
 1

Evolutionary biology and computational grids

Craig A. Stewart (IU), Tan Tin Wee (NUS), Markus Buckhorn (ACsys), David Hart (IU),
Donald K. Berry (IU), Louxin Zhang (NUS), Eric Wernert (IU), Meena Sakharkar
(NUS), Will Fisher (IU), Donald F. McMullen (IU)

{stewart,dhart,dkberry,palmer,ewernert,wfischer,mcmullen}@indiana.edu
tinwee@irdu.nus.sg,lxzhang@krdl.org.sg,meena@bic.nus.edu.sg
markus@acsys.anu.edu.au

IU: Indiana University, Bloomington Indiana 47408, US;
NUS: National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260;
ACSys: Advanced Computational Systems CRSISE Building, Australian National
University, Canberra 0200, Australia.

Please cite as: Stewart, C.A., T.W. Tan, M. Buckhorn, D. Hart, D.K. Berry, L. Zhang, E.
Wernert, M. Sakharkar, W. Fischer and D.F. McMullen. Evolutionary biology and
computational grids. Paper presented at: CASCON Workshop on Computational Biology
(Mississauga, Ontario, Canada, 10 Nov, 1999). Available from:
http://hdl.handle.net/2022/14008

NB: The proceeding of the Workshop on Computational Biology was originally published
online. Through changes in web sites, the online publication of this article became
unavailable. It is presented here in document format.

Introduction

The global high performance computing community has seen two overarching changes in
the past five years. One of these changes was the consolidation toward SMP clusters as
the predominant HPC system architecture. The other change was the emergence of
computing grids as an important architecture in high performance computing. Several
major national and international projects are now underway to develop grid technologies.
Computational grids will increase the resources available to the most advanced
computational scientists and encourage the use of advanced techniques by researchers
who have not traditionally employed such technologies [1]. In the latter camp are
bioinformaticists in general and evolutionary biologists in particular, although this
situation is changing rapidly.

The need for advanced computational techniques in biology is being driven by dramatic
increases in availability of data. Sequences from 47,000 species, totaling nearly 3 billion
base pairs, are already available within Genbank [2]. The sequence data available via
Genbank are growing exponentially, doubling roughly every 14 months. When complete,
the Human Genome DataBase alone will include data for a total of roughly 3 billion base
pairs [3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUScholarWorks

https://core.ac.uk/display/213827867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

The availability of large data sets of genome data make possible the use of statistical
techniques for inferring evolutionary relationships among genes, gene products,
organelles, and organisms [4]. These statistical techniques include maximum likelihood
methods for constructing evolutionary phylogenies. One of the more popular programs
for performing maximum likelihood analysis is fastDNAml, a program produced by
Olsen et. al. [5], based on Felsenstein’s dnaml program [6].With data sets that include
hundreds of thousands of nucleotides, such comparisons can clearly involve significant
computations. Because of limited availability of computational resources, biologists have
often been forced to use only a portion of the data available to address a particular
research question. This situation has slowed, without good reason, advances in biological
research. Limitations created by lack of computational resources are a particular problem
for scientists using maximum likelihood techniques in evolutionary biology, as such
techniques are the most compute-intensive of those used for phylogenetic inference [7,8].

We thus face all at once the availability of statistical methods for inference of
evolutionary phylogenies, the availability of massive genomic databases, the need for
greater computational power to attack significant questions in evolutionary biology, and
the emergence of computational grids as a major architecture in high performance
computing. The confluence of these events created a natural opportunity to attack
problems in evolutionary biology with computational grids. In this report, we first
describe the algorithm used by fastDNAml to create maximum likelihood phylogenies.
Then we describe the modifications we have made to fastDNAml in order to prepare it to
run in a grid-based environment. We then discuss the performance of fastDNAml running
on a single SP system and distributed across multiple systems tied together via high-
speed international networks. Lastly we touch on highlights of some of the biological
results obtained as a result of this work and some future plans for this project. Inasmuch
as we discuss some areas that are well known to biologists but not perhaps generally well
known to HPC experts, and vice versa, we provide some background in the biological
and statistical techniques used in maximum likelihood phylogenetic inference, and some
background in the relevant areas of HPC.

