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1. Introduction 
 
 Like many large institutions, Indiana 
University has thousands of desktop computers 
devoted primarily to running office productivity 
applications on the Windows operating system, 
tasks which are necessary but that do not use the 
computers’ full capacity. This is a resource worth 
pursuing. However, the individual desktop systems 
do not offer enough processing power for a long 
enough period of time to complete large scientific 
computing applications. Some form of distributed, 
parallel programming is required, to make them 
worth the chase. They must be instantly available 
to their primary users, so they are available only 
intermittently. This has been a serious stumbling 
block: currently available communications libraries 
for distributed computing do not support such a 
dynamic communications world well. This paper 
introduces Simple Message Broker Library 
(SMBL), which provides the flexibility needed to 
take advantage of such ephemeral resources.  
 Condor [1] offers an approach to managing 
jobs on scattered computing resources that is well 
suited to this situation; there is a Windows version 
of Condor, although it does not at the time of this 
writing provide support for parallel computing. 
There are other systems for managing jobs in a 
distributed environment, such as Globus [2]. 
SMBL addresses a different problem: performing 
extended computations using a continually 
changing collection of small computers. We could 

not find a sufficiently fault-tolerant and well-
behaved PVM [3] implementation for Windows. 
MPI [4] implementations expect the same 
machines at the end of a job as at the beginning. 
This is only reasonable, since these libraries are 
generally used on dedicated systems. DOGMA [5] 
supports the desired type of computing, but only 
for applications written in Java. SETI@Home [6] 
does not provide a general-purpose framework. 
 SMBL enables parallel computing on 
sporadically-available desktop systems by 
introducing a server to keep track of the processing 
nodes and route messages between them. The 
SMBL server acts as a communications broker for 
processes associated with a particular parallel job 
running on many different processors. SMBL is 
designed to work with heterogeneous systems. It is 
not a part of Condor, but they work well together. 
In conjunction, they can be used to run parallel 
jobs on Windows computers in an opportunistic 
fashion, without interfering with the computers’ 
primary users. Available as open source, SMBL is 
scalable, flexible and robust enough for a highly 
constrained and highly dynamic distributed 
computing environment, using ephemeral 
resources for massive computations.  
 
2. Overview 
 
 SMBL is unique among parallel programming 
libraries in its flexibility with handling dynamic 
processes and heterogeneous platforms. The 
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SMBL client library is written in portable ANSI C. 
The syntax and logic are similar to commonly used 
MPI calls. SMBL provides entry points where the 
application process makes MPI-like calls to inform 
the SMBL server of its intent to pass messages to 
other processes, while the SMBL server process 

realizes efficient message delivery. SMBL 
communication occurs between each application 
process and its associated SMBL server using 
TCP, via sockets. SMBL employs a socket-
abstraction library that encapsulates the difference 
in socket library implementations caused by 

platform heterogeneity. The SMBL server and the 
SMBL library are implemented on top of this 
socket-abstraction layer, so SMBL processes on 
different platforms can communicate with each 
other. 
 SMBL is only a component of the solution to 
this problem, and so of course all of the 
components of the proposed solution must be 
tested and shown to work well together.  The 
components of the trial implementation are:  

• An Apache-based portal to provide 
authentication (via Kerberos) and user 
services, such as creating Condor 
submissions;  

• A Condor server to manage the task and 
worker queues; 

• The Condor service running on desktop 
computers, to start and stop the worker 
processes on the desktop computers;  

• The Worker processes running on the 
desktop computers;  

• A Process and Port Manager server 
(PPM) to create a SMBL server and 
assign a port for each parallel session;  

• The SMBL servers to handle the 
communication between foreman and 
worker processes for each particular 
parallel session.  

 
 In our trial implementation, the workers all run 
on Windows systems and the servers all run on a 
single Linux system. The exchange of messages 
between the several components of this system is 
illustrated in Figure 1.  

 
 
 
 

 
 
 

Figure 1. The shaded box indicates components hosted on multiple desktop computers. 
 

