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1 Introduction

We construct a lattice by choosing three unit vectors u, v, w in the plane such
that u+ v + w = 0.

w

v

u

The points iu+ jv with i, j integers will be called lattice points, and a segment
joining two nearest lattice points will be called a small edge. We consider positive
measures m which are supported by a union of small edges, that satisfy the
following properties:

(1) The restriction of m to each small edge is a multiple of a linear measure.
This multiple is called the density of m on the small edge.

(2) m satisfies the balance condition

m(AB)−m(AB′) = m(AC)−m(AC ′) = m(AD)−m(AD′)

whenever A is a lattice point and the neighboring lattice points B, C ′, D,
B′, C, D′ are in cyclic order around A.
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The density of a measure m will be considered to be zero on segments outside
its support. A lattice point incident to at least three small edges in the support
of m is called a branch point of the measure m. We only consider measures with
at least one branch point.

Fix an integer r ≥ 1, and denote by ∆r the (closed) triangle with vertices
0, ru, ru+ rv = −rw. We use the notation

Aj = ju, Bj = ru+ jv, Cj = (r − j)w,
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for j = 0, 1, . . . , r, for the lattice points on the boundary of ∆r. We also set

Xj = Aj + w, Yj = Bj + u, Zj = Cj + v

for j = 0, 1, 2, . . . , r.
We denote by Mr the collection of all measures m satisfying conditions (1)

and (2), whose branch points are contained in ∆r, and such that

m(AjXj+1) = m(BjYj+1) = m(CjZj+1) = 0, j = 0, 1, . . . , r.

The numbers

αj = m(AjXj), βj = m(BjYj), γj = m(CjZj),

where j = 0, 1, . . . , r, will be called the exit densities of m. A measure m ∈Mr

is said to be rigid if there is no other measure m′ ∈Mr with the same exit points
and exit densities as m. In other words, a rigid measure is entirely determined
by its exit densities.

Given a measure m ∈Mr, we define its weight w(m) ∈ R+ to be

w(m) =
r∑
j=0

m(AjXj) =
r∑
j=0

m(BjYj) =
r∑
j=0

m(CjZj).

The equality of the three sums giving w(m) is an easy consequence of the balance
condition.

The remainder of the paper is organized as follows. In Section 2 we formulate
the Littlewood-Richardson Rule in terms of measures. In Section 3 we focus
our discussion of measures on a special kind - tree measures. This leads us to
our main results in Section 4, where we develop a set of rules for constructing
rigid tree measures. We conclude the paper with possible directions for future
research in Section 5.

2 The Littlewood-Richardson Rule

We can describe the Littlewood-Richardson rule in terms of measures, and this
turns out to be a very useful way to study intersections of Schubert varieties.
Given integers n, 1 ≤ k ≤ n− 1, the Grassmanian manifold Gr(n, k) is defined
to be

Gr(n, k) = {k-dimensional linear vector subspaces of Cn}

For every flag

E = {{0} = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = Cn},

where Ej is a subspace of dimension j, Gr(n, k) can be written as a union of
Schubert varieties described as follows. For each set

I = {i1 < i2 < · · · < ir} ⊂ {1, 2, . . . , n},
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one defines the Schubert variety

S(E , I) = {M ∈ Gr(n, k) : dim(M ∩ Eix) ≥ x, x = 1, 2, . . . , k}.

Given sets I, J,K ⊂ {1, 2, . . . , n} of cardinality k such that

k∑
l=1

(il + jl + kl − 3l) = 2k(n− k)

the Littlewood-Richardson rule provides a non-negative integer cIJK with the
property that the set

S(E , I) ∩ S(F , J) ∩ S(G,K)

has a finite intersection, equal to cIJK . The integer cIJK is called the Littlewood-
Richardson coefficient, and cIJK can be defined in terms of measures.

Assume that m ∈ Mr assigns integer densities to all small edges. Let
αn, βn, γn be the exit densities of m. We can then define an integer

n = r + w(m),

and sets I, J,K ⊂ {1, 2, . . . , n} of cardinality r by setting I = {i1, i2, . . . , ir},
where

il = l +
l−1∑
n=0

αn, l = 1, 2, . . . , r, (1)

jl = l +
l−1∑
n=0

βn, l = 1, 2, . . . , r, (2)

kl = l +
l−1∑
n=0

γn, l = 1, 2, . . . , r. (3)

These are precisely the triples of sets (I, J,K) which satisfy the Littlewood-
Richardson rule. The Littlewood-Richardson coefficient cIJK equals the number
of measures m ∈ Mr with integer densities which satisfy (1), (2), and (3), i.e.
which have the same exit densities as m.

