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Abstract

Scientists use advanced computing techniques to assist in answering the complex questions

at the forefront of discovery. The High Performance Computing (HPC) scientific applica-

tions created by these scientists are running longer and scaling to larger systems. These

applications must be able to tolerate the inevitable failure of a subset of processes (process

failures) that occur as a result of pushing the reliability boundaries of HPC systems. HPC

system reliability is emerging as a problem in future exascale systems where the time to

failure is measured in minutes or hours instead of days or months. Resilient applications

(i.e., applications that can continue to run despite process failures) depend on resilient

communication and runtime environments to sustain the application across process fail-

ures. Unfortunately, these environments are uncommon and not typically present on HPC

systems. In order to preserve performance, scalability, and scientific accuracy, a resilient

application may choose the invasiveness of the recovery solution, from completely trans-

parent to completely application-directed. Therefore, resilient communication and runtime

environments must provide customizable fault recovery mechanisms.

Resilient applications often use rollback recovery techniques for fault tolerance: partic-

ularly popular are checkpoint/restart (C/R) techniques. HPC applications commonly use

the Message Passing Interface (MPI) standard for communication. This thesis identifies

a complete set of capabilities that compose to form a coordinated C/R infrastructure for

MPI applications running on HPC systems. These capabilities, when integrated into an MPI

implementation, provide applications with transparent, yet optionally application config-

urable, fault tolerance. By adding these capabilities to Open MPI we demonstrate support

for C/R process fault tolerance, automatic recovery, proactive process migration, and par-

allel debugging. We also discuss how this infrastructure is being used to support further

research into fault tolerance.
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1
Introduction

Scientists use High Performance Computing (HPC) systems to solve complex scientific prob-

lems that, due to memory or compute performance limitations, either cannot be solved or

are impractical to solve on more traditional computing systems. These HPC systems provide

scientific applications with the parallel processing tools and compute resources necessary

to distribute the application across many compute resources. These tools allow applications

to solve larger problems, potentially, in shorter periods of time. For an application, HPC

system reliability is typically determined by the number of components in the system being

used by that application. As that number of components increases, the system becomes

less reliable because the opportunity for component failure increases with the number of

1



1. INTRODUCTION 2

components active, although not necessarily linearly. Unfortunately, many complex scien-

tific applications often exceed the reliability of a given HPC system. Administrators of large

HPC systems often measure system reliability, in terms of Mean Time to Failure (MTTF), in

days or weeks [236]. However, administrators of future exascale HPC systems will likely

measure system reliability in minutes or hours, further exposing the application to the risk

of failure during normal computation [41]. If the application is not prepared for such in-

evitable failures, then it runs the risk of losing the entire computation, which may have

taken hours or days to generate. The HPC system reliability problem is becoming so preva-

lent that some HPC system manufactures are advising application developers to prepare for

inevitable failure by incorporating fault tolerance techniques, such as rollback recovery, into

the application [94, 244].

Applications that are prepared to handle inevitable failures are called resilient appli-

cations. Rollback recovery techniques, often used by resilient applications, allow the ap-

plication to take proactive action during normal computation, the results of which can be

used to recover the computation after a failure. Checkpoint/Restart (C/R) is a particu-

larly popular rollback recovery fault tolerance technique. C/R techniques periodically save

application computational state information to a stable storage device during normal com-

putation. Upon failure, the state information can be accessed from stable storage to recover

the computation. Ideally, the C/R implementation would be transparent to the application,

thus reducing the complexity of the application code. In order to provide a completely

transparent C/R implementation on HPC systems, a set of capabilities must be organized

in the underlying support software (i.e., Message Passing Interface (MPI) and runtime en-

vironments) to ensure correctness and consistency of the checkpoint operation. Previous

C/R implementations have often struggled to remain relevant research platforms due to

the lack of an extensible architecture. Such an architecture is only formed by first clearly

identifying a complete set of required C/R capabilities. Transparent C/R solutions on HPC

systems often use a fully coordinated technique to guarantee C/R consistency. Applications

can usually improve the performance of the C/R operation by providing optional hints and
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guidance to the support software regarding application state. However, a transparent, co-

ordinated C/R solution will operate correctly without such guidance from the application.

Users of scientific applications and HPC system administrators, so called end users, often

request the following three services from a C/R implementation:

• Reactive fault recovery

• Proactive process migration

• Parallel debugging assistance

Reactive fault recovery allows an application to automatically recover from a failure while

running, or manually recover from job termination due to time limitations on a given HPC

system. Proactive process migration allows an application to avoid predicted future fail-

ure by moving to a more reliable system during normal computation. C/R-enabled parallel

debugging reduces the time spent debugging long-running applications by returning a de-

veloper to an intermediary point in the computation closer to the bug.

As can be seen in Chapter 2, previous research has investigated techniques for imple-

menting the whole or part of each of these services. Unfortunately, no previous single

implementation has presented an organizational infrastructure with clearly defined capa-

bilities that can provide all three services. When we approached the problem of adding

C/R support to the Open MPI project we wanted to design a solution that was maintainable

for developers, extensible for researchers, and provided end users with the three services

previously mentioned. From previous research and our own experimentation, we identified

a complete set of C/R capabilities that, when organized appropriately, achieve those project

goals.

In the context of this dissertation, a capability is a distinguishable abstraction in the

C/R system design. In this dissertation we present an organization structure for the fol-

lowing identified C/R-related capabilities that compose to provide MPI applications with a

transparent, but optionally configurable, coordinated C/R solution:
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• Checkpoint/Restart Service (CRS): The interface to the single process C/R system

provided by or for the system in order to capture an image of a running process

for later recovery.

• Checkpoint/Restart Coordination Protocol (CRCP): The C/R coordination proto-

col implementation that marshals the network state to guarantee a consistently

recoverable distributed state upon restart [48].

• Interlayer Notification Callback (INC): Notifying and coordinating subsystems of

the MPI implementation around various checkpoint related activities (e.g., check-

point, restart, migration).

• Stable Storage (SStore): A logical stable storage device abstraction encapsulating

where and when local snapshots are stored in the distributed environment to form

a global snapshot.

• File Management (FileM): The movement of snapshot related files and directories

to and from storage devices possibly across file system and node visibility bound-

aries.

• Snapshot Coordination (SnapC): Checkpoint life-cycle management: distributing

the checkpoint request to all participating processes, monitoring their progress,

and synchronizing the final local snapshots to a logical stable storage device.

• Error Management and Recovery Policy (ErrMgr): Error reporting and fault recovery

management operations including support for preventative actions such as process

migration.

Identifying the necessary capabilities that form a C/R fault tolerance implementation

will assist future implementations in creating more flexible designs and continue to sup-

port research innovation into C/R fault tolerance. Even though a C/R implementation may

choose to combine one or more capabilities together, in Open MPI we demonstrated that a

C/R implementation can support the three identified services without making such a com-

promise. Additionally, the seven capabilities presented in this dissertation can also be used

to support research into alternative fault tolerance techniques beyond coordinated C/R such
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as run-though stabilization, replication, and message logging. As HPC reliability declines,

research into fault tolerance techniques must quickly adapt to the needs of the applica-

tions on these systems. A composable design with clearly identifiable capabilities allows

C/R researchers to match their research efforts to the pace of the application’s reliability

requirements.

By integrating the seven capabilities into the Open MPI project we confirmed that they

form a complete, functional set that is able to support real MPI scientific applications. There

is often a performance cost to adding fault tolerance capabilities to an application. In this

dissertation we investigated the performance implications of the C/R implementation in

Open MPI on a variety of benchmarks and real applications including High-Performance

Linpack (HPL), Parallel Ocean Program (POP) and Large-scale Atomic/Molecular Massively

Parallel Simulator (LAMMPS). The Open MPI implementation takes care to preserve per-

formance across process recovery by uniquely allowing rediscovery of the interconnects

between processes upon recovery. The time to save a checkpoint to stable storage is the

predominate performance bottleneck in a transparent C/R solution. We present an analysis

of a checkpoint staging technique that reduces checkpoint overhead by overlapping check-

point establishment with normal computation. We also investigated the impact of check-

point caching and compression on checkpoint overhead and latency. A novel, composable

implementation of the ErrMgr capability allows applications to tailor recovery techniques

at run time to best support their requirements.

Finally, we developed a set of Application Programming Interfaces (APIs) and command

line tools for Open MPI that were designed to increase end user adoption and third party

software integration. Applications are provided a set of optional API functions to guide the

C/R related activities from within a process. These tools and APIs provided are designed to

allow end users to interact with the C/R solution without requiring them to know all of the

details about how it was deployed on a particular HPC system.



2
Background and Related Work

Reliable computing techniques focus on providing a computing environment that can be

trusted to work within expected parameters, usually up to a given time bound [14]. Re-

silient computing extends this bound by transparently detecting and recovering from a de-

fined set of failures [6, 14]. Beyond this defined set of failures a best effort attempt is made

to sustain the computing environment either through graceful degradation (a.k.a. partial

fault-tolerance, or fail-soft operation) or by breaking transparency by involving the applica-

tion in recovery. The reliability of a system is usually measured by the mean-time-to-failure

(MTTF) which is defined as the expected time of normal operation between two consecutive

faults [1].

6
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Fault intolerance attempts to reduce the unreliability of the computing environment be-

fore the application begins execution [14]. This usually involves acquiring the most reliable

hardware and software components at the time of construction, maintaining these compo-

nents over the life of the computing environment, and developing techniques for initializing

these components just before application launch in order to provide a reliable computing

environment during the entirety of the application execution. Fault intolerance techniques

support reliable computing by providing applications with bounds on the sustained reliabil-

ity the computing environment can provide at the beginning of application execution with

a high degree of probability.

Fault tolerance uses protective techniques to provide a resilient computing environment

in the presence of an expected set of component failures [14]. Protective techniques to

provide fault tolerance can be classified into two broad categories: Algorithm-Based Fault

Tolerance (ABFT) and redundancy. ABFT focus on choosing algorithms that can withstand

the failure of one or more computational tasks and continue computation by working

around the loss of the data operated on by the lost computational task(s). ABFT approaches

may employ some redundancy techniques, but are not strictly required to do so.

Redundancy is a commonly employed technique for providing fault tolerance. Hard-

ware redundancy relies on multiple, similar physical components that can be activated in

order to recover transparently from the failure of the peer component [15]. Processor

hardware redundancy is one example where a multi-processor system allows for the loss or

replacement of a physical processor while the system is running by transferring all tasks in

execution from the lost processor to others on the system without any loss in transparency

to the application. Redundant Array of Independent Disks (RAID) [202] based techniques

have also been designed to provide transparent failure recovery of hard disks by managing

redundant physical disks.

Software redundancy relies on the replication of a computational task that can be used

to continue operation when one or more of the replica tasks have been lost due to com-

ponent failure in the computing environment [6, 157]. The maintenance of the replicas

typically involves distributed election and consensus algorithms that grow in complexity in
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response to not only the size of the computing environment but also in the number and

types of failures that need to be handled.

Time-based redundancy or rollback recovery techniques rely on the re-execution of all

or part of the application in order to recover from a component failure in the computing

environment. In checkpoint and restart rollback recovery, snapshots (or checkpoints) of the

application state are saved to a stable storage device during normal execution. A stable stor-

age device is a logical device that survives the maximum number of failures in the system.

These checkpoints are then used to restore the application to a previous execution state

after a failure [141]. The application must re-execute the amount of lost work between the

state restored from the checkpoint up to the point of the failure. In a distributed computing

environment where individual processes interact with one another through various events

(typically Inter-Process Communication (IPC)) care must be taken to maintain transparency

of recovery of one or more tasks in the context of a larger dependent network of failure-free

processes.

Event logging rollback recovery techniques focus on such interactions by writing to sta-

ble storage the contents and/or ordering of all external events that influence the execution

of the process in order to deterministically replay these events upon re-execution of the

failed task. Message logging is a commonly used sub-domain of event logging that focuses

just on the logging of messages between processes in the system. When used alone event

logging techniques require the re-execution of the entire task. Since this can cause exces-

sive time delays during recovery, event logging is usually combined with checkpoint/restart

techniques to resume re-execution from an intermediary computational state instead of the

beginning of execution.

1. Distributed Fault Detection

In a single system, an error is generated when a physical defect, called a fault, is de-

tected. A system failure is when the system cannot deliver its intended function because

of one or more errors [1]. A fault-tolerant system will continue to operate normally in the

presence of errors. Individual faults are generally classified into one of three categories:
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permanent, transient, and intermittent [1]. A permanent fault is a fault that continues to

exists until it is repaired. A transient fault is a fault that occurs and disappears at an un-

known frequency. An intermittent fault is a fault that occurs and disappears at a known

frequency.

A distributed system is composed of many systems each with one or more processes

working together towards a shared goal. The failure of one process in a system can lead

to the failure of the entire distributed system. A process failure is often classified in one

of three categories: fail-stop, omission, and Byzantine [80]. A fail-stop failure is when a

process is permanently stopped, often due to a crash. An omission failure is when a process

fails to send or receive messages correctly. A Byzantine failure is when a process continues

operating but propagates erroneous messages or data [159]. Byzantine failures are often

caused by undetected faults or mishandled errors in the system. Soft errors are transient

errors often caused by radiation [180]. Soft errors are often seen in Random Access Memory

(RAM) and protected using Error Correcting Codes (ECC) [294], but has not been well

addressed in other parts of the system including the CPU [180]. Since soft errors can

be difficult to detect they often manifest themselves as Byzantine process faults. Since

Byzantine failures are difficult and costly to detect in a distributed system [80], we focus

our attention in this dissertation on permanent, fail-stop process failure in this dissertation.

The ability to detect a fail-stop failure in a distributed system is central to any fault toler-

ant solution. It has been shown that it is impossible to accurately detect even a single failure

in an asynchronous system [98] because a failed process is indistinguishable from a process

that is running very slowly. Branching from the impossibility result in [98], researchers

have explored fault detection mechanisms that allow for unreliable failure detectors [47]

and partially synchronous systems [72, 80]. The aspects critical to any fault detection al-

gorithm are those of completeness and accuracy as outlined by [47]. Completeness requires

a failure detector in the system to eventually suspect every process that actually crashes.

Accuracy restricts the mistakes that the failure detector can make during the life of the

system.
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The fundamental programmatic building block of every fault detection mechanism is

that of a push or pull model. In a push model, a message is sent from a process to its monitor

in a regular, predefined schedule. In a pull model, a message is sent from the monitor to a

process, and the process must then respond with a message in a defined amount of time.

The pull model contains more overhead in terms of the number of messages that need to

be generated per process, but it is able to detect additional failure modes, such as network

partition, that push models cannot.

Building on these fundamental concepts, research into scalable fault detection mecha-

nisms seeks to reduce the number of processes being monitored by any single process while

still providing high confidence in the fault detection mechanism in terms of completeness,

accuracy, and performance. Gossip-style failure detectors distribute fault information to a

random (or pseudo-random) limited set of peers that then propagate this information to

another random set of peers [220, 271]. Gossip-style failure detectors are closely related

to randomization fault detection techniques [121] since each build upon an epidemic com-

putational model [69].

Hierarchical failure detectors have also been explored to increase performance in a

large-scale system by employing a failure detection algorithm through each level of the

hierarchy [20]. This research also explores using different fault detection mechanisms at

different levels in the hierarchy in order to balance performance and completeness require-

ments.

2. Fault Prediction

The ability to predict impending failure, and take preventative action, is central to the

topic of proactive fault tolerance which usually involves migrating processes away from

the predicted failure [90, 267, 277]. Prediction techniques usually base their models on

historical data and real-time events. Historical data is usually derived from mining event

logs [124, 199, 206, 236]. Real-time events are usually derived from hardware sensors,

which are becoming more prevalent in computing hardware [100].
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The prediction algorithms that use these data can take a variety of forms [50, 232].

They must be able to determine both when and where a failure is going to occur with a

sufficiently high degree of accuracy [290]. Typically a fault prediction service depends on

a separate process in the system to determine the appropriate action to avoid the failure,

for example initiate process migration [168]. This process must account for the additional

stress on the system caused by this preventative action, which might affect the reliability of

the system.

It has been suggested that there is a strong need for system-level monitoring and pre-

diction services in large HPC systems in order to support fault tolerance activities [223]. It

has also been noticed that a failure predictor building upon such information can have a

significant impact upon system reliability even at low prediction accuracies [197].

3. Fault Recovery: Algorithm Based Fault Tolerance

Algorithm-Based Fault Tolerance (ABFT) techniques require specialized algorithms that

are able to adapt to and recover from process loss due to hardware failure [131]. ABFT

techniques typically require data encoding, algorithm redesign, and diskless checkpoint-

ing [207]. These techniques require a resilient message passing environment (e.g., FT-

MPI [93]) that can continue running when a process is lost, and possibly allow the re-

covery of the lost process. Matrix operations have been the focus of many applications of

ABFT [52, 53, 54, 75, 131, 149, 160], though recently it has been applied to heat trans-

fer problems [171]. Manager/worker programming techniques could be classified as ABFT

since the loss of a worker process can be recovered by the manager if it maintains the work

unit assigned to the worker [164].

The methods for generating the data encoding or checksum must consider the algorithm

that they are encoding, the degree of fault tolerance required (e.g., the number of accept-

able concurrent failures it can handle), and performance [53, 54]. Some algorithms forgo

data encoding by taking advantage of the ability to recalculate the values from the current

solution due to special properties of the algorithm [75]. The method of storing the data



2. BACKGROUND AND RELATED WORK 12

encoding on peer processors (also known as diskless checkpointing) affects the performance

and degree of fault tolerance of the implementation [55, 149].

There is a slight difference between ABFT and natural fault tolerance described in [88,

107]. Both require algorithm changes to prepare for process failure. ABFT use a com-

bination of data encoding and diskless checkpointing to preserve state that could be lost.

Natural fault tolerance techniques focus on algorithms that can withstand the loss of a pro-

cess and still get an approximately correct answer, usually without the use of data encoding

or checkpointing. So natural fault tolerance can be viewed as a more general form of ABFT.

4. Fault Recovery: Checkpoint/Restart

Checkpoint and restart rollback recovery is a technique used to reduce the amount of

computation lost to process failure by restoring the computation to a previously-established

point in the computation. Applications establish checkpoints during failure-free operation

by writing them to a stable storage device. A stable storage device is a logical device that

survives the maximum number of failures in the system. Usually this is represented as a

centralized file server for recovery of all processes, though peer-based techniques can be

used for partial recovery.

Since fault tolerance techniques distract an application from normal execution they

come at an additional cost in terms of application performance. When discussing the cost

of checkpoint/restart fault tolerance techniques, we must consider the effect on both the

application and the system. The additional execution time required by the application as

a result of introducing checkpointing techniques is called the Checkpoint Overhead [206,

265]. The Checkpoint Latency is the time required to create and establish a checkpoint to

stable storage [206, 265]. If the application is suspended until the checkpoint is established

then the checkpoint overhead is equal to the latency.

C/R and stable storage techniques that overlap checkpoint establishment with applica-

tion execution can improve application performance. To describe the overhead involved

with these techniques it is important to distinguish between checkpoint overhead and la-

tency. Forked checkpointing is one example of such a technique, based on copy-on-write
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semantics of modern operating systems, which suspends a child process for checkpoint

while the parent continues execution [265]. Reductions in checkpoint overhead result in

the largest performance gain to the application by overlapping the establishment of the

checkpoint with program execution. However, the interference of these techniques with the

application must be accounted for. Interference as a result of potentially sharing a common

processor, paging overheads, I/O storage requirements, and impact on shared resources

must all be considered when choosing checkpointing techniques and intervals.

4.1. Checkpoint Interval. If the checkpointing overhead were negligible, then the op-

timal checkpointing strategy would be to checkpoint after every instruction [217]. How-

ever, depending on the size of the application state and the checkpointing techniques used,

the overhead can become significant. The frequency of checkpointing must be adjusted

and modeled appropriately in relation to the checkpoint overhead. The Checkpoint Inter-

val is the time between the establishment of two consecutive checkpoints [265]. Over

the years many models have been proposed for choosing the optimal checkpointing in-

terval [63, 64, 77, 108, 109, 141, 265]. It has been noted that the checkpoint interval is

usually independent of the checkpoint latency, and strongly dependent upon the checkpoint

overhead [206, 265]. Most checkpointing interval models assume a Poisson fault distribu-

tion and a static checkpointing interval. In recent years, these two assumptions have been

reconsidered [236].

Through the study of system logs researchers have found that a Poisson fault distribution

model does not accurately represent the failure profiles of the systems considered [199,

206, 236]. Instead studies suggest that a Weibull or gamma distribution serve as better

models for system failures [124]. As a counterpoint, it has been shown through simulation

that two of the checkpoint interval models designed with Poisson fault distributions in mind,

namely [265] and [285], also perform well with non-Poisson fault distributions [206]. It

has been also highlighted that the failures in these systems can be clustered both in time and

in space suggesting that a single failure has an immediate impact on the components (e.g.,

machines, power supplies) physically located near the effected component [100, 124].
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Since checkpointing incurs some overhead the optimal placement of a checkpoint is

just before a failure. Unfortunately without a perfect failure predictor, checkpoints must be

taken that will, with high likelihood, never be used in recovery, so called useless checkpoints,

or else run the risk of total loss of the computation. This realization and the refinement

of failure models and predication frameworks has brought into question the static check-

pointing interval. Since these models are not completely accurate, most modern checkpoint

interval models combine a periodic checkpoint with a fault aware, probabilistic checkpoint-

ing interval [218, 256]. The periodic checkpoint interval provides some protection against

inaccurate failure models, while the fault aware checkpoint interval attempts to checkpoint

just before a failure, preserving the maximum amount of program state for later recov-

ery. Other studies suggest that a dynamic checkpoint interval based on fault prediction

or application size can improve the checkpointing overhead by reducing load on shared

resources, namely stable storage [13, 198]. Some systems track the dynamic memory

allocation/deallocation and adjust the checkpointing interval in response to the applica-

tion’s memory footprint, thus reducing the size of the checkpoint and the resultant I/O

requirements [166, 295]. These techniques show lower checkpoint overhead than fixed

checkpoint interval algorithms. Even without dynamic checkpoint interval selection, re-

evaluating the fixed checkpoint interval after recovery, based on fault history, has shown

improvement [231].

