

∫ 1

0
∇ḣi(V, θ0)
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for i, j = 1, 2, then we have

n(1+β0)/2

log
√

n
(α̂n − α0) = −α0n

(1+β0)/2(β̂n − β0) + Op((log
√

n)−1) (16)

→d

(

M22 −
M2

12

M11

)−1(

N2(ρ) − M12N1(ρ)

M11

)

as n → ∞.
The logistic function f given in (15) does not satisfy our conditions in any of Theorems

4.1 – 4.3. Therefore, we may not directly apply them to obtain the asymptotics in this case.
However, if we write f = f1 + f2, where

f1(x, α) = α1{x ≥ 0}

f2(x, α, β) = α

(

eβx

1 + eβx
1{x < 0} − 1

1 + eβx
1{x ≥ 0}

)

and define f∗
2 (x, β) = f2(x, α0, β), then the NLS estimators α̂n and β̂n from the regression

with regression function f have the same limiting distributions as the NLS estimators from
the two separate regressions with regression functions f1 and f∗

2 only. This is shown in
Chang et al. (2005).

The regression functions f1 and f∗
2 satisfy, respectively, the conditions in Theorems 4.2

and 4.1. We may readily deduce that

√
n(α̂n − α0) →d

(
∫ 1

0
1{V ≥ 0}

)−1(∫ 1

0
1{V ≥ 0} dW (ρ) − ρL(1, 0)

)

(17)

and

4
√

n(β̂n − β0) →d MN

(

0,

[

α2
0(π

2 − 6)

18β3
0

L(1, 0)

]−1
)

(18)

as n → ∞. The limiting distribution of the NLS estimator α̂n of the level parameter
is affected by the presence of endogeneity, and given as a function of ρ. However, the
distribution of the NLS estimator β̂n of the transition parameter is independent of ρ in the
limit, and hence, is asymptotically invariant with respect to the endogeneity parameter ρ.

6. Simulations

In this section, we conduct simulations to convey the finite sample performances of the NLS
estimators in the presence of endogeneity, and in particular they are compared to those
obtained under no endogeneity. For our simulations, we consider the nonlinear regression
model in (1) with the regression functions given by the power function and logistic function,
specified respectively in (14) and (15). The regressor (xt) and the regression error (εt) are
allowed to be contemporaneously correlated and generated as in (2) and (3). To see how the
varying degrees of endogeneity affect the finite sample performances of the NLS estimators
and their t-statistics, we try three different values of the parameter ρ which measures the
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fraction of the endogenous component of the regression error: ρ = 0, 0.5, and 1. The
innovations (ut) and (vt) are drawn from independent N(0, σ2) with σ = 0.1. The true
parameter values of the level and transition parameters are set respectively at α0 =1, β0 =3
for the regressions with the logistic regression function, and at α0 = 1, β0 = 0.5 and 2 for
the regressions with the power regression function. For the power function, two values for
the true value of the power exponent β0 are tried - one less than one and the other greater
than one - to see how the behaviors of the NLS estimators change as the magnitude of
the exponent β0 changes, especially around the unity. Samples of sizes n = 200, 500 are
considered and each simulation is run for 10,000 times.

The finite sample performances of the NLS estimators are presented via a set of fig-
ures with the estimated densities of the centered NLS estimators and the corresponding
t-statistics.10 Figures 1 – 6 present the results from the regression with power regression
function. Figures 1 – 3 provide the results for the case with β0 = 0.5. Figures 1 and 2
present the estimated densities of the centered NLS estimators computed with the three
different values of ρ for the cases with n = 200 and n = 500, respectively. The densities of
both unscaled and scaled centered NLS estimators are provided respectively in the left and
right hand side columns of each figure. The scaling factors are computed according to the
convergence rates derived in (16). Panels in each column represent the density estimates
from using three different values of ρ = 0, 0.5, 1. Figure 3 provides the estimated densities
for the t-statistics for the sample sizes n = 200, 500. Figures 4 – 6 provide the results for
the case with β0 = 2 in the same format as in Figures 1 – 3. Figures 7 – 9 present the
results from the regressions with logistic regression function. The results are presented in
the same format as in the cases with the power regression function given in Figures 1 – 3.
The scaling factors for the NLS estimators in this case are taken from the convergence rates
given in (17) and (18).