 
 This system relies on Condor to initiate job 
migration, and the application program to tolerate 
unannounced disappearance of worker nodes (for 
example, with its own task and worker tables). 
SMBL’s role is as a messaging library that 
functions with a fluctuating communications 
world.  
 A note about usage: we will refer to a parallel 
session consisting of processes or workers possibly 
running on many computers, since each of those 

processes is referred to as a job in the Condor 
documentation. We also discuss processes or 
servers associated to a parallel session, running on 
still more computers. All SMBL processes 
associated to a particular parallel session share one 
SMBL server, but SMBL does not impose a static 
communications world on them. This is essential to 
achieve the goal of utilizing a pool of occasionally 
idle desktop computers, accommodating such 



contingencies as a user touching the keyboard (and 
thereby taking it away) or rebooting the system.  
 
3. The Process and Port Manager 
 
 When Condor starts a worker process, it 
creates a temporary directory and temporary 
account on a Windows NT/2000 machine. The 
worker contacts the Process and Port Manager, 
PPM, with its job identification. PPM has the 
following responsibilities: 

• If the worker is part of a new job, PPM 
then:  

o checks that the total number of 
processes created on the server 
node is below a set limit;  

o picks a computer and a port 
number where the SMBL server 
listens; 

o creates the SMBL server and 
foreman processes on that computer. 

• If a SMBL server exists for a job, PPM 
directs the worker to the appropriate 
SMBL server by sending the SMBL 
server processʹ′s IP node address and port 
number. 

• When the job is done, the SMBL server 
notifies PPM. Any additional workers 
made available by Condor for that job are 
then immediately terminated. The SMBL 
server associated with that job then 
terminates.  

 
 The SMBL server for a job starts only after a 
worker is actually started by Condor, in order to 
limit the workload on the server.  
 
 
4. The SMBL Server 
 
 During the execution of a parallel session, 
multiple SMBL processes communicate via one 
SMBL server. The SMBL server uses select(2) [8] 
to provide a non-forking, non-threaded framework 
that allows the user process to instruct the kernel to 
wait for any one of multiple events to occur, and to 
wake up the process only when one of these events 
occurs. This design choice is based on efficiency 
and portability considerations. It relies on neither 
fast, semantically compatible fork() support nor 
compatible thread library support across platforms. 
Furthermore, without the need to perform 
expensive memory copying (in fork(2)) and 

process/thread creation, both processor overhead 
and SMBL server memory footprint are reduced.  
 This framework is coded in C++ on top of the 
socket abstraction library, with the following 
algorithm (a connection means to one of the SMBL 
application processes): 

while(there are ready read/write/exception 
connections in the 
     range of connections specified)    { 
     accept new connections 
     read ready-to-read connections 
     write ready-to-write connections 
     update the range of connections 
specified 
   } 

 When a process (new worker) joins in, the 
SMBL server adds one more socket/connection to 
the list of sockets/connections it selects from; 
when a process quits, the socket/connection this 
process is associated with becomes inactive.  
 The semantics of message passing calls are 
incorporated into the SMBL server on top of this 
framework. Specifically, an object of class 
ConnectionHandler is defined to handle the 
messages from a new TCP connection; depending 
on the intended action, the object actually belongs 
to a subclass of ConnectionHandler. For example, 
SMBLSendHandler inherits from 
ConnectionHandler. The advantage of this 
approach is that the logic of SMBL message 
passing calls can be implemented in subclasses of 
ConnectionHandler and the server code is much 
easier to understand and maintain. 
 Each subclass of ConnectionHandler has 
access to its own TCP connection, the global 
message queue that stores the actual messages, and 
the global buffer that stores the global SMBL node 
list and the meta-messages (such as a message that 
informs the SMBL server of a send operation’s 
destination and size). When a SMBL application 
process makes a SMBL library call (e.g., 
SMBL_send), the SMBL server passes that 
process's TCP connection to an instance of a 
specific ConnectionHandler subclass (e.g., 
SMBLSendHandler). This subclass interprets the 
data coming over the socket, takes the appropriate 
actions (e.g., queues a message to deliver to 
another node), and then appends a response to the 
connection's output buffer. It is the main server 
loop's responsibility to write this data back to the 
application process.  
 