Other important metrics to consider when building a checkpoint/restart system include

recovery time, disk space consumed, fault coverage, impact on shared resources, and I/O

requirements [205, 206]. When studying large-scale HPC systems the need for high sustain-

able I/O bandwidth becomes a critical concern both for Productive I/O (e.g., for scientific

visualization) and Defensive I/O (e.g., for checkpoint/restart) [252].

4.2. Checkpoint/Restart Services. A Checkpoint/Restart Service (CRS) captures the

state of a single process in execution. Used in combination with a parallel runtime and

communication environment, a CRS can be used to take a checkpoint of a multiprocess

application. CRSs are classified by their degree of transparency, portability, and location



2. BACKGROUND AND RELATED WORK 15

of implementation. Though some literature will refer to application-level CRS as user-level

CRS, for our discussion we will distinguish them by their transparency with regard to the

application program, further classified below.

4.2.1. Application-Level. Application-level CRSs interact directly with the application to

capture program state. This requires changes to the application code to identify regions of

memory and variables that need to be preserved in a checkpoint in order to correctly restart

the application. In Section 10, we will discuss how a pre-compiler can be used to automate

the augmentation of the program to support application-level CRS.

Application-level CRSs are often able to create the smallest possible checkpoint since

they can take advantage of knowledge about the program state [239]. This is at the cost

of loss of transparency since application modifications are required. The consistency of the

checkpoints in the distributed environment is completely left to the application to determine

through normal messaging.

One of the major complications of such techniques is the non-standard nature of the

interfaces to various CRSs. Some CRSs allow applications to use MPI datatypes for packing

and unpacking data to and from a checkpoint service [238, 255]. Some also allow the user

to use parallel I/O functionality, as defined in the MPI standard, though they have to define

their own synchronization points, which can be difficult [61]. Most use callback functions

during the pre-checkpoint and restart/continue phases to help the application encapsulate

the checkpoint specific functionality [3, 62, 87]. Some restrict the structure and types of

data that can be saved in the checkpointing functions [261, 262]. Some require special

member functions in an object oriented programming paradigm [17, 291].

4.2.2. User-Level. A user-level CRS is implemented in user-space and typically provides

transparency by virtualizing all system calls into the kernel. Within this virtualized envi-

ronment the CRS is able to capture the state of the entire process without being tied to

the kernel, as with system-level CRSs, but at the cost of a constant virtualization overhead

during normal operations. In contrast with application-level CRSs, user-level CRSs produce

larger checkpoints since they are not able to take advantage of optimizations based upon
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application specific semantics. User-level CRSs are seen as more portable than system-

level CRS since they are not tied to a specific kernel revision set, but often they generate

checkpoints that are tied to a particular machine or kernel type since data segments can be

difficult to manage in a portable manner.

Most user-level CRSs are loaded dynamically in the application by using dynamic li-

braries that can wrap the main function and system calls [31, 246]. The main function

is often wrapped as a mechanism for initializing the CRS and restarting a process from

a previous checkpoint. Many user-level CRSs struggle with interprocess communication,

process hierarchies, shared memory or libraries, signals and timers since they can be diffi-

cult to properly virtualize [132, 169]. For interprocess communication, most solutions rely

on callbacks into higher level message passing environments to support communication

channels [43, 61, 210, 254]. Other solutions use specialized virtualization of the sockets

interface to handle interprocess communication [11, 12, 154, 230].

Some implementations blur the line between user and application-level CRS by requir-

ing the application to insert checkpointing function calls into their application in order to

use an otherwise transparent user-level CRS service since they are unable to activate the

service external to the process [70, 71].

When dealing with a multiprocess environment consistency between the checkpoints is

important. It can be difficult, if not impossible, for an application to choose proper synchro-

nization points to guarantee consistent checkpoints especially when the checkpoint consists

of the entire process image. Highly structured Single-Process Multiple-Data (SPMD) appli-

cations with clearly defined synchronization points may be able to achieve this with a CRS

that requires such synchronization [114, 181]

4.2.3. System-Level. A system-level CRS is implemented either inside the kernel or in

a kernel module. It is able to directly access the kernel structures representing a process

and associated threads, so there is little or no need to virtualize the system call interface.

Without the virtualization overhead system-level CRSs do not suffer from the continual

overhead of virtualization-based techniques during normal operation, at the cost of gener-

ating checkpoints that are often tied to specific kernel revisions. The system-level CRS must
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constantly track the kernel development since changes to internal data structures can break

functionality.

Kernel modules are a preferred method for implementing a system-level CRS [78, 79,

99, 101, 113, 293] since it requires less maintenance and increases user adoption than re-

quiring changes to the kernel source code [268]. For interprocess communication, system-

level CRSs use callbacks into the higher level communication libraries to handle the com-

munication channel state [37, 140, 234, 235]. Operating system virtualization techniques

used by Xen [184] and other environments [155, 273, 275] are also classified as system-

level CRSs since they provide checkpoint/restart functionality in the operating system.

One of the challenges when dealing with a CRS is the interface which changes for each

project. Recently an attempt has been made to unify the interfaces to support the non-

uniform deployment of CRSs in grid systems [177].

4.3. Checkpoint/Restart Optimization Techniques. There are many optimizations

that checkpoint/restart systems can take advantage of in order to reduce the checkpoint

overhead and/or checkpoint latency. In this section we will explore a set of commonly used

optimizations.

4.3.1. Forked Checkpointing. Forked checkpointing relies on the copy-on-write seman-

tics of process creation in modern operating systems in order to reduce checkpoint over-

head [57, 153, 208, 238, 265]. At the point of the checkpoint, the parent process forks a

child process to perform the checkpoint operation while the parent program continues exe-

cution. Since the child is only reading pages which are then written to stable storage as the

checkpoint there is no need for a complete copy of the parents memory image, only those

pages of memory that have changed since the fork operation. By using copy-on-write se-

mantics the child process is able to be created quickly and run concurrently with the parent

process, thus reducing the impact on checkpoint overhead.

The performance gains diminish if the parent process writes a large amount of data

while the child process is writing the checkpoint due to paging overhead. Additionally, in

memory constrained systems, where the application requires most or all of main memory
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the child process may be forced to page to disk causing trashing which drastically diminishes

the performance of both the checkpointing operation and the parent process execution. This

technique works well for programs that do not use fork sensitive libraries or resources.

Unfortunately, high performance interconnect drivers are typically sensitive to fork calls

due to operating system bypass techniques used for optimized memory transfers making

them ill suited for these techniques.

Similar to forked checkpointing is a mirror copy (a.k.a. continuous checkpointing) tech-

nique which seeks to reduce the overhead of copy-on-write paging by keeping a duplicate

copy of the process image in memory at all times [59, 127]. This duplicate image is then

occasionally written out to stable storage concurrently by the operating system [59, 127].

For real-time systems, the mirror copy technique provides a more consistent checkpoint la-

tency than copy-on-write making it more appealing to system with hard deadlines on the

completion of application execution [59].

Instead of maintaining this duplicate image throughout the life of the process, a pre-copy

technique has been suggested that creates a full duplicate copy of the parent at the point

of the checkpoint [83, 257]. It was shown by [83] that forked checkpointing performed

better in practice than the pre-copy technique, indicating that the overhead of maintaining

the copy-on-write properties of main memory is not a significant enough factor to warrant

such an optimization.

4.3.2. Checkpoint Compression. One way to reduce the checkpoint latency is to reduce

the amount of checkpoint data that is pushed to stable storage, thus reducing the I/O re-

quired to store the checkpoint [166, 208, 236, 238]. This technique may also reduce the

amount of space required on stable storage for checkpoint files. Most of these techniques

employ in-line compression while writing the checkpoint [208], but few have looked at

compression as part of a larger staging process at the stable storage level.

The amount to which a checkpoint can be compressed is application state dependent.

Most studies have shown that checkpoints, especially application generated checkpoints,

can be significantly compressed. Though these studies typically focus on the size reduc-

tions, it is equally important to consider the performance of the checkpointing algorithm
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as it impacts checkpoint overhead. [208] notes that while compression may reduce the

size of the checkpoint, “... it only improves the overhead of checkpointing if the speed of

compression is faster than the speed of disk writes, and if the checkpoint is significantly

compressed.” Informally, researchers have found that even when checkpoint overhead is

increased by using compression, the reduction in stress on the stable storage system often

improves system reliability allowing the application to checkpoint less frequently.

4.3.3. Memory Exclusion. Another method of reducing checkpoint latency is to exclude

temporary or unused buffers from the checkpoint [209]. This can reduce the size of the

checkpoint and therefore the amount of I/O required to transfer it to stable storage. Most

of the techniques focus on augmenting applications to mark regions of memory that should

be excluded from the checkpoint [3, 51, 208]. Alternatively the checkpointing library may

be able to transparently find memory to exclude by augmenting the memory allocator [51]

and/or using pre-compiler analysis [175].

This technique relies on the ability of the application writer to highlight both critical

and temporary regions of memory. Usually this is employed by support libraries as a way

to reduce their additive impact on the amount of additional state that needs to be saved in

the checkpoint as a result of their use by the application [3].

4.3.4. Incremental Checkpointing. Incremental checkpointing techniques focus on re-

ducing checkpoint latency by checkpointing only the changes made by the application from

the last checkpoint [208]. During recovery the last N checkpoint files are required in or-

der to recreate the process. In order to reduce the number of checkpoint files necessary

for recovery, a full checkpoint is taken less often than the incremental checkpoints and

used as a base for the next set of incremental checkpoints to be combined against. Sim-

ilar to forked based checkpointing these techniques commonly rely on the paging system

of modern operating systems, particularly the modified or dirty bit in modern paging hard-

ware [51, 83, 87, 95, 113, 127, 208, 215, 243, 273]. When a checkpoint is taken the

modified (a.k.a. dirty) bits are cleared, and as the program executes it flips the bits on the

pages that have been modified. During the next pass of the CRS, only those pages that have
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been modified are included in the incremental checkpoint saved to stable storage. Upon re-

covery, the incremental checkpoints are combined with the last full checkpoint to recreate

the process state.

The smallest incremental checkpoint is based on the smallest segment of memory, the

word. Since the overhead involved in tracking changes to individual words in memory

is prohibitively expensive most techniques use pages which contain a set of words, and

paging hardware to support incremental checkpointing at the page level. However even a

single word change may cause the entire page to be included in the incremental checkpoint

adding expense to the checkpoint operation. Probabilistic checkpointing allows for incre-

mental checkpointing based on blocks of memory which are larger than a word, but smaller

than a page in order to reduce this overhead [3, 186]. These techniques use a memory block

encoding algorithm to determine if a block of memory has changed, since they cannot rely

on paging hardware to highlight differences. The encoding technique explored often suffers

from aliasing, in which differences may be masked because the encoding algorithm encodes

the old and modified blocks to the same value. Though the authors of technique present

analysis that shows this to be a sufficiently rare event [186], later research found that alias-

ing occurs much more frequently in practice making probabilistic techniques dangerous to

employ [81].

4.4. Checkpoint Coordination Protocols. The state of a distributed system is com-

posed of the state of the process and all connected channels [48]. In Section 4.2, we

presented various techniques for capturing the state of a single process. In this section, we

will discuss protocols to account for the channel state in a distributed checkpoint opera-

tion. [192] formally defines three communication channel states that can exist in a global

cut formed from local checkpoints of two or more processes in a distributed system. These

states are strongly based on the theoretical foundations of [48] and [158]. See Figure 2.1

for an illustration of these three communication channel states. A consistent state is a state

in which there does not exist any message sent after the global cut, but received before it.

A transitless state is a state in which there does not exist any message sent before the global
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P0

P1
(C) (T) (SC)

FIGURE 2.1. Illustration of the three communication channel states. White
blocks indicate checkpoints of the individual processes. Dashed lines indi-
cate global cuts of the system. (C) is a consistent state. (T) is a transitless
state. (SC) is a strongly consistent state.

cut, but received after it. A strongly consistent state is a state that is both consistent and

transitless, thus empty or quiescent at the point of the global cut.

RENEW [193] and Egida [221] each presented a set of minimal functional components

that can be used to create a checkpoint/restart or message logging protocol. Our approach

described in Chapter 3 was to create a virtualization layer and allow the protocol to be

implemented as a single functional component not constrained by a predetermined the set

of low-level fault tolerance APIs.

4.5. Coordinated Protocols. Coordinated checkpoint/restart coordination protocols

require that all processes take a checkpoint at logically the same time. These protocols

operate before a checkpoint is taken to ensure that the state of all connected channels is

either consistent or strongly consistent between all processes. Coordinated protocols are

relatively simple in nature, but are often critiqued for their synchronization overhead since

all processes must participate in every checkpoint operation. Though many protocols exist

for checkpoint/restart coordination, fully coordinated protocols are usually chosen due to

relative simplicity in implementation (easier to prove that it is working correctly) and in

recognition that the synchronization overhead is negligible in comparison with the storage

overhead that dominates the checkpointing time [82, 83, 84, 240].

The distributed snapshots (a.k.a. Chandy/Lamport) algorithm allows a process to check-

point once it has received a special marker token from every process in the system indicating
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the point in logical time on the channel where communication between the two processes is

consistent [48]. This method requires FIFO communication channels between all processes

to form a consistent state. Since the system is assumed to be able to control the delivery

of the messages, it is assumed that once the marker has been received all other messages

on that channel can be delayed by the system until the checkpoint is established. Various

systems have implemented the distributed snapshots algorithm usually with the assistance

of a daemon to control message traffic to the process, thus delaying messages after the

marker. Sometimes this is called a non-blocking coordinated checkpoint/restart protocol

since the channel is not blocked once the marker is received [30]. MPVM [43], ickpt [210],

MIST [42], ABARIS [144] and MPICH-Score [105] are examples of systems that use this

technique.

The ready message algorithm refines the distributed snapshots algorithms by forcing the

channels to be shutdown once the markers have been received to make a strongly consistent

channel state [248]. The name for this protocol was established by the CoCheck implemen-

tation which supports both Parallel Virtual Machine (PVM) and MPI applications [248].

This protocol is useful in situations where the application cannot control the delivery of

messages to the application, so it may accidentally include a message sent on the channel

after the marker. An outside daemon is used to “break the silence” after a checkpoint opera-

tion has finished. Sometimes this is called a blocking coordinated checkpoint/restart proto-

col since the channel is blocked once the marker is received. Dynamite followed CoCheck by

implementing this protocol for PVM with process migration capabilities [139]. The MPICH-

GF project added a coordinated checkpoint/restart protocol to MPICH-G2 for grid based

systems using Ethernet communication [283]. The FTMPI project implemented a synchro-

nized checkpointing protocol in MPICH [237]. They used replicated checkpoint protocol

control systems, and a checkpoint sever to support checkpointing activities. The M3 project

implemented a coordinated checkpointing protocol in MPICH-GM supporting Myrinet in-

terconnects [147]. The MVAPICH project also implemented a coordinated checkpointing

protocol but supported InfiniBand hardware [103, 104].
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In shared memory systems a memory barrier is sometimes sufficient to synchronize the

checkpoint if the entire memory space is written to disk as demonstrated by [2].

The MPICH-V [29] project compared pessimistic, sender-based message logging with a

distributed snapshots coordinated checkpoint/restart algorithm (the MPICH-V2 and MPICH-

Vcl implementations respectively). They concluded that for low fault frequencies the co-

ordinated checkpoint algorithm performed better due to the reduction in runtime over-

head [30]. A year later they expanded their testing to include causal message logging pro-

tocol (MPICH-Vcausal implementation) and made the same conclusion with regard to co-

ordinated checkpointing [163]. The same project compared a blocking coordinated check-

point/restart implementation (MPICH-Pcl) against their non-blocking coordinated check-

point/restart implementation (MPICH-Vcl), and found that the blocking version provided

the best performance overall, possibly due to the limited message logging overhead required

by the non-blocking implementation [38, 57].

The C3 project [32] uses a non-blocking coordinated protocol that adapts to different

consistency states in the network channels by piggybacking data on all messages [33, 34].

Since they implement their protocol above the MPI layer they do not use the provided

collective operations since a checkpoint may occur across a collective operation so they

re-implement them using point-to-point operations [35]. This project also requires non-

standard behavior from the MPI implementation by requiring the ability to call MPI INIT

and MPI FINALIZE multiple times in order to generate a consistent checkpoint state for the

application. The PC3 project extends the C3 project by adding support for heterogeneous

checkpointing through application-level checkpointing and paying close attention to type

and pointer portability [96].

Sync-and-stop style algorithms exchange message counts between all processes and

drain the network to create a strongly consistent channel state between all processes across

the checkpoint operation [210]. An outside daemon is uses to “break the silence” after a

checkpoint operation as in the ready message protocol.
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The LAM/MPI [39] project incorporated transparent checkpoint/restart functionality

with support for Ethernet [234] and later Myrinet GM using the Berkeley Lab Checkpoint/-

Restart (BLCR) library. They used an all-to-all bookmark exchange coordination algorithm

implemented as part of the TCP/IP and Myrinet GM interconnect drivers. LAM/MPI was

unique in its support for a modular interface to the checkpoint/restart services on a given

machine [233, 234]. It supported BLCR and a user-level callback system called SELF.

The Open MPI project implemented a coordinated checkpointing protocol similar to

the LAM/MPI implementation [136], but supports a wider variety of interconnects [135].

An automatic recovery technique called job pause (a.k.a. automatic, in-place recovery) was

added to LAM/MPI that, upon detection of process failure, rolls all processes back to the last

checkpoint and restarts the failed process on a spare machine [276]. Chapter 4 describes

how this techniques was ported to Open MPI [134]. A similar sync-and-stop model was

used to migrate PGAS processes using InfiniBand networks in a Xen virtual machine [235].

Transparent checkpoint/restart in MPICH-GM using the Myrinet GM driver has also

been demonstrated [147]. They use a 2-phase coordination procedure based, in-part, on

CoCheck’s Ready Message protocol [248]. They implement their coordination algorithm as

part of the GM driver relying on the First-In-First-Out (FIFO) message ordering provided

therein. The GM Driver supports shared memory communication for peers on the same

node. Even though their coordination algorithm is influenced by the Remote Data Mem-

ory Access (RDMA) semantics of the GM driver, they do support reconfiguration between

shared memory and Myrinet GM communication, though they require Myrinet to be avail-

able upon restart to all processes in the application. Chapter 4 describes how by lifting

the coordination protocol out of the device driver additional drivers and features can be

realized [134].

The MPICH-V project focuses its effort towards message logging techniques with the

MPICH-V1, MPICH-V2 and MPICH-Vcausal implementations [29]. They also have a MPICH-

Vcl implementation that supports coordinated checkpoint/restart using a Chandy/Lamport

coordination algorithm [48]. In their papers, they are able to demonstrate their implemen-

tations running on clusters with 100 Mbit/s Ethernet, Myrinet, and SCI networks [57, 163].
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However, to run on the Myrinet and SCI networks, they take advantage of the Ethernet em-

ulation provided by these interconnects and do not interact directly with the hardware

drivers. Though this saves in the overall complexity of the solution, it comes at a significant

performance loss.

MVAPICH2 demonstrated transparent MPI checkpoint/restart functionality over Infini-

Band [138] interconnects [104]. This work highlights the complexity of dealing with the

OS bypass technique used by InfiniBand. They show that the only way to properly han-

dle such an interconnect driver is to completely shutdown all network connections be-

fore a checkpoint and re-establish them directly after a checkpoint. They implement a

Chandy/Lamport [48] style coordination algorithm at the InfiniBand driver level operating

on network-level messages instead of MPI-level messages. This coordination algorithm re-

lies on FIFO message ordering provided by the interconnect driver. In a later study they

use a group-based coordination algorithm [103]. This algorithm is similar to the staggered

algorithm presented by Vaidya [266] which is used to minimize the stress on the file system

during checkpointing.

Some modifications to the distributed snapshots algorithm involve using grid and tree

based mechanisms for collecting markers [106]. The goal of these techniques is to reduce

the message size and accounting space overhead required in each process as the distributed

system grows.

Some coordinated checkpoint protocols rely on a virtualized sockets interface to handle

the channel state [12, 140, 154, 230, 293]. Typically, this involves the sender logging the

message, and then removing the message from the log after receiving a confirmation that

the message was delivered correctly on the remote side [230]. Alternatively, one could refill

the socket buffers by draining the socket buffers to the receiver before a checkpoint then

reflecting them off the sender on restart to refill the receivers internal buffers [12, 154].

Crak virtualizes the UDP layer to provide message re-transmission, and channel marshal-

ing [37]. The Cruz project uses the Zap CRS and modifies the network stack to create

a migratible process with a virtual routable address [140]. The ZapC project also used

Zap, but implemented the network virtualization completely in the socket virtualization
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without any protocol restrictions [154]. The DejaVu implementation transparently sup-

ports the coordinated checkpoint/restart of processes using sockets through virtualization,

but required modifications to the MVAPICH library to support InfiniBand communication

due to the complexity of the interface and other implementation requirements [230]. The

DMTCP project uses a distributed snapshots algorithm and socket virtualization to provide

coordinated checkpointing [11, 12].

In the BCS implementation, the consistent channel state is established due to special

properties of the network that allow messages to be sent only at defined intervals [204].

Between each of these intervals the channel is in a strongly consistent state therefor any

checkpoint generated during this time is globally consistent [113].

Other implementations rely on the application to define synchronization points that are

globally consistent, sometimes referred to as “safe points”. CLIP uses a user-level semi-

transparent library where the user must explicitly request a checkpoint, but does not need

to identify the state to save [51]. Similarly the MPI Ckpt library provides the same func-

tionality and semantics which has been implemented with an application-level CRS [114]

and a user-level CRS [181]. The CPPC project advances this work by using compiler analy-

sis to automatically determine “safe-points” in the program to insert calls into the MPI Ckpt

library using a pre-compiler [226].