Maximum likelihood phylogenetic inference

An evolutionary phylogeny is a description of the evolutionary relationships among
genes, gene products, organelles, or organisms. Such phylogenies are usually depicted as
a tree diagram (Figure 1).

 3

Figure 1. Example of a phylogenetic tree.

A good overview of statistical methods for phylogenetic analysis is provided in [8], and a
good general overview of evolution and phylogenetics is available in [9]. Maximum
likelihood phylogenies search for an evolutionary model that has the maximal likelihood
given the data. In this sense a maximum likelihood phylogeny is different than traditional
statistical hypothesis testing, in that the likelihood values can be used only for
comparisons among competing models. One of the most important early developments in
this area was the development by Felsenstein [4,9] of a program called dnaml. dnaml was
the basis for the program fastDNAml, developed by Olsen and his colleagues [5]. The
following description of maximum likelihood estimation of phylogenies and the
operation of fastDNAml owes greatly to [4] and [5].

Maximum likelihood phylogenetic techniques assume a Markov model of base
substitution. That is, they are applicable to evolutionary changes that involve the
replacement of one nucleotide by another in the sequence of molecules that comprise the
genetic information in a DNA or RNA molecule. These replacement events take place
with a probability that may depend on the particular base substitution as well as the
particular base locus. However, insertion and deletion events – the addition or removal of
a section of genetic information as a unit – are outside the types of evolutionary processes
modeled by maximum likelihood analysis. Given correctly aligned sequences of DNA
and RNA from any two organisms, similar at some positions but dissimilar at others, and
correct probability functions for base substitution events, one can then calculate a

 4

probability value for a transformation from one sequence to the other. It is the ability to
calculate such a probability value that makes it possible to create phylogenetic trees such
as that shown in Figure 1. Both the tree topology and the branch lengths (which are
proportional to the genetic differences between various taxa) are estimated from the data
[4,5,8]. Because of this, the maximum likelihood values calculated are not the basis for
any sort of hypothesis testing, nor anything like the probability that a particular tree is the
correct one. Instead, the likelihood values are used to compare among trees and
determine which is best.

All evolutionary phylogenies are bifurcating trees because it is presumed that
evolutionary change takes place by a series of bifurcations. The phylogenies produced by
maximum likelihood methods are unrooted trees because it may well be the case that no
form ancestral to all the others is even included in the data set analyzed. Even if it were,
the tree building process itself provides no way to identify it. An ideal brute-force method
for finding the maximum-likelihood tree for n organisms would be to take all possible
topologies, estimate the appropriate branch lengths for the trees, and then take the tree
with the highest likelihood value. However, given n taxa, the number of bifurcating
unrooted trees is [5]

 (2n-5)!/2n-3 (n-3)!

which for 50 taxa is O(1074). The brute force method is obviously impractical for
anything other than small numbers of taxa, whereas the availability of large amounts of
sequence data calls for the application of this technique to large data sets.

FastDNAml uses the following basic algorithm to perform incremental searches in the
space of all possible trees for n taxa [4,5].

1) Select three taxa from the set to be analyzed. There is only one possible topology
for a bifurcating unrooted tree (Figure 2). Calculate the optimal branch length
based on the Markov model mentioned earlier.

2) Add in sequence data for another taxon (call this the ith taxon). Add the ith taxon
onto the existing tree in every topologically distinct way, creating 2i-5 trees.
Optimize the branch lengths for each tree, and keep the tree with the highest
likelihood value (Figure 2).

 5

Figure 2. There is only one topology possible for a bifurcating tree containing three
taxa. A fourth taxon may be added in one of three different locations.

3) Perform local rearrangements of the tree. That is, swap any subtree to a
neighboring branch (Figure 3). If any local rearrangement results in a better tree,
then restart the local rearrangement process using this tree. Keep repeating until
local rearrangement no longer yields any improvement. If no local rearrangement
ever yields an improved tree, there are 2i-6 trees to check.

 6

Figure 3. There are two local rearrangements possible when performing local
rearrangements of a bifurcating tree with four taxa.

4) Starting with the best tree resulting from Step 3), go back to Step 2). Keep
repeating Steps 2) and 3) until all taxa in the data set have been added in.

5) Perform a more thorough rearrangement of subtrees starting with the best tree
obtained including all taxa. The number of branch points that can be crossed when
moving a subtree is a parameter set by the user of fastDNAml. The final result is
the best tree resulting from more extensive rearrangements of the tree.

This process involves an incremental search through the space of all possible trees. As
such it is quite possible that in this search the process of starting with three taxa and then
incrementally adding the other taxa in a data set being analyzed will place one in a local,
rather than global, maximum of the overall likelihood function. Thus the program is run
multiple times with each data set, with the order of addition of the taxa (including the
selection of the initial three taxa) randomized. By comparing the results of multiple runs
one can get some feel for the structure of the tree-space, as well as some information
regarding local and global maxima.

fastDNAml is highly computationally intensive. For example, analysis of 50 taxa requires
the optimization and evaluation of a minimum of 4,559 trees (this is the minimum under
the condition that no local rearrangement ever produces an improved tree). This program
is a good candidate for parallelization in the master/worker model because it has a

 7

relatively high computation to communication ratio. The master process constructs trees
to be optimized and farms them out to a set of worker processors for analysis. The
analysis of each tree involves the calculation of a transition probability using a Markov
model for base substitutions at each of hundreds of loci. This process, along with
calculating the optimal branch lengths for the tree, is computationally intensive. After
initialization of the worker programs, the only communication is the dispatch of a tree to
the worker, and the return of a tree and a likelihood value back to the master. The trees
are stored in an ASCII string in Newich format [9] that requires roughly 35 bytes per
taxon. However, the program does have relatively frequent synchronization barriers.
There are in each step of the process (the addition of each taxa) a synchronization barrier
implicit in the wait for all slave processes to return optimized trees and associated
likelihood values. Figure 4 shows the basic flow of the parallel version of fastDNAml as
distributed by Olsen et al. [5,9].

Figure 4. Basic flow diagram of the parallel version of fastDNAml as distributed by
Olsen et al.

 8

fastDNAml and grid computing

Indiana University is the lead US institution in the TransPAC network [10], which links
the vBNS with the Asia-Pacific Advanced Network. TransPAC network topology is
diagrammed in [11]. Indiana University (IU), National University of Singapore (NUS),
and Advanced Computational Systems, Australia National University (ACSys) are tied
together by a high-speed network connection and the institutional collaborations that
made the network possible. Both NUS and IU have significant IBM RS/6000
installations. IU and NUS are home to researchers that make heavy use of fastDNAml
[12,13,14]. Organizational and collaborative ties with ACSys made it possible to utilize
systems there for a grid project as well. Thus, there were all the raw materials needed for
a significant international collaboration in applying grid computing techniques to use of
fastDNAml. The iGrid demonstration at SuperComputing98 [15] provided the ideal
venue for an experiment using fastDNAml on an international array of high performance
computers.

The challenge common to a great many scientists is to properly make the tradeoff
between the research questions investigated, the amount of computing resource needed,
and a tolerable wall-clock wait. One of the many opportunities in grid computing is to
combine geographically distributed resources so as to maximize the size of the problem
that can be attacked within a tolerable wait time. The other opportunity in an international
collaboration is to take advantage of the time difference among participating institutions.
Peak work times in Indiana come roughly during the middle of the night in Singapore and
Australia, and vice versa. This makes it possible for researchers working during the day
at either IU or NUS to take advantage of processors on the other side of the globe during
- what is the middle of the local night and the time of minimum local demand. This helps
maximize utilization of resources as well; any cycle that was not put to productive use
last night is gone forever! There is, however, a limitation in the types of applications that
are suitable for long-distance grids. Light travels halfway around the globe in somewhat
more than 50 msec, a much higher latency than the internal communications of a
traditional supercomputer.

The parallel version of fastDNAml distributed by Olsen [5,9] is based on the P4 libraries.
While easily available, the P4 libraries are certainly no longer the state of the art in
parallel computing. Some time ago IU’s programmers ported fastDNAml to the PVM
(Parallel Virtual Machine [16]) libraries for more efficient execution within a single IBM
RS/6000 SP. PVM is, today, probably the simplest mechanism for distributing a parallel
program among multiple computing systems. Converting the program to run successfully
in a grid environment required several modifications beyond the initial PVM port. The
structure of the parallel portion of the code has been simplified somewhat as compared to
the P4 version distributed by Olsen et al. The program consists of four basic modules:
Host, Master, Foreman, and Worker. Host, Master, and Foreman typically run on one
system serving as the logical hub of the grid. There are multiple Worker processes, and
these processes are typically distributed throughout the grid. The functions of these
processes are as follows:

 9

Host. The Host program is responsible for initialization of PVM on all participating
systems and all other initialization matters (including randomization of the order of
inclusion of the taxa in the data set).

Master. The Master program generates trees for evaluation at each step of the program.
That is, it generates the initial tree, which is sent to the Foreman for optimization of tree
lengths. Foreman returns the optimized tree to the Master. Master then creates a new set
of trees to be evaluated by adding in the next taxa in every position possible and
dispatches them back to Foreman for optimization and comparison, and requests that
Foreman return to it the best of the optimized trees from that step. Master then calculates
the 2*(number of taxa) – 6 new trees resulting from nearest-neighbor swapping,
dispatches them to Foreman for analysis, and requests the best of the optimized trees
back from Foreman. This process continues until all taxa have been added in, at which
point the Master calculates the trees for the full tree check (as with the original
fastDNAml, the number of branch points that can be crossed in making rearrangements is
a parameter specified by the user).

Foreman. The Foreman program has two primary functions. It tracks the Worker
processes, dispatching trees to be evaluated to them and monitoring their responses. It is
in this process that the greatest changes were required in order to run fastDNAml as a
grid program, and these changes will be described in much greater detail below. The
Foreman process also compares the likelihood values of the optimized trees returned to it
by the Worker processes, and returns to the Master the best tree resulting from each
round of optimizations. (The Foreman process combines the functions of the Dispatch
and Merge modules of Olsen et al.’s P4 version)

Worker. The worker process receives a tree from the Foreman, optimizes the lengths of
the branches in the tree so as to maximize the likelihood score of that tree (without
changing its topology) and returns the new tree, including branch lengths, back to the
Foreman. This part of the program is essentially unchanged from the version distributed
by Olsen et al. [4,9].

The above architecture for fastDNAml represents a simplification of the parallel structure
of the Olsen et. al [5,9] P4 version. However, the greatest changes in the grid-ready
version of the program lie in the Foreman process. When fastDNAml is run within a
single parallel computer it is reasonable to assume that either every processor will operate
properly without interruption, or the entire system will experience some sort of problem
and come to a halt. Even when running fastDNAml, say, on several systems within one
research lab it is quite reasonable to take this all-or-nothing approach to job completion.
Thus the Olsen et al. distribution – quite reasonably - does not have any mechanism for
recovering from the failure of an individual Worker process and continuing on to
successfully complete a particular run.

Running fastDNAml successfully in a wide-area grid, however, requires the ability to
recover from the failure of an individual Worker process and go on to successful
completion of a particular program run. The reason this is essential is that the program is

 10

being executed across multiple systems communicating via many network links. There is
a reasonable chance that during the course of any individual run at least one of the
following events will occur: one of the systems participating in the execution of a run
will experience some sort of failure; a network link will fail; or a network link will
become so slow that the overall program will complete more quickly by dropping the
processors connected to the Foreman via the slowed link. The common feature of all of
these problems is that they are evidenced by a lack of communication by the Worker
program back to the Foreman, as opposed to some explicit error message. We have
modified the Foreman process to properly deal with the vagaries of a grid environment.
To do this, the Foreman maintains three queues: a Ready Worker Queue, a Work
Pending Queue, and a Blacklist. These queues are diagrammed in Figure 5, and explained
below.

Figure 5. The “Ready Worker” and “Blacklist” queues are simply lists of machines
(nodes) ready to do work (ready) or taken out of the work queue (Blacklist). The
work pending queue shows work underway – the machine number a task was
assigned to, and the time the work was started.

The Ready Worker Queue is simply a list of all Worker processes (systems or individual
processors within a parallel system) that are waiting to receive new work. Trees are
dispatched to the Worker processes in a first in/first out manner. When a Worker process
completes work and returns an optimized tree to the Foreman process its ID is re-entered
in the Ready Worker Queue. This provides a certain measure of automatic load
balancing, as the fastest processors participating in the grid return results most quickly,
appear in the ready queue most frequently, and thus get a larger share of the calculations
than slower processors.

The Work Queue holds the largest amount of information. It includes one entry for each
Worker process currently at work optimizing a tree dispatched to it by the Foreman
process. Each entry includes the Worker ID, the start time, and the actual tree dispatched
to that worker. The Foreman process periodically checks through the Work Queue
looking for jobs that have taken longer than a user-specified timeout period. Whenever a
job has gone beyond the timeout limit without being completed by the Worker process,
two things happen. The tree that this Worker was optimizing is placed back in the work
queue to be dispatched to another Worker, and the Worker ID is placed on the Blacklist
so that no additional jobs are sent to it. (The program does have a facility for removing

Ready worker
queue

Work Pending Queue
Machine # Start Time

Blacklist

 11

worker processors from the blacklist and adding them back to the Ready Queue should
they give evidence that they are working again).

The modifications to fastDNAml make it possible to run fastDNAml in a grid context
effectively. IU developed one additional piece of code to cooperate with fastDNAml.
This is a 3-dimensional visualization of the intermediate steps as fastDNAml adds taxa
and marches its way through the treespace. Figure 6 shows a snapshot from this
visualization. One can, of course, navigate though the images displayed to hone in on any
particular feature of interest. This visualization was initially developed for demonstration
purposes, so that visitors to the iGrid booth at SC98 would have something to look at as
we discussed the evolutionary grid project. The visualization served this purpose well and
has additionally turned out to be a useful real-time diagnostic tool. FastDNAml
occasionally starts with an early combination of taxa that creates pathological oscillating
behavior in the tree as it is developing. That is, the incremental search through the space
of all possible trees starts in a place from which it is impossible to get to any reasonable
tree, and the structure of the tree simply oscillates back and forth among a variety of
unreasonable trees. It has proven to be quite easy to detect this sort of behavior in real
time using the 3D visualization, permitting such runs to be terminated and minimizing the
time wasted.

Figure 6. Three-dimensional depiction of the time course of tree development, as
taxa are added and trees optimized.
Performance of fastDNAml in an international grid setting

 12

For the iGrid project at SC98 we demonstrated use of fastDNAml distributed across
processors located at IU, NUS, and ACSys. IU and NUS each contributed time on 16
processors in an IBM RS/6000 SP (P2SC Thin Nodes, uniprocessor, 165 MHz). ACSys
contributed 8 DEC workstations (Digital Alpha 600 workstations, uniprocessor,
266MHz). As part of the demonstration we explored the performance characteristics of
fastDNAml. Figure 7 shows performance curves for fastDNAml running within one
system located at IU; distributed across two sites – IU and one of the two partners. For
these benchmarking runs we used precisely the same order of entry of taxa, but were able
to run just one job per combination. The total number of taxa used in these runs was 56.

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10 12 14 16 18

Processors

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

IU Only
IU&NUS
IU&ANU

Figure 7. Elapsed wall clock time to complete benchmark runs for fastDNAml.

A few things are quite clear from Figure 7. First, even with a fairly small test case, the
time to complete one run of fastDNAml is fairly significant – over half an hour. A
parallel job using 16 processors within one SP ran in under 5 minutes – but 16 processors
is a fairly significant portion of all but the upper end of the list of top 500 supercomputer
sites [17]. Running a parallel job on 16 processors when 8 were at IU and 8 were located
at one of the Pacific Rim partner sites took an elapsed time of under 7 minutes. The jobs
using all three sites simultaneously took, as one would expect, slightly longer per
processor than the jobs split across two locations. These times are for only one random
ordering of the taxa to be included. A realistic set of runs for a data set this size would
involve 100 random orderings – making any speedup significant in terms of the
processing of an entire set of orderings. There is another way to look at the speedup data.
If it is possible to increase the total processor count by as few as two processors by
distributing your job across multiple computers, the total wall clock time is reduced. In

 13

practical terms, this is the key result in demonstrating the value of grid computing as
applied to fastDNAml: picking up a very small number of processors – a seemingly
straightforward thing to do – by going to a grid approach reduces the time to solution.
(Or, more realistically, increases the size of the problem that can be attacked within the
time constraints imposed on the scientist.)

We have managed to accomplish some interesting biology. As part of the iGrid
demonstration, researchers investigated the evolutionary relationships among the
subcomponents of cytoplasmic coat protein (COP) complexes. Eukaryotic intracellular
membrane transport is mediated by vesicles whose formation involves specific COP
complexes. Of the seven COP (alpha, beta, beta', gamma, delta, epsilon, zeta) subunits
recognized so far, several yeast, fungal, rice, drosophila, mouse, rat, hamster, bovine
and/or human have been cloned and sequenced. The tree in Figure 8 shows the
phylogenetic relationships of COP subunit genes as determined by fastDNAml [18].

Figure 8. Phylogenetic tree of cytoplasmic coat proteins calculated during
demonstration at SC98.

Some thoughts on grid computing and future plans with fastDNAml

There are already two established models for computational grids. One is a grid
comprising geographically distributed facilities within one organization, such as NASA
[19]. Another model is a grid comprising some sort of formal alliance or consortium.
NCSA and NPACI are examples of this sort of grid [20,21]. This project establishes
another type of grid: a grid based on pooling and sharing resources within communities

 14

based on commonalities of discipline and use of community codes. This project is
different than other community code projects in that the sharing of cycles, designed in
particular to utilize processors during times of low local demand, is an explicit part of the
collaboration.

Our plans for the future are to continue with the ‘evolutionary biology grid’ as a
periodically available production service. We are also making further enhancements in
the grid-enabled version of fastDNAml, including an MPI [22] port that is now running
in production mode. Further enhancements in the structure of the code will make it
possible to use a single code base and specify the parallel communication library within a
set of user-specified parameters. This will significantly improve the longevity of the code
in that it will become less vulnerable to changes in the state of the art in parallel libraries.
We plan to have our port of the fastDNAml program available for download no later than
9/1/2000. Access to the code will be available from [23]. We also hope to pop up a level
of parallelism. As mentioned earlier, there are several implicit barriers created by the
need to find the best tree at each step in the search process. Thus when as few as four
processors are in use, it is not until the fifth taxa has been added to the search process that
it becomes possible to use all of the available processors simultaneously. We hope to
develop a version of the fastDNAml code that runs multiple randomizations of the taxon
entry order simultaneously. This should make the program easier to use, achieve better
scaling, and provide better searches of the peaks and valleys of the likelihood values
within the space of all possible trees.

This project arose out of a desire to do more and better biology. The key enabling factors
were the commonalities in interests and use of community codes by all of the partners,
and the existing high speed intercontinental network links. The fact that IU and NUS both
have significant IBM RS/6000 SP installations was a bit of good luck. IU’s previous
work porting fastDNAml to run under PVM on the IBM RS/6000 SP also ‘preadapted’
the code to run well in a grid environment. The willingness of system administrators to
help us overcome security issues was important. Perhaps more important was the
willingness on all sides to suspend accounting rules and put the doing of science first.
This enabled us to produce real scientific results and demonstrate the value of a grid-
based approach to evolutionary biology prior to attacking the complex problems of fair
use and accounting (which remain in “yet to be resolved” status).

In summary, we have demonstrated the practical value of a grid-based approach to the
most computationally intensive of the mathematical methods for construction of
evolutionary phylogenies, and in the process produced some notable results in
evolutionary biology. We have demonstrated what we believe is a largely new type of
computational grid – based on sharing of resources born of commonalities within
communities of interest – and that this type of grid can feasibly work to the advantage of
all participants. And we believe that there is significant work yet to be done in improving
the existing parallel versions of fastDNAml. This work will yield improvements in
scientists’ ability to advance our understanding of evolutionary processes, which has
significant practical value in addition to its value in enhancing our understanding of the
world around us.

 15

Acknowledgements

This work was greatly facilitated by IBM Shared University Research grants to Indiana
University in 1998 and 1999. All graphics other than Figures 1, 6, 7, and 8 were created
by W. Leslie Teach, Indiana University. System administrators at NUS and IU deserve
special thanks for their help with this project, including Mary Papakhian and Dan Lauer
of IU's Research and Technical Services group; Tan Chee Chiang of the NUS Computer
Centre's Supercomputing & Visualisation Unit; and Markus Buchhorn, Tim Littlejohn
and Tim Potter of ACSys CRC. Penny Studley, IU, did HTML layout of this paper.

References

[1] Smarr, L. 1999. Grids in context. pp1-14 In: The Grid: Blueprint for a new computing
infrastructure. I. Foster and C. Kesselman, eds. Morgan Kaufmann Publishers Inc., San
Francisco.

[2] Genbank: http://www.ncbi.nlm.nih.gov/

[3] GDB(TM) Human Genome Database [database online]. Toronto (Ontario, Canada):
The Hospital for Sick Children, Baltimore (Maryland, USA): Johns Hopkins University,
1990-. http://www.gdb.org/

[4] Felsenstein, J. 1981. Phylogenies from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17:368-376.

[5] Olsen, G. J., Matsuda, H., Hagstrom, R., and Overbeek, R. 1994. fastDNAml: A tool
for construction of phylogenetic trees of DNA sequences using maximum likelihood.
Comput. Appl. Biosci. 10: 41-48.

[6] Felsenstein, PHYLIP: http://evolution.genetics.washington.edu/phylip.html.

[7] NERSC Center for Bioinformatics and Computational Genomics, Computational
Structural Biology Scientific Simulation Initiative: http://cbcg.lbl.gov/ssi-csb

[8] Hershkovitz, M.A. and D.D. Leipe. 1998. Phylogenetic analysis. pp. 189-230 In A.D.
Baxevanis and B.F.F. Ouellette. Bioinformatics: A practical guide to the analysis of
genes and proteins. John Wiley & Sons, NY.

[9] Olsen, G. Home page: http://geta.life.uiuc.edu/~gary/

[10] McRobbie, M. K. Adams, D.F. McMullen, D. Pearson, J. Williams. 1998. A high
performance network connection for research and education between the vBNS and the
Asia-Pacific Advanced Network (APAN) Proceedings of INET 98 annual conference.

 16

[11] STAR TAP: http://www.startap.net

[12] Köhler, S. C.F. Delwich, P.J. Denny, L.G. Tilney, P. W. Denny, L.G. Tilney, P.
Webster, R.J.M. Wilson, J.D. Palmer, and D.S. Roos. 1997. A plastid of probable green
algal origin in Apicomplexan parasites. Science 275: 1485-1489.

[13] Palmer, J. Home page: http://www.bio.indiana.edu/

[14] Bioinformatics Centre, National University of Sinagapore: http://bic.nus.edu.sg/

[15] M.Brown, T. DeFanti, M. McRobbie, A. Verlo, D. Plepys, D.F. McMullen, K.
Adams, J. Leigh, A. Johnson, I. Foster, C. Kesselman, A. Schmidt, S. Goldstein. The
International Grid (iGrid): Empowering Global Research Community Networking Using
High Performance International Internet Services, INET '99, San Jose, June 22-25, 1998,
San Jose, California. http://www.startap.net/PUBLICATIONS/pubs.html#Application
Papers

[16] PVM (Parallel Virtual Machine): http://www.epm.ornl.gov/pvm/pvm_home.html

[17] Top 500 Supercomputer Sites: www.top500.org

[18] FastDNAML Phylogenetic Analysis of COP proteins using Supercomputing Grid
between National University of Singapore and Indiana University:
http://bic.nus.edu.sg/sc98.html

[19] NASA Information Power Grid: www.nas.nasa.gov/IPG

[20] NCSA. http://www.ncsa.uiuc.edu/

[21] NPACI. http://www.npaci.edu/

[22] MPI (Message Passing Interface) Forum: http://www.mpi-forum.org/

[23] High performance computing at Indiana University:
http://www.indiana.edu/~rac/hpc/index.shtml