 
 
 



5. The SMBL Library 
 
 The SMBL library implements SMBL 
message passing calls between various processes 
by sending requests to and receiving responses 
from the SMBL server using the abstract socket 
library. Both requests and responses are essentially 
freeform. In the current implementation, for 
example, requests for SMBL_send take the 
following form: | session id | 'S' | destination | type | 
size | message data | 
 Here session id, destination, type, and size are 
all 4-byte integers in network byte order. Session 
id is the unique id of an application process given 
by the SMBL server when this process connects to 
it, essentially the socket descriptor id on the SMBL 
server host; 'destination' is some other process's 
session id; type is an arbitrary, application-
dependent message type; 'size' is the length of 
'message data' in bytes; and 'message data' is the 
string of raw bytes. For the given call, a single byte 
response is expected —  the character 'K' means 
the call succeeded (mnemonic for "Okay"), and 
any other character indicates a failure. 
 In the SMBL server process, an object of type 
SMBLSendHandler will take the request, construct 
a message object (using the socket descriptor field 
as the source of the message), and put it into the 
global message queue, writing character 'K' to the 
output buffer of the connection to be sent to the 
corresponding application process. 
 At present, the following message passing 
calls are implemented in the SMBL prototype: 
process initialization, message probes (blocking 
and non-blocking), message receives, and message 
sends. 
 Like MPI, SMBL has blocking and non-
blocking calls (SMBL_probe and SMBL_iprobe). 
For example, SMBL_probe will return only when 
there is a message found that matches the pattern 
specified by the arguments, while SMBL_iprobe 
will return immediately, with appropriate flag set 
to 1 if there is a matching message. These 
semantics are implemented in the appropriate 
subclasses of ConnectionHandler in the SMBL 
server. 
 
6. Initial Implementation and Testing 
 
 We have tested a trial implementation with 
fastDNAml, a program for inferring evolutionary 
relationships from DNA sequence data [8]. 
fastDNAml is a foreman-worker program which 
scales linearly to hundreds of processors [9]. A 
large fastDNAml session will generate millions of 

messages while consuming hundreds of CPU-
hours. It is common for a researcher to 
simultaneously submit hundreds of variations of 
each job. During the 1999-2000 academic year, 
students in Indiana University’s biology 
department were the largest users of parallel 
computing cycles, accounting for 40% of the usage 
of IU’s IBM SP -- over 70,000 CPU-hours; one 
student running fastDNAml over the course of five 
years consumed nearly a million CPU-hours.  
 The test implementation has taken place in 
Indiana University’s Student Technology Centers 
(STCs) during classes, while they were in normal 
use by students, and is currently running on 1000 
desktop systems. Over the course of a week, up to 
814 systems have been in use by the Condor pool, 
with an average over 400, making available more 
than 60,000 CPU-hours/week for parallel 
computing. Parallel sessions with up to 125 worker 
processes have been included in the mix. The 
systems associated with a parallel system vary 
continually: for example, a 61-processor session 
had 122 job migrations. Each Windows desktop is 
rebooted automatically each morning; some jobs 
have taken days to complete. The system accepts 
simultaneous submission of thousands of 
multiprocessor jobs. No untoward interactions with 
the 200+ application programs and plugins 
installed on the STC computers have been 
discovered. The transition from Condor mode to 
Interactive mode on the desktop systems occurs in 
less than a second – quickly enough that no 
students have complained. 
 An Apache-based Web portal provides user 
services and authentication, authorization, and 
access (in coordination with a Kerberos server); 
Condor manages the job and worker queues; and 
PPM and SMBL handle the interaction of various 
processes in this volatile environment. A single 
Linux system hosts the Web server, Condor, the 
Process and Port Manager, and the SMBL server 
and two fastDNAml foreman processes for each 
parallel job. This is a recognized limit to 
scalability: since each parallel session creates three 
processes, this is restricted to 48 sessions. 
However, SMBL is designed to support the use of 
additional servers, permitting many more 
simultaneous parallel sessions. 
 Figure 2 shows the performance on a 
moderately large job of both the IBM SP and the 
Student Technology Centers. “CPU-seconds/CPU” 
is a measure of parallel efficiency, and on a 
dedicated and carefully scheduled system like the 
IBM SP corresponds closely to wallclock time 
after a job begins to run — not generally the case 



for the opportunistically scheduled and oft-
interrupted Condor+SMBL system. 

 
 
Figure 2. Scaling behavior of fastDNAml on 
desktop systems and supercomputer. 
 
  
 The IBM SP and the STC/SMBL/Condor 
systems each have three processes devoted to 
parallelization, so for example “16 processors” in 
fact means just 13 workers. The desktop systems in 
the STCs deliver ~25% of the performance of the 
SP on this particular application; the scaling 
behavior is quite similar.  
 
7. Conclusions and Future Plans 
 
 SMBL provides an infrastructure for 
information exchange in connection with parallel 
computations using ephemeral resources, 
something that other parallel computing messaging 
libraries do not do. In conjunction with Condor, it 
allows the scavenging of cycles from idle 
Windows-based desktop computers, something 
that could not otherwise be done. SMBL is useful 
for parallel programs with a single thread of 
control, whenever the ratio of computation to 
communication is large enough and both can be 
subdivided finely enough —for example in design 
studies, Monte Carlo methods, and foreman-
worker programs. It has not been difficult to make 
such programs fault-tolerant with regard to worker 
processes. Conversion from MPI to SMBL is quite 
straightforward; migrating from Unix to Windows 
has been more of a challenge.  
 SMBL offers the possibility for Indiana 
University to migrate applications that have 

consumed a significant fraction of IU’s 
supercomputer resources to a pool of Windows-
based desktop computers. While these jobs run 
more slowly than on IU's IBM SP, these 
applications are running on a system that is 
essentially without additional cost, scavenging 
cycles from PCs purchased for use by students as 
personal productivity workstations. This has been 
done on a trial basis with no adverse effects on the 
primary users’ computing experience. We are 
currently adding additional SMBL analogs of MPI 
calls, and expanding the number of applications 
available from our portal.  
 SMBL is open-source and available at 
http://www.indiana.edu/~rac/hpc/SMBL/  
 
References 
 
[1] Livny, M., J. Basney, R. Raman, and T. 
Tannenbaum, “Mechanisms for High-Throughput 
Computing,” SPEEDUP  11, 1997. 
 
[2] Globus Project, http://www.globus.org/, accessed 10 
February 2003. 
 
 [3] Geist A., A. Beguelin, J. Dongarra, W. Jiang, M. 
Manchek and V. Sunderam, PVM: Parallel Virtual 
Machine: A Users' Guide and Tutorial for Networked 
Parallel Computing, MIT Press, 1994. 
 
[4] Gropp, William, M. Snir, W. Nitzberg, and E. Lusk. 
MPI: The Complete Reference, MIT Press, 1998. 
 
[5] G. Judd, M. Clement, and Q. Snell, “DOGMA: 
Distributed Object Group Management Architecture”, in 
Proc. of the Workshop on Java for High Performance 
Network Computing, Stanford University, Palo Alto, 
CA, USA, 1998.  
 
[6] SETI Institute, http://www.seti.org/, accessed 10 
February 2003. 
 
 [7] Olsen, G. J., H. Matsuda, R. Hagstrom, and R. 
Overbeek, “fastDNAml: A tool for construction of 
phylogenetic trees of DNA sequences using maximum 
likelihood,” Comput. Appl. Biosci. 10: 41-48, 1994.  
[8] Stevens, W. R., UNIX Network Programming, 
Prentice Hall, 1990.  
 
[9] Stewart, C.A., D. Hart, D. K. Berry, G. J. Olsen, E. 
Wernert, and W. Fischer, “Parallel implementation and 
performance of fastDNAml - a program for maximum 
likelihood phylogenetic inference,” Proceedings of 
SC2001, 2001.  
 