Adaptive MPI [129, 130] implements migratable virtual MPI processes as user-level

threads. Adaptive MPI provides a checkpoint/restart solution closer to application-level

checkpointing than system-level checkpointing since it is not transparent to the user-level

application. The MPI application must place checkpoint function calls into its code at points

when it can guarantee that no messages are being transferred between processes [128,

291]. Adaptive MPI then saves the state of the thread to disk as a checkpoint. Adaptive

MPI is implemented on top of Charm++ which, in turn, is implemented on top of a native

MPI implementation. Being this far removed from the interconnects significantly degrades

performance. Additionally, since MPI processes are implemented as user-level threads and

share the global address space, Adaptive MPI places additional constraints on the MPI ap-

plication such as prohibiting the use of global variables.
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4.6. Uncoordinated Protocols. Uncoordinated checkpoint/restart protocols do not co-

ordinate the checkpoints between processes and instead use specialized algorithms to de-

termine the set of consistent checkpoints on restart. They do not suffer the synchronization

overhead during failure-free operation as with coordinated protocols, but at the cost of com-

plex recovery algorithms. Uncoordinated checkpoint/restart protocols need to keep most or

all of the generated checkpoints on stable storage since it is not known until restart which

set of those checkpoints are required for restart. This is in comparison with coordinated

checkpoint/restart protocols that require one or two (for 2-phase commit) checkpoints from

each process to be stored since recovery is guaranteed to be able to occur from the most

recent, stable checkpoint. Checkpoints that are never used for recovery are called useless

checkpoints.

On restart the independent checkpoints are analyzed to determine the most recent set

of independent checkpoints that form a globally consistent snapshot. The use of Zig-Zag

Paths (Z-Paths) [191, 192] and Rollback-Dependency Graphs (R-graphs) [278] are used to

determine the globally consistent states. A Z-code [173] technique can also be used to

determine all sets of consistent global states during a region of time, which can be useful in

focusing the search space and for on-line garbage collection of uncoordinated checkpoints.

T-graphs and S-graphs have also been used to find globally transitless states [126].

Often uncoordinated checkpoint/restart protocols are used in combination with mes-

sage logging techniques. The message logging techniques make the recovery algorithm

simpler since most or all messages are accounted for in the logs reducing or eliminating

the opportunity for orphan processes. When using a pessimistic message logging protocol

then the recovery line becomes easy to form, since no orphans are possible, it is the last

checkpoint and most recent log from the failed process. For causal and optimal message

logging protocols, a maximal recoverable state must be determined from a list of available

checkpoints and message logs to ensure that the restarted state is consistent [145]. See

Section 5 for more discussion of message-logging protocols.
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4.7. Message Induced Protocols. Message induced (a.k.a. communication induced)

checkpoint/restart protocols attempt to combine the positive aspects of coordinated check-

pointing (only require the last set of checkpoints) and uncoordinated checkpointing (no

failure-free synchronization of checkpoints). Forced checkpoints are checkpoints that the

protocol requires an application to take before or after receiving a message in order to

maintain a globally consistent state. Message induced checkpointing relies on piggybacking

dependency information on messages between processes to determine when to take forced

checkpoints. Processes are allowed to checkpoint independently, but must piggyback infor-

mation about this action on all messages in case it causes an inconsistent global state which

would require a peer process to take a forced checkpoint [151, 174]. To determine whether

or not to take a forced checkpoint typically a dependency graph (e.g., Z-path [191, 192])

is piggybacked on all messages [125].

Sometimes the message dependency tracking is less explicit and only forced check-

points are generated by analyzing the communication pattern of the application to deter-

mine when a globally consistent checkpoint may be taken [238]. The challenge is with

dynamic communication patterns it is possible that a checkpoint may never be generated.

Analysis of message induced protocols has largely concluded that such protocols gener-

ate a large number of forced checkpoints further stressing the storage system [10]. Ad-

ditionally, the amount of data that is required to be piggybacked can incur intolerable

overheads in messaging, and coordinated protocols provide a more consistent overhead

while guaranteeing the usefulness of all checkpoints generated [286]. The storage and

message overheads also challenge the assumption that these techniques scale better than

coordinated algorithms since they do not require explicit global synchronization [10].

5. Fault Recovery: Message Logging

Message logging techniques record message events to a log that can be replayed at a

later time to recover a failed process from its initial state. Message logging is a sub-domain

of event logging focused on recording message state instead of all non-deterministic events
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that impact application execution. Message logging is usually combined with checkpoint-

ing to allow for the recovery from an intermediary state of execution instead of from the

beginning of execution. Message logging techniques fall into one of three broad categories:

pessimistic, optimistic, and causal.

All message logging techniques require the application to adhere to the piecewise deter-

ministic assumption which states that ”...the state of a process is determined by its initial

state and by the sequence of messages it delivers” [222]. For message logging techniques,

this assumption requires the process recovery to be repeatable (deterministic) and message

driven (no need to track other events) [250]. When using uncoordinated checkpointing

and message logging, orphan processes become problematic and influence the choice of a

message logging strategy. Orphan processes are surviving processes whose state are incon-

sistent with the recovered state of a failed process [9]. When discovered, orphan processes

are forced to rollback to the previous checkpoint. The cascading rollback of orphan pro-

cesses back to the initial state is called the domino effect and can negate all of the benefits of

an uncoordinated checkpointing technique [219]. The always-no-orphans property which

is critical to proving the stability of both pessimistic and causal message logging protocols

is defined in [9]. The log must contain information about the ordering, source, destination,

sequence number, and data contents of a message in order to correctly replay the mes-

sage. This tuple is called the message’s determinate. Some applications of message logging

focus separating the ordering information from the contents in the determinate. By just

preserving the order, and not the contents, the determinate for these techniques requires

that messages are resent on replay [227].

Pessimistic message logging techniques require a process to synchronously log to stable

storage the message before sending it to the recipient or before delivering the message

locally on the application [24, 27, 29, 46, 68, 86, 167, 194, 247]. These techniques never

create orphan processes since all messages are never lost. They do incur the performance

penalty of synchronously logging every message to stable storage, in comparison with other

techniques.
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Optimistic message logging techniques asynchronously log messages to stable storage

in order to reduce the performance penalty of pessimistic techniques [145, 193, 250].

Since there is an opportunity for messages to be lost to the log, optimistic message logging

techniques suffer from the possibilities of orphan processes and subsequently the domino

effect.

Causal message logging techniques attempt to combine the positive aspects of pes-

simistic (no orphans) and optimistic message (low overhead) logging by piggybacking

volatile determinants on messages between processes [7, 8, 9, 21, 22, 28, 29, 85, 163,

222]. The cost of causal message logging techniques is the overhead of piggybacking

volatile determinants on every message in the system.

Adaptive (or hybrid) message logging techniques track dependency information in re-

lation to checkpoints in order to log only those messages that cross a recovery line, and

therefore could produce an orphan process [56, 189, 190, 287]. This is intended to reduce

the stable storage overhead of logging by reducing the number of messages that need to be

logged.

A set of optimal message logging parameters have been presented in [9]. The number

of forced rollbacks should be close to zero, as in pessimistic protocols. The amount of

idle time added to a process during failure-free execution should be close to zero, as in

optimistic protocols. The number of additional messages should be close to zero, as in

optimistic protocols. The additional size of the existing messages should be close to zero,

as in pessimistic protocols.

6. Fault Recovery: Replication

Process replication keeps multiple copies (or replicas) of a process running and synchro-

nized so that when one process fails a copy can continue execution in its place. A single

primary and multiple backup replication technique uses a single process for communica-

tion, but keep multiple backup copies synchronized with the state of the interaction [6, 86].

In contrast to a primary point of contact, the client can contact all replicas directly using

multicast operations [120]. Voting and consensus algorithms are often used to determine
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acceptance of transactions or values to distribute to external sources [112, 157]. The de-

pendence on total ordering of the multicast operation is critical to maintaining consistency

among the replicas.

Depending on the style of replication employed, scalability and performance problems

may be an issue, leading some researchers to present a hierarchical application of a variety

of techniques [117]. The degree of fault tolerance depends directly on the number of repli-

cas maintained for each process in the system. A system can only withstand the concurrent

loss of one less than the number of replicas of a process since at least one must remain in

order to continue computation and possibly recover the lost replicas.

Roll-forward recovery techniques use duplex replication to verify program behavior and

checkpoints in the case of soft errors during computation [212, 213]. In the case of pro-

cess loss, a checkpoint can be used to restore a process and bring it into a consistent state

with the cooperation of its replica peer. Passive replication combined with pessimistic mes-

sage logging is another way to enable forward recovery [194]. n-Modular Redundancy

is a popular technique to provide high availability in server and multiprocess environ-

ments [15, 16, 44, 89, 110, 162]. MPI/FT [16], VolpexMPI [162], P2P-MPI [110], and

rMPI [97] have all attempted to apply replication to the MPI environment.

7. Debugging

Debugging has a long history in software engineering [60, 116, 118]. Reverse execu-

tion or back-stepping allows a debugger to step backwards through the program execution

to a previous state, in addition to stepping forwards to the next state. Reverse execution is

commonly achieved though the use of checkpointing [95, 281, 282], event/message log-

ging [26, 161, 228, 292], or a combination of the two techniques [23, 150, 152, 201, 272].

When used in combination the parallel debugger restarts the program from a checkpoint

and replays the execution up to the breakpoint. A less common implementation technique

is the actual execution of the program code in reverse without the use of checkpoints [4].

This technique faces challenges of handling complex logical program structures which can

interfere with the end user interaction and applicability to certain programs. Though most
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of these techniques focus on transparently providing reverse execution, some have also

explored language and compiler extensions to support such activities [289].

There are three predominate axes to consider when debugging large-scale applica-

tions [152]. The first axis is that of runtime, which becomes a factor when attempting

to address a bug that only becomes apparent after hours of computation because of a race

condition, or changing computational state in the parallel program. The second axis is the

number of processes involved, which becomes a significant factor in applications that dy-

namically adjust the algorithms employed in response to the scale in which the application

is run. Finally, the third axis is the program size in terms of lines of code involved in the

analysis.

Event logging is used to provide a deterministic re-execution of the program while de-

bugging. Often this allows the debugger to reduce the number of processes involved in

the debugging operation by simulating their presence through replaying events from the

log. This is useful when debugging an application with a large number of processes. Event

logging has also been used to allow the user to view a historical trace of program execution

that can be inspected while debugging to trace the changes of a variable in reverse without

re-execution [259, 260].

Message logging is a sub-domain of event logging in which only messages are logged

instead of all non-deterministic events that might influence the application. This has been

implemented above the MPI interface [68] and within the implementation [26, 176] for

the explicit purpose of supporting debugging operations. There are two core techniques

for event replay: Contents-based replay and ordering-based replay [229]. In contents-based

replay, the traces include the values of the events received or variables read. This typically

produces larger trace files, but does not require the participation of all processes during

replay since values do not need to be recomputed. In ordering-based replay, the traces

include the relative order in which the events occurred. This produces smaller trace files

at the cost of recomputing the values every time. The relative partial ordering of events

is based on Lamport clocks [158, 227]. Both [161] and [229] present algorithms for

ordering-based replay, whereas [176] presents an algorithm for content-based techniques.
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Adaptive message logging and checkpointing techniques have also been explored to reduce

the size of the message logs [189, 190, 258, 287].

Checkpoint/restart is used to return the debugging session to an intermediary point in

the program execution without replaying from the beginning of execution. For programs

that run for a long period of time before exhibiting a bug, checkpointing can be used to focus

the debugging session on a smaller period of time closer to the bug. Checkpoint/restart

techniques are also useful for program validation and verification techniques that may be

allowed to run concurrently with the parallel program on smaller sections of the execution

space [243]. [192] discusses how to achieve replaying without using message logging by

employing a technique similar to message induced checkpointing (see Section 4.7).

In addition to reducing the amount of time and number of processes involved in the

debugging process, program slicing is often used to reduce the amount of code that needs

to be analyzed [280]. This is a useful technique when debugging large software systems

such as operating systems.

Some of this work has focused on the automatic validation of message passing pro-

grams. Since all messages are traced, debuggers can apply algorithms to detect common

parallel programming bugs such as race conditions and deadlocks [65, 188, 243, 287]. A

technique called flowback analysis assists debuggers in finding race conditions based on the

causal relationship between events [179].

For HPC applications, the MPI standard [178] has become the de facto standard message

passing programming interface. Even though some parallel debuggers support MPI appli-

cations, there is no official standard interface for the interaction between the parallel de-

bugger and the MPI implementation. However, the MPI implementation community has in-

formally adopted some consistent interfaces and behaviors for such interactions [58, 115].

The MPI Forum is discussing including these interactions into a future MPI standard. Chap-

ter 5 will discuss how Open MPI was extended to include a design that supports C/R-

enabled parallel debugging.



2. BACKGROUND AND RELATED WORK 34

8. Process Migration

Process migration is the ability to move, or migrate, a process from one resource to

another. Though often used for fault tolerance there are other ways to apply this tech-

nique [91]. Process migration plays a central role in proactive fault tolerance [267, 277]

(sometimes called reconfiguration) in which a set of processes are moved away from a pre-

dicted system failure either transparently or with the assistance of the application [241].

Additionally, process migration may support resource sharing by migrating processes to and

from a shared resource on-demand in order to share the resource among a set of processes

in a system. Load balancing uses process migration to dynamically manage the load on a

distributed system moving processes away from heavily loaded machines to lighter loaded

machines [129, 130].

The performance overhead in process migration is primarily attributed to the storage

aspect of the checkpoint overhead involved when migrating a process from one resource

to another. In addition to checkpoint overhead, the issue of residual dependencies is also

an important consideration. A residual dependency is a dependency on the source machine

after the process has migrated to the destination machine. For proactive fault tolerance,

the technique must be free of residual dependencies since the source machine is likely to

fail shortly after the migration. One residual dependency often forgotten about is that of

the network state, and the connections between processes. The marshaling of the net-

work state becomes a central issue in checkpointing distributed systems in general, but also

specifically in high performance networking in which connectivity information may be dy-

namic in nature [235]. Above all other considerations, the process must be represented

accurately during any checkpoint or migration of the process. The numerical stability of the

checkpointing algorithm, especially when migrating between heterogeneous machines, has

a direct effect on the stability of scientific computation [142, 172].

There are a variety of techniques to reduce the checkpoint overhead due to the I/O

requirements of moving a process from the source to the destination machine at the cost of

checkpoint latency for process migration activities. Many of these techniques harness the
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copy-on-write semantics of operating system-level paging. The eager technique is the most

direct in which the entire process image is transferred to the destination machine before

resuming computation [139, 170, 261].

A pre-copy technique copies the process image to the destination machine while it is

still running on the source machine [257, 277]. After a significant portion of the memory is

copied, the process on the source machine is suspended and the remaining pages of memory

are transferred along with control of the execution to the destination machine.

A lazy technique transfers just enough of the process state to the destination machine

to resume execution, then pages are transferred from the source machine to the destination

machine using a demand-driven copy-on-reference approach [269, 288]. The core problem

with this technique is the residual dependency on the source machine long after the process

has been migrated.

A post-copy technique builds upon the lazy technique by requiring that all of the memory

pages are eventually transferred to the destination machine, giving higher priority to pages

immediately referenced by the process running on the destination machine [224]. This

removes the residual dependency restriction of the lazy technique. However, as with the

lazy technique, it can become difficult to determine the minimal amount of state required

to start the process running on the destination machine.

A quasi-asynchronous migration technique allows non-migrating processes to continue

communication while blocking communication to migrating processes [66]. This is ad-

vantageous over a synchronous migration technique since non-migrating processes are not

stopped for the duration of the migration. Additionally, this does not require any resid-

ual dependencies as in many asynchronous migration techniques that require a daemon to

forward messages in the system.

9. File Systems

Processes that frequently interact with files face many difficulties when choosing a fault

tolerance strategy. If the processes creates a checkpoint, it must decide how to account

for the state of the file system at the point of the checkpoint so that their application can
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recover a consistent file state in addition to computation state. Most transparent check-

pointing solutions will preserve the file descriptors and seek positions which is adequate

for applications that access files in a sequential manner, never delete files, and only append

data to files [111]. For example, if a process randomly accesses a file for both reading and

writing then these techniques do not apply. The checkpoint of the process could also in-

clude the entire file, however depending upon the size of the file this may be a prohibitively

expensive operation both in terms of disk space used, and checkpoint latency.

Versioned file systems keep multiple revisions of files as backups that are created and

retained automatically by the file system [183]. A checkpoint/restart service can use this

feature to account for the version of the file in the checkpoint generated, and transpar-

ently restore that version when restarting the application in cooperation with the file sys-

tem [225, 279]. Compression techniques can also be used to reduce the size of backup

files in the file system [45, 183]. Recently, it has been shown that by using specialized

hardware and file handling techniques checkpoint and restart rollback recovery techniques

can be a viable solution for large-scale computation (specifically petascale and exascale

machines) [73, 74]. This work echos some of the remarks made in an earlier publication

regarding the viability of coordinated checkpointing on petascale systems [84].

9.1. Checkpoint Optimized Stable Storage. Stable storage is a storage device that

survives the maximum number of acceptable faults in the system. Typically stable storage

is represented by a logically centralized file system such as a Storage Area Network (SAN)

or Parallel File System (PFS). The I/O requirements of checkpointing to stable storage

account for a significant portion of the overhead in checkpointing. This is usually because

as multiple processes attempt to write checkpoint files concurrently to the stable storage

device the network becomes congested, and the bandwidth is quickly exhausted.

9.1.1. Diskless Checkpointing. Diskless checkpointing removes the physical disk from

the stable storage operation replacing it with unused main memory on peer machines [207].

This requires that processes do not use all of main memory, and take advantage of fast write
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speeds to main memory versus disk based techniques. Though these techniques cannot sur-

vive the loss of all processes, they can survive the loss of a subset of the processes by repli-

cating the checkpoint image amongst multiple peers. The replication degree and technique

used determines exactly how many failures can be handled by the system and overhead in-

curred [105, 223]. Diskless techniques are often used by ABFT techniques as a way of stor-

ing checkpoint information about the computation in progress [53, 54, 88, 107, 160, 171].

Skewed checkpointing takes a more dynamic approach to choosing peers to replicate with

in order to improve fault coverage without additional replication [185].

9.1.2. Staging, Staggering, and Striping. The concurrent writing of checkpoint data

from multiple processes to stable storage quickly exhausts the bandwidth to stable stor-

age, especially when it is centralized. To address the bandwidth concerns three techniques

have been presented in literature: staging, staggering, and striping.

Checkpoint staging uses the local memory or disk to quickly write the checkpoint data

reducing checkpoint overhead [264, 266]. This local checkpoint is then copied to stable

storage concurrently while the application continues execution [36, 45, 205].

Checkpoint staggering reduces contention on the stable storage medium by reducing the

number of processes concurrently writing to the stable storage device [49, 143]. Usually

this is controlled by passing a token around the checkpointing processes that allows them

permission to write to the stable storage device.

Checkpoint striping builds upon checkpoint staggering by determining how many pro-

cesses may write to the stable storage medium at a time [49, 143]. In the traditional

checkpoint staggering approach only one process is allowed to write to stable storage at a

time [264, 266]. Stable storage devices built from PFS typically use multiple I/O nodes

to improve bandwidth to the file system. By adjusting the number of processes concur-

rently writing, or the stripe, to accommodate the characteristics of the stable storage device

checkpoint performance can be further improved [103].

9.1.3. Checkpoint File Replication. Replicating checkpoint files in the stable storage

medium improves the stability of the medium at the cost of additional copies of the data.
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Replication, in the form of RAID [202], has proven to be an effective technique when ap-

plied to disk based storage systems. Distributed file systems use a set of machines with

local storage to form a single logical file system. Distributed file systems typically use

RAID techniques to provide the fault tolerance necessary to serve as stable storage medi-

ums [123, 216, 249]. Some distributed file systems dynamically manage the placement of

replicas in order to improve access time and availability in the distributed file system, using

replication both for access time and fault tolerance purposes [123, 156]. The management

of replication is usually handled by a central broker or distributed using a distributed voting

or election algorithm to determine the most recent version of the file [112].

RAID-1, or checkpoint mirroring, is a common technique used to replicate checkpoints

amongst peers in the system [5, 36, 40, 67, 76, 185, 205, 242, 291]. The peers may be

processes in the application or dedicated checkpoint servers [25, 214, 274].

Incremental versions of checkpoint mirroring have been explored by various file sys-

tems, they typically operate on blocks of data within files that are overwritten, which may

happen during a checkpoint operation that uses the same file for all checkpoints [5]. The

replication of blocks of a file instead of the whole file has performance benefits at the cost

of a more complex replication maintenance algorithm [111, 153].

RAID-5 or parity based techniques (including N+1 parity and Reed-Solomon Coding)

are used to withstand one or more concurrent failures depending on the parity encoding

technique used [36, 40, 67, 205, 242].

Often the replication technique is applied transparently to all files written to the file

system. However some file systems allow the user to directly choose the replication strategy

per file, and even change this strategy over the lifetime of the file in the file system [40].

Combinations of the various techniques forming a hierarchy is a common technique to

balance the expense of replication with the fault tolerance coverage requirements [25, 137,

156, 242]. The use of overlay networks and lightweight storage mediums have also shown

promise as techniques for optimizing checkpoint storage [195, 196].
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PLFS [18, 19] found that by transparently turning an N-to-1 checkpoint write operation

(all processes write to a single file) into an N-to-N operation (all processes write to indi-

vidual files) they were able to significantly improve the overall performance of the check-

point write and restart read operations at scale. Additionally, the stdchk [5] and SCR [36]

projects showed that by using peer based and staging storage techniques for N-to-N check-

point write operations they were able to significantly improve the checkpoint write and

restart read performance. SCR also reported improvements to overall system reliability as

a result of the reduced stress on the PFS [36].

10. Compiler Based Techniques

Compiler based approaches to checkpoint/restart fault tolerance are typically composed

of two components: a pre-compiler, and a runtime support library. The pre-compiler is a

source-to-source compiler that augments an existing application with calls into the associ-

ated runtime support library in order to provide transparent checkpoint/restart capabilities.

