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Abstract

One of the important problems in population genetics is how long it
takes for a gene to go to fixation (become established). A mutant gene
in a given population will eventually be lost or established. The particu-
lar interest of this research is to know the mean time for a mutant gene
to become fixed in a population, and we will exclude the case when this
gene is lost. A diploid population of N individuals will be considered
with a forward and backward mutation of u and v respectively per basis.
Using a set of nonlinear equations, we will first calculate the genotype
frequencies which will allow us to find the equilibrium points for the infi-
nite population. With the diffusion theory, we will approximate the time
to fixation for finite populations. We will then proceed with a numerical
approximation using C++ to see a close result for the problem.

1 Introduction

The main idea in population genetics is evolution. Evolution is much differ-
ent from most studies in biology for the fact that its insights are theoretical
rather than observational or experimental. Most evolutionary studies concern
the frequencies or the fitnesses of genotype in a given population. Evolution is
the change in the frequencies of genotype through time, perhaps due to their
differences in fitness (Gillespie 2004). Evolution can also be explained by two
forces: forces that introduce variation in phenotypic character such as eye col-
ors, height or certain behaviors and forces that make some traits become rare
or more common. The main cause of variation is mutation, which changes the
sequence of a gene (Strickberger 2000). In other words, mutation is a change in
the DNA sequence of Cell’s genome.

The forces that make traits to become common or rare are caused by two
main processes. One of these processes is natural selection which is a key term
used in genetic evolution (Strickberger 2000). Natural selection is the differential
reproductive success of a any given organism. Very often, organisms produce
more offspring than their environment can support; because of this, not every
individual in a population survives in the generation and this can be one of
the main cause of natural selection. Over many generations mutation produces
random changes in traits, which are then filtered by natural selection and the
beneficial traits retained (Gillespie 2004). Another cause of evolution is genetic
drift, which is a change in the relative frequencies in which gene variant occurs
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in a population due to random sampling and chance. These random changes
affect evolution in two important ways. First, a dispersive force that removes
genetic variations from population. Let us note that the rate of removal is very
weak since it is inversely proportional to the population size. Tahe other is the
effect of drift on the probability of survival of a new mutation (Gillespie 2004).

Another evolutionary process we will see later in this paper is genetic recom-
bination. In this process, the DNA or sometimes the RNA molecule breaks and
then joins another DNA molecule. Recombination can also have a big impact on
the evolutionary processes and this was shown by Paul G. Higgs (Higgs 1997).
We will take the same approach to show this but in a higher dimension.

2 Background

We will consider a diploid population consisting of N individuals and having
the variance effective number Ne. Let us note that Ne may be different than N
and a good explanation of Ne can be found in ”KIMURA and CROW 1963”.
Throughout this paper, we will develop a model that has been introduced by
Paul G. Higgs (Higgs 1997) and some other authors (Michalakis and Slatkin,
1996; Phillips, 1996; Stephan, 1996). Most of these authors develop a model in
which mutation is irreversible but we will consider a reversible mutation in this
paper using the same model.

Our model will involve 2 loci, each with two alleles. The two alleles will
be labeled A and a at one locus and B and b at the other. We will therefore
have four genotypes: ab, Ab, aB, and AB. The frequencies of ab and AB will
respectively be denoted x0 and x2. Both the double mutant genotypes have a
frequency denoted x1. We are therefore assuming these double mutant genotype
have the same fitness.T genotype ab has fitness 1 and AB has fitness 1 − s2.
However, the double mutant genotypes have fitness 1 − s1. Let us note that
x0 + 2x1 + x2 = 1.

Throughout this paper, we will assume both u and v are < 10−6, and both
s1 and s2 will be in the range 0.01 to 0.005. For different values of selection,
mutations (forward and backward mutations), computer simulation will be used
to approximate the time at which the first allele will arrive at genotype AB.
Consider it starts from the genotype ab.