The simulation results largely corroborate the limit theories derived in (16) – (18) earlier
in Section 5. As expected from (16), the limit distributions of the NLS estimators for both
parameters α and β in the power function are affected by the presence of the endogeneity.
When there is no endogeneity with ρ = 0, the limit distributions of both NLS estimators
α̂n and β̂n become mixed normal and the their t-statistics have standard normal limit dis-
tribution. These can be seen from the panels in the first row of each figures. As ρ increases,
however, the distributions of the NLS estimators and t-statistics for both parameters be-
come more nonstandard and nonnormal. This is true for the cases with both true values
β0 = 0.5, 2 of the power exponent, although the density estimates appear to be more non-
standard and depart more from the normality when the true value of the power exponent
β0 is less than unity. The dependence on the degree of endogeneity ρ of the distributions
of the NLS estimators and their t-ratios does not vanish as the sample size increases, and
indeed, the nonstandardness and nonnormality of the distributions persist.

The finite sample performance of the NLS estimators from the logistic regression is also
as predicted by the limit theories given in (17) and (18). The estimated densities for the
NLS estimators α̂n and β̂n of α and β indicate that the NLS estimator α̂n converges faster
than β̂n. They also show that the distributions of the level parameter estimator α̂n depends

10The densities are estimated via usual kernel method using normal kernel function.



16

on the degree ρ of endogeneity present in the model, and that their dependence on ρ does
not vanish even with larger sample sizes. The distributions of the transition parameter
estimator β̂n, however, do not depend upon the magnitude of ρ. In the smaller samples
with n = 200, they seem to have some biases when there is strong endogeneity with ρ = 1,
but they disappear as the sample size increases. The distributions of the t-statistics also
corroborate our limit theory. The estimated densities of the t-ratios for the level parameter
α are clearly nonnormal when ρ 6= 0, and the departure from the normality becomes much
more pronounced as ρ increases. This continues to be the case even when the sample size
gets large. On the other hand, the estimated densities of the t-ratios for the transition
parameter β are quite close to the standard normal density which is also drawn in the same
panel for comparison. Clearly, they approach closer to the limit standard normal density
as the sample size increases.

7. Conclusion

In this article, we develop the asymptotic theory for the NLS estimators in the nonlinear re-
gressions with integrated regressors that are contemporaneously correlated with the regres-
sion error. For the regression with regression function having asymptotically homogenous
parameter derivatives, our results are largely comparable to those for the linear regressions
with integrated regressors. The presence of endogeneity may only have a second-order effect
on the NLS estimator. In particular, the NLS estimator has exactly the same convergence
rate as in the cases without endogeneity. Only the limit distribution of the NLS estimator
is affected by the presence of endogeneity. If the parameter derivative of regression function
is integrable, however, the presence of endogeneity has no effect at all even on the limit
distribution. In this case, the NLS estimator has the same limit distribution as the one
in regression without endogeneity. The mixed normality of limit distribution of the NLS
estimator, in particular, continues to hold regardless of endogeneity.

Here we only consider simple prototypical models, where the regressor and regression
error are driven by iid innovations. In particular, we do not allow for general models gen-
erated by serially correlated innovations. The purpose of this simplification is to highlight
and fully analyze the effects of the presence of endogeneity, and to establish the asymptotic
results that are applicable for a wide class of regressions with various types of regression
functions. Indeed, some of our results can be readily extended to more general models. Not
all of our results, of course, hold exactly as presented in the article for more general models.
However, we believe that our main results for the prototypical models, at least qualitatively,
continue to hold for models that are much more general and realistic than the simple models
considered in the article. We leave as future research more rigorous developments of the
asymptotic theory for general nonlinear models with integrated regressors in the presence
of endogeneity.
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8. Mathematical Proofs

8.1 Useful Lemmas

Lemma A1 Let T be a transformation on R.
(a) If Assumptions 2.2 with ν = 2, and 2.3 hold, and if T is locally Riemann-integrable

and
|T (x)| < c(1 + |x|−1−ǫ)

for some c > 0 and ǫ > 0, then

1√
n

n
∑

t=1

T (xt) →d L(1, 0)