Typically the application may also identify potential checkpoint locations, and protected re-

gions of execution, though they are not required to.

To support distributed object migration both the DOME [17] and Charm++ [46]

projects require the application to augment data structures with pack and unpack routines

to assist checkpointing and restarting the processes/objects. The compiler then uses these

markers to support checkpoint/restart activities during execution. In [166] these mark-

ers were used to dynamically throttle the checkpoint interval based on time from the last

checkpoint and the changing process size.

Systems like Porch [251], CATCH [166] and the C3 [33, 35, 175] compilers place po-

tential checkpoint function calls throughout the code during the pre-compiler stage. These

potential checkpoints are activated by the runtime library in accordance with the prede-

fined checkpoint interval, and other system and application metrics. The system presented

in [148] supports heterogeneous checkpointing of sequential programs.
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The IMPACT compiler focuses on recovery from transient processor failure instead of

entire process failure [165]. The compiler allows the application to adjust the sliding win-

dow of instructions that can be retried upon processor failure. This provides a dynamic,

compiler based alternative to hardware delay write buffers, with seemingly comparable

performance.



3
Checkpoint/Restart Infrastructure

Checkpoint/Restart (C/R) rollback recovery is a technique used to reduce the amount of

computation lost to process failure by restoring processes from a previously established

point in the computation. Distributed C/R techniques rely on various coordination proto-

cols to produce consistently recoverable parallel application states. When designing a C/R

system it is important to first identify the set of capabilities that compose to define such an

infrastructure. This chapter identifies the C/R capabilities that were composed to produce a

fully coordinated C/R infrastructure, realized in the Open MPI implementation. We do not

claim that these seven capabilities are a minimal or maximal set since future research may

find that finer-grained or additional capabilities are necessary in order to adapt to future

systems.

41
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Seven C/R capabilities were distilled from experimentation, a review of previous C/R-

enabled Message Passing Interface (MPI) implementations, and related literature. Six capa-

bilities are detailed in this chapter with the seventh capability, the recovery service, explored

in Chapter 4. Below is a summary of the C/R capabilities in the order they are presented:

• Checkpoint/Restart Service (CRS): The interface to the single process C/R system

provided by or for the system in order to capture an image of a running process

for later recovery.

• Checkpoint/Restart Coordination Protocol (CRCP): The C/R coordination proto-

col implementation that marshals the network state to guarantee a consistently

recoverable distributed state upon restart [48].

• Interlayer Notification Callback (INC): Notifying and coordinating subsystems of

the MPI implementation around various checkpoint related activities (e.g., check-

point, restart, migration).

• Stable Storage (SStore): A logical stable storage device abstraction encapsulating

where and when local snapshots are stored in the distributed environment to form

a global snapshot.

• File Management (FileM): The movement of snapshot related files and directories

to and from storage devices possibly across file system and node visibility bound-

aries.

• Snapshot Coordination (SnapC): Checkpoint life-cycle management: distributing

the checkpoint request to all participating processes, monitoring their progress,

and synchronizing the final local snapshots to a logical stable storage device.

• Error Management and Recovery Policy (ErrMgr): Error reporting and fault recovery

management operations including support for preventative actions such as process

migration.

Previous C/R-enabled MPI implementations often combined instantiations of the neces-

sary C/R capabilities mentioned above into their implementation. This inseparable design
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made it difficult for researchers to explore alternative techniques inside the same imple-

mentation. Identifying the C/R capabilities and describing their relation to one another

will help C/R fault tolerance researchers design better implementations that are easier to

maintain, spur innovation, and remain flexible enough meet the demands of the High Per-

formance Computing (HPC) community. In the Open MPI project, we clearly differentiate

the various capabilities in the implementation and still demonstrate full operational sup-

port. This indicates that the inseparable design chosen by previous implementations is not

required for a correct C/R implementation.

As with most other C/R-enabled MPI implementations, the C/R capabilities and cor-

responding implementations in Open MPI only support MPI-1 standard functionality. The

MPI-1 standard tends to be sufficient for many MPI applications, so we feel comfortable

with the application coverage this restriction implies. The Open MPI implementation of the

C/R capabilities provides a solid foundation of MPI-1 support, and support for MPI collec-

tive routines that are internally layered over point-to-point communication. This founda-

tion was designed to be built upon in the future to support additional portions of the MPI

standard, and component advancements (e.g., hardware collectives).

1. Open MPI Architecture

Open MPI is an open-source, high-performance, MPI-2 compliant implementation of

the MPI standard [102, 178]. Open MPI is also dedicated to supporting fault tolerance

research and aspires to provide users with a variety of optional, high performance, scalable,

(semi-)transparent fault tolerance solutions. We have augmented the Open MPI implemen-

tation to provide users with the option of using a coordinated C/R fault tolerance technique.

This chapter discusses the various C/R capabilities involved in a such a technique and de-

scribes how these capabilities were realized in the Open MPI implementation.

Open MPI is designed around the Modular Component Architecture (MCA) [245]. The

MCA provides a set of component frameworks to which a variety of point-to-point, collec-

tive, and other MPI and runtime-related algorithms can be implemented. The MCA allows
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FIGURE 3.1. Illustration of the three layers in Open MPI including some
notable MCA frameworks. The highlighted, dashed boxes represent the ca-
pabilities discussed in this dissertation.

for runtime selection of the best set of components (implementations of the framework in-

terfaces) to properly support an MPI application in execution. By isolating the various C/R

capabilities to individual frameworks, researchers can focus on the development of an in-

dividual component instead of the development of an entire MPI library implementation

in order to experiment with a new technique. Runtime component selection allows re-

searchers to produce a reproducible, accurate comparison of two variants of a capabilities

without recompiling the application.

MCA frameworks in Open MPI are divided into three distinct layers: Open Portable Ac-

cess Layer (OPAL), Open MPI Runtime Environment (ORTE), and Open MPI (OMPI). OPAL

is composed of frameworks that are concerned with portability across various operating sys-

tems and system configurations along with various software development support utilities

(e.g., linked lists). ORTE is composed of frameworks that are concerned with the launch-

ing, monitoring, and cleaning up of processes in the HPC environment. The OMPI layer is

composed of frameworks that support the MPI interfaces exposed to the application layer.

Figure 3.1 illustrates the positions of these three layers.

1.1. OMPI Layer. In the OMPI layer, most frameworks (e.g., Collectives, File I/O) sit

above the Point-to-Point Management Layer (PML). The PML controls all point-to-point
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communication in Open MPI and exposes MPI point-to-point semantics. The PML frame-

work is a stack of three frameworks all working together to provide flexibility and perfor-

mance to the application. The PML framework breaks messages, with potentially complex

data types, into byte streams that can be consumed by the lower layers. The Byte Trans-

fer Layer (BTL) framework encapsulates each of the supported interconnects in Open MPI

(e.g., shared memory, Ethernet, InfiniBand, Myrinet MX, etc.). Between the PML and BTL

is the BTL Management Layer (BML) that provides the ability to stripe a message across

multiple interconnects. This may include using multiple paths between peers, and using

multiple interfaces of a single interconnect driver.

The PML exchanges connectivity information, at startup, during a module exchange

or modex procedure. This connectivity information is used to determine the best possible

routes between all peers in the system. This provides the necessary information to all

processes in the MPI application so that they can establish communication with any other

peer in the MPI application.

1.2. ORTE Layer. Many frameworks are combined to form the ORTE layer. The com-

munication frameworks in ORTE combine to provide a resilient, scalable, out-of-band com-

munication path for the runtime environment. The Out-Of-Band (OOB) framework pro-

vides low-level interconnect support (currently TCP/IP based). The Runtime Messaging

Layer (RML) framework provides a higher-level point-to-point communication interface in-

cluding basic datatype support. The Group Communication (GrpComm) framework pro-

vides group communication, collective-like operations among various processes active in

the runtime environment. The Routing Table (Routed) framework provides a scalable rout-

ing topology for the GrpComm framework.

The Process Lifecycle Management (PLM) framework is responsible for launching, mon-

itoring, and terminating processes in the runtime environment. The ORTE Daemon Local

Launch Subsystem (ODLS) framework provides the same services as the PLM, but on a lo-

cal node level. The Resource Mapping Subsystem (RMapS) framework is responsible for

mapping a set of processes onto the currently available resources.
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The ErrMgr framework is accessible throughout the ORTE and OMPI layers. This frame-

work provides a central reporting location for detected or suspected process, or communica-

tion failure internal to a process. The Notifier framework works with the ErrMgr framework

and provides an interface for processes to send and receive reports on abnormal events in

the system, including process failure and communication loss. The Notifier framework also

interfaces with external detectors such as the Coordinated Infrastructure for Fault Tolerant

Systems (CIFTS) Fault Tolerance Backplane (FTB) [122].

In Chapter 4, we will describe how the ErrMgr has been extended to include support for

a composable set of recovery policies. Most of the remaining C/R capabilities are realized in

the ORTE layer since they do not require access to the MPI layer capabilities, but do require

access to the other processes.

1.3. OPAL Layer. As with the OMPI and ORTE layers, many frameworks are combined

to form the OPAL layer. The OPAL layer is concerned with supporting the current process,

and has little to no knowledge of other processes in the execution environment. The OPAL

CRS framework provides an Application Programming Interface (API) to the single process

C/R service on a particular machine, a fundamental capability in any C/R design.

1.4. Control Flow. The C/R infrastructure integrated into Open MPI is defined by pro-

cess and job levels of control. These two levels of control work in concert to create stable

job-level checkpoints (called global snapshots) from each individual process-level check-

point (called local snapshots). The various C/R frameworks are represented in Figure 3.2 in

their relative position of control.

2. External Tools and Interfaces

Defining clear interfaces and abstract tools is important for end user adoption. API

interfaces provide the application with direct control from within the program over when

C/R related activities are employed and notification on their progress. Command line tools

allow the end users to request C/R related activities asynchronously during normal appli-

cation execution. The end user is defined as a person (e.g., software developer, system
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FIGURE 3.2. Organization of Open MPI C/R frameworks in a general MPI
application. Job-level control is positioned in the Runtime. Process-level
control is positioned in the Process.

administrator, application user) and as an external software agent (e..g, scheduler, resource

manager).

2.1. Application Programming Interface. The application developer can directly re-

quest a checkpoint, restart or migration of the application from within the program using

non-MPI-standard APIs provided by Open MPI through the Open MPI Extended Interfaces.

These APIs also allow an application to monitor and participate in the C/R application. The

specific APIs are described in more detail in Chapter 5 and Appedix A.

2.2. Command Line Tools. The end user can asynchronously request a checkpoint of

a running MPI application by using the ompi-checkpoint command. This command line

tool only requires the end user to know the Process Identifier (PID) of the Head Node

Process (HNP) process (a.k.a. mpirun), and does not require the end user to know any of

the internal details of how the checkpoint will occur. This is in contrast to other C/R-enabled

MPI implementations which require the end user to track this metadata by hand.

To restart the MPI application using a previously established checkpoint the end user

is provided the ompi-restart command. The end user passes the global snapshot refer-

ence reported by ompi-checkpoint to the ompi-restart command. The ompi-restart

command uses the metadata stored at checkpoint time to restart the MPI application.

The ompi-migrate tool provides a command line interface for end users to request a

process migration within a running MPI application. In addition to allowing the end user
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to specify which processes to migrate, this command line interface allows an end user the

ability to provide a suggested list of target nodes to use in replacement for the affected

nodes. The ability to suggest destination nodes allows a system administrator, for exam-

ple, to move processes from a set of nodes going down for maintenance to a set of nodes

dedicated to the process for the duration of the maintenance activity. This tool also allows

end users to experiment with using process migration for load balancing since they can also

specify specific process ranks in MPI COMM WORLD instead of just nodes for migration.

The interface to these three tools is described in more detail in Appendix B.

2.3. Snapshot Representation. One of the hurdles standing in the path of wider end

user fault tolerance adoption is usability and integration overhead. The fault tolerance

interfaces provided by a system should be convenient, intuitive and easy to use without

sacrificing robustness and flexibility.

Previous C/R-enabled MPI implementations required the user to remember specifics

regarding exactly how the application was started in order to successfully checkpoint and/or

restart the parallel application. A system administrator or scheduler is completely precluded

from this runtime information, and must consult the user for these parameters before taking

action with a job.

Additionally, these same implementations tended to burden the end user with the re-

sponsibility of tracking the location of all the individual checkpoint-generated files. De-

pending on the CRS, the file set may be one or many files with specific naming conventions.

Tracking sets of requests quickly becomes tedious and error prone. This task may be con-

sidered an abstraction violation since the end user, to find the restart files, must know the

CRS(s) used by the C/R-enabled MPI implementation for the application.

Our design addresses both of these issues by introducing an abstract snapshot reference.

A snapshot reference is a single named reference to the checkpoint that was taken of a sin-

gle process or a parallel job. There are two types of snapshot references: local and global.

The local snapshot reference is a single process checkpoint. The local snapshot reference

refers to a directory containing a metadata file describing: the CRS used; any application
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shell$ ls opal snapshot 0.ckpt
ompi blcr context.29121
snapshot meta.data
shell$ cat opal snapshot 0.ckpt/snapshot meta.data
# Timestamp: Thu Apr 01 01:02:03 2010
# PID: 29121
# OPAL CRS Component: blcr
# CONTEXT: ompi blcr context.29121
# Timestamp: Thu Apr 01 01:02:04 2010

FIGURE 3.3. Local Snapshot Reference Directory Structure and Metadata Contents.

specific parameters; unique checkpoint identifier. The directory also contains all of the sin-

gle process C/R specific files. Each snapshot generated is designated a unique identifier,

usually the rank in MPI COMM WORLD, that differentiates one local snapshot from an-

other. Figure 3.3 shows the local snapshot directory structure and metadata contents in

Open MPI.

The second type of snapshot reference is the global snapshot reference that refers to a

collection of local snapshots resulting from a single checkpoint request of an application.

The global snapshot reference is represented as a directory containing a metadata file de-

scribing: the aggregated local snapshot references; process information (e.g., last known

rank in MPI COMM WORLD); runtime parameters; a global checkpoint sequence number.

The sequence number is a monotonically increasing number starting at 0 unique to the job

that differentiates subsequent checkpoints from one another. The global snapshot directory

also contains the physical set of local snapshots, one from each process in the checkpoint

interval. Figure 3.4 shows the global snapshot directory structure and metadata contents in

Open MPI.

The global and local snapshot references abstract the user away from the number and

name of the checkpoint generated files, alleviating the need for the end users to track mul-

tiple files for a single distributed checkpoint interval. The user is only responsible for the
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shell$ ls ompi global snapshot 10587.ckpt
0
global snapshot meta.data
shell$ ls ompi global snapshot 10587.ckpt/0
opal snapshot 0.ckpt
opal snapshot 1.ckpt
opal snapshot 2.ckpt
opal snapshot 3.ckpt
shell$ cat global snapshot meta.data
# Seq: 0
# Local Snapshot Format Reference: opal snapshot %d.ckpt
# Timestamp: Thu Apr 01 01:02:03 2010
# AMCA: ft−enable−cr
# Process: 1659895809.0
# OPAL CRS Component: blcr
# Process: 1659895809.1
# OPAL CRS Component: blcr
# Process: 1659895809.2
# OPAL CRS Component: blcr
# Process: 1659895809.3
# OPAL CRS Component: blcr
# Timestamp: Thu Apr 01 01:02:05 2010
# Finished Seq: 0

FIGURE 3.4. Global Snapshot Reference Directory Structure and Metadata Contents.

preservation of a directory containing all the relevant checkpoint information. Addition-

ally, the end user does not need to know the underlying CRS(s) used in order to properly

preserve the checkpoint files.

This design also alleviates the need for the end user to know which runtime parameters

the job was originally started with by automatically detecting them when checkpointing

and placing a reference to the parameters in the metadata files in the snapshot references.

During restart the metadata files are used to determine how to restart the entire job prop-

erly.
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The level of abstraction provided by the snapshot references allow for the possibility

of heterogeneous CRS support. Single process CRSs tend to be closely tied to the operat-

ing system on which they run, and generate binary files intended to be restarted on the

same type of system. A job spanning a heterogeneous environment must incorporate the

checkpoints produced by potentially different CRSs into a single global snapshot. Similarly,

in homogeneous environments it may be advantageous to use one CRS on a subset of the

processes in the job and another on the rest of the processes. The files generated from these

distinct CRSs are likely to be incompatible due to implementation differences, but can still

be incorporated into the same global snapshot if the restart mechanism is able to properly

map onto the heterogeneous environment as required by the global snapshot.

3. Checkpoint/Restart Service

The Checkpoint/Restart Service (CRS) capability captures an image of a single running

process (and all associated threads) for later recovery. System-level CRS implementations

tend to be tied to a specific operating system type or revision. This tight coupling provides

them with a more detailed view of the process target allowing for a more detailed coverage

of the process in the checkpoint. User-level CRS implementations tend to exist above the

operating system making them more portable by sacrificing their ability to directly view

some process details without virtualization. Both varieties of CRSs capture a snapshot of a

single process on the system and save it to a SStore designated storage device (discussed

in Section 6). Many times the CRS is not able to account for the state of objects that exist

outside of the process scope such as file system or network interconnect states which may be

required for the proper recovery of an application. For further discussion of single process

CRSs, see Chapter 2.

In essence, a local CRS is required to provide two tasks: checkpoint and restart. The

CRS must allow an implementation to request a checkpoint of a specific process identified

by the PID, and return a reference to the generated local snapshot for later restart. The

PID may be that of the requesting process or another process on the same machine. The

CRS must allow an implementation to request a restart of a process on the local machine
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provided a local snapshot reference generated by the C/R during a previous checkpoint

operation.

The CRS capability is activated by the INC capability from within the process when the

system has been sufficiently prepared for the checkpoint. The CRS will interact with the

SStore capability to determine where the local snapshot should be written.

3.1. Implementation. Open MPI provides a single process CRS framework in the OPAL

layer. It is implemented at the OPAL layer since the CRS framework’s functionality is limited

to a single machine. The OPAL CRS framework provides a consistent API for Open MPI to

use internally regardless of underlying CRS API available on a specific machine. Each such

system implements a component in the OPAL CRS framework that matches the framework

API to the CRS’s API.

The CRS framework API provides the two basic operations of checkpoint and restart. In

addition the OPAL CRS framework requires components to implement the ability to enable

and disable checkpointing in the system to assist in protecting non-checkpointable sections

of code. In the future, additional functionality may be added to the CRS framework to

support advanced features such as memory inclusion and exclusion hints for CRSs that

support such operations [209].

In Open MPI checkpointing is enabled upon completion of MPI INIT and disabled upon

entry into MPI FINALIZE. This restriction allows checkpointing only while MPI is enabled

since the C/R framework is a part of the MPI infrastructure and is therefore initialized and

finalized within the library.

There currently exist two components of the OPAL CRS framework. The first compo-

nent is a Berkeley Lab Checkpoint/Restart (BLCR) implementation. BLCR is a system-level

transparent CRS that operates as a Linux kernel module. The second component is a SELF

CRS component supporting application-level checkpointing by providing the application

callbacks upon checkpoint, restart and continue operations. The API for the SELF CRS

component is detailed in Appendix C.
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4. Checkpoint/Restart Coordination Protocol

A snapshot of a process is defined as the state of the process and all connected com-

munication channels [48]. The CRCP capability encapsulates the algorithm necessary to

marshall the state of the connected communication channels. Local CRSs are unable to

account for the state of communication channels as they require both the knowledge of and

the ability to coordinate with remote processes. Given this restriction, a distinct capability is

required to coordinate all the processes to create known channel states. Knowing the state

of all connected communication channels is critical when forming a consistent global snap-

shot of the parallel job from which the process can be accurately restarted at a later time.

Many CRCPs exist and can be generally classified into one of three categories, as detailed

in Chapter 2: coordinated, uncoordinated, and communication or message induced. Each

protocol balances the demand for low overhead failure-free operation with the complexity

of recovery in the event of unexpected process termination due to system failure.

The MPI implementation must be provided with an API to use internally when interact-

ing with various coordination protocol implementations. Many protocols require the ability

to track all point-to-point messages in the system to aid in recovery [278]. Other protocols

require the ability to piggyback data on outgoing messages, and take action on incoming

messages such as taking forced checkpoints [174]. Therefore these coordination services

need to be provided access to the MPI implementation’s internal point-to-point layer. By

doing so these coordination services are then allowed to watch the network traffic as it

moves through the system and take necessary actions.

The INC capability (discussed in Section 5) activates the CRCP capability before the

CRS. This ensures that the network state is accounted for before the process state is cap-

tured.

4.1. Implementation. The Open MPI CRCP framework implements coordination pro-

tocols that control for in-flight messages [48]. The CRCP framework is positioned in the

OMPI layer above the PML framework and tracks all messages moving in and out of the
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point-to-point stack. The components are provided access to the internal PML frame-

work [284] by way of a wrapper PML component. The wrapper PML component allows

the OMPI CRCP components the opportunity to take action before and after each message

is processed by the actual PML component.

The CRCP bkmrk component in Open MPI is an all-to-all bookmark exchange algorithm

similar to the one used by LAM/MPI [234], except that instead of operating on bytes it

operates on entire MPI messages. In this algorithm, processes exchange message totals

between all peers on checkpoint, then wait for the totals to equalize. This equilibrium

indicates a quiet or quiescent channel and guarantees no in-flight messages. Care is taken

in the coordination algorithm to avoid deadlock during the draining process, and to preserve

MPI semantics.

Once the OMPI CRCP component has completed its coordination of the processes then

the PML’s ft event function is called. The PML ft event function (part of the INC de-

scribed in Section 5) involves shutting down interconnect libraries that cannot be check-

pointed and reconnecting peers when restarting in new process topologies. Coordination

services should receive checkpoint notification before any MPI subsystem. This ordering

provides coordination services flexibility in their protocol implementation by not restricting

the MPI subsystems available.