3 Equilibrium points of the infinite population

Prior to looking at the changes in the finite population, we will first look at
the genotype frequencies in the infinite population. If we call x0, x1, andx2

the frequencies at generation t then the frequencies at generation t + 1 will be
denoted X∗0 , X

∗
1 , andX

∗
2 . Considering all our parameters are different from zero,

we obtain the following set of nonlinear equations:

(X0) ∗ = (1− 2u)x0 + 2vx1 + 2s1x0x1 − r
(
−x2

1 + x0x2

)
(1)

33



(X1) ∗ = 2ux0 + (2− 2u− 2v)x1 − 2s1x0x1

+ 2vx2 + 2 (−s1 + s2)x1x2 + 2r
(
−x2

1 + x0x2

)
(2)

(X2) ∗ = 2ux1 + (1− 2v)x2 − 2 (−s1 + s2)x1x2 − r
(
−x2

1 + x0x2

)
(3)

Because of the complexity of the equations, we will try to simplify the equa-
tions by setting recombination to be zero. Doing so, we get these following set
of equations:

(X0) ∗ = (1− 2u)x0 + 2vx1 + 2s1x0x1 (4)

(X1) ∗ = 2ux0 + (2 − 2u − 2v)x1 − 2s1x0x1 + 2vx2 + 2 (−s1 + s2)x1x2 (5)

(X2) ∗ = 2ux1 + (1− 2v)x2 − 2 (−s1 + s2)x1x2 (6)

At the fixed position, X∗0 = x0, X
∗
1 = x1, andX

∗
2 = x2 (Higgs 1997). Hence

solving for all the three variables (x0, x1, andx2), we get the following equilib-
rium frequencies:

x0 = − v

s1
− 2uv
s12

(7)

x1 =
1
2
− u

2s2
+

v

2s1
+
uv

s12
+

5s14uv

s26
+
− s1u2 + uv

s22

+
− s1

2u
2 + 2s1uv
s23

+
− s1

3u
2 + 3s12uv

s24
+
− s1

4u
2 + 4s13uv

s25
(8)

x2 = −37s14

s24
+

7s13

s23
− s1

2

s22
+
s1
s2

(9)

Now because we assumed u2 = 0 and v2 = 0 then we can say that u2 ≈ v2

≈ uv. The equations (7), (8), and (9) hence become

x0= −
v

s1
(10)

x1 =
1
2

+
v

2s1
− us41

2s52
− us31

2s42
− us21

2s32
− us1

2s22
− u

2s2
(11)

x2= −
37s14

s24
+

7s13

s23
− s1

2

s22
+
s1
s2

(12)
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We can clearly see that equations (9) and (12) are the same. This is because
the frequency x2 does not depend on any mutation rate after simplification of
the original solutions. In the above solutions, Both u and v are less than s1 and
s2. These are the simplified version of the original solutions. We also obtain
a number of complex solutions, but we are only interested in the real solution
as written above. Here we assumed that all mutations (u and v) to the power
≥ 2 are equal to zero since since u < 10−6 and v < 10−6. Also because the
selection coefficients are very low ( between 0.01 and 0.005), we assumed sn1 = 0
and sn2 = 0 whenever n ≥ 5.

4 Dynamics of finite populations

Now we will look into the change in the finite population. Let’s remember there
are four genotype and their frequencies must be equal to 1 (x0 + 2x1 + x2 = 1).
Hence there are four independent frequency variables, but we are assuming the
two single mutants (Ab and aB) are the same and have the same fitnesses of
1 − s1. This assumption leads us to work with a three dimensional system.
Since we know that the total frequency is 1, it will be easier to work only with
two variables and once we get the results, we can find the third variable in
term of the others. Our system is therefore reduce to a two dimensional system.
Previously Kimura and Ohta (1968) have developed a 1 dimensional model using
the diffusion models. Higgs (1997) has also shown that it is possible to solve a
1D system with the diffusion models. We will also use the same model to solve
our problem.

Here, because of the mutation and selection forces, we need a drift term
which we will call m(x). The m(x) or the infinitesimal mean is the change of
frequency in one generation. m(x) can also be called the expected mean change
in our variable of interest. A variance and covariance will be needed since they
follow a multinomial distribution. Our variance and covariance will respectively
be denoted v(xi, xi) and cov(xi, xj) since we are working in 2 dimensional sys-
tem. From Lynch’s appendix (2008), we see that

v(xi, xi) =
xi ∗ (1− xi)

2 ∗Ne
(13)

cov(xi, xj) =
xi ∗ xj
2 ∗Ne

(14)

We could use the Kolmogorov forward equation (or KFE) as described by
Kimura and Ohta (1968), but since our system is two dimensional this diffusion
model will not work for us. We will instead use the extended KFE shown by
Lynch in his appendix (2008)
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∂[ρ(x, p, t)]
∂t

