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Introduction 
 
The global high performance computing community has seen two overarching changes in 
the past five years. One of these changes was the consolidation toward SMP clusters as 
the predominant HPC system architecture. The other change was the emergence of 
computing grids as an important architecture in high performance computing. Several 
major national and international projects are now underway to develop grid technologies. 
Computational grids will increase the resources available to the most advanced 
computational scientists and encourage the use of advanced techniques by researchers 
who have not traditionally employed such technologies [1]. In the latter camp are 
bioinformaticists in general and evolutionary biologists in particular, although this 
situation is changing rapidly.  
 
The need for advanced computational techniques in biology is being driven by dramatic 
increases in availability of data. Sequences from 47,000 species, totaling nearly 3 billion 
base pairs, are already available within Genbank [2]. The sequence data available via 
Genbank are growing exponentially, doubling roughly every 14 months. When complete, 
the Human Genome DataBase alone will include data for a total of roughly 3 billion base 
pairs [3].  
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The availability of large data sets of genome data make possible the use of statistical 
techniques for inferring evolutionary relationships among genes, gene products, 
organelles, and organisms [4]. These statistical techniques include maximum likelihood 
methods for constructing evolutionary phylogenies. One of the more popular programs 
for performing maximum likelihood analysis is fastDNAml, a program produced by 
Olsen et. al. [5], based on Felsenstein’s dnaml program [6].With data sets that include 
hundreds of thousands of nucleotides, such comparisons can clearly involve significant 
computations. Because of limited availability of computational resources, biologists have 
often been forced to use only a portion of the data available to address a particular 
research question. This situation has slowed, without good reason, advances in biological 
research. Limitations created by lack of computational resources are a particular problem 
for scientists using maximum likelihood techniques in evolutionary biology, as such 
techniques are the most compute-intensive of those used for phylogenetic inference [7,8]. 
 
We thus face all at once the availability of statistical methods for inference of 
evolutionary phylogenies, the availability of massive genomic databases, the need for 
greater computational power to attack significant questions in evolutionary biology, and 
the emergence of computational grids as a major architecture in high performance 
computing. The confluence of these events created a natural opportunity to attack 
problems in evolutionary biology with computational grids. In this report, we first 
describe the algorithm used by fastDNAml to create maximum likelihood phylogenies. 
Then we describe the modifications we have made to fastDNAml in order to prepare it to 
run in a grid-based environment. We then discuss the performance of fastDNAml running 
on a single SP system and distributed across multiple systems tied together via high-
speed international networks. Lastly we touch on highlights of some of the biological 
results obtained as a result of this work and some future plans for this project. Inasmuch 
as we discuss some areas that are well known to biologists but not perhaps generally well 
known to HPC experts, and vice versa, we provide some background in the biological 
and statistical techniques used in maximum likelihood phylogenetic inference, and some 
background in the relevant areas of HPC. 
 
 
Maximum likelihood phylogenetic inference  
 
An evolutionary phylogeny is a description of the evolutionary relationships among 
genes, gene products, organelles, or organisms. Such phylogenies are usually depicted as 
a tree diagram (Figure 1).  
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Figure 1. Example of a phylogenetic tree. 
 
 
A good overview of statistical methods for phylogenetic analysis is provided in [8], and a 
good general overview of evolution and phylogenetics is available in [9]. Maximum 
likelihood phylogenies search for an evolutionary model that has the maximal likelihood 
given the data. In this sense a maximum likelihood phylogeny is different than traditional 
statistical hypothesis testing, in that the likelihood values can be used only for 
comparisons among competing models. One of the most important early developments in 
this area was the development by Felsenstein [4,9] of a program called dnaml. dnaml was 
the basis for the program fastDNAml, developed by Olsen and his colleagues [5]. The 
following description of maximum likelihood estimation of phylogenies and the 
operation of fastDNAml owes greatly to [4] and [5]. 
 
Maximum likelihood phylogenetic techniques assume a Markov model of base 
substitution. That is, they are applicable to evolutionary changes that involve the 
replacement of one nucleotide by another in the sequence of molecules that comprise the 
genetic information in a DNA or RNA molecule. These replacement events take place 
with a probability that may depend on the particular base substitution as well as the 
particular base locus. However, insertion and deletion events – the addition or removal of 
a section of genetic information as a unit – are outside the types of evolutionary processes 
modeled by maximum likelihood analysis. Given correctly aligned sequences of DNA 
and RNA from any two organisms, similar at some positions but dissimilar at others, and 
correct probability functions for base substitution events, one can then calculate a 
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probability value for a transformation from one sequence to the other. It is the ability to 
calculate such a probability value that makes it possible to create phylogenetic trees such 
as that shown in Figure 1. Both the tree topology and the branch lengths (which are 
proportional to the genetic differences between various taxa) are estimated from the data 
[4,5,8]. Because of this, the maximum likelihood values calculated are not the basis for 
any sort of hypothesis testing, nor anything like the probability that a particular tree is the 
correct one. Instead, the likelihood values are used to compare among trees and 
determine which is best. 
 
All evolutionary phylogenies are bifurcating trees because it is presumed that 
evolutionary change takes place by a series of bifurcations. The phylogenies produced by 
maximum likelihood methods are unrooted trees because it may well be the case that no 
form ancestral to all the others is even included in the data set analyzed. Even if it were, 
the tree building process itself provides no way to identify it. An ideal brute-force method 
for finding the maximum-likelihood tree for n organisms would be to take all possible 
topologies, estimate the appropriate branch lengths for the trees, and then take the tree 
with the highest likelihood value. However, given n taxa, the number of bifurcating 
unrooted trees is [5]  
 
 (2n-5)!/2n-3 (n-3)! 
  
which for 50 taxa is O(1074). The brute force method is obviously impractical for 
anything other than small numbers of taxa, whereas the availability of large amounts of 
sequence data calls for the application of this technique to large data sets. 
 
FastDNAml uses the following basic algorithm to perform incremental searches in the 
space of all possible trees for n taxa [4,5]. 
 

1) Select three taxa from the set to be analyzed. There is only one possible topology 
for a bifurcating unrooted tree (Figure 2). Calculate the optimal branch length 
based on the Markov model mentioned earlier.  

2) Add in sequence data for another taxon (call this the ith taxon). Add the ith taxon 
onto the existing tree in every topologically distinct way, creating 2i-5 trees. 
Optimize the branch lengths for each tree, and keep the tree with the highest 
likelihood value (Figure 2). 
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Figure 2. There is only one topology possible for a bifurcating tree containing three 
taxa. A fourth taxon may be added in one of three different locations. 
 
 
 

3) Perform local rearrangements of the tree. That is, swap any subtree to a 
neighboring branch (Figure 3). If any local rearrangement results in a better tree, 
then restart the local rearrangement process using this tree. Keep repeating until 
local rearrangement no longer yields any improvement. If no local rearrangement 
ever yields an improved tree, there are 2i-6 trees to check.  

 
 



 6 

 
 
Figure 3. There are two local rearrangements possible when performing local 
rearrangements of a bifurcating tree with four taxa. 
 

4) Starting with the best tree resulting from Step 3), go back to Step 2). Keep 
repeating Steps 2) and 3) until all taxa in the data set have been added in. 

5) Perform a more thorough rearrangement of subtrees starting with the best tree 
obtained including all taxa. The number of branch points that can be crossed when 
moving a subtree is a parameter set by the user of fastDNAml. The final result is 
the best tree resulting from more extensive rearrangements of the tree.  

 
This process involves an incremental search through the space of all possible trees. As 
such it is quite possible that in this search the process of starting with three taxa and then 
incrementally adding the other taxa in a data set being analyzed will place one in a local, 
rather than global, maximum of the overall likelihood function. Thus the program is run 
multiple times with each data set, with the order of addition of the taxa (including the 
selection of the initial three taxa) randomized. By comparing the results of multiple runs 
one can get some feel for the structure of the tree-space, as well as some information 
regarding local and global maxima.  
 
fastDNAml is highly computationally intensive. For example, analysis of 50 taxa requires 
the optimization and evaluation of a minimum of 4,559 trees (this is the minimum under 
the condition that no local rearrangement ever produces an improved tree). This program 
is a good candidate for parallelization in the master/worker model because it has a 
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relatively high computation to communication ratio. The master process constructs trees 
to be optimized and farms them out to a set of worker processors for analysis. The 
analysis of each tree involves the calculation of a transition probability using a Markov 
model for base substitutions at each of hundreds of loci. This process, along with 
calculating the optimal branch lengths for the tree, is computationally intensive. After 
initialization of the worker programs, the only communication is the dispatch of a tree to 
the worker, and the return of a tree and a likelihood value back to the master. The trees 
are stored in an ASCII string in Newich format [9] that requires roughly 35 bytes per 
taxon. However, the program does have relatively frequent synchronization barriers. 
There are in each step of the process (the addition of each taxa) a synchronization barrier 
implicit in the wait for all slave processes to return optimized trees and associated 
likelihood values. Figure 4 shows the basic flow of the parallel version of fastDNAml as 
distributed by Olsen et al. [5,9]. 
 

 
 
 
Figure 4. Basic flow diagram of the parallel version of fastDNAml as distributed by 
Olsen et al. 
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fastDNAml and grid computing 
 
Indiana University is the lead US institution in the TransPAC network [10], which links 
the vBNS with the Asia-Pacific Advanced Network. TransPAC network topology is 
diagrammed in [11]. Indiana University (IU), National University of Singapore (NUS), 
and Advanced Computational Systems, Australia National University (ACSys) are tied 
together by a high-speed network connection and the institutional collaborations that 
made the network possible. Both NUS and IU have significant IBM RS/6000 
installations. IU and NUS are home to researchers that make heavy use of fastDNAml 
[12,13,14]. Organizational and collaborative ties with ACSys made it possible to utilize 
systems there for a grid project as well. Thus, there were all the raw materials needed for 
a significant international collaboration in applying grid computing techniques to use of 
fastDNAml. The iGrid demonstration at SuperComputing98 [15] provided the ideal 
venue for an experiment using fastDNAml on an international array of high performance 
computers.  
 
The challenge common to a great many scientists is to properly make the tradeoff 
between the research questions investigated, the amount of computing resource needed, 
and a tolerable wall-clock wait. One of the many opportunities in grid computing is to 
combine geographically distributed resources so as to maximize the size of the problem 
that can be attacked within a tolerable wait time. The other opportunity in an international 
collaboration is to take advantage of the time difference among participating institutions. 
Peak work times in Indiana come roughly during the middle of the night in Singapore and 
Australia, and vice versa. This makes it possible for researchers working during the day 
at either IU or NUS to take advantage of processors on the other side of the globe during 
- what is the middle of the local night and the time of minimum local demand. This helps 
maximize utilization of resources as well; any cycle that was not put to productive use 
last night is gone forever! There is, however, a limitation in the types of applications that 
are suitable for long-distance grids. Light travels halfway around the globe in somewhat 
more than 50 msec, a much higher latency than the internal communications of a 
traditional supercomputer. 
 
The parallel version of fastDNAml distributed by Olsen [5,9] is based on the P4 libraries. 
While easily available, the P4 libraries are certainly no longer the state of the art in 
parallel computing. Some time ago IU’s programmers ported fastDNAml to the PVM 
(Parallel Virtual Machine [16]) libraries for more efficient execution within a single IBM 
RS/6000 SP. PVM is, today, probably the simplest mechanism for distributing a parallel 
program among multiple computing systems. Converting the program to run successfully 
in a grid environment required several modifications beyond the initial PVM port. The 
structure of the parallel portion of the code has been simplified somewhat as compared to 
the P4 version distributed by Olsen et al. The program consists of four basic modules: 
Host, Master, Foreman, and Worker. Host, Master, and Foreman typically run on one 
system serving as the logical hub of the grid. There are multiple Worker processes, and 
these processes are typically distributed throughout the grid. The functions of these 
processes are as follows: 
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Host. The Host program is responsible for initialization of PVM on all participating 
systems and all other initialization matters (including randomization of the order of 
inclusion of the taxa in the data set). 
 
Master. The Master program generates trees for evaluation at each step of the program. 
That is, it generates the initial tree, which is sent to the Foreman for optimization of tree 
lengths. Foreman returns the optimized tree to the Master. Master then creates a new set 
of trees to be evaluated by adding in the next taxa in every position possible and 
dispatches them back to Foreman for optimization and comparison, and requests that 
Foreman return to it the best of the optimized trees from that step. Master then calculates 
the 2*(number of taxa) – 6 new trees resulting from nearest-neighbor swapping, 
dispatches them to Foreman for analysis, and requests the best of the optimized trees 
back from Foreman. This process continues until all taxa have been added in, at which 
point the Master calculates the trees for the full tree check (as with the original 
fastDNAml, the number of branch points that can be crossed in making rearrangements is 
a parameter specified by the user). 
 
Foreman. The Foreman program has two primary functions. It tracks the Worker 
processes, dispatching trees to be evaluated to them and monitoring their responses. It is 
in this process that the greatest changes were required in order to run fastDNAml as a 
grid program, and these changes will be described in much greater detail below. The 
Foreman process also compares the likelihood values of the optimized trees returned to it 
by the Worker processes, and returns to the Master the best tree resulting from each 
round of optimizations. (The Foreman process combines the functions of the Dispatch 
and Merge modules of Olsen et al.’s P4 version) 
 
Worker. The worker process receives a tree from the Foreman, optimizes the lengths of 
the branches in the tree so as to maximize the likelihood score of that tree (without 
changing its topology) and returns the new tree, including branch lengths, back to the 
Foreman. This part of the program is essentially unchanged from the version distributed 
by Olsen et al. [4,9]. 
 
The above architecture for fastDNAml represents a simplification of the parallel structure 
of the Olsen et. al [5,9] P4 version. However, the greatest changes in the grid-ready 
version of the program lie in the Foreman process. When fastDNAml is run within a 
single parallel computer it is reasonable to assume that either every processor will operate 
properly without interruption, or the entire system will experience some sort of problem 
and come to a halt. Even when running fastDNAml, say, on several systems within one 
research lab it is quite reasonable to take this all-or-nothing approach to job completion. 
Thus the Olsen et al. distribution – quite reasonably - does not have any mechanism for 
recovering from the failure of an individual Worker process and continuing on to 
successfully complete a particular run.  
 
Running fastDNAml successfully in a wide-area grid, however, requires the ability to 
recover from the failure of an individual Worker process and go on to successful 
completion of a particular program run. The reason this is essential is that the program is 
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being executed across multiple systems communicating via many network links. There is 
a reasonable chance that during the course of any individual run at least one of the 
following events will occur: one of the systems participating in the execution of a run 
will experience some sort of failure; a network link will fail; or a network link will 
become so slow that the overall program will complete more quickly by dropping the 
processors connected to the Foreman via the slowed link. The common feature of all of 
these problems is that they are evidenced by a lack of communication by the Worker 
program back to the Foreman, as opposed to some explicit error message. We have 
modified the Foreman process to properly deal with the vagaries of a grid environment. 
To do this, the Foreman maintains three queues: a Ready Worker Queue, a Work 
Pending Queue, and a Blacklist. These queues are diagrammed in Figure 5, and explained  
below.  
 
 
 

 
 
 
 
 
 
 

Figure 5. The “Ready Worker” and “Blacklist” queues are simply lists of machines 
(nodes) ready to do work (ready) or taken out of the work queue (Blacklist). The 
work pending queue shows work underway – the machine number a task was 
assigned to, and the time the work was started. 
 
The Ready Worker Queue is simply a list of all Worker processes (systems or individual 
processors within a parallel system) that are waiting to receive new work. Trees are 
dispatched to the Worker processes in a first in/first out manner. When a Worker process 
completes work and returns an optimized tree to the Foreman process its ID is re-entered 
in the Ready Worker Queue. This provides a certain measure of automatic load 
balancing, as the fastest processors participating in the grid return results most quickly, 
appear in the ready queue most frequently, and thus get a larger share of the calculations 
than slower processors. 
 
The Work Queue holds the largest amount of information. It includes one entry for each 
Worker process currently at work optimizing a tree dispatched to it by the Foreman 
process. Each entry includes the Worker ID, the start time, and the actual tree dispatched 
to that worker. The Foreman process periodically checks through the Work Queue 
looking for jobs that have taken longer than a user-specified timeout period. Whenever a 
job has gone beyond the timeout limit without being completed by the Worker process, 
two things happen. The tree that this Worker was optimizing is placed back in the work 
queue to be dispatched to another Worker, and the Worker ID is placed on the Blacklist 
so that no additional jobs are sent to it. (The program does have a facility for removing 

Ready worker 
queue 
   
 
 
 

Work Pending Queue 
Machine # Start Time 
  
  
  
  

Blacklist 
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worker processors from the blacklist and adding them back to the Ready Queue should 
they give evidence that they are working again).  
 
The modifications to fastDNAml make it possible to run fastDNAml in a grid context 
effectively. IU developed one additional piece of code to cooperate with fastDNAml. 
This is a 3-dimensional visualization of the intermediate steps as fastDNAml adds taxa 
and marches its way through the treespace. Figure 6 shows a snapshot from this 
visualization. One can, of course, navigate though the images displayed to hone in on any 
particular feature of interest. This visualization was initially developed for demonstration 
purposes, so that visitors to the iGrid booth at SC98 would have something to look at as 
we discussed the evolutionary grid project. The visualization served this purpose well and 
has additionally turned out to be a useful real-time diagnostic tool. FastDNAml 
occasionally starts with an early combination of taxa that creates pathological oscillating 
behavior in the tree as it is developing. That is, the incremental search through the space 
of all possible trees starts in a place from which it is impossible to get to any reasonable 
tree, and the structure of the tree simply oscillates back and forth among a variety of 
unreasonable trees. It has proven to be quite easy to detect this sort of behavior in real 
time using the 3D visualization, permitting such runs to be terminated and minimizing the 
time wasted. 
 

 
 
Figure 6. Three-dimensional depiction of the time course of tree development, as 
taxa are added and trees optimized. 
Performance of fastDNAml in an international grid setting 
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For the iGrid project at SC98 we demonstrated use of fastDNAml distributed across 
processors located at IU, NUS, and ACSys. IU and NUS each contributed time on 16 
processors in an IBM RS/6000 SP (P2SC Thin Nodes, uniprocessor, 165 MHz). ACSys 
contributed 8 DEC workstations (Digital Alpha 600 workstations, uniprocessor, 
266MHz). As part of the demonstration we explored the performance characteristics of 
fastDNAml. Figure 7 shows performance curves for fastDNAml running within one 
system located at IU; distributed across two sites – IU and one of the two partners. For 
these benchmarking runs we used precisely the same order of entry of taxa, but were able 
to run just one job per combination. The total number of taxa used in these runs was 56.  
 

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16 18

# Processors

W
al

l c
lo

ck
 ti

m
e 

(s
ec

on
ds

)

IU Only
IU&NUS
IU&ANU

 
Figure 7. Elapsed wall clock time to complete benchmark runs for fastDNAml. 
 
A few things are quite clear from Figure 7. First, even with a fairly small test case, the 
time to complete one run of fastDNAml is fairly significant – over half an hour. A 
parallel job using 16 processors within one SP ran in under 5 minutes – but 16 processors 
is a fairly significant portion of all but the upper end of the list of top 500 supercomputer 
sites [17]. Running a parallel job on 16 processors when 8 were at IU and 8 were located 
at one of the Pacific Rim partner sites took an elapsed time of under 7 minutes. The jobs 
using all three sites simultaneously took, as one would expect, slightly longer per 
processor than the jobs split across two locations. These times are for only one random 
ordering of the taxa to be included. A realistic set of runs for a data set this size would 
involve 100 random orderings – making any speedup significant in terms of the 
processing of an entire set of orderings. There is another way to look at the speedup data. 
If it is possible to increase the total processor count by as few as two processors by 
distributing your job across multiple computers, the total wall clock time is reduced. In 
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practical terms, this is the key result in demonstrating the value of grid computing as 
applied to fastDNAml: picking up a very small number of processors – a seemingly 
straightforward thing to do – by going to a grid approach reduces the time to solution. 
(Or, more realistically, increases the size of the problem that can be attacked within the 
time constraints imposed on the scientist.) 
 
We have managed to accomplish some interesting biology. As part of the iGrid 
demonstration, researchers investigated the evolutionary relationships among the 
subcomponents of cytoplasmic coat protein (COP) complexes. Eukaryotic intracellular 
membrane transport is mediated by vesicles whose formation involves specific COP 
complexes. Of the seven COP (alpha, beta, beta', gamma, delta, epsilon, zeta) subunits 
recognized so far, several yeast, fungal, rice, drosophila, mouse, rat, hamster, bovine 
and/or human have been cloned and sequenced. The tree in Figure 8 shows the 
phylogenetic relationships of COP subunit genes as determined by fastDNAml [18].  
 
 

 
 
 
Figure 8. Phylogenetic tree of cytoplasmic coat proteins calculated during 
demonstration at SC98. 
 
 
Some thoughts on grid computing and future plans with fastDNAml 
 
There are already two established models for computational grids. One is a grid 
comprising geographically distributed facilities within one organization, such as NASA 
[19]. Another model is a grid comprising some sort of formal alliance or consortium. 
NCSA and NPACI are examples of this sort of grid [20,21]. This project establishes 
another type of grid: a grid based on pooling and sharing resources within communities 
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based on commonalities of discipline and use of community codes. This project is 
different than other community code projects in that the sharing of cycles, designed in 
particular to utilize processors during times of low local demand, is an explicit part of the 
collaboration. 
 
Our plans for the future are to continue with the ‘evolutionary biology grid’ as a 
periodically available production service. We are also making further enhancements in 
the grid-enabled version of fastDNAml, including an MPI [22] port that is now running 
in production mode. Further enhancements in the structure of the code will make it 
possible to use a single code base and specify the parallel communication library within a 
set of user-specified parameters. This will significantly improve the longevity of the code 
in that it will become less vulnerable to changes in the state of the art in parallel libraries. 
We plan to have our port of the fastDNAml program available for download no later than 
9/1/2000. Access to the code will be available from [23]. We also hope to pop up a level 
of parallelism. As mentioned earlier, there are several implicit barriers created by the 
need to find the best tree at each step in the search process. Thus when as few as four 
processors are in use, it is not until the fifth taxa has been added to the search process that 
it becomes possible to use all of the available processors simultaneously. We hope to 
develop a version of the fastDNAml code that runs multiple randomizations of the taxon 
entry order simultaneously. This should make the program easier to use, achieve better 
scaling, and provide better searches of the peaks and valleys of the likelihood values 
within the space of all possible trees. 
 
This project arose out of a desire to do more and better biology. The key enabling factors 
were the commonalities in interests and use of community codes by all of the partners, 
and the existing high speed intercontinental network links. The fact that IU and NUS both 
have significant IBM RS/6000 SP installations was a bit of good luck. IU’s previous 
work porting fastDNAml to run under PVM on the IBM RS/6000 SP also ‘preadapted’ 
the code to run well in a grid environment. The willingness of system administrators to 
help us overcome security issues was important. Perhaps more important was the 
willingness on all sides to suspend accounting rules and put the doing of science first. 
This enabled us to produce real scientific results and demonstrate the value of a grid-
based approach to evolutionary biology prior to attacking the complex problems of fair 
use and accounting (which remain in “yet to be resolved” status).  
 
In summary, we have demonstrated the practical value of a grid-based approach to the 
most computationally intensive of the mathematical methods for construction of 
evolutionary phylogenies, and in the process produced some notable results in 
evolutionary biology. We have demonstrated what we believe is a largely new type of 
computational grid – based on sharing of resources born of commonalities within 
communities of interest – and that this type of grid can feasibly work to the advantage of 
all participants. And we believe that there is significant work yet to be done in improving 
the existing parallel versions of fastDNAml. This work will yield improvements in 
scientists’ ability to advance our understanding of evolutionary processes, which has 
significant practical value in addition to its value in enhancing our understanding of the 
world around us. 
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