

Technical Report: Distributed Parallel Computing
Using Windows Desktop Systems

David Hart, Douglas Grover, Matt Liggett, Richard Repasky,
Corey Shields, Stephen Simms, Adam Sweeny, Peng Wang

University Information Technology Services
Indiana University

Bloomington IN 47408

2003

Please cite as: Hart, D., D. Grover, M. Liggett, R. Repasky, C. Shields, S. Simms, A.
Sweeny and P. Wang. Technical Report: Distributed Parallel Computing Using Windows

Desktop Systems. Indiana University, Bloomington, IN. 2003. [PDF] Available from:
http://hdl.handle.net/2022/13612

1. Introduction

 Like many large institutions, Indiana
University has thousands of desktop computers
devoted primarily to running office productivity
applications on the Windows operating system,
tasks which are necessary but that do not use the
computers’ full capacity. This is a resource worth
pursuing. However, the individual desktop systems
do not offer enough processing power for a long
enough period of time to complete large scientific
computing applications. Some form of distributed,
parallel programming is required, to make them
worth the chase. They must be instantly available
to their primary users, so they are available only
intermittently. This has been a serious stumbling
block: currently available communications libraries
for distributed computing do not support such a
dynamic communications world well. This paper
introduces Simple Message Broker Library
(SMBL), which provides the flexibility needed to
take advantage of such ephemeral resources.
 Condor [1] offers an approach to managing
jobs on scattered computing resources that is well
suited to this situation; there is a Windows version
of Condor, although it does not at the time of this
writing provide support for parallel computing.
There are other systems for managing jobs in a
distributed environment, such as Globus [2].
SMBL addresses a different problem: performing
extended computations using a continually
changing collection of small computers. We could

not find a sufficiently fault-tolerant and well-
behaved PVM [3] implementation for Windows.
MPI [4] implementations expect the same
machines at the end of a job as at the beginning.
This is only reasonable, since these libraries are
generally used on dedicated systems. DOGMA [5]
supports the desired type of computing, but only
for applications written in Java. SETI@Home [6]
does not provide a general-purpose framework.
 SMBL enables parallel computing on
sporadically-available desktop systems by
introducing a server to keep track of the processing
nodes and route messages between them. The
SMBL server acts as a communications broker for
processes associated with a particular parallel job
running on many different processors. SMBL is
designed to work with heterogeneous systems. It is
not a part of Condor, but they work well together.
In conjunction, they can be used to run parallel
jobs on Windows computers in an opportunistic
fashion, without interfering with the computers’
primary users. Available as open source, SMBL is
scalable, flexible and robust enough for a highly
constrained and highly dynamic distributed
computing environment, using ephemeral
resources for massive computations.

2. Overview

 SMBL is unique among parallel programming
libraries in its flexibility with handling dynamic
processes and heterogeneous platforms. The

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUScholarWorks

https://core.ac.uk/display/213827023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SMBL client library is written in portable ANSI C.
The syntax and logic are similar to commonly used
MPI calls. SMBL provides entry points where the
application process makes MPI-like calls to inform
the SMBL server of its intent to pass messages to
other processes, while the SMBL server process

realizes efficient message delivery. SMBL
communication occurs between each application
process and its associated SMBL server using
TCP, via sockets. SMBL employs a socket-
abstraction library that encapsulates the difference
in socket library implementations caused by

platform heterogeneity. The SMBL server and the
SMBL library are implemented on top of this
socket-abstraction layer, so SMBL processes on
different platforms can communicate with each
other.
 SMBL is only a component of the solution to
this problem, and so of course all of the
components of the proposed solution must be
tested and shown to work well together. The
components of the trial implementation are:

• An Apache-based portal to provide
authentication (via Kerberos) and user
services, such as creating Condor
submissions;

• A Condor server to manage the task and
worker queues;

• The Condor service running on desktop
computers, to start and stop the worker
processes on the desktop computers;

• The Worker processes running on the
desktop computers;

• A Process and Port Manager server
(PPM) to create a SMBL server and
assign a port for each parallel session;

• The SMBL servers to handle the
communication between foreman and
worker processes for each particular
parallel session.