=
1
2

k−1∑
i=1

∂2

∂x2
i

[ρ(x, p, t)
xi(1− xi)

Ne
]

−
∑
i<j

∂2

∂xi∂xj
[ρ(x, p, t)

xixj
Ne

]−
k−1∑
i=1

∂m(x)ρ(x, p, t)
∂xi

(15)

where the first part of the equation (15) is the allele-frequency variances, the
second part involves the covariances between allele frequencies, and the third
involves the change of frequency in generation or the mean. In this equation
(15) ρ(x, p, t) denotes the density function with x being the vector of allele
frequencies, p the vector of their starting values, and t the time (Lynch appendix
2008). Applying this extended KFE (15) to our specific model, we get
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∂[ρ(x0, x2, t)]
∂t

= [
1
2
∂2

∂2x0
(ρ(x, p, t)

x0(1− x0)
2Ne

)

+
1
2
∂2

∂2x2
(ρ(x, p, t)

x2(1− x2)
2Ne

)]− [
∂2

∂x0∂x2
(ρ(x, p, t)

x0x2

2Ne
)]

− [
∂ρ(x, p, t)(−2ux0 + 2vx1 + 2s1x0x1)

∂x0

+
∂ρ(x, p, t)(2ux1 − 2vx2 − 2(s2 − s1)x1x2)

∂x2
] (16)

As it was shown in equation (15), the first part of (15) involves the alleles-
frequency variances, the second part involves the covariances between allele
frequencies, and the third part is the mean. We are using 2Ne in (16) instead
of Ne because we are now considering diploid population. ρ(x0, x2, t) is the
probability distribution for the random variables x0 and x2 at time t. Solving
for our probability distribution, we can see the changes in frequencies throughout
our generation and for x0 = 0 and x2 = 0, we will be able to see the time to
fixation which is the main purpose of this research.

5 Discussion and conclusions

Our study here is an extended version of what Higgs (1997) has done. In his
model, Higgs assumes reversible mutation with 2 loci, each with two alleles.
The two alleles are labels as in our model but in his study, Higgs assumes both
the AB genotype and double mutant ab to have fitness 1, while the two single
mutants Ab and aB have a reduced fitness 1-s. Let us remember that we are
working in discrete generation for both our model and Higgs’ model. Prior to
do any modification of Higgs’ model, we will first look at this model.
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Figure 1: Higgs general model for the infinite population with reversible muta-
tion where u=v and s2 = 0

X0 = (1− 2u+ 2sx1)x0 + 2ux1 − r(x0x2 − x2
1) (17)

X1 = (1− 2u− s+ 2sx1)x1 + u(x0 + x2) + r(x0x2 − x2
1) (18)

X2 = (1− 2u+ 2sx1)x2 + 2ux1 − r(x0x2 − x2
1) (19)

From this set of equations, and considering we do not have recombination, Higgs
got the following set of solutions

x0 = x2 =
1
2
− u

s
(20)

x1 =
u

s
(21)

and the second solutions are

x0 = x2 =
1
2
− 2u

s
(22)

x1 =
u

s
(23)
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In the equations (17), (18), and (19), we have reversible mutation but the
forward and backward mutation rates are equal (u=v). Also the fitnesses of
the double mutant genotypes ab and AB are equal (1), and this is the same
for the single mutant genotype aB and Ab (1-s). Now we will make the first
step assumption by assuming u 6= v, but the fitnesses of the double mutant
genotypes are still equal. Our model will become

X0 = (1− 2u+ 2sx1)x0 + 2vx1 − r(x0x2 − x2
1) (24)

X1 = 2(1− u− v − sx0 − sx2)x1 + 2ux0 + 2vx2 + 2r(x0x2 − x2
1) (25)

X2 = (1− 2v + 2sx1)x2 + 2ux1 − r(x0x2 − x2
1) (26)

and from here, we get the following solutions

x0 = x2 =
−v
s

(27)

x1 =
1
2

+
u+ v

2s
(28)

Now we will go on with our last assumption which is the main solution we
are interested in. We will assume u 6= v and also the double mutant genotype
with different fitnesses; ab (1) and AB (1− s2), but the single mutant genotype
still have the same fitnesses (1 − s1). From here we get the equations (1), (2),
and (3) with their respective solutions (10),(11), and (12).
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