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Preface

Much of what is done in this dissertation is based on the connections between modal

logic and algebraic logic. Not every logic can be studied from an algebraic point of

view. This leads to the notion of an algebraizable logic. Normal modal logics which

are the only types of modal logics we consider can be studied using the tools avail-

able in universal algebra. In other words normal modal logics are algebraizable, to

use Blok and Pigozzi’s terminology. In their work Blok and Pigozzi consider many log-

ics and in many cases they show that the logical concepts can be thoroughly captured

by appropriate types of algebras. Such logics are called algebraizable. C.f. [BPA].

A particular question we consider in this dissertation is what we call the Countable

Canonicity Conjecture, or the CCC , whose roots can be found in the work of K. Fine.

Fine’s result on the connection between first order logic and modal logic is quite well

known. In 1975 Fine published a paper in which he showed that any class of Kripke

frames that is first order definable has a canonical modal logic. C.f. [FFM]. He then

laid out a question, known as Fine’s Canonicity Conjecture, that remained open un-

til it was negatively answered by Goldblatt, Hodkinson, and Venema in [GHV]. It

stipulated that any class of Kripke frames defined by a canonical logic is first order

definable. We should point out that in this context one only considers modal logics

with countably many atomic propositions. R. Goldblatt has made many significant

contributions to the study of modal logic and in particular the connection between

modal and algebraic logic clearing the way for the resolution of Fine’s conjecture. In
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1989 Goldblatt published a paper titled: ”Varieties of Complex Algebras”, [GVC], in

which he defined the notion of a canonical variety of boolean algebras with operators.

One of the results in [GVC] is that any variety of modal algebras which is closed un-

der canonical extensions is defined by a canonical modal logic. This follows from his

observation that the canonical frame of a logic Σ, is isomorphic to the ultrafilter frame

of the Lindenbaum-Tarski algebra of Σ. The term Canonical Variety was introduced by

Goldblatt to refer to such a variety, c.f. [GVC]. The concept of the canonical extension

was first introduced by L. Henkin, J.D. Monk, and A. Tarski in [HMA] under the name

of a ”Canonical Embedding Algebra”. Another result by Goldblatt shows that a class of

Kripke frames is closed under ultrafilter extensions if it is closed under ultraproducts.

This result was later strengthened by J. van Benthem in [VBUE] where he proves the

closure under ultrapowers is indeed enough. Goldblatt also showed that if a class

of Kripke frames is closed under ultrafilter extensions the variety of modal algebras

generated by that class is a canonical variety. C.f. [GVC]. As a result Goldblatt’s work

in [GVC] Fine’s canonicity conjecture effectively creates two new problems that can

be stated as follows.

1. Is any class of Kripke frames whose modal algebras of subsets generate a canon-

ical variety first order definable?

2. Is any variety of modal algebras defined by a canonical logic a canonical variety?

The converses of both questions are proved true by Goldblatt’s work. C.f. [GVC].
ix



Therefore Fine’s conjecture would have been true if both questions were answered

positively. However, this was not what the research in the area revealed. The first

question above was negatively answered in 2003. C.f. [GHV]. The second question

remains open to date. So far as we know Goldblatt has not actually stipulated that

the answer to the latter question should be positive. This is the only reason we re-

frain from using the term Goldblatt’s Canonicity conjecture. A combination of some

of ours results, that we will refer to, lead us to surmise that conjecture must be true.

First are corollary 3.3, and proposition 3.3. These two results give an impression,

admittedly vaguely, of the preservation of the structure of sv-frames (which are the

main structures we study) in the canonical frame of any logic they validate. Our re-

sult on coproduct preservation, lemma 4.11 and proposition 5.1 also play a role in

persuading us to hope for a positive answer to the CCC. We are certainly not the first

to believe that the conjecture is likely to have a positive answer. Yet, we have not

been able to find the first instance of a clear assertion of the CCC as a conjecture in

the existing literature. Therefore, regretfully, we are not able to give the due credit to

whomever who is deserving of it.

Almost all the definitions and basic results that are included in this dissertation are

from [BRV] which does include extensive citations of original references. Let us briefly

mention some major contributors to the topics discussed in this dissertation. This is

not an exhaustive list of course for many bright thinkers have contributed to practi-

cally everything that appears in our work.
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The work of A. Tarski, B. Jónsson, L. Henkin has been instrumental to the develop-

ment of algebraic logic. One can even say they had significant contributions to the

creation of algebraic logic. P. Halmos and E.J. Lemmon are also major contributors

to this field. The work of M. Stone and L.Vietoris is fundamental to our work here

as it is apparent in our terminology. Needless to say without S. Kripke’s semantics

little would be left for us to say. R. Goldblatt and J.M. Dunn have also made many

contributions that are mainly responsible for our choice of a dissertation topic. The

work of many others who are not named here has been inspirational to us and we feel

sincerely grateful for all who did so much excellent work. We have cited some of the

references at the end of the dissertation.
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Saleh Aliyari

Topological Representation of Canonicity for Varieties of Modal Algebras

The main subject of this dissertation is to approach the question of countable canon-

icity of varieties of modal algebras from a topological and categorical point of view.

The category of coalgebras of the Vietoris functor on the category of Stone spaces

provides a class of frames we call sv-frames. We show that the semantic of this frames

is equivalent to that of modal algebras so long as we are limited to certain valuations

called sv-valuations. We show that the canonical frame of any normal modal logic

which is directly constructed based on the logic is an sv-frame. We then define the

notion of canonicity of a logic in terms of varieties and their dual classes. We will then

prove that any morphism on the category of coalgebras of the Vietoris functor whose

codomain is the canonical frame of the minimal normal modal logic are exactly the

ones that are invoked by sv-valuations. We will then proceed to reformulate canonic-

ity of a variety of modal algebras determined by a logic in terms of properties of the

class of sv-frames that correspond to that logic. We define ultrafilter extension as an

operator on the category of sv-frames, prove a coproduct preservation result followed

by some equivalent forms of canonicity. Using Stone duality the notion of co-variety

of sv-frames is defined. The notion of validity of a logic on a frame is presented in

terms of ranges of theory maps whose domain is the given frame. Partial equivalent

results on co-varieties of sv-frames are proved. We classify theory maps which are

xii



maps invoked by a valuation on a Kripke frame using the classification of sv-theory

maps and properties of ultrafilter extension. A negative categorical result concerning

the existence of an adjoint functor for ultrafilter extension is also proved.
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1 Introduction

In this introduction we assume some knowledge of modal logic; in particular the no-

tions of truth and validity on Kripke frames. These notions are introduced in detail

in chapter 1. We only talk about normal modal logics, i.e. those with one modal

operator. We freely use the term logic, or modal logic to refer to a normal modal

logic. Throughout the dissertation we will assume familiarity with point set topology.

However we will use a very narrow set of results from topology. We will also use

some facts from category theory. In neither case have we included the basic material.

Except for basic facts from topology and category theory, we have included every def-

inition/fact that is needed for our purposes; albeit in a brief manner. Definitions and

theorems that fall in the scope of universal algebra are adapted to the particular case

of modal algebras.

The Countable Canonicity Conjecture, or the CCC , is a question about varieties of

modal algebras, or more generally, of boolean algebras with operators. The goal of

this dissertation is to discuss this conjecture and its connection to the notion of modal

definability of classes of Kripke frames. To this end, we will prove the equivalence

of the conjecture with other statements mainly formulated for what we will call sv-

frames. An sv-frame is a Kripke frame whose underlying set is a special topological

space. That is, a Stone space; a compact, Hausdorff, totally disconnected topological

space.
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The CCC is usually stated as follows:

If Σ is a canonical modal logic in a countable language then V
Σ
, the variety of modal

algebras defined by Σ, is a canonical variety.

Let us go over the definitions we need to understand the statement of the CCC.

A canonical modal logic Σ is a logic which is valid, i.e true under all valuations, on a

special frame F
Σ . F

Σ is called the canonical frame of Σ. The canonical frame of Σ is

closely related to Σ and is constructed by using maximal consistent sets of formulae

in Σ. In contrast to canonical modal logics, any modal logic is globally true on its

canonical model which is the canonical frame equipped with a particular, canonical,

valuation. Intuitively, the canonical model of a logic Σ is the model built following

the rules of Σ. Therefore the least one would expect from a standard Henkin style

completeness proof is for Σ to be globally true on its canonical model. Canonicity of

Σ eliminates the dependence of global truth on the canonical valuation. So to empha-

size the notion:

Σ is canonical if and only if Σ is valid on its canonical frame.

An algebra is a set equipped with some operators and possibly distinguished elements.

2



Algebras that have the same number of operators and distinguished elements are said

to be of the same type. By a class of algebras we mean a class of algebras of the

same type unless otherwise specified. An equationally definable class of algebras is

the class of algebras that satisfy a fixed set of equations. We do not get into details

of equational logic. Let us just say that the notion of satisfaction of an equation in

an algebra is the general form of an equation in a group, or a ring. All variables in

such an equation are assumed to be universally quantified. A class of algebras closed

under homomorphic images, subalgebras, and arbitrary products is called a variety.

Given a class C, HC, SC, and PC, denote the closure of C under homomorphic images,

subalgebras, and arbitrary products, respectively.

Formulae of modal logics can be translated into equations over a particular kind of

algebra, a modal algebra. One can use this translation in order to consider a modal

logic as an equational logic. This enables us to apply the classic Birkhoff Variety The-

orem below to modal logics. A modal algebra is a boolean algebra with an additional

unary operator. The unary operator of a modal algebra satisfies some properties that

we will discuss in detail in chapter 1.

The Birkhoff Variety Theorem shows that a class of algebras is a variety if and only

if it is definable by a set of equations. Furthermore, to check whether a class C, of

algebras is a variety one only needs to check C for closure under HSP in this particular

3



order. This implies that for any class C, HSPC is a variety which is called the variety

generated by C. The variety generated by the singleton {A} is called the variety gen-

erated by A. Given the translation of modal logics into equations we can apply the

theorem to modal algebras. Any variety V
Σ

of modal algebras is generated by any

A ∈ V
Σ

whose theory (the set of formulae valid on A) is Σ. That is, any algebra in

V
Σ

is a homomorphic image of a subalgebra of a power of A (a product where all the

components are isomorphic to A), where A is an algebra that validates Σ and nothing

more than Σ. In particular there is an algebra called the Lindenbaum-Tarski algebra

of Σ and denoted by LΣ, that generates V
Σ
. That is, V

Σ
= HSP{LΣ}. For a modal logic

LΣ is a quotient algebra which is defined by an equivalence relation on the set of all

formulae in the language of Σ. The equivalence relation is the equivalence according

to Σ. In other words two formulae are considered equivalent (are in the same equiv-

alence class in the quotient algebra) if and only if Σ proves them to be equivalent (as

formulae of modal logic).

For any modal algebra A the set of ultrafilters of A can be equipped with a relation,

based on the modal operator of A, that turns it into a Kripke frame. This frame is

denoted by A+ and is called the ultrafilter frame of A. Let us mention that A+ is

not just a Kripke frame; it can be equipped with a Stone topology determined by A.

Under this topology A+ is what we call an sv-frame. This fact is used later in this

introduction.

4



For each Kripke frame F = 〈W,R〉, the modal algebra of subsets of F is denoted by F+.

F+ is the boolean algebra of all subsets of W equipped with an operator defined by

fR(A) = {x ∈ W| ∃y ∈ A xRy} .

The canonical extension of a modal algebra A is the modal algebra of subsets of the

ultrafilter frame of A. In other words the canonical extension of A is defined by

CmA = (A+)+ .

A canonical variety is one which is closed under the operation of forming canonical

extensions. This means that CCC can be stated as follows:

Given a canonical logic Σ and an arbitrary A ∈ V
Σ
, CmA belongs to V

Σ
.

What follows should make it apparent that CCC relates to both algebraic and frame

semantics for modal logics. We use the notations A |= Σ, F  Σ, to denote that a set

of formulae Σ is valid on an algebra A, a Kripke frame F, respectively.

It is a well known fact that for any set of formulae Σ,

F  Σ iff F+ |= Σ .

In general the validity of a formula φ (or a logic Σ) on A does not imply the validity

of φ (Σ) on CmA. In chapter 2 we will see that if a modal formula φ is valid on a
5



modal algebra A, then φ is valid on A+, under a different definition of validity which

is weaker than Kripke validity. We refer to this weaker notion of validity as sv-validity.

The definitions are given in chapter 1. We will however return to this notion here. The

notion of sv-validity is an equivalent form of validity on descriptive general frames,

which are usually considered for providing a complete semantics for normal modal

logics in the standard literature.

DGF, the category of descriptive general frames, is known to be dually equivalent to

the category of modal algebras. A DGF, D = 〈W,R,A〉, is a structure where 〈W,R〉 is a

Kripke frame and A is a special set of subsets of W called admissible sets. The condi-

tions on admissible sets in the definition of a DGF can be described in the context of

categories of certain topological spaces. Therefore instead of working with DGF we

consider a category SV which is isomorphic to DGF. So we can skip the specifics of the

definition of admissible sets. Instead we consider a functor on Stone, the category of

Stone spaces, that assigns a Stone space VX to any given Stone space X. The points of

VX are closed subsets of X, and VX is given a topology that makes VX a Stone space.

VX is the analogous to the power set construction for Stone spaces.

Here is what we need to know about sv-frames at this point:

An sv-frame is a triple S = 〈W,R, τ〉, where 〈W,R〉 is a Kripke frame, and τ is a Stone

topology on W such that

6



1. The R-image of each node is a closed set of τ . The R-image of x is defined by

R[x] = {y | R x y } .

2. If K[W], the set of closed subsets of τ is equipped with the Vietoris topology

based on τ

then

γR(x) = R[x] ,

is a continuous function.

Kripke frames can be seen as coalgebras of the power set functor on the category Sets.

sv-frames can be seen as coalgebras of the Vietoris functor over the category Stone

in much the same way. ClgV is the category of coalgebras of the Vietoris functor on

the category of Stone spaces. As shown in [KKV] ClgV is dually equivalent to MA,

the category of modal algebras, and isomorphic to DGF. Since sv-frames can be seen

as coalgebras of the Vietoris functor on Stone, we can consider SV, the category of

sv-frames, also dually equivalent to MA, and isomorphic to DGF. In chapter 1 we will

see that morphisms of ClgV (and hence SV) are identifiable with continuous maps be-

tween their corresponding frames that are also bounded morphisms of Kripke frames.

Our choice to work with sv-frames, as opposed to descriptive general frames, is strictly

notational. We could avoid introducing sv-frames and work with DGF’s. Yet the choice

made here significantly simplifies the terminology used for more detailed discussions.

7



Since the Stone topology on S is fixed, for all practical purposes we do not need to

work with specifics of the topology on S. All we need to know is that the topology on S

is compact, Hausdorff, and totally disconnected and satisfies the properties mentioned

in the definition of an sv-frame. So when there is no ambiguity (practically throughout

the entire discussion) we do not mention the topology on S = 〈W,R, τ〉. We refer to

S and its underlying Kripke frame 〈W,R〉 by the same name. The need to make a

distinction arises when we consider validity of formulae on sv-frames. Hence we will

introduce the notion of sv-validity. To distinguish between validity of a formula on

the underlying Kripke frame of S and sv-validity on S we will introduce the notation

S 
sv
φ ,

which means φ is globally true on S under all valuations whose values are restricted

to clopens of the Stone topology of S. We use the notation S 
sv

Σ to denote that

Σ is sv-valid ( true under all sv-valuations) on S. Obviously, Kripke validity implies

sv-validity but not vice versa.

The duality of ClgV as discussed in [KKV] is based on The Stone Representation The-

orem. It is proved that the ultrafilter frame of each modal algebra is an sv-frame

(coalgebra of V ) and each sv-frame is the ultrafilter frame of an algebra, the modal

algebra of the clopen subsets of its Stone topology.

As mentioned before, the ultrafilter frame of a modal algebra is an sv-frame. In chap-

8



ter 2, using the duality mentioned above we will show

A |= Σ iff A+ 
sv

Σ .

Therefore given a modal algebra A in V
Σ
, i.e given an algebra A such that A |= Σ we

have

A+ 
sv

Σ .

A restatement of CCC is the following.:

If Σ is a canonical modal logic, not only

A+ 
sv

Σ for all A ∈ V
Σ
,

but also

A+  Σ for all A ∈ V
Σ
.

To see this, recall that CmA = ((A)+)+, and that for any Kripke frame F

F  Σ iff F+ |= Σ .

In particular

(A)+  Σ iff ((A)+)+ |= Σ .

Therefore

(A)+  Σ iff CmA |= Σ iff CmA ∈ V
Σ
.

Another known fact is that LΣ+ ' F
Σ . Therefore

Cm LΣ ' ((LΣ)+)+ ' (F
Σ

)+

9



On the other hand, Σ is valid on F
Σ iff it is valid on (F

Σ
)+. This implies that Σ is a

canonical logic iff

Cm LΣ |= Σ .

Put differently Σ is a canonical logic iff

Cm LΣ ∈ V
Σ
,

Recalling that LΣ is always in V
Σ
, we have just shown that Σ is a canonical logic if

V
Σ

is closed under forming the canonical extension of a particular algebra, i.e. LΣ.

On the other hand V
Σ

is a canonical variety if it is closed under forming canonical

extensions of arbitrary algebras. It should now be clear that Σ is a canonical logic if

V
Σ

is a canonical variety.

CCC is the reverse of this statement.

Since we approach the problem of canonicity at the level of frames, we are interested

in a dual statement of CCC. Note that in essence, we deal with the frames which

are ultrafilter frames of some modal algebra. These are sv-frames or DGF’s. For

convenience we can define the ultrafilter extension of a frame F by

ue F = (F+)+ ,

which is an equivalent form of the standard definition. We extend this definition to

sv-frames. Basically the ultrafilter extension of an sv- frame is the ultrafilter extension
10



of its underlying Kripke frame.

We also define

SVΣ = V
Σ+ = {A+ | A ∈ V

Σ
} = {A+ | A |= Σ} .

or

SVΣ = V
Σ+ = {S ∈ SV | 

sv
Σ} .

We can then show that canonicity of V
Σ

is equivalent to closure of (V
Σ
)+ under ultra-

filter extensions. But first we have a look at the dual operations on the category SV.

By duality, an injective (surjective) map of modal algebras is associated with a surjec-

tive (injective) map between the corresponding sv-frames. So subalgebras translate

to quotient sv-frames and homomorphic images translate to generated sv-subframes.

Let S∗ denote the modal algebra of clopen subsets of S, which is the dual object to S

based on The Stone Representation Theorem. We can define the coproduct of a fam-

ily of sv-frames by letting it be the ultrafilter frame of the product of the associated

algebras of the sv-frames of the family. That is,

sv⊕
I

Si = [
∏

I

((Si)
∗)]+ .

It is easily seen that ∏
I

((Si)
∗) |= φ iff

sv⊕
I

Si 
sv
φ

or equivalently ∏
I

(A)i |= φ iff
sv⊕
I

(Ai)+ 
sv
φ .

11



The Birkhoff Variety Theorem describes varieties as classes of algebras closed under

HSP. By duality, a class of sv-frames is defined by a logic (where the notion of validity

is sv-validity) iff it is closed under the dual operations denoted by GQC.

Mapping a Kripke frame to its modal algebra of subsets provides a contravariant func-

tor, as is the case if we map a modal algebra to its ultrafilter frame. Hence both

canonical and ultrafilter extensions can be seen as functors, as they are compositions

of two functors. Since by their definitions both canonical and ultrafilter extensions

are the result of applying two contravariant functors in a row, both preserve injective

and surjective morphisms.

Since any A ∈ V
Σ

is a homomorphic image of a subset of a power of any generator of

V
Σ

(LΣ for example), for CmA (arbitrary A) to belong to V
Σ

it is enough to show

Cm
∏

I

LΣ ∈ V
Σ
.

LΣ can be replaced by any generator, of course.

Dually, closure of SVΣ under ultrafilter extensions. (ue-closed-ness ) is reduced to the

case of coproducts.

Recalling F
Σ ' (LΣ)+ we can see that F

Σ generates the dual class SVΣ. So the canon-

icity of SVΣ is equivalent to

ue

sv⊕
I

F
Σ ∈ SVΣ .