 In our trial implementation, the workers all run
on Windows systems and the servers all run on a
single Linux system. The exchange of messages
between the several components of this system is
illustrated in Figure 1.

Figure 1. The shaded box indicates components hosted on multiple desktop computers.

 This system relies on Condor to initiate job
migration, and the application program to tolerate
unannounced disappearance of worker nodes (for
example, with its own task and worker tables).
SMBL’s role is as a messaging library that
functions with a fluctuating communications
world.
 A note about usage: we will refer to a parallel
session consisting of processes or workers possibly
running on many computers, since each of those

processes is referred to as a job in the Condor
documentation. We also discuss processes or
servers associated to a parallel session, running on
still more computers. All SMBL processes
associated to a particular parallel session share one
SMBL server, but SMBL does not impose a static
communications world on them. This is essential to
achieve the goal of utilizing a pool of occasionally
idle desktop computers, accommodating such

contingencies as a user touching the keyboard (and
thereby taking it away) or rebooting the system.

3. The Process and Port Manager

 When Condor starts a worker process, it
creates a temporary directory and temporary
account on a Windows NT/2000 machine. The
worker contacts the Process and Port Manager,
PPM, with its job identification. PPM has the
following responsibilities:

• If the worker is part of a new job, PPM
then:

o checks that the total number of
processes created on the server
node is below a set limit;

o picks a computer and a port
number where the SMBL server
listens;

o creates the SMBL server and
foreman processes on that computer.

• If a SMBL server exists for a job, PPM
directs the worker to the appropriate
SMBL server by sending the SMBL
server processʹ′s IP node address and port
number.

• When the job is done, the SMBL server
notifies PPM. Any additional workers
made available by Condor for that job are
then immediately terminated. The SMBL
server associated with that job then
terminates.

 The SMBL server for a job starts only after a
worker is actually started by Condor, in order to
limit the workload on the server.

4. The SMBL Server

 During the execution of a parallel session,
multiple SMBL processes communicate via one
SMBL server. The SMBL server uses select(2) [8]
to provide a non-forking, non-threaded framework
that allows the user process to instruct the kernel to
wait for any one of multiple events to occur, and to
wake up the process only when one of these events
occurs. This design choice is based on efficiency
and portability considerations. It relies on neither
fast, semantically compatible fork() support nor
compatible thread library support across platforms.
Furthermore, without the need to perform
expensive memory copying (in fork(2)) and

process/thread creation, both processor overhead
and SMBL server memory footprint are reduced.
 This framework is coded in C++ on top of the
socket abstraction library, with the following
algorithm (a connection means to one of the SMBL
application processes):

while(there are ready read/write/exception
connections in the
 range of connections specified) {
 accept new connections
 read ready-to-read connections
 write ready-to-write connections
 update the range of connections
specified
 }

 When a process (new worker) joins in, the
SMBL server adds one more socket/connection to
the list of sockets/connections it selects from;
when a process quits, the socket/connection this
process is associated with becomes inactive.
 The semantics of message passing calls are
incorporated into the SMBL server on top of this
framework. Specifically, an object of class
ConnectionHandler is defined to handle the
messages from a new TCP connection; depending
on the intended action, the object actually belongs
to a subclass of ConnectionHandler. For example,
SMBLSendHandler inherits from
ConnectionHandler. The advantage of this
approach is that the logic of SMBL message
passing calls can be implemented in subclasses of
ConnectionHandler and the server code is much
easier to understand and maintain.
 Each subclass of ConnectionHandler has
access to its own TCP connection, the global
message queue that stores the actual messages, and
the global buffer that stores the global SMBL node
list and the meta-messages (such as a message that
informs the SMBL server of a send operation’s
destination and size). When a SMBL application
process makes a SMBL library call (e.g.,
SMBL_send), the SMBL server passes that
process's TCP connection to an instance of a
specific ConnectionHandler subclass (e.g.,
SMBLSendHandler). This subclass interprets the
data coming over the socket, takes the appropriate
actions (e.g., queues a message to deliver to
another node), and then appends a response to the
connection's output buffer. It is the main server
loop's responsibility to write this data back to the
application process.