∫ ∞

−∞
T (x)µ(dx)

as n → ∞.
(b) If Assumptions 2.2 with ν = 3, and 2.3 hold, and if T is bounded and

∫ ∞

−∞
|x|1/2+ǫ|T (x)|µ(dx) < ∞

for some ǫ > 0, then we have

1
4
√

n

n
∑

t=1

T (xt)vt →d MN

(

0, L(1, 0)

∫ ∞

−∞
T 2(x)µ(dx)

)

(19)

1
4
√

n

n
∑

t=1

T (xt)ut →d MN

(

0, L(1, 0)

∫ ∞

−∞
T 2(x)µ(dx)

)

(20)

independently of each other, as n → ∞.

Proof of Lemma A1 For part (a), see Theorems 2.1, Chapter IV, in Borodin and Ibrag-
imov (1995). To prove (19) in part (b), we let

f(x, y) = T (y)(y − x)

and apply Theorems 1.1 and 1.3 of Borodin (1986). Note that we have f(x, x + y) = T (x+
y)y. The integrability of T follows immediately from the condition

∫∞
−∞ |x|1/2+ǫ|T (x)|µ(dx) <

∞. We also have the square integrability of T with respect to both the Lebesgue and count-
ing measures. Clearly, with respect to the counting measure, the square integrability of T
is implied by the integrability T . Moreover, being bounded, the square integrability T with
respect to Lebesgue measure also follows from the integrability of T . We therefore have
∫∞
−∞ T 2(x)µ(dx) < ∞ under the given conditions.

We first check if the conditions (1.1), (1.2), (1.7) and (1.8) in Borodin (1986) are met.
We have

∫

Ef2(x, x + vt)µ(dx) =

∫ ∞

−∞

∫ ∞

−∞
f2(x, x + y)p(y)µ(dy)µ(dx)

=

∫ ∞

−∞

∫ ∞

−∞
T 2(x + y)y2p(y)µ(dy)µ(dx)

=

(
∫ ∞

−∞
T 2(x)µ(dx)

)(
∫ ∞

−∞
y2p(y)µ(dy)

)

< ∞
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as required. Moreover,
∫ ∞

−∞
E|vt|1/2+ǫ|f(x, x + vt)|µ(dx) =

∫ ∞

−∞

∫ ∞

−∞
|f(x, x + y)||y|1/2+ǫp(y)µ(dy)µ(dx)

=

∫ ∞

−∞

∫ ∞

−∞
|T (x + y)||y|3/2+ǫp(y)µ(dy)µ(dx)

=

(
∫ ∞

−∞
|T (x)|µ(dx)

)(
∫ ∞

−∞
|y|2/3+ǫp(y)µ(dy)

)

< ∞

and
∫ ∞

−∞
E|x|1/2+ǫ|f(x, x + vt)|µ(dx) =

∫ ∞

−∞

∫ ∞

−∞
|x|1/2+ǫ|f(x, x + y)|p(y)µ(dy)µ(dx)

=

∫ ∞

−∞

∫ ∞

−∞
|x|1/2+ǫ|T (x + y)||y|p(y)µ(dy)µ(dx)

≤
∫ ∞

−∞

∫ ∞

−∞
(|x|1/2+ǫ + |y|1/2+ǫ)|T (x)||y|p(y)µ(dy)µ(dx)

=

(
∫ ∞

−∞
|x|1/2+ǫ|T (x)|µ(dx)

)(
∫ ∞

−∞
|y|3/2+ǫp(y)µ(dy)

)

< ∞

as was to be shown.
We now let h, ν, ρ and b be defined as in Borodin (1986). Then it follows that

h(x) = Ef(x, x + vt)

=

∫ ∞

−∞
f(x, x + y)p(y)µ(dy)

=

∫ ∞

−∞
T (x + y)yp(y)µ(dy)

and therefore,
∫∞
−∞ h(x)µ(dx) = 0. We also have

ν(x) =

∫ ∞

−∞
e−ixyh(y)µ(dy)