Positioning the coordination algorithm above the point-to-point stack is different than

most transparent C/R-enabled MPI implementations. Most C/R-enabled MPI implementa-

tions position their coordination protocols in the individual interconnect drivers. By im-

plementing the algorithm in the interconnect driver, the algorithm needs to track bytes

being moved through the interface, monitor special behaviors of the device such as Remote

Data Memory Access (RDMA) operations, and, for the most part, does not need to worry

as much about MPI-level semantics. However, forcing the state to be saved as part of the

interconnect driver within the point-to-point stack requires the application to be restarted

in a similar process layout. This technique hinders performance by restricting the ability

to choose the fastest routes upon restart. Additionally, the coordination algorithm often
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becomes muddled with device driver restrictions and requires the driver to provide strict

First-In-First-Out (FIFO) ordering of messages.

By lifting the algorithm out of the interconnect driver and placing it above the point-

to-point stack we are able to save the point-to-point state at a high enough level to allow

for the reconfiguration of the interconnects upon restart. This reconfiguration enables us

to adapt to the new process layout to achieve better performance. This is at the cost of a

slightly more complex implementation of the coordination algorithm since it must operate

on entire messages with MPI semantic restrictions.

4.2. Interconnect Driver Support. There are three distinct phases of a checkpoint

operation: pre-checkpoint, continue, and restart. In the pre-checkpoint phase the process

is provided an opportunity to prepare for a requested checkpoint. This involves bringing

external resources (e.g., files, network connections) to a stable, checkpointable state. The

continue phase occurs just after a checkpoint has been taken and allows the process to

recover any external resources that it may have stabilized or suspended during the pre-

checkpoint phase. The restart phase occurs when the process is restarted from stable storage

and provides the process with an opportunity to flush caches, and reconstruct any necessary

information needed to continue normal operation.

The CRCP framework is positioned above the PML framework and ensures that the

lower levels of the point-to-point stack have been drained of all messages coming from and

going to this peer process. We can take advantage of this assurance when moving the point-

to-point stack through the three phases of checkpointing. It should be noted that we do not

require that all processes drain their messages before checkpointing any individual process,

only that the individual process taking the checkpoint, at that moment, must be drained

of messages. Future work may explore other coordination algorithms that allow for even

looser synchrony between processes, such as [103, 263, 266].

After the CRCP capability has completed its pre-checkpoint quiescence operation the

INC (described in Section 5) may choose to shutdown all active interconnect drivers in or-

der to avoid problematic interactions between them and the CRSs. However, in order to
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minimize the failure-free overhead, the INC will want to do only the minimum amount of

work necessary to bring the process into a checkpointable state. As a performance opti-

mization, our implementation allows interconnect drivers to indicate if they are checkpoint

friendly, meaning that they can be safely checkpointed while active with the current CRS

active on the system. This optimization is a result of recognizing that shutting down and re-

initializing all of the interconnect drivers during a checkpoint operation is often expensive

and not always necessary. Since this optimization occurs in the INC and outside of the CRCP,

the CRCP remains interconnect agnostic even when this optimization is enabled [135].

In the restart phase, Open MPI needs to first clear out the previous set of interconnects

and connectivity (i.e., modex) information since the machine set and corresponding network

address will have typically changed. Then Open MPI re-exchanges the modex to get the new

connectivity information and reconnect the processes selecting a new set of interconnect

drivers (i.e., BTLs) that best match the new process layout.

4.2.1. TCP/Ethernet Driver. The Ethernet driver in Open MPI (tcp BTL) is classified as

checkpoint friendly since it does not need to do anything during the pre-checkpoint phase.

This is because the file descriptors of the open sockets are preserved across a checkpoint

operation by most CRSs. Since nothing was closed during the pre-checkpoint phase, nothing

needs to occur during the continue phase. The restart phase must make sure to close the

old socket file descriptors before the modex can occur so as not to waste resources.

4.2.2. Shared Memory Driver. The shared memory driver in Open MPI (sm BTL) is also

checkpoint friendly since it also does not need to do anything during the pre-checkpoint

phase. This is because the CRS will not checkpoint the contents of open files or shared

memory segments, but just preserve the file descriptors to these resources. It should be

noted that some CRSs (e.g., BLCR) may, optionally, preserve a shared memory segment

shared by processes of the same group (family of processes) as long as they are restarted

together. Since the goal of our implementation is flexibility in the process layout on restart,

Open MPI does not take advantage of this feature. Instead, we force such CRS to keep

only the file descriptor reference to the memory-mapped shared memory file, but not its

contents. Upon restart, we must make sure to close the stale file descriptor before the
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modex operation. The modex reestablishes the shared memory segment with the set of peers

on the node at restart time which may be different than when originally checkpointed.

4.2.3. InfiniBand Driver. The InfiniBand driver in Open MPI (openib BTL) uses the Open-

Fabrics [200] interface to interact with a wide range of InfiniBand hardware. In the pre-

checkpoint phase, Open MPI must close the driver which entails closing the ports and re-

leasing all resources allocated on the InfiniBand card, as confirmed by [104]. Experimen-

tally, if the BLCR CRS is used with the InfiniBand driver still active, then the state of the

kernel becomes unstable and panics which results in node loss. Since Open MPI closes

the connections during pre-checkpoint, on continue it must reopen the InfiniBand driver

and reestablish connections with its peers. So, because it has to re-exchange the modex

and reconnect peers, the continue and restart phases look similar at the interconnect level.

However, the continue operation can take advantage of the fact that the processes have not

changed position, and are likely still reachable via the previously established set of inter-

connects. So there is no need, for example, to reconnect shared memory segments since

processes on the same node have not moved. On restart, Open MPI needs to consider the

new topology information when establishing routes in order to account for peer processes

may have moved to different machines.

4.2.4. Myrinet Driver. The Myrinet driver in Open MPI (mx BTL) uses the Myrinet MX

interface to interact with Myrinet interconnect hardware. In the pre-checkpoint phase Open

MPI must close the driver, which entails closing the ports and releasing all resources al-

located on the Myrinet card; this is similar to the procedure with the InfiniBand driver.

However, with the Myrinet driver, the limitation is not kernel instability (as it is with the

InfiniBand driver), but reconnecting to the device driver upon restart. On restart, the BLCR

CRS will attempt to reallocate the open endpoint file descriptors with the network card,

but will receive a permission denied error and fail to restart the application. To avoid this

limitation, Open MPI shuts down the mx BTL before a checkpoint. On continue it must

reopen the connection to the Myrinet card and reestablish connections with its peers. This

requires a modex operation to re-exchange the new contact information. Future work may

look into ways around this limitation.
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5. Interlayer Notification Callback

The Interlayer Notification Callback (INC) capability represents the internal coordina-

tion necessary to marshallel the many active services within a process to prepare for a

checkpoint, continue after a checkpoint or restart a process from a checkpoint. Also re-

ferred to as the pre-checkpoint, continue, and restart phases, respectively. This coordination

may include flushing caches and activation of C/R specific code paths. The INC provides

the infrastructure for process-level control of frameworks to cooperate around a C/R-related

operation.

The INC is in charge of activating the CRCP capability to marshall the network state,

and the CRS to capture the process state. The INC is managed by SnapC capability which is

listening for checkpoint requests in the system.

5.1. Implementation. A single process CRS may only preserve a subset of the process

state. As previously mentioned, CRSs tend not to account for the state of communication

channels. Therefore subsystems within an MPI implementation need to receive notifica-

tion around C/R requests. In the Open MPI design each subsystem that requires such a

notification implements a ft event function defined as follows:

int ft_event(int state);

This function is meant to encapsulate most, if not all, of the subsystem specific logic needed

to respond to a C/R-related activity notification. By attempting to isolate this logic to this

function C/R notifications can have a minimal impact upon the implementation of the sub-

system making the entire C/R integration more maintainable. The ft event function takes

a single state argument indicating the state of the C/R protocol at the time of the function

call. The supported states are presented in Table 3.1.

An INC driver notification routine is responsible for calling each subsection’s ft event

function in the proper order upon receiving a checkpoint or restart request. These driver

notification routines are called Interlayer Notification Callbacks. For a monolithic library

design only a single INC may be needed. For library designs involving multiple layers of

abstraction, such as Open MPI, one INC may be needed for each layer. Once the INC
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State Description
OPAL CRS NONE No checkpoint in progress.
OPAL CRS CHECKPOINT Pre-checkpoint phase.
OPAL CRS CONTINUE Continue after a checkpoint.
OPAL CRS RESTART Restarting from a checkpoint.
OPAL CRS TERM Prepare for termination after a checkpoint operation.
OPAL CRS ERROR Error has occurred during the checkpoint.

TABLE 3.1. INC states used in the ft event function.

finishes preparing the library for a checkpoint, it then calls the single process CRS. Once

the checkpoint has completed then it uses the ft event function to notify the subsystems

of the resulting state of the process.

The design presented so far provides the MPI library the opportunity to prepare for

and respond to C/R requests. The application can be viewed as a layer existing above the

MPI library. Since some resilient HPC applications may also desire to be notified of such

INC state events Open MPI allows them to register INC callback functions, described in

Chapter 5 and Appendix A. Multi-layered MPI libraries can use this mechanism to register

their INCs. INCs have a similar function definition as ft event. INC callbacks are of the

form:

int layer_inc(int state);

INCs take the same argument as that passed to the ft event function. The INCs are regis-

tered by calling a registration function which will return the previous registered callback. It

is the newly registered INC’s responsibility to call the previous INC from within their own

INC callback. This responsibility ensures a stack-like ordering of INC calls, and gives an INC

callback the opportunity to take action before and after calling the previous INC callback

which is often from a lower level in the software hierarchy.

In Open MPI each process in the parallel job often has a thread running in it waiting

for the checkpoint request. This thread is called the checkpoint notification thread. The

thread receives a checkpoint request notification from the runtime environment via the
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FIGURE 3.5. Illustration of Open MPI Handling a Checkpoint Request. In-
cludes the optional application layer INC callback.

SnapC framework and proceeds into the OPAL entry point function to begin the notifi-

cation process, as seen in Figure 3.5. If the C/R notification thread is not active then the

C/R request is processed when the application process enters or leaves the MPI library. The

OPAL entry point function then calls the top most registered INC function. There are three

INC functions in Open MPI, one for each layer in the software stack. If the application reg-

istered an INC then it has the opportunity to use the full suite of MPI functionality before

allowing the library to prepare for a checkpoint. The API provided to MPI applications for

INC registration is described in Chapter 5 and Appendix A.

Since the checkpoint notification thread executes concurrently with other threads in

the process, the notification procedure typically does not interfere with the progress of the

process. A thread in the process is only stopped when it tries to access a part of the Open

MPI library that has been notified and restricts that particular operation from continuing

until the checkpoint is complete. For example the point-to-point layer may not allow a call

to MPI SEND to begin between when a checkpoint was requested and its completion.

In Open MPI, each INC uses the ft event function to notify framework components of

the checkpoint request. This function is an extension to existing framework APIs. Using a
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separate function for this type of notification has proven useful in isolating fault tolerance

specific logic, therefore improving maintainability.

6. Stable Storage

A stable storage device is defined as a storage medium that ensures that the recovery

information persists through the tolerated failures and their corresponding recoveries [82].

The Stable Storage (SStore) capability encapsulates the technique required to provide a

logical stable storage abstraction. In practice, non-transient failure of one or more machines

in the system needs to be tolerated by the SStore. Therefore many administrators provide

a shared Redundant Array of Independent Disks (RAID) file system that persists past the

failure of any machine in the system.

A global snapshot is said to be established on stable storage when the snapshot is able

to be used to recover the application from stable storage up to the number of anticipated

failures in the system. For example, in a centralized stable storage environment (e.g., SAN)

that is able to handle the loss of the entire job, the global snapshot is established when

all of the local snapshots have successfully been written to the centralized stable storage

environment. In a peer-based, node-local stable storage medium that replicates local snap-

shots among N peers, the global snapshot is established upon verified completion of the

replication stage.

The SStore capability uses the FileM capability, as necessary, to move files and directo-

ries between storage devices. The SStore capability abstracts the SnapC and CRS capabil-

ities away from the underlying mechanism of how snapshots are established on the stable

storage device.

6.1. Implementation. The SStore framework in Open MPI currently supports two com-

ponents: central and stage. The central component stores local snapshots directly to the

logically centralized stable storage device (e.g., SAN, parallel file system). The application

is stalled until all of the local snapshots have been established to the storage device. If the

application was not stalled then a fast process could start messaging a slower process po-

tentially corrupting the checkpoint being generated. The stage component uses node-local
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storage (e.g., local disk, RAM disk) as a staging location for moving local snapshots back to

the logically centralized stable storage device. The application is allowed to continue exe-

cution once all of the local snapshots have been written to the node-local storage devices.

The ORTE daemon then concurrently moves the local snapshots back to the logically cen-

tralized stable storage device, overlapping snapshot movement with application execution

often improving the checkpoint overhead.

To improve the performance of C/R based automatic recovery and process migration

(discussed in Chapter 4), Open MPI has also implemented local snapshot caching and com-

pression in the stage component. Local snapshot caching requires processes to keep a copy of

the last N local snapshots (default 2) on node-local storage. This improves the performance

of automatic recovery since all of the non-failed processes are not moved in the system,

and can use the locally cached copy of the snapshot instead of going to the stable storage

device.

Local snapshot compression adds one more step in the staging pipeline. After the appli-

cation writes the local snapshot to node-local storage it is able to continue execution. Once

all of the process on the node have finished checkpointing the ORTE daemon compresses

the local snapshot using one of a variety of compression utilities (e.g., bzip, gzip, zlib).

After the compression stage, the compressed local snapshot is moved to the logically cen-

tralized stable storage device. Future work may add support for other checkpoint-specific

stable storage file systems (e.g., stdchk [5]) and additional compression algorithms.

7. File Management

The FileM capability represents the mechanism used to move local snapshots to and

from storage devices possibly across file system and node visibility boundaries. Remote file

management enables the runtime system to preload files or binaries on remote systems be-

fore starting remote processes providing usability conveniences in addition to stable storage

abstractions.
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The FileM capability must support broadcast, gather, and remove operations. The broad-

cast operation supports the preloading of checkpoint related files on remote machines dur-

ing process recovery. The gather operation supports the movement of remote local snap-

shots to a stable storage medium determined by SStore. The remove operation allows for

cleanup of temporary checkpoint data that was preloaded on a remote machine.

7.1. Implementation. Many methods exist for physically moving a file from a local to a

potentially remote file system including standard UNIX and RSH copy commands. The Open

MPI FileM framework interface allows multiple file management requests to be given to the

file management system at the same time. This interface also allows a FileM component to

potentially use collective algorithms to optimize the operation.

This implementation requires knowledge of all of the machines in the job, but does

not require knowledge of MPI semantics therefore it is implemented as a part of the ORTE

layer. The framework interface provides Open MPI the ability to pass a list of peers, local

file names, and remote file names. If the remote file location is unknown by the requesting

process then the remote process is queried for its location.

The ORTE FileM framework currently uses RSH/SSH remote execution and copy com-

mands (i.e., rsh/ssh, rcp/scp) to perform the necessary operations. Future work may

add components to support standard UNIX commands and high performance out-of-band

communication channels.

8. Snapshot Coordination

The Snapshot Coordination (SnapC) capability manages a job checkpoint request in the

system. It provides job-level control of the C/R capabilities and process-level control over

the activation of the INC capability. The SnapC capability controls the checkpoint life-cycle,

from distributing the checkpoint request to all processes, to monitoring their progress, to

synchronizing the final snapshots to stable storage in cooperation with the SStore capability.

Implementations of the SnapC capability support distributed C/R by assuming responsibility

for the following tasks upon receiving distributed C/R requests:
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(1) Initiate the per process local checkpoints;

(2) Monitor the progress of the global checkpoint operation;

(3) Aggregate the local snapshots into a global snapshot, and

(4) Synchronize the various snapshots to stable storage.

Each C/R-enabled MPI implementation handles these tasks differently depending upon

their C/R needs and infrastructure restrictions. The techniques used tend to be tightly

integrated into the system, so much so that it is impossible to separate the two.

Implementations of the SnapC C/R capability should be given the flexibility to support a

wide variety of snapshot coordination techniques. Example techniques include the spawn-

ing of replicated checkpoint servers, initiating multiple local checkpoints concurrently in a

hierarchal tree structure, and grouping remote file movement request as to avoid network

congestion.

The SnapC capability should allow processes to choose between being able to be check-

pointed and not. Processes may choose not to be checkpointable for various reasons includ-

ing the use of unsupported algorithms such as hardware collectives or dynamic operations.

The SnapC implementation is responsible for taking the checkpoint request from the user

and checking this against the processes that have identified themselves as able to be check-

pointed. If any of the processes in the checkpoint request cannot be checkpointed then the

end user should be notified and no processes participating in the request should be affected.

8.1. Implementation. Open MPI provides the ORTE SnapC framework to compart-

mentalize these techniques into components with a common framework API. This com-

partmentalization allows for a side-by-side comparison of these techniques in a constant

runtime environment. The initial ORTE SnapC component, full, implements a centralized

coordination approach. It involves three sub-coordinators: a global coordinator, a set of

local coordinators and a set of application coordinators. Each sub-coordinator is positioned

differently in the runtime environment as shown in Figure 3.6. Figure 3.7 provides a de-

tailed diagram of how the various C/R frameworks in Open MPI work together to take a

checkpoint of a running MPI application.
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The global coordinator is a part of the HNP (a.k.a mpirun) process. It is responsible for

interacting with the command line tools (Figure 3.7-A), generating the global snapshot ref-

erence, aggregation of the remote files into a global snapshot stored to stable storage using

the SStore framework (Figure 3.7-F), and monitoring the progress of the entire checkpoint

request (Figures 3.7-B,E).

The local coordinator is a part of the ORTE per node daemons (a.k.a. orted). Each

local coordinator works with the global coordinator to initiate the checkpoint of a single

process on their respective machines (Figure 3.7-C), and to move the files back to the global

coordinator for storage as a part of the global snapshot in cooperation with the SStore

framework (Figure 3.7-F).

The application coordinator is a part of each application process in the distributed sys-

tem. This coordinator is responsible for starting the single process checkpoint. Such a re-

sponsibility involves interpreting any parameters that have been passed down from the user

(e.g., checkpoint and terminate, checkpoint and stop), and calling the OPAL entry point

function which starts the INC shown in Figure 3.5.

Once the application coordinator has completed the INC and generates a checkpoint

with the CRS, it synchronizes the local snapshot to stable storage using the SStore frame-

work. It then notifies the local coordinator (Figure 3.7-D) that in turn notifies the global

coordinator (Figure 3.7-E). The global coordinator then requests the synchronization of the

local snapshots to stable storage using the SStore framework (Figure 3.7-F). The SStore

framework may use the FileM framework, as necessary, to move local snapshots across file

system boundaries. Once these local snapshots have been aggregated and saved to stable

storage the global snapshot reference is returned to the user (Figure 3.7-A).

If a failure occurs during the checkpoint operation and there is no recovery option en-

abled (described in Chapter 4) then the checkpoint sequence number is marked as failed

in the metadata by the SnapC and the job terminates. If the SnapC is terminated before

it can update the metadata, then the metadata is incomplete for that checkpoint sequence

number. On restart incomplete sequence numbers in the metadata are skipped since they
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represent invalid or failed checkpoint operations. Only properly finalized checkpoint se-

quence numbers are used during restart.

9. Performance Results

This section explores the performance of the implementation of the various C/R ca-

pabilities as realized in Open MPI. This section demonstrates the migration of processes

between different network topologies. Additionally, this section looks at the failure-free

overhead, checkpoint latency, and checkpoint overhead in this implementation using a va-

riety of micro-benchmarks and real HPC applications.

Experimental results were generated using the Odin and Sif clusters at Indiana Univer-

sity. Sif is an 8 node Dual Intel 1.86 GHz Quad-Core Xeon machine with 16 GB of memory

per compute node. It is connected with gigabit Ethernet, InfiniBand SDR, and Myrinet 10G.

It is running RedHat Linux 2.6.18-53, BLCR 0.7.3, and a modified version of Open MPI.

Odin is an 128 node, Dual AMD 2.0 GHz Dual-Core Opteron machine with 4 GB of mem-

ory per compute node. Compute nodes are connected with gigabit Ethernet and InfiniBand

SDR. It is running RedHat Linux 2.6.18-53, BLCR 0.8.1, and a modified version of Open

MPI.

In this analysis the benchmarks and applications were ran using half of the available

cores on each of the compute nodes, as to alleviate some of the memory contention on the

nodes. For the compression analysis, the local snapshots were compressed (using gzip) on

the same node as the application process. Future work may assess the benefits of using an

intermediary node to assist in the compression process.

The stable storage overhead discussions primarily used a noop program that can be

configured with a variable sized random matrix to emulate various process sizes. In these

experiments, the noop program was given a 10MB random matrix per process.

In the failure-free overhead analysis, we used the NAS Parallel Benchmarks (NAS) (ver-

sion 2.4) [187] to represent a class of typical HPC application kernels. We used 4 of the

8 kernels, specifically the LU class C, EP class D, BT class C, and SP class C kernels. This

decision was based on two criteria. First the kernel must run for long enough to perform
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the test at 32 or 36 processes on Sif, which meant running for longer than one minute, thus

excluding the IS kernel. Secondly, due to storage space restrictions on the SAN, the kernels

snapshot image must be less than 15 GB in total size, which excluded the MG class C, FT

class D, and CG class D kernels.

We assessed the impact of checkpointing real applications by using GROMACS [270],

Parallel Ocean Program (POP) [146], High-Performance Linpack (HPL) [203], and Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [211] HPC software pack-

ages. GROMACS is a molecular dynamics application. In our analysis of GROMACS, we

used the DPPC benchmark from version 3.0 of their benchmark suite [270]. We assessed

the impact of SStore configurations, including compression, on the POP, LAMMPS, and

HPL HPC software packages. POP is an ocean circulation model [146]. In our analysis of

POP, we used the bench01.tacc benchmark over 5 days of simulation. LAMMPS is a particle

dynamics code that supports a wide variety of simulation techniques applicable to biol-

ogy, chemistry, and material sciences [211]. In our analysis of LAMMPS, we used a scaled

version of the metal benchmark eam involving 11 million atoms over 400 steps. HPL is a

popular dense linear algebra benchmark [203]. In our analysis of HPL, we used a variety

of problem sizes: 40,000 for 64 process, 55,000 for 128 processes, and 70,000 for 192

processes.