5. The SMBL Library

 The SMBL library implements SMBL
message passing calls between various processes
by sending requests to and receiving responses
from the SMBL server using the abstract socket
library. Both requests and responses are essentially
freeform. In the current implementation, for
example, requests for SMBL_send take the
following form: | session id | 'S' | destination | type |
size | message data |
 Here session id, destination, type, and size are
all 4-byte integers in network byte order. Session
id is the unique id of an application process given
by the SMBL server when this process connects to
it, essentially the socket descriptor id on the SMBL
server host; 'destination' is some other process's
session id; type is an arbitrary, application-
dependent message type; 'size' is the length of
'message data' in bytes; and 'message data' is the
string of raw bytes. For the given call, a single byte
response is expected — the character 'K' means
the call succeeded (mnemonic for "Okay"), and
any other character indicates a failure.
 In the SMBL server process, an object of type
SMBLSendHandler will take the request, construct
a message object (using the socket descriptor field
as the source of the message), and put it into the
global message queue, writing character 'K' to the
output buffer of the connection to be sent to the
corresponding application process.
 At present, the following message passing
calls are implemented in the SMBL prototype:
process initialization, message probes (blocking
and non-blocking), message receives, and message
sends.
 Like MPI, SMBL has blocking and non-
blocking calls (SMBL_probe and SMBL_iprobe).
For example, SMBL_probe will return only when
there is a message found that matches the pattern
specified by the arguments, while SMBL_iprobe
will return immediately, with appropriate flag set
to 1 if there is a matching message. These
semantics are implemented in the appropriate
subclasses of ConnectionHandler in the SMBL
server.

6. Initial Implementation and Testing

 We have tested a trial implementation with
fastDNAml, a program for inferring evolutionary
relationships from DNA sequence data [8].
fastDNAml is a foreman-worker program which
scales linearly to hundreds of processors [9]. A
large fastDNAml session will generate millions of

messages while consuming hundreds of CPU-
hours. It is common for a researcher to
simultaneously submit hundreds of variations of
each job. During the 1999-2000 academic year,
students in Indiana University’s biology
department were the largest users of parallel
computing cycles, accounting for 40% of the usage
of IU’s IBM SP -- over 70,000 CPU-hours; one
student running fastDNAml over the course of five
years consumed nearly a million CPU-hours.
 The test implementation has taken place in
Indiana University’s Student Technology Centers
(STCs) during classes, while they were in normal
use by students, and is currently running on 1000
desktop systems. Over the course of a week, up to
814 systems have been in use by the Condor pool,
with an average over 400, making available more
than 60,000 CPU-hours/week for parallel
computing. Parallel sessions with up to 125 worker
processes have been included in the mix. The
systems associated with a parallel system vary
continually: for example, a 61-processor session
had 122 job migrations. Each Windows desktop is
rebooted automatically each morning; some jobs
have taken days to complete. The system accepts
simultaneous submission of thousands of
multiprocessor jobs. No untoward interactions with
the 200+ application programs and plugins
installed on the STC computers have been
discovered. The transition from Condor mode to
Interactive mode on the desktop systems occurs in
less than a second – quickly enough that no
students have complained.
 An Apache-based Web portal provides user
services and authentication, authorization, and
access (in coordination with a Kerberos server);
Condor manages the job and worker queues; and
PPM and SMBL handle the interaction of various
processes in this volatile environment. A single
Linux system hosts the Web server, Condor, the
Process and Port Manager, and the SMBL server
and two fastDNAml foreman processes for each
parallel job. This is a recognized limit to
scalability: since each parallel session creates three
processes, this is restricted to 48 sessions.
However, SMBL is designed to support the use of
additional servers, permitting many more
simultaneous parallel sessions.
 Figure 2 shows the performance on a
moderately large job of both the IBM SP and the
Student Technology Centers. “CPU-seconds/CPU”
is a measure of parallel efficiency, and on a
dedicated and carefully scheduled system like the
IBM SP corresponds closely to wallclock time
after a job begins to run — not generally the case

for the opportunistically scheduled and oft-
interrupted Condor+SMBL system.

Figure 2. Scaling behavior of fastDNAml on
desktop systems and supercomputer.

 The IBM SP and the STC/SMBL/Condor
systems each have three processes devoted to
parallelization, so for example “16 processors” in
fact means just 13 workers. The desktop systems in
the STCs deliver ~25% of the performance of the
SP on this particular application; the scaling
behavior is quite similar.

7. Conclusions and Future Plans

 SMBL provides an infrastructure for
information exchange in connection with parallel
computations using ephemeral resources,
something that other parallel computing messaging
libraries do not do. In conjunction with Condor, it
allows the scavenging of cycles from idle
Windows-based desktop computers, something
that could not otherwise be done. SMBL is useful
for parallel programs with a single thread of
control, whenever the ratio of computation to
communication is large enough and both can be
subdivided finely enough —for example in design
studies, Monte Carlo methods, and foreman-
worker programs. It has not been difficult to make
such programs fault-tolerant with regard to worker
processes. Conversion from MPI to SMBL is quite
straightforward; migrating from Unix to Windows
has been more of a challenge.
 SMBL offers the possibility for Indiana
University to migrate applications that have

consumed a significant fraction of IU’s
supercomputer resources to a pool of Windows-
based desktop computers. While these jobs run
more slowly than on IU's IBM SP, these
applications are running on a system that is
essentially without additional cost, scavenging
cycles from PCs purchased for use by students as
personal productivity workstations. This has been
done on a trial basis with no adverse effects on the
primary users’ computing experience. We are
currently adding additional SMBL analogs of MPI
calls, and expanding the number of applications
available from our portal.
 SMBL is open-source and available at
http://www.indiana.edu/~rac/hpc/SMBL/

References

[1] Livny, M., J. Basney, R. Raman, and T.
Tannenbaum, “Mechanisms for High-Throughput
Computing,” SPEEDUP 11, 1997.

[2] Globus Project, http://www.globus.org/, accessed 10
February 2003.

 [3] Geist A., A. Beguelin, J. Dongarra, W. Jiang, M.
Manchek and V. Sunderam, PVM: Parallel Virtual
Machine: A Users' Guide and Tutorial for Networked
Parallel Computing, MIT Press, 1994.

[4] Gropp, William, M. Snir, W. Nitzberg, and E. Lusk.
MPI: The Complete Reference, MIT Press, 1998.

[5] G. Judd, M. Clement, and Q. Snell, “DOGMA:
Distributed Object Group Management Architecture”, in
Proc. of the Workshop on Java for High Performance
Network Computing, Stanford University, Palo Alto,
CA, USA, 1998.

[6] SETI Institute, http://www.seti.org/, accessed 10
February 2003.

 [7] Olsen, G. J., H. Matsuda, R. Hagstrom, and R.
Overbeek, “fastDNAml: A tool for construction of
phylogenetic trees of DNA sequences using maximum
likelihood,” Comput. Appl. Biosci. 10: 41-48, 1994.
[8] Stevens, W. R., UNIX Network Programming,
Prentice Hall, 1990.

[9] Stewart, C.A., D. Hart, D. K. Berry, G. J. Olsen, E.
Wernert, and W. Fischer, “Parallel implementation and
performance of fastDNAml - a program for maximum
likelihood phylogenetic inference,” Proceedings of
SC2001, 2001.