=

∫ ∞

−∞
e−ixy

∫ ∞

−∞
T (y + z)zp(z)µ(dz)µ(dy)

=

∫ ∞

−∞
e−ix(y−z)

∫ ∞

−∞
T (y)zp(z)µ(dz)µ(dy)

=

(
∫ ∞

−∞
e−ixyT (y)µ(dy)

)(
∫ ∞

−∞
eixzzp(z)µ(dz)

)

so that

|ν(x)| ≤
(
∫ ∞

−∞
|T (y)|µ(dy)

)(
∫ ∞

−∞
|z|p(z)µ(dz)

)
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i.e., ν is bounded by a constant, and

ρ(x) =

∫ ∞

−∞
eixy

E
(

eiyvtf(y, y + vt)
)

µ(dy)

=

∫ ∞

−∞
eixy

∫

eiyzf(y, y + z)p(z)µ(dz)µ(dy)

=

∫ ∞

−∞
eixy

∫ ∞

−∞
eiyzT (y + z)zp(z)µ(dz)µ(dy)

=

∫ ∞

−∞
eix(y−z)

∫ ∞

−∞
eiyzT (y)zp(z)µ(dz)µ(dy)

=

(
∫ ∞

−∞
eixyT (y)µ(dy)

)(
∫ ∞

−∞
zp(z)µ(dz)

)

= 0

Finally,

b =

∫ ∞

−∞
Ef2(x, x + vt)µ(dx)

=

∫ ∞

−∞

∫ ∞

−∞
f2(x, x + y)p(y)µ(dy)µ(dx)

=

∫ ∞

−∞

∫ ∞

−∞
T 2(x + y)y2p(y)µ(dy)µ(dx)

=

∫ ∞

−∞
T 2(x)µ(dx)

The result in (19) of part (b) now follows immediately from Borodin (1986). The result
in (20) of part (b) is a special case of Theorem 3.2 in PP, and the independence of limit
distributions in (19) and (20) follows immediately from the independence of (ut) and (vt).
�

Lemma A2 If Assumptions 2.2 with ν = 3 and 2.3 hold, then

1√
n

n
∑

t=1

(1{xt ≥ 0} − 1{xt−1 ≥ 0})vt →d L(1, 0)

1√
n

n
∑

t=1

(1{xt < 0} − 1{xt−1 < 0})vt →d −L(1, 0)

as n → ∞.

Proof of Lemma A2 Let

f(x, y) = (1{y ≥ 0} − 1{x ≥ 0})(y − x)

note that

f(x, x + vt) = (1{x + vt ≥ 0} − 1{x ≥ 0})vt

= (1{x + vt ≥ 0}1{x < 0} − 1{x + vt < 0}1{x ≥ 0})vt

= (1{vt ≥ −x > 0} − 1{vt < −x ≤ 0})vt
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As in the proof of Lemma A1, we first check the conditions for Theorems 1.1 and 1.3 of
Borodin (1986).

We have
∫ ∞

−∞
Ef2(x, x + vt)µ(dx)

=

∫ ∞

−∞

∫ ∞

−∞
(1{y ≥ −x > 0} + 1{y < −x ≤ 0})y2p(y)µ(dy)µ(dx)

=

(
∫

x<0

∫

y≥−x
+

∫

x≥0

∫

y<−x

)

y2p(y)µ(dy)µ(dx) < ∞

Furthermore,
∫ ∞

−∞
E|vt|1/2+ǫ|f(x, x + vt)|µ(dx)

≤
∫ ∞

−∞

∫ ∞

−∞
(1{y ≥ −x > 0} + 1{y < −x ≤ 0})|y|3/2+ǫp(y)µ(dy)µ(dx)

=

(
∫

x<0

∫

y≥−x
+

∫

x≥0

∫

y<−x

)

|y|3/2+ǫp(y)µ(dy)µ(dx) < ∞

and
∫ ∞

−∞
E|x|1/2+ǫ|f(x, x + vt)|µ(dx)

≤
∫ ∞

−∞
|x|1/2+ǫ

∫ ∞

−∞
(1{y ≥ −x > 0} + 1{y < −x ≤ 0})|y|p(y)µ(dy)µ(dx)

=

(
∫

x<0
(−x)1/2+ǫ

∫

y≥−x
+

∫

x≥0
x1/2+ǫ

∫

y<−x

)

|y|p(y)µ(dy)µ(dx) < ∞

as was to be shown.
Now we let

h(x) = Ef(x, x + vt)

Then we have

Ef(x, x + vt) = −1{x ≥ 0}
∫

y<−x
yp(y)µ(dy) + 1{x < 0}

∫

y≥−x
yp(y)µ(dy)

=

∫

y≥−x
yp(y)µ(dy)

since
∫∞
−∞ yp(y)µ(dy) = 0. Therefore, if follows from Theorem 1.1 and 1.4 of Borodin (1986)

that

1√
n

n
∑

t=1

f(xt−1, xt) →d L(1, 0)

∫ ∞

−∞
h(x)µ(dx)

= L(1, 0)

∫ ∞

−∞

∫

y≥−x
yp(y)µ(dy)µ(dx)
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as n → ∞.
To finish the proof of the first part of the stated results, we note that
∫ ∞

−∞

∫

y≥−x
yp(y)µ(dy)µ(dx)

=

∫ ∞

−∞

∫

y≥−x
1{x ≥ 0}yp(y)µ(dy)µ(dx) +

∫ ∞

−∞

∫

y≥−x
1{x < 0}yp(y)µ(dy)µ(dx)

= −
∫ ∞

−∞

∫

y<−x
1{x ≥ 0}yp(y)µ(dy)µ(dx) +

∫ ∞

−∞

∫

y≥−x
1{x < 0}yp(y)µ(dy)µ(dx)

= −
∫

y>0

∫

−y≤x<0
yp(y)µ(dx)µ(dy) +

∫

y<0

∫

0≤x<y
yp(y)µ(dx)µ(dy)

=

∫

y>0
y2p(y)µ(dy) +

∫

y<0
y2p(y)µ(dy)

=

∫ ∞

−∞
y2p(y)µ(dy) = σ2

v,

and that we set σ2
v = 1. We thus have shown the first part of the stated results. The proof

for the second part of the stated results is completely analogous and omitted. �

Lemma A3 Let T be a transformation on R such that
(a) |T (x)| ≤ c|x|a for all R\{0} in a neighborhood of origin for some constants a > −1

and c > 0, and
(b) T (x) is differentiable with continuous derivative for all R\{0} such that |T ′(x)| ≤

c|x|b for some constants b and c > 0 in a neighborhood of the origin.
Then we have

∫ 1

0
T (Vn(r)) dr →d

∫ 1

0
T (V (r)) dr

as n → ∞.

Proof of Lemma A3 The stated result follows directly from the proof of Theorem 3.2
in Park (2003). �

Lemma A4 All the results in Lemmas A1, A2 and A3 hold jointly, and jointly with the
invariance principle in (6).

Proof of Lemma A4 All our results in Lemmas A1, A2 and A3 are based on Borodin
(1986) and PP. Both of them use the Skorokhod embedding, which allows us to construct
the partial sum process (Un, Vn) in (6) from (un

t ) and (vn
t ) such that (un

t ) =d (ut) and
(vn

t ) =d (vt) and that (Un, Vn) converges almost surely to the limit Brownian motion (U, V ).
In this setting, we may deduce the results in part (a) of Lemma A1, Lemma A2 and Lemma
A3 in the mode of almost sure convergence, as in Borodin (1986) and PP. It is therefore clear
that they hold jointly with the distributional convergence results in part (b) of Lemma A1.
Consequently, all the results in Lemmas A1, A2 and A3 hold jointly in the distributional
sense. �
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8.2 Proofs of Theorems

Proof of Lemma 3.2 For the proof of part (a), we write

1√
n

n
∑

t=1

T

(

xt√
n

)

vt =
1√
n

n
∑

t=1

T

(

xt−1√
n

)

vt +
1√
n

n
∑

t=1

[

T

(

xt√
n

)

− T

(

xt−1√
n

)]

vt (21)

