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Abstract

In natural logic, the goal is to create a system of logic that is as sim-
ilar to natural language as possible. In order to build a natural logic,
simple sentence forms are considered, slowly incorporating more language
throughout time. As background, we first consider the fragments of the
form All X are Y and then add No X are Y , where X and Y are nouns.
We will look at the rules of logic and completeness of their proof sys-
tems. Next, we will introduce the idea of intersecting adjectives which
are adjectives with meaning separate from the noun being modifying. For
example, the plural noun red cars means the intersection of everything
red and everything that is a car. This paper will then present versions
of the simple systems that contain intersecting adjectives and will discuss
their completeness.

1 Introduction

Natural logic is concerned with fragments of natural language and the logic de-
rived from systems using only these sentences. In particular, we are interested
in the completeness of these systems of logic. We will begin with a language
consisting of one sentence and slowly adding more phrases and looking at their
completeness theorems as background. Then we will move on to systems in-
cluding intersecting adjectives and discuss the completeness of their system.

Historically, logic was largely a study of syllogisms. The classic example of
a syllogism is as follows:

All men are mortal.
Socrates is a man.
Socrates is mortal.

In this syllogism, whatever makes the two statements above the line true will
also make the statement below the line true. It is also important to notice that
if we have any three sentences of these particular forms, models which make the
first two true will also make the third sentence true. We can show this as:

All m are n.
S is a m.
S is n.
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We explore this type of idea within our systems of natural logic. We look at
simple sentence forms with variables as placeholders for nouns. We create a
system of rules based on what can be derived using only these sentences, and
study the completeness of these rules.

First we look at the simple systems as done by Larry Moss[1]. These sys-
tems initially contain only the fragments of the form All X are Y and then
add those like No X are Y , where X and Y are nouns. We consider at the
rules of logic and completeness of their proof systems. The following systems of
logic involve intersecting adjectives. This type of adjective includes those which
have meanings separate from the nouns they modify. For example, it Jane is
a female student, and Jane is an athlete, we can deduce that Jane is a female
athlete. Intersecting adjectives include things such as colors, but does not in-
clude adjectives such as tall or short. For intersecting adjectives, we assume
that the adjectives and nouns are sets of things described by that particular
word, and an intersecting adjectives is the set of things in the intersection of the
adjectives and nouns. Intersecting adjectives include things such as colors, but
does not include adjectives such as tall or short. If an object is a red car, we
take the intersection of things that are red and things that are cars; however,
if something is a short child, this is not the intersection of all short things and
children because a short five year old is very different from a short twelve year
old. Also note that we can add adjectives productively, meaning that a noun
could have multiple adjectives modifying it. An example of this would be that
many countries have red, white, and blue flags. We will allow finitely many
adjectives to modify a noun in our system. After looking at some systems for
background, we will look at those including adjectives and their completeness.

2 Background

Before looking at a particular system, there are two concepts, syntax and se-
mantics, which we have in all systems. The work presented in the background
is not original, but will help develop an understanding of the systems which
we are considering. We will discuss ideas within each of these that we will use
throughout the rest of the paper. Then we will begin to look at systems done by
Larry Moss[1], building up from the simplest to the more complicated systems.

For the first idea, syntax, we have narrow forms that sentences can take.
When working with basic nouns we use X,Y, ... to represent nouns and when
dealing with adjectives we denote the intersecting adjectives either by red or
when used productively as c1, c2, ..., ck. When representing nouns, possibly with
or without adjectives, attached we use the variables m,n. In any of our systems
Γ denotes a sets of statements in that particular logic that can take the form
of the sentences in our syntax. In the syntax for our system, we also deal
with sentences of the forms All X(n) are Y (m), No X(n) are Y (m), and Some
X(n) are Y (m), using only some of these sentences depending on our particular
system. In the syntax, Γ ` S means that there is a proof tree with leaves from
Γ and has the root S that only follows the rules of our system.
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When looking at the semantics of a system, we first create a modelM(M, [[ ]]),
which contains a set M , and a subset [[X]] ⊆ M for each variable X and [[red]]
⊆M for each adjective. In semantics, we get the following:

M |= All X are Y iff [[X]] ⊆ [[Y ]]
M |= Some X are Y iff [[X]] ∩ [[Y ]] 6= ∅
M |= No X are Y iff [[X]] ∩ [[Y ]] = ∅

We allow [[X]] to be empty, and in this case, M |= All X are Y vacuously. For
a Γ, we use M |= Γ to mean that M |= S for all S ∈ Γ. Additionally, we have
the following semantic meaning in our systems with adjectives:

[[c1c2...ckX]] = [[c1]] ∩ [[c2]] ∩ ... ∩ [[ck]] ∩ [[X]]

For our final semantic definition, we write Γ |= S to mean that every model
with makes all sentences in Γ true also make S true.

Next we present the idea of the Soundness of our systems.

Lemma 2.1 (Soundness). If Γ ` S, then Γ |= S.

For a proof, see work by Larry Moss[1]. That all of our systems are sound
tells us that anything we can prove in our systems, will also be true semantically.
This guarantees that our systems do not produce nonsensical results. We would
also like the converse of this statement to be true.

Theorem 2.2 (Completeness). If Γ |= S, then Γ ` S.

Completeness guarantees that any result we can prove semantically, will also
be provable in our system. We leave the proofs of completeness to the individual
systems.

2.1 All

We begin with the simplest system, L(all), which utilizes only sentences of the
form All X are Y . The rules of logic for this system are shown in Figure 1.
And present a proof of completeness. First, we present an example to display
the difference between semantics and syntactical proofs.

Example 2.3. Let Γ = All A are B, All B are C, All C are D.
Claim 1: Γ |= All A are D.
From Γ, we have the following

[[A]] ⊆ [[B]], [[B]] ⊆ [[C]], [[C]] ⊆ [[D]].

So, we have
[[A]] ⊆ [[D]].

Claim 2: Γ ` All A are D.

All A are B All B are C
All A are C All C are D

All A are D
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All X are Y
All Y are Z All X are Z

All X are Y

Figure 1: The Rules of Logic for L(all).

And now we turn to the completeness of L(all).

Theorem 2.4. The logic of L(all) is complete.

Proof. Suppose Γ |= S and let S be All X are Y . We begin by making a model
M(Γ). Let

M = all variables in Γ

and we set the semantics of any variable be

[[V ]] = {W : Γ ` All W are V }

Claim: M |= Γ Let All A are B ∈ Γ. We must show [[A]] ⊆ [[C]]. Let
P ∈ [[A]]. Then we have that Γ `All P are A. And we can get the following
proof tree ....

All P are A All A are B
All P are B

Since Γ ` All P are B, B ⊆ [[*B* ]]. From this we can conclude that [[A]] ⊆ [[C]].
SinceM |= Γ and Γ |= All X are Y ,M |= All X are Y . Therefore, we have

[[X]] ⊆ [[Y ]]. Since we have
All X are Y

we know that X ∈ [[X]] and X ∈ [[Y ]]. Therefore, Γ ` All X are Y .

Thus we have the completeness of L(all) of our simplest proof system. From
here, we move on to systems that add complexity to this system.

2.2 All and No

We expand our language to also contain sentences of the form No X are Y .
Note that No X are X means that there are no X. And, in addition to the
rules of L(all), the system L(all, no) also contains the rules listed in Figure 2.
Again, we are interested in the completeness of the system.

Theorem 2.5. The logic of L(all, no) is complete.

Proof. Let Γ be a set of sentences in L(all, no) Suppose Γ |= S. We consider
the model M(Γ) where M = set of sets a such that the following are true

if V ∈ a and Γ ` All V are W , then W ∈ a
if V,W ∈ a, then Γ 6` No V are W
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we set the semantics of any variable to be

[[Z]] = {a ∈M : Z ∈ a}

We claim that M |= Γ. By our first condition, we have that if All X are Y
belongs to Γ, then [[X]] ⊆ [[Y ]]. If No X are Y belongs to Γ, then let a ∈ [[X]],
so X ∈ a. By the second condition, Y 6∈ a and therefore, a 6∈ [[Y ]]. Which shows
that [[X]] ∩ [[Y ]] = ∅. So we have that M |= Γ.

Since we have that M |= Γ and Γ |= S, we have M |= S. First we consider
the case where S is All X are Y . Let

a = {V : Γ ` All X are V }

Case I: a 6∈ M Then there must be some A,B ∈ a such that Γ ` No A are
B. Then we get the following proof tree

....
All X are B

....
All X are A

....
No A are B

No X are B
No B are X

No X are X
All X are Y

Case II: a ∈ M. Then since a ∈ [[X]], we have a ∈ [[Y ]]. Therefore, Y ∈ a,
and Γ ` All X are Y .

Next we consider the case when S is No X are Y . Here, we let

a = {V : Γ ` All X are V orΓ ` All Y are V }

Notice that X,Y ∈ a. We claim that a 6∈ M. To see this notice that if a ∈ M,
we have that a ∈ [[X]]∩[[Y ]] . Which implies that [[X]]∩[[Y ]] 6= ∅ which contradicts
M |= No X are Y . So we do in fact have that a 6∈ M, implying that there
are some V,W ∈ a such that Γ ` No V are W . There are four possible cases,
depending on if Γ ` All X are V or Γ ` All Y are V and Γ ` All X are W or
Γ ` All Y are W . We first explore the case where Γ ` All Y are V and Γ ` All
X are W .

....
All X are W

....
All Y are V

....
No V are W

No Y are W
No W are Y

No X are Y

The proof tree for Γ ` All X are V and Γ ` All Y are W is similar. Next
we consider the case where Γ ` All X are V and Γ ` All X are W .
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All X are Y No Y are Z
No X are Z

No X are Y
No Y are X

No X are X
All X are Y

Figure 2: The rules logic of L(all, no) when combined with the rules of logic for
L(all).

....
All X are W

....
All X are V

....
No V are W

No X are W
No W are X

No X are X
All X are Y

....
No X are X

No X are Y

The case where Γ ` All Y are V and Γ ` All Y are W follows similarly.
Therefore, we have that Γ ` S.

We also have know that L(all, no) is complete.

2.3 All and Intersecting Adjectives

In this section, we look at the simplest logic including adjectives. There are
many similarities between this case and L(all); however, we add a few rules
concerning adjectives that are not derivable from the our original logic. Addi-
tionally, the proof of completeness of L(all, adjectives) is similar to that of our
first completeness proof.

Theorem 2.6. The logic of L(all, adjectives) is complete.

Proof. Suppose Γ |= S and let S be All n are m. We begin by making a model
M(Γ). Let

M = all nouns in Γ

and we set the semantics of any variable be

[[V ]] = {n : Γ ` All n are V }

[[red]] = {m : Γ ` All n are red p for some p ∈M}

Claim: M |= Γ Let All n are m ∈ Γ. There are a number of cases, dependent
on n,m, but we will only explore a few as others are similar.

Case I: n = X,m = red Y We must show [[X]] ⊆ [[red]] ∩ [[Y ]]. Let p ∈ [[X]].
Then we have that Γ `All p are X. And we can get the following proof trees

....
All p are X All A are red Y

All p are red Y
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All n are m
All m are l All n are l

All n are m

All red n are n
All n are m All n are red m

All n are red l

Figure 3: The rules of logic for L(all, adjectives).

....
All p are red Y All red Y are Y

All p are Y

It follows that p ∈ [[red]] and p ∈ [[Y ]]. So we have that [[X]] ⊆ [[red]] ∩ [[Y ]].
Case II: n = red blue X,m = green Y We must show [[red]]∩ [[blue]]∩ [[X]] ⊆

[[green]] ∩ [[Y ]]. Let p ∈ [[red]] ∩ [[blue]] ∩ [[X]], then p ∈ [[red]], p ∈ [[blue]], and
p ∈ [[X]], so Γ ` All p are red a, Γ ` All p are blue b, and Γ ` All p are X. And
get the following trees

....
All p are red a

....
All p are blue b

....
All p are X

All p are blue X
All p are red blue X All red blue X are green Y

All p are green Y

....
All p are green Y All green Y are Y

All p are Y

Other cases are done similarly. It follows that M |= Γ.
SinceM |= Γ and Γ |= All n are m,M |= All n are m. Here again, we have

many cases, but will look at one to understand the general method.
n = red X,m = blue green Y Therefore we have [[red]] ∩ [[X]] ⊆ [[blue]] ∩

[[green]]∩[[Y ]]. We know that red X ⊂ [[red]]∩[[X]] because we have the following
trees

All red X are red X

All red X are X

we know that X ∈ [[red]] ∩ [[X]] and X ∈ [[blue]] ∩ [[green]] ∩ [[Y ]]. Therefore, Γ `
All red X are blue green Y .

The proof of the completeness of L(all, adjectives) concludes our introduc-
tion to systems of logic their completeness.
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All n are m No m are l
No n are l

No n are m
No m are n

No n are n
All n are m

No n are red m
No m are red n

Figure 4: The rules logic of L(all, adjectives, no) when combined with the rules
of logic for L(all, adjectives).

3 All, No, and Adjectives

Next we look at the combination of sentences of the forms All n are m and No n
are m, where n and m are nouns with or without adjectives. The rules for this
system can be found in Figure 4, in addition to those rules for L(all, adjectives).
We claim that L(all, no, adjectives) is also complete.

Theorem 3.1. The logic of L(all, no, adjectives) is complete.

Proof. Let Γ be a set of sentences in L(all, no) Suppose Γ |= S. We consider
the model M(Γ) where M = set of sets a such that the following are true

if n ∈ a and Γ ` All n are m, then m ∈ a
if n,m ∈ a, then Γ 6` No V are W
if n, red m ∈ a, then red n ∈ a

and we set the semantics of any variable and adjective to be

[[Z]] = {a ∈M : Z ∈ a}

[[red]] = {b ∈M : red p ∈ a, p some noun ∈ Γ}
We claim that M |= Γ.
Case I: All n are m ∈ Γ It should be noted that in the case where All X are

Y belongs to Γ, then by the same argument used from L(all, no) that [[X]] ⊆
[[Y ]]. Now we look at the general case with finitely many colors. If All c1...cjX
are d1...dkY ∈ Γ, we must show that

[[c1]] ∩ [[c2]] ∩ ... ∩ [[cj ]] ∩ [[X]] ⊆ [[d1]] ∩ [[d2]] ∩ ... ∩ [[dk]] ∩ [[Y ]]

Let a ∈ [[c1]] ∩ [[c2]] ∩ ... ∩ [[cj ]] ∩ [[X]]. Then c1p1, ..., cjpj , X ∈ a. By our third
condition since cjpj ∈ a and X ∈ a, it follows that cjX ∈ a. Repeating this
arguement j − 1 more times, we hae that c1...cjX ∈ a. Since Γ ` All c1...cjX
are d1...dkY , we know d1...dkY ∈ a. And therefore a ∈ [[d1]]. And we can get
the following proof tree

All d1...dkY are d2...dkY

Which tells us that d2...dkY ∈ a. Repeating this argument, we find that a ∈
[[d1]] ∩ [[d2]] ∩ ... ∩ [[dk]] ∩ [[Y ]]. And therefore we have

[[c1]] ∩ [[c2]] ∩ ... ∩ [[cj ]] ∩ [[X]] ⊆ [[d1]] ∩ [[d2]] ∩ ... ∩ [[dk]] ∩ [[Y ]]
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Case II: No n are m belongs to Γ. Notice that in this case, if No X are Y
∈ Γ, the proof from L(all, no) shows that that [[X]] ∩ [[Y ]] = ∅. We look at No
c1...cjX are d1...dkY ∈ Γ, we must show that

[[c1]] ∩ [[c2]] ∩ ... ∩ [[cj ]] ∩ [[X]] ∩ [[d1]] ∩ [[d2]] ∩ ... ∩ [[dk]] ∩ [[Y ]] = ∅

Suppose not, and let a ∈ [[c1]]∩ [[c2]]∩ ...∩ [[cj ]]∩ [[X]]∩ [[d1]]∩ [[d2]]∩ ...∩ [[dk]]∩ [[Y ]],
then by our previous arguments c1...cjX ∈ a, d1...dkY ∈ a and a ∈ M. But
By our third condition, since blue q and X ∈ a, blue X ∈ a. Similarly since
red p and blue X ∈ a, we have red blue X ∈ a. By the same argument, we
can conlude that green yellow Y ∈ a. But we have that Γ ` No c1...cjX are
d1...dkY , which contradicts the second condition for a ∈ M. So we have that
[[c1]]∩ [[c2]]∩ ...∩ [[cj ]]∩ [[X]]∩ [[d1]]∩ [[d2]]∩ ...∩ [[dk]]∩ [[Y ]] = ∅ and therefore also
that M |= Γ.

Since we have that M |= Γ and Γ |= S, we have M |= S. First we consider
the case where S is of the form All n are m. Here we consider the general case
where S is All c1...cjX are d1...dkY . Let

a = {n : Γ ` All c1...cjX are n}

Case I: a 6∈ M Then there must be some m, l ∈ a such that Γ ` No m are l.
Then we get the following proof tree

....
All c1...cjX are l

....
All c1...cjX are m

....
No m are l

No c1...cjX are l
No l are c1...cjX

No c1...cjX are c1...cjX
All c1...cjX are d1...dkY

So we have that Γ ` All c1...cjX are d1...dkY .
Case II: a ∈ M. Then since a ∈ [[c1]] ∩ ... ∩ [[cj ]] ∩ [[X]], we have a ∈

[[d1]]∩ ...∩ [[dk]]∩ [[Y ]]. Therefore, d1p1, ..., dkdk, Y ∈ a. Using previous arguments
we have that d1...dkY ∈ a, so Γ ` All c1...cjX are d1...dkY .

Next we consider the case when S is of the form No n are m. Specifically
we will consider No c1...cjX are d1...dkY . Here, we let

a = {n : Γ ` All c1...cjX are norΓ ` All d1...dkY are n}

Notice that c1...cjX, d1...dkY ∈ a. We claim that a 6∈ M. To see this notice
that if a ∈M, we have that a ∈ [[c1]] ∩ ... ∩ [[cj ]] ∩ [[X]] ∩ [[d1]] ∩ ... ∩ [[dk]] ∩ [[Y ]] .
Which implies that [[c1]] ∩ ... ∩ [[cj ]] ∩ [[X]] ∩ [[d1]] ∩ ... ∩ [[dk]] ∩ [[Y ]] 6= ∅. So we do
in fact have that a 6∈ M, implying that there are some n,m ∈ a such that Γ `
No n are m. There are four possible cases, depending on if Γ ` All c1...cjX are
n or Γ ` All d1...dkY are n and Γ ` All c1...cjX are m or Γ ` All d1...dkY are
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All n are m Some n are l
Some m are l

Some n are m
Some m are n

Some n are m
Some n are n

Some n are red m
Some m are red n

Figure 5: The rules logic of L(all, some, adjectives) when combined with the
rules of logic for L(all, adjectives).

m. We first explore the case where Γ ` All d1...dkY are n and Γ ` All c1...cjX
are m.

....
All c1...cjX are m

....
All d1...dkY are n

....
No n are m

No d1...dkY are m
No m are d1...dkY

No c1...cjX are d1...dkY

We also have the case where Γ ` All blue green Y are m and Γ ` All red X
are n which has a similar proof tree. Next we explore the case where Γ ` All
c1...cjX are n andΓ ` All c1...cjX are m.

....
All c1...cjX are m

....
All c1...cjX are n

....
No n are m

No c1...cjX are m
No m are c1...cjX

No c1...cjX are c1...cjX
All c1...cjX are d1...dkY

....
No c1...cjX are c1...cjX

No c1...cjX are d1...dkY

Similarly, we have the case where All d1...dkY are n and All d1...dkY are n.
Therefore, we know that Γ ` S.

We concluded with the completeness of the combinations of systems we have
thus far discussed.

4 All, Some, Adjectives

As discussed by Moss[1], there is also a language which combines sentences of
the form All X are Y and Some X are Y . A direction that we began to explore
but can be continued is to add adjectives to L(all, some). We present here what
we believe to be the complete rules of logic for L(all, some, adjectives).
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