12



We will prove that this statement, and hence CCC can be reformulated in terms of se-

mantical equivalence of certain structures, in a sense we will define in detail. We will

also prove certain results that suggest the connection between canonicity and modal

definability might have been understated in standard literature. We will prove some

properties of (mainly definable) classes of Kripke frames that are related to ue-closure

in an indirect way.

Everything we have introduced so far is either entirely included in the current litera-

ture or equivalent to some already existing definitions/results. However some of the

concepts above were independently developed though they turned out to be equiv-

alent to previously known definitions/results. Expanding the definition of ultrafilter

extension and its consequent equivalent forms of the CCCis done here for the first

time to the best of our knowledge. So are the definitions of theory maps and their

subsequent classification. Theory maps provide a new approach for studying canonic-

ity, or other questions concerning validity for that matter. We will define certain maps

that we call theory maps, and we show that validity of a formula φ on an sv-frame S is

equivalent to the inclusion of ranges of all theory maps with domain S, in F
Σ , where

Σ ` φ.

A couple of other results that are new to this dissertation are the following. First

we prove that continuous theory maps into F
K, and continuous bounded frame mor-

phisms into F
K, are one and the same. Here, F

K is the canonical frame of the minimal
13



normal modal logic K.

As a consequence of the above classification theorem we obtain a the following re-

statement of the CCC :

For any canonical logic Σ, continuous bounded frame morphisms with the domain

ue

sv⊕
I

F
Σ

land in F
Σ ( i.e. their range is included in F

Σ). We will not however prove any of the

results related to canonicity using the theory map formulation.

There are two other new results we have proved in the last chapter. That is, the non-

existence of a right adjoint for the ultrafilter extension functor, and the canonicity of

a particular logic which is our proposition 5.8.
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2 Basic Concepts

2.1 Modal Algebras

Definition 2.1.1. (Modal Algebras) An algebra A = 〈A,∨,−, 0, 1, f〉, is a modal alge-

bra provided that 〈A,∨,−, 0, 1〉 is a boolean algebra, and f : A → A is a map with the

following properties:

f(0) = 0 and f(a ∨ b) = f(a) ∨ f(b) (1)

The map f is called the modal operator of A.

Definition 2.1.2. (Subalgebras of Modal Algebras) A modal algebra B is a subal-

gebra of a modal algebra A, notation: B � A, provided that the underlying boolean

algebra of B is a subalgebra of the underlying boolean algebra of A, and the modal

operator of B is the restriction of that of A to the underlying set of B.

Definition 2.1.3. (Homomorphisms of Modal Algebras) Suppose A = 〈A,∨,−, 0, 1, f〉,

and B = 〈B,∨,−, 0, 1, g〉, are modal algebras. A map h : A → B, is called a homomor-

phism of modal algebras provided that the following conditions hold:

1. h(0) = 0 and h(1) = 1

2. h(a ∨ b) = h(a) ∨ h(b)

3. h(−a) = −h(a)
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4. h(f(a)) = g(h(a))

Differently put, a homomorphism of modal algebras is a boolean algebra homomorphism

that preserves the modal operator as well. We write h : A → B to denote that h is a

modal algebra morphism.

an injective homomorphism of modal algebras is called an embedding.

Definition 2.1.4. (Category of Modal Algebras) MA, the category of modal algebras,

is the category with modal algebras as objects, and homomorphisms of modal algebras

as morphisms.

Terminology We use the following commonly used notations

a ∧ b = −(−a ∨ −b) ,

and

a ≤ b iff a ∨ b = b .

Definition 2.1.5. (Filters and Ultrafilters of Boolean Algebras) Given a boolean

algebra

A = 〈A,∨,−, 0, 1〉

a subset U is called a (non-trivial) filter of A provided that for any elements a and b of

A,
16



1. a ∧ b is in U if both a and b belong to U.

2. b is in U if a is in U and a ≤ b.

3. 0 does not belong to U.

A filter is called an ultrafilter provided that it is maximal, i.e. not included any

other filter. In the context of boolean algebras ultrafilters and prime filters are one

and the same. A filter is a prime filter provided the following condition holds.

4. Either a or b is in U if a ∨ b is in U.

We use the term UF(A) to denote the set of all ultrafilters of A.

Definition 2.1.6. (Principal Filters) For any boolean/modal algebra A and any nonzero

a ∈ |A| there is a filter called the principal filter generated by a, denoted by Πa or ↑ a,

and defined by

{b ∈ A | a ≤ b} ,

The fact that ↑ a is a filter is obvious.

Remark If A is the boolean algebra of subsets of a set X and a ∈ X the principal filter

generated by the singleton {a}, which by an abuse of notation is also denoted by Πa,

or ↑ a, is an ultrafilter. In this case ↑ a is called the principal ultrafilter generated by

a. This is an instance of a more general fact. ↑ a is an ultrafilter if and only if a is an

17



atom, where an atom is an element a such that a 6≤ b for any b in A.

2.2 Kripke Frames

Definition 2.2.1. (Kripke Frames) A Kripke frame F = 〈W,R〉 is a relational structure

on a set W, called the universe or the underlying set of F. R is a binary relation on W,

which is called the accessibility relation of F. We can also use the notation a → b which

means b is accessible from a, (that is, R ab) whenever there is no ambiguity.

Definition 2.2.2. (Bounded Homomorphisms) Suppose F = 〈W0,R0〉, and G =

〈W1,R1〉, are Kripke frames. A function

f : W0 −→ W1

is called a bounded homomorphism provided that,

for all a and b in W0, R1 f(a)f(b) if R0ab (2)

and

if R1f(a)x , then there is b in W0 such that R0ab and f(b) = x. (3)

Definition 2.2.3. (Category of Kripke Frames) The category KF, of Kripke frames, is

the category with Kripke frames as objects and bounded homomorphisms as morphisms.

Morphisms of KF are called frame morphisms.

18



We use the term bounded morphism, or frame morphism to refer to a bounded homo-

morphism of Kripke frames.

Notation We use |A| to denote the underlying boolean algebra of the modal algebra

A, and |F| to denote the underlying (carrier) set of the frame F.

Definition 2.2.4. (Subframes) Suppose F = 〈W,R〉 is a Kripke frame. A Kripke frame

G = 〈W0,R0〉 is called a (generated) subframe of F, notation: G � F, provided that

W0 ⊆ W and R 0 = R � W0

and

b ∈ W0 if R ab and a ∈ W0

Differently put, a (generated) subframe of a frame F is a relational substructure of F

which is closed under the accessibility relation of F.

2.3 Connecting Kripke Frames and Modal Algebras

Every set determines a boolean algebra. That is, the boolean algebra of its subsets.

When it comes to Kripke frames, there is a relation on the carrier set of a Frame. As a

result, the boolean algebra of subsets of the carrier set of a Kripke frame is more than

a mere boolean algebra.
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Definition 2.3.1. (Modal Algebra of Subsets) Let F = 〈W,R〉 be a Kripke frame. The

power set boolean algebra of F can be turned into a modal algebra

F+ = 〈PW,∪, ∅,W, c, fR〉 ,

where fR is defined by

fR[A] = {x | R[x] ∩ A 6= ∅} = {x | ∃y ∈ A x → y} .

Here, and every where else in this dissertation,

R[x ] = {y | Rxy} = {y | x → y} .

F+, specially in the context of modal logics with multiple modal operators, is often re-

ferred to as the complex modal algebra of F.

Definition 2.3.2. We can define a contravariant functor

( )+ : KF −→ MA

as follows.

1. On objects

( )+(F) = F+ .

2. On morphisms

( )+(f) = f−1 ,

20



where for a Kripke frame morphism

f : F −→ G ,

the modal algebra homomorphism

f−1 : G+ −→ F+ .

is defined by taking inverse images of subsets. That is, for B ⊆ |G| we define

f+(B) = f−1[B] = {x ∈ |F| | f(x) ∈ B}

Verifying that the definition 2.3.2 above, does in fact define a contravariant functor

is straightforward. Note that

(f ◦ g)−1 = g−1 ◦ f−1 .

Remark If f is an injective(surjective) frame morphism f+ is a surjective(injective)

homomorphism of modal algebras. C.f.[BRV].

Definition 2.3.3. (Ultrafilter Frames) For a modal algebra A = 〈A, f〉, the ultrafilter

frame of A, notation A+, or UF(A), is a Kripke frame F = 〈UF(A),Rf〉, where UF(A) is

the set of ultrafilters of |A|, and

R f UW iff W ⊆ f−1[U].

Definition 2.3.4. We can define a contravariant functor

( )+ : MA −→ KF
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as follows.

1. On objects

( )+(A) = A+ .

2. On morphisms, given a modal homomorphism of

g : A −→ B

and an arbitrary ultrafilter Q of B, the Kripke frame morphism ( )+(g) = g+ is

defined by:

g+(Q) = {a ∈ A | g(a) ∈ Q} .

One has to verify that this defines an ultrafilter of A.

Remark If g is an injective(surjective) homomorphism of modal algebras g+ is a sur-

jective(injective) frame morphism. C.f.[BRV].

Next, we introduce an operation, in an admittedly non-standard way. An operation

that assigns a Kripke frame to each Kripke frame defining a covariant functor on KF .

Later, we will elaborate on the reason we define this operation and the functor it de-

fines in the particular manner we have chosen here.

Definition 2.3.5. (Ultrafilter Extensions) The ultrafilter extension of a frame

F = 〈W,R〉
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is the frame

ue F = 〈UF(|P(W)|),Rue〉 ,

where

RueQ0Q1

iff

∀A ∈ Q1 ({x ∈ W | ∃ y∈A Rxy} ∈ Q0) .

Here we have defined the ultrafilter extension of a Kripke frame F as another Kripke

frame. This does not suggest a new possibility of ambiguous definition. The reason

is that ue F is an sv-frame since it is an ultrafilter frame. That is, it is the ultrafilter

frame of the modal algebra of subsets of |F|. This can be routinely verified following

the definitions.

Our definitions of ultrafilter frames, and ultrafilter extensions, although non-standard,

are more suitable for the approach employed in our work.

Fact 2.1. (Ultrafilter Extension as a Functor) The following facts are easy to verify.

1.

ue F ' (F+)+ .

2. There is a covariant functor

ue : KF −→ KF ,
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defined by composing the functors defined in definitions 2.3.2 and 2.3.4 above.

3. ue preserves injective/surjective frame morphisms.

Proof: The first statement follows from the definition. The composition of two con-

travariant functors is obviously covariant. Since the functors whose composition de-

fines ue turn injective(surjective) morphisms into surjective(injective) morphisms the

last claim above becomes obvious. a

Remark Our use of the notation ue for the functor

(( )+)+ : KF −→ KF ,

is justified by part 1 of 2.1 above.

Definition 2.3.6. (Canonical Extension of a Modal Algebra) Given a modal algebra

A, the canonical extension algebra of A, denoted by CmA, is the modal algebra (A+)+.

That is, CmA, is the modal algebra of subsets of the ultrafilter frame of A.

Proposition 2.1. (Canonical Extension as a Functor) Extending the definition of Cm

to modal homomorphisms by defining

Cm(f) = (f+)+ ,

yields a covariant functor

Cm : MA −→ MA ,
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which preserves injective/surjective modal homomorphisms.

Proof: The first part of the proposition is clearly true by examining definitions 2.3.3

and 2.3.4, above. To see that injective/surjective morphisms are preserved note that

1. If h is an injective/surjective homomorphism of modal algebras then h+ is a

surjective/injective bounded frame morphism.

2. If h is a surjective/injective bounded frame morphism then h+ is an injective/surjective

homomorphism of modal algebras.

a

Next is a citation of a result by Jónsson and Tarski. We will use this map and its

properties later.

Proposition 2.2. (Jónsson-Tarski Embedding Theorem) For any modal algebra A,

there is an embedding J from A into CmA.

Proof The map

J : A� CmA,

defined by

J(a) = 〈a〉, where 〈a〉 = {U ∈ A+ | a ∈ U} ,

is the desired embedding. See [BRV] for a proof. a
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Notation: We use the notation, |F|, to refer to the carrier set W of the frame F =

〈W,R〉. Also for a modal algebra, A = 〈A,+, ., 0, 1, f〉, |A| refers to the set A.

Moreover by abuse of notation we might write F = 〈F,R〉 thereby using the same

name for the frame F and its carrier set |F|. Finally, we use RF to refer to the accessi-

bility relation of F.

2.4 Syntax and Semantics of Normal Modal Logics

In what follows we briefly go over the definition of basic modal languages and modal

logics. [BRV] contains all we need for our discussions here, and much more.

To develop the syntax of modal logic, we fix a countable set of atomic propositions,

denoted by AtProp. The modal language L over AtProp is defined inductively, as

follows.

1. Any atomic proposition p is a modal formula.

2. If φ and ψ are two modal formulae, φ ∨ ψ, ¬φ, and 3φ are modal formulae.

Boolean operations ∧ and ⇒ are defined in terms of ∨, and ¬ as in basic propositional

logic. Modal operator 2 is defined by:

2φ ≡ ¬(3¬φ)

The notion of derivation, or logical deduction, is pretty much the same as in proposi-
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tional logic, except we have an extra rule N introduced below.

Definition 2.4.1. (Normal Modal Logics) A normal modal logic in the language L, is

a set Σ of modal formulae of L, including all propositional tautologies, all instances of

the axiom

2(φ⇒ ψ) ⇒ (2φ⇒ 2ψ) (K),

and closed under uniform substitution of formulae . The rules of deduction aremodus ponens

and the following necessitation rule:

φ

2φ
(N).

Uniform substitution is defined by simultaneous replacement of all instances of any

propositional variable by an arbitrary formulae.

The minimal modal normal logic which contains no modal axioms but K, is also called

K.

Terminology Throughout the dissertation the term modal logic refers to a normal

modal logic unless otherwise specified.
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Definition 2.4.2. Notion of Proof

1. Given a modal logic Σ and a modal formula φ we say φ is provable in Σ, or φ

is a consequence of Σ, or there is a Σ-proof for φ, provided that there is a finite

sequence

〈φi〉i≤n ,

of modal formulae, such that φn = φ and for any i < n, φi is either in Σ, is the re-

sult of uniform substitution of a formula for a propositional variable in a formula

φj of the sequence (j < i), or is obtained from an application of a deduction rule to

one or more elements of the sequence, with indices smaller than i.

We denote this by

Σ̀
φ or Σ ` φ .

2. Given a set of formulae Γ, KΓ is the smallest normal modal logic that contains Γ.

such a modal logic is easily seen to always exist. Moreover if Σ is a modal logic one

can see that KΣ is exactly the set of all formulae provable in Σ. That is,

Σ̀
φ iff φ ∈ KΣ .

3. If Γ is a set of modal formulae, Σ a modal logic, and φ a modal formula we say

φ is a consequence of Γ in Σ, or φ is provable from Γ in Σ, or φ is provable in Σ
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assuming Γ, provided that φ is in K(Σ ∪ Γ). Notation

Γ
Σ̀
φ .

4. A set Γ of modal formulae Σ-consistent provided that

Γ 6`
Σ
φ ∧ ¬φ .

Consistent (no logic specified) means K-consistent.

Terminology

We use
Γ̀
φ and Γ ` φ interchangeably. The former is usually used when Γ is a modal

logic, while the latter notation is more often used when Γ is any set of modal formulae.

Unless the logic of deduction is indicated as a subscript we assume that the proof is

in K, the minimal (normal) modal logic. If the logic of deduction Σ is different from

K we always specify it.

2.4.1 Modal Semantics for Modal Algebras

To define the modal semantics, we define valuations on modal algebras and Kripke

frames. A valuation on a frame specifies what propositional variables are true at any

given node of a frame. In contrast, a valuation on a modal algebra assigns an element

of the algebra as the value of each atomic proposition. Values under a valuation are

then assigned to all modal formulae, inductively. Formal definitions follow.
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Definition 2.4.3. (Modal Algebra Valuations) A valuation on a modal algebra is a

map µ : AtProp → |A|. The set of all valuations on A is denoted by Val(A).

Given a valuation µ on a modal algebra A = 〈A,∨,−, 0, 1, f〉, an extension µ̄(φ) : L →

|A| of µ is defined inductively, as follows.

1. µ̄(p) = µ(p)

2. µ̄(φ ∨ ψ) = µ̄(φ) ∨ µ̄(ψ)

3. µ̄(3φ) = f(µ̄(φ))

The extension of µ from AtProp to L can be shown to be unique.This justifies an abuse

of notation. That is, we use µ instead of µ̄. The uniqueness of the extension above is

best explained in an algebraic context. To see this let us define a special algebra.

Definition 2.4.4. (Lindenbaum (Modal) Algebra) Given a modal logic Σ, in the lan-

guage L define an equivalence relation on formulae of L by

φ ∼Σ ψ iff Σ ` φ⇔ ψ.

We drop the subscript Σ as there is no confusion. If [φ]∼ is the equivalence class containing

φ, and L/Σ is the set of equivalence classes of ∼. The Lindenbaum algebra of Σ, notation:

LΣ, is defined as

LΣ = 〈L/Σ,¬,∨,⊥,>, f
3
〉
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Here > is the equivalence class containing all formulae of Σ, ⊥ is the equivalence class

of the negations of all theorems of Σ, ¬[φ]∼ = [¬φ]∼, [φ]∼ ∨ [ψ]∼ = [φ ∨ ψ]∼, and finally

f
3
([φ]∼) = [3φ]∼.

One can verify that LΣ is a modal algebra for L. A very special algebra at that as we

will see below.
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Definition 2.4.5. (Notion of Truth for Modal Algebras) If A is a modal algebra and

µ ∈ Val(A) is a valuation on A, we say A satisfies a modal formula φ under µ, or φ is

true in A under µ, notation: A, µ |= φ, provided that µ(φ) = 1 .

A modal formula is valid on A, A |= φ, provided that A, µ |= φ, for all µ ∈ Val(A).

We say a set of formulae Γ is true under µ on A provided that any formulae in Γ is true

under µ on A. Notation

A, µ |= Γ .

Similarly Γ is valid on A provided that any formula in Γ is valid on A. Notation

A |= Γ .

Here also We mainly follow the terminology and definitions in [BRV].

Remark Lindenbaum algebras for different logics (modal or not)are ubiquitous in

universal algebra. The fact that for a modal logic Σ, LΣ of definition 2.4.4 is a modal

algebra over which Σ is valid is standard material of Algebraic Logic. In fact the Lin-

denbaum algebra of any logic has this property. One has to check that the operations

defined on LΣ are well-defined and prove, inductively, LΣ |= Σ.

We state the following proposition without proof.

Proposition 2.3. The following facts hold for LΣ.

1. LΣ |= φ iff Σ ` φ.
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2. LΣ is a free algebra for the class of all algebras that validate Σ. This means that

for any algebra A |= Σ, any µ : AtProp → |A| uniquely extends to an algebra

morphism µ̄ : LΣ → A. This of course makes sense under the identification of p and

[p]∼ for any p ∈ AtProp. The converse is also true; if any µ ∈ Val(A), extends to an

algebra morphism µ̄ from LΣ into A then A, µ |= Σ.

Remark The approach we have chosen here describes the notion of truth for modal

formulae over an algebra. An alternative, yet equivalent, approach is to define the

truth in terms of equations over algebras.

Proofs for this and other facts above are usually covered in a standard course on uni-

versal algebra; in a more general context. That is analogous results hold for general

classes of algebras, not just modal algebras. [BRV] includes a sufficient yet artfully

concise discussion of Algebraic Logic; adequately covering the background material

on universal algebra that we refer to here.

2.4.2 Modal Semantics for Kripke Frames

Definition 2.4.6. (Frame Valuations) Assume L is a modal language over AtProp. A

valuation on F = 〈W,R〉 is a function

µ : AtProp →
∏
w∈W

{0, 1} = 2W .
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So the value of a propositional variable under µ on F can be viewed as a subset of W,

the set of all nodes at which p is true, under µ. The set of all valuations on a frame F is

denoted by Val(F). A valuation µ on F can be uniquely extended to a map µ̄ : L → |F| ,

also called a valuation on F. Again we use µ in place of µ̄. Here is the inductive definition

:

1. µ(φ ∧ ψ) = µ(φ) ∩ µ(ψ).

2. µ(¬φ) = W \ µ(φ).

3. µ(3φ) = {a ∈ W | ∃b ∈ W such that Rab} .