9.1. Network Topology Migration. To demonstrate the migration of an MPI applica-

tion between different network topologies we took advantage of the large SMP base of Sif

and forced Open MPI to choose certain network drivers simulating different network config-

urations and availabilities. We used a continuous latency test that measures the time taken

for an 8KB message to travel around a ring of 8 processes. This test allows us to account for

the shared memory and interconnect latency as if they were a single value. The noise on

the Ethernet network seen in Figure 3.8 is caused by administrative traffic on this particular

machine.

In our demonstration we checkpointed and terminated the MPI application every 100

steps. Then we restarted it in a different network topology and let it run for another 100
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FIGURE 3.8. Continuous latency test with 8 processes exchanging an 8KB
message and migrating between different machine configurations. Spikes
indicate time spent on disk between the checkpoint and the subsequent
restart.

steps before checkpointing and terminating it again. The network topology progression in

Figure 3.8 is as follows:

(A) 8 processes on 1 node using shared memory

(B) 8 processes 1 on each of 8 nodes using Ethernet

(C) 8 processes 2 on each of 4 nodes using Ethernet and shared memory

(D) 8 processes 4 on each of 2 nodes using Ethernet and shared memory

(E) 8 processes 1 on each of 8 nodes using InfiniBand

(F) 8 processes 2 on each of 4 nodes using InfiniBand and shared memory

(G) 8 processes 4 on each of 2 nodes using InfiniBand and shared memory

(H) 8 processes on 1 node using shared memory

(I) 8 processes 4 on each of 2 nodes using Myrinet and shared memory

(J) 8 processes 2 on each of 4 nodes using Myrinet and shared memory

(K) 8 processes 1 on each of 8 nodes using Myrinet
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(a) NetPIPE 1 byte latency overhead

Interconnect No C/R With C/R Overhead %
Ethernet (TCP) 49.92 usec 50.01 usec 0.09 usec (0.2%)
InfiniBand 8.25 usec 8.78 usec 0.53 usec (6.4%)
Myrinet MX 4.23 usec 4.81 usec 0.58 usec (13.7%)
Shared Memory 1.84 usec 2.15 usec 0.31 usec (16.8%)

(b) NetPIPE bandwidth overhead

Interconnect No C/R With C/R Overhead %
Ethernet (TCP) 738 Mbps 738 Mbps 0 Mbps (0%)
InfiniBand 4703 Mbps 4703 Mbps 0 Mbps (0%)
Myrinet MX 8000 Mbps 7985 Mbps 15 Mbps (0.2%)
Shared Memory 5266 Mbps 5258 Mbps 8 Mbps (0.2%)

TABLE 3.2. NetPIPE 1 byte latency and bandwidth illustrating CRCP frame-
work failure-free overhead.

9.2. Failure-Free Overhead. Failure-free overhead is the overhead seen by the appli-

cation during normal operations when a failure does not occur. This overhead includes the

time taken by the CRCP protocol monitoring the message traffic, and the additional time to

completion for the application when a checkpoint is taken. One of our goals is to minimize

the failure-free overhead seen by the application.

One assessment of the failure-free overhead is the overhead seen in the latency and

bandwidth parameters between two communicating peers without taking a checkpoint.

This measurement accounts for the overhead of the CRCP framework monitoring the mes-

sage traffic though the system. Using NetPIPE we assessed the latency and bandwidth

effects of wrapping the PML layer in Table 3.2. The NetPIPE results show that the differ-

ences in bandwidth is negligible, and the 1 byte latency is varies between 0.09 and 0.58

microseconds depending on the interconnect.

9.3. Checkpoint Overhead. Another assessment of the failure-free overhead is the per-

formance impact on completion time for an application when various numbers of check-

points are taken. For this assessment we look at checkpointing to both a globally accessible

Network File System (NFS) disk using the central SStore component, and only to the local

disk on each machine using a modified stage SStore component that only saves locally. The
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(a) LU Class C 32 Processes

(b) EP Class D 32 Processes

FIGURE 3.9. Performance impact of checkpointing NAS Parallel Benchmarks
LU and EP to NFS and local disk.

local disk checkpoint time is provided as a basis for comparison in order to highlight the

impact of the file system on the performance of the checkpoint operation.

In Figure 9(a), we look at the effect of checkpointing the NAS Parallel Benchmark LU

Class C with 32 processes. The size of the checkpoint is 1 GB or about 32 MB per process.

For a single checkpoint, Figure 9(a) indicates that there is an overhead of 17% when check-

pointing to NFS and 3% when checkpointing to local disk. For four checkpoints there is

an overhead of 84% and 6%, respectively, highlighting the importance of the stable storage
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(a) BT Class C 36 Processes

(b) SP Class C 36 Processes

FIGURE 3.10. Performance impact of checkpointing NAS Parallel Bench-
marks BT and SP to NFS and local disk.

file system. The checkpoint frequency, or time between checkpoints, for an HPC applica-

tion is typically measured in hours, in these experiments we are forced to checkpoint more

frequently due to the limited runtime of these applications.

In Figure 9(b), we look at the effect of checkpointing the NAS Parallel Benchmark EP

Class D with 32 processes. This benchmark creates a checkpoint of 102 MB, or about 3.2

MB per process. Figure 9(b) shows us that the checkpoint overhead is almost negligible.
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This is due to the small memory footprint and infrequent communication pattern of the

benchmark.

In Figure 10(a), we look at the effect of checkpointing the NAS Parallel Benchmark BT

Class C with 36 processes. The size of the checkpoint is 4.2 GB or about 120 MB per process.

For a single checkpoint, Figure 10(a) indicates an 18% overhead on NFS and 3% overhead

on local disk. For four checkpoints there is a 74% and 8% overhead, respectively.

In Figure 10(b), we look at the effect of checkpointing the NAS Parallel Benchmark SP

Class C with 36 processes. The size of the checkpoint is 1.9 GB or about 54 MB per process.

For a single checkpoint, Figure 10(b) indicates a 17% overhead on NFS and 3% overhead

on local disk. For four checkpoints there is a 69% and 6% overhead, respectively.

Next, we assess the performance impact of checkpointing GROMACS with the DPPC

benchmark running with 8 and 16 processes. This benchmark creates a checkpoint of

267MB for 8 processes, or about 33MB per process. For 16 processes the checkpoint is

473MB or 30MB per process. The overhead of adding the CRCP layer is negligible, adding

at most 1 second to the application runtime for both 8 and 16 processes. Figure 3.11

shows that the performance impact of checkpointing with between one and four check-

points spaced evenly throughout the execution. The performance impact grows with each

checkpoint, but is relatively small for any single checkpoint.

9.4. Checkpoint Overhead Analysis. Analyzing the impact of checkpointing on HPC

applications is important. It is equally important that the checkpoint overhead is dissected

to determine where the checkpoint is spending the most time. In this analysis we split

the pre-checkpoint phase into two phases: CRCP Protocol and Suspend BTLs. The former

is the Checkpoint/Restart Coordination Protocol (CRCP) and the latter is the time spent

suspending interconnect drivers. We expect the time to suspend the Ethernet and shared

memory networks to be near zero since no action is taken during the pre-checkpoint phase.

Since InfiniBand and Myrinet each have to tear down their network connections, they each

are required to spend some time during the suspend phase. The CRCP Protocol time can

vary slightly depending on when processes enter into the coordination algorithm and if the
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(a) 8 Processes

(b) 16 Processes

FIGURE 3.11. Performance impact of checkpointing 8 and 16 processes with
GROMACS DPPC to NFS and local disk.

process is forced to wait on messages to drain from the network. To control for process

skew, in this particular analysis, we introduced a barrier between each of the individual

operations highlighted in this analysis.

The checkpoint operation is the time it takes BLCR to save the process image to stable

storage using the central SStore component. During the continue phase Open MPI may have

to rebuild the PML by re-exchanging the modex, which is an all-to-all collective operation

involving all processes in the application.
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lu.C.32 Ethernet InfiniBand Myrinet
& Shmem & Shmem & Shmem

CRCP Protocol 0.01 sec (0.0%) 0.02 sec (0.1%) 0.02 sec (0.1%)
Suspend BTLs 0.02 sec (0.1%) 0.04 sec (0.2%) 0.02 sec (0.1%)
Checkpoint 17.00 sec (99.9%) 18.43 sec (99.3%) 16.81 sec (99.2%)
Rebuild PML 0.00 sec (0%) 0.08 sec (0.4%) 0.10 sec (0.6%)
Total 17.03 sec 18.57 sec 16.95 sec

TABLE 3.3. Checkpoint overhead analysis for NAS Parallel Benchmark LU
Class C with 32 processes using the central SStore component. Global snap-
shot is 1GB or 32MB per process.

ep.D.32 Ethernet InfiniBand Myrinet
& Shmem & Shmem & Shmem

CRCP Protocol 0.10 sec (8.8%) 0.09 sec (3.4%) 0.09 sec (5.4%)
Suspend BTLs 0.02 sec (1.8%) 0.03 sec (1.1%) 0.03 sec (1.8%)
Checkpoint 1.02 sec (89.5%) 2.04 sec (76.1%) 1.03 sec (61.3%)
Rebuild PML 0.00 sec (0%) 0.52 sec (19.4%) 0.53 sec (31.5%)
Total 1.14 sec 2.68 sec 1.68 sec

TABLE 3.4. Checkpoint overhead analysis for NAS Parallel Benchmark EP
Class D with 32 processes using the central SStore component. Global snap-
shot is 102MB or 3.2MB per process.

bt.C.32 Ethernet InfiniBand Myrinet
& Shmem & Shmem & Shmem

CRCP Protocol 0.04 sec (0.1%) 0.07 sec (0.1%) 0.06 sec (0.1%)
Suspend BTLs 0.02 sec (0.0%) 0.08 sec (0.1%) 0.03 sec (0.0%)
Checkpoint 67.71 sec (99.9%) 68.39 sec (99.63%) 69.28 sec (99.7%)
Rebuild PML 0.00 sec (0%) 0.11 sec (0.2%) 0.12 sec (0.2%)
Total 67.76 sec 68.65 sec 69.49 sec

TABLE 3.5. Checkpoint overhead analysis for NAS Parallel Benchmark BT
Class C with 36 processes using the central SStore component. Global snap-
shot is 4.2GB or 120MB per process.

In Table 3.3, we look at the overhead involved when checkpointing the LU Class C NAS

parallel benchmark. In Table 3.4, we look at the overhead involved for the EP Class D NAS

parallel benchmark. In Table 3.5 and Table 3.6, we look at the overhead involved when

checkpointing the BT and SP Class C NAS parallel benchmarks, respectively. For all of these
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sp.C.32 Ethernet InfiniBand Myrinet
& Shmem & Shmem & Shmem

CRCP Protocol 0.02 sec (0.1%) 0.03 sec (0.1%) 0.12 sec (0.4%)
Suspend BTLs 0.02 sec (0.1%) 0.08 sec (0.3%) 0.03 sec (0.1%)
Checkpoint 29.76 sec (98.9%) 33.02 sec (99.4%) 32.19 sec (99.2%)
Rebuild PML 0.00 sec (0%) 0.09 sec (0.3%) 0.12 sec (0.4%)
Total 29.80 sec 33.21 sec 32.45 sec

TABLE 3.6. Checkpoint overhead analysis for NAS Parallel Benchmark SP
Class C with 36 processes using the central SStore component. Global snap-
shot is 1.9GB or 54MB per process.

GROMACS DPPC Ethernet InfiniBand Myrinet
& Shmem & Shmem & Shmem

CRCP Protocol 0.01 sec (0.2%) 0.02 sec (0.4%) 0.04 sec (0.8%)
Suspend BTLs 0.01 sec (0.2%) 0.01 sec (0.2%) 0.01 sec (0.2%)
Checkpoint 4.76 sec (99.6%) 5.24 sec (98.4%) 4.95 sec (97.8%)
Rebuild PML 0.00 sec (0%) 0.05 sec (1.0%) 0.06 sec (1.2%)
Total 4.78 sec 5.32 sec 5.06 sec

TABLE 3.7. Checkpoint overhead analysis for GROMACS DPPC running with
8 processes using the central SStore component. Global snapshot is 267MB
or 33MB per process.

GROMACS DPPC Ethernet InfiniBand Myrinet
& Shmem & Shmem & Shmem

CRCP Protocol 0.01 sec (0.1%) 0.02 sec (0.2%) 0.02 sec (0.3%)
Suspend BTLs 0.03 sec (0.4%) 0.04 sec (0.5%) 0.02 sec (0.3%)
Checkpoint 8.07 sec (99.5%) 7.88 sec (98.4%) 7.48 sec (97.9%)
Rebuild PML 0.00 sec (0%) 0.07 sec (0.9%) 0.12 sec (1.6%)
Total 8.11 sec 8.01 sec 7.64 sec

TABLE 3.8. Checkpoint overhead analysis for GROMACS DPPC running with
16 processes using the central SStore component. Global snapshot is 473MB
or 30MB per process.

benchmarks we can see that the time to create the checkpoint and save it to the central

stable storage device dominates the checkpoint time. This is closely followed by the time

needed to re-exchange the modex during the continue phase. The overhead of the CRCP is

a factor, but not quite as severe as the time spent in the checkpoint and modex operations.
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FIGURE 3.12. This illustrates the performance affect of the central, stage,
and stage with compression SStore components on application latency. Ap-
plication latency determined by a continuous latency application using 64
processes exchanging an 8KB message in a ring topology.

In Tables 3.7 and 3.8, we analyze the overhead involved when checkpointing the GRO-

MACS DPPC benchmark with 8 and 16 processes, respectively. This data confirms what was

seen with the NAS benchmarks, most notably that the time taken by the CRCP is overshad-

owed by the time needed to store the snapshots to stable storage.

9.5. SStore Overhead. In this section we assess checkpoint overhead by measuring

the impact of various stable storage strategies on application performance. We used a

continuous latency test that measures the time taken for an 8KB message to travel around

a ring of 64 processes on Odin. With this test we are able to both illustrate the impact of

the stable storage strategy on the application, and to measure the impact of the checkpoint

overhead. Figure 3.12 illustrates the impact of using the following SStore components:

• central

• stage

• stage with compression enabled

The central SStore component adds approximately 1018 microseconds of half round-trip

point-to-point latency overhead across the checkpoint operation which takes 11.1 seconds.

The stage SStore component adds approximately 244 microseconds of overhead spread over
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21 steps of computation. The checkpoint took 8.3 seconds, spending only 0.8 seconds es-

tablishing the local snapshot on the local disk, and 7.4 seconds staging the local snapshots

back to stable storage. The compression enabled stage SStore component adds approxi-

mately 257 microseconds of overhead spread over 4 steps of computation. The checkpoint

took 4.1 seconds, spending only 0.7 seconds establishing the local snapshot, and 2.7 sec-

onds staging the local snapshots back to stable storage.

Compression adds slightly more to the checkpoint overhead in comparison with the

default stage component, but reduces the duration of the effect. The checkpoint latency is

reduced from 8.3 to 4.1 seconds by enabling compression, since this application is highly

compressible as it resembles the compression rate of the noop application presented in

Table 3.9

The checkpoint latency is reduced from 11.1 to 8.3 seconds by switching from the di-

rect central storage (i.e., central) to the staging protocol (i.e., stage). Often this reduction

in checkpoint latency is caused by the flow control in the stage SStore and rsh FileM com-

ponents which constrains the number of concurrent files in flight to 10, by default. The

flow control focuses the write operations so that only a subset of the nodes are using the

bandwidth to stable storage at the same time instead of all nodes fighting for the same

exhausted bandwidth.

The performance impact on the application runtime for the various SStore component

configurations is shown in Figure 13(a) for POP, Figure 13(b) for LAMMPS, and Fig-

ure 13(c) for HPL. All of these figures demonstrate that the stage SStore component is

an improvement over the central component, especially for large checkpoint sizes. Inter-

estingly, the compression enabled stage component may slightly improve the checkpoint

overhead in comparison with the default stage component. Since the compression occurs

on-node and competes for computational cycles, one might expect the opposite effect. How-

ever, if the application is sufficiently compressible, the overhead involved in checkpointing

is regained by reducing the time to establish the checkpoint to stable storage, reducing the

overall impact of checkpointing on the network and application.



3. CHECKPOINT/RESTART INFRASTRUCTURE 79

 0

 50

 100

 150

 200

 250

 300

 350

 400

 64  128  192
To

ta
l A

pp
lic

at
io

n 
Ti

m
e 

(s
ec

)

Number of Processes

No Ckpt
Stage/Zip

Stage
Central

(a) POP

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 64  128  192

To
ta

l A
pp

lic
at

io
n 

Ti
m

e 
(s

ec
)

Number of Processes

No Ckpt
Stage/Zip

Stage
Central

(b) LAMMPS

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100

 64  128  192

To
ta

l A
pp

lic
at

io
n 

Ti
m

e 
(s

ec
)

Number of Processes

No Ckpt
Stage/Zip

Stage
Central

(c) HPL

FIGURE 3.13. Checkpoint overhead impact of various SStore components
on three HPC applications: POP, LAMMPS, HPL.

9.6. Compression. Checkpoint compression can improve checkpoint latency by reduc-

ing the amount of data that needs to traverse the network to and from stable storage. The

benefits of compression, in terms of improving checkpoint latency, is determined by how
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NP Application Performance (sec.)
Central Stage (%) Zip (%)

64 0.00 0.00 ( 0.0 %) 0.00 ( 0.0 %)
128 0.00 0.00 ( 0.0 %) 0.00 ( 0.0 %)
192 0.00 0.00 ( 0.0 %) 0.00 ( 0.0 %)
NP Checkpoint Latency (sec.)

Central Stage (%) Zip (%)
64 10.3 7.6 ( 25.8 %) 4.4 ( 57.5 %)
128 21.8 17.7 ( 18.8 %) 6.9 ( 68.4 %)
192 40.9 28.9 ( 29.5 %) 11.7 ( 71.4 %)
NP Compression Rate (MB)

Normal Zip %
64 258.5 21.0 91.9 %
128 593.8 48.3 91.9 %
192 1167.4 93.3 92.0 %

TABLE 3.9. Effects of staging and compression on application performance
and checkpoint overhead on the noop application.

well the processes address space represented in the local snapshot can be compressed. If

the checkpoint does not compress well then this can negate much or all of the benefits of

including compression in the staging pipeline. The checkpoint overhead may also increase

since, if the compression occurs on the same machine as the process in execution, the two

processes could compete for CPU cycles. In order to access the impact of compression on

the checkpoint overhead and latency we looked at four applications.

As a baseline number we looked at benchmarking the noop program with zero addi-

tional bytes of data, effectively a “hello world” style MPI program. Table 3.9 presents the

experimental data showing considerable improvements in the checkpoint latency when en-

abling compression. Since the checkpoint is 92% compressible the checkpoint latency is re-

duced by 71.4% for a 192 process MPI job. Since the noop program waits until it is signaled

to finish the Application Performance numbers are not meaningful for this application.

Next we consider the effect of compression on the metal benchmark for the LAMMPS

software package. Table 3.10 shows that compression can reduce the size of the LAMMPS

global snapshot by up to 67% from 5.3 GB to 1.7 GB reducing not only the checkpoint
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NP Application Performance (sec.)
Central Stage (%) Zip (%)

64 567.51 513.49 ( 9.5 %) 514.97 ( 9.3 %)
128 342.29 293.13 ( 14.4 %) 277.10 ( 19.0 %)
192 277.34 194.26 ( 30.0 %) 183.67 ( 33.8 %)
NP Checkpoint Latency (sec.)

Central Stage (%) Zip (%)
64 69.1 77.3 (-11.9 %) 38.0 ( 45.1 %)
128 87.1 90.7 ( -4.1 %) 36.7 ( 57.9 %)
192 107.1 104.1 ( 2.7 %) 35.8 ( 66.6 %)
NP Compression Rate (MB)

Normal Zip %
64 4029.4 1474.6 63.4 %
128 4638.7 1781.8 61.6 %
192 5427.2 1786.9 67.1 %

TABLE 3.10. Effects of staging and compression on application performance
and checkpoint overhead on the LAMMPS application.

NP Application Performance (sec.)
Central Stage (%) Zip (%)

64 310.69 294.62 ( 5.2 %) 293.12 ( 5.7 %)
128 327.74 297.88 ( 9.1 %) 296.99 ( 9.4 %)
192 269.96 222.27 ( 17.7 %) 221.10 ( 18.1 %)
NP Checkpoint Latency (sec.)

Central Stage (%) Zip (%)
64 19.7 13.8 ( 29.9 %) 6.1 ( 69.0 %)
128 35.3 27.9 ( 20.8 %) 8.5 ( 75.8 %)
192 53.6 39.8 ( 25.9 %) 14.8 ( 72.3 %)
NP Compression Rate (MB)

Normal Zip %
64 609.3 106.2 82.6 %
128 1105.9 144.5 86.9 %
192 1802.2 205.9 88.6 %

TABLE 3.11. Effects of staging and compression on application performance
and checkpoint overhead on the POP application.

latency by 67%, but also the amount of stable storage disk space required to store the

checkpoint.
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NP Application Performance (sec.)
Central Stage (%) Zip (%)

64 452.25 300.81 ( 33.5 %) 302.68 ( 33.1 %)
128 692.32 457.59 ( 33.9 %) 458.06 ( 33.8 %)
192 1020.76 628.66 ( 38.4 %) 617.15 ( 39.5 %)
NP Checkpoint Latency (sec.)

Central Stage (%) Zip (%)
64 182.4 218.3 (-19.7 %) 237.2 (-30.1 %)
128 301.8 371.6 (-23.1 %) 347.4 (-15.1 %)
192 493.8 561.8 (-13.8 %) 551.0 (-11.6 %)
NP Compression Rate (MB)

Normal Zip %
64 13557.8 13020.2 4.0 %
128 24581.1 23234.6 5.5 %
192 40105.0 37411.8 6.7 %

TABLE 3.12. Effects of staging and compression on application performance
and checkpoint overhead on the HPL application.

Next we consider the effect of compression on the bench01.tacc benchmark of the POP

software package. Table 3.11 shows that compression reduces the size of the global snap-

shot by up to 89% and the checkpoint latency by up to 76% constituting considerable

savings for this application.

Finally we consider the effect of compression on the HPL software package. Table 3.12

shows that compression only reduces the size of the global snapshot by up to 7%. Due to

the low compression rate and the large checkpoint size the checkpoint latency increases,

but the checkpoint overhead is reduced by up to 40%. All of the application studies show

that the checkpoint overhead can be reduced by using a staging approach to stable storage

in place of a direct approach.

10. Conclusion

This chapter introduced six of the seven C/R capabilities that compose to form a C/R

solution for MPI applications on HPC systems. These six capabilities were realized in the
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Open MPI implementation of the MPI standard and support basic C/R fault tolerance activ-

ities. Using these capabilities we explored the performance implications of C/R on a variety

of real HPC applications including HPL, POP, LAMMPS, NAS, and GROMACS.

We demonstrated low failure-free overhead and the ability to restart on different inter-

connects than when checkpointed. We investigated the performance implications of SStore

implementation choices after demonstrating that it can represent up to 98% of the check-

point overhead. By using a staging SStore technique and compression we were able to

improve the checkpoint overhead and latency of our solution for real MPI applications.



4
Process Migration and Automatic Recovery

Resilient applications (i.e., applications that can continue to run despite process failure) de-

pend on resilient runtime and communication environments to sustain them across process

failures. In typical HPC environments, communication is provided to the application by

an MPI implementation [178]. Process launch, monitoring, and cleanup is provided either

by the corresponding MPI runtime or by a system-provided runtime. Therefore, a resilient

MPI implementation depends on a stable and recoverable runtime environment that can

sustain both the MPI implementation and the application. Unfortunately, resilient runtime

environments and resilient MPI implementations are uncommon today. As a result, even

applications that are designed to be resilient are forcibly removed from the system upon

process failure.

84
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The six capabilities presented in Chapter 3 form the foundation of a coordinated C/R

infrastructure which provides basic fault tolerance support for MPI applications running on

HPC systems. In this chapter we introduce the seventh capability, Error Management and

Recovery Policy (ErrMgr), which enables resilient runtime and communication environ-

ments to support resilient MPI applications [134]. The ErrMgr capability encapsulates the

various recovery policies that are supported on the system. The application can then choose

an appropriate subset of those policies to support the application’s reliability requirements.

Ideally, the application will be able to choose more than one process fault recovery policy

at runtime to best tailor the recovery policy solution.

We also discuss three currently available recovery policy options implemented as part

of Open MPI’s ErrMgr framework: run-through stabilization, automatic process recovery, and

preemptive process migration. Run-through stabilization supports continuing research into

fault tolerant MPI semantics allowing the application to continue running without requiring

the recovery of lost processes. Automatic process recovery recovers failed processes in-place

using a previously established checkpoint without having to resubmit the job. Preemptive

process migration uses the C/R infrastructure to transparently move processes between

resources during normal execution.

A logical stable storage device represented by the SStore capability provides recovery

policies with a reliable location to place recovery information during normal execution that

can be later used during recovery. The implementation of the stable storage device can

have considerable impact on both the failure-free and recovery performance overheads of

a recovery policy. Accordingly, this chapter analyses the recovery performance tradeoffs for

various stable storage strategies including staging, caching, and compression.

1. Error Management and Recovery Policy

The Error Management and Recovery Policy (ErrMgr) capability encapsulates the vari-

ous recovery policies supported on a system. It provides an application with the ability to

select a set of process fault recovery policies that best support the application on a given sys-

tem. Examples of process fault recovery policies include run-through stabilization, proactive
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process migration, automatic recovery from a previous checkpoint, and switching to use a

replica process. The ErrMgr capability should work with either an external or internal fault

notification service. The notification service will inform the ErrMgr of a process failure that

it may or may not already be aware of. A good implementation of the ErrMgr capability

would allow for the fail-over of one recovery onto another. For example, this would allow

for two recovery policies to work together to provide a light-weight and heavy-weight pol-

icy. The light-weight recovery policy handles small groups of concurrent failures, and then

defer to the heavy-weight recovery policy that can handle a larger groups of concurrent

failures.

Individual recovery policies may interact with other capabilities in an implementation.

Since the process migration and automatic recovery ErrMgr policies are based in C/R they

will interact directly with the SnapC and SStore capabilities to help them migrate and re-

cover lost processes in the system.

2. Error Management and Recovery Policy Implementation

In Open MPI, we extended the existing ErrMgr framework to support a variety of recov-

ery policies. Before this extension, the ErrMgr framework provided processes and daemons

a stable interface to report process and communication failure so that the proper job abort

procedure could be taken. Since recovery is a non-MPI-standard feature, the new ErrMgr

framework preserves, by default, the termination of the job upon process failure. We have

implemented the following, optional, process fault recovery policies in the new ErrMgr

framework: runtime stabilization, automatic recovery, process migration.

The Open MPI ErrMgr framework unites individual recovery policies and techniques

explored in previous research [92, 144] to support a wide range of policies in a more

extensible manner. This unique framework allows policies to be composed in a customizable

and interdependent manner so applications can choose from a wide range of recovery policy

options instead of just one, as with most previous contributions.

The ErrMgr framework is a composite framework that allows more than one recovery

policy component to be active at the same time. Active components stack themselves in
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priority order and use a status vector to communicate actions taken by a component higher

in the stack to a component lower in the stack. The status vector is implemented as a

bit field that can be inspected and modified in an ErrMgr framework defined manner. If

the status vector indicates that no active component was able to recover from a process

failure, it activates the job abort procedure. Lighter-weight recovery policies should be

ordered higher in the stack than heavier-weight policies. This provides the lighter-weight

polices the first opportunity to recover from the failure. If it is able to recover from the

process failure, it then sets the appropriate bit in the status vector before passing it down the

stack. Lower levels check the status vector before taking any action necessary regarding the

process failure. The composable nature of the ErrMgr framework implementation in Open

MPI is used by the process migration component to fail-over onto the automatic recovery

component when it sees an unexpected failure during a process migration operation. A

nice side effect of the composable framework design is that it reduces the recovery policy

development burden by supporting and encouraging code reuse.

Fault detection in Open MPI is currently communication and, optionally, heartbeat

based. The structure of the detection is determined by the Routed framework. Often the

HNP watches the daemons, and the daemons watch the processes on their local machine.

If an MPI process detects process failure (i.e., by way of communication timeouts or er-

rors) it reports a process fault to the ErrMgr framework. The Notifier provides a generic

interface for internal and external event notification. The ErrMgr works in concert with

the Notifier framework to propagate the internally detected fault throughout the system.

Reciprocally, the Notifier translates external fault events into properly formatted events for

the ErrMgr framework. The external fault events could be generated by a system-provided

fault monitoring and detection services like the CIFTS FTB [122].

The current set of ErrMgr components decide globally how to recover from a failure, so

all fault events are forwarded to the ErrMgr components active in the HNP process. The

HNP process serves as a global leader in the recovery operation since it makes all decisions

about the state of the system and how to recover it. It should be noted that even though
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the current set of components rely on a global leader, the ErrMgr framework is designed to

be general enough to support a more localized or distributed recovery policy.

3. Runtime Stabilization ErrMgr Component

The default behavior of the ErrMgr framework is to terminate the entire MPI job upon

the detection of process failure. The sustain ErrMgr component provides an application the

ability to choose to run-through the process failure by, instead of terminating the job, simply

stabilizing the runtime environment and continuing execution.

The Routed, GrpComm, and RML frameworks have been extended to include interfaces

for the ErrMgr to notify them of process failure for framework- and component-level stabi-

lization. The individual components are then responsible for recovering from the failure.

If the component cannot recover from the loss, indicating an unrecoverable runtime, it can

return an error value which will terminate the job.

MPI processes always route ORTE layer out-of-band communication through their local

daemon. Therefore, to reduce the per process recovery overhead, the daemon contains

the bulk of the recovery logic for re-routing, delaying or dropping communication around

recovery from process loss. Dropped communication will return as a communication error

to the sending or receiving process.

As part of the runtime stabilization an up-call is made available to the OMPI layer from

the ErrMgr component to indicate that a process has been lost and that the OMPI layer

stabilization and recovery procedures should be activated. Stabilization at the OMPI layer

often includes, but is certainly not limited to, flushing communication buffers involving the

failed peer(s), activating error handlers and error reporting paths back to the application,

and stabilizing communicator and other opaque MPI data structures. The semantics for how

MPI functions behave across process failure is still an active area of research and is currently

under consideration by the Fault Tolerance Working Group in the MPI Forum [182]. The

ErrMgr framework was designed to support this effort by providing well-defined stabiliza-

tion procedures for the runtime environment. The OMPI layer builds upon the stabilized

runtime to support research into MPI fault tolerance semantics.
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In [119], Gropp and Lusk described how a manager/worker style MPI program might

recover from process loss by using intercommunicators and forgetting about communica-

tors to lost processes. As an extension to their work, the manager process could decide,

after stabilization, to create replacement processes using the dynamic process management

(e.g., MPI COMM SPAWN) interfaces which create intercommunicators between the manager

and a new group of worker processes. If the manager is recovering from many failures it

will want to overlap the creation of replacement processes with other computation. Since

the current dynamic process creation interfaces are all blocking interfaces, the manager

must block for each process recovery, or use a separate recovery thread to gain this type of

concurrency. We have proposed a nonblocking process creation interface that would allow

the manager process to request processes to be created without blocking. The manager

can then wait for completion of the process creation requests alongside waiting for comple-

tion of normal work units from non-faulty workers. Appendix D describes the nonblocking

process management interfaces currently under consideration by the MPI Forum.

4. Automatic Recovery ErrMgr Component

Instead of running through a failure, the application may choose to recover from the

loss by automatically recovering from the last established global snapshot of the application

by enabling the autor ErrMgr component. When autor ErrMgr component is notified of a

process failure, by default, it places a failed process on a different node than the one it

resided on before the failure. This avoids repeated failures due to node-specific component

failure that may have caused the original process failure. Figure 4.1 illustrates a single

process recovery in Open MPI.

Since this implementation of automatic recovery is based in a coordinated C/R imple-

mentation, all processes must be restarted from a previously established global snapshot in

order to provide a consistent state on recovery. The autor component works with the active

SnapC component to restart a failed job. Depending on the SStore component active in

the application, the local snapshots may be pulled directly from logically centralized stable

storage or staged to node-local storage before restart. If there is a locally cached copy of
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Node A

Node B

P1

P0

P3

P2
(Failure)

FIGURE 4.1. Four MPI processes running on two machines using the C/R
functionality in Open MPI to periodically checkpoint the application (white
squares indicate checkpoints). Process 2 fails unexpectedly and all of the
processes are automatically, transparently rolled back to their last checkpoint
and continue execution using the autor ErrMgr component.

the local snapshot, a process can improve recovery time by using the cached copy to reduce

the performance bottleneck in central storage.

If, for some reason, the autor ErrMgr component is not able to recover the job, and no

other component is active, then the job aborts. If the stabilize component is active, then the

runtime will be stabilized and an error will be returned to the application. This allows an

application rely on transparent recovery up to the point it is no longer feasible, and then

fall back on an application-involved approach.

5. Process Migration ErrMgr Component

When a process or node failure is anticipated, the ErrMgr components are notified via

the predicted fault() interface. This interface provides the ErrMgr components with a

list of anticipated process and node faults reported by an external fault prediction service or

system administrator usually through the Notifier framework. The external fault prediction

service can express with each prediction both an assurance level, and an estimated time

bound. The estimated time bound allows the process migration ErrMgr component, crmig,

to tell if it has enough time to migrate the processes or if it should defer to the autor

component for failure recovery. The ability to fail-over on the autor component is provided

by the composable design of the ErrMgr framework. The ompi-migrate tool provides a
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Node A

Node B

Node C

P1

P0

P3

P2

P3

P2

FIGURE 4.2. Four MPI processes running on two machines using the check-
point/restart functionality in Open MPI to periodically checkpoint the ap-
plication (white squares indicate checkpoints). The system administrator
identifies Node B as going down for maintenance. Open MPI transparently
checkpoints the processes running on that machine and migrates them to
Node C and continues execution using the crmig ErrMgr component.

command line interface for end users to request a process migration within a running MPI

application, described in Chapter 3 and Appendix B. Figure 4.2 illustrates the migration of

two processes in Open MPI.

The ompi-migrate command line interface allows an end user the opportunity to pro-

vide a suggested list of target nodes to use as replacements for the affected nodes. The

RMapS framework uses the suggest map targets() interface to allow the ErrMgr compo-

nents the opportunity to suggest nodes for each recovering process. The ability to suggest

destination nodes allows a system administrator, for example, to move processes from a set

of nodes going down for maintenance to a set of nodes dedicated to the process for the

duration of the maintenance activity. This tool also allows end users to experiment with

using process migration for load balancing since they can also specify specific process ranks

in MPI COMM WORLD instead of just nodes for migration. The process migration API,

provided as part of the Open MPI Extended Interface, allows the application to migrate
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processes within a communicator. This API is described in more detail in Chapter 5 and

Appendix A.

The crmig ErrMgr component implements an eager copy process migration protocol with-

out residual dependencies based on the coordinated C/R infrastructure in Open MPI. This

component works with the SnapC component to only checkpoint the migrating processes.

All other processes are paused after the checkpoint coordination. The migrating processes

are restarted on their replacement nodes using the SStore and FileM components as neces-

sary. Then the non-migrating processes are released and computation is allowed to resume.

Future work may explore other process migration protocols like pre-copy [257, 277] and

quasi-asynchronous [66].

If an unexpected failure occurs during process migration, then the migration is canceled

and the autor component is allowed to recover the job from the last fully established global

snapshot. If the autor component is not active, and no other recovery policy is enabled, then

the job will terminate.

6. Performance Results

The experimental setup is the same as in Chapter 3. This section presents an analysis

of the affect of stable storage configuration on recovery policy performance. These experi-

ments were conducted on Odin machine at Indiana University.

6.1. Automatic Recovery. In this section we assess the performance of the automatic

recovery ErrMgr component, autor, for various SStore component configurations. For this

assessment, we used the noop application to focus our investigation. The noop application

is a naturally quiescent application (since it does not explicitly communicate) with a fixed

process size that allowed us to focus the analysis on the automatic recovery specific over-

heads. In this experiment failed processes were placed on different nodes than the ones

they resided on before the failure. Processes are forcibly terminated by sending SIGKILL to

the target processes from an external agent.
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FIGURE 4.3. Performance impact of various SStore component configura-
tions on automatic recovery.

First, we assessed the performance implications of automatically recovering from a sin-

gle process failure for various job sizes restarting on spare machines in the allocation. Fig-

ure 3(a) presents the effect of using the following configurations of SStore components for

automatic recovery:

• central

• stage

• stage with compression enabled

• stage with caching enabled
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From Figure 3(a), we can see that cache enabled stage component has drastic perfor-

mance benefits as the job size increases, providing constant a recovery time of approxi-

mately 3 seconds. Caching reduces the recovery pressure on stable storage by allowing the

non-failed processes to restart from the node-local storage while only the failed processes

are forced to stage-in their local snapshots from stable storage.

The central component outperforms the cache enabled stage component for small job

sizes. This is because even with a caching enabled stage component the failed processes

must copy the local snapshot to the node-local storage before restarting from it. This is in

contrast to the central component which avoids the copy to node-local storage by directly

referencing the local snapshot. Notice also that the compression enabled stage component

begins to outperform the default stage configuration at larger job sizes since it is reducing

the amount of data being transferred between the stable storage device and node-local

storage.

Figure 3(b) presents checkpoint latency for a variety of concurrent failures in a fixed

size job, in this case 64 processes. The time to recover the job is not changed by the number

of failures since for all of the non-cache enabled SStore components the entire job is termi-

nated and recovered from stable storage. The main variable in Figure 3(b) is the recovery

time when caching is enabled. We can see that caching continues to provide performance

benefits up to about half of the job failing, at which point the central component begins to

perform better.

Interestingly, even up to 62 concurrent process failures a caching enabled stage compo-

nent still performs better than the default stage component. This indicates that even with

a few processes taking advantage of the node-local cache, in this case two processes, there

are still performance benefits to not further stressing the stable storage device.

If we allow failed processes to be restarted on the node in which they previously failed,

the benefits of caching becomes even more significant. The time to restart becomes approx-

imately 1.5 seconds regardless of the number of concurrent failures or the job size. This

is a slightly unrealistic use case for typical deployments since processes that crash due to

node failure often cannot access the original node from which to restart. However, this is
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an interesting data point for future investigations into peer-based, node-local storage that

eliminates or reduces the need for logically centralized stable storage devices, confirming

much of the previous literature [5, 36].

6.2. Process Migration. In this section we assess the performance of the eager copy

process migration ErrMgr component, crmig. As in Section 6.1, we are using the noop ap-

plication to focus the analysis of the performance overheads involved in process migration.

In this experiment, processes were migrated from a source set of machines to a destination

set of machines that were distinct from the source set. So in this experiment, caching will

not provide any benefit since the source node is never the same as the destination node for

any of the migrating processes.

Process migration is often used to move an entire node’s worth of processes in anticipa-

tion of a node failure. With this use case in mind, we assessed the performance impact of

migrating two processes while varying the size of the MPI job.

In Figure 4(a), we can see that the central component performed better than the ei-

ther of the stage component configurations. Looking at the breakdown in Figure 4(b) we

see that the time to restart the processes remains fairly constant regardless of the job size

among each SStore component. This is due to the relatively low bandwidth requirement

of pulling two local snapshots from stable storage. The significant difference comes in the

time to stage the local snapshot to and from stable storage. The reduction in the checkpoint

overhead is beneficial when checkpointing for fault recovery, but contributes additional

overhead to the process migration performance.

Process migration is limited by the time to move the checkpoint from the source to

the destination system. Both the central and stage SStore components rely on a logically

centralized stable storage device. As such, they copy the local snapshot to the stable storage

device from the source machine then immediately copy it back from stable storage to the

destination machine. As future work we may investigate direct copy techniques that remove

the logically centralized stable storage device from the process migration procedure. Our

discussion in this section focuses on the performance implications of two common stable
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FIGURE 4.4. Performance impact of various SStore component configura-
tions on process migration on a range of job sizes.

storage techniques provided by C/R enabled MPI implementations. So for a small number

of migrating processes, the central component requires the least number of copies during the

migration, and given the limited bandwidth requirements of migrating only two processes

this SStore component is the best performance option.

Next we assessed the performance implications of process migration by varying the

number of migrating processes for a fixed size job, in this case 64 processes. Figure 5(a)

shows that as the number of processes migrating are increased, the compression enabled

stage component begins to outperform the default stage component, and approaches the

performance of the central SStore component. If we look at the breakdown of the migration
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FIGURE 4.5. Performance impact of various SStore component configura-
tions on process migration on a range of migrating processes in a 64 process
job.

overhead in Figure 5(b), we can see that the time to checkpoint increases as we increase

the number of migrating processes, since we are checkpointing more processes and putting

more pressure on the bandwidth to stable storage. Reciprocally, we can see the time to

restart the migrating processes increases as the number of migrating processes increases.

So, it makes sense that the compression enabled stage component begins to approach the

performance of the central component since it reduces the amount of data traveling over

the network to and from stable storage.
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7. Conclusion

This chapter presented the seventh and final C/R capability, the Error Management and

Recovery Policy (ErrMgr). The ErrMgr encapsulates the recovery policies available in the

system. We discussed how the composable design of the ErrMgr implementation in Open

MPI allows for recovery policy fail-over. We analyzed the affect of stable storage configu-

rations on recovery performance. We found that caching local snapshots significantly im-

proves the performance of automatic recovery. We highlighted the scalability implications

of various SStore solutions and recovery policies.



5
Application Interaction

Previous chapters have focused on presenting capabilities that form a transparent, coor-

dinated C/R solution for MPI applications on HPC systems. Application-transparent tech-

niques can greatly benefit from even minimal application interaction in the form of guid-

ance. For example, applications can identify temporary buffers that can be removed from

the checkpoint or highlight regions of program execution where the state is minimal or

naturally synchronized. Applications can also benefit by directly interacting with the C/R

infrastructure to determine not only when to checkpoint, but also when and where to mi-

grate for fault avoidance or load balancing. In this chapter, we introduce application and

debugger APIs that expose the underlying C/R features to the end user. All of the inter-

faces presented in this chapter are optional for the application, but provide the application

99
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// Request a Checkpoint
int OMPI CR CHECKPOINT(char ∗∗handle, int ∗seq, MPI Info info);
// Request a Restart
int OMPI CR RESTART(char ∗handle, int seq, MPI Info info);

FIGURE 5.1. Open MPI Checkpoint and Restart APIs.

with the opportunity to have greater influence on when and how C/R-related activities are

executed in the system.

Section 1 focuses on an API for the application. Section 2 focuses on an API for parallel

debuggers which operate transparently to the application.

1. Application Programming Interface

This section focuses on optional, non-MPI-standard APIs for the application. These are

not part of the MPI standard, so are implemented as part of the Open MPI Extended Inter-

faces. As such they are prefixed with OMPI CR . Though many of the interfaces provide

an optional info argument, no keys are defined at this time except for the migration API.

Examples and further details are provided in Appendix A.

1.1. Checkpoint and Restart Requests. The application can request a checkpoint of

the application by using the OMPI CR CHECKPOINT API, seen in Figure 5.1. The check-

point API allows an application to request a checkpoint when convenient to the application;

for example, when the application is in a minimal or naturally synchronized point in time

in order to, potentially, reduce the checkpoint overhead.