Given a measure m ∈Mr, we formulate the associated Schubert intersection
problem. A measure m determines sets I, J,K as above. The problem is to
compute explicit elements in the intersection of three Schubert varieties,

S(E , I) ∩ S(F , J) ∩ S(G,K),

where E ,F ,G are generic flag varieties. An explicit solution of the Schubert
intersection problem associated with a measure can be produced in the rigid
case, and the method is described in [2].

Example. In Figure 1, the measure m assigns density 1 to the thickened edges
and density 0 to the other edges in the triangle.
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Figure 1: This measure has one branch point.

The sets I, J,K are determined by m as follows:

I = {1, 3, 4, 5}
J = {1, 3, 4, 5}
K = {1, 2, 4, 5}

The subspace M of C5 in the intersection of three Schubert varieties

S(E , I) ∩ S(F , J) ∩ S(G,K)

is exactly M = E1 +F1 +G2, where E1, F1, G2 are elements of the flags E ,F ,G,
respectively.

3 Trees and Measures

Some measures m ∈ Mr have an underyling tree structure which we describe
next. We consider trees embedded in the plane R2 such that

(T.1) each edge of the tree is a straight line segment of unit length,

(T.2) each vertex has order 2 or 3, and

(T.3) there are only finitely many vertices of order 3.

These conditions imply that a tree is infinite, but has a finite number of ends.
Ends are sequences of vertices of the form V0V1 . . . , where V0 is a branch point,
Vj has order 2 for j ≥ 1, and VjVj+1 is an edge for each j ≥ 0. We will require
one more condition on our trees.

(T.4) The shortest path joining two different ends contains an odd number of
vertices of order 3.

All trees discussed in the sequel satisfy the above four properties.
An immersion of a tree T ⊂ R2 is a continuous map f : T → R2 which

satisfies the following properties:

(1) f is isometric on each edge.
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(2) If V A and V B are two edges meeting at a vertex of order 2, then

2f(V ) = f(A) + f(B).

(3) If V A, V B, V C are three edges meeting at a vertex of order 3, then

3f(V ) = f(A) + f(B) + f(C),

and the restriction of f to V A∪V B∪V C preserves the orientation of the
tree.

A tree is endowed with an arclength measure. Given an immersion f of T , we
consider the push-forward mf of this measure. That is, if f(T ) is contained in
the small edges of a lattice determined by the vectors u, v, w, then mf assigns
to each edge a density equal to the number of its preimages in T . The resulting
measure satisfies the balance condition at all vertices. Since T has a finite
number of ends, we can arrange f so that mf belongs to Mr for sufficiently
large r.

A measure m will be called a tree measure if m = mf for some immersion
f of a tree. In the next section, we will construct a set of rules for which an
immersion produces a rigid tree measure.

4 Results

There is a certain class of loops which indicate non-rigidity if they exist in the
support of a measure. Let A1A2 . . . AkA1 be a loop consisting of small edges
AjAj+1 contained in the support of a measure m ∈ Mr. We will say that this
loop is evil if each three consecutive points Aj−1AjAj+1 = ABC forms an evil
turn, i.e. one of the following situations occurs:

(E.1) C = A, and the small edges BX,BY,BZ which are 120◦, 180◦, and 240◦

clockwise from AB are in the support of m.

(E.2) BC is 120◦ clockwise from AB.

(E.3) C 6= A and A,B,C are collinear.

(E.4) BC is 120◦ counterclockwise from AB and the edge BX which is 120◦

clockwise from AB is in the support of m.

(E.5) BC is 60◦ counterclockwise from AB and the edges BX,BY which are
120◦ and 180◦ clockwise from AB are in the support of m.

The existence of an evil loop in the support of a measure implies non-rigidity.
This was proven in [1]:

Theorem 4.1. A measure m ∈ Mr is rigid if and only if its support contains
none of the following configurations:
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(1) Six edges meeting at one lattice point.