Remark As mentioned above, the extension of a valuation on a frame from atomic

propositions to all modal formulae is unique. This can be seen using the fact that the

power set of |F| is a modal algebra and a valuation on F is a modal algebra valuation

for the modal algebra of subsets of F .

2.4.3 Models Over Kripke frames

Definition 2.4.7. (Models over Frames) let F = 〈W,R〉 be a Kripke frame. A model

(over F) is triple 〈W,R, µ〉, where µ is a valuation on F. In other words a model over F is

a structure M = 〈F, µ〉, obtained by fixing a valuation µ ∈ Val(F).

Definition 2.4.8. (Model Morphisms) Assume M = 〈F, µ〉, and N = 〈G, ρ〉, are mod-

els. A map f : M → N, is a morphism of Kripke models provided that f : F → G is a
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frame morphism such that

f(a) ∈ ρ(p) if a ∈ µ(p) .

Differently put, a frame morphism f between the underlying frames of two models

M and N, is also a morphism of models provided that the value of µ on each node a

of M agrees with the value of ρ on f(a) for all propositional variables (and hence all

modal formulae).

In our discussions, we rarely use models. Our main interest is the study of frames,

as will become clear later. However, let us define the notion of bisimulation between

two models. This can be quite useful in semantical arguments.

Definition 2.4.9. (Bisimulations) Suppose 〈F0 , µ〉 and 〈F1 , ρ〉 are models. A binary

relation B ⊆ |F0 | × |F1| is called a bisimulation between these two models provided that

1. If x is in |F|, y is in |G| and, B xy then for any atomic proposition p, x ∈ µ(p) iff

y ∈ ρ(p).

2. If R0x0x1 , and B x0y0 , then there is y1 in |F1 | such that R1y0y1 , and B x1y1 .

3. If R1y0y1 , and B x0y0 , then there is x1 in |F0 | such that R0x0x1 , and B x1y1 .

The notation 〈F0 , x〉↔〈F1 , y〉 is used to indicated that x and y are related by a bisimula-

tion. Two nodes are called bisimilar provided they are related by a bisimulation.
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Remark The relation ↔ defined above is itself a bisimulation. To be more specific the

relation defined by

a↔b iff there is a bisumlation B such that aBb ,

is a bisimulation. Equivalently ↔ can be defined as the union of all bisimulations

between any two models This is the largest bisimulation between those models.

It is a routine task to show that if there is a bisimulation between F0 and F1 relating x

and y as in the above definition then for any modal formula φ

F0 , µ, x  φ iff F1 , ρ, y  φ.

The converse is not in general true. However, for certain classes of models, one can

prove the converse.

Remark Any bounded morphism

f : M −→ N ,

of Kripke models, considered as a relation, is a bisimulation which relates a node and

its image under f, by the very definition of bounded morphisms of models.

Definition 2.4.10. (Global Truth and Validity for Frames)
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1. A modal formula φ is said to be globally true on F, under µ, for µ ∈ Val(F), notation

F, µ  φ, provided that F, µ, a  φ for all a ∈ |F|.

2. A modal formula φ is valid on F, notation F  φ, provided that F, µ  φ for all

µ ∈ Val(F).

3. A set of formulae Γ, is valid on a frame F provided that any φ ∈ Γ is valid on F.

4. A modal formula φ is valid on a model M = 〈F, µ〉, notation M  φ, provided that

F, µ  φ .

5. A set of formulae Γ, is valid on model M provided that any φ ∈ Γ is valid on M .

Note that our choice of notation simply reflects the equivalence of the notion of va-

lidity on a model M = 〈F, µ〉, and global truth on F under µ.

2.5 Modal Semantics in Categories of Algebras and Frames

We will now address the specific choice of morphisms in the categories MA and KF .

The main point is that these particular choices preserve major properties of truth and

validity, when expected. [BRV] is the major reference for missing details.

Proposition 2.4. The following properties are obvious by definitions of the semantics for

Kripke frames and modal algebras.
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1. For any modal algebra morphism

f : A −→ B ,

(a) if f is injective, and for µ ∈ Val(A),

µ′ ∈ Val(B), and any p ∈ AtProp, µ′(p) = f (µ(p)) then

B, µ |= φ if A, µ′ |= φ.

This implies that for a subalgebra B � A,

if A |= φ then B |= φ .

(b) If f is surjective, and µ ∈ Val(B), and µ′ in Val(A) is such that f(µ′(p)) = µ(p)

for all p ∈ AtProp then

B, µ |= φ if A, µ |= φ.

Therefore

B |= φ if A |= φ.

2. Likewise for any frame morphism

f : G −→ F .

(a) If f is injective and for µ ∈ Val(F), µ′ ∈ Val(G), any x ∈ |G|, and any p ∈

AtProp, x ∈ µ′(p) if f(x) ∈ µ(p) then for any modal formula φ

G, µ′, x  φ if F, µ, f(x)  φ .

This implies that if G � F and F  φ then G  φ
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(b) If f : F0 � F1 , is a surjective frame morphism, µ ∈ Val(G), and µ′ ∈ Val(F),

such that for any x ∈ |F| and any p ∈ AtProp,

x ∈ µ′(p) if f(x) ∈ µ(p)

then for any modal formula φ

G, µ, f(x)  φ if F, µ, x  φ .

This implies F  φ, then G  φ .

Based on the facts above it is also easy to conclude

(c) If f : F0 → F1, any formula valid in F0 or F1 is valid in f[F0 ], the image

(quotient) of F0 under f. This is true because f[F0 ], is a (generated) subframe

of F1 , as well as an image of F0 .

2.6 Stone Spaces and sv-Frames

Definition 2.6.1. (Stone Spaces) Stone is the category of Stone spaces, topological

spaces that are compact, Hausdorff, and totally disconnected, with continuous functions

as morphisms. Instead of the more traditional definition of a totally disconnected space

we use the equivalent property the space has a basis of clopen sets, sets that are both open

and closed.

UF(A), the set of ultrafilters of any boolean algebra A, has a natural topology which

makes it into a Stone space. More specifically UF(A) is equipped with the, Stone,
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topology generated by {〈a〉}a∈|A|. Here 〈a〉 is defined as the set of those ultrafilters of

A that contain a. Whenever we refer to the topology of Clp(A) we mean the topology

just described, unless otherwise specified.

The Stone Representation Theorem states that any boolean algebra A, is isomorphic

to the boolean algebra Clp(UF(A)), of clopen subsets of the ultrafilter frame of A.

Conversely any Stone space X is homeomorphic to UF(A) the space of ultrafilters of

A = Clp(X). Let us start with a description of the content of the theorem before stat-

ing it more formally.

The homeomorphism between a Stone space X and the space of ultrafilters of clopens

of X is established by mapping a point x in X to

Ux = ∩{U ∈ UF(Clp(X)) | O ∈ U and x ∈ O} .

Note that in a Stone space every point is the unique element in the intersection of all

clopens to which it belongs.

The boolean isomorphism between a boolean algebra A and the boolean algebra of

clopens of its ultrafilter space is the function that maps an element a in |A| to a clopen

Oa = {U ∈ UF(A) | a ∈ U} .

Note that because of the homeomorphism between X and UF(Clp(X)) we can assume

that the clopens of a Stone space are exactly the basis elements generating the topol-
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ogy of the space. This is true by construction of the basis elements of the space

Clp(UF(A)). If O is a clopen subset of a Stone space X ' UF(Clp(X)), O can be written

as

O =
⋃
i∈I

〈ai〉, where {ai}i∈I is a subset of |A|

By compactness of O, after rearranging indices, for some natural number n we have

O =
n⋃

i=1

〈ai〉 = 〈
n∨

i=1

ai〉.

So O is a basis element in the homeomorphic copy of X.

Our main reference here is [KKV], where detailed proofs of basic properties of Stone

are laid out.

Proposition 2.5. (Stone Representation Theorem) The category Stone of stone spaces

and continuous maps is dually equivalent to BA the category of boolean algebras and

boolean homomorphisms.

Here we just sketch the proof. For a stone space X the set Clp(X) of clopens of X is

obviously a boolean algebra of sets. Conversely it is easy to see that the space UF(A),

of all ultrafilters of the boolean algebra A, equipped with the topology generated by

the basis, {〈a〉}a∈|A| is a stone space.

Next, if f : X → Y is a continuous map between two topological spaces X, and Y, then

f−1 : Clp(Y) → Clp(X) is a boolean homomorphism between Clp(Y) and Clp(X).
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Similarly, suppose f : A → B is a boolean homomorphism. Since the inverse image

of an ultrafilter of B is an ultrafilter of A, it is then easy to verify that f−1 : UF(A) →

UF(B) is a continuous map.

To complete the proof one should verify

X ' UF(A), (4)

and

A ' Clp(UF(A)). (5)

The map f : X → UF(Clp(X)) defined by

f(x) = 〈{x}〉

is the homeomorphism we need in (4) and the map

g(a) = 〈a〉

is the boolean homomorphism in (5). a

We will not verify all the facts used in the following definition. Statements for which

a proof is not provided are routine facts of general topology.

Definition 2.6.2. (Vietoris Functor) The Vietoris functor is defined on, Stone, the cat-

egory of Stone spaces and continuous functions.
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For any object X in Stone, V(X) is K(x) = {K | K ⊆ X is closed} where the topology of VX

is defined by applying an operator B, defined below, to the class of open sets of X.

For any set X and any class Q of subsets of X, (Q ⊆ P(X)), the operator B on P(X) is

defined by

B(Q) = {{K ⊆ X|K ∩ U 6= ∅}}
U∈Q

⋃
{{K ⊆ X|K ⊆ U}}

U∈Q

When X is a topological space, B(Q) forms a sub-basis for a topology on K(X), the set of

closed subsets of X. (K(X), τV) is called the Vietoris space generated by (X, τ) where the

topology on K(X) is the topology generated by B(τ). One has to verify that V(X) is in fact

a Stone space with the topology just defined.

On morphisms the Vietoris functor is defined by taking forward images. That is, given

f : X −→ Y ,

the image of f under V is the (continuous) map

Vf : VX −→ VY .

defined by

Vf(F) = f(F) .

It is easy to see that Vf is in fact a continuous map between the corresponding Stone

spaces.
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Given an arbitrary category C and a functor the category Clg F is defined as follows.

Definition 2.6.3. (Categories of Coalgebras) Let C be a category and

F : C −→ C ,

be a functor on C.

1. A coalgebra of F is a pair 〈C, γ〉, also denoted by γC, where

γ : C −→ F(C) ,

is a morphism in the category C.

2. The category of coalgebras of F, denoted by Clg F is the category whose objects are

coalgebras of F and a morphism of whose consists of a pair, 〈γC, γD〉, of coalgebras

of F and a morphism, f,

f : C −→ D

of C such that the following diagram commutes

C
γC //

f

��

F(C)

F(f)
��

D γD

// F(D)

When f is the morphism above we refer to the coalgebra morphism above by f as

well.
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An example of a category of coalgebras, defined in 2.6.3 above, is Clg P, the category

of the power set functor on Sets. The power set endofunctor on morphisms is defined

by taking images. That is, for a function

f : A −→ B ,

and a subset C of A,

P(f) : P(A) −→ P(B)

is defined as

P(f)(C) = f[C] .

It was noted by Jan Rutten, C.f. [RUC] that Kripke frames can be seen as coalgebras

of the power set endofunctor, P, on Sets.

In what follows we take a closer look at the correspondence just mentioned and use

it to define a class of frames, called sv-frames. There is no essential novelty in defin-

ing these frames. They just happen to provide us with a convenient terminology to

approach the question of canonicity.

Kripke Frames as Coalgebras, and sv-Frames.

A coalgebra γ : W → P(W) of P : Sets → Sets determines a binary relation R ⊆ W×W,

as follows:

∀ u,w ∈ W R uw iff w ∈ γ(w).
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Conversely, a Binary relation, R, on a set W, defines a coalgebra of the power set

functor. Given R ⊆ W ×W, γ : W → P(W) is defined by:

γ(u) = R[u].

The choice of bounded morphisms is necessary for the equivalence of Kripke frames

and coalgebras of the power set functor. Let us verify that bounded frame morphisms

correspond to coalgebra morphisms of Clg P and vice versa.
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Assume

γ : W0 −→ P(W0)

and

α : W1 −→ P(W1)

are coalgebras, and

f : 〈W0, γ〉 −→ 〈W1, α〉

is a coalgebra morphism. That is, the following diagram commutes.

W0

f
��

γ // P(W0)

Pf
��

W1 α
// P(W1)

Suppose F0 and F1 be frames determined by 〈W0 , γ〉, and 〈W1 , α〉, respectively. We

prove that f is a frame morphism. Let a be a node in W0 , and R1 [f(a)y]. Therefore

y ∈ R1 [f(a)] = α(f(a)) = Pf(γ(a)) = f [γ(a)].

Therefore y = f(x) for some x ∈ f [γ(a)] = f [R0 [a]]. That is, y = f(x) for some x such

that R0ax; so f is a frame morphism.

Conversely, let

f : F0 −→ F1

be a frame morphism, a a node in W0 , and R1f(a)y. By the definition of R1 we have

y ∈ R1 [f(a)] = α[f(a)]
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By the definition of frame morphism we conclude

∃ x ∈ R0 [a] = γ(a) such that y = f(x).

So y ∈ f(γ(a)) = Pf(γ(a)). This proves

α[f(a)] ⊆ Pf(γ(a)).

Similarly, we can prove

Pf(γ(a)) ⊆ α(f(a)).

So Pf(γ(a)) = f[α[f(a)]], and the diagram above commutes. a
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Making a Case for sv-Frames

Given a stone space X, VX , as a set, is a subset of the power set of X. A closed subset

is a subset after all. As a functor, the value of V on morphisms is defined by taking

images exactly as it is done for the power set functor. Therefore a Vietoris coalgebra

morphism can be seen as coalgebra morphism of the power set functor, forgetting the

topologies on the corresponding Stone spaces.

Hence a similar correspondence holds for coalgebras of the Vietoris functor. Although

for any Stone space X, and any coalgebra

γ : X −→ VX ,

of the Vietoris functor on Stone induces a binary relation on X defined by

a Rγb iff b ∈ γ(a) ,

One should not forget that Rγ is not just any binary relation. The corresponding

map, γ, to this binary relation is a continuous map between two Stone spaces W0 and

K(W0).

The following sums up our discussion above. Let

γ : X0 −→ V(X0)

49



and

α : X1 −→ V(X1)

be coalgebras of V, and

f : 〈X0, γ〉 −→ 〈X1, α〉

a morphism of Clg V. Commutativity of the diagram

X0

f
��

γ // V(X0)

Vf
��

X1 α
// V(X1)

implies that the corresponding map

f : 〈W0,R0〉 −→ 〈W1,R1〉 ,

is a bounded morphism, which is also continuous under Stone topologies on W0 and

W1.

Our discussion above shows that the following two definitions can be used inter-

changeably.

Definition 2.6.4. ( sv-Frames) SV, is the category of coalgebras of the Vietoris functor

on Stone, the category of stone spaces and continuous maps. Following the terminology

used in the theory of coalgebras this can be written as SV = ClgV.

Alternatively, we can define an sv-frame as follows
50



Definition 2.6.5. (sv-Frames) (Alternative Definition) An sv-frame is a Kripke frame

S = 〈W,R〉 .

where W can be equipped with a Stone topology, τ , such that the binary relation R has

the following properties:

1. R[x] is closed in τ .

2. Once the set of closed subsets of W is equipped with the Vietoris topology, the map

corresponding to R

γR : W −→ VW ,

defined by

γR(x) = R[x] ,

is continuous.

SV is the category with sv-frames as objects and continuous bounded homomorphisms as

morphisms.

Definition 2.6.6. (sv-Subframes) A generated subframe S′ of a an sv-frame S, is called

an sv-subframe provided that

1. S′ is a generated subframe of S as a Kripke frame.

2. S′ is an sv-frame; the topology of S′ is the subspace topology inherited from S.
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Definition 2.6.7. (sv-Semantics) If S = 〈W,R〉 is an sv-frame, the semantics of modal

formulae is defined exactly as it is for Kripke frames, except we only consider valuations

whose values on propositional variables are basis elements (clopens) of W. The set of all

such valuation on S, called sv-valuations on S, is denoted by SVal(S). So for an sv-frame

S we can consider two distinct ways of interpreting modal formulae. Either we consider

S as a Kripke frame, and use the same notation as we do for a Kripke frame, or we

consider sv-valuations only. We define, and introduce different notations for, the latter

case, below.

Remark When considering an sv-frame, we can consider it with the sv-semantics

just defined, or simply as a Kripke frame, with Kripke semantics. Because we use

distinct notations, there is no ambiguity as to which semantics is used in a particular

discussion.

For an sv-frame S, any a ∈ |S|, any µ ∈ SVal(S), and any modal formula φ, the

definition of truth at the node a of S under µ remains the same, as defined for Kripke

frames. S is a Kripke frame and the notion of truth is defined for Kripke frames

already. The notation is also inherited.

The notion of Global truth remains the same as well. A formula is globally true under

an sv-valuation µ, if it is true at all nodes of S. However if we wish to emphasize that

µ is an sv-valuation under which a formula φ is true at a ∈ S, we use the notation

S, µ 
sv
φ .
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Likewise given µ, we might say φ is globally sv-true in S under µ, just to emphasize

that µ is a sv-valuation. Here are the definitions:

Definition 2.6.8. (sv-Global Truth and sv-Validity) For any µ ∈ SVal(S), and any

modal formula φ

S, µ 
sv
φ iff S, µ, a  φ for all a ∈ |S|.

We say φ is sv-valid on S, or S sv-validates φ, notation: S 
sv
φ, provided that

S, µ 
sv
φ for all µ ∈ SVal(S).

Remark Unlike the previous two cases, there is a significant difference between sv-

validity and validity in the Kripke sense. Obviously if a formula φ is valid on an

sv-frame S, it is also sv-valid on S.

We will use the terms full-validity, or Kripke-validity, to contrast validity under all

valuations on a sv-frame S, to sv-validity on S.

Semantics in the Category of sv-Frames

The following proposition which is the analogous to proposition is obvious by defini-

tion of sv-semantics.
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Proposition 2.6. For any sv-frame morphism

f : S0 −→ S1 .

1. If f is injective and for µ0 ∈ SVal(S0), µ1 ∈ SVal(S1), any x ∈ |S1|, and any

p ∈ AtProp, x ∈ µ1(p) if f(x) ∈ µ0(p) then for any modal formula φ

S1, µ1, x  φ if S0, µ0, f(x)  φ .

This implies that if S1 � S0 and S0 
sv
φ then S1 

sv
φ .

2. If f : S0 � S1, is a surjective sv-frame morphism, µ1 ∈ SVal(S1), and µ0 ∈ SVal(S0),

such that for any x ∈ |S0| and any p ∈ AtProp,

x ∈ µ1(p) if f(x) ∈ µ0(p) ,

then for any modal formula φ

S1, µ, f(x)  φ if S0, µ, x  φ .

This implies S1 
sv
φ, then S0 

sv
φ .

Based on the facts above it is also easy to conclude

3. If f : S0 → S1 is an sv-frame morphism, any formula sv-valid in S0 or S1 is valid in

f[S0 ], the image (quotient) of S0 under f . This is true because f[S0 ], is a (generated)

sv-subframe of S1 , as well as a continuous image (an sv-quotient) of S0 .

The duality between Stone spaces and boolean algebras extends to a duality between

SV and MA . The underlying Stone space of an sv-frame S corresponds to the boolean
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algebra of clopen subsets of S, denoted by S∗. The accessibility relation of S defines

the modal operator on S∗, in exactly the same way as defined for the modal algebra

of subsets. A direct proof is not difficult however we will defer this discussion for a

while and we will see this equivalence through descriptive general frame later. For

the moment let us refer to [KKV] and assume a duality between MA and SV. Using

the notation just introduce we have the following isomorphisms for any sv-frame S

and any modal algebra A

S ' S∗+ and A ' (A)∗+ .

This sums up the main part of the basic semantical facts we will use in our discussions

of sv-frames.

2.7 Soundness

A natural property that one expects from any class of structures that provides a se-

mantics for a logic is soundness. Whatever the notion of truth is, we would expect

the consequences of a set of formulae to be true on a structure if the set of formulae

itself is true on the structure.

Definition 2.7.1. A set Σ of modal formulae is valid on a class C of structures, i.e.

Kripke frames, sv-frames, models, or algebras provided that it is valid on every structure

55



in C. The notation we use is

C  Σ ,

when C is a class of Kripke frames, sv-frames, or models. We use the notation

C |= Σ ,

when C is a class of algebras.

We use C  φ (or C |= φ for a class of algebras) when Σ = {φ}.

Definition 2.7.2. (Soundness) A modal logic Σ is sound with respect to a class C of

frames, models, provided that for any modal formula φ,

C  φ if
Σ̀
φ and C  Σ .

Similarly for a class C of modal algebras, Σ is sound with respect to C provided that

C |= φ if
Σ̀
φ and C |= Σ .

We state the next proposition without proof.

Proposition 2.7. Every normal modal logic Σ is sound with respect to any class C of

Kripke frames, Kripke models, sv-frames, sv-models, or modal algebras.
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Proof Standard inductive argument provides a routine proof of this proposition start-

ing with validity on a single structure. Once this is proved the statement for a class of

structures follows readily by definition. a

2.8 Semantics Equivalence Lemma

We have defined the modal algebra F+ of subsets of a given Kripke frame F. A sim-

ple fact, sometimes left as an exercise in text-books points out a form of semantics

equivalence between a frame and its modal algebra of subsets. Here we state it as a

proposition without proof.

Proposition 2.8. For any Kripke frame F and any valuation µ on F

F, µ  φ iff F+, µ+ |= φ .

Here µ+(p) = µ(p). The value on the left is an element of the modal algebra F+ where

as the value on the right is a subset of |F|. The two valuations have the same value

of course. The notation marks a difference just to point out that the valuations are on

different structures. a

When it comes to the ultrafilter frame however we do not have the exact equiva-

lence.That is the following statement does not hold.

A |= φ iff A+  φ .
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In what follows we show that the modification of the notion of truth for sv-frames

proves an analogous statement. In the existing literature this is done in different

ways. We believe the choice of sv-frames is a very natural way for a comparative

study of semantics, contrasting Kripke frames and modal algebras.

Our main tool is the following lemma.

Lemma 2.9. (Semantics Equivalence Lemma) Given a modal algebra A, and µ in

Val(A), there exists a unique valuation µ+ in SVal(A+) such that for any modal formula

φ ,

A, µ |= φ iff A+, µ+  φ. (6)

Moreover, for any sv-frame S, the modal algebra S∗ = Clp(A) has the following prop-

erty

∀µ ∈ SVal(S) ∃!µ∗ ∈ Val(A) such that, µ = (µ∗)+ . (7)

To prove this equivalence, we rely on some basic facts about ultrafilter frame of a

modal algebra. We refer to [BRV] for details of these properties.

Proof. Given a valuation µ ∈ Val(A), we define µ+ ∈ SVal(A+) by

µ+(p) = 〈µ(p)〉. (8)
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That is, the value of p under µ+ is the set of all ultrafilters which contain µ(p). By

The Stone Representation Theorem, µ+(p) is a clopen subset of |S| = |A+|, and so an

sv-valuation on S.

We show that in fact for any modal formula φ, µ+(φ) is a clopen subset of |A+|.

More specifically, for any modal formula φ

µ+(φ) = 〈µ(φ)〉. (9)

Claim If the equality ( 9) above holds then

A, µ |= φ iff A+, µ+  φ.

.

Proof of Claim:

A, µ |= φ (10)

iff

µ(φ) = 1

iff

∀ U ∈ |A+| µ(φ) ∈ U

iff

〈µ(φ)〉 = |A+|
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iff

µ+(φ) = |A+| by 9.

iff

A+, µ+  φ . (11)

As we just proved that ( 9) implies the main statement of the lemma.

It remains to show that ( 9) is true.

Proof of (9) We prove (9) by induction on the complexity of modal formulae.

In case of propositional variables, (9) is simply the definition of µ+. Induction steps

for boolean operators are obvious. We only consider the case of the modal operator.

Assume A = 〈A,∨,¬, 0, 1, f〉, is a modal algebra, φ is a modal formula, µ is a valuation

on A, and µ+(φ) = 〈µ(φ)〉.

By the definition of truth, for all U ∈ |A|+ :

U ∈ µ+(3φ),

iff

∃W ∈ |A|+,RfUW and W ∈ µ+(φ)

iff

∃W ∈ |A|+,W ⊆ f−1[U] and W ∈ µ+(φ),
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iff

∃W ∈ |A|+,W ⊆ f−1[U] and W ∈ 〈µ(φ)〉. By I.H.

iff

∃W ∈ |A|+,W ⊆ f−1 [U] and µ(φ) ∈ W Hence f(µ(φ)) ∈ U,

iff

∃W ∈ |A|+, f(µ(φ)) ∈ U and Πµ(φ) ⊆ W ⊆ f−1[U], (Πa = ∩{U | a ∈ U})

iff

f(µ(φ)) ∈ U and ∀ a ∈ A, f(a) ∈ U or f(−a) ∈ U

(By properties of ultrafilters)

iff

f(µ(φ)) ∈ U and ∀ a ∈ A, f(a∨−a) = f(1) ∈ U

iff

f(µ(φ)) ∈ U. (µ(φ) ≤ 1, and f(µ(φ)) ∈ U.)

iff

µ(3φ) = f(µ(φ)) ∈ U

iff

U ∈ 〈µ(φ)〉.
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The first statement of the lemma is therefore proved.

The second statement of the lemma, i.e. ( 7) above, is proved simply by invoking The

Stone Representation Theorem. Given an sv-frame S, S∗ = Clp(|S|) is a modal algebra,

and (S∗)+ is homeomorphic to |S|, and any choice of clopens for values of µ ∈ SVal(S)

is of the form 〈a〉 for some a ∈ A. a

Remark Obvious corollaries of the semantics equivalence lemma can be quite useful

in stating and proving properties of frames and algebras. For example, it is obvious

that the lemma implies that for any modal algebra A, and any modal formula φ

A |= φ iff A+ 
sv
φ. a

Here you can find a series of definitions mainly intended to facilitate stating results

and proofs, shortening some otherwise lengthy arguments.

Definitions (Theories and Theory Maps)

1. For a modal algebra A, and a valuation µ ∈ Val(A), the theory of A under µ,

notation: Th(A, µ) is defined by

Th(A, µ) = {φ | A, µ |= φ}.

62



2. For any frame F, any node a ∈ F, and any valuation µ ∈ Val(F), the theory of

F under µ at a, which is denoted by T(F, µ, a), or Tµ(F, a), or even Tµ(a) when

there is no ambiguity, is defined by

T(F, µ, a) = Tµ(F, a) = Tµ(a) = {φ | F, µ, a  φ}.

Note that there is no need to specify whether or not µ is an sv-valuation. As dis-

cussed in definition 2.6.8, the definition of truth is the same for all valuations,

sv or otherwise. Hence there is no distinction between theory of a Kripke frames

versus that of an sv-frame for a given valuation µ, in what follows.

3. The theory of a frame F under a valuation µ ∈ Val(F), notations T(F, µ), or Tµ(F)

is defined by

Tµ(F) = T(F, µ) = {φ | for all a ∈ F, F, µ, a  φ}.

We call Tµ above a theory map. If S is an sv-frame and µ ∈ SVal(S) Tµ is called

an sv-theory map or a continuous theory map.

4. The Kripke theory of a frame F, denoted by Tk(F) is the set of formulae valid on

F.

5. The sv-theory of an sv-frame S, denoted by Tsv(S), is the set of all formulae

sv-valid on S.
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6. For a class C of modal algebras Th(C) is the set of all formulae valid on every

element of C.

7. For a class C of Kripke frames/modles Tk(C) is the set of all formulae valid on

every element of C.

8. For a class C of sv-frames/models Tsv(C) is the set of all formulae sv-valid on

every element of C.

Remark For a class C of structures, i.e. modal algebras, Kripke frames/modles, sv-

frames/models we have

Th(C) =
⋂
A∈C

Th(A) ,

Tk(C) =
⋂
F∈C

Tk(F) ,

or

Tsv(C) =
⋂
S∈C

Tsv(S) ,

depending on the type of structures in the class.

Definition 2.8.1. (Notions of Equivalence)

1. Two modal algebras A and B are said to be (modally) equivalent, notation: A ≡

B, provided that for any modal formula φ,

A |= φ iff B |= φ.
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2. Two Kripke frames F0 and F1 are said to be (modally) equivalent, notation: F0 ≡

F1, provided that for any modal formula φ,

F0  φ iff F1  φ.

3. Two sv-frames S0 and S1 are (modally) sv-equivalent, notation: S0 ≡
sv

S1 , provided

that for all modal formula φ,

S0 
sv
φ iff S1 

sv
φ.

Proposition 2.10. The semantics equivalence lemma implies

A |= φ iff A+ 
sv
φ .

Therefore for arbitrary modal algebras A and B

A ≡ B iff A+ ≡
sv

B+.

a

Proposition 2.11. For any frame F, and any modal formula φ,

F  φ iff ue F 
sv
φ.

Proof By proposition 2.8 above

F  φ iff F+ |= φ .
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By the Semantics Equivalence Lemma

F+ |= φ iff (F+)+ 
sv
φ .

On the other hand

(F+)+ = ue F .

Hence

F  φ iff ue F 
sv
φ ,

as required. a

Remark The proposition just proved can be restated as follows.

Tk(F) = Tsv(ue F) .

Direct product of a family of algebras is defined as the cartesian product of the carrier

sets with component-wise operations. We state the following without proof.

Fact 2.2. For a family {Ai}i∈I of algebras, and any modal formula φ,

∏
I

Ai |= φ iff ∀ i ∈ I Ai |= φ .

Using the notations introduced above

Th(
∏

I

Ai ) =
⋂
i∈I

Th(Ai) .
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2.9 Varieties and Co-Varieties

2.9.1 Varieties of Modal Algebras

In what we have discussed so far, we have seen different notions of validity of a modal

logic over different structures. We have also seen that if a modal logic Σ is valid over

a class C of structures, all consequences of Σ are also valid over C. This property, i.e.

soundness, is almost always expected for any semantics of a logic. In contrast one

might ask whether a given consistent logic is valid somewhere, on some structure.

This is part of the question of completeness.

In case of modal logic, when it comes to modal algebras the answer is strongly af-

firmative. By proposition 2.3 any modal logic Σ is valid on its Lindenbaum algebra.

Indeed there is a stronger result for algebras as we will discuss below. We will see

that the answer in case of sv-frames is affirmative as well. This we establish by way of

the duality between sv-frames and modal algebras. When it comes to Kripke frames

the general answer is negative. We will not consider this question for Kripke frames

in detail. Let us just mention that there are consistent poly-modal logics that are not

valid over any class of frames. However for modal logics which are the subject of our

focus any logic is valid on a class of frames. C.f. [GMM] and [BRV] for details. We

shall discuss some cases of completeness briefly in the last chapter. There are many

subtleties to the question of completeness that fall outside the scope of this disserta-

tion.
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Definition 2.9.1. (Classes of Structures Defined by a Logic) Given a modal logic Σ,

the class C of structures defined by C is the class of structures on which Σ is valid. We

could also use the term C is definable by Σ.

Proposition 2.3 shows that the class of algebras defined by a modal logic is always

non-empty. There is a stronger result for modal algebras which is a special case of a

theorem for algebras in general. We will consider this result next. When a modal logic

Σ defines a class C of structures, it is very natural to ask about the relation between

Σ and Th(C), (or Tk(C) or Tsv(C) when C is a class of frames or models) Obviously

Σ is a subset of the theory of a class of structures it defines. Can the theory of a class

of structures include Σ properly? We should be asking this question about KΣ indeed,

since the theory of any class of structures is closed under logical deduction by sound-

ness. So to reformulate, can the theory of a class of structures defined by Σ include

anything besides Σ and whatever Σ can prove? The Birkhoff Variety Theorem answers

this question. Here we state the theorem for modal algebras with some changes for

the sake of brevity, after a definition we need.

Definition 2.9.2. (Varieties of Algebras) A class C of algebras is called a variety iff

it is closed under formation of direct products, homomorphic images, and subalgebras.

That is, C is a variety iff

1. For all A, if A is in C and B � A then B is in C.
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2. If A is in C and f : A� B , then B is in C.

3. If {Ai}i∈I is a family of algebras in C,
∏
I

Ai is in C.

We use the following notations

1. H(C) = {B |A� B & A ∈ C}

2. S(C) = {B |B� A & A ∈ C}

3. P(C) = {B |A '
∏
I

Ai} , where {Ai}i∈I is a family of algebras in C

We drop extra parentheses when using these notations.

Theorem 2.12. (The Birkhoff Variety Theorem) A class of modal algebras is definable

by a modal logic if and only if it is a variety. a

Remark Embedded in the proof of the variety theorem is an underlying fact. For

any class C of modal algebras the closure of a C under the operations H,S, and P,

is evidently a variety by definition. However one needs only apply these operators

in the specific order HSP. This is not a trivial observation. What this amounts to, is

to say any algebra obtained by repeated application of H,S, and P to members of C

in arbitrary order, can be obtained by applying HSP to elements of C at most once

in the specific order, H, S , P. This fact, which justifies our next definition, will be

assumed throughout the rest of this dissertation. Unfortunately including a proof of

the Birkhoff Variety Theorem in any shortened form does not do the theorem justice.
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Hence we just refer to [UA1],[UA2], and [UA3] for proofs.

In view of this theorem we could use V
Σ

to denote the an arbitrary variety, as it must

be defined by some modal logic Σ. We mentioned some changes in the statement

of the theorem. The theorem in its general form is stated for definability by a set of

equations, which are in this context equivalent to modal logics. [BRV] contains de-

tails of the correspondence between equations and modal formulae, and the Birkhoff

Variety Theorem, to the degree we need to use here.

Definition 2.9.3. (HSP) Since the closure of any class of algebras under direct prod-

ucts, subalgebras, and homomorphic images is a variety, by definition, every class C, of

algebras generates a variety. denoted by HSP(C), or 〈C〉.

Now we can explain how the variety theorem implies that the theory of V
Σ

is KΣ.

Proposition 2.13. For any modal logic Σ

Th(V
Σ
) = Σ .

Proof Since Σ is sound with respect to V
Σ

it is obvious that KΣ ⊆ Th(V
Σ
). To show

the equality we consider the Lindenbaum algebra of Σ. Essentially, our task is to

show that the variety generated by LΣ is V
Σ
. However let us focus on the theories of

structures, as this approach is helpful later.
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Consider HSP(LΣ). It is obvious that applying the operations HSP does not eliminate

any formulae from Th(LΣ). Hence Th(HSP(LΣ)) = Th(LΣ) = KΣ. It is also obvious

that LΣ belongs to V
Σ
. Therefore by proposition 2.3

KΣ ⊆ Th(V
Σ
) ⊆ Th(LΣ) = KΣ .

Therefore

Tk(HSP(LΣ)) = KΣ ,

as desired. a

We can summarize the discussion completed by the proposition 2.13 above as follows

〈C〉 = V
Th(C)

= {B |B |= Th(C)} = HSP(C) ,

where C is any non empty class of algebras. In terms of Σ

φ ∈ Th(V
Σ
) iff

Σ̀
φ iff LΣ |= φ,

or equivalently

V
Th(LΣ)

= V
Σ

= 〈LΣ〉.

In what we discussed above the so called algebraic completeness, i.e that fact that the

set of formulae valid on LΣ is exactly KΣ is essential. A similar result does not hold

for Kripke frames in general. The reason is that a modal algebra A is not semanti-

cally equivalent to its ultrafilter frame when the notion of validity is Kripke validity.

The modal algebra of a Kripke frame F does validate the same formulae that F does.
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However not every modal algebra is a modal algebra of subsets of some frame. There-

fore the result does not automatically apply to Kripke frames and we do not have a

theorem analogous to the variety theorem for Kripke frames. This is why a general

completeness result for Kripke frames cannot be proved. As mentioned above in the

general context of modal logics with more than one modal operator, this is not even

true.

The dual equivalence of MA and SV however, makes it possible to obtain a dual the-

orem for sv-frames as follows.

By the semantics equivalence lemma, lemma 2.9, there is an equivalence between A

and A+, once we change the notion of validity with the more restricted sv-validity. We

are going to use this equivalence to demonstrate a dual of the Birkhoff variety Theo-

rem. This result follows from existing facts in the modal algebra literature. However

we have included it as the particular approach we have chosen makes the statements

more natural and proofs almost trivial.

Let us define some terminology before we consider further questions. We always as-

sume, without loss of generality, that classes of algebras and frames we consider are

closed under isomorphism.
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2.9.2 Co-Varieties of sv-Frames

Definition 2.9.4. (Dual classes) Suppose D is a class of sv-frames. The dual class of D,

D∗ is defined by

D∗ = {S∗ | S ∈ D} .

Similarly, suppose C is a class of modal algebras. The dual class of C, (C)+ is defined by

C+ = {A+ | A ∈ C} .

Recall that the the duality between SV and MA and that (A+)∗ ' A and (S∗)+ ' S. It

becomes obvious that

(C+)∗ = C ,

and

(D∗)+ = D .

Note that we assume C and D are closed under isomorphism.

To find the operation analogous to the direct product, we need the following defini-

tion.

Definition 2.9.5. (sv-Coproducts) The sv-coproduct of a family {Si}i∈I of sv-frames, is

defined as
sv⊕
I

Si = (
∏

I

S∗i )+.

Here, S∗i is the modal algebra of clopens of S.
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Remark By the Semantics Equivalence Lemma it is easy to see that

sv⊕
I

Si 
sv
φ iff ∀i ∈ I Si 

sv
φ.

This is true because
sv⊕
I

Si 
sv
φ,

iff

(
∏

I

S∗i ) |= φ,

iff

for all i ∈ I S∗i |= φ ,

iff

for all i ∈ I Si 
sv
φ .

The first and last equivalence hold by definition, and the second equivalence holds by

characteristic property of products of algebras. a

Note that the sv-coproduct of a family of sv-frames is in fact a coproduct of the family,

in the sense of category theory. This is true by duality, and the fact that the product

of a family of algebras is the categorical product of the algebras in the family.

Definition 2.9.6. (GQC) For a class D of sv-frames we adapt the following notations

1. G(D) = {S′ ∈ SV | S� S′ & S ∈ D }
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2. Q(D) = {S′ ∈ SV | S′� S & S ∈ D }

3. C(D) = {S ∈ SV | S '
sv⊕
I

Si} , where {Si}i∈I is any family of sv-frames in D

Because validity on modal algebras and sv-validity on sv-frames are equivalent, it is

obvious that

(V
Σ
)+ = {A+ |A ∈ V

Σ
} = {S | S∗ ∈ V

Σ
}

is determined by Σ. That is

SVΣ = {S | S 
sv

Σ}.

Terminology ( Covarieties Of sv-Frames)

We use the term the covariety defined/generated by Σ to refer to the class SVΣ. Also,

if C is a class of sv-frames with Σ as its sv-theory, we use the term the covariety gen-

erated by C.

Definition 2.9.7. (Generated Varieties) For a class K of Kripke frames, the variety

generated by K, notation: V
K

, is defined by

V
K

= 〈K+〉 = HSP(K+) = HSP({F+ | F ∈ K}) .

Similarly, the covariety generated by K, notation: SVK, is defined by

SVK = 〈ue K〉 = GQC(ue K) = GQC({ue F | F ∈ K}) .
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In what we just laid out K is any nonempty class of Kripke frames. A priori there is

no modal logic affiliated with this class. Varieties and covarieties on the other hand

are determined by modal logics. By duality between classes of modal algebras and

sv-frames we can easily concluded the following:

Since the variety V
Σ

of algebras is closed under HSP, SVΣ is closed under the dual

operations, GQC.

It is obvious, by duality, that (generated) subframes of sv-frames correspond to homo-

morphic images of the corresponding algebras, and quotients of sv-frames correspond

to subalgebras of the corresponding algebras.

The discussion above shows that a class D of sv-frames is closed under the operations

GQC, iff D is a covariety. It should also be clear that these operations can be applied

in the specific order mentioned here, as this is the case for HSP.

Proposition 2.14. (Classification of Co-Varieties) A class D of sv-frames is definable

by a modal logic (via sv-validity) iff it is closed under generated sv-subframes, quotients,

and sv-coproducts.

Proof If D is a class of sv-frames then the class corresponding class D∗ of modal

algebras, is closed under HSP if and only if D is closed under GQC, by duality. This is
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true because

1. If f : A → B is surjective then f
−1

: B+ → A+ is injective.

2. If f : A → B is injective then f
−1

: B+ → A+ is surjective.

3. If A =
∏
I

Ai then A+ =
sv⊕
I

(Ai)+ .

Moreover every S in D is of the form A+ for some A in D∗, as S ' (S∗+) and D is closed

under isomorphism. Therefore a class D of sv-frames is a co-variety if and only if D∗

is a variety, if and only if there is a modal logic Σ such that

D∗ = {A | A |= Σ}

if and only if

D = {S | S 
sv

Σ} .

The semantics equivalence lemma and yet another application of the fact justifies the

last equivalence that any sv-frame is isomorphic to the ultrafilter frame of some modal

algebra and any modal algebra is the modal algebra of clopens of some sv-frames jus-

tifies that last equivalence. a
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2.10 Descriptive General Frames

In 2.5 we cited The Stone Representation Theorem in order to define sv-frames that

are the main object of study here. We also mentioned that this definition is not es-

sentially new. A well known part of the literature on Modal Logic is the discussion of

structures called Descriptive General Frames.

Definition 2.10.1. (Descriptive General Frames) A Descriptive General Frame, a DGF

in short, is a structure D = 〈W,R,A〉, where F = 〈W,R〉 is a kripke frame, and A ⊆ P(W)

is a set of subsets of W with the following properties

1. A is closed under the boolean operations of intersection, union, forming comple-

ments, and R−1, where R−1 [B] = {x | ∃ y ∈ B s.t. Rxy}.

2. If x 6= y are nodes of D then there is P ∈ A such that x ∈ P and y 6∈ P.

3. For any node y 6∈ R [x] then there is P ∈ A such that y ∈ P and x 6∈ R−1 [P] .

Definition 2.10.2. (Category Of Descriptive General Frames) DGF is the category

with descriptive general frames as objects, and bounded frame morphisms that also reflect

admissible sets as morphisms. That is, given DGF’s F = 〈W0,R0,A0〉, G = 〈W1,R1,A1〉,

and a bounded frame morphism

f : F −→ G

is a morphism in DGF provided that

f−1[X] ∈ A0 if X ∈ A1 .
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Our definition of an sv-frame as a relational structure as opposed to the coalgebraic

definition should make it obvious that Clg(V) is isomorphic to DGF which is in turn du-

ally equivalent to MA , and so the two categories are semantically identical as classes

of structures providing a semantics for modal logics. Therefore using sv-frames to

study the semantics of modal logic is not an essentially new idea. It is well known

that properties of admissible subsets of a DGF are equivalent to conditions making

the topology generated by the collection of admissible sets a stone topology.

As mentioned in [GMM], It was S.Kripke who pointed out that the dual equivalence in

case of Kripke frames and modal algebras fails, because a modal algebra is in general

only a subalgebra of the complex algebra of its ultrafilter frame. In proving categori-

cal duality of Clg(V) and MA . One avoids this problem, by building the corresponding

modal algebra of a frame on a different boolean algebra rather than the power set of

the underlying frame, i.e. the boolean algebra of clopen subsets of the universe of the

frame.

The discussion above makes it clear that our choice of sv-frames is basically a matter

of notational convenience. We can easily refer to validity over an sv-frame under all

valuations in contrast to validity under a smaller class of sv-valuations and this makes

it quite easy to state results whose statements are otherwise fairly complicated. As

said before one can also prove the duality between Clg and MA directly without in-

troducing descriptive general frames. We we chose to demonstrate this fact through
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a duality for DGF’s, for historical reasons not for elegance. DGF is the category of

choice for many modal logicians.
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2.11 Canonicity

Proposition 2.3 singles out an algebra for a modal logic Σ whose theory is exactly the

set of consequences of Σ. There is no frame that plays the same role for Kripke frames.

A frame that corresponds to the Lindenbaum algebra can always be built using the

standard constructions; the so called Henkin Style constructions. The outcome how-

ever, fails to validate Σ in general. A specific valuation on this frame, which makes

a modal, proves a completeness result over models, not frames. We are interested in

those modal logics that end up being valid on their canonical frames. One can say

that these logics are those that are complete in a very strong sense.

Definition 2.11.1. (Canonical Frames and Canonical Models) The canonical frame

of a modal logic Σ is a frame whose nodes are maximal consistent theories of Σ and

whose accessibility relation R
3

is defined by

R
3
Γ0Γ1 iff (3φ ∈ Γ0 if φ ∈ Γ1)

and is denoted by F
Σ .

The canonical model of a modal logic Σ is the model based on the canonical frame of Σ

with a valuation µc, called the canonical valuation and defined by

µc(p) = p̂ = {Γ | p ∈ Γ} .

We use the notation MΣ to refer to the canonical model of Σ as in [BRV].
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Note that maximal consistent theories of a logic Σ are the ultrafilters of LΣ the Linden-

baum algebra of Σ. The accessibility relation on the canonical frame of Σ coincides

with the relation one gets by following the construction of the ultrafilter frame of LΣ.

So (LΣ)+ = F
Σ . As we have seen before, any ultrafilter frame is an sv-frame by The

Stone representation theorem. In particular F
Σ is an sv-frame.

The following is the completeness result for models.

Fact 2.3. Given any modal logic Σ

MΣ  φ iff
Σ̀
φ .

C.f. [BRV].

Definition 2.11.2. (Canonical Logics) A modal logic is canonical if and only if it is

valid on its canonical frame.

Some varieties of modal algebras are closed under the operation of forming canonical

extensions. we defined this operator on page 24 here.

Definition 2.11.3. (Canonical Variety) A variety V
Σ

is called a canonical variety if it

is closed under forming canonical extensions.
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It is not hard to see that algebraic canonicity is stronger than logical canonicity. We

will prove this shortly, but first let us define the dual notion first.

Algebraic canonicity is stronger than logical canonicity in a strong sense. In fact, one

can easily show a modal logic Σ is canonical if the canonical extension of a single

modal algebra belongs to the variety defined by Σ. Not surprisingly that particular

algebra is the algebra that determines the variety.

Proposition 2.15. A modal logic Σ is canonical iff Cm LΣ ∈ V
Σ
.

Proof: Since by definition

(LΣ)+ ' F
Σ

,

by applying the semantics equivalence lemma we have

LΣ |= Σ iff F
Σ


sv

Σ .

On the other hand as in previous proposition for any A

(CmA)+ ' ue (A+) .

Hence letting A = LΣ,

Cm LΣ |= Σ iff ue F
Σ


sv

Σ .

However,

F
Σ

 Σ iff ue F
Σ


sv

Σ ( proposition 2.11) .
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Therefore

Cm LΣ |= Σ iff F
Σ

 Σ .

Finally, Σ is valid on F
Σ iff Σ is a canonical modal logic, by definition, and Cm LΣ ∈ V

Σ

iff Σ is valid on Cm LΣ, also by definition. This means

Cm LΣ ∈ V
Σ

iff Σ is a canonical modal logic.

which completes the proof of the proposition. a
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2.12 Canonicity in Dual Form

We will now formulate canonicity of varieties and modal logics in terms of classes of

sv-frames. We need a definition first.

Definition 2.12.1. (ue-Closure) A class of K of Kripke frames is called ue-closed pro-

vided that is closed under ultrafilter extension. Naturally, being closed under ultrafilter

extensions means:

If F ∈ K then ue F ∈ K.

Similarly a class C of sv-frames is ue-closed whenever

S ∈ C implies ue S ∈ C.

The following observations are aimed at streamlining the general discussion on the

connection of Frames and algebras.

Proposition 2.16. The following are implied by the duality between SV and MA .

1. A class D of sv-frames is ue-closed iff D∗ is a closed under canonical extensions.

2. A covariety SVΣ is ue-closed iff V
Σ

is a canonical variety.

Proof This is almost obvious by the definition of the dual operators on classes of

algebras and sv-frames. The second statement is a special case of the first one. Never-

theless we provide a direct proof for the second statement emphasizing semantically
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equivalent statements that we use frequently and without notice.

For a modal logic Σ V
Σ

is a canonical variety provided that

A ∈ V
Σ

implies CmA ∈ V
Σ
,

for any modal algebra A. Equivalently, V
Σ

is canonical provided that for any A

CmA |= Σ if A |= Σ .

On the other hand any modal algebra is a subalgebra of its canonical extension, by

proposition 2.2. Therefore it is always true (even if Σ is not canonical) that

A |= Σ if CmA |= Σ.

Combining the two statements we conclude that V
Σ

is canonical if and only if for any

modal algebra A,

A |= Σ iff CmA |= Σ.

On the other hand by the Semantics Equivalence Lemma

A |= Σ iff A+ 
sv

Σ,

and

CmA |= Σ iff ueA+ 
sv

Σ ,

which is true because

(CmA)+ ' ue (A+) .

86



Therefore V
Σ

is canonical if and only if for any modal algebra A,

A+ 
sv

Σ iff ueA+ 
sv

Σ.

Since for any modal algebra A, A ' S∗, for some sv-frame S, and for any sv-frame S,

S ' (S∗)+, it follows that V
Σ

is canonical if and only if

SVΣ = {S | S 
sv

Σ} is ue-closed.

a

The dual of proposition 2.15 is almost clear by definition.

Proposition 2.17. A modal logic Σ is canonical if and only if ue F
Σ

sv

Σ. Equivalently

Σ is canonical iff ue F
Σ ∈ SVΣ .

Proof By proposition 2.11 and the definition of a co-variety

F
Σ

 Σ iff ue F
Σ


sv

Σ (proposition 2.11) iff ue F
Σ ∈ SVΣ .

Here the duality plays an implicit role. That is in the proof of proposition 2.11 . a
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2.13 The Countable Canonicity Conjecture

Later we will address certain connections between canonicity of modal logics and of

varieties they generate. The question of equivalence of these two forms of canonicity

is open. One direction is of course proved, as seen above. The reverse direction

which is called countable canonicity conjecture is the part which remains open. Our

objective is to formulate the conjecture and to show how it could be approached in

the context of sv-frames.

The Countable Canonicity Conjecture

The countable canonicity conjecture, CCC, surmises the following.

The variety of modal algebras defined by any canonical modal logic is canonical.

So, the conjecture claims that for a canonical modal logic Σ the variety V
Σ

of all modal

algebras over which Σ is valid, is closed under canonical extension of modal algebras.

The ”countable” in the name of the conjecture refers to the fact that we only consider

countable languages. If arbitrarily large sets of propositional variables are allowed in

forming modal languages one can state and prove a canonicity theorem so to say. We

will not discuss this issue here. We are interested in canonicity of modal logics and

varieties when the modal language under discussion is countable.
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By 2.16 above, CCC is equivalent to ue-closure of SVΣ for any canonical modal logic

Σ. That is, given a variety V
Σ
, V

Σ
is canonical provided that the class SVΣ of all sv-

frames that sv-validate Σ is ue-closed. However to prove CCC one only needs to prove

the closure for one operation for either type of classes (i.e. modal algebras or sv-

frames).

Proposition 2.18. A variety V
Σ

is canonical if and only if for any arbitrary index set I

Cm
∏

I

LΣ ∈ V
Σ

Dually, a co-variety of sv-frames is ue-closed if and only if

ue

sv⊕
I

F
Σ ∈ SVΣ ,

where I is any index set.

Proof By the Birkhoff Variety Theorem and its dual for sv-frames, any algebra in V
Σ

(sv-frame in SVΣ) is in HSP(LΣ), (GQC(F
Σ
)). Since both ue and Cm preserve injective

and surjective morphisms, if CmA is in V
Σ

so is CmB where B is a subalgebra or a

quotient of A. Similarly, if ue S is in SVΣ so is ue S′ where S′ is a generated sv-subframe

or an sv-quotient of S. Therefore V
Σ

(ue-closed-ness of V
Σ
) rests on the case of products

(sv-coproducts). a
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In the rest of our work here we freely use duality. When a fact transfers from sv-frames

to modal algebras and vice versa we simply do that by saying ”by duality”.

We will return to the question of canonicity after exploring some properties of sv-

frames and proving some results that hold for ultrafilter extensions in particular.

Proposition 2.19. Suppose C and D are dually equivalent categories. That is, there are

contravariant functors F, and G such that

F : C → D and G : D → C

such that for all objects C in C, and D in D

F(G(D)) ' D and G(F(C)) ' C .

Let L be a limit of a cone {Ci}i∈I in C then F(L) is the colimit of the dual diagram (sink)

of objects {F(Ci)}i∈I in D and vice versa.

Proof The proof is just a routine inspection of the diagrams for limits and colimits.

The image of a cone under a contravariant functor is a sink and vice versa. Unique-

ness of the maps into (out of) a limit (colimit) is also preserved, since each object

in either one of the two categories is isomorphic to image of an object in the other

category under the corresponding functor. a

Remark This proposition has numerous applications. For instance an initial object
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turns into a final object in the dual category, and vice versa. What is of particular

interest to us is the correspondence between the product in the category of modal

algebras and the coproduct in the dual category of sv-frames. We will see the applica-

tion of this fact later.

In the particular duality between MA and SV there are particular properties that we

are going to use. The following is a list of properties that are essential for establishing

the results in the next section. Our reference is [BRV]. In the rest of our discussion

we shall use the following notations. But first let us introduce a definition.

The following properties are either obvious or have been introduced before. Here we

list them for future reference.

1. If S is an sv-frame S∗ is the modal algebra of clopens of S.

2. If A is a modal algebra A+ is the ultrafilter frame of A, which is an sv-frame.

3. If f : S0 → S1 is a sv-frame morphism f∗ : S∗1 → S∗0 is the dual modal homomor-

phism between the corresponding modal algebras.

4. If f : A → B is a modal homomorphism, f+ : B+ → A+ is the corresponding

sv-frame morphism.

5. If f : F0 → F1 is a frame morphism f+ : F+
1 → F+

0 is the dual modal homo-
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morphism between the corresponding modal algebras. Following the notation

CmA = (A+)+ and ue F = (F+)+ we also adopt the following notations.

6. If f : F0 → F1 is a frame morphism ue f : ue F0 → ue F1 is the map ue f = (f+)+ .

7. If f : A → B is a modal homomorphism, Cm f is the modal homomorphism

(f+)+.

Fact 2.4. The following hold for all modal algebras and all sv-frames. C.f. [BRV] for

details.

1. If f : S0 → S1 is an injective (surjective) sv-frame morphism f∗ : S∗1 → S∗0 is

a surjective (injective) modal homomorphism between the corresponding modal

algebras.

2. If f : A → B is an injective(surjective) modal homomorphism, f+ : B+ → A+ is a

surjective (injective) sv-frame morphism. It follows immediately that the following

also hold.

3. If f : S0 → S1 is an injective (surjective) sv-frame morphism ue f : ue S0 → ue S1 is

also an injective (surjective) frame morphism.

4. If f : A → B is an injective (surjective) homomorphism, Cm f : CmA → CmB is

also an injective (surjective) homomorphism.
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3 Theory Maps and Their Properties

3.1 Classification of sv-Theory Maps

The following facts are easy consequences of the definition of an sv-frame.

1. Any closed generated subframe of an sv-frame S, is a generated sv-subframe of

S.

2. Any generated sv-subframe of S is closed.

3. The image of an sv-frame S under an sv-morphism into an sv-frame S′ is a gen-

erated sv-subframe of S′.

4. The inverse image of an sv-frame S′ under an sv-frame morphism from S into S′

is a generated sv-subframe of S.

At this point we are in a position to prove a theorem classifying the set of bounded

frame morphisms from an sv-frame F
K. This allows us to translate statements about

validity of modal logics on sv-frames into statements about the range of continuous

bounded frame morphisms from those sv-frames. We will elaborate on this point after

proving the theorem.

Theorem 3.1. (sv-Theory Classification theorem) If S is an sv-frame and f a function

f : S −→ F
K
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then

f is an sv-morphism iff f = Tµ for some µ ∈ SVal(S) .

Proof Let µ be an sv-valuation on S and Tµ the theory map it defines. We refer to the

accessibility relations on S and F
K, by R and R

3
, respectively.

We claim that Tµ is a continuous bounded frame morphism. Firstly, by definition

T−1
µ [p̂] = µ(p) ,

where p̂ is a basis element of the topology on F
K. Since µ is an sv-valuation T−1

µ [p̂] is

a clopen subset of S, and Tµ is continuous.

It is obvious that Tµ preserves the relation on S. To prove that the µ-theory map is a

bounded morphism, assume a ∈ |S|, and there is a maximal consistent set of formulae,

say Γ1, in F
Σ such that:

R
3
Tµ(a)Γ1

Let Γ0 = Tµ(a). For any φ :

3φ ∈ Γ0 if φ ∈ Γ1 (by the definition of R
3
)

Let {φ i}i∈N be an enumeration of formulae in Γ1, and define a subset Γ2 of Γ1, as fol-

lows:

Γ2 = {ψi}i∈N = {
j=i∧
j=1

φj}i∈N .
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Since Γ1 is maximally consistent it is obvious that Γ2 is a subset of Γ1 which is logically

equivalent to Γ1. By the definition of R
3

3ψi ∈ Γ0, if ψi ∈ Γ2. Since Γ0 = Tµ(a), for any

i ∈ N there is b ∈ |S| such that:

R ab and S, µ, b  ψi

For any i let

Bi = {b | S, µ, b  ψi} ∩ R[a].

or

Bi = R[a] ∩ µ(ψi) .

Obviously for any i, µ(ψi) is closed (clopen). Therefore Bi is closed for all i’s. It is also

obvious by the definition of ψi that Bj ⊆ B i if i ≤ j .

Finally, since

S, µ, a  3ψi for any ψi in Γ2 ,

it follows, from the definition of truth, that Bi is nonempty for all i.

Hence the sequence of sets

{Bi}i∈N

is a nested sequence of nonempty closed sets with finite intersection property, in a

compact Hausdorff space. Therefore

⋂
i∈N

Bi 6= ∅ .
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By definition, this implies the existence of a node b ∈ |S|, accessible from a , such that

for any ψi ∈ Γ2 (hence for any ψi ∈ Γ1), we have:

S, µ, b  ψi .

That is,

Γ1 ⊆ T(S, µ, b) .

Because Γ1 is maximally consistent it follows that

T(S, µ, b) = Γ1 ,

or

Tµ(b) = Γ1 .

The theory map Tµ is therefore shown to be a continuous bounded frame morphism.

Conversely, assume f is an sv-morphism

f : S −→ F
K

.

We define µ, an sv-valuation on S, by

µ(p) = f−1[p̂] ,

and prove that f is the theory map defined by µ.
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Since f is continuous and p̂ is a clopen basis of F
K, µ is an sv-valuation. We use

induction to show that for any a ∈ |S| and any modal formula φ

φ ∈ Tµ(a) iff φ ∈ f(a) .

The statement is obvious for atomic formulae by definition. The inductive steps for

¬φ and φ∧ψ assuming the statement holds for φ and ψ are readily verified. So assume

the statement holds for any b ∈ |S| and φ. That is, assume for any a in S

φ ∈ Tµ(a) iff φ ∈ f(a) .

Under this assumption we prove that for an arbitrary node a in S

3φ ∈ Tµ(a) iff 3φ ∈ f(a) .

Assume

3φ ∈ Tµ(a) ,

or equivalently

S , µ, a  3φ .

By the definition of truth

∃ bR ab and S , µ, b  φ .

or equivalently,

∃ bR ab and φ ∈ Tµ(b) .

By induction hypothesis this is equivalent to

∃ bR ab and φ ∈ f(b) ,
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which implies

3φ ∈ f(a) .

This is true because f preserves R and consequently by the definition of R3

if φ ∈ f(b) then 3φ ∈ f(a) .

Conversely, assume 3φ ∈ f(a). By the definition of R3

∃ Γ R3f(a)Γ and φ ∈ Γ .

Since f is bounded, there is some b in S such that Γ = f(b). Hence φ belongs to f(b),

which implies φ belongs to Tµ(b), by induction hypothesis. So far we know that b is a

node accessible from a and φ ∈ Tµ(b), or equivalently S , µ, b  φ.

Therefore he definition of the truth implies

S, µ, a  3φ ,

or equivalently,

3φ ∈ Tµ(a) ,

as required. a

Next we consider some corollaries of the Classification Theorem above. Starting with

a functional description of validity.
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Corollary 3.2. For any sv-frame S and any modal logic Σ, we have

S 
sv

Σ iff for any sv-theory map Tµ, Tµ[S] ⊆ F
Σ

.

This actually holds at the level of sv-valuations and individual nodes. That is, for any µ

in SVal(S) and any a in |S|

S, µ, a  Σ iff Tµ(a) ∈ F
Σ

.

Proof: Note that for any modal formula φ

Tµ(a) ∈ φ̂ iff φ ∈ Tµ(a) iff S, µ, a  φ ,

and that

φ ∈ F
Σ

iff F
Σ ⊆ φ̂ , and ¬̂φ ∩ F

Σ

= ∅ .

So it is obvious that for any φ in Σ

if S, µ, a  ¬φ then Tµ(a) ∈ ¬̂φ .

Since F
Σ is a closed subset of the compact Hausdorff space F

K,

Tµ(a) ∈ F
Σ

provided that for all φ , φ̂ ∩ F
Σ 6= ∅ if Tµ(a) ∈ φ̂ .

This proves the claim for individual nodes and sv-valuations. The claim on validity

follows by definition. a

Corollary 3.3. (sv-Coproduct Decomposition) Any sv-frame S is sv-equivalent to an

sv-coproduct of a family

{Sµ}µ∈SVal(S)
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where each Sµ is a quotient sv-frame of S. Moreover there is a largest generated subframe

of F
K determined by a modal logic Σ such that each Sµ is a generated sv-subframe of F

Σ .

Proof: Suppose Tsv(S) = Σ. This implies for all a in S and all µ in SVal(S)

Tµ(a) ⊆ F
Σ

,

by corollary 3.2 above. Since for each sv-valuation of S, Tµ is continuous and bounded

Tµ[S] is a closed generated subframe of F
Σ which implies

Tµ[S] is a generated sv-subframe of F
Σ

.

On the other hand

Tµ(S) = Tµ̄(Sµ) ,

where

µ̄(p) = {x ∈ Sµ | x = Tµ(a) and a ∈ µ(p)} = Tµ[µ(p)] .

This proves

Tsv(S) =
⋂

µ∈SVal(S)

Tµ(S) =
⋂

µ∈SVal(S)

Tµ̄(Sµ) = Tsv(
sv⊕

SVal(S)

Sµ) ,

or

S ≡
sv

sv⊕
SVal(S)

Sµ .

Obviously each Sµ is a quotient of S. a

Remark The result we just proved is not the dual of the well-known algebraic fact that
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any algebra is a subalgebra of a product of its subdirectly irreducible subalgebras. We

do not associate any specific properties to the quotients but each quotient is defined

in an almost explicit manner. In contrast there is no claim in this corollary about S

being a quotient of the given sv-coproduct.

Proposition 3.4. Given theory maps Tµ and Tν , induced by sv-valuation µ and ν, re-

spectively the following is obviously true

Tµ = Tν iff T−1
µ [µc(p)] = T−1

ν [νc(p)] , for any atomic proposition p .

Proof Note that both the domain and the range of an sv-theory map are compact

Hausdorff spaces. Hence any two continuous functions between the corresponding

Stone spaces are equal if their inverse images of all clopens are equal. This is true,

because any point is the intersection of all clopens that include it. The proposition

above simply states that once bounded-ness is assumed equality of inverse images

over a subset of the clopen basis of F
Σ results in equality of sv-theory maps. This

in turn is true as these maps are theory maps. Any two valuations that agree on all

propositions are equal. Propositions correspond to a subset of all clopens. That is,

those that are inverse images of a clopen of the form µc(p), where p is an atomic

proposition. a
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3.2 Hennessy-Milner Property and sv-Frames

As mentioned before we mainly deal with Kripke frames, not models. Yet it is worth

taking a detour to see a special property of sv-models, models that are obtained from

an sv-frame by fixing an sv-valuation.

Definition 3.2.1. (sv-Models) A model 〈S, µ〉, is called an sv-model provided that S is

an sv-frame and µ ∈ SVal(S).

Definition 3.2.2. (Hennessy-Milner Property) A class M of models has the Hennessy-

Milner property provided that for all M, and N, in M

∀w ∈ |M| ∀ u ∈ |N| [ T(M,w) = T(N, u) iff M,w ↔ N, u ] .

Proposition 3.5. The class of sv-models has the Hennessy-Milner property.

The idea of the proof is almost exactly the same as the one used in( 3.1). Using com-

pactness of the underlying frame we find an appropriate node to assign to a given

node of a either one of the two models.

Proof Assume M and N are two sv-models, and define a binary relation B ⊆ |M|×|N|

by

B = {(x, y) |T(M, x) = T(N, y)}.
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We prove that B is a bisimulation relating any two nodes of M and N that have the

same theory. Suppose w and u, are given such that

T(M,w) = T(N, u).

By the definition of B, 〈w, u〉 ∈ B. We need to show that these two nodes are bisimilar.

Obviously w and u agree on all propositional variables. By symmetry of the definition,

we just need to check the bisimilarity condition in one direction. So suppose R0ww′,

for w′ ∈ |M|. We show that there is u′ ∈ |N|, such that R1uy. Here R 0 and R1 are the

accessibility relations of M and N, respectively.

Let {φi}i∈N be the set of formulae in T(M,w′). So

∀ i ∈ N M,w  3 φi .

This is equivalent to

∀ i ∈ N N, u  3φi .

So if we let

Ai = {v ∈ |N| | (R1 uv) & (N, v  ∧
j≤i

3φj)} ,

the set {Ai}i∈N is a nested sequence of compact sets in a compact Hausdorff space,

with finite intersection property (exactly as in the Embedding lemma). Therefore

there is a node u′ in N such that

u′ ∈
⋂
i∈N

Ai.
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This implies

T(M,w′) = T(N, u′) and hence R1uu′ .

Therefore

∃u′ R1uu′ and (w′, u′) ∈ B ,

as required. a

We are going to prove a corollary to the proposition we just proved. The proof is quite

straightforward but we need some definitions.

In proving semantics equivalence lemma (lemma 2.9) we defined an sv-valuation µ+

of A+ for any valuation on the modal algebra A. On the other hand for any a in A

the basis element in the Stone topology on A+ that (uniquely) corresponds to a was

denoted by 〈a〉, c.f. 2.5. Therefore given a Kripke frame F, a valuation µ ∈ Val(F), and

a modal formula φ, µ(φ) is an element of the modal algebra of subsets of F. The basis

element in the Stone topology of (F+)+ = ue F that (uniquely) corresponds to µ(φ) is

denoted by 〈µ(φ)〉. This justifies the following definition.

Definition 3.2.3. Given a valuation µ on a Kripke frame F the is unique sv-valuation

on ue F that corresponds to µ is denoted by 〈µ〉.

Our earlier discussions makes it clear that 〈µ〉 satisfies the following condition for any
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modal formula.

〈µ〉(φ) = 〈µ(φ)〉 = {U ∈ ue F | µ(φ) ∈ U} .

In fact by inspection of the definition of ultrafilter extension it is obvious that any

sv-valuation on ue F is of this form.

Note that the semantics equivalence lemma was stated for a valuation µ on a modal

algebra A hence denoting the basis element generated by µ(φ) by µ+(φ). Here, in

contrast, µ is a valuation on F. So in a way we could have used (µ+)+ or even ueµ to

denote the unique sv-valuation that corresponds to µ. However the notation we have

chosen is more faithful to the notation used in The Stone Representation Theorem.

We can now state and prove the following corollary.

Corollary 3.6. Given Kripke frames F, µ ∈ Val(F), a ∈ |F|, F′, µ′ ∈ Val(F′), and a′ ∈ |F′|,

we have

ue F, 〈µ〉, ↑ a ↔ ue F′, 〈µ′〉, ↑ a′

iff

Tµ(F, a) = Tµ′(F
′, a′) .

Proof By the definition of 〈µ(φ)〉, for any a in F

a ∈ µ(φ) iff µ(φ) ∈↑ a iff ↑ a ∈ 〈µ(φ)〉 = 〈µ〉(φ) .
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Hence

F, µ, a  φ iff ue F, 〈µ〉, ↑ a  φ ,

or equivalently

Tµ(F, a) = T〈µ〉(ue F, ↑ a) .

Similarly

Tµ′(F
′, a′) = T〈µ′〉(ue F, ↑ a′) .

On the other hand since (ue F, 〈µ〉) and (ue F′, 〈µ′〉) are sv-models proposition 3.5

above implies

ue F, 〈µ〉, ↑ a ↔ ue F′, 〈µ′〉, ↑ a′

iff

T〈µ〉(ue F, ↑ a) = T〈µ′〉(ue F′, ↑ a′) .

Combining the equivalences above establishes the result. a

Corollary 3.7. For any Kripke frame F and any sv-valuation µ on ue F

ue F, µ 
sv
φ iff ∀a ∈ F ue F, µ, ↑ a 

sv
φ .

Consequently

ue F,
sv
φ iff ∀a ∈ F ue F, ↑ a 

sv
φ .

In other words to determine whether a modal formula φ is valid under an sv-valuation

µ, or to check whether φ is sv-valid on ue F, we need only check those nodes in ue F that
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are principal ultrafilters of subsets of |F|.

Proof Note that the sv-valuation µ on ue F is of the form µ = 〈ν〉where ν is a valuation

on F. However as in the proposition we just proved

ue F, 〈ν〉 
sv
φ iff F, ν  φ ,

On the other hand, again by the proposition,

F, ν  φ iff ∀a ∈ |F| F, ν, a  φ iff ∀a ∈ |F| ue F, 〈ν〉, 〈a〉  φ .

a
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4 Properties of SV-Frames and Ultrafilter Extension

4.1 Natural Injections and Surjections

Definition 4.1.1. (Weak Morphism) A weak morphism between Kripke frames

F = 〈F,R
F
〉 and G = 〈G,R

G
〉 ,

is a map, f : F → G , for which the following properties holds, for any two nodes x and y

of f .

f(x) R
G
f(y) if x R

F
y .

Differently put, a weak morphism is one that preserves the accessibility relation, or is a

relational homomorphism.

Definition 4.1.2. (Natural Injection) For any Kripke frame F = 〈F,R〉, the map

η : F� ue F

is defined by

η(x) = {A ⊆ F | x ∈ A} = x↑ .

That is, η(x) is the principal ultrafilter generated by x .

Given any Kripke frame F, the natural injection η : F → ue F , is easily seen to be

a weak morphism, but not a bounded morphism in general. However the natural

injection η reflects the relation as well as preserving it. That is,

x R y iff x↑ Rue y↑ .
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This can be seen by unfolding the definition

x↑ Rue y↑

iff

∀A ∈ y↑ (i.e. y ∈ A) {z | R[z] ∩ A 6= ∅} ∈ x↑ (i.e. x ∈ {z | R[z] ∩ A 6= ∅})

iff

∀A ∈ y↑ R[x] ∩ A 6= ∅

iff

∀A (R[x] ∩ A 6= ∅ if y ∈ A)

iff

xRy .

Given any map f between Kripke frames, one can define the map ue f, exactly as de-

fined for bounded morphisms. That is, by taking the double dual of f. The following

lemma helps proves property of this map.

Lemma 4.1. For any function f : X −→ Y , the function f+ : P(Y) −→ P(X) defined by

f+(B) = f−1[B] , where B ⊆ Y ,

is a homomorphism of boolean algebras.
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Proof The inverse image of a function preserves union, intersection, and complements

of sets. The inverse image of Y is X and the inverse image of the empty set is empty.

a

The Stone representation theorem for boolean algebras applied to the inverse function

in the previous lemma implies the following.

Corollary 4.2. Given a function f : X → Y , and its corresponding boolean homomor-

phism f+ : P(Y) → P(X) as in the lemma above, the function ue f : ue X −→ ue Y ,

defined by

ue f(U) = {B ⊆ Y | f+[B] ∈ U} ,

is a morphism of the category of Stone spaces.

Proof As mentioned above, this lemma is a direct consequence of the Stone represen-

tation theorem. Here is a direct proof. Let B be a subset of Y, and U an ultrafilter of

subsets of X . By the definition of ue f

B ∈ ue f(U) iff f−1[B] ∈ U .

Hence if 〈B〉 is an arbitrary clopen of ue Y and A = f−1[B] we have

(ue f)−1[〈B〉] = 〈f−1[B]〉 = 〈A〉 ,

and 〈A〉, is a clopen of ue X as required. a
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Lemma 4.3. Given Kripke frames X and Y, natural injections η and η′, and a function,

f : X −→ Y , the following diagram commutes.

X
η //

f
��

ue X

ue f
��

Y
η′
// ue Y

Proof Let x be an arbitrary element of X and B a subset of Y. By definition we have

B ∈ ue f(η(x)) iff f−1[B] ∈ η(x) iff x ∈ f−1[B] iff f(x) ∈ B iff B ∈ η′(f(x)) .

This establishes the result. a

Lemma 4.4. Let F = 〈W0,R0〉 and G = 〈W1,R1〉 be Kripke frames. If f : F −→ G ,

is a weak morphism of Kripke frames, the map ue f : ue F −→ ue G , is a continuous

weak morphism between the corresponding ultrafilter extensions (equipped with Stone

topology).

Proof: Continuity of ue f follows from the Stone Representation Theorem, as men-

tioned in the corollary above. To show that ue f is a weak morphism, let P and Q

ultrafilters such that

U Rue
0 V .

Let P = ue f(U) and Q = ue f(V). We will prove

P Rue
1 Q .

To that effect, we must show that for any B in Q the set

m1(B) = {x | R1[x] ∩ B 6= ∅} ,
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is in P. Let B be in Q, and let A = f−1[B]. A is in U by the definition of ue f. B′ = f[A]

is in P as well, since f−1[B′] = A.

Obviously

m1(B
′) ⊆ m1(B)

and as f preserves the relation

m1(f[A]) ⊆ f[m0(A)] .

Since A is in V

m0(A) ∈ U .

Since

m0 [A] ⊆ f−1[f[m0(A)]] ,

we conclude

f−1[f[m0(A)]] ∈ U .

Hence

f[m0(A)] ∈ P .

This in turn implies m1(B) ∈ P , as

f[m0(A)] = m1(B
′) ⊆ m1(B) ,

which is enough to establish the result as we discussed above. a

Remark If the map f in the previous lemma is a bounded frame morphism then ue f

is easily seen to be a bounded frame morphism. However the reverse is true under
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special conditions. For example for sv-frames, if ue f is a bounded frame morphism,

and f is continuous under the Stone topology on corresponding frames, then f must be

bounded as well. The reverse statement of the lemma for weak morphisms is easy to

prove without any extra assumptions. That is, if ue f is a weak morphism between ul-

trafilter extensions of two Kripke frames, f is a weak morphism between those frames.

4.2 sv-Frames as Modal Frames

Next, we consider structures called ”Normal modal frames”, in [GMM]. As we will see

below sv-frames could be seen as a special case of a wider class of frames.

Definition 4.2.1. ([Normal] Modal Frame) A (normal) modal frame S, is a structure

S = 〈S,R,A〉, where 〈S,R〉 is a Kripke frame and A ⊆ P(S) is closed under boolean

operations, and also the operation 〈R〉 which is defined, for each X ⊆ S by

〈R〉X = {y ∈ S | y R x for some x ∈ X} .

The following definition is a special case of a definition in [GBQC], where frames with

several relations are considered.

Definition 4.2.2. (Topological τ -structure) Given a modal frame S = 〈S,R,A〉, the

set A is a basis for a topology τ . S is called a topological τ -structure provided that the

following two conditions are satisfied.
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1. For any open set U in τ the sets 〈R〉(U) and [R](U) (= (〈R〉(Uc))c) are open.

2. For any node x ∈ S the set R−1(x) = {y ∈ S | y R x} is a closed subset of S.

Any sv-frame S = 〈S,R〉 can be considered as a modal frame, Where B is the set of

clopens of S, the basis of the Stone topology of S. That is,

〈S,R,B〉

satisfies the definition of normal modal frame. This is true by the equivalence be-

tween DGF and SV, as discussed in 78.

Proposition 4.5. An sv-frame S = 〈S,R〉, considered as a modal frame

S = 〈S,R,B〉 (B is the set of clopens of τ) ,

is a topological τ -structure, where τ is the Stone topology of S.

Proof As seen on page 49 above, following [KKV] one can consider an sv-frame S as

a coalgebra of the Vietoris functor on Stone, where S = 〈S,R,B〉 corresponds to the

coalgebra

γ : S −→ V S ,

where

γ(x) = R[x] = {y | y R x} .
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As discussed in [KKV] the basis of the Stone topology on VS is the following collection

of subsets of S:

B(τ) = {F ⊆ X|F ∩ U 6= ∅}
U∈τ

∪ {F ⊆ X|F ⊆ U}
U∈τ

.

For any open subset U of S, We can write

〈R〉(U) = {x | γ(x) ∩ U 6= ∅}

= {x | γ(x) ∈ {K | K is a closed subset of S and K ∩ U 6= ∅}}

= γ−1[{K | K is a closed subset of S and K ∩ U 6= ∅}] .

Since the set

{K | K is a closed subset of S and K ∩ U 6= ∅} ,

is a basic open set in the Vietoris topology on VS, and because γ is continuous, 〈R〉U

is open.

In case of [R]U we can write

[R]U = {x | R[x] ∩ Uc 6= ∅}c = {x | R[x] ⊆ U} .

This in turn can be written as

{x | γ(x) ∈ {K | K ⊆ S is closed and K ⊆ U}} = γ−1{K | K ⊆ S is closed and K ⊆ U} .

Again by continuity of γ, [R]U, being the inverse image of a basic open subset of VS,

is open.
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Finally, because

R−1[x] = {y | R[y] ∩ {x} 6= ∅}

= {y | R[y] ⊆ {x}c}c ,

and because {x} is closed in S, it becomes obvious that R−1[x] is closed. a

In the previous subsections, we considered a natural injection from a frame to its

ultrafilter extension, sending each node to the principal ultrafilter it generates. This

injection is not a frame morphism in general, because it might not be bounded. How-

ever as mentioned in [BRV], this injection preserves and reflects the relations of the

corresponding frames.

Definition 4.2.3. Let F = 〈F,R〉, be a compact Hausdorff topological τ -structure. The

natural injection of F

η : F −→ ue F ,

has a continuous bounded inverse

ε : ue F −→ F ,

which we call the natural surjection onto F.

The natural surjection above is defined by sending an ultrafilter of subsets of a frame

to the intersection of the closure of all of its elements.
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Alternatively, we can define this natural surjection (on sv-frames) by

ε(P) = u

iff

O ∈ P for any clopen O of F that includes u

It is easily verified that ε has the properties specified in the definition above.

Remark: The natural surjection above is the dual of the Jónsson-Tarski embedding of

boolean modal algebras.

Based on the duality between modal algebras and sv-frames we can have an alter-

native view of the natural surjection. Recall that the Jónsson-Tarski embedding for

modal algebras

J : A� CmA ,

is defined by

J(a) = 〈a〉, where 〈a〉 = {U ∈ A+ | a ∈ U} ,

where A+ is the ultrafilter (sv) frame of A.

Given sv-frames

F = 〈F,R
F
〉 and G = 〈G,R

G
〉 = ue F ,
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if Clp(F) ' A, and UF(A) ' F, then G ' UF(CmA), by the the duality between MA

and SV.

By the discussions above it is now clear that the surjection defined in the following

definition is a well-defined surjective sv-frame morphism.

Definition 4.2.4. Given an sv-frame F the frame morphism and A the modal algebra of

clopen subsets of F, we define

ε
F

: ueF� F ,

by

ε
F
(P) = J+(P) = {a ∈ A | 〈a〉 ∈ P} where 〈a〉 = {u ∈ A+ | a ∈ u} ,

Proposition 4.6. For an sv-frame F , the natural surjection defined in 4.2.4 above, is

an inverse to the natural injection η, defined in 4.1.2.

Proof: we have

η(ε
F
(U)) = {a ∈ A | 〈a〉 ∈ U}

= {a ∈ A | {V | a ∈ V} ∈ U}

= {a ∈ A | a ∈ U} = U

(Note that clopens of F are of the form 〈a〉 for a ∈ A) .

This establishes that ε
F

is an inverse to the natural injection η. a
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Lemma 4.7. Given compact Hausdorff topological frames

F = 〈F,R
F
〉 and G = 〈G,R

G
〉 ,

and a continuous morphism, f : F → G . The following diagram commutes.

ue F

ε
F

��

ue f // ueG

ε
G

��
F

f
// G

Proof: Let u be in |F|, P in ue F such that ε
F
(P) = u, and w = f(u), and let O be any

open neighborhood of w in G. w ∈ O implies

u ∈ f−1[O] ,

and so

f−1[O] ∈ P ,

as f−1[O] is an open neighborhood of u. Hence

O ∈ ue f(P) .

This in turn implies

ε
G
(ue f(P)) = w ,

since any arbitrary neighborhood of w is proved to be in ue f(P). a

Proposition 4.8. Let S be any frame. η[S] is a dense subset of ue S with Stone topology.
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Proof Any nonempty clopen of ue S can be written as

〈A〉 = {P ∈ ue S | A ∈ P} ,

where A ia a nonempty subset of |S|. If u is an element of A

A ∈ u↑ ,

and hence

η(u) = u↑∈ 〈A〉 .

Therefore

η[S] ,

the image of S under η intersects any arbitrary clopen of ue S (is a dense subset of

ue S). a

In topological terminology the lemma above shows that ue X is a compactification of

X, where X is given the discrete topology.

Remark Corollary 3.7 can now be proved in a much simpler way by the density of the

image of η. Given a Kripke frame F, and an sv-valuation µ on ue F, by the definition

of truth:

∃U ∈ ue F such that ue F, µ,U 
sv
φ

iff

µ(φ) 6= ∅ .
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Because µ(φ) is a clopen set and η has a dense image, the latter statement is equivalent

to

∃ a ∈ F such that η(a) ∈ µ(φ) ,

hence equivalent to

∃ a ∈ F such that ue F, µ, ↑ a 
sv
φ .

a

commented

ue F, µ, x↑ φ ,

then

ue F, µ  φ .

4.2.1 Two Observations

Here we consider two properties of the ultrafilter extensions. One applies to Kripke

frames in general and the other is a property of Compact Hausdorff modal frames

(sv-frames for our purposes).

Proposition 4.9. Ultrafilter extension, as a functor on KF , is injective on objects.

Proof Let F and G be Kripke frames such that ue F ' ue G. Since ultrafilter extension of

any Kripke frame is an sv-frame, since ue = (()+)+ and since SV is dually equivalent,
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it is obvious that

F+ ' G+ .

So assume that

h : F+ −→ G+ ,

is an isomorphism of modal algebras. By definition

|F+| = P(|F|) and |G+| = P(|G|) .

Since h is an isomorphism the image of an atom in F+ is an atom in G+. Atoms of

power set algebras are obviously singletons. So define

h− : F −→ G ,

by

h−(a) = b iff h({a}) = {b} .

Obviously this is a well defined bijection between F and G. Surjectivity of h−1 implies

that to prove that h−1 is a bounded frame morphism and therefore an isomorphism of

Kripke frames we need only show

x RF y iff h(x)RG h(y).

Moreover by symmetry the proof is complete once we show that h− preserves the

relation on F. To this end assume x and y are nodes of F such that x R
F
y. We should

prove

h−(x) RG h−(y) .
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note that by the definition of h− it is obvious that

h({a}) = {h−(a)} .

Moreover if f
F

denotes the modal operator on F+ (similarly f
G

for G+)

x R
F
y

iff

{x} ⊆ f
F
({y}) iff h({x}) ⊆ h(f

F
({y})) iff {h−(x)} ⊆ f

G
(h({y})) = f

G
{h−(y)}

iff

h−(x) R
G
h−(y) .

This completes the proof. a

Our next observation justifies our lax attitude towards specifying the exact Stone

topology on an sv-frame.

Proposition 4.10. Let F be an compact Hausdorff modal frame. The quotient topology

induced by the natural surjection

ε : ue F −→ F ,

is the same as the topology of F.
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Proof This follows from a simple fact of point set topology. That is, any surjective

continuous map which is also a closed (or open) map is a quotient map. C.f. [MUT].

Here is a short proof.

Let

f : X −→ Y

be a continuous surjective and closed map. Let U = Cc be a subset of Y such that.

f−1[U] is an open subset of X. Therefore

(f−1[U])c = f−1[Uc]

is closed. Since f is surjective

f[f−1[Uc]] = Uc = C .

Since f is a closed map C is closed, hence U is open. By continuity of f it is obvious

that f−1[U] is open for any open U ⊆ Y. Hence U is open in Y if and only if f−1[U] is

open in X. f is therefore a quotient map. In case of the natural surjection continuity is

obvious. Since closed subsets of compact spaces are compact, and continuous images

of compact sets are compact (closed) under ε we conclude that ε is a closed map as

well. a
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4.3 Coproducts in the KF and SV

Comparing Coproducts We are going to discuss the coproducts in the categories of

sv-frames in contrast to that of category of Kripke frames we use the notations in a

sloppy way for notational simplicity. For example

∐
I

Si ,

is the coproduct, in KF , of the underlying kripke frames of the family of sv-frames

{Si}i∈I .

A more careful notation would be ∐
I

|Si| ,

where for each i

|Si| = 〈Wi,Ri〉

is the corresponding sv-frame. Each Si comes with its own Stone topology, which we

conveniently forget when we look at it as a Kripke frame. Alternatively we could

look at any such sv-frame as having an attached set of subsets, the basis of the stone

topology of the frame.

Si = 〈Wi,Ri,Ai〉 .

This amounts to considering an sv-frame as a Descriptive general frame. A notion that

we will elaborate on below. As mentioned earlier the duality between descriptive gen-

eral frames and modal algebras together with the obvious isomorphism between the
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category of descriptive general frames and sv-frames proves the duality SV ' MA op.

In our discussion on canonical varieties we mentioned that canonical varieties are

always determined by canonical (normal) modal logics. We also considered the dual

notion of a variety, a covariety of sv-frames. We then showed that a variety of modal

algebras is canonical iff the corresponding covariety of sv-frames is ue-closed. C.f sec-

tion 1.7.
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The following is an observation that can be used to make a connection between classes

of Kripke Frames, on the one hand and varieties of modal algebras and covarieties of

sv-frames on the other.

Lemma 4.11. (Coproduct Preservation) The ultrafilter extension of a coproduct of a

family of Kripke frames is isomorphic to the sv-coproduct of ultrafilter extensions of the

members of the same family. That is, given a family

{Fi}i∈I

of Kripke frames

ue (
∐

I

Fi) '
sv⊕
I

ue Fi .

Proof This is a direct corollary of the definitions of a coproduct of frames, an sv-

coproduct of sv-frames, a direct product of algebras and the complex modal algebra

of a frame.

For any frame F, (ue F)∗ = F+. Also if Fi = 〈Wi,Ri〉 and {Fi}i∈I is a class of frames

(
∐

I

Fi) = 〈
∐

I

Wi,
∐

I

Ri, 〉.

So

|(
∐

I

Fi)
+| = P(

∐
I

Wi).

Since sequences of subsets of a disjoint family of sets, and the set of subsets of their

disjoint union are isomorphic as sets in an obvious way, we conclude

|(
∐

I

F+
i )| ' |

∏
I

(F+
i )|.
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Similar inspection of the operations on the complex algebra of the coproducts, com-

paring them with the operations of the product of complex algebras of the individual

frames, shows that

(
∐

I

F+
i ) '

∏
I

(F+
i ).

The claim now becomes obvious by the definition of sv-coproduct (note that For all F,

(ue F)∗ = F+).

ue

(∐
I

Fi

)
'

(
(
∐

I

Fi)
+

)
+

'

(∏
I

F+
i

)
+

'

(∏
I

(ue Fi)
∗

)
+

'
sv⊕
I

ue Fi .

a

In our discussion on canonical varieties we mentioned that canonical varieties are al-

ways determined by canonical (normal)logics. We also considered the dual notion of

a covariety of sv-frames. We then showed that a variety of modal algebras is canonical

iff the corresponding covariety of sv-frames is ue-closed. C.f section 1.7.

Finally we showed that for a covariety C of sv-frames with a class D of generators

C is ue− closed iff ue

sv⊕
I

Si ∈ C,

for any family {Si}i∈I of sv-frames in D.
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We need a more detailed analysis of coproducts in the category of Kripke frames and

sv-frames. Recall that disjoint unions of Kripke frames are coproducts in KF , as dis-

cussed in [BRV]. We defined the notion of an sv-coproduct of sv-frames using duality,

C.f. 2.9.5, and verified that it coincides with the categorical notion of a coproduct for

the category SV. So what we proved in lemma 4.11 shows that forming ultrafilter

extensions of frames, as a functor, preserves coproducts of families of frames. That is,

ue
∐

I

Fi '
sv⊕
I

ue Fi .

On that note, to be more accurate we should specify the insertion (injection) maps of

the coproducts in the lemma 4.11. By inspection of the definitions, it is obvious that

〈
sv⊕
I

ue Fi, ueαi〉i∈I is the sv-coproduct of the family{ue Fi}i∈I ,

if

〈
∐

I

Fi, αi〉i∈I is the coproduct of the family {Fi}i∈I .

Since the category SV is a subcategory of KF , for any family of sv-frames, we can form

two distinct coproducts, one in KF and one in SV. It is readily seen that these two

notions are, in fact, distinct, except for finite families of sv-frames. It is known that

the KF coproduct of an infinite family of sv-frames is never an sv-frame. C.f. [GMM].

We will contrast these two coproducts, and focus on special families of sv-frames to

prove a series of lemmas that we employ to answer the question of countable canon-

icity.
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Notations: For the rest of this chapter all frames are sv-frames, unless specified other-

wise. I is an arbitrary infinite index set. Based on the previous comment on coproducts

of infinite families, we know that the Kripke coproduct of an infinite family of frames

is not an sv-frame, but the ultrafilter extension of any frame is an sv-frame. As one

can easily see below, except for (Kripke) coproducts of infinite families, all the other

frames formed during our constructions are sv-frames.

We use the following notations

∐
I

F instead of
∐

I

Fi and
sv⊕
I

S instead of
sv⊕
I

Si ,

whenever Fi ' F and Si ' S, for all i ∈ I. Also, for the rest of this chapter

αi : Si →
∐

I

Si and βi : Si →
sv⊕
I

Si

are the injection maps of the corresponding coproducts.

Finally, whenever a morphism is introduced in a lemma it is the same morphism for

the rest of the section, and we refer to it by the same name.

Lemma 4.12. Suppose {Si}I is a family of sv-frames. Then there is a unique frame

morphism, in KF ,

m :
∐

I

Si −→
sv⊕
I

Si .

such that for all i the following diagram commutes.
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∐
I

Si m //
sv⊕
I

Si

Si

αi

OO

βi

==|||||||||

Proof: Existence and uniqueness of m is obvious by the characteristic property of

coproducts. a

Corollary 4.13. For a family {Si}i∈I of sv-frames the following diagram commutes, and

uem is the unique map with this property.

ue
∐
I

Si ue m // ue
sv⊕
I

Si

ue Si

ue αi

OO

ue βi

;;vvvvvvvvv

(12)

Proof: Since ue is a functor, the commutativity of the diagram is obvious. The unique-

ness is a consequence of the fact
sv⊕
I

ue S is the sv-coproduct of {ue Si}i∈I. a

Lemma 4.14. The morphism m in lemma 4.12 is injective.

Proof: This fact becomes obvious once we verify that images of Si under injection

maps βi are disjoint for distinct indices. To see this consider the structure

sv⊕
I

Si

sv
⊕ Si0

sv
⊕ Si1

and a family of sv-morphisms

{fi}i∈I ,
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where,

fi = βi , for i 6= i0, i1 ,

and fi0 and fi1 are identity maps into extra copies of Si0 and Si1 . Note that the sv-

coproduct of a finite family of sv-frames is simply their disjoint union. It is easy to

see, by uniqueness of coproduct maps, that having an element in the intersection

ki0 [Si0 ] ∩ ki1 [Si1 ] ,

leads to a contradiction. Therefore the coproduct map m is an injection, in fact a

bounded frame embedding. a
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4.4 Characterization of Ultrafilter Extensions

In what follows we will prove a characterization theorem for ultrafilter extensions.

The characteristic property of ultrafilter extensions is instrumental in establishing our

main result. The subtle fact is that the isomorphism

ue
∐

I

S '
sv⊕
I

ue S ,

provides us with two different characterization of

sv⊕
I

ue S ,

one as a sv-coproduct and the other as an ultrafilter extension of a Kripke frame. The

results proved below establish a connection between these two points of view. For a

reader familiar with category theory it should be clear that the results in this section

could provide an indirect proof for coproduct preservation.

We start by the following theorem which is similar to Theorem 3.1 in [GBQC].

Theorem 4.15. Let F = 〈F,R〉 be a Kripke frame. If

η : F −→ ue F ,

is the natural injection of F , then for any compact Hausdorff frame, G = 〈G,R
G
〉, and

any function

f : F −→ G
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there is a continuous map

f̂ : ueF −→ G

such that

f̂ ◦ η = f .

In other words, given f above, there is a unique map f̂ , such that the following diagram

commutes.

F
η //

f   B
BB

BB
BB

B ueF

f̂
��

G

Moreover

1. If F = 〈F,R〉 is a compact and Hausdorff frame, and f is continuous then

f̂ = f o ε
F
.

2. If f is a weak/bounded frame morphism, so is f̂.

Proof: Recall that

ue : KF −→ SV ,

is a functor preserving injective and surjective frame morphisms.

Consider the continuous map

εG : ueG� G ,
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introduced in 4.2.4, which is an inverse to η
G

. Lemma 4.3 implies commutativity of

the square in the following diagram.

F
η

F //

f

��

ue F

ue f

��
G

η
G //

id
��

ueG

εG||zz
zz

zz
zz

G

Hence, letting

f̂ = εG o ue f ,

we conclude

f̂ o ηF = f ,

as required.

To see uniqueness of f̂, assume g is a continuous function such that

g o η
F

= f .

Since η
F

has a dense image in is a dense subset of |ue F| on which g and f̂ agree, f̂ = g.

If f is continuous the following diagram commutes as in lemma 4.7

F

f

��

ueF
ε
Foo

uef

��
G Gε

G

oo

.

Hence

f̂ = ε
G

o ue f = f o ε
F
,

135



satisfies the condition of the lemma.

Finally, since ue preserves weak and bounded morphisms, since natural injections

(surjections) are weak (bounded) it is obvious that f̂ is weak/bounded whenever f is

weak/bounded. a

Let us discuss the characteristic property of the ultrafilter extension a little further. For

any set X the set of ultrafilters of X, is a compactification of X. In the lemma above

the topological aspect of the induced map f̂ has nothing to do with Kripke frames. We

might very well have defined the induced map in a more general sense. However, the

range of a map f must be at least a compact Hausdorff space, otherwise the natural

surjection cannot be defined. This is why we have not stated above lemmas more

categorically, so to say.

We could state and prove the following.

Proposition 4.16. Given a set X, a Stone space Y, and a function

f : X −→ Y ,

There is a unique continuous function

f∗ : ue X −→ Y ,
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such that the following diagram commutes

X
η //

f !!C
CC

CC
CC

CC ue X

f∗

��
Y

The proof is of course identical to that of theorem 4.15. Moreover it is obvious that

assignment

f  f∗ ,

is one-to-one. On the other hand by uniqueness of f∗, we can see that each continuous

map from ue X to Y must be the induced map of some function with domain X. That

is, given

g : ue X −→ Y ,

to find the unique map that invokes g consider the composition

g o η : X −→ Y ,

whose domain is obviously X. So there is a unique continuous map

g∗ : ue X −→ Y ,

such that

g∗ o η = g o η .

Hence g = (g o η)∗.

The proposition we just proved can be restated as

HomSets(X, |Y|) ' HomStone(ue X,Y) .
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Here |Y| indicates the underlying set of the topological space Y. Writing down the tri-

angular identities we can see that, with η and ε, the natural injection and surjection,

as the unit and co-unit we have an adjoint situation. That is, the forgetful functor

from Stone to Sets is a right adjoint to the ultrafilter functor.

In contrast, since η is not a bounded morphism, hence not in the category of Kripke

frames, a similar argument to show ue as a functor

ue : KF −→ SV .

has a right adjoint, fails. Had this been the case preservation of coproducts would

have been a corollary of this adjunction. This is true because any functor with a right

adjoint preserves colimits. There is a way around this problem if one wants to prove

preservation of the coproduct via adjunction. However a direct proof of preservation

is much easier.

Existence of a unique continuous map with domain f∗ given a map f in proposi-

tion 4.16 characterizes ultrafilter extension of a set or Kripke frame. The proof is

by a Standard uniqueness argument. This is mentioned in [GBQC]. We include a

proof for completion.

Theorem 4.17. For any set X, ue X is the unique compact Hausdorff topological space
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for which there is a function

η : X −→ ue X ,

such that for any compact Hausdorff topological space Y, and any function

f : X −→ Y ,

There is a unique continuous function

f∗ : ue X −→ Y ,

making the following diagram commute.

X
η //

f !!C
CC

CC
CC

CC ue X

f∗

��
Y

Proof: Let X̄ be a compact Hausdorff topological space together with a function

η̄ : X −→ X̄ ,

such that for any compact Hausdorff space Y there is a unique continuous map

f̄ : X̄ −→ Y ,

making the following diagram commute

X̄
η //

f !!C
CC

CC
CC

CC ue X̄

f∗

��
Y

The following diagram is also commutative

X
η //

η̄
!!C

CC
CC

CC
CC ue X

η̄∗

��

Id // ue X

X̄

η̄∗

;;xxxxxxxxx
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Since identity is a continuous map the homeomorphism is established. a

Remark Obviously the existence of a unique weak/bounded frame morphisms g∗

given a weak/bouned frame morphism g, the ultrafilter extension of a Kripke (sv-

frame). The fact the map invoked by a weak/bounded morphism is a weak/bounded

continuous morphism, does not change the proof of uniqueness (up to isomorphism)

of the ultrafilter extension of a frame.

Classifying General Theory Maps

We close this section with a classification theorem. A direct proof could be provided

however our proof uses the results in this section. Hence the inclusion of the result

here.

Theorem 3.1 classifies sv-theory maps, as continuous bounded frame morphisms whose

range is included in F
Σ . Having proved enough about sv-frames and in particular ul-

trafilter extensions we can prove a classification theorem for theory maps in general.

Proposition 4.18. A function

f : F −→ F
K

,

is a theory map if and only if

ue f : ue F −→ ue F
K
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is bounded.

Proof Note that uef is always continuous. If ue f is bounded then the continuous and

bounded map (ε
K
◦ ue f) is an sv-theory map on ue F by 3.1. On the other hand by 4.15

any sv-theory map on ue F is of the form

ε
K
◦ ue f ,

where

f : F −→ F
K

.

However f cannot be just any function!

In the proof of the corollary 3.6 we showed that

Tµ(F, a) = T〈µ〉(ue F, ↑ a) .

Since (ε
k
◦ ue f) is an sv-theory map, it must be of the form 〈µ〉 for some µ ∈ Val(F).

Therefore by commutativity of the diagram in theorem 4.15 for any a in F

f(a) = Tµ(a) .

Therefore f is a theory map.

The reverse direction is almost obvious. If f = Tµ is a theory map for µ in Val(F) then

T〈µ〉 and hence ue f are bounded. Again we are using the fact

Tµ(F, a) = T〈µ〉(ue F, ↑ a) .

a
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4.5 Negative Results

In the earlier parts of this section we proved certain properties of coproducts of sv-

frames, and that of ultrafilter extensions. In proposition 2.17 we saw that to prove

CCC it is enough to show that for any canonical modal logic Σ, and an arbitrary index

I

ue

sv⊕
I

F
Σ


sv

Σ.

On the other hand corollary 4.13, with Si = F
Σ for all i ∈ I, shows that

sv⊕
I

ue F
Σ is

embedded in ue
sv⊕
I

F
Σ . It is natural to ask whether this embedding is an isomorphism.

If the answer is positive CCC is resolved. This is true because for any canonical modal

logic Σ

ue F
Σ


sv

Σ ,

and therefore

sv⊕
I

ue F
Σ


sv

Σ . (1)

Another question; is uem an isomorphism if it is bijective? The following proposition

answers this question positively.

Proposition 4.19. Any bijective weak, continuous map between sv-frames is an sv-

isomorphisms.
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Proof If

f : S0 −→ S1

is a bijective continuous function, it is a homeomorphism on the underlying Stone

spaces. This is true, because any bijective continuous map from a compact space into

a Hausdorff space is a homeomorphism. C.f. [MRS] for a proof. On the other hand,

any surjective weak morphism is obviously bounded. So both f and its inverse f are

bounded. Therefore f has an inverse which is both continuous and bounded , which

means f is an isomorphism of of sv-frames. a

There is another way to look at a potential isomorphism

sv⊕
I

ue Si ' ue

sv⊕
I

Si, (2)

By our definition of ultrafilter extensions, ue can be seen as a functor

ue : SV −→ SV .

If ue has a right adjoint it preserves coproducts on SV, therefore for any sv-frame S,

ue

sv⊕
I

S '
sv⊕
I

ue S ,

and by letting S = F
Σ the desired isomorphism is established.

Unfortunately, as the title of the current section suggests, an isomorphism as in (2)

cannot exist, as we argue below.
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It is easy to see that for any infinite index set I and a family {Si}i∈I of sv-frames

∐
I

Si ,

is not an sv-frame, since it is not compact. on the other hand by the observation made

in proposition 4.9 if
sv⊕
I

ue S ' ue

sv⊕
I

S,

then ∐
I

S '
sv⊕
I

S .

This leads to a contradiction. Note that any Stone space can be seen as an sv-frame

where each node is related to itself and nothing else. Let S be any countable Stone

space (an example is any countable compact ordinal) and A be the modal algebra of

clopens of S. The power of A over an countably infinite index set I is not countable.

However the disjoint union of countably many copies of S is countable. Since

sv⊕
I

S = (
∏

I

A)+

is uncountable and ∐
I

S,

is countable they cannot possibly be isomorphic.

Although this cardinality argument proves the proposition below let us mention that

more could be said about how the sv-coproduct of a family of sv-frames compares to

their disjoint union. In fact

sv⊕
I

S is the Stone-Jech compactification of
∐

I

S ,
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which is the largest compactification of
∐
I

S. It should not then be surprising that the

two distinct coproducts fail to be isomorphic as sets, let alone Kripke frames.

We provided a direct proof for injectivity of the map m in lemma 4.12. Topologically

speaking m is the embedding map of compactification and hence obviously injective

and continuous. So if a copower is not compact the embedding cannot be surjective.

However to refute the existence of an isomorphism it is not enough to show that m is

not a bijection. One should prove that there are no bijections between a copower of

S over an infinite index set and its Stone-Jech compactification. We remain content

with a single counterexample for the sake of brevity.

Since the isomorphism (2) above cannot be established we have the following nega-

tive result.

Proposition 4.20. The operator ue as a functor on SV cannot have a right adjoint.

Proof Obvious by our discussion above. a
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5 Canonicity, Definability, and Completeness

5.1 Canonicity Results

In what follows we prove some connections between notions of canonicity and defin-

ability, as well as completeness. We will also provide some alternative forms of CCC.

We prove some results in the direction of proving CCC.

In proposition 2.18 we proved that the countable canonicity conjecture is equivalent

to the claim that for any canonical modal logic Σ and arbitrary index set I,

ue

sv⊕
I

F
Σ ∈ SVΣ .

This is equivalent to

ue

sv⊕
I

F
Σ


sv

Σ or equivalently KΣ ⊆ Tsv(ue

sv⊕
I

F
Σ

) . (1)

The second equivalence holds because Tsv(ue
sv⊕
I

F
Σ
) is closed under logical deduction,

by soundness.

We also showed (proposition 2.17) that the canonicity of a modal logic Σ is equivalent

to

ue F
Σ ∈ SVΣ .

On the other hand
sv⊕
I

ue F
Σ ≡

sv
ue F

Σ

.
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Moreover, if Σ is canonical

ue F
Σ


sv
φ iff F

Σ

 φ iff
Σ̀
φ iff φ ∈ KΣ .

Therefore

Tsv(
sv⊕
I

ue F
Σ

) = Tsv(ue F
Σ

) = KΣ . (2)

It is obvious that the theory of a frame is included in the theory of any of its subframes.

by Therefore proposition 4.13 with Si = F
Σ implies

Tsv(ue

sv⊕
I

F
Σ

) ⊆ Tsv(
sv⊕
I

ue F
Σ

) .

Hence CCC implies

ue

sv⊕
I

F
Σ ∈ SVΣ iff Tsv(ue

sv⊕
I

F
Σ

) = KΣ = Tsv(
sv⊕
I

ue F
Σ

) .

Thus we have proved that CCC is equivalent to

Tsv(ue

sv⊕
I

F
Σ

) = Tsv(
sv⊕
I

ue F
Σ

) . (3)

This can be reformulated as

ue

sv⊕
I

F
Σ ≡

sv

sv⊕
I

ue F
Σ

.

However for any modal logic Σ by 2.3, and the semantics equivalence lemma

F
Σ


sv
φ iff

Σ̀
φ .
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Therefore
sv⊕
I

F
Σ


sv
φ iff F

Σ


sv
φ iff

Σ̀
φ .

That is,

Tsv(
sv⊕
I

F
Σ

) = KΣ .

Hence by equation (2) above if Σ is a canonical modal logic

Tsv(
sv⊕
I

F
Σ

) = Tsv(
sv⊕
I

ue F
Σ

) (4)

This implies that CCC is also equivalent to

Tsv(
sv⊕
I

F
Σ

) = Tsv(ue

sv⊕
I

F
Σ

) . (5)

This can be reformulated as
sv⊕
I

F
Σ ≡

sv
ue

sv⊕
I

F
Σ

.

In contrast to

Tk(
sv⊕
I

F
Σ

) = Tsv(ue

sv⊕
I

F
Σ

) ,

which holds by 2.11 regardless of canonicity of Σ.

In other words, one of the statement equivalent to CCC is the equation (5) above.

We know that the

ue

sv⊕
I

F
Σ 6'

sv⊕
I

ue F
Σ

,
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(proposition 2), and we just concluded that the sv-equivalence of the two structures

is exactly what is needed to prove CCC. One last note is that by propositions 2.10 and

4.11 the equivalence

ue

sv⊕
I

F
Σ ≡

sv

sv⊕
I

ue F
Σ

.

holds, if and only if
sv⊕
I

F
Σ ≡

∐
I

F
Σ

. (6)

We prove a different equivalence that could be seen as a mid-step for a potential proof

of CCC.

Proposition 5.1. For any canonical modal logic Σ, and any infinite index set I

sv⊕
I

ue F
Σ ≡

sv⊕
I

F
Σ

.

Proof Note that a rather easy sv-equivalence,

sv⊕
I

ue F
Σ ≡

sv

sv⊕
I

F
Σ

.

follows from proposition 2.17. The equivalence we prove here is for all valuations,

not just sv-valuations.

Since Σ is canonical ue F
Σ ∈ SVΣ. Therefore there is an sv-frame S, and an index set

I, such that ue F
Σ
� S and

sv⊕
I

F
Σ
� S. These embedding and surjective maps invoke

corresponding coproduct maps

sv⊕
I

ue F
Σ

�
sv⊕
I

S ,
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and
sv⊕
I

F
Σ

�
sv⊕
I

S .

The latter statement is true because one can easily deduce

sv⊕
I

(
sv⊕
I

F
Σ

) '
sv⊕
I

F
Σ

,

from the one to one correspondence

I× I ' I ,

which holds as I is an infinite set.

On the other hand there is a surjective continuous frame morphism

sv⊕
I

ε :
sv⊕
I

ue F
Σ −→

sv⊕
I

F
Σ

.

This is the coproduct map for the natural surjection ε from ue F
Σ onto F

Σ .

Now an inspection of the semantics of the structures above using 2.6 readily implies

that for any φ
sv⊕
I

ue F
Σ

 φ iff
sv⊕
I

F
Σ

 φ .

This establishes the desired equivalence. a

Remark It is worth mentioning that one can prove an isomorphism result here. How-

ever the isomorphism does not hold for arbitrary infinite index sets.

We can now proceed with some results linking modal definability and canonicity.
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5.2 Modal definability and Completeness

A Kripke frame, being a relational structure, can be studied from the view point of

first order logic. A class of Kripke frames can therefore be definable as a class of first

order structures. We will define the notion of modal definability shortly; first order

definability is the analogous notion for first order logic which is not part of our dis-

cussion per se. However on a few occasions we refer to results related to first order

logic as they become relevant to modal definability. We only need some basic facts

about first order definable classes. [BRV] contains enough background material on

first order definability for our purposes.

Our definitions are very close to the standard definitions, if not exactly the same,

c.f. [BRV]. Our terminology is somewhat different.

Definition 5.2.1. ( Classes of Frames Defined by a Modal Logic)

1. The class of Kripke frames defined by a modal logic Γ, is the class of all Kripke

frames over which Γ is valid. We denote this class by KFΓ. In other words

KFΓ = {F |F  Γ}.

2. The class of sv-frames defined by Γ, is the class of all sv-frames over which Γ is

sv-valid. We denote this class by SVΓ. In other words

SVΓ = {S | S 
sv

Γ}.
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Following our discussion in section 1.8. we have

Tsv(SVΓ) = KΓ .

However there is no reason to assume

Tk(KFΓ) = KΓ .

It is Obvious by soundness that

KΓ ⊆ Tk(KFΓ) .

The equality of these two classes is a property which is called frame completeness.

Definition 5.2.2. A modal logic Γ is called a frame complete logic provided that there is

a nonempty class of Kripke frames such that

Γ = Tk(C) .

It is obvious by soundness that a frame complete logic is closed (under logical deduc-

tion). It is also obvious by soundness that for any modal logic Γ

KFΓ ⊆ KFKΓ . (1)

The fact that equality is not a given in (1) above means that KFΓ is not determined

by Γ, so to say. That is, KFΓ is not always the class of Kripke frame that validate Γ, its

logical consequences and nothing more. KFΓ might very well validate some formulae

that are not deducible from Γ. This is usually referred to as (frame) incompleteness
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of Kripke semantics. Note that any canonical modal logic Σ is easily seen to be frame

complete. This is true because

F
Σ ∈ KFΣ ,

and so

Tk(KFΣ) ⊆ Tk(F
Σ

) = KΣ .

We will return to frame completeness after introducing a few more notions.

Definition 5.2.3. ( Definable Classes of Frames and sv-Frames) A class C of (Kripke)

frames is Kripke definable iff there is a logic modal Γ such that for any (Kripke) frame F,

F ∈ C iff F  Γ .

A class C of sv-frames is sv-definable iff there is a modal logic Γ such that for any sv-frame

S,

S ∈ C iff S 
sv

Γ .

Remark Once again our discussion in 1.8. shows that a class C of sv-frames is

definable if and only if it is a covariety. This is in turn equivalent to closure of C

under GQC. As far as we know such a characterization does not exist for definable

classes of Kripke frames.

It is natural to ask if any consistent modal logic defines some (nonempty) class of

Kripke frames. Since our focus is on modal logics the answer to this questions is pos-
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itive.

Fact 5.1. Any modal logic is either valid on a Kripke frame that consists of a single

reflexive node or valid on a frame that consists of a single irreflexive node.

Proof C.f. [BRV]. a

The fact we just mentioned trivially implies that no modal logic (as far as we are con-

cerned!) defines an empty class of Kripke frames.

We have introduced the notion of frame completeness. We will see the justification

for this terminology. We should first define completeness, and to do that we need the

notion of semantic entailment.

Definition 5.2.4. (Semantic Consequence) Let φ be a modal formula, Γ a set of modal

formulae, Σ a modal logic, and C a class of Kripke frames. We say Γ locally entails φ

over C , or φ is a local semantic consequence of Γ over C, provided that for all F in C, for

all µ in Val(F), and for all a in |F|

if F, µ, a  Γ then F, µ, a  φ, .

This is notated by

Γ 
C
φ .

154



Definition 5.2.5. (Completeness) Let be a class of structures, i.e. Kripke frames,

sv-frames, or models.

1. (Weak Completeness) A modal logic Σ is weakly complete with respect to a class

of structures, C, provided that

if 
C
φ then

Σ̀
φ .

2. (Strong Completeness) A modal logic Σ is strongly complete with respect to C

provided that for any set of formulae Γ and any modal formula φ

if Γ 
C
φ then Γ

Σ̀
φ .

Proposition 5.2. If C is a nonempty class of Kripke frames and Σ a modal logic such

that

Σ = Tk(C) .

then Σ is weakly complete with respect to C . Obviously, C is a sound class of frames for

Σ, as well.

Proof Any modal formula valid on all frames in C is, by definition, in the Kripke

theory of C, and hence in Σ. Conversely since Σ is closed under logical deduction, for

any φ if
Σ̀
φ then φ is in Σ. Hence 

C
φ. In other words it is almost obvious that the

assumption of this propositions is equivalent to

φ ∈ Σ iff 
C
φ .
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We can refer to this by saying C provides a sound and complete semantics for Σ.

It should now be obvious that any definable class C is definable by a frame com-

plete modal logic which is included in any other frame complete logic that defines C.

Therefore we have the following proposition.

Proposition 5.3. If C is a class of Kripke frames definable by a modal logic Γ, i.e. for

any Kripke frame F

F ∈ C iff F  Γ ,

then Γ is frame complete.

Proof Obvious by earlier results in the current section. a

Remark An equivalent form of frame completeness is the following.

Σ = Tk(KF Σ)

As mentioned above there is no known theorem on definability analogous to the

Birkhoff Variety Theorem. That is, a theorem that classifies definable classes of Kripke

frames as classes that are closed under a certain set of operations.
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In what follows we shall try to point out the importance of the notion of ultrafilter

extension as it relates to definability.

The classic theorem on definability, the Goldblatt-Thomason’s theorem, under a strong

set of assumptions, provides necessary and sufficient conditions for a class of Kripke

frames to be definable. To be more specific, Goldblatt-Thomason’s theorem starts with

a class that is definable by a first order logic, before proceeding to lay out conditions

that are equivalent to modal definability of the class. Let us state the theorem first.

Note that disjoint union for Kripke frames is obviously the coproduct in the category of

Kripke frames. We skip the definition of an ultrapower which is standard in first order

logic. Let us just say that the ultrafilter extension of a frame F is the bounded mor-

phic image of some ultrapower of F. Therefore a class that is closed under bounded

morphic images and ultrapowers is ue-closed. As mentioned before [BRV] contains

all the necessary definitions and facts we use here.

Theorem 5.4. (Goldblatt-Thomason) A class C of Kripke frames closed under ultra-

powers, is modally definable iff C is closed under forming (generated)subframes, quo-

tients, disjoint unions of frames (coproducts), and reflects ultrafilter extensions (i.e.

F ∈ C if ue F ∈ C).

In the standard proof of Goldblatt-Thomason’s theorem, it becomes apparent that

first order definability of a class C implies that the variety of modal algebras deter-
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mined by C is a canonical variety. C.f. [BRV]. This in turn implies that C is ue-closed.

However canonicity of the variety determined by C is weaker than first order defin-

ability of C. The reason is not trivial by any means. In fact whether the two concepts

were equivalent was an open question resolved not long ago C.f. [GHV]. In any case

this shows that the statement of Goldblatt-Thomason’s theorem assumes something

stronger than canonicity VC before even stating necessary and sufficient conditions for

C to be modally definable. We should mention that the original proof of Goldblatt-

Thomason’s theorem is modified to reduce the set of prerequisites for a class whose

definability is characterized by the theorem. Yet what is really needed for the proof is

the ue-closure of the class whose definability is under investigation. We will prove a

stronger form of Goldblatt-Thomason’s theorem. Some definitions first.

Definition 5.2.6. The variety determined by a class C of Kripke frames is the variety

VC = HSP(C+) , where

C+ = {F+ | F ∈ C} .

Definition 5.2.7. Given a class C of frames, i.e. Kripke frames or sv-frames, ue C is the

following class of sv-frames

ue C = {S | S = ue F for some F ∈ C} .

Proposition 5.5. If C is a class of Kripke frames closed under disjoint union and ultra-

filter extension, then the variety VC is canonical. 4.11
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Proof We prove 〈ue C〉 is ue-closed, which is equivalent to canonicity of V
Σ

by propo-

sition 2.16.

Since forming ultrafilter extension preserves subframes and quotients, we only need

to verify that the following holds.

If S =
sv⊕
I

ue Fi and ∀ i Fi ∈ C, then ue S ∈ 〈ue C〉.

This is true because, as mentioned before, subframes and quotients are preserved un-

der forming ultrafilter extensions.

Now if

ue S = ue (
sv⊕
I

ue Fi),

we have

ue S ' ue (ue
∐

I

Fi) ( by 4.11 above).

Since C is closed under coproduct, and is ue-closed,

ue (ue
∐

I

Fi) ∈ C, hence ue S ∈ ue C ⊆ 〈ue C〉 .

a

Here is the stronger form of Goldblatt-Thomason’s theorem.

Theorem 5.6. A class C closed under ultrafilter extensions is modally definable if and

only if
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1. If F ∈ C and f : F� G then G ∈ C.

2. If F ∈ C and f : F� G then G ∈ C.

3. If {Fi}i∈I is a family of frames in C, then
∐
I

Fi is in C.

4. If ue F ∈ C then F ∈ C.

Proof One direction of the implication is obvious. So assume the conditions 1-4 above

hold, and let Σ be a modal logic such that SVΣ = 〈ue C〉. We prove that C is defined

by Σ.

Obviously for any F ∈ C,

F  Σ, because ue F 
sv

Σ.

Conversely, we prove F ∈ C whenever F  Σ. Let F  Σ, and hence ue F 
sv

Σ, by

lemma 2.9.

Since SVΣ = 〈ue C〉,

ue F ∈ 〈ue C〉.

But

SVΣ = 〈ue C〉 = GQC( ue C).

So ue F belongs to GQC( ue C). Since C is closed under subframes (injective frame

morphisms), and quotients (surjective frame morphisms), we need only consider the
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case in which ue F is an sv-coproduct of members of ue C.

So assume

ue F =
sv⊕
I

ue Fi and Fi ∈ C for all i in I .

Hence

ue F ' ue (
∐

I

ue Fi) (by proposition 4.11).

Since C is closed under coproducts, and is ue-closed, ue F ∈ C, and because C reflects

ultrafilter extensions, F ∈ C. a

We could try to prove a superficial characterization theorem. That is, transfer the

conditions for definability to a different class. Here is the reason.

Proposition 5.7. A class C of Kripke frames is definable if and only if for any frame F

F ∈ C iff ue F ∈ 〈ue C〉 .

a

One last connection between canonicity and definability is the following proposition.

In this proposition by a nontrivial class of frames we mean a nonempty class whose

complement is also nonempty.
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Proposition 5.8. Suppose C is a nontrivial class of Kripke frames definable by Σ. That

is,

∅ 6= C = KF Σ ,

Tk(C) = KΣ

The theory of Cc, the complement of C is a canonical modal logic.

Proof: Let

Γ = Tk(CΓ) .

Σ 6⊆ Γ otherwise any Kripke frame validates Σ and C = KF .

This implies that F
Γ does not belong to C. To see this, consider MΓ, the canonical

model of Γ, whose underlying frame is F
Γ. For any modal formula φ,

MΓ  φ iff
Γ̀
φ (Fact 2.3) .

If

F
Γ ∈ C

we have

F
Γ

 Σ and hence MΓ  Σ

which implies Σ ⊆ Γ. Since F
Γ ∈ Cc we have

F
Γ

 Tk(Cc) = Γ ,

that is Γ is a canonical modal logic. a
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Conclusion

In the chapters 2 and 4 of this dissertation we provided some reformulations of

the CCC using the terminology of sv-frames. In chapter 5 our discussion on logi-

cal equivalence of copowers of structures that generate the covariety of sv-frames for

a canonical logic, i.e. proposition 5.1 and the argument prior to it suggests an ap-

proach for a possible proof of the CCC .

We hope that these results contribute to an eventual answer to the intriguing problem

that is the CCC . We should mention that using the theory maps to form yet another

point of view for the study of canonicity seems plausible to us. We have not followed

this idea here but we hope to formulate a more general notion of the theory map and

study its possible consequences.

Some connections between the notions of canonicity and definability have long been

known. However obtaining a complete description of this connection seems to remain

evasive. We hope that our work could be of use to anyone who might be interested in

pursuing research on this subject.
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