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Abstract

This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at ele-
vated temperatures. This is the fourth paper in our series of “Coupled Alkali Feldspar Dissolution and Secondary Mineral
Precipitation in Batch Systems”. In our third paper, we demonstrated via speciation–solubility modeling that partial equilib-
rium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90–300 �C
and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipita-
tion of secondary minerals (Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path mod-
els to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state
was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the
rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influ-
enced by the function of Gibbs free energy of reaction (DGr) in the rate laws.

To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system (Ganor et al.,
2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precip-
itation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional
domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given
kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation
rates remained 1.626, as in the batch system case (Ganor et al., 2007). Therefore, our simulation results demonstrated cou-
pling among dissolution, precipitation, and flow rates.

Results reported in this communication lend support to our hypothesis that slow secondary mineral precipitation explains
part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates (Zhu et al.,
2004). Here we show how the slow secondary mineral precipitation provides a regulator to explain why the systems are held
close to equilibrium and show how the most often-quoted “near equilibrium” explanation for an apparent field-lab discrep-
ancy can work quantitatively. The substantiated hypothesis now offers the promise of reconciling part of the apparent field-
lab discrepancy.
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1. INTRODUCTION

Numerous hypotheses have been proposed in the litera-
ture to explain the persistent apparent discrepancy between
measured field and laboratory feldspar dissolution rates
(for the discrepancy, see Paces, 1973; Siegel and Pfannkuch,
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1984; Velbel, 1990; Brantley, 1992; Blum and Stillings,
1995; Drever and Clow, 1995). These hypotheses include
the possible armoring effects of the secondary minerals that
coat the feldspar grain surfaces (Correns and Von Engel-
hardt, 1938; Correns, 1940; Helgeson, 1971, 1972; Luce
et al., 1972; Paces, 1973; Busenberg and Clemency, 1976;
Chou and Wollast, 1984; Nugent et al., 1998), the possible
effects of the leached layer (Luce et al., 1972; Busenberg and
Clemency, 1976; Chou and Wollast, 1984; Hellmann et al.,
1990; Brantley and Stillings, 1996; Hellmann, 1997; Nesbitt
and Skinner, 2001; Oelkers, 2001), the approach to satura-
tion with respect to feldspars (Burch et al., 1993; Gautier
et al., 1994; Oelkers et al., 1994; Oelkers, 2001; Beig and
Lüttge, 2006; Hellmann and Tisserand, 2006), unknown
biological effects, and inhibition by adsorbed Al3+ on feld-
spar surfaces (Chou and Wollast, 1985; Gautier et al., 1994;
Oelkers et al., 1994; Oelkers, 2001).

One distinction that differentiates field from laboratory
conditions is that weathering product minerals are often
intimately associated with the primary minerals in nature
(Banfield and Eggleton, 1990; Banfield et al., 1991; Banfield
and Barker, 1994; Nugent et al., 1998; Zhu et al., 2006; Her-
eford et al., 2007). Conversely, in laboratory experiments,
the precipitation of product minerals was often avoided
by adjusting the chemistry and recirculation rate of the fluid
phase. Recognizing the close association between the sec-
ondary and primary minerals in the field, Zhu et al.
(2004) proposed a new hypothesis (Zhu–Blum–Veblen or
ZBV hypothesis hereafter) for explaining the laboratory-
field discrepancy wherein the slow kinetics of secondary
clay precipitation is the rate limiting step and thus controls
the overall feldspar dissolution rate. Clay precipitation re-
moves solutes from the aqueous solution, maintaining a
condition of feldspar undersaturation. This makes addi-
tional feldspar dissolution possible, but the slow clay pre-
cipitation (or smaller effective rate constants with respect
to that for the dissolution reaction, see below) results in a
quasi-steady state in which the aqueous solution is near
equilibrium with feldspar. Therefore, slow clay precipita-
tion could effectively reduce feldspar dissolution rates by
orders of magnitude, in a fashion consistent with labora-
tory rates at conditions far from equilibrium, the control
of dissolution rates by the Gibbs free energy of the reaction,
and many field observations (Zhu et al., 2004).

To test this hypothesis, we have conducted experiments
of feldspar dissolution and secondary mineral precipitation
in batch systems. As these reactions are too slow to be mea-
sured under ambient temperature and circumneutral pH
conditions (Ganor et al., 2007), the experiments were con-
ducted at 200 �C and 300 bars. Although the secondary
minerals formed in these high temperature experiments
are different from clays formed under ambient, weathering
temperatures, the failure to achieve partial equilibrium un-
der hydrothermal conditions is highly likely an excellent
indicator that partial equilibrium with secondary minerals
is also not attained under weathering temperatures. In the
first of this series of articles, we presented new experimental
data, which documented the temporal evolution of aqueous
chemistry and secondary minerals (Fu et al., 2009). The sec-
ond paper is on CO2 effects on feldspar hydrolysis and it is
still in preparation. The third paper described the satura-
tion indices and reaction paths in terms of trajectories of
aqueous chemical evolution on equilibrium activity–activity
diagrams (Zhu and Lu, 2009). These articles document that
secondary minerals were not at equilibrium with the aque-
ous solutions, but their precipitation was likely controlled
by kinetic processes that are slower than the dissolution
rates. Partial equilibrium between secondary minerals and
aqueous solutions was not observed (Zhu and Lu, 2009).

In the present communication, we report results of numer-
ical reaction path modeling that simulate the feldspar hydroly-
sis experiments by matching modeling results with
experimental data. The reaction path modeling reported here
is different from the speciation and solubility modeling in Pa-
per 3 (Zhu and Lu, 2009). Speciation and solubility modeling
simulates a snapshot of a chemical system while the reaction
path modeling simulates processes. To simulate the experi-
mental processes, reaction path models use the initial experi-
mental solutions as a starting point. The course of the
chemical evolution in the system is set by the rate laws for pri-
mary mineral dissolution and secondary mineral precipitation.
In reaction path modeling, it is therefore necessary to make
assumptions regarding reactive surface areas and the appro-
priate forms that the rate laws should take. Both topics are
controversial and are presently undergoing intense research.

However, the reaction path models, reported here, give
rich quantitative information of the reaction processes
during these experiments. For example, the speciation–
solubility modeling did not tell how the dissolution and pre-
cipitation reactions are coupled quantitatively, but reaction
path modeling does, as shown in this paper. We should
emphasize that the batch systems are simple model systems
to test ideas of reaction kinetics before kinetic theories can
be applied to complex natural systems, e.g., without further
assumptions of flow and transport properties (Zhu, 2009).
It is a necessary step in the process of going from labora-
tory dissolution rate experiments at far from equilibrium
(e.g., mixed flow reactor with fixed solution chemistry) to
natural systems. However, simulation of reactive mass
transport in idealized model systems allows us to explore
the potential effects of fluid flow rates on the coupling of
dissolution and precipitation reactions.

2. CONCEPTUAL MODELS AND ASSUMPTIONS

The mathematical formulation of reaction path model-
ing has been extensively described before (Helgeson, 1968,
1979; Helgeson et al., 1969; Wolery, 1992). Essentially,
for a geochemical system that has n species, the following
ordinary differential equations completely define the geo-
chemical reaction network in a well-mixed reactor (Helge-
son et al., 1970),

dmi

dt
¼
X

j

ti;jri;j; i 2 n ð1Þ

where mi denotes the concentrations of ith species, t the
time, ti,j the stoichiometric coefficient for the ith species
in the jth reaction, and ri,j the production or consumption
rate of the ith species in the jth reaction. See Table 1 for
symbols and notations.



Table 1
List of symbols.

Symbols Explanations

aq Subscript: aqueous species
Ea Activation energy (J mol�1)
g g � |DGr|/RT

DGr,j Gibbs free energy of reaction for the jth reaction (J mol�1)
f(DGr) Function of Gibbs free energy of reaction in the rate law
k* Effective rate constant
k1 Rate constant for the first term of the empirical parallel rate law of Burch et al. (1993) (mol s�1 m�2)
k2 Rate constant for the second term of the empirical parallel rate law of Burch et al. (1993) (mol s�1 m�2)
kj Rate constant of jth mineral reaction (mol s�1 m�2)
K Equilibrium constant
mt,i Total concentrations of the ith aqueous constituent in molality
mi Molality of the ith aqueous species
m1 Empirical parameters fitted from experimental data for the first term of the empirical parallel rate law of Burch et al.