(2) An evil loop.

Our main result is to prove the following proposition:

Proposition 4.2. Let T be a tree that satisfies properties (T.1) through (T.4),
and f an immersion f : T → R2. Suppose f satisfies the following conditions:

(1) There is a vertex A ∈ T (called the root of T ) such that f−1(f(A)) = {A}.

(2) The only branch points of f(T ) are of the following forms (up to rotation):

(3) f has consistent orientation. That is, suppose X1X2 and Y1Y2 are edges of
T such that X1 and Y1 are closer to the root of T than X2 and Y2, respec-
tively, and f(X1X2) = f(Y1Y2). Then f(X1) = f(Y1) (and consequently,
f(X2) = f(Y2)).

(4) If four edges meet at a lattice point B, then the orientation of one of the
edges is determined as follows. Let AB be the small edge such that the
other small edges BX,BY,BZ are located 120◦, 180◦, 240◦ clockwise from
AB. Then the orientation of AB must point from B to A.

B A

X

Y

Z

Then mf is a rigid tree measure.

Proof. Suppose f : T → R2 satisfies the conditions of the hypothesis. By Rule
(2), a branch point in f(T ) cannot have six surrounding edges all belonging to
f(T ). By Theorem 4.1, it is enough to show that f(T ) contains no evil loops.
We show that if an evil loop exists in f(T ), then the loop lifts to a single branch
of T . This will lead to a contradiction of property T.3.

By the conditions imposed on the immersion f , the only evil turns that can
arise in f(T ) are E.1, E.2, E.3 and E.4. The evil turn E.5 cannot arise because
of Rule (2). The turns E.2 and E.4 are reversible under our conditions, in the
sense that they are evil either way we traverse them.

Let A0A1A2 · · ·An be an evil loop in f(T ) (where A0 = An). Since an evil
loop must have a turn of the form E.2, E.4, or E.5 (because collinear ”turns”
alone cannot form a loop), we may choose A0 so that the evil turn A0A1A2 is of
the form E.2 or E.4. Since the turns E.2 and E.4 are reversible, we may assume
that A0A1 assumes the orientation of the tree (if not, we traverse the evil loop
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in the reverse order). That is, we can assume that there is a lift B0B1 to the tree
of the edge A0A1. We show that A1A2 can also be lifted by showing that the
orientation of A1A2 matches the tree orientation. The possible configurations
of A0A1A2 are:

(E.2) A1A2 is 120◦ clockwise from A0A1.
The edge A1X which is 240◦ clockwise from A0A1 must also be in the
support of f(T ).

A0
A1

A2

The edge A1A2 must assume the orientation of the tree by consistency of
orientation of the immersion f .

(E.4) A1A2 is 120◦ counterclockwise from A0A1 and the edge A1X which is 120◦

clockwise from A0A1 is in the support of f(T ).

A0
A1

A2

The edge A1A2 must assume the orientation of the tree by consistency of
orientation of the immersion f .

Thus, given a lift B0B1 of A0A1, there is a vertex B2 such that B1B2 lifts
A1A2. So the evil turn A0A1A2 lifts to a simple path B0B1B2 on T , consistent
with the orientation of T .

We inductively show that each edge in the evil loop A0 . . . An lifts to an edge
of the tree. For simplicity, we let Ak+mn = Ak for all m ∈ N, 0 ≤ k < n.

Suppose there is a lift BiBi+1 of the edge AiAi+1 so that AiAi+1 assumes
the orientation of the tree. We show that there is also a lift Bi+1Bi+2 of the
edge Ai+1Ai+2. The possible configurations of the evil turn AiAi+1Ai+2 are:
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(E.1) Ai+2 = Ai, and the small edgesAi+1X,Ai+1Y,Ai+1Z which are 120◦, 180◦,
and 240◦ clockwise from AiAi+1 are in the support of f(T ).

Ai+1
Ai

X

Y

Z

The orientation of the edge AiAi+1 in this evil turn contradicts Rule (4)
of the immersion f , so this evil turn does not arise in f(T ).

(E.2) Ai+1Ai2 is 120◦ clockwise from AiAi+1.
The edge Ai+1X which is 240◦ clockwise from AiAi+1 must also be in the
support of f(T ).

Ai
Ai+1

Ai+2

The edge Ai+1Ai+2 must assume the orientation of the tree by consistency
of orientation of the immersion f .

(E.3) Ai+2 6= Ai and Ai, Ai+1, Ai+2 are collinear. There are two cases:

(a) The lattice point Ai+1 has only two surrounding edges, AiAi+1 and
Ai+1Ai+2, in the support of f(T ).

Ai
Ai+1

Ai+2

Then the edge Ai+1Ai+2 must assume the orientation of the tree by
consistency of orientation of the immersion f .

(b) The lattice point Ai+1 has four surrounding edges in the support of
f(T ).
By Rule (4), the edge Ai+1Ai+2 must assume the orientation of the
tree.

(E.4) Ai+1Ai+2 is 120◦ counterclockwise from AiAi+1 and the edge Ai+1X
which is 120◦ clockwise from AiAi+1 is in the support of f(T ).

The edge Ai+1Ai+2 must assume the orientation of the tree by consistency
of orientation of the immersion f .

Thus, given a lift BiBi+1 of AiAi+1, there is a vertex Bi+2 such that Bi+1Bi+2

lifts Ai+1Ai+2, completing the induction.
We have constructed inductively an infinite path

B0B1B2 · · ·BnBn+1 · · ·

60



Ai+1
Ai Ai+2

Ai
Ai+1

Ai+2

of the tree T with the following properties:

(1) f(Bj) = Aj

(2) BjBj+1 is oriented away from the root.

We claim that infinitely many of the vertices Bj have order 3.
By construction, the vertex A1 is a branch point of mf . Thus lifted vertex

B1 ∈ T with f(B1) = A1 is a vertex of order 3, because the immersion f cannot
map a vertex of order 2 to a turn of the form E.2 or E.4.

Moreover, each vertex B1+mn, m ∈ N, has order 3 because

f(B1+mn) = A1+mn = A1.

Thus, infinitely many vertices Bj have order 3. But this contradicts property
T.3 of the tree. Thus, we’ve shown that en evil loop cannot exist in f(T ), and
therefore mf is a rigid tree measure.

The above proposition guarantees that if we construct a tree measure fol-
lowing the four stated rules, then the resulting measure will be rigid.

5 Future Research

The finiteness of the number of vertices of order 3 (i.e. property T.3) was crucial
in the proof of Proposition 4.2. Our next question is whether Proposition 4.2
still applies to trees with an infinite number of vertices of order 3. That is, if
a tree satisfies properties T.1, T.2, and T.4, and if an immersion f : T → R2

satisfies the four rules of Proposition 4.2, then will the resulting measure f(T )
be rigid?

Another question we investigated is the following: Given a triangle of size
r, what is the maximum weight that a rigid tree measure m ∈Mr could have?
We have a lower bound on this number: for large r, the maximum weight of a
measure inMr is at least 2br/3c. The lower bound can be easily explained with
the help of a couple of figures.

Given a measure m ∈Mr of weight w, Figures 2 and 3 demonstrate how to
produce a measure m′ ∈ Mr+3 of weight 2w. By branching the exit densities
on one side of ∆r in the illustrated way, one exit branch of density w is added
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Figure 2: A measure m ∈M4 of weight w

w

w

w

Figure 3: A measure m′ ∈M7 of weight 2w

to each side of the triangle, thereby increasing the total weight by a factor of
2. In this process, we also increase the size of the triangle by 3. Thus, for large
r, the maximum weight of m ∈ Mr is ≥ 2br/3c. We are interested in finding a
least upper bound on the maximum weight of a measure.

A tree measure of weight w has 3w − 2 branch points. This relation allows
us to investigate the maximal weight problem using a different approach. The
problem becomes that of finding the maximum number of branch points of a
rigid tree measure in Mr.

Thus, we attempted to characterize trees with rigid immersions. That is,
we are interested in the types of trees that can be immersed onto the plane to
produce rigid measures. Does every tree have a rigid immersion? Are there
some tree configurations that absolutely prohibit a rigid immersion? By char-
acterizing trees with rigid immersions, we might be able to find an upper bound
on the number of branch points that a rigid tree measure m ∈ Mr can have,
and ultimately find the maximum weight that such a measure could have.
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