Additionally, the application can request to restart itself by using the OMPI CR RESTART

API, also seen in Figure 5.1. The restart interface allows an application to return the compu-

tation to a previously established checkpoint in order to work around application-detected

faults. For example, this interface is useful for an application that can detect a process

behaving in a Byzantine faulty manner, possibly due to soft errors. Once detected, an appli-

cation could use the restart API to restart the computation from a known, good, previously-

established state in the computation before the occurrence of the soft error.
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The OMPI CR CHECKPOINT returns a handle to the global snapshot reference and

a unique sequence number. Since the C/R implementation in Open MPI is fully coor-

dinated, the checkpoint call is collective over all processes in the MPI application. The

OMPI CR RESTART function takes as arguments the handle and sequence number returned

by the OMPI CR CHECKPOINT or an external tool like ompi-checkpoint, described in

Chapter 3 and Appendix A.

1.2. Quiescence Regions. The quiescence functions allow an application to define a

region of the program during which the MPI implementation guarantees that no messages

are in-flight with regard to the calling process. A message is said to be in-flight if it has

been sent, but not yet received by the recipient. So the message may be on the sender

side, receiver side, or somewhere in between. To have no messages in-flight means that all

messages that have been sent to this process have been cached inside the MPI implemen-

tation, and any messages this process has sent have been cached on the intended receiver

side. Or, said another way, any message sent by one process on the specified communicator

has been transmitted to the recipient. The recipient may either buffer the message in the

MPI implementation (if no receive has been posted) or place it in the recipient’s buffer (if a

receive has been posted). The MPI implementation can choose how optimally to buffer the

message contents (e.g., network card, internal data structure, specialized hardware).

The quiescent region of code is defined between the start and end functions in Fig-

ure 5.2. In this region, the use of the MPI interface is restricted to maintain guarantees

about in-flight messages between processes. The MPI process may use any functionality

that is local in nature, and post new receives. It may also use the request completion func-

tions. The application may not post any new sends or enter collective operations during this

time. This functionality is useful when checkpointing an application, or preparing buffer

space for additional communication.

The quiescence functions are collective, so all MPI processes defined in the correspond-

ing communicator must call these functions before any of them can complete. Though the

interface allows any communicator to be passed to the functions, Open MPI requires it to



5. APPLICATION INTERACTION 102

// Quiescent Region Start
int OMPI CR QUIESCE START(MPI Comm comm, MPI Info info);
// Quiescent Region End
int OMPI CR QUIESCE END(MPI Comm comm, MPI Info info);
// Request a checkpoint during a quiescent region.
int OMPI CR QUIESCE CHECKPOINT(MPI Comm comm, char ∗∗handle, int ∗seq,

MPI Info info);

FIGURE 5.2. Open MPI Quiescence APIs.

// Migration Request
int OMPI CR MIGRATE(MPI Comm comm, char ∗hostname, int rank, MPI Info info)

FIGURE 5.3. Open MPI Migration API.

be MPI COMM WORLD. The quiescence operations on communicators serve a similar pur-

pose as MPI WIN FENCE does to one-sided RMA operations on a window. This collective

operation allows the application to force all outstanding communication to the intended

recipient of the communication.

The OMPI CR QUIESCENCE CHECKPOINT function allows the application to option-

ally choose to use the MPI provided CRS. This interface assumes that the MPI library

has been quiesced by a previous call to the quiescence start function, in contrast to the

OMPI CR CHECKPOINT presented in Section 1.1.

1.3. Migration. The application can migrate a subset of the processes in a job by using

the OMPI CR MIGRATE command, depicted in Figure 5.3. The application may want to do

so between different phases of computation to better load balance the processes. The group

of migrating processes is defined by the communicator passed to the migration function.

The application can optionally specify a hostname or rank to move the current rank onto.

Future implementations may also allow processes to be moved close to other ranks, for some

definition of close to. The application can set the CR OFF NODE MPI INFO keyword to true

in order to indicate that they wish to migrate off of the current node. In order to reduce the

time required to migrate, the mapping algorithm should attempt to reduce the number of

processes that have to be moved in order to satisfy the migration request.
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FIGURE 5.4. Illustration of Open MPI handling a checkpoint request with
the application involved in the INC.

1.4. INC Callbacks. As mentioned in Chapter 3, the application can choose to register

a callback function to be notified of C/R-related activities during the INC coordination pro-

cedure. The application may use this as an opportunity to synchronize additional libraries

(e.g., accelerators [253]) or files that would not otherwise be accounted for in the local

snapshot. Figure 5.4 shows how the application fits into the INC coordination procedure.

The application is provided the first and last opportunity to take action in all three phases of

C/R traversed by the INC. By registering a callback function, the application assumes the re-

sponsibility for calling the previous callback function, namely ompi inc, which is returned

by the registration function. Figure 5.5 presents the function signature and registration

functions for INC callbacks. Table 5.1 shows the various parameters used when registering

and de-registering callbacks.

1.5. self Checkpoint/Restart Service (CRS). Though much of the focus in this docu-

ment has been on using the BLCR CRS for transparent single process checkpointing, Open

MPI also provides an application-level CRS called self. self provides callbacks into the appli-

cation for checkpoint, restart and continue operations when it would normally be called in

the INC (shown in the middle of Figure 5.4). These callbacks allow the application to write
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// INC Registration Function
int OMPI CR INC register callback(OMPI CR INC callback event t event,

OMPI CR INC callback function function,
OMPI CR INC callback function ∗prev function);

// INC Callback Function Signature
typedef int (∗OMPI CR INC callback function)(OMPI CR INC callback event t event,

OMPI CR INC callback state t state);

FIGURE 5.5. Open MPI INC Registration API.

OMPI CR INC callback event t
State Description
OMPI CR INC PRE CRS PRE MPI Pre-checkpoint, before OMPI INC.
OMPI CR INC PRE CRS POST MPI Pre-checkpoint, after OMPI INC.
OMPI CR INC POST CRS PRE MPI Continue/Restart, before OMPI INC.
OMPI CR INC POST CRS POST MPI Continue/Restart, after OMPI INC.

OMPI CR INC callback state t
State Description
OMPI CR INC STATE PREPARE Pre-checkpoint
OMPI CR INC STATE CONTINUE Continue
OMPI CR INC STATE RESTART Restart
OMPI CR INC STATE ERROR Error

TABLE 5.1. Open MPI INC function callback events and states.

their checkpoint into a black box directory that is stored with the local snapshot to stable

storage as defined by the active SStore component.

Figure 5.6 presents the three default functions that the self CRS looks for in the applica-

tion binary (using dlsym). Additionally, the application can explicitly register the functions

using the registration function (also shown in Figure 5.6). Appendix C describes the inter-

faces to the self CRS in more detail and provides a code example.

2. Checkpoint/Restart-Enabled Debugging

The most time consuming part of the software development life-cycle is application

debugging. Long-running, large-scale HPC parallel applications compound the time com-

plexity of the debugging process by adding more processes interacting in dynamic ways
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// Default Checkpoint Callback
int opal crs self user checkpoint(char ∗∗restart cmd);
// Default Continue Callback
int opal crs self user continue(void);
// Default Restart Callback
int opal crs self user restart(void);

// SELF CRS Checkpoint Registration Function
int OMPI CR self register checkpoint callback(OMPI CR self checkpoint fn function);
// SELF CRS Callback Function Signature
typedef int (∗OMPI CR self checkpoint fn)(char ∗∗restart cmd);

// SELF CRS Continue Registration Function
int OMPI CR self register continue callback(OMPI CR self continue fn function);
// SELF CRS Callback Function Signature
typedef int (∗OMPI CR self continue fn)(void);

// SELF CRS Restart Registration Function
int OMPI CR self register restart callback(OMPI CR self restart fn function);
// SELF CRS Callback Function Signature
typedef int (∗OMPI CR self restart fn)(void);

FIGURE 5.6. Open MPI self CRS default callbacks, and registration functions.

for longer periods of time. Cyclic or iterative debugging, a commonly used debugging

technique, involves repeated program executions that assist the developer in gaining an un-

derstanding of the causes of the bug. Software developers can save hours, even days, spent

debugging by checkpointing and restarting the parallel debugging session at intermediate

points in the debugging cycle. For MPI applications, the parallel debugger must cooperate

with the MPI implementation and CRS which account for the network state and process

image. In this section we present a design specification for this cooperative relationship to

provide C/R-enabled parallel debugging [133].

The C/R-enabled parallel debugging design supports multi-threaded MPI applications

without requiring any application modifications. Additionally, all checkpoints, whether gen-

erated with or without a debugger attached, are both usable within a debugging session as
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well as during normal execution. We highlight the debugger detach and debugger re-attach

problems that may lead to inconsistent views of the debugging session, and describe how

our design addresses these problems. A discussion of related works is presented in Chap-

ter 2.

2.1. Design. C/R-enabled parallel debugging of MPI applications requires the cooper-

ation of the parallel debugger, the MPI implementation, and the CRS to provide consistently

recoverable application states. The debugger provides the interface to the user and main-

tains the state of the parallel debugging session (e.g., breakpoints, watchpoints). Addition-

ally, the debugger may provide the user with additional interfaces to take or return to a

checkpoint.

The C/R-enabled MPI implementation marshals the network channels around C/R op-

erations for the application. Though the network channels are often marshaled in a fully

coordinated manner, this design does not require full coordination. Therefore the design

is applicable to other checkpoint coordination protocol implementations (e.g., uncoordi-

nated).

The CRS captures the state of a single process in the parallel application. This can

be implemented at the user- or system-level. This protocol requires an MPI application

transparent CRS, which excludes application-level CRSs. If the CRS is not transparent to

the application, then taking the checkpoint would alter the state of the program being

debugged, potentially confusing the user.

One goal of this design is to create always usable checkpoints. This means that regardless

of whether the checkpoint was generated with the debugger attached or not, it must be

able to be used on restart with or without the debugger. To facilitate the always usable

checkpoints condition, the checkpoints generated by the CRS with the debugger attached

must be able to exclude the debugger state. To achieve this, the debugger must detach from

the process before a checkpoint and re-attach, if desired, after the checkpoint has finished,

similar to the technique used in [150]. Since we are separating the CRS from the debugger,

we must consider the needs of both in our design.
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FIGURE 5.7. Illustration of the Debugger Detach and Re-attach Problems.

Detaching the debugger before a checkpoint can allow the application to run uninhib-

ited for a period of time before the actual checkpoint is taken; we call this the debugger

detach problem. Similarly, once restarted, the MPI application may run uninhibited for a

period of time before the debugger attaches; we call this the debugger re-attach problem.

See Figure 5.7 for an illustration of these problems. Preserving the exact user-perceived

state of the program counter in the application across a checkpoint is critical to providing

the end user with a seamless and consistent view of the debugging process. Interfaces are

prefixed with MPIR to fit the existing naming convention for debugging symbols in MPI

implementations.

2.1.1. Preparing for a Checkpoint. The C/R-enabled MPI implementation may receive a

checkpoint request internally or externally from the debugger, user, or system administrator.

The MPI implementation communicates the checkpoint request to the specified processes

(usually all processes) in the MPI application. The MPI processes typically prepare for

the checkpoint by marshaling the network state and flushing caches before requesting a

checkpoint from the CRS.

If the MPI process is under debugger control at the time of the checkpoint, then the

debugger must allow the MPI process to prepare for the checkpoint uninhibited by the

debugger. If the debugger remains attached, it may interfere with the techniques used

by the CRS to preserve the application state (e.g., by masking signals). Additionally, by

detaching the debugger before the checkpoint, the implementation can provide the always

usable checkpoints condition by ensuring that it does not inadvertently include any debugger

state in the CRS generated checkpoint.
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volatile int MPIR checkpoint debug gate = 0;
volatile int MPIR debug with checkpoint = 0;
// Detach Function
int MPIR checkpoint debugger detach(void) {

return 0;
}
// Thread Wait Function
void MPIR checkpoint debugger waitpoint(void) {

// MPI Designated Threads are released early,
// All other threads enter the breakpoint below
MPIR checkpoint debug gate = 0;
MPIR checkpoint debugger breakpoint();

}
// Debugger Breakpoint Function
void MPIR checkpoint debugger breakpoint(void) {

while( MPIR checkpoint debug gate == 0 ) {
sleep(1);

}
}
// CRS Hook Callback Function
void MPIR checkpoint debugger crs hook(int state) {

if( MPIR debug with checkpoint ) {
MPIR checkpoint debug gate = 0;
MPIR checkpoint debugger waitpoint();

} else {
MPIR checkpoint debug gate = 1;

}
}

FIGURE 5.8. Debugger MPIR function pseudo code.

The MPI process must inform the debugger of when to detach since the debugger is

required to do so before a checkpoint is requested. The MPI process informs the debugger by

calling the MPIR checkpoint debugger detach() function when it requires the debugger

to detach. This is an empty function that the debugger can reference in a breakpoint. It is

left to the discretion of the MPI implementation when to call this function while preparing

for the checkpoint, but it must be invoked before the checkpoint is requested from the CRS.
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// CRS hook callback function pseudo code
void MPIR checkpoint debugger crs hook(int state) {

if( MPIR debug with checkpoint ) {
MPIR checkpoint debug gate = 0;
return MPIR checkpoint debugger waitpoint();

} else {
MPIR checkpoint debug gate = 1;
return NULL;

}
}

FIGURE 5.9. MPI registered CRS hook callback function pseudo code.

The period of time between when the debugger detaches from the MPI process and

when the checkpoint is created by the CRS may allow the application to run uninhibited,

this is the debugger detach problem. See Figure 5.7 for an illustration of the debugger detach

problem. To provide a seamless and consistent view to the user, the debugger must make

a best effort attempt at preserving the exact position of the program counter(s) across a

checkpoint operation. To address the debugger detach problem, the debugger forces all

threads into a waiting function (called MPIR checkpoint debugger waitpoint()) at the

current debugging position before detaching from the MPI process. By forcing all threads

into a waiting function the debugger prevents the program from making any progress when

it returns from the checkpoint operation. Section 2.3.2 describes techniques on how the

debugger might achieve this.

The waiting function must allow certain designated threads to complete the checkpoint

operation. In a single threaded application, this would be the main thread, but in a multi-

threaded application this would be the thread(s) designated by the MPI implementation to

prepare for and request the checkpoint from the CRS. The MPI implementation must pro-

vide an “early release” check for the designated thread(s) in the waiting function. All other

threads directly enter the MPIR checkpoint debugger breakpoint() function which waits

in a loop for release by the debugger. Designated thread(s) are allowed to continue normal

operation, but must enter the breakpoint function after the checkpoint has completed to
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FIGURE 5.10. Illustration of the design for each of the use case scenarios.

provide a consistent state across all threads to the debugger, if it intends on re-attaching.

Figure 5.8 presents a pseudo code implementation of these functions.

The breakpoint function loop is controlled by the MPIR checkpoint debug gate vari-

able. When this variable is set to 0 the gate is closed, keeping threads waiting for the gate to

be opened by the debugger. To open the gate, the debugger sets the variable to a non-zero

value, and steps each thread out of the loop and the breakpoint function. Once all threads

pass through the gate, the debugger then closes it once again by setting the variable back to

0.

2.1.2. Resuming After a Checkpoint. An MPI program either continues after a requested

checkpoint in the same program, or is restarted from a previously established checkpoint

saved on stable storage. In both cases the MPI designated thread(s) are responsible for

recovering the internal MPI state including reconnecting processes in the network [135].

If the debugger intends to attach, the designated thread(s) must inform the debugger

when it is safe to attach after restoring the MPI state of the process. If the debugger at-

taches too early, it may compromise the state of the checkpoint or the restoration of the

MPI state. The designated thread(s) notify the debugger that it is safe to attach to the

process by printing to stderr the hostname and PID of each recovered process. The mes-

sage is prefixed by “MPIR debug info)” to distinguish it from other output. Afterwards, the

designated thread(s) enter the breakpoint function.
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The period of time between when the MPI process is restarted by the CRS and when

the debugger attaches may allow the application to run uninhibited, this is the debugger

re-attach problem. See Figure 5.7 for an illustration of the debugger re-attach problem. If

the MPI process was being debugged before the checkpoint was requested, then the threads

are already being held in the breakpoint function, thus preventing them from running un-

inhibited. However, if the MPI process was not being debugged before the checkpoint then

the user may experience inconsistent behavior due to the race to attach the debugger upon

multiple restarts from the same checkpoint.

To address this problem, the CRS must provide a hook callback function that is pushed

onto the stack of all threads before returning them to the running state. This technique

preserves the individual thread’s program counter position at the point of the checkpoint

providing a best effort attempt at a consistent recovery position upon multiple restarts. The

MPI implementation registers a hook callback function that will place all threads into the

waiting function if the debugger intends to re-attach. The intention of the debugger to re-

attach is indicated by the MPIR debug with checkpoint variable. Since the hook function

is the same function used when preparing for a checkpoint, the release of the threads from

the waiting function is consistent from the perspective of the debugger.

If the debugger is not going to attach after the checkpoint or on restart, the hook call-

back does not need to enter the waiting function, again indicated by the MPIR debug with -

checkpoint variable. Since the checkpoint could have been generated with a debugger

previously attached, the hook function must release all threads from the breakpoint func-

tion by setting the MPIR checkpoint debug gate variable to 1. The structure of the hook

callback function allows for checkpoints generated while debugging to be used without de-

bugging, and vice versa. See Figure 5.8 for an example of the hook callback function. The

MPI implementation may want to prevent the threads from entering the waiting function

multiple times by determining if the threads were already placed in the waiting function

during checkpoint preparation.

2.1.3. Additional MPIR Symbols. In addition to the detach, waiting, and breakpoint

functions, this design defines a series of support variables to allow the debugger greater
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(gdb) p MPIR checkpointable
$1 = 1
(gdb) p MPIR checkpoint command
$1 = ompi−checkpoint −−crdebug −−hnp−jobid 1234
(gdb) p MPIR restart command
$1 = ompi−restart crdebug
(gdb) p MPIR checkpoint listing command
$1 = ompi−checkpoint −l −−crdebug
(gdb) p MPIR controller hostname
$1 = localhost
(gdb) set MPIR debug with checkpoint = 0
(gdb) detach

FIGURE 5.11. Additional MPIR symbols.

generality when interfacing with a C/R-enabled MPI implementation. These interfaces,

with their Open MPI representation, are presented in Figure 5.11 and described in this

section.

The MPIR checkpointable variable indicates to the debugger that the MPI implemen-

tation is C/R-enabled and supports this design when set to 1. The MPIR debug with -

checkpoint variable indicates to the MPI implementation if the debugger intends to attach.

If the debugger wishes to detach from the program, it sets this value to 0 before detaching

indicating that it no longer intends to debug the program. This value is set to 1 when the

debugger attaches to the job either while running or on restart.

The MPIR checkpoint command variable specifies the command to be used to initiate a

checkpoint of the MPI process. The output of the checkpoint command must be formatted

such that the debugger can use it directly as an argument to the restart command. The out-

put on stderr is prefixed with “MPIR checkpoint handle)” as to distinguish it from other

output. The MPIR restart command variable specifies the restart command to prefix the

output of the checkpoint command to restart an MPI application. The MPIR controller -

hostname variable specifies the host on which to execute the MPIR checkpoint command

and MPIR restart command commands. The MPIR checkpoint listing command variable

specifies the command that lists the available checkpoints on the system.
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
Before/After the Checkpoint Pre Post Pre Post Pre Post Pre Post
MPIR checkpointable T T T T T T T T
MPIR debug with checkpoint F F F T T T T F
MPIR checkpoint debug gate 0 1 0 0 0 0 0 1
Threads waiting? F F F T T T T F

TABLE 5.2. MPIR variable states associated with use case scenarios.

2.2. Use Case Scenarios. To better illustrate how the various components cooperate

to provide C/R-enabled parallel debugging we present a set of use case scenarios. Table 5.2

describes the state of the various MPIR variables both before a checkpoint occurs and af-

terwards (either in a continue or restart states). Figure 5.10 presents an illustration of the

design for each scenario.

2.2.1. Scenario 1: No Debugger Involvement. This is the standard C/R scenario in which

the debugger is neither involved before a checkpoint nor afterwards (a transition from the

upper-left to upper-right quadrants in Figure 5.10). The MPI processes involved in the

checkpoint will prepare the internal MPI state and request a checkpoint from the CRS then

continue free execution afterwards. Before requesting a checkpoint the MPI designated

checkpoint thread(s) call the MPIR checkpoint debugger detach() function, which has

no affect on the process since a debugger is not attached.

After the checkpoint is finished, the hook callback function is executed in each thread in

the MPI process by the CRS. Since no debugger intends on attaching, these functions exit

without waiting and the MPI program is allowed to continue execution as normal.

2.2.2. Scenario 2: Debugger Attaches on Restart. In this scenario, the debugger is attach-

ing to a restarting MPI process from a checkpoint that was generated without the debugger

(a transition from the upper-left to lower-right quadrants in Figure 5.10). This scenario

is useful when repurposing checkpoints originally generated for fault tolerance purposes

instead for debugging. The process of creating the checkpoints is the same as in Scenario 1.

On restart, the hook callback function is called by the CRS in each thread to preserve their

program counter positions.
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When the MPI process is restarted, the hook callback function is executed in each thread

in the MPI process by the CRS, thus preserving the position of the program counter in each

thread consistently at the point of the checkpoint. The MPI designated checkpoint thread(s)

are allowed to exit the hook function to reconstruct the MPI state, while all other threads

wait in the breakpoint function. After reconstructing the MPI state the designated thread(s)

indicate to the debugger that it is safe to attach (on stderr), and enter the breakpoint

function.

The debugger then attaches to the MPI process and walks all threads out of the break-

point function. It is then in full control of the MPI process and able to resume debugging at

the same point in the application execution for every restart from the same checkpoint.

2.2.3. Scenario 3: Debugger Attached While Checkpointing. In this scenario, the debug-

ger is attached when a checkpoint is requested of the MPI process (a transition from the

lower-left to lower-right quadrants in Figure 5.10). This scenario is useful when creating

checkpoints while debugging that can be returned to in later iterations of debugging cycle

or to provide backstepping functionality while debugging. The debugger will notice the call

to the detach function and call the waiting function in all threads in the MPI process.

The MPI processes involved in the checkpoint will prepare for the internal MPI state and

the MPI designated thread(s) call the detach function just before requesting the checkpoint

from the CRS. Alternatively, