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Abstract 

 Recently there has been a resurgence of interest in general, comprehensive models of 

human cognition. Such models aim to explain higher order cognitive faculties, such as 

deliberation and planning. Given a computational representation, the validity of these models can 

be tested in computer simulations such as software agents or embodied robots. The push to 

implement computational models of this kind has created the field of Artificial General 

Intelligence, or AGI.  

 Moral decision making is arguably one of the most challenging tasks for computational 

approaches to higher order cognition. The need for increasingly autonomous artificial agents to 

factor moral considerations into their choices and actions has given rise to another new field of 

inquiry variously known as Machine Morality, Machine Ethics, Roboethics or Friendly AI. In 

this paper we discuss how LIDA, an AGI model of human cognition, can be adapted to model 

both affective and rational features of moral decision making. Using the LIDA model we will 

demonstrate how moral decisions can be made in many domains using the same mechanisms that 

enable general decision making.  

 Comprehensive models of human cognition typically aim for compatibility with recent 

research in the cognitive and neural sciences. Global Workspace Theory (GWT), proposed by 

the neuropsychologist Bernard Baars (1988), is a highly regarded model of human cognition that 

is currently being computationally instantiated in several software implementations. LIDA 

(Franklin et al. 2005) is one such computational implementation. LIDA is both a set of 

computational tools and an underlying model of human cognition, which provides mechanisms 

that are capable of explaining how an agent’s selection of its next action arises from bottom-up 
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collection of sensory data and top-down processes for making sense of its current situation. We 

will describe how the LIDA model helps integrate emotions into the human decision making 

process, and elucidate a process whereby an agent can work through an ethical problem to reach 

a solution that takes account of ethically relevant factors.  
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Introduction  

 

Artificial general intelligence and moral machines 

 

Human-level intelligence entails the capacity to handle a broad array of challenges 

including logical reasoning, understanding the semantic content of language, learning, navigating 

around the obstacles in a room, discerning the intent of other agents, and planning and decision 

making in situations where information is incomplete. The prospect of building “thinking 

machines” with the general intelligence to tackle such an array of tasks inspired the early 

founders of the field of Artificial Intelligence. However, they soon discovered that tasks such as 

reasoning about physical objects or processing natural language, where they expected to make 

rapid progress, posed daunting technological problems. Thus the developers of AI systems have 

been forced to focus on the design of systems with the ability to intelligently manage specific 

tasks within relatively narrow domains, such as playing chess or buying and selling currencies on 

international markets. Despite the fact that many tasks such as visual processing, speech 

processing, and semantic understanding present thresholds that have yet to be crossed by 

technology, there has been in recent years a transition back to the development of systems with 

more general intelligence. Such systems are broadly referred to as having artificial general 

intelligence (AGI) (Wang, Goertzel & Franklin, 2008). 

The possibility of building AI systems with moral decision making faculties has stepped 

beyond the stories of science fiction writers such as Isaac Asimov and is being seriously 

considered by philosophers and engineers (Gips, 1991; Clarke, 1993, 1994; Allen, Varner & 
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Zinser, 2000). A new field of enquiry called Machine Ethics (Anderson & Anderson, 2006), 

Machine Morality (Wallach, Allen & Smit, 2008), Artificial Morality (Danielson, 1992), or 

Computational Ethics (Allen, 2002) is emerging.  

This interest in building computer systems capable of making moral decisions (“moral 

machines”) has been spurred by the need to ensure that increasingly autonomous computer 

systems and robots do not cause harm to humans and other agents worthy of moral consideration 

(Wallach & Allen, 2009). Though the goals of this new research endeavor are more practical 

than theoretical, an interest in testing whether consequentialist, deontological, and virtue-based 

theories of ethics can be implemented computationally has also attracted philosophers and social 

scientists to this new field. Most of the research to date is directed at either the safety of 

computers that function within very limited domains or at systems that serve as advisors to 

human decision makers. 

 AGI and Machine Morality have emerged as distinct fields of inquiry. The intersection 

between their agendas has been minimal, and primarily focused on Friendly AI (Yudkowsky, 

2001), the concern that future super-intelligent machines be friendly to humans. But let us be 

clear at the outset. No AGI systems have been completed. Nor do any computer systems exist 

that are capable of making sophisticated moral decisions. However, some computer scientists 

believe such systems can be built relatively soon. Ben Goertzel estimates that, with adequate 

funding, scientists could complete an AGI within ten years (personal communication 2009). 

Certainly sophisticated moral machines will require at least a minimal AGI architecture.  

So, if demonstrated success in either of these pursuits is so far in the future, what do we 

expect to achieve in this paper? Our goals are twofold: 
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1. To outline a comprehensive approach to moral decision making. Philosophers and 

cognitive scientists have stressed the importance of particular cognitive mechanisms, for 

example, reasoning, moral sentiments, heuristics, intuitions, or a moral grammar in the 

making of moral decisions. But there has been very little work on thinking 

comprehensively about the broad array of cognitive faculties necessary for moral 

decision making. In analyzing how a moral machine might be built from the ground up, it 

becomes apparent that many cognitive mechanisms must be enlisted to produce 

judgments sensitive to the considerations humans accommodate when they respond to 

morally charged situations (Wallach & Allen, 2009).  

2. To demonstrate that many moral decisions can be made using the same cognitive 

mechanisms that are used for general decision making. In other words, moral cognition is 

supported by domain general cognitive processes. Certainly some kinds of moral 

decisions may require additional mechanisms, or may require that the kinds of 

mechanisms described in this paper be modified to handle features peculiar to moral 

considerations. Elucidation of such mechanisms and their probable design is beyond the 

scope of this paper. 

In proposing a comprehensive model for moral decision making, we are fully aware that 

other scholars will criticize this model as being inadequate. For example, neuroscientists might 

argue that a modular system such as LIDA does not capture the full complexity of the human 

neural architecture. Moral philosophers might contend that the agent we will describe is not 

really engaged in moral reflection because it lacks Kantian ‘autonomy’ or ‘will.’ The computer 

scientist Drew McDermott (forthcoming) asserts that appreciating the tension between self-
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interest and the needs of others is essential for moral decisions and will be extremely difficult to 

build into computational agents. There are many criticisms that can be made of AGI models, and 

many arguments as to why computational agents are not capable of ‘true’ moral reflection.  

Nevertheless, we feel it is important to recognize that moral judgment and behavior are 

not the products of one or two dedicated mechanisms. Nor do we feel it is helpful to merely 

underscore the complexity of moral decision making. Therefore, we offer this model in hopes of 

stimulating a deeper appreciation of the many cognitive mechanisms that contribute to the 

making of moral decisions, and to provide some insight into how these mechanisms might work 

together. 

 

Computation models of human cognitive faculties 

 

A central fascination with AI research has been the opportunity it offers to test 

computational theories of human cognitive faculties. AGI does not require that the computational 

system emulate the mechanisms of human cognition in order to achieve a comparable level of 

performance. However, human cognition is the only model we currently have for general 

intelligence or moral decision making (although some animals demonstrate higher order 

cognitive faculties and pro-social behavior). The cognitive and brain sciences are bringing forth a 

wealth of empirical data about the design of the human nervous system, and about human mental 

faculties. This research suggests a host of new theories for specific cognitive processes that can, 

at least in principle, be tested computationally.  
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Despite significant gaps in scientific understanding it is feasible to design systems that try 

to emulate the current best understanding of human faculties, even if those systems do not 

perform exactly as the brain functions. Computational models of human cognition are built by 

computer scientists who wish to instantiate human-level faculties in AI, and by cognitive 

scientists and neuroscientists formulating testable hypotheses compatible with empirical data 

from studies of the nervous system, and mental and behavioral activity.  

Both as a set of computational tools and an underlying model of human cognition, LIDA 

is one attempt to computationally instantiate Baars’ Global Workspace Theory (GWT). Such a 

computational instantiation of GWT, which attempts to accommodate the psychological and 

neuroscientific evidence, will be particularly helpful in thinking through an array of challenges 

with a high degree of specificity. In this paper, we will explore how the LIDA model of GWT 

can be expected to implement a higher order cognitive task, specifically the kind of decision 

making involved in the resolution of a moral dilemma. 

Given that computational approaches to moral decision making, GWT, and the LIDA 

model are subjects that may not be familiar to all readers, the initial sections of this paper 

provide brief overviews of these topics. The next section of the paper introduces several 

approaches to computerizing ethics, GWT, and LIDA. The following section provides a 

description of the LIDA model, and various theories and research that support this approach to 

human cognition. A discussion of the manner in which the LIDA model might be used to make 

moral decisions and some concluding comments follow. 

 



A Conceptual and Computational Model of Moral Decision Making in Human and Artificial 

Agents 

 

 9 

Machine morality, GWT, and LIDA 

 

Ethical decision making and AI 

 

Ethical decisions are among the more complex that agents face. Ethical decision making 

can be understood as action selection under conditions where constraints, principles, values, and 

social norms play a central role in determining which behavioral attitudes and responses are 

acceptable. Many ethical decisions require having to select an action when information is 

unclear, incomplete, confusing, and even false, where the possible results of an action cannot be 

predicted with any significant degree of certainty, and where conflicting values can inform the 

decision-making process. 

Commonly, ethics is understood as focusing on the most intractable of social and 

personal challenges. Debate often centers on how to prioritize duties, rules, or principles when 

they conflict. But ethical factors influence a much broader array of decisions than those we 

deliberate as individuals or as a community. Values and ideals are instantiated in habits, 

normative behavior, feelings, and attitudes. Ethical behavior includes not only the choices we 

deliberate, but also the rapid choices that substantiate values—choices that might be modeled in 

LIDA as single-cycle, consciously mediated responses to challenges. Given this broad definition 

of ethical decisions, values play an implicit role, and sometimes an explicit role, in the selection 

of a broad array of actions.  
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Following Sloman (1999), we note that moral behavior can be reflexive, or the result of 

deliberation, and at least for humans, also includes metacognition1 when criteria used to make 

ethical decisions are periodically reevaluated. Successful responses to challenges reinforce the 

selected behaviors, while unsuccessful outcomes have an inhibitory influence, and may initiate a 

reinspection of one’s actions and behavior selection. Thus, a computational model of moral 

decision making will need to describe a method for implementing reflexive value laden 

responses, while also explaining how these responses can be reinforced, or inhibited through 

learning, top-down deliberative reasoning, and metacognition.  

It is helpful, although somewhat simplistic, to think of implementing moral decision-

making faculties in AI systems in terms of two approaches: top-down and bottom-up (Allen et 

al., 2000; Allen et al., 2006; Wallach et al., 2008; Wallach & Allen, 2009). A top-down approach 

entails the implementation of rules or a moral theory, such as the Ten Commandments, Kant’s 

categorical imperative, Mill’s utilitarianism, or even Asimov’s laws. Generally, top-down 

theories are deliberative and even metacognitive, although individual duties may be implemented 

reactively. A top-down approach takes an antecedently specified ethical theory and analyzes its 

computational requirements to guide the design of algorithms and subsystems capable of 

implementing the theory. 

A number of scholars have considered the challenges entailed in computational 

implementation of individual top-down theories of ethics, including Asimov’s laws (Clarke, 

1993, 1994), Kant’s categorical imperative (Allen et al., 2000; Stahl, 2002; Powers, 2006), 

                                            
1 Sloman speaks of meta-management rather than metacognition. We prefer the more common 

psychological term. 
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Ross’s prima facie duties (Anderson, Anderson & Armen, 2005, 2006), deontic logic 

(Bringsjord, Arkoudas & Bello, 2006), utilitarianism (Allen et al., 2000; Grau, 2006), and virtues 

(DeMoss, 1998). Implementing each of these theories poses specific difficulties for designers 

and programmers. Each is susceptible to some version of the frame problem—computational 

load due to the need for knowledge of human psychology, knowledge of the affects of actions in 

the world, and the difficulty in estimating the sufficiency of initial information. 

Bottom-up approaches, if they use a prior theory at all, do so only as a way of specifying 

the task for the system, but not as a way of specifying an implementation method or control 

structure. A bottom-up approach aims at goals or standards that may or may not be specified in 

explicit theoretical terms. Evolution, development, and learning provide models for designing 

systems from the bottom up. Alife (artificial life) experiments within computer environments, 

evolutionary and behavior-based robots, and genetic algorithms all provide mechanisms for 

building sophisticated computational agents from the bottom up. Bottom-up strategies influenced 

by theories of development are largely dependent on the learning capabilities of artificial agents. 

However, the bottom-up development of moral agents is limited given present day technologies, 

but breakthroughs in computer learning or Alife, for example, might well enhance the usefulness 

of these platforms for developing artificial moral agents (Wallach & Allen, 2009). 

Furthermore, even agents who adhere to a deontological ethic or are utilitarians may 

require emotional intelligence as well as other “supra-rational” faculties (Wallach & Allen, 

2009). A sense of self, a theory of mind (ToM), an appreciation for the semantic content of 

information, and functional (if not phenomenal) consciousness (Franklin, 2003) are probably 
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also prerequisites for full moral agency. A complete model of moral cognition will need to 

explain how such faculties are represented in the system.  

Work has begun on the development of artificial mechanisms that complement a system’s 

rational faculties, such as affective skills (Picard, 1997), sociability (Breazeal, 2002), embodied 

cognition (Brooks, 2002; Glenberg, 1997), theory of mind (Scassellati, 2001), and consciousness 

(Holland, 2003), but these projects are not specifically directed at designing systems with moral 

decision-making faculties. Eventually there will be a need for hybrid systems that maintain the 

dynamic and flexible morality of bottom-up systems, which accommodate diverse inputs, while 

subjecting the evaluation of choices and actions to top-down principles that represent ideals we 

strive to meet. Depending on the environments in which these artificial moral agents (AMAs) 

operate, they will also require some additional supra-rational faculties. Such systems must also 

specify just how the bottom-up and top-down processes interact. 

To date, the experimental systems that implement some sensitivity to moral 

considerations (McLaren, 2006; Anderson et al., 2006; Guarini, 2006) are rudimentary, and 

cannot accommodate the complexity of human decision making. Scaling any approach to handle 

more and more difficult challenges will, in all likelihood, require additional mechanisms.  

 

Global workspace theory 

 

Global workspace theory (GWT) (Baars, 1988) was originally conceived as a 

neuropsychological model of consciousness, but has come to be widely recognized as a high-

level theory of human cognitive processing, which is well supported by empirical studies (Baars, 
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2002). GWT views the nervous system as a distributed parallel system with many different 

specialized processes. Some coalitions of these processes enable the agent to make sense of the 

sensory data coming from the current environmental situation. Other coalitions incorporating the 

results of the processing of sensory data compete for attention. The winner occupies what Baars 

calls a global workspace, whose contents are broadcast to all other processes. These contents of 

the global workspace are presumed to be conscious, at least from a functional perspective. This 

conscious broadcast serves to recruit other processes to be used to select an action to deal with 

the current situation. GWT is a theory of how consciousness functions within cognition. 

Unconscious contexts influence this competition for consciousness. In GWT, and in its LIDA 

model, learning requires and follows from attention, and occurs with each conscious broadcast. 

Given that GWT is a leading model of human cognition and consciousness, it is valuable 

to explore whether a computational model of GWT can accommodate higher order mental 

processes. Three different research teams, lead by Stanislas Dehaene, Murray Shanahan, and 

Stan Franklin, have developed models for instantiating aspects of GWT computationally. In this 

paper we focus on the LIDA model developed by Franklin and his team. In doing so, we do not 

mean to suggest that LIDA, or for that matter computational models of cognition based on GWT, 

is the only AGI model capable of modeling human-level decision making. We merely consider 

LIDA to be a particularly comprehensive model and one that includes features similar to those 

built into other AGI systems.  

The LIDA model describes how an agent tries to make sense of its environment and 

decides what to do next. An action is selected in every LIDA cognitive cycle (see below), of 

which there may be five to ten in every second. More complex decisions require deliberation 
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over many such cycles. The challenge for a model of cognition such as LIDA is whether it can 

truly describe complex higher-order decision making in terms of sequences of bottom-up, single-

cycle action selection.  

 

LIDA and moral decision making 

 

LIDA is a model of human cognition, inspired by findings in cognitive science and 

neuroscience, that is able to accommodate the messiness and complexity of a hybrid approach to 

decision making. Our task here is not to substantiate one formal approach to ethics in LIDA. 

Rather, we will describe how various influences, such as feelings, rules, and virtues, on ethical 

decisions might be represented within the mechanisms of the LIDA model. The resulting agent 

may not be a perfect utilitarian or deontologist, and it may not live up to ethical ideals. A LIDA-

based artificial moral agent (AMA) is intended to be a practical solution to a practical problem: 

how to take into account as much ethically relevant information as possible in the time available 

to select an action. 

Our discussion of moral decision making in LIDA will focus on six areas, most involving 

several questions.  

1. Where are bottom-up propensities and values implemented? How does the agent learn 

new values and propensities, as well as reinforce or defuse existing values and 

propensities? 
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2. How are rules or duties represented in the LIDA model? What activates a rule and brings 

it to conscious attention? How might some rules be automatized to form unconscious 

rules-of-thumb (heuristics)? 

3. How does the LIDA model transition from a single cycle to the determination that 

information in consciousness needs to be deliberated upon?  

4. What determines the end of a deliberation?  

5. How can we implement planning or imagination (the testing out of different scenarios) in 

LIDA? 

6. When a resolution to the challenge has been determined, how might the LIDA model 

monitor whether that resolution is successful? How might LIDA use this monitoring for 

further learning? 

In the section that follows we describe the LIDA model, its architecture, its antecedents, 

its relationship to other cognitive architectures, its decision making, and its learning processes. 

After that we return to discussing how the LIDA model might be used for moral decision 

making. In particular, we offer hypotheses for how the LIDA model answers each of the 

questions raised in the six issues listed above. Through this exercise we hope to demonstrate the 

usefulness of a computational model of GWT, and how a computer system might be developed 

for handling the complexity of human-level decision making and in particular moral decision 

making. Whether a fully functioning LIDA would be judged to demonstrate the moral acumen 

necessary for moral agency is, however, impossible to determine without actually building and 

testing the system. 
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LIDA 

 

The LIDA model and its architecture 

 

The LIDA model is a comprehensive, conceptual, and computational2 model covering a 

large portion of human cognition. In addition to GWT, the model implements and fleshes out a 

number of psychological and neuropsychological theories including situated cognition (Varela, 

Thompson & Rosch, 1991), perceptual symbol systems (Barsalou, 1999), working memory 

(Baddeley & Hitch, 1974), memory by affordances3 (Glenberg, 1997), long-term working 

memory (Ericsson & Kintsch, 1995), event segmentation theory (Zacks, Speer, Swallow, Braver 

& Reynolds, 2007), and Sloman’s H-CogAff (1999). The comprehensive LIDA model includes a 

broad array of cognitive modules and processes, a database of which, including known possible 

neural correlates, can be found online at http://ccrg.cs.memphis.edu/tutorial/correlates.html. 

LIDA is an extension of IDA, an implemented and running software agent that finds new 

billets for U.S. sailors at the end of their current tour of duty (Franklin, Kelemen, & McCauley, 

1998; Franklin & McCauley, 2003). Parts of LIDA are implemented and running. Others are 
                                            
2 Although the LIDA model is only partially implemented, we claim it as a computational model 

because each of its modules and most of its processes have been designed for implementation. 

3 Gibson (1979) introduced the term affordance, meaning that information about the available 

uses of an object existed in the object itself. We are using it in the sense that the agent can derive 

such information from the object. 
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designed and waiting their turn at implementation. One cannot simply implement LIDA once and 

for all. Each distinct implementation of the LIDA architecture as a software agent or a robot 

must be accomplished within a given domain with its own domain and task-specific sensors, 

effectors, and motivations. No single LIDA implementation can control different software agents 

or robots, as each such control structure must be adapted to operate with its own distinct sensors, 

effectors, and motivations. Franklin’s research group is currently actively engaged in producing a 

computational framework for the LIDA architecture that will serve to underlie and facilitate such 

implementations. But, LIDA is also a work in progress. The conceptual LIDA model is being 

added to, most recently by the addition of Zacks’ event segmentation theory (Zacks et al., 2007).  

LIDA is a general cognitive architecture that can encompass moral decision making. A 

full account of the stream of processes by which it does so appears for the first time in this paper. 

Earlier papers have described various portions of the model and its architecture in some detail 

(Franklin & Patterson, 2006; Franklin & Ramamurthy, 2006; Franklin et al., 2007; Friedlander & 

Franklin, 2008; Negatu, D’Mello & Franklin, 2007; Ramamurthy, Baars, D’Mello & Franklin, 

2006). However, none has spelled out the entire, multifaceted, decision-making process a la 

LIDA. While its developers hesitate to claim that LIDA is more general or more powerful than 

other comprehensive cognitive architectures such as SOAR (Laird, Newell & Rosenbloom, 

1987), ACT-R (Anderson, 1990), Clarion (Sun, 2007), etc., they do believe that LIDA will prove 

to be both a more detailed and more faithful model of human cognition, including several forms 

of learning, that incorporates the processes and mechanisms required for moral decision making.  
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The LIDA cognitive cycle 

 

The LIDA model and its ensuing architecture are grounded in the LIDA cognitive cycle. 

Every autonomous agent (Franklin & Graesser, 1997), human, animal, or artificial, must 

frequently sample (sense) its environment and select an appropriate response (action). 

Sophisticated agents such as humans process (make sense of) the input from such sampling in 

order to facilitate their decision making. Neuroscientists call this three-part process the action-

perception cycle. The agent’s “life” can be viewed as consisting of a continual sequence of these 

cognitive cycles. Each cycle consists of a unit of sensing, of attending, and of acting. A cognitive 

cycle can be thought of as a cognitive “moment.” Higher-level cognitive processes are composed 

of many of these cognitive cycles, each a cognitive “atom.”  

Just as atoms have inner structure, the LIDA model hypothesizes a rich inner structure for 

its cognitive cycles (Baars & Franklin, 2003; Franklin, Baars, Ramamurthy & Ventura, 2005). 

During each cognitive cycle the LIDA agent first makes sense of (see below) its current situation 

as best as it can by updating its representation of both external and internal features of its world. 

By a competitive process to be described below, it then decides what portion of the represented 

situation is most in need of attention. This portion is broadcast, making it the current contents of 

consciousness, and enabling the agent to choose an appropriate action and execute it.  

Fig. 1 shows the process in more detail. It starts in the upper left corner and proceeds 

roughly clockwise. 
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The cycle begins with sensory stimuli from external and internal sources in the agent’s 

environment. Low-level feature detectors in sensory memory begin the process of making sense 

of the incoming stimuli. These low-level features are passed on to perceptual memory where 

higher-level features such as objects, categories, relations, situations, etc. are recognized. These 

entities, which have been recognized preconsciously, make up the percept that passed to the 

workspace, where a model of the agent’s current situation is assembled. This percept serves as a 

cue to two forms of episodic memory, transient and declarative. Responses to the cue consist of 

local associations, that is, remembered events from these two memory systems that were 

associated with the various elements of the cue. In addition to the current percept, the workspace 

contains recent percepts and the models assembled from them that have not yet decayed away.  

A new model of the agent’s current situation is assembled from the percepts, the 

associations, and the undecayed parts of the previous model. This assembly process will 

typically be carried out by structure-building codelets.4 These structure-building codelets are 

small, special purpose processors, each of which has some particular type of structure it is 

designed to build. To fulfill their task these codelets may draw upon perceptual memory and 

even sensory memory, to enable the recognition of relations and situations. The newly assembled 

model constitutes the agent’s understanding of its current situation within its world. It has made 

sense of the incoming stimuli. 

                                            
4 The term codelet refers generally to any small, special purpose processor or running piece of 

computer code. The concept is essentially the same as Baars’ processors (1988), Minsky’s agents 

(1985), Jackson’s demons (1987), or Ornstein's small minds (1986). The term was borrowed 

from Hofstadter and Mitchell (1995). 
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For an agent operating within a complex, dynamically changing environment, this current 

model may well be too much for the agent to consider all at once in deciding what to do next. It 

needs to selectively attend to a portion of the model. Portions of the model compete for attention. 

These competing portions take the form of coalitions of structures from the model. Such 

coalitions are formed by attention codelets, whose function is to bring certain structures to 

consciousness. One of the coalitions wins the competition. In effect, the agent has decided on 

what to attend. 

The purpose of this processing is to help the agent decide what to do next. To this end, a 

representation of the contents of the winning coalition is broadcast globally, constituting a global 

workspace (hence the name global workspace theory). Though the contents of this conscious 

broadcast are available globally, the primary recipient is procedural memory, which stores 

templates of possible actions including their contexts and possible results. It also stores an 

activation value for each such template that attempts to measure the likelihood of an action taken 

within its context producing the expected result. Templates whose contexts intersect sufficiently 

with the contents of the conscious broadcast instantiate copies of themselves with their variables 

specified to the current situation. Instantiated templates remaining from previous cycles may also 

continue to be available. These instantiations are passed to the action selection mechanism, 

which chooses a single action from one of these instantiations. The chosen action then goes to 

sensory-motor memory, where it is executed by an appropriate algorithm. The action taken 

affects the environment, external or internal, and the cycle is complete.  

The LIDA model hypothesizes that all human cognitive processing is via a continuing 

iteration of such cognitive cycles. These cycles occur asynchronously, with each cognitive cycle 
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taking roughly 300 ms. The cycles cascade; that is, several cycles may have different processes 

running simultaneously in parallel. This cascading must, however, respect the serial nature of 

conscious processing necessary to maintain the stable, coherent image of the world it provides 

(Merker, 2005; Franklin, 2005b). Together with the asynchrony, the cascading allows a rate of 

cycling in humans of five to ten cycles per second. A cognitive “moment” is thus quite short! 

There is considerable empirical evidence from neuroscience suggestive of and consistent with 

such cognitive cycling in humans (Massimini, Ferrarelli, Huber, Esser, Singh & Tononi, 2005; 

Sigman & Dehaene, 2006; Uchida, Kepecs & Mainen, 2006; Willis & Todorov, 2006). None of 

this evidence is conclusive, however. 

 

Learning in the LIDA model 

 

Edelman (1987) usefully distinguishes two forms of learning, the selectionist and the 

instructionalist. Selectionist learning requires selection from a redundant repertoire that is 

typically organized by some form of reinforcement learning. A repertoire of actions is redundant 

if slightly different actions can lead to roughly the same result. In reinforcement learning 

(Kaelbling, Littman & Moore, 1996) a successfully executed action belonging to an existing 

repertoire is reinforced, making it more likely to be chosen the next time the result in question is 

needed. In Edelman’s system little-used actions tend to decay away. Instructional learning, in 

contrast, allows the learning of representations of new actions that are not currently in the 

repertoire.  
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Global workspace theory postulates that learning requires only attention (Baars, 1988, pp. 

213–218). In the LIDA model this implies that learning must occur with each cognitive cycle, 

because whatever enters consciousness is being attended to. More specifically, learning occurs 

with the conscious broadcast from the global workspace during each cycle. Learning in the 

LIDA model follows the tried and true AI principle of generate and test. New representations are 

learned in a profligate manner (the generation) during each cognitive cycle. Those that are not 

sufficiently reinforced during subsequent cycles (the test) decay away. Three modes of 

learning—perceptual, episodic, and procedural—employing distinct mechanisms (Nadel, 1992; 

Franklin et al., 2005) have been designed and are in various stages of implementation. A fourth, 

attentional learning, is contemplated but not yet designed. We discuss each individually. 

Perceptual learning enables an agent to recognize features, objects, categories, relations, 

and situations. In the LIDA model what is learned perceptually is stored in perceptual memory 

(Franklin, 2005a, 2005c). Motivated by the Slipnet from the Copycat architecture (Hofstadter & 

Mitchell, 1995), the LIDA perceptual memory is implemented as a collection of nodes and links 

with activation passing between the nodes. Nodes represent features, individuals, categories, 

actions, feelings, and more complex structures. Links, both excitatory and inhibitory, represent 

relations. Each node and link has both a current and a base-level activation. The base-level 

activation measures how useful the node or link has been in the past, while the current activation 

depends on its relevance in the current situation. The percept passed on to the workspace during 

each cognitive cycle is composed of those nodes and links whose total activation is over the 

threshold. Perceptual learning in its selectionist form modifies base-level activation, and in its 
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instructionalist form creates new nodes and links. One, the other, or both may occur with the 

conscious broadcast during each cognitive cycle. 

Episodic learning refers to the memory of events—the what, the where, and the when 

(Tulving, 1983; Baddeley, Conway & Aggleton, 2001). In the LIDA model such learned events 

are stored in transient episodic memory (Conway, 2002; Franklin et al., 2005) and in the longer-

term declarative memory (Franklin et al., 2005). Both are implemented using sparse distributed 

memory (Kanerva, 1988), which is both associative and content addressable, and has other 

characteristics that correspond to psychological properties of memory. In particular it knows 

when it doesn’t know, and exhibits the tip of the tongue phenomenon. Episodic learning in the 

LIDA model (Ramamurthy, D’Mello & Franklin, 2004, 2005) is also a matter of generate and 

test, with such learning occurring at the conscious broadcast of each cognitive cycle. Episodic 

learning is initially directed only to transient episodic memory. At a later time and offline, the 

undecayed contents of transient episodic memory are consolidated (Nadel & Moscovitch, 1997; 

Stickgold & Walker, 2005) into declarative memory, where they still may decay away or may 

last a lifetime.  

Procedural learning refers to the learning of new tasks and the improvement of old tasks. 

In the LIDA model such learning is accomplished in procedural memory (D’Mello, 

Ramamurthy, Negatu & Franklin, 2006), which is implemented via a scheme net motivated by 

Drescher’s schema mechanism (1991). Each scheme in procedural memory is a template for an 

action, consisting of a context, an action, and a result, together with a base-level activation 

intended to measure how likely the result would be to occur were the action taken within its 

specific context. Once again, the LIDA model’s procedural learning is via a generate and test 



A Conceptual and Computational Model of Moral Decision Making in Human and Artificial 

Agents 

 

 25 

mechanism, using base-level activation as reinforcement, as well as through the creation of new 

schemes. These new schemes can support multiple actions, both parallel and sequential. 

Attentional learning, that is, the learning of what to attend to (Estes, 1993; Vidnyánszky 

& Sohn, 2003), has been relatively little studied by neuroscientists or cognitive scientists (but see 

Kruschke, 2003; Yoshida & Smith, 2003). 

To our knowledge it has been totally ignored by AI researchers, no doubt because few of 

their systems contain mechanisms for both attention and learning. In the LIDA model attentional 

learning would involve attention codelets, small processes whose job it is to focus the agent’s 

attention on some particular portion of its internal model of the current situation. When designed, 

we envision the LIDA model’s attentional learning mechanism involving modulating the base-

level activation of attention codelets, as well as the creation of new ones.  

 

Feelings and emotions in the LIDA model 

 

The word “feeling” may be associated with external haptic sense, such as the feeling in 

fingertips as they touch the keys while typing. It is also used in connection with internal senses, 

such as the feeling of thirst, of fear of a truck bearing down, of the pain of a pinprick, of pressure 

from a full bladder, of shame at having behaved ungraciously, and so on. Here, we are concerned 

with feelings arising from internal senses.  

Following Johnston (1999), in the LIDA model we speak of emotions as feelings with 

cognitive content, such as the joy at the unexpected meeting with a friend, or the embarrassment 

at having said the wrong thing. The pain in one’s arm when scratched by a thorn is a feeling that 
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is not an emotion, because it does not typically involve any cognitive content. Thirst is typically 

a feeling but not an emotion. Though the boundary between emotions and feelings is fuzzy, the 

distinction will prove important to our coming discussion of how feelings and emotions motivate 

low-level action selection and higher-level decision making. 

Every autonomous agent must be equipped with primitive motivators, drives that 

motivate its selection of actions. In humans, in animals, and in the LIDA model, these drives are 

implemented by feelings (Franklin & Ramamurthy, 2006). Such feelings implicitly give rise to 

values that serve to motivate action selection. Douglas Watt (1998, p. 114) describes well the 

pervasive role of affect, including feelings, hypothesized by the LIDA model, as seen from the 

perspective of human neuroscience:  

Taken as a whole, affect seems best conceptualized as a highly composite product of 

distributed neural systems that together globally organize the representation of value. As 

such, it probably functions as a master system of reference in the brain, integrating 

encodings done by the more modular systems supported in various relatively discrete 

thalamocortical connectivities. Given the central organizing nature of affect as a system 

for the global representation of value, and given evidence that virtually all stimuli elicit 

some degree of affective “valence tagging,” it would be hard to overestimate the 

importance of this valence tagging for all kinds of basic operations. The centrality of 

affective functions is underlined by the intrinsic interpenetration of affect, attentional 

function, and executive function, and it certainly makes sense that these three global state 

functions would be highly interdependent. It is logically impossible to separate 
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representation of value from any neural mechanisms that would define attentional foci or 

that would organize behavioral output.  

Watt’s emphasis on “representation of value” and “valence” will be important later for 

our discussion of the role emotions play in moral decision making. This section will be devoted 

to an explication of how feelings are represented in the LIDA model, the role they play in 

attention, and how they act as motivators, implicitly implementing values. (Feelings also act as 

modulators to learning, as we describe below.) Referring back to the LIDA cognitive cycle 

diagram in Fig. 1 may prove helpful to the reader. 

Every feeling has a valence, positive or negative. Also, each feeling must have its own 

identity; we distinguish between the pains of a pinprick, a burn, or an insult, and we distinguish 

pains from other unpleasant feelings, such as nausea. From a computational perspective it makes 

sense to represent the valence of a single feeling as either positive or negative, that is, as greater 

or less than zero, even though it may be simplistic to assume that the positive and negative sides 

of this scale are commensurable. Nevertheless, it may be a viable working hypothesis that in 

biological creatures feelings typically have only positive valence or negative valence (Heilman, 

1997). For example, the feeling of distress at having to over-extend holding one’s breath at the 

end of a deep dive is a different feeling from the relief that ensues with the taking of that first 

breath. Such distress is implemented with varying degrees of negative valence, and the relief 

with varying positive valence. Each has its own identity. For complex experiences, multiple 

feelings with different valences may be present simultaneously, for example, the simultaneous 

fear and exhilaration experienced while on a roller coaster. 
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Feelings are represented in the LIDA model as nodes in its perceptual memory (Slipnet). 

Each node constitutes its own very specific identity; for example, distress at not having enough 

oxygen is represented by one node, relief at taking a breath by another. Each feeling node has its 

own valence, always positive or always negative, with varying degrees. The current activation of 

the node measures the momentary value of the valence, that is, how positive or how negative. 

Though feelings are subjected to perceptual learning, their base-level activation would soon 

become saturated and change very little. Those feeling nodes with sufficient total activations, 

along with their incoming links and object nodes, become part of the current percept and are 

passed to the workspace. 

Like other workspace structures, feeling nodes help to cue transient and declarative 

episodic memories. The resulting local associations may also contain feeling nodes associated 

with memories of past events. These feeling nodes play a major role in assigning activation to 

coalitions of information to which they belong, helping them to compete for attention. Any 

feeling nodes that belong to the winning coalition become part of the conscious broadcast, the 

contents of consciousness. Feeling nodes in the conscious broadcast that also occur in the context 

of a scheme in procedural memory (the scheme net) add to the current activation of that scheme, 

increasing the likelihood of it instantiating a copy of itself into the action selection mechanism 

(the behavior net). It is here that feelings play their first role as implementation of motivation by 

adding to the likelihood of a particular action being selected. A feeling in the context of a scheme 

implicitly increases or decreases the value assigned to taking that scheme’s action. A feeling in 

the conscious broadcast in LIDA also plays a role in modulating the various forms of learning. 
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Up to a point, the higher the affect the greater the learning in the LIDA model. Beyond that 

point, more affect begins to interfere with learning.  

In the action selection mechanism the activation of a particular behavior scheme, and thus 

its ability to compete for selection and execution, depends on several factors. These factors 

include how well the context specified by the behavior scheme agrees with the current and very 

recently past contents of consciousness (that is, with the contextualized current situation). The 

contribution of feeling nodes to the behavior stream’s activation constitutes the environmental 

influence on action selection. As mentioned earlier, the activation of this newly arriving behavior 

also depends on the presence of feeling nodes in its context and their activation as part of the 

conscious broadcasts. Thus feelings contribute motivation for taking action to the activation of 

newly arriving behavior schemes.  

On the basis of the resulting activation values a single behavior is chosen by the action 

selection mechanism. The action ensuing from this behavior represents the agent’s current 

intention in the sense of Freeman (1999, p. 96ff), that is, what the agent intends to do next. The 

expected result of that behavior can be said to be the agent’s current goal. Note that the selection 

of this behavior was affected by its relevance to the current situation (the environment), the 

nature and degree of associated feelings (the drives), and its relation to other behaviors, some of 

these being prerequisite for the behavior.  

The selected behavior, including its feelings, is then passed to sensory-motor memory for 

execution. There the feelings modulate the execution of the action (Zhu & Thagard, 2002). 

Feelings may bias parameters of action such as speed or force. For example, an angry person 

picking up a soda may squeeze it harder than he would if he were not angry. 
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Higher-level cognitive processes and levels of control 

 

Higher-level cognitive processing in humans includes categorization, deliberation, 

volition, metacognition, reasoning, planning, problem solving, language comprehension, and 

language production. In the LIDA model such higher-level processes are distinguished by 

requiring multiple cognitive cycles for their accomplishment. In LIDA, higher-level cognitive 

processes can be implemented by one or more behavior streams,5 that is, streams of instantiated 

schemes and links from procedural memory.  

Cognitive processes have differing levels of control. Sloman distinguishes three levels 

that can be implemented by the architecture of an autonomous agent—the reactive, the 

deliberative, and the metacognitive (1999). The first of these, the reactive, is the level that is 

typically expected of many insects, that is, a relatively direct connection between incoming 

sensory data and the outgoing actions of effectors. The key point is the relatively direct 

triggering of an action once the appropriate environmental situation occurs. Though direct, such 

a connection can be almost arbitrarily intricate, requiring quite complex algorithms to implement 

in an artificial agent. The reactive level is perhaps best defined by what it is not. “What a purely 

reactive system cannot do is explicitly construct representations of alternative possible actions, 

evaluate them and choose between them, all in advance of performing them” (Sloman, 1999). 

Reactive control alone is particularly suitable for agents occupying relatively simple niches in 

reasonably stable environments, that is, for agents requiring little flexibility in their action 

                                            
5 A stream is a sequence with its order only partially specified.  
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selection. Such purely reactive agents typically require relatively few higher-level, multi-cyclic 

cognitive processes. 

On the other hand, deliberative control typically employs such higher-level cognitive 

processes as planning, scheduling, and problem solving. Such deliberative processes in humans, 

and in some other animals,6 are typically performed in an internally constructed virtual reality. 

Such deliberative information processing and decision making allows an agent to function more 

flexibly within a complicated niche in a complex, dynamic environment. An internal virtual 

reality for deliberation requires a short-term memory in which temporary structures can be 

constructed with which to try out possible actions “mentally” without actually executing them. In 

the LIDA model the workspace serves just such a function. In the earlier IDA software agent, the 

action selected during almost all cognitive cycles consisted of building or adding to some 

representational structures in the workspace during the process of some sort of deliberation. 

Structure-building codelets, the sub-processes that create such structures, modify, or compare 

them, etc., are typically implemented as internal reactive processes. Deliberation builds on 

reaction. In the LIDA model, deliberation is implemented as a collection of behavior streams, 

each behavior of which is an internal reactive process (Franklin, 2000a). According to the LIDA 

model, moral decision making will employ such processes. 

As deliberation builds on reactions, metacognition typically builds on deliberation. 

Sometimes described as “thinking about thinking,” metacognition in humans and animals (Smith 

& Washburn, 2005) involves monitoring deliberative processes, allocating cognitive resources, 

                                            
6 Deliberation has been demonstrated in apes (Mulcahy & Call, 2006) and birds (Werdenich & 

Huber, 2006), and may even be found in arachnids (Wilcox & Jackson, 2002; Tarsitano, 2006).  
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and regulating cognitive strategies (Flavell, 1979). Metacognition in LIDA will be implemented 

by a collection of appropriate behavior streams, each with its own metacognitive task. 

Metacognitive control adds yet another level of flexibility to an agent’s decision making, 

allowing it to function effectively in an even more complex and dynamically changing 

environmental niche. Metacognition can play an important role in the moral decision making of 

humans, who may reflect on the assumptions implicit in the values and procedures they apply. 

However, it would be necessary to implement a fully deliberative architecture before tackling 

metacognition for any artificial agents, including LIDA.  

Deliberation in humans often involves language. Of course metacognition and language 

have proved to be very difficult challenges for artificial intelligence. While the LIDA model 

suggests an experimental approach to the challenge posed by language and cognition, detailing 

that approach is beyond the scope of this paper. Let it suffice to say that in the conceptual LIDA 

model, language comprehension is dealt with by word nodes and appropriate links in perceptual 

memory, leading to structures in the workspace that provide the semantic content of the words. 

We believe that language generation can be accomplished by schemes in procedural memory 

whose instantiations produce words or phrases. Given the complexity that language and language 

creation introduce to the cognitive architecture, the designers of LIDA have tabled this problem 

until the comprehensive LIDA model has been fully implemented computationally.  

Volitional decision making 

Volitional decision making (volition for short) is a higher-level cognitive process for 

conscious action selection. To understand volition it must be carefully distinguished from (a) 

consciously mediated action selection, (b) automatized action selection, (c) alarms, and (d) the 
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execution of actions. Each of the latter three is performed unconsciously. Consciously planning a 

driving route from a current location to the airport is an example of deliberative, volitional 

decision making. Choosing to turn left at an appropriate intersection along the route requires 

information about the identity of the cross street acquired consciously, but the choice itself is 

most likely made unconsciously—the choice was consciously mediated even though it was 

unconsciously made. While driving along a straight road with little traffic, the necessary slight 

adjustments to the steering wheel are typically automatized actions selected completely 

unconsciously. They are usually not even consciously mediated, though unconscious sensory 

input is used in their selection. If a car cuts in front of the driver, often he or she will have turned 

the steering wheel and pressed the brake simultaneously with becoming conscious of the danger. 

An alarm mechanism has unconsciously selected appropriate actions in response to the 

challenge. The actual turning of the steering wheel, how fast, how far, the execution of the 

action, is also performed unconsciously though with very rapid sensory input.  

Though heavily influenced by the conscious broadcast (i.e., the contents of 

consciousness), action selection during a single cognitive cycle in the LIDA model is not 

performed consciously. A cognitive cycle is a mostly unconscious process. When speaking, for 

example, a person usually does not consciously think in advance about the structure and content 

of the next sentence, and is sometimes even surprised at what comes out. When approaching the 

intersection in the example above, no conscious thought need be given to the choice to turn left. 

Consciousness serves to provide information on which such action selection is based, but the 

selection itself is done unconsciously after the conscious broadcast (Negatu & Franklin, 2002). 

We refer to this very typical single cycle process as consciously mediated action selection.  
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A runner on an unobstructed sidewalk may only pay attention to it occasionally to be sure 

it remains safe. Between such moments he or she can attend to the beauty of the fall leaves or the 

music coming from the iPod. The running itself has become automatized, just as the adjustments 

to the steering wheel in the example above. In the LIDA model such automatization occurs over 

time with each stride initiating a process that unconsciously chooses the next. With childhood 

practice the likelihood of conscious mediation between each stride and the next diminishes. Such 

automatization in the LIDA model (Negatu, McCauley & Franklin, in review) is implemented 

via pandemonium theory (Jackson, 1987). 

Sloman (1998) has emphasized the need for an alarm mechanism such as that described 

in the driving example above. A neuroscientific description of an alarm entails a direct pathway, 

the “low road,” from the thalamus to the amygdala, bypassing the sensory cortices, the “high 

road,” and thereby consciousness (Das et al., 2005). The LIDA model implements alarms via 

learned perceptual memory alarm structures, bypassing the workspace and consciousness, and 

passing directly to procedural memory. There the appropriate scheme is instantiated directly into 

sensory-motor memory, bypassing action selection. This alarm mechanism runs unconsciously in 

parallel with the current, partly conscious, cognitive cycle.  

The modes of action selection discussed above operate over different time scales. 

Volition may take seconds, or even much, much longer. Consciously mediated actions are 

selected roughly five to ten times every second, and automatized actions as fast as that, or faster. 

Alarm mechanisms seem to operate in the sub 50 ms range. In contrast, the execution of an 

action requires sensory motor communication at roughly 40 times a second, all done 

subconsciously (Goodale & Milner, 2004). The possibility of hitting a 90 mph fastball coming 
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over the plate, or of returning a 140 mph tennis serve, makes the need for such sensory motor 

rates believable. 

We now return to a consideration of deliberative, volitional decision making, having 

distinguished it from other modes of action selection and execution. In 1890, William James 

introduced his ideomotor theory of volition (1890). James uses an example of getting out of bed 

on a cold winter morning to effectively illustrate his theory, but in this age of heated homes we 

will use thirst as an example. James postulated proposers, objectors, and supporters as actors in 

the drama of acting volitionally. He might have suggested the following scenario in the context 

of dealing with a feeling of thirst. The idea of drinking orange juice “pops into mind,” propelled 

to consciousness by a proposer motivated by a feeling of thirst and a liking for orange juice. “No, 

it’s too sweet,” asserts an objector. “How about a beer?” says a different proposer. “Too early in 

the day,” says another objector. “Orange juice is more nutritious,” says a supporter. With no 

further objections, drinking orange juice is volitionally selected.  

Baars incorporated ideomotor theory directly into his global workspace theory (1988, 

Chapter 7). The LIDA model fleshes out volitional decision making via ideomotor theory within 

global workspace theory (Franklin, 2000b) as follows. An idea “popping into mind” in the LIDA 

model is accomplished by the idea being part of the conscious broadcast of a cognitive cycle, 

that is, part of the contents of consciousness for that cognitive moment. These contents are the 

information contained within the winning coalition for that cycle. This winning coalition was 

gathered by some attention codelet. Ultimately, this attention codelet is responsible for the idea 

“popping into mind.” Thus we implemented the characters in James’ scenario as attention 

codelets, with some acting as proposers, others as objectors, and others as supporters. In the 
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presence of a thirst node in the workspace, one such attention codelet, a proposer codelet, wants 

to bring drinking orange juice to mind, that is, to consciousness. Seeing a let’s-drink-orange-

juice node in the workspace, another attention codelet, an objector codelet, wants to bring to 

mind the idea that orange juice is too sweet. Supporter codelets are implemented similarly.  

But, how does the conscious thought of “let’s drink orange juice” lead to a let’s-drink-

orange-juice node in the workspace? Like every higher-order cognitive process in the LIDA 

model, volition occurs over multiple cycles, and is implemented by a behavior stream in the 

action selection module. This volitional behavior stream is an instantiation of a volitional scheme 

in procedural memory. Whenever a proposal node in its context is activated by a proposal in the 

conscious broadcast, this volitional scheme instantiates itself. The instantiated volitional scheme, 

the volitional behavior stream, is incorporated into the action selection mechanism, the behavior 

net. The first behavior in this volitional behavior stream sets up the deliberative process of 

volitional decision making as specified by ideomotor theory, including writing the let’s-drink-

orange-juice node to the workspace.7 

Our fleshing out of ideomotor theory in the LIDA model includes the addition of a 

timekeeper codelet, created by the first behavior in the volitional behavior stream. The 

timekeeper starts its timer running as a consequence of a proposal coming to mind. When the 

timer runs down, the action of the proposal contends in the behavior net to be the next selected 

                                            
7 Alternatively, this node could arrive in the workspace with the percept of the following cycle as 

a result of internal sensing of the internal speech. In LIDA, this is only an implementation 

matter, making no functional difference. In humans this is an empirical matter to be decided by 

experiment. Thus the design decision for LIDA becomes a cognitive hypothesis. 
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action, with the weight (activation) of deliberation supporting it. The proposal is most likely to 

be selected barring an objection or an intervening crisis. The appearance of an objection in 

consciousness stops and resets the timer, while that of a supporter or another proposal restarts the 

timer from a new beginning. Note that a single proposal with no objection can be quickly 

accepted and acted upon. 

But, might this volitional decision-making process not oscillate with continuing cycles of 

proposing and objecting as in Eric Berne’s “what if” game (1964)? Indeed it might. The LIDA 

model includes three means of reducing this likelihood. The activation of a proposer codelet is 

reduced each time it succeeds in coming to consciousness, thus decreasing the likelihood of its 

winning during a subsequent cognitive cycle. The same is true of objector and supporter 

codelets. The LIDA model hypothesizes that supporting arguments help in decision making in 

part by giving the supported proposal more time in consciousness, allowing more time off the 

timer. As a second means of preventing oscillation, impatience is built into the timekeeper 

codelet. Each restart of the timer is for a little less time, thus making a decision easier to reach. 

Finally, a metacognitive process can watch over the whole volitional procedure, eventually 

decide that it has gone on long enough, and simply choose an alternative. This latter process has 

not yet been implemented. 

 

LIDA in comparison to other cognitive architectures 

 

Competing theories within the cognitive and neuro- sciences suggest different approaches 

to understanding specific human mental faculties. In describing how the LIDA model handles 
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various tasks, we do not mean to suggest that other approaches are incorrect. However, it is 

beyond the scope of this paper to discuss the competing theories or approaches. The LIDA model 

attempts to formulate an approach to AGI that accommodates a significant portion of what is 

known about human functioning through the work of cognitive scientists and neuroscientists. It 

is possible that researchers will eventually demonstrate that GWT, upon which the LIDA model 

has been built, is inadequate for understanding human cognition.  

LIDA differs from most other cognitive architectures in several significant ways. Here’s 

a short, selective, but certainly non-exhaustive list. 

Most cognitive architectures are either symbolic or connectionist, though some 

incorporate aspects of both, for example, Clarion (Sun, 2007) and ACT-R (Anderson, 1990). 

Strictly speaking, LIDA is neither. Though LIDA’s internal representations are mostly composed 

of nodes and links, the nodes are not symbolic, that is, amodal. Rather, they should be thought of 

as perceptual symbols or perceptual symbol generators in the sense of Barsalou (1999). Also, 

passing activation occurs throughout the LIDA architecture, but none of it is quite in the mode of 

artificial neural networks. For example, major modes of learning in LIDA are not performed by 

changing weights on links. Rather, in instructionist learning, new representations are added 

appropriate to the particular mode: nodes and links to perceptual associative memory, Boolean 

vectors to transient episodic memory, or schemes to procedural memory. In selectionist learning 

the base-level activations of old representations are boosted or diminished. 

Following GWT, the LIDA architecture incorporates a specific attention mechanism that 

selects the most salient, e.g., important, urgent, insistent, portion of its understanding of its 

current situation for broadcast to all of the modules of the architecture. This broadcast serves 
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both to recruit possible appropriate response actions, and to effect several modes of learning. 

Other than the much less comprehensive models of Shanahan (2006) and Dehaene’s also much 

less comprehensive neural network model (Dehaene, Sergent, & Changeux, 2003), LIDA is the 

only such cognitive architecture. 

Many of the other general cognitive architectures mentioned above incorporate some 

form of learning. However, LIDA is unique, to our knowledge, in enabling four distinct modes 

of learning, perceptual, episodic, procedural, and attentional, each modeled after the 

corresponding mode of human learning. Each mode is human-like in the sense that the learning 

is unsupervised, continual, and both selectionist and instructionalist. 

Every cognitive architecture must operate via an iteration of sense-cognize-act cycles.8 

The LIDA architecture is unique in distinguishing low-level, single cognitive cycle action 

selection from higher-level multi-cyclic decision making. LIDA’s cognitive cycle, hypothesized 

to occur at a 10hz rate in humans, can be thought of as a cognitive atom or moment, from 

sequences of which higher-level cognitive processes can be implemented in a consistent fashion. 

Though there has been much research on artificial feelings and emotions (e.g., Canamero, 

2003; Gadanho, 2003), to our knowledge LIDA is the only comprehensive cognitive architecture 

to incorporate feelings and emotions as its sole implementation of motivations for action 

selection, as well as for modulators of learning (Franklin & Ramamurthy, 2006). 

 

                                            
8 This does not mean that these cycles need be in strict serial order. Many of the processes within 

a cycle can operate in parallel. And, the cycles can overlap or cascade. In the LIDA model only 

the conscious broadcast and the action selection must occur in serial order. 
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Processing moral considerations within the LIDA model 

 

Bottom-up propensities, values, and learning 

 

Complex moral faculties involve reflection about and modification of the bottom-up 

propensities embodied in emotional/affective responses to actions and their outcomes. Bottom-

up propensities in the form of feelings and inherent values influence morality but they are not 

necessarily reflective of the values a society would recognize as moral values. Negative feelings 

may, for example, lead to prejudices by automatically attaching to entities that are not a part of 

the agent’s immediate group. From a moral perspective, it is important to understand how top-

down considerations interact with these bottom-up propensities reinforcing “good” ones and 

defusing if not actually eliminating “bad” ones. The approach LIDA offers to the challenge of 

implementing this hybrid system begins with the way an agent captures bottom-up propensities 

and the values implicit in these propensities.  

Associations between objects, people, contexts, actions, situations, etc. and specific 

feelings and their valences (positive or negative) are the primary way values and bottom-up 

propensities form in an agent’s mind. The values are implicit in the feelings and their valences, 

and LIDA captures this dynamic. These associations may arise during perception where sensory 

input is connected to nodes (objects, feelings, ideas, categories, actions) in perceptual memory. 

These nodes in turn activate and connect to information retrieved from the various memory 

systems, which in LIDA are represented as separate memory modules.  
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Feelings and perceptions that arise within the same LIDA cycle may form associations, 

particularly when the affective input is strong. But unless the sensory input is particularly strong 

and sustained, or the initial input cues associated memories, the perception of the objects and 

situations, and their associated affects, decay quickly and disappear. 

The strength of a value, the strength of the connection between feeling and object or 

situation, is reinforced by sustained sensory input, but these values are short-lived unless the 

information comes to attention. Attention reinforces a connection for the longer term through 

perceptual and episodic learning. Powerful memories, that is, memories linked to strong 

valences, are reinforced each time they come to attention.  

LIDA’s perceptual memory (a part of long-term memory) is implemented by a Slipnet, a 

network of nodes, and links between the nodes, that represent structures and concepts. Features, 

objects, and valenced feelings can be nodes, and links between these nodes represent 

relationships that can form more complex structures (percepts). These percepts pass on to the 

system’s working memory9 (workspace) from which they cue associated information in other 

areas of short- and long-term memory, and this information in turn leads to further associations 

that may enrich or alter the percepts.  

Particularly difficult challenges for LIDA, similar to those encountered by any human-

like computer architecture, are how sensory input leads to the activation of nodes in the Slipnet 

and how new nodes can be created to represent new phenomena. In principle, individual 

                                            
9 Working memory, in the way psychologists use the term (Baddeley, 1992), includes 

consciousness. In the LIDA model, working memory (the workspace) is preconscious in each 

cognitive cycle. 
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subroutines or codelets can search for specific sensory input, process that information, and pass it 

on to the activation of a node. Or, similarly, a neural network might organize sensory input. But 

using current computational technology it becomes difficult to scale either of these approaches to 

manage a broad array of inputs and nodes.  

In addition, there is the difficult problem of determining how to represent valences in the 

Slipnet. Must they be represented as somatic feelings or is it adequate to use a cognitive 

representation of the valence. If the feeling is expunged of any somatic affect, and serves merely 

as a symbol or mathematical formula representing the positive or negative feeling, will it carry 

the full import of the feeling as it is factored into the selection of an action?  

These are not easy problems, but LIDA does offer an architecture for integrating 

presently available solutions. Given the modularity of LIDA, it will also be able to integrate 

more sophisticated solutions to these challenges as they emerge from laboratories focusing on 

the development of specific hardware and software tools.  

 

Moral deliberation involving rules 

 

In almost all situations our action selection decisions, including those that could be said 

to involve morals, are made in a bottom-up fashion during a single cognitive cycle as described 

above. Much more rarely, but still with some frequency, our moral decisions are more complex 

and require some thought, that is, deliberation. Such a situation might occur when we are faced 

with a moral dilemma. This often leads to conflicting voices in our heads, some of which might 

frame their arguments in terms of rules, for example, “thou shalt not kill.” Let us consider how 
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such rules are represented in the LIDA model. What activates a rule and brings it to conscious 

attention? How might some rules be automated to form rules-of-thumb?  

A specific example of an inner dialogue about a moral dilemma may help. Suppose the 

company you work for licenses some new, expensive computer software, say Adobe’s 

Photoshop. After becoming comfortable with the new software package at work, you feel the 

urge to copy it onto your home computer. An internal dialog commences, but not necessarily as 

wholly verbal and grammatical as what follows. “Let’s bring Photoshop home and load the 

program on my Mac.” “You shouldn’t do that. That would be illegal and stealing.” “But I’d use 

it for work related projects that benefit my company, which owns the software.” “Yes, but you’d 

also use it for personal projects with no relation to the company.” “True, but most of the work 

would be company related.” Etc., etc., etc. 

In such a case, one’s decision making is happening consciously, volitionally. The LIDA 

model describes the handling of such a situation by means of a higher order, multi-cyclic, 

deliberative process. This conscious, volitional process was described earlier in the section titled 

Volitional decision making. Recall that the internal players included proposers, objectors, 

supporters, and a timekeeper. Each of the first three players is implemented in the model by an 

attention codelet that brings ideas to consciousness.  

In our example, a proposer, winning the competition for consciousness, causes the idea of 

copying Photoshop to the home Mac to “pop into mind.” This proposal in consciousness impels 

the instantiation of a deliberation scheme whose first action, the birth of the timekeeper, the 

starting of the timer and the writing of the proposal node to the workspace, is selected as the 

action of the current cycle. In a subsequent cycle that follows soon after, an objector succeeds in 
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bringing to consciousness the idea of “no that would be stealing.” The action selected in this 

cycle would be to stop and reset the timer. A supporter brings the next idea to consciousness, the 

timer is restarted, and the process continues over the succeeding cognitive cycles. The game is 

afoot.  

Note that the first objector implicitly based its objection on the rule “thou shalt not steal.” 

To describe how and where this moral dictum is represented in the LIDA model, and how it 

plays its role, we begin at the end of the proposal cycle with the proposal structure (“let’s copy 

Photoshop”) in the workspace. There, because of a prior semantic association between copying 

and stealing, it cues the rule “thou shalt not steal” from semantic memory, a part of declarative 

memory (Franklin et al., 2005). The rule is represented as a structure in the workspace, that is, as 

a collection of nodes and links from perceptual memory, the common currency for information 

in the LIDA model (Franklin, 2005a). An objector attention codelet then forms a coalition whose 

informational content is “don’t copy Photoshop; that would be stealing.” This objection coming 

to consciousness and stopping the timer constitutes the rule playing its role in moral decision 

making.  

Rules and duties are stored in semantic memory as perceptual structures. Cued by a 

proposal or an objection the rule is recalled into working memory as a local association and 

brought to consciousness to participate in the internal dialogue. Note that a supporter, as well as 

an objector, can invoke a rule. The dialogue stops when a proposal is on the table without further 

objection long enough for the timer to ding. At that point a scheme in procedural memory that 

knows how to act on the proposal is instantiated into the action selection mechanism with a high 

activation. Thus its selection is assured barring some crisis or other alarm.  
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But sometimes this kind of top-down, rule-based decision making can shift to a bottom-

up, affect-based action selection. Each time an application of a rule or duty comes to 

consciousness it, like every conscious event, becomes subject to perceptual learning. If a 

particular rule is applied frequently in similar situations, LIDA may produce a category node in 

perceptual memory, representing that rule in an abstract version of the similar situations. In our 

example, our moral decision-making agent might learn the abstract node “don’t copy software if 

you don’t have a license for it.” If such a node is reinforced often enough this application of the 

rule is automatic. During the extended learning process the node would acquire links to other 

nodes, particularly to feelings with negative valence. Thus when faced with a situation where 

copying software might be tempting, this rule node can become part of the percept. Its presence 

in the workspace would then inhibit proposer codelets from proposing copying software, that is, 

by invoking the rule automatically.  

Why does the internal dialogue begin? We have seen how it begins. It begins with a 

proposer-attention codelet bringing a proposal into mind, into the global workspace, that is 

“popping it into mind.” But, why isn’t the action, copying the software for example, simply 

selected as the consciously mediated action at the end of a single cycle, with no dialogue at all? 

In some specific situations copying software is permissible. The software license may allow 

installation on two machines, office and home, for use by a single user. If encountered frequently 

enough, a scheme for copying software can be procedurally learned with this situation as its 

context. In such a case, copying software can become a consciously mediated action that is 
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selected during a single cycle.10 But, in order for such a scheme to be procedurally learned, its 

action must have been selected volitionally at least once; that is, some deliberative process must 

have allowed it.  

Generally it is the perceived novelty of a given situation that leads to it being the subject 

of deliberation, rather than simply selected. It is the newness, or at least apparent newness, of a 

situation that in effect demands that the agent think about it. New situations do not fit neatly into 

innate or learned heuristics, and therefore these situations demand attention. In attending to new 

circumstances, associated proposals and objections naturally come to mind. 

 

The implementation of planning and imagination  

 

Moral decision making in humans often involves the planning of various possible 

scenarios and the testing of them in our imagination. Imagination entails the creation of mental 

images of objects, actions, situations that are not necessarily current in the outside world. The 

material for this personal mental realm derives from present and past perceptions of the outside 

material world and may include some imaginary elements or revisions to existing elements. 

The testing of multiple scenarios will, of course, require many cognitive cycles. Some 

cycles may be devoted to examining an internal scenario while others may entail actions 

performed on or with external objects. As an example, consider an architect who has been given 

                                            
10 The actual process is a little more complex. A behavior stream whose behaviors result in 

copying software would be instantiated into LIDA’s action selection mechanism and the first 

behavior in that stream likely would be selected. 



A Conceptual and Computational Model of Moral Decision Making in Human and Artificial 

Agents 

 

 47 

the task of designing a house for a wooded lot while saving as many trees as possible. Part of the 

architect’s training would have involved learning complex internal behavior streams for 

constructing and manipulating scenarios by placing various rooms at particular locations. Other 

internal behavior streams would allow the evaluation of such scenarios (mental floor plans on the 

lot) using functional, aesthetic, and moral criteria. Volitional decision making, as described 

above, would employ yet other behavior streams to decide which of the constructed scenarios to 

select. Appropriately, in LIDA, the central site for much of this work is the workspace, though an 

embodied LIDA-based robot might also put ideas on paper. This evaluation of possible scenarios 

could be accomplished without actually cutting down a single tree, and before drawing any 

building plan. Deliberation will have done its job. 

As we have seen previously, each agent that is controlled by LIDA’s architecture, 

including we humans (presuming that LIDA captures the way we function), will understand its 

environment by means of a model built in the workspace by structure-building codelets. The 

components of which this internal model of the world is built are nodes and links from 

perceptual memory, the common currency of the LIDA architecture (Barsalou, 1999). The 

agent’s internal representation serves to model both the agent’s external environment and its 

internal environment. We hypothesize this internal representation in the workspace as the site of 

the structures that enables imagination including deliberation on multiple scenarios.  

These internal deliberative structures are built in the workspace using, among other 

things, material written there over multiple cognitive cycles by behaviors selected at the end of a 

cognitive cycle whose actions are internal, that is, actions that effect changes within the agent 

itself, rather than on the outside world. The results of such internal actions may be perceived by 
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the agent through its internal senses, or may be written directly to the workspace, and may also 

in turn be externalized when, for example, the architect adds a new element to a drawing of the 

building. All of these possibilities occur in humans. 

Ultimately, for moral deliberation to be appropriately modeled by LIDA, attention 

codelets that are sensitive to morally relevant information will need to be designed. Whether the 

design of such morally sensitive codelets differs from the general design of codelets that search 

for concrete information remains to be seen. But minimally, for example, we expect that 

attention codelets that are sensitive to concrete information about the facial and vocal 

expressions of people affected by an AMA’s actions will need to be part of the mix. The 

advantage of codelets is that they provide an indefinitely extensible framework for taking more 

and more of the relevant factors into account. 

The selected internal behaviors that contribute to a deliberation are organized into 

behavior streams that serve to implement the deliberative process at hand. Such deliberative 

behavior streams would typically be a product of procedural learning. In our architect’s save-the-

trees example, a complex behavior stream with behaviors to construct a scenario placing various 

rooms at particular locations would have been learned. Another internal behavior stream would 

allow the evaluation of such scenarios (mental or drawn floor plans on the lot) using functional, 

aesthetic, and moral criteria. Volitional decision making, as described above, would employ yet 

another behavior stream to decide which of the constructed scenarios to select. Appropriately, 

the central site for much of this work is the workspace, sometimes complemented by those 

elements of the deliberation that have been concretized into external forms such as the architect’s 
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drawing, a mathematical formula, a painting, or a list of criteria on which the scenario should be 

evaluated.  

As described in the section above on Higher-level cognitive processes and levels of 

control, metacognition in the LIDA model involves the use of deliberation in much the same way 

as the kind of planning we have just described. Metaethical reflections would be a special case of 

such metacognition, when the issue at hand was the efficacy or appropriateness of a moral rule or 

criterion. As mentioned above, we introspectively presume that language and inner voices are 

central to metaethical reflections. However, the fleshing out of metacognition and metaethics is 

far beyond the scope of this article, and beyond anything that has been implemented in the LIDA 

model to date.  

 

Resolution, evaluation, and further learning 

 

A LIDA-based agent would reach a resolution to a volitional decision when there 

is no longer an objection to a proposal. Given that the activation of an objection decays in 

repeat cycles, strongly activated proposals will in time prevail over weak objections. 

However, attention codelets responsible for proposals and their supporters also weaken in 

their activation as they succeed in coming into consciousness during multiple cycles. 

Weak proposals may also lose the competition for attention to other concerns demanding 

attention, defusing any pressure or need for the agent to act on the challenge. Highly 

activated rules, duties, or other objectors will outlast weak proposers, and force the 

development of more creative proposals that accommodate the strong objections.  
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However, time pressures may force a decision before all objections have been 

dispelled. Decay in the strength of proposals and objections, time pressures on decision 

making, and pressures from other concerns can drive the selection of a response to a 

challenge even when the response is inadequate or incomplete. Two mechanisms 

facilitate dealing with time pressures in the LIDA model. An attention codelet noting the 

time frame within which the decision must be made would actually increase its activation 

as the deadline neared. The second mechanism is the timekeeper, discussed above, which 

manages the volitional decision-making process. Recall that impatience is built into the 

timekeeper. Each restart of the timer is for less time, making a decision easier to reach. 

An attention codelet reminding of an approaching deadline accelerates this process by 

continually reducing the time on the timer cycle by cycle. 

Furthermore, moral deliberations seldom vanquish all objections even with a 

generous allocation of time. Moral decisions are often messy, but the LIDA architecture 

has the means to produce adaptive behavior despite the complexity. Furthermore, future 

LIDA-inspired moral agents may consider a broader array of proposals, objections, and 

supporting evidence than a human agent can, and thereby, perhaps, select a more 

satisfactory course of action than many humans. 

A LIDA agent, like a human agent, may well be highly susceptible to acting upon 

strongly reinforced impulses and proposals without necessarily considering the needs of 

others. That is, the LIDA model in and of itself is morally neutral. What LIDA does offer 

is a model for computer learning that could provide steps towards a more complete model 

of moral education.  
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The manner in which a LIDA-based artificial moral agent monitors its actions will 

be important to its moral development. When a resolution to a moral challenge has been 

determined, such an agent monitors the success of the resulting actions as it would any 

other action, primarily by means of an expectation codelet. An expectation codelet is an 

attention codelet that is spawned simultaneously with the selected action. The job of this 

expectation codelet is to bring to consciousness information about the outcome of the 

action. In particular, the expectation codelet would become strongly activated by 

discrepancies between the predicted result of a course of action and its actual result. 

Attention to this discrepancy will in turn reinforce or inhibit the application of that 

behavior to future similar challenges. In this manner, attention to how the result 

correlates with the prediction contributes to procedural learning. This general model of 

procedural learning is applicable to moral development in the context of an agent that has 

explicitly factored moral considerations into the selection of an action, and into its 

expectations about the positive moral outcome of the selected action.  

 

Moving forward 

 

In this paper we have sought to demonstrate how moral decision making builds upon 

mechanisms used for the other forms of cognition. LIDA provides one comprehensive model 

through which to consider the many mechanisms that contribute to the ability to make a moral 

judgment. Furthermore, we have offered some hypotheses as to how these mechanisms might 

work together. 
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The value of a comprehensive theory, such as the GWT/LIDA model, is that it provides a 

framework for integrating input from a wide variety of sources. A modular system, such as 

LIDA, can support a broad range of inputs. Modular computer systems do not depend entirely on 

the ingenuity of one design team. The designers of comprehensive systems can draw on the best-

of-breed in the selection of modules developed by other researchers for managing sensory input, 

perception, or various forms of memory including semantic memory and procedural memory. 

For example, if a better model than sparse distributed memory became available for transient 

episodic memory, and that model had been implemented computationally, the new module could 

be integrated into a LIDA agent instead. The one proviso would be that the output from that 

module and input to that module could be structured to work with the perceptual nodes in the 

Slipnet, LIDA’s common currency.  

In the GWT/LIDA model, competition for consciousness between different coalitions, 

global broadcasting of the winning coalition, and the selection of an action in each cycle can be 

thought of as the mechanisms for integrating the input from the various sources. The 

unconscious parallel processing of information, the speed of the cycles, and the multi-cyclic 

approach to higher-order cognitive faculties holds out the promise that a LIDA-like moral agent 

could integrate a wide array of morally relevant inputs into its choices and actions. 

Nevertheless, we do not want to give the impression that AI projects such as LIDA can 

solve all problems. LIDA, like other AI procedures for choosing actions and testing scenarios, 

has the problem of scaling—that is, a problem of whether its strategy can be adapted to handle 

the building and evaluation of complex scenarios. Furthermore, the discussion above raises a 

host of additional questions. Do the mechanisms suggested by these descriptions capture 
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important aspects of the human decision-making process? Even if humans function differently, 

are the mechanisms described adequate to capture the practical demands of moral decision 

making? Are the mechanisms for representing the conflict between different rules (proposers and 

objectors) too simplistic to capture the rich dynamics of human moral decision making? Is the 

functional model of consciousness suggested by GWT and the LIDA model adequate? Or, will 

the agent require some form of phenomenal experience that is not captured in the system 

described? Can morality really be understood without a full description of its social aspects? 

How well would LIDA handle the kinds of delicate social negotiations that are involved in 

managing and regulating the conflicts that arise among agents with competing interests? 

While we, and others working with the model, are able to suggest ways that LIDA could 

meet these challenges, initially these approaches will be only theories with no proof of concept. 

For example, we are aware that LIDA will need something like a Theory of Mind (ToM) to 

function adequately within social contexts, and are working through ways that the model might 

be adapted to accommodate an appreciation of other’s beliefs and intents. We believe that it may 

be possible to build a ToM into the model using its existing modules and processes (Friedlander 

& Franklin, 2008), but as of this writing there is no ToM in LIDA. Certainly the structure-

building and attention codelets sensitive to the emotional expressions on people’s faces that were 

mentioned earlier would be an aspect of building a ToM into LIDA. 

Of course, many will remain suspicious of mechanical explanations of moral faculties. 

But the proof, as has been often said, will be in the pudding. What has been described above is 

certainly not a demonstration that fully functioning AMAs will emerge from computational 
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systems. Rather, we have outlined one rich experimental framework for exploring this 

possibility.  
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Figure Captions 

Fig. 1. LIDA cognitive cycle diagram. 

 