(1993)
m2 Empirical parameters fitted from experimental data for the second term of the empirical parallel rate law of Burch

et al. (1993)
n1 Empirical parameters fitted from experimental data for the first term of the empirical parallel rate law of Burch et al.

(1993)
Nj Moles of mineral j, per kg of water
Q Activity quotient
rj Rate of dissolution or precipitation of the jth mineral in mol s�1 kgw�1 (kgw = kg water)
SI Saturation index
Sj Surface area of the jth mineral
r Temkin coefficient in the rate law
� Include
Mineral abbreviations Albite, Ab; sanidine, San; quartz, Qtz
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The numerical techniques for solving this set of equa-
tions are well established (Wolery, 1992) and several com-
puter codes are now available for performing the
computation task. In our study, we used the computer code
PHREEQC (Parkhurst and Appello, 1999), but with our own
database for equilibrium constants at appropriate tempera-
tures, pressures, and customized rate laws. In the reaction
path models, we assumed that all homogenous reactions
are instantaneous i.e., that all aqueous species are at equi-
librium with each other. Aqueous speciation was modeled
for all fluid samples taking explicit account of mass bal-
ance, mass action, and charge balance constraints. Activity
coefficients for the charged aqueous species were calculated
from the extended Debye–Hückel equation or B-dot equa-
tion fitted to mean salt NaCl activity coefficients (Helgeson
et al., 1978; Oelkers and Helgeson, 1990). Activity coeffi-
cients for neutral or uncharged aqueous species were calcu-
lated from the Setchénow equation with a coefficient of 0.1.
Deviation from unity for activity coefficients for end-mem-
bers of feldspar or clay solid solutions that result from com-
positional impurities was neglected. The rates of mass
transfer between solid and aqueous phases are prescribed
by the rate laws described below.

2.1. Standard state thermodynamic data

In all calculations, the standard states for solids are de-
fined as unit activity for pure end-member solids at the tem-
perature and pressure of interest. The standard state for
water is the unit activity of pure water. For aqueous species
other than H2O, the standard state is the unit activity of the
species in a hypothetical one molal solution referenced to
infinite dilution at the temperature and pressure of interest.
Equilibrium constants (log K) for reactions were calculated
from the standard state thermodynamic properties for min-
eral end-members and aqueous species. The values of log K

and the sources of thermodynamic properties that were
used are listed in Table 2. In all cases, internally consistent
thermodynamic properties were used when possible. See
Zhu and Lu (2009) for a detailed discussion of the choices
regarding standard thermodynamic properties.

2.2. Rate laws

A general form of rate laws for heterogeneous reactions
may be written as (Lasaga et al., 1994),

rj ¼
dN j

dt
¼ kjSja

nþ
H

Hþ
gðIÞ

Y
a

ani
i f ðDGrÞ ð2Þ

where rj is the dissolution rate of the jth mineral
(mol s�1 kgw�1; kgw, kg water), Nj denotes the moles of
mineral j per kg of water (mol kgw�1), kj is the respective
rate constant (mol s�1 m�2), and Sj is the reactive surface
area of the jth mineral (m2 kgw�1). aHþ stands for the activ-
ity of hydrogen in the aqueous solution, and hence this term
accounts for the well-noted pH dependence of dissolution
rates. The term g(I) accounts for possible ionic strength
dependence of the rates. The term

Q
aani

i incorporates pos-
sible catalytic and inhibitory effects of aqueous species.
DGr (J mol�1) denotes the Gibbs free energy of reaction.

The term f(DGr) describes the effect of deviation from
equilibrium on the rate and represents the thermodynamic



Table 2
Equilibrium constants used in this study.

25 �C, 1 bar 200 �C, 300 bars 300 �C, 88 bars Reference

Aqueous reactions

H2O = OH� + H+ �13.995 �11.163 �11.297 (1)
Al3+ + H2O = Al(OH)2+ + H+ �4.964 �1.446 �0.22 (2)
Al3+ + 2H2O = Al(OH)2

+ + 2H+ �10.921 �3.63 �1.119 (2)
Al3+ + 3H2O = Al(OH)3

o + 3H+ �17.044 �7.301 �4.035 (2)
Al3+ + 4H2O = Al(OH)4

� + 4H+ �22.851 �11.572 �8.150 (2)
Al3+ + Na+ + 4H2O = NaAl(OH)4

o + 4H+ �22.90 �10.748 �6.63 (2)
Al3+ + SiO2

o + 2H2O = AlH3SiO4
2+ + H+ �2.357 1.86 3.188 (2)

Na+ + H2O = NaOHo + H+ �14.205 �11.087 �10.480 (3)
SiO2

o + H2O = HSiO3
� + H+ �9.585 �8.707 �9.430 (3)

SiO2
o + Na+ + H2O = NaHSiO3

o + H+ �7.754 �7.767 �7.986 (3)
Ca2+ + H2O = CaOH+ + H+ �12.833 �7.961 �6.435 (3)
K+ + H2O = KOHo + H+ �14.439 �10.939 �10.267 (3)
Cl� + Ca2+ = CaCl+ �0.292 1.146 (3)
2Cl� + Ca2+ = CaCl2

o �0.644 0.672 (3)
H+ + Cl� = HClo �0.710 �0.15 (4)
K+ + Cl� = KClo 0.456 (5)
Na+ + Cl� = NaClo �0.777 0.019 (3)
HCO3

� + H+ = CO2 + H2O 6.345 8.525 (3)
HCO3

� = CO3
2� + H+ �10.329 �11.461 (3)

HCO3
� + Na+ = NaCO3

� + H+ �9.455 �8.468 (8)
HCO3

� + Na+ = NaHCO3
o �0.103 2.002 (8)

HCO3
� + K+ = KCO3

� + H+ �9.455 �8.468 (8)
HCO3

� + K+ = KHCO3
o �0.103 2.002 (8)

Mineral dissolution reactions

NaAlSi3O8 (albite) + 4H+ = Al3+ + Na+ + 3SiO2
o + 2H2O 2.065 �2.508 �4.714 (6)

AlO2H (boehmite) + 3H+ = Al3+ + 2H2O 7.610 0.242 �2.530 (7)
AlO2H (diaspore) + 3H+ = Al3+ + 2H2O 7.191 0.02 �2.685 (6)
Al2Si2O5(OH)4 (kaolinite) + 6H+ = 2Al3+ + 2SiO2

o + 5H2O 4.501 �5.354 �9.443 (6)
KAlSi3O8 (microcline) + 4H+ = Al3+ + K+ + 3SiO2

o + 2H2O �1.05 �3.923 �5.694 (6)
KAl3Si3O10(OH)2

(muscovite) + 10H+ = K+ + 3Al3+ + 3SiO2
o + 6H2O

11.22 �5.407 �12.445 (6)

NaAl3Si3O10(OH)2

(paragonite) + 10H+ = Na+ + 3Al3+ + 3SiO2
o + 6H2O

14.397 �3.753 �11.164 (6)

Al2Si4O10(OH)2 (pyrophyllite) + 6H+ = 2Al3+ + 4H2O + 4SiO2
o �1.724 �9.733 �13.647 (6)

SiO2 (Quartz) = SiO2
o �4.047 �2.424 �2.033 (6)

KAlSi3O8 (sanidine) + 4H+ = Al3+ + K+ + 3SiO2
o + 2H2O �0.002 �5.499 (6)

KAlSiO4 (kalsilite) + 4H+ = K+ + Al3+ + SiO2
o + 2H2O 12.543 1.187 (6)

NaAlSiO4 (nepheline) + 4H+ = Na+ + Al3+ + SiO2
o + 2H2O 13.423 1.185 (6)

(1) Haar et al. (1984); (2) Tagirov and Schott (2001); (3) Sverjensky et al. (1997); (4) McCollom and Shock (1997); (5) Ho et al. (2000); (6) Holland
and Powell (1998) for minerals and (1), (2), and (3) for aqueous species; (7) Hemingway et al. (1991) for boehmite; (8) Alekseyev et al. (1997).
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driving force for chemical reactions (Prigogine and Defay,
1965; Aagaard and Helgeson, 1982). A simple form for
the rj � DGr relationship is proposed based on the transi-
tion state theory (TST) (Lasaga, 1981a,b; Aagaard and Hel-
geson, 1982),

f ðDGrÞ ¼ 1� exp
DGr

RT

� �� �
ð3Þ

This formulation of the free energy term has also been
termed the “linear TST rate law” because the relationship
between rj and DGr becomes linear near equilibrium.

However, a number of experiments near equilibrium
have shown that the actual relationship between rj and
DGr deviates from this so-called linear kinetics (Schramke
et al., 1987; Nagy et al., 1991; Nagy and Lasaga, 1992,
1993; Burch et al., 1993; Gautier et al., 1994; Alekseyev
et al., 1997; Cama et al., 2000; Taylor et al., 2000; Beig
and Lüttge, 2006; Hellmann and Tisserand, 2006). As
shown below, the linear TST rate law also cannot fit the
experimental data of Zhu and Lu (2009).

Different non-linear rate laws were proposed for feldspar
dissolution. For example, Alekseyev et al. (1997) intro-
duced a non-linear rate law in the form of,

f ðDGrÞ ¼ 1� Q
K

� �p����
����
q

ð4Þ

where Q is the activity quotient, K is the equilibrium con-
stant, p and q are fitting parameters. Burch et al. (1993) pro-
posed an empirical parallel rate law in the form of,

r=S ¼ k1½1� expð�n1gm1Þ� þ k2½1� expð�gÞ�m2 ð5Þ

where k1 and k2 denote the rate constants in units of
mol s�1 m�2, g � |DGr|/RT, and n1, m1, and m2 are empiri-
cal parameters fitted from experimental data. Note that the
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first term is equivalent to Eq. (4) if n1 = p, m1 = 1, and
q = 1. The second term is also equivalent to Eq. (4) if
p = 1 and m2 = q. In the reaction path modeling of the pres-
ent study, the rate law of Eq. (5) is used for albite and oli-
goclase dissolution. Rate laws for other mineral dissolution
and precipitation reactions will be discussed below as they
appear.
2.3. Reactive surface area

The concept of “reactive surface area (RSA)” (Helgeson
et al., 1984) is rooted in the theories of surface controlled
reaction kinetics. The rates of heterogeneous reactions are
proportional to the “concentrations” of reactive surface
sites. The RSA thus substitutes for site concentrations in
lieu of reactant concentrations in a first order rate law
(Zhu and Anderson, 2002). Apparently, RSA represents
the key scaling parameter for extrapolating from atomic
to laboratory and field scales. However, this concept is dif-
ficult to implement in practice. Different crystal faces have
different types of surface sites and site concentrations. Sur-
face topography (e.g., kinks, edges, and adatoms) and types
and densities of defects on mineral surfaces are difficult to
quantify. The “reactive site concentrations” would also de-
pend on whether and how deep a “leached layer” is devel-
oped near the mineral surfaces (Stillings et al., 1995;
Oelkers, 2001).

The common practice in geochemistry is to use the Bru-
nauer–Emmett–Teller (BET) surface area (Braunauer et al.,
1938) of the dry powder as a proxy for the RSA. However,
there are several challenges in substituting BET surface area
for RSA in Eq. (2). From a theoretical point of view, we are
using a single parameter to represent a variety of surface
sites with different reactivity and concentrations. The BET
SA is more physically based (gas adsorption and surface
roughness) than chemical in nature. From a practical point
of view, it is difficult to measure BET SA for a mineral with-
in a mixture and for secondary minerals with miniature
quantities. Often, the reactive surface areas are significantly
less than the BET surface area (Helgeson et al., 1984).

In an experiment, reactive surface area may vary due to
the growth or reduction of crystal sizes. In such cases, S

during dissolution or precipitation may be empirically re-
lated to the initial total surface area (So) by (Christoffersen
and Christoffersen, 1976; Witkamp et al., 1990; Zhang and
Nancollas, 1992; He et al., 1994)

S=So ¼ ðNt=N oÞP ð6Þ

where P is a coefficient that depends on the shape of the
crystal and the relative rates of dissolution (or growth) on
different surfaces. P equals to 2/3 if the shape of the crystals
remains unchanged and rates on all faces are equal. P val-
ues of 0.5 indicate that dissolution or growth occur pre-
dominantly in two directions while P values of 0 indicate
one direction (e.g., Witkamp et al., 1990).

The reactive surface areas may also vary during experi-
ments as a result of the extinction of highly reactive fine
particles (Helgeson et al., 1984), change of the ratios of
reactive and nonreactive sites (Gautier et al., 2001),
mechanical disaggregation of particles (Nagy and Lasaga,
1992; Ganor et al., 1999), and formation of surface coating
(Ganor et al., 1995; Nugent et al., 1998; Cubillas et al.,
2005; Metz et al., 2005).

It is even more difficult to estimate the reactive surface
areas for precipitating secondary phases. Precipitation of
a new mineral phase requires nucleation and crystal growth.
Currently, the lack of parameters prevents the application
of nucleation theories to the experiments that we examined
in this study (see review by Fritz and Noguera, 2009). For
modeling, it also presents a dilemma: precipitation cannot
proceed without surface area first; and without precipitates
at first, there are no surface areas for the secondary phases.
Although the size of stable nuclei can be calculated using
classical nucleation theory (Nielsen, 1964), there are no
strict ways to assess the reactivity of such nuclei.

In this study, we followed common practice in geochem-
istry and used the BET surface areas for starting reactants
in the reaction path modeling as the initial conditions.
Then, we assessed the possible temporal variation of reac-
tive surface areas from experimental data. When it was dif-
ficult to separate the effects of rate constant and reactive
surface areas from batch reactor data, we introduced an
effective rate constant, k*

k� ¼ k � S ð7Þ

where S stands for reactive surface area. k* has a unit of
mol s�1 kgw�1 if S has units of m2 kgw�1. Note that k*,
as a fitting parameter, in effect, could represent all terms
in the empirical rate law (Eq. (5)), except for the Gibbs free
energy term and other effects explicitly noted.

3. MODELING RESULTS AND ANALYSES

3.1. Albite dissolution–sanidine precipitation experiments

Alekseyev et al. (1997) conducted a series of batch exper-
iments for low albite (Na0.97K0.02AlSi3.01O8) dissolution in
0.1 m KHCO3 fluid. The experiments were conducted at
300 �C and 88 bars and pH �9.0 (buffered by bicarbonate).
The measured initial BET specific surface areas are
0.12 m2 g�1 for albite reactants. XRD and SEM results
show that the only secondary mineral formed was sanidine.

Alekseyev et al. (1997, shortened to Alek97) calculated
albite dissolution rates at the congruent stage (the first
7 h, cf. their Fig. 2) on the basis of molal concentrations
of Na, Al, and Si in the solutions, which are almost stoichi-
ometric. At the incongruent stages (7–1848 h), they used a
mass balance approach that accounts for primary mineral
dissolution and secondary mineral precipitation to calculate
reaction rates, which is essentially numerical inverse mass
balance modeling but with statistical rigor. For conve-
nience, we will reference the original values of rates, rate
constants, mineral abundances etc. reported by Alek97 as
“experimental data” although many of these values were
derived and not directly measured.

3.1.1. Congruent dissolution stage (0–7 h)

The first 7 h of the 1848 h experiments, according to
Alek97, showed essentially congruent dissolution of albite.
That was based on the stoichiometric ratios of Na, Al, and
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Fig. 1. Rates of albite dissolution in the first 7 h of experiments normalized to the initial BET surface areas (in mol m�2 s�1). Symbols denote
experimental rates (Table 3 of Alekseyev et al., 1997) and lines indicate different rate law expressions. Delta G values were calculated in Zhu
and Lu (2009). (a) The solid line represents rate law used in this study (Eq. (5)) with customized parameters. The dashed and dotted lines are
based on linear rate law (TST) and rate expressions from Alekseyev et al. (1997), respectively. (b) The dotted and dashed lines denote
calculated rates based on parameters from Burch et al. (1993) and Hellmann and Tisserand (2006), respectively.
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Si released into the solution (see below) and on the lack of
detectable sanidine in the reaction products. The experi-
ments started far from equilibrium, and congruent dissolu-
tion of albite was recorded in the DGr,Ab range from �59 to
ca. �20 kJ mol�1 (Fig. 1a). The initial mass/volume ratio
in the experiment was 2.5 g albite kgw�1 (9.52 � 10�3

mol kgw�1) and the initial specific BET surface area was
0.12 m2 g�1. During the first 7 h, about 8% of the albite
was dissolved. The amounts of remaining albite N (mol
kgw�1) at the time of interest were roughly estimated from
the mass balance,

N i � N i�1 � ri � ðti � ti�1Þ
� �

ð8Þ

where i stands for the ith sample in the batch series, t for
time (s) and r for the rate of dissolution in units of
mol s�1 kgw�1 as reported by Alek97. The amount of albite
was reduced to �8.8 � 10�3 mol at 7 h according to Eq. (8).
It must be emphasized that Eq. (8) only gives rough esti-
mates of the albite mass in the reactor. For simplicity, we
assumed that the total surface area of albite SAb remained
constant during the first 7 h. This assumption resulted in
an underestimation of the dissolution rate towards the
end of 7 h.

The experimental data allowed the fitting of k1, m1 and
n1 in Eq. (5). The fitted k1 value (4.35 � 10�7 mol s�1 m�2)
at far from equilibrium condition (i.e., at DGr,Ab = �59
kJ mol�1) is consistent with the independent data of Hell-
mann (1994) for Amelia albite (log k = �6.2 or k =
6.3 � 10�7 mol s�1 m�2 at pH 8.6 and 300 �C). To fit the
shape of the r � DGr,Ab curve, we used m1 = 6 and n1 =
5 � 10�6. Because all experimental data were in the range
DGr,Ab < �16 kJ mol�1, the second term of Eq. (5) could
not be determined with the Alek97 data. Fig. 1a compares
the predicted change in the albite dissolution rate (r) vs.
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Fig. 2. Temporal evolution of dissolved constituent concentra-
tions: (a) Na; (b) Al, and (c) Si. Symbols denote experimental data;
lines results from numerical reaction path model simulation. The
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1848 h. Error bars indicate 10% uncertainty in analytical measure-
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deviation from equilibrium (DGr,Ab) to the experimental
observations and to the rate laws of Alek97 and TST.

Note that the r � DGr,Ab curve (dotted curve in Fig. 1a)
calculated with Alek97’s rate law (Eq. (4)), slightly over-
predicted the experimental data while it matched well with
their Fig. 7. This is because we re-calculated the DGr,Ab val-
ues with a different thermodynamic database (Zhu and Lu,
2009), which shifted the data points �4.34 kJ mol�1
towards lower DGr,Ab. The parameters we used for the first
term (k1, m1, and n1) yielded a slightly better fitting of albite
rates as a function of DGr,Ab than the rate law of Alek97 re-
calculated with our thermodynamic database (Fig. 1a).
Although both Eqs. (4) and (5) fit the experimental
r = f(DGr) data well and both show asymptotical behavior,
the predicted rates closer to equilibrium are quite different,
with Eq. (4) predicting impossibly slow rates toward equi-
librium as a result of its mathematical form. These slow
rates do not agree with experimental data of Burch et al.
(1993), Taylor et al. (2000), and Beig and Lüttge (2006)
(cf. Fig. 6 of Zhu, 2009). The TST linear rate law (i.e.,
Eq. (3)), fitted to the initial rate constant far from equilib-
rium, led to serious over-estimation of dissolution rates at
near equilibrium (dashed line in Fig. 1a).

The experimental data described a sigmoidal shape for
the r = f(DGr) function. Burch et al. (1993) showed a steep
slope for albite dissolution at 80 �C and pH 8.8 while Hell-
mann and Tisserand (2006) proposed a gentler slope for al-
bite dissolution at 150 �C and pH 9.2. Neither of their m1

and n1 pairs would fit the experimental r � DGr,Ab data
(Fig. 1b).

In short, the experimental data for congruent dissolu-
tion of albite in the first 7 h have adequately defined k,
and, to some extent, a sigmoidal r = f(DGr) . It is clear that
the experimental data cannot be represented by a linear
TST rate law. It is also clear that the rate law proposed
by Alek97 (Eq. (4)) and regressed from the 0 to 7 h exper-
imental data predicts unrealistically slow rates close to equi-
librium. We will demonstrate, below, that the sigmoidal
r � DGr,Ab plays a significant role in defining how the reac-
tions are coupled and how the ZBV hypothesis can be ap-
plied to field data. However, we must remember Eq. (5) is
an empirical expression. In Section 3.2, we will add the
parameters of the second term in Eq. (5), which only affects
the later (and closer to equilibrium) period of the
experiment.

Note that it is well-known that pristine fresh feldspar
surfaces undergo rapid ion-exchange with cations (e.g.,
K+, H3O+) in the solution at the onset of the experiments
(e.g., Garrels and Howard, 1957). This phenomenon was
also observed in the Alek97 experiments. Alek97 attributed
0.18 mmol kgw�1 Na+ in the first fluid sample from these
surface exchanges as well as impurity in chemical regents,
and subtracted it in the rate calculations. We followed
Alek97 in the reaction path simulations described below.
Also note that the term “ion-exchange” in the literature
sometimes also refers to replacement reactions (see
Section 3.1.2).
3.1.2. Steady state dissolution of albite and precipitation of

sanidine (�672–1848 h)

During the second stage of the experiment (7–672 h),
sanidine nucleation occurred, which was followed by its
precipitation. As geochemical models are currently limited
in dealing with nucleation, we will first discuss here the last
stage of the experiment (672–1848 h). During this stage, the
system was in a quasi-steady state, during which concentra-
tions of some elements (e.g., Al and Si) but not all (e.g., Na)
were almost constant (Fig. 2). The rates of albite dissolu-
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tion rAb approximately, although not exactly (see below),
were equal to the rates of sanidine precipitation rSan on a
mol s�1 kgw�1 basis (Fig. 3),

jrAbj � jrSanj ð9Þ

Note that discrete sanidine crystals were formed on albite
surfaces or dissolution cavities in the experiments (Aleks-
eyev et al., 1997). Therefore, the dissolution–precipitation
process at 300 �C is fundamentally different from that at
higher temperature (e.g., 600 �C), during which isomor-
phous replacement or “ion-exchange” reactions occurred
(Putnis, 2002; Labotka et al., 2004).

Significant amounts of albite were dissolved from 672 h to
1848 (�5.8 � 10�3 mol kgw�1 at 672 h, and 65% of that was
dissolved at 1848 h) so that we must account for the variation
of reactive surface areas associated with the change of albite
mass. The parameters in Eq. (5) k1, m1, and n1 for albite had
already been fitted from the congruent dissolution data (0–
7 h). However, the parameters for the second term in Eq.
(5), m2 and k2, could not be determined using the Alek97 data
at the congruent stage, in which dissolution occurred rela-
tively far from equilibrium and therefore the first term of
Eq. (5) dominated dissolution rates. The dissolution rates
during 672–1848 h were mainly affected by reactive surface
areas and also slightly by the second term of Eq. (5). We in-
cluded the second term by assuming that the ratio of k1/
k2 = 56.67 and m2 = 1.17 are the same as those of Hellmann
and Tisserand (2006). However, the effects of including the
second term in Eq. (5) are small in our study and the conclu-
sions below are not affected by this assumption. With these
parameters, we can calculate the ratio between the experi-
mental rates rSan

Ab and the rates computed from Eq. (5):

rexp
Ab =r� ð10Þ

where

r� ¼ So
Abfk1½1� expð�n1gm1Þ� þ k2½1� expð�gÞm2�g ð11Þ

and So
Ab (m2 kgw�1) is the initial surface area in the reactor

for the time period of interest.
The ratios so calculated from Eq. (10) represent changes
of reactive surface areas if all the fitting parameters are con-
stant throughout the experiment and all additional factors
not accounted in Eq. (11) are negligible for the period
672–1848 h (e.g., Al inhibition). Apparently, the calculated
values of r* depend on the k2 and m2 values that are used.
Use of Burch’s k1/k2 and m2, for example, would produce a
different set of r* values. However, for the Alek97 experi-
ments, the first term in Eq. (11) is dominant, even during
672–1848 h.

It turned out that a decrease of the reactive surface area
by a factor of 2.4 from 672 to 1828 h was necessary and the
temporal evolution of the reactive surface areas can be
approximated by an expression of ðN t=N o

672 hÞ
2=3 for

t = 672–1848 h, which is not the best fit, but suits the prin-
ciple of parsimony. The best fit was obtained with
ðN t=N o

672Þ
0:8. As indicated previously, this P value of �2/3

may indicate that albite dissolution rates were approxi-
mately equal on all faces, and the shape of albite grains
did not change during the dissolution.

To fit the sanidine precipitation rate data, we used the
classic Burton–Cabrera–Frank (BCF) theory for crystal
growth (Burton et al., 1951),

rSan=SSan ¼ �k e
DGr
RT � 1

� �2

ð12Þ

where all symbols are as presented before. The negative sign
ensures proper accounting during the simulation.

As mentioned in Section 2, the reactive surface areas for
the precipitating solids are difficult to estimate and the
experimental data really defined the effective rate constant
k�. The temporal evolution of k� can be evaluated from
the equation,

k� ¼ k � SSan ¼ �rSan= e
DGr;San

RT � 1
� �2

ð13Þ

where DGr,San was calculated according to Zhu and Lu
(2009). The calculated k� values correlate linearly with
ðN t

SanÞ
0:5 (Fig. 4). This correlation cannot be used to derive

the reactive surface area of sanidine, but numerically, is suf-
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ficient to model the change in dissolution rate using the rate
law,

rSan ¼ �k0 N t
San

	 
0:5
e

DGr
RT � 1

� �2

ð14Þ

with a k0 value of 3 � 10�9 mol m�2 s�1.
In the simulation, the starting point was the experimen-

tal concentrations of Na, Si, Al and the estimated NSan at
672 h (these were batch experiments and each batch was
not connected). The simulation results matched well with
the experimental data. The good fit is demonstrated by
the Na, Al, Si concentrations (Fig. 2), the Si:Al and Si:Na
ratios (Figs. 5 and 6), albite dissolution and sanidine precip-
itation rates (Fig. 7a and b), the saturation indices (Fig. 8),
ratios of rAb/rSan (Fig. 3), and the mass of albite and sani-
dine remaining in the batch reactors at the end of the exper-
imental runs (Fig. 9).

The overall dissolution–precipitation reaction is,
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Fig. 6. Proportions of Si and Na concentrations over time.
Symbols denote experimental data (Alek97); lines result from
numerical reaction path model simulation. Stoichiometric and
congruent dissolution of albite would result in Na:Si = 1:3. The
experimental Na/Si ratios fall on the Na:Si = 1:3 line for the first
7 h, then significantly deviated from 1:3 when sanidine started to
precipitate.
NaAlSi3O8 þKþ ! KAlSi3O8 þNaþ ðR1Þ

As albite is dissolved, Na+ concentrations increased while
the Al3+ and Si concentrations remained almost constant
(Fig. 2) and the Al:Si ratios are almost 1:3 (Fig. 5). Because
Na+ increased, Saturation index (SI) for albite increased
with time (Fig. 8) and hence the slight decrease of rAb with
time (Fig. 7a). Sanidine rates also decreased with time
(Fig. 7b).

Of particular note is the simulated r � DGr. Alekseyev
et al. (1997) discussed the peculiar experimental data of
the incongruent stage for both albite and sanidine. We will
discuss them later in more detail, but here we focus on the
reactions that occurred between 672 and 1848 h. The simu-
lated r � DGr matched well with experimental data between
672 and 1848 h (Fig. 10a). The decrease of rAb was due to
both a slight increase of DGr,Ab and a decrease of SAb.
For sanidine, the simulation also matched well with exper-
imental sanidine rates (Fig. 7b). Note that Fig. 10a and b
are different from Fig. 1a and b because the rates are ex-
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pressed as mol s�1 kgw�1 so that the rate changes are a
function of both DGr and Sj. The agreement, therefore,
indicates that the formulae for S(t) as a function of moles
of albite and sanidine and the BCF model of sanidine pre-
cipitation generated acceptable approximations.

The simulations based on these assumptions generated
results that match the experimental data for the period
672–1848 h. The most important result is a quasi-steady
state in terms of rAb/rSan ratios that are almost unity. This
important conclusion is not related to more assumptions
below, which are needed to simulate the experimental peri-
od 7–504 h.

3.1.3. Albite incongruent dissolution with initiation of

sanidine precipitation (7–504 h)

The Alek97 experiments started with an aqueous solu-
tion that was undersaturated with respect to sanidine. The
sanidine SI rose rapidly, becoming supersaturated at 1.5 h
and reaching a maximum of �1.0 at 24 h (Fig. 8). From
that point on, the sanidine SI decreased linearly, approach-
ing but not reaching zero. This SI temporary evolution is a
typical result of competition between continued primary
mineral dissolution and secondary mineral nucleation and
growth (Fritz and Noguera, 2009).
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The beginning of sanidine nucleation was marked by a
perturbation of Al and Si concentrations (Fig. 2b and c)
and also SI of albite, which first increased rapidly until
reaching a maximum at 24 h, then decreased from 24 to
72 h, and finally increased linearly from 72 to 1848 h
(Fig. 8). Because of the similarity of the albite and sanidine
structures, sanidine nucleation is expected to be on albite
surface sites. It is apparent that nucleation of sanidine on
albite surfaces caused a dramatic decrease of the albite dis-
solution rate (Fig. 7a). rAb decreased monotonically during
the first 48 h, even though there is an albite maximum in SI
during this period (7–48 h, Fig. 8). This observation indi-
cates that the rAb decrease was not merely a function of
DGr,Ab. It appears that changes of reactive surface area
must also have contributed.

Such reduction of the “reactive surface area” cannot be
accounted for by the reduction in the physical surface areas
(be geometric or BET), but only by the blocking of the reac-
tive surface sites on albite, due to the presence of an inhib-
itor or due to surface coating. It has been shown in several
studies that dissolution rates of feldspar are retarded in the
presence of Al (Gautier et al., 1994; Oelkers et al., 1994;
Oelkers, 2001). However, the experimental data of Alek97
show that Al concentrations are 1.02, 1.01, 1.04, and
1.01 mM at 7, 16, 24, and 48 h, respectively. As the drastic
reduction of rAb coincided with almost constant Al concen-
trations for 7–48 h (Fig. 11), Al inhibition alone cannot ex-
plain the reduction in albite dissolution rates here. We
suggest that the reduction in rAb was due to the nucleation
of sanidine on the albite surface. From 7 to 48 h, the
amount of sanidine increased from 0 to 0.04 mmol kgw�1.
As the amount of albite (8.7 mmol kgw�1) was much high-
er, one can argue that the amount of growing sanidine is
not sufficient to fully cover the surface of albite. However,



Fig. 11. Rate of dissolution of albite as a function of dissolved Al
concentrations. Rates are expressed in mol s�1 kgw�1.
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mineral dissolution (as well as crystal growth) mainly oc-
curs on the reactive surface sites that are provided by kinks,
and a full blockage of these sites can still be attained with
relatively small amounts of coating. For example, it has
been reported that only a few percent of a crystal surface
needs to be covered with an inhibitor to achieve total block-
age of the crystal growth process (Liu and Nancollas, 1975;
Weijnen and Van Rosmalen, 1986; Hoch et al., 2000). It is
expected that sanidine nucleation would mainly occur at or
near the sites were albite dissolution occurred, as (1) these
sites may provide a template for nucleation and (2) the
oversaturation may be somewhat higher near the dissolving
sites due to the local supply of Al and Si. Indeed, Alek97
observed that crystals of sanidine were nucleated mainly
on the walls of dissolution cavities in albite (see Fig. 4c of
Alek97).

However, even though the experimental evidence
pointed out nucleation on albite surface as the probable
cause for the reduction of albite reactivity, modeling this
process quantitatively is still impossible at the present time
(see review by Fritz and Noguera, 2009). An ad hoc ap-
proach must be used instead. If we assume that the first
term in Eq. (5) has adequately accounted for the r � DGr ef-
fects (in fact the second term as described in the previous
section has little effect here because of the distance from
equilibrium), we can compute the ratios between rates pre-
dicted from Eq. (5) with the initial surface area So

j and the
experimental rates. The ratios can be regarded as the cor-
rection factors Y (Y ¼ So

j k1½1� expð�n1gm1Þ�=rexp). Y needs
to be 4�, 6�, 20� smaller at 16, 24, and 48 h, respectively.
Apparently, during this period of sanidine nucleation, the
change in the reactivity of the albite cannot be described
by the formula (N/No)0.67 that was used for 672–1848 h in
Section 3.2, which here can only provide a correction factor
of 1.05. It seems that the decrease in albite reactivity from 7
to 48 h is independent of the change in albite concentration.
To describe this change in reactivity, we used a time depen-
dent Y function. The regression of Y generated Y = e0.0661t

where Y appears in the denominator in Eq. (5) and t is the
reaction time in hours. With this empirical fitting, the
experimental data of the first 48 h were approximately
reproduced.