It follows immediately from PP that

1√
n

n
∑

t=1

T

(

xt−1√
n

)

vt →d

∫ 1

0
T (V (r)) dV (r) (22)

as n → ∞. Next, we write

1√
n

n
∑

t=1

[

T

(

xt√
n

)

− T

(

xt−1√
n

)]

vt = An + Bn + Cn + Dn (23)

where

An =
1√
n

n
∑

t=1

[

T

(

xt√
n

)

− T

(

xt−1√
n

)]

1{xt ≥ 0}1{xt−1 ≥ 0} vt

Bn =
1√
n

n
∑

t=1

[

T

(

xt√
n

)

− T

(

xt−1√
n

)]

1{xt ≥ 0}1{xt−1 < 0} vt

Cn =
1√
n

n
∑

t=1

[

T

(

xt√
n

)

− T

(

xt−1√
n

)]

1{xt < 0}1{xt−1 ≥ 0} vt

Dn =
1√
n

n
∑

t=1

[

T

(

xt√
n

)

− T

(

xt−1√
n

)]

1{xt < 0}1{xt−1 < 0} vt

Whenever xt−1 < 0 and xt ≥ 0, we have

vt > 0

Therefore, if we define

Mn =
1√
n

n
∑

t=1

1{xt ≥ 0}1{xt−1 < 0}vt (24)

Nn = sup
1≤t≤n

∣

∣

∣

∣

T

(

xt√
n

)

− T

(

xt−1√
n

)∣

∣

∣

∣

1{xt ≥ 0}1{xt−1 < 0} (25)

then it follows that
Bn ≤ MnNn (26)

Since T is assumed to be locally bounded, we have Nn = Op(1). Moreover, it follows from
the proof of Lemma A2 that Mn = Op(1). We therefore have Bn = Op(1). It is quite
obvious that we may use the same argument and show that Cn = Op(1).
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Now we consider An and Dn. When xt > 0 and xt−1 > 0, we have

T

(

xt√
n

)

− T

(

xt−1√
n

)

= ∇T

(

xt−1√
n

+
wt√
n

)

vt√
n

where (wt) is a random sequence such that |wt| ≤ |vt|. It follows that

An =
1√
n

n
∑

t=1

[

T

(

xt√
n

)

− T

(

xt−1√
n

)]

1{xt ≥ 0}1{xt−1 ≥ 0} vt

=
1

n

n
∑

t=1

∇T

(

xt−1√
n

+
wt√
n

)

1{xt ≥ 0}1{xt−1 ≥ 0} v2
t

=
1

n

n
∑

t=1

∇T

(

xt−1√
n

+
wt√
n

)

1{xt ≥ 0}1{xt−1 ≥ 0}

+
1

n

n
∑

t=1

∇T

(

xt−1√
n

+
wt√
n

)

1{xt ≥ 0}1{xt−1 ≥ 0} (v2
t − 1) (27)

Under the given conditions, we have

1

n

n
∑

t=1

∇T

(

xt−1√
n

+
wt√
n

)

1{xt ≥ 0}1{xt−1 ≥ 0} →d

∫ 1

0
∇T (V (r))1{V (r) ≥ 0} dr

due to Lemma A3. Moreover,

1√
n

n
∑

t=1

∇T

(

xt−1√
n

)

1{xt ≥ 0}1{xt−1 ≥ 0}(v2
t − 1) = Op(1)

and we may easily show that

1

n

n
∑

t=1

(

∇T

(

xt−1√
n

+
wt√
n

)

−∇T

(

xt−1√
n

))

1{xt ≥ 0}1{xt−1 ≥ 0}(v2
t − 1) = op(1)

using Cauchy-Schwarz and Lemma A3. Note that

max
1≤t≤n

|wt|√
n

≤ max
1≤t≤n

|vt|√
n
→p 0

We thus have shown that An = Op(1). We may similarly show that Dn = Op(1). The proof
for part (a) is therefore complete.

For part (b), we first consider the case that T has vanishing derivative on R\{0}. We
may then assume without loss of generality that T (x) = a1{x ≥ 0} + b1{x < 0} for some
constants a and b. Write

1√
n

n
∑

t=1

1{xt ≥ 0} vt

=
1√
n

n
∑

t=1

1{xt−1 ≥ 0} vt +
1√
n

n
∑

t=1

(1{xt ≥ 0} − 1{xt−1 ≥ 0}) vt
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Then we may deduce from PP that

1√
n

n
∑

t=1

1{xt−1 ≥ 0}vt →d

∫ 1

0
1{V (r) ≥ 0}dV (r)

as n → ∞, and the stated result follows from Lemma A2.
We now consider the case for which T is continuous and has nonvanishing derivative.

We have (21) – (23) as in the proof of part (a). We first show that

Bn = op(1) (28)

Whenever xt−1 < 0 and xt ≥ 0, we have

|xt|, |xt−1| ≤ |vt|

as well as vt > 0. If we let Nn be defined as in (25), then we may therefore readily deduce
that Nn = op(1), since T is continuous at the origin and

max
1≤t≤n

|vt|√
n
→p 0

This establishes (28). It is quite obvious that we may deduce

Cn = op(1) (29)

similarly as for Bn.
We may write An as in (27) and obtain

An →d

∫ 1

0
∇T (V (r))1{V (r) ≥ 0} dr (30)

as n → ∞. Similarly, we may derive

Dn →d

∫ 1

0
∇T (V (r))1{V (r) < 0} dr (31)

as n → ∞. The stated result now follows from (22) and (28) – (31). �

Proof of Lemma 3.5 The stated result follows immediately from part (b) of Lemma A1.
�

Proof of Lemma 3.6 From Definition 3.4 we have F (λx, π) = κ(λ, π)H(x, π)+R(x, λ, π),
and this gives

1√
n

κ(
√

n, π)−1
n
∑

t=1

F (xt, π) vt =
1√
n

n
∑

t=1

H

(

xt√
n

, π

)

vt + op(1)
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Note that Q is regular and

1√
n

n
∑

t=1

Q

(

xt√
n

, π

)

vt = Op(1)

due to Lemma 3.2 (a), and (κ−1̟)(λ) → 0 as λ → ∞. Note also that κ(·, π) = 1 when
H(·, π) has vanishing derivative. The stated results now follow directly from Lemma 3.2
(b). �

Proof of Theorem 4.1 Under the given conditions and our previous results in (8), (9)
and Lemma 3.5, we may show that the NLS estimator θ̂n is asymptotically equivalent to
the least squares estimator of θ in the linear regression

yt = ḟ(xt, θ0)
′θ + εt (32)

The stated result thus follows immediately. The proof is essentially identical to that of The-
orem 5.1 in PP, except for our covariance asymptotics under endogeneity given in Lemma
3.5. �

Proof of Theorem 4.2 Once again, the proof is virtually the same as that of Theorem
5.2 in PP. We only need to replace their covariance asymptotics (11) by a mixture of
our covariance asymptotics under endogeneity in Lemma 3.6 and theirs. In this case, we
also have the asymptotic equivalence between the NLS estimator θ̂n and the least squares
estimator of θ in the linear regression (32) defined in the proof of Theorem 4.1. �

Proof of Thoerem 4.3 The arguments in the proofs of Theorem 4.1 and 4.2 also apply
to the proof of Theorem 4.3, which is analogous to that of Theorem 5.3 in PP. The details
are therefore omitted. �
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Figure 1: Densities of NLS Estimators, Power Function, β0 = 0.5, n = 200
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Figure 2: Densities of NLS Estimators, Power Function, β0 = 0.5, n = 500
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Figure 3: Densities of NLS t-ratios, Power Function, β0 = 0.5
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Figure 4: Densities of NLS Estimators, Power Function, β0 = 2, n = 200
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Figure 5: Densities of NLS Estimators, Power Function, β0 = 2, n = 500
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Figure 6: Densities of NLS t-ratios, Power Function, β0 = 2
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Figure 7: Densities of NLS Estimators, Logistic Function, n = 200
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Figure 8: Densities of NLS Estimators, Logistic Function, n = 500
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Figure 9: Densities of NLS t-ratios, Logistic Function