Alek97 noted that, for the incongruent dissolution stage,
the rAb � DGr,Ab relationships were erratic, in a horseshoe
shape, as shown in Fig. 10a. At first glance, this experimen-
tal observation defies the TST, but these rates are not nor-
malized to the reactive surface area. This horseshoe shape
could be explained by the coalescence of sanidine nucleus
and particles. At this stage (48–504 h), the degree of oversat-
uration with respect to sanidine is much lower than that dur-
ing the peak of the nucleation stage (around 16 h).
Numerical modeling of simple precipitation and growth of
clay particles in model systems show that the small particles
initially created are subsequently destabilized and resorbed.
Only some classes of particles survive and grow (Fritz and
Noguera, 2009). This process appears to explain the increase
of reactive surface areas and albite dissolution rates from 48
to �500 h (Fig. 7a) while rAb apparently correlates posi-
tively with the increase of DGr,Ab (Fig. 10a). Currently, we
cannot predict the increase in albite reactive surface area,
and therefore we need to employ empirical functions that
would describe it. The Y function Y = 4600.5t�1.202 for
48–504 h helped the match between simulated and experi-
mental values. The simulation also matched well with the
non trivial rAb � DGr,Ab relationship (Fig. 10a).

3.1.4. Sanidine precipitation (7–672 h)

The precipitation of sanidine 7–672 h was constrained
by experimental data rSan, and Na:Si ratios (Figs. 6 and
7b). rSan increased with time until about 504 h (Fig. 7b).
This monotonic increase coincided with an increase, a de-
crease, and an increase again of sanidine SI (Fig. 8). The
sanidine r � DGr relationship is also erratic, with an in-
crease of rSan coinciding with a decrease of DGr,San during
7–504 h and forming a horseshoe shape for the entire exper-
imental period (Fig. 10b). However, close inspection shows
that r � DGr is not randomly distributed, but follows a
strict chronological order of increasing rates with increasing
time from 48 to 504 h (Fig. 10b).

The BCF theory-based approach, combined with an
empirical formula for reactive surface area increase (Eq.
(14)), appears to account well for the competing effects of
DGr and SSan. Rates increased to 504 h due to the rapid in-
crease of reactive surface areas despite a slight decrease of
DGr,San. After 504 h, the decrease of DGr,San offset the small
increase of SSan and the overall precipitation rates declined.
The decrease of DGr,San was caused by the slowdown of al-
bite dissolution. The reaction path model was able to sim-
ulate the horse shoe shaped r � DGr without excess
fitting. Note that the wiggles around 24 and 120 h in
Fig. 10b are due to changes of SI. The simulation was able
to catch all these variations.

3.1.5. Simulation of the entire experiment period (0–1848 h)

and beyond

When all the time segments discussed above were put to-
gether in a model and the entire period of the experiment
was simulated at once, the results matched well with the
experimental data (Figs. 2, 3, 5–10, and 12). It should be
noted that DGr,Ab never reached values >�16 kJ mol�1
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(Fig. 10a). The experiments experienced a period when sani-
dine precipitation proceeded faster than albite dissolution
as sanidine was nucleated (Fig. 3). After �300 h, a quasi-
steady state was reached where |rAb|/|rSan| is close to unity
(Fig. 3). The simulation shows that the ratio was stabilized
at �0.98. It should be pointed out that a poor match for
sanidine simulations in the early stage of our trial and error
simulations would not grossly upset the simulated |rAb|/
|rSan| in a later time. The system appears to revert to a qua-
si-steady state regardless.

We also performed predictive simulations, extending to
4445 h, beyond the experimental duration of 1848 h. All
albite was dissolved at ca. 3650 h. Sanidine continued to
precipitate until equilibrium was reached at ca. 4170 h
(Fig. 13a). The ratios of |rAb|/|rSan| remain at 0.98
(Fig. 13b). Note that due to the coupling between albite dis-
solution and sanidine precipitation, albite never reached
equilibrium with the aqueous solution, but continued to
dissolve at almost the same degree of undersaturation
(DGr,Ab � �16 kJ mol�1).
3.2. Feldspar hydrolysis batch experiments at 200 �C and

300 bars

The two feldspar hydrolysis batch experiments were
described in detail in Zhu and Lu (2009). The batch exper-
iments dissolved alkali feldspar (Na0.95Ca0.04 K0.01Al1.04-

Si2.96O8 and K0.85Na0.15Al1.04Si2.97O8 laminae) in �0.20 M
KCl–HCl solution with 50 mM CO2 for 5 and 27 days.
The experiments were conducted at 200 �C and 300 bars.
The precipitates were identified as mainly boehmite and
possibly trace of muscovite after five days. The retrieved
solids from the 27 day batch show much more coverage
of secondary minerals on feldspar grains than those after
5 days, but XRD analysis was not successful. The approx-
imately 1:3 Na:Si ratio in the aqueous solution indicates
stoichiometric dissolution of albite. The amount of musco-
vite or microcline precipitation must be negligible.

To model albite dissolution, we used Eq. (5) and a far
from equilibrium k1 derived from Hellmann et al. (1990)’s
albite dissolution experiment at 225 �C (pH 3.66) with an
activation energy Ea of 50 kJ mol�1. For the exponent
parameters and k1/k2 ratio in Eq. (5), we adopted the values
from Hellmann and Tisserand (2006). Only a small percent-
age of albite was dissolved in the experiment so that we
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assumed that the reactive surface areas of albite remained
constant during the experiments. The measured BET SA
0.132 m2 g�1 was used for the reactive surface area.

For boehmite precipitation, we essentially followed
Bénézeth et al. (2008) and used the rate law,

rBhm ¼ �k�ðHþÞ1:7 e
DGr
RT � 1

� �
ð15Þ

Bénézeth et al. (2008) conducted boehmite precipitation
experiments for pH 6–9 at 100.3 �C. They found that the
TST f(DGr) function fit to their data and the precipitation
rate is a function of pH. Boehmite precipitation in our
experiments occurred in the pH range of 4.5–5.1, slightly
more acidic than the experimental conditions of Bénézeth
et al. (2008). Nagy (1995) documented V-shaped pH depen-
dence of aluminum oxyhydroxides dissolution rates and
proposed an exponent of 1.7 for hydrogen concentrations
for acidic solutions, which we adopted.

In the reaction path model, the only fitted term in Eq.
(15) was the effective rate constant k�Bhm, which was assumed
to be constant here because the reactive surface areas for
boehmite could not be assessed independently. The first
aqueous sample was taken after 24 h. Therefore, the exper-
imental data probably represent the stage where the initial
nucleation of boehmite was already passed.

Such a simplistic model matched well with the solution
chemistry evolution in the first 312 h of the experiments
(Fig. 14). Si and Na concentrations increased rapidly (0–
312 h) as albite dissolved first starting from the condition of
far from equilibrium, but the increase decelerated due to the
f(DGr) term in the rate law. The Al concentrations appear to
reach a quasi-steady state as a result of the competition be-
tween albite dissolution and boehmite precipitation. The pH
increased because boehmite precipitation consumes H+. Note
that the dominant Al species is Al(OH)4

� in this experiment
(Zhu and Lu, 2009). The predicted SI over time matched well
with speciation–solubility calculations for both primary min-
eral (albite) and secondary mineral (boehmite) (Fig. 15).

Essentially, the reaction path model simulated albite
dissolution,

NaAlSi3O8 þ 2H2O! Naþ þAlðOHÞ4� þ 3SiO2ðaqÞ ðR2Þ
and boehmite precipitation,

AlðOHÞ4� þHþ ! AlOðOHÞ þ 2H2O ðR3Þ

The albite dissolution and boehmite precipitation reactions
are closely coupled. Change of k�Bhm and hence the boehmite
precipitation rate resulted in changes of albite dissolution
rate and predicted Si and Na concentrations. In other
words, the k�Bhm was constrained by both Al and Si–Na–H
concentrations. The ratios of albite dissolution and boehm-
ite precipitation rates are unity on a mol s�1 kgw�1 basis
although the individual rates decreased rapidly as solutes
accumulate in the solution (Fig. 16). The stoichiometric rate
ratio is 1:1, reflecting the overall reaction,

NaAlSi3O8ðalbiteÞ þHþ ! AlOðOHÞðboehmiteÞ
þNaþ þ 3SiO2ðaqÞ ðR4Þ

This result is significant and consistent with the conclusions
in Section 3.1 and Ganor et al. (2007). Note that the above
modeling results are largely predictive. No fitting parame-
ters were used for albite. The only fitting parameter was
k�Bhm, which was constrained by the Si, Na, Al, and H data.
The assumption of a constant reactive surface area cannot
be true as no boehmite seeds were used in the experiments
and boehmite reactive surface areas have certainly grown.
Another assumption was that the albite dissolution rate is
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independent of pH, which was not a large factor for the first
312 h, but will artificially over-predict the albite dissolution
rates for the late stage.

However, the above simple reaction path model can only
match the 312–648 h experimental data by ad hoc adjust-
ment of the pH in the model to experimental values (Figs. 14–
17). Here the in situ pH values in the reactor were calculated
from pH measured at room temperature and re-calculated to
the experimental temperature via speciation–solubility mod-
eling (Reed and Spycher, 1984; Zhu and Lu, 2009). While the
values were calculated from modeling and these values can-
not be verified independently, the model was applied consis-
tently and hence the trend is probably reliable. We noted that
measured CO2(aq) concentrations decreased to 44 mM from
the starting concentrations of 50 mM around 300 h. How-
ever, modeling calculations show that possible degassing
cannot account for the large increase of pH as observed.

We should mention that, with exception of pH after
312 h, the experimental data constrain the rate laws. A
change in the form of the rate law or its parameters would
result in a mismatch with the experimental data. For exam-
ple, if we had used a BCF rate law for boehmite precipita-
tion instead but kept all other parameters the same in Eq.
(15), the predicted Al concentrations after 312 h would be
too low. The order of H+ concentration in Eq. (15) was
constrained by the Al concentration increase after 312 h.
A higher order would be a better fit. Different sets of expo-
nents in Eq. (5) for albite dissolution would result in a mis-
match with the experimental data as the curvature of Si and
Na increase over time define the f(DGr) dependence of albite
dissolution. Therefore, while the batch experimental data
did not define a unique reaction path model, it was at least
narrowed down to a limited sets of plausible models.

4. DISCUSSIONS

4.1. The influence of f(DGr) and Sj on the coupling of

reactions

Although the inter-dependence between dissolution and
precipitation reactions has been discussed before in the lit-
erature (e.g., Alek97), the development of a numerical mod-
el allows us more freedom to explore this relationship
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quantitatively. Let’s look at the simulation of Alek97
experiments discussed in Section 3. On the basis of
mol s�1 kgw�1, we have |rAb| � |rSan| after a hiatus of sani-
dine nucleation and coalescence. In the period of 672–
1848 h when the issue of sanidine nucleation and coales-
cence has passed and speculative assumptions of reactive
surface areas for albite were no longer necessary, we have,

k1=kSan 1�e�n1
DGr
RTj jm1� �

þ k2=kSan 1� e�
DGr
RTj j

� �m2
� �

Ab

= e
DGr
RT �1

� �2

San

¼ SSan=SAb

ð16Þ

Since the kj are constant, as well as all other empirical expo-
nent parameters, Sj and DGr are the only temporal variables
in the equation and they co-evolved. In our simulation for
672–1848 h, SAb decreased and SSan increased so that SAb/
SSan decreased with time. The DGr,San/DGr,Ab decreased cor-
respondingly by decreasing DGr,San while maintaining an al-
most constant DGr,Ab.

These relationships quantitatively demonstrate the clo-
sely coupled or mutual dependant nature of precipitation
and dissolution reactions. In fact, these two reactions are in-
ter-locked. They reached a quasi-steady state at DGr,Ab �
�16 kJ mol�1 with a reduction of two orders of magnitude
of rAb (or a rAb=ro

Ab of 0.01) due to the f(DGr) effects. rAb,
on the other hand, decreased as SAb decreased. However,
the system did not move closer to albite equilibrium; albite
continued to dissolve at DGr,Ab � �16 kJ mol�1 until all
the albite was dissolved after ca. 3650 h (Fig. 13). Thus,
the system is “arrested”, in terms of preventing albite from
reaching equilibrium.

The interpretations of the Alek97 experimental data are
non-unique. This is particularly true as reactive surface
areas and f(DGr) co-evolved during these batch reactor
experiments. The “experimental” reactive surface areas
were deduced from the residues of the f(DGr) effects. How-
ever, the rate laws for dissolution and precipitation, while
affecting the deduced Sj, do not alter the fact of the cou-
pling. During the trials and errors of developing a reaction
path model in order to match the experimental data, we had
used the first term in Eq. (5) only for albite dissolution and
used Alek97’s rate law of sanidine dissolution for sanidine
precipitation. The omission of the second term resulted in
requirements of higher SAb for 672–1848 h. In other words,
the second term of Eq. (5) only started to affect the results
after 360 h. The relationship |rAb| � |rSan| still held and the
system was “arrested” at the same quasi-steady state at
DGr,Ab � �16 kJ mol�1.

As we pointed out before, there is no experimental basis
for the second term from the Alek97 or the Hellmann and
Tisserand (2006) experimental data. The use of the Burch
et al. (1993) parameters for the second term, for example,
would result in significant revisions of the reactive surface
areas in order to match experimental data. However, this
is not going to change the outcome of coupling. Likewise,
the use of Alek97’s rate law for sanidine precipitation had
resulted in different fittings of the reactive surface areas
for sanidine. The same coupling outcome was obtained
(|rAb| � |rSan| and the system “arrested” at the same quasi-
steady state at DGr,Ab � �16 kJ mol�1).

Such a quasi-steady state is important for us to interpret
field and laboratory experimental data. First, field samples
are difficult to interpret as many coupled reactions in a net-
work could go on simultaneously. Indeed, an inter-locked
reaction network is the most likely case for any given field
site. Second, on the other hand, observed close coupling of
reactions helps us to understand why in some field sites
feldspar dissolution rates are orders of magnitude slower
than far from equilibrium lab dissolution rates, but by all
measured saturation indices of feldspars are still far from
equilibrium (White et al., 2001; Georg et al., 2009). This
kind of observation was difficult to explain with the TST
linear rate law, which requires near equilibrium to achieve
significant reduction of rates due to the f(DGr) effects.

4.2. Influences from fluid flow rates

As pointed out by Zhu and Anderson (2002) and numer-
ous others, most geochemical reaction problems are reac-
tive mass transport problems. It is the fluid flow that
brings about mass and heat fluxes that disrupt the equilib-
rium and drive the reactions. For the subject we have dis-
cussed in this paper, we contend that the steady state
rates under which chemical reactions proceed in a geologi-
cal system are the result of competition among the three
rates in the simplest case: the rate of dissolution of the pri-
mary phase, the rate of precipitation of a secondary phase,
and rates of material fluxes associated with fluid flow in a
system. The coupling of these three rates is best explored
with a reactive mass transport model. However, geological
systems are notoriously heterogeneous, with the hydraulic
conductivity varying up to 13 orders of magnitude (Freeze
and Cherry, 1979). To add uncertainties of hydraulic and
geochemical heterogeneities and boundary conditions of a
geologic body on top of the uncertainties associated with
reactive surface areas and rate laws does not provide much
more insight (Zhu, 2009). Instead, we will conduct reactive
mass transport in a model system as described below.
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We took the geochemical reaction path model of oligo-
clase dissolution and kaolinite precipitation from Ganor
et al. (2007) and simulated coupled reaction, advection,
and dispersion in a one-dimensional (1D) porous media.
The model system is represented by a 100 m strip discret-
ized into 100 cells, each being one meter in length. As a first
approximation, a uniform and constant average velocity
along the entire cross-section was used. A longitudinal dis-
persivity of 1 m was assigned to the model. It was assumed
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Fig. 18. Calculated saturation indices for oligoclase at different
time and space from coupled reactive transport model. (a) Average
linear velocity of 0.1 m/y, (b) 0.01 m/y, and (c) 1 m/y.
in the study that molecular diffusion is negligible compared
to advection and dispersion. Cauchy flux boundary condi-
tions were used for both ends of the 1D strip. Initial pore
fluid was taken as the chemistry of the fluid at the end of
the reaction path simulation in Ganor et al. (2007), and in-
flow water into the column was taken as the chemistry of
initial fluid from Ganor et al. (2007). All geochemical
parameters used were the same as those in Ganor et al.
(2007), with exception that the k1, k2 in Eq. (5), which were
scaled two orders of magnitude higher. The advection, dis-
persion, and reaction of aqueous components under the ini-
tial and boundary conditions (described above) were
simulated by using PHREEQC Version 2.3, a one-dimensional
finite-difference model (Parkhurst and Appello, 1999).

Three different average linear velocities were used for the
three scenarios. Fig. 18 shows the results of coupling among
the dissolution, precipitation, and flow rates in terms of SI
for oligoclase at different time and space. For the base case
of 0.1 m/y, different levels of steady state SI were estab-
lished at different locations along the 1D strip after some
time, with lower SI near the entrance (flushed by a dilute
solution). These SI values were fed back to f(DGr) in the
rate laws for oligoclase and kaolinite, which, in turn, deter-
mined the reaction rates, resulting in steady state concentra-
tions of aqueous constituents at specific spatial locations.

For a slower flow rate (0.01 m/y), steady state was gen-
erally not achieved within 1000 years of the simulation per-
iod. Here we see that the steady state had a higher SI for
oligoclase as compared to the base case. In other words,
the smaller solute fluxes from upstream brought about less
dilution of the pore fluids in the domain as compared to the
base case, resulting in less influence from transport. For a
faster flow rate (1 m/y), we see the transport effects are
stronger.

In all three scenarios, steady states were established at
different levels of SI, resulting in different rates of dissolu-
tion and precipitation reactions in the time-space domain.
However, the ratios of oligoclase dissolution and kaolinite
precipitation rates remained 1.626, as in the batch system
case (Ganor et al., 2007). Therefore, the simulation results
demonstrated the coupling among dissolution, precipita-
tion, and flow rates. Instead of reaching a single steady state
that was determined by the ratios of effective rate constants,
surface areas, and rate laws, a series of steady state rates
were established at different locations of the domain, even
in this initially geochemically homogeneous media. The
time to achieve the steady state and the SI and reaction
rates of the steady state was a function of the flow rates,
assuming the geochemical parameters are the same in all
scenarios.
5. CONCLUSIONS AND REMARKS

The geochemical modeling results in the preceding sec-
tions lend support to the Zhu–Blum–Veblen hypothesis
for explaining the apparent field–lab discrepancy (Zhu
et al., 2004). In the literature, the majority of laboratory
studies have focused on measuring dissolution rates under
which secondary mineral precipitation were suppressed
while the majority of field weathering studies have at-
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tempted to derive dissolution rates only, without informa-
tion of the precipitation rates and as if the dissolution rates
were independent from other reactions in the reaction net-
work. Not surprisingly, the derived field rates are orders of
magnitude slower than the far from equilibrium lab rates.
The ZBV hypothesis has now been developed in more
detail:

(a) Experiments show that the congruent dissolution
stage for feldspar dissolution is short because of the low sol-
ubility of aluminum silicate minerals. Secondary mineral(s)
started to precipitate after only a small amount of primary
minerals are dissolved. The same is expected in the field. In
fact, it would be difficult to find field situations that second-
ary mineral precipitation is not present. Therefore, we must
always look at the primary mineral dissolution as part of
the reaction network.

(b) Previously, we have shown qualitatively that the par-
tial equilibrium assumption does not hold in these experi-
mental systems (Zhu and Lu, 2009). The numerical
reaction path modeling results in this study provided more
quantitative evidence. Although many simplifications were
made in the reaction path model, and the reaction path
models presented above are by no means unique represen-
tations of the experimental data, the basic conclusion
regarding the lack of partial equilibrium stands. In a partial
equilibrium system, the irreversible dissolution of feldspar
is the driving force. We show that when partial equilibrium
between secondary minerals and an aqueous solution does
not hold, the precipitation of secondary minerals is the lim-
iting step, which caps the dissolution rate of the primary
mineral. The absence of partial equilibrium under hydro-
thermal conditions (200–300 �C) indicates that partial
equilibrium is also not attained at ambient weathering con-
ditions even though the secondary minerals are different.

(c) A quasi-steady state is reached when k�1=k�2 > q, where
k�1 and k�2 demote the effective rate constants in
mol s�1 kgw�1 of the dissolution and precipitation reac-
tions, respectively, and q is a threshold value. At the qua-
si-steady state, the ratios for dissolution and precipitation
rates are fixed when the rates are expressed in unit of
mol s�1 kgw�1, and the dissolution reaction proceeds at a
fixed DGr. The values of this ratio are a function of the
overall reaction stoichiometry, e.g., almost unity in the al-
bite dissolution–sanidine precipitation experiments of Ale-
kseyev et al. (1997) and 1.626 for oligoclase dissolution–
kaolinite precipitation in the simulation of Ganor et al.
(2007). The steady state dissolution rate, rss, expressed as
mol s�1 kgw�1, may be orders of magnitude slower than
the far from equilibrium rate, ro. For the experiments by
Alekseyev et al. (1997) and Fu et al. (2009), rss/ro � 0.01
at 300 and 200 �C. With increasing k�1=k�2 (increasingly
slower initial precipitation with respect to dissolution), the
steady state dissolution rates of the primary mineral also
decrease (Fig. 3 of Zhu, 2009).

(d) Under which conditions the system reaches a steady
state with regard to coupled dissolution–precipitation reac-
tions is also determined by the r � DGr relationships for the
dissolution and precipitation reactions. With the experi-
mentally defined sigmoidal shape relationships for albite,
the influence of the DGr term takes place in solutions more
undersaturated with respect to the dissolving primary min-
eral than was previously thought, i.e., using the f(DGr) func-
tion of transition state theory; it now is not required to be
very close to equilibrium for dissolution rates to be reduced
by orders of magnitude due to coupling effects. In the case
of albite dissolution–sanidine precipitation at 300 �C (Ale-
kseyev et al., 1997), the DGr for albite dissolution–sanidine
precipitation reactions were locked at DGr,Ab � �16
kJ mol�1. In contrast, the TST linear rate law would require
near equilibrium conditions with respect to the primary
minerals to reach orders of magnitude reduction of dissolu-
tion rate due to the DGr effects. Field data show that field
rates are orders of magnitude slower than the far from equi-
librium lab rates, whereas the groundwater is not very close
to saturation with feldspar (White et al., 2001; Georg et al.,
2009).

(e) The potential effects of fluid flow on the coupling of
reactions were demonstrated with reactive mass transport
modeling in a system resembling that described by Ganor
et al. (2007). The results of solute fluxes generated a series
of steady states (i.e., SI, aqueous concentrations, and reac-
tion rates) at different locations in the computational do-
main, even though the media was assumed to be
geochemically homogeneous. The time–space distribution
and levels of quasi-steady states are determined by the flow
rates for a given kinetics model. A range of rates can be
sampled in a field system for samples with close spatial
proximity, as well as transient chemical states in a system.
Therefore, slow clay precipitation effectively reduces feld-
spar dissolution rates by orders of magnitude, in a fashion
consistent with laboratory rates, transition state theory,
and field observations. Furthermore, “close to equilibrium”

is probably the most quoted explanation for the apparent
discrepancy. However, how this explanation can work
quantitatively was not explained before. Our hypothesis
provides a quantitative explanation.

The control of feldspar dissolution by the precipitation
kinetics of the secondary minerals reconciles many of the
apparent discrepancies between laboratory experimental
rates and field measurements, and explains field observa-
tions that previously appeared inconsistent. It explains slow
but persistent feldspar dissolution in sandstone aquifers
(Zhu, 2005 for the Navajo sandstone aquifer in northeast-
ern Arizona); why smectite coatings occur on all sediment
grains, not only on feldspars (Zhu et al., 2006); why kaolin-
ite is preserved and co-exists with smectite in natural sys-
tems over hundreds of thousands to millions years (Zhu
et al., 2006). Our hypothesis shifts the paradigm from de-
bate about feldspar dissolution kinetics to the formation
kinetics of secondary phases, and opens up new possibilities
for laboratory and field experiments to unravel the rates of
overall aluminosilicate weathering reactions.

So far, our work has only focused on the coupling of one
dissolution reaction with one precipitation reaction. In field
situations, several dissolution and precipitation reactions
may operate simultaneously. The coupling effects in the
reaction network can become extremely complex. The
experimental data at elevated temperatures 200 and
300 �C showed maximally two orders of magnitude reduc-
tion due to the coupled reaction effects. Our modeling study
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has clearly identified the research needs of the rate laws in
the near equilibrium regions, rate law for precipitation reac-
tions, and more studies of reactive surface areas.

Another source of retardation of dissolution rates in the
field can come from surface passivation. Zhu et al. (2006)
found a thin 10–50 nm amorphous layer on the K-feldspar
surfaces in the Jurassic Navajo sandstone in Arizona.
Whether such a layer is widespread for minerals that have
been in contact with water for thousands to million years
and what the role this layer plays is currently unclear.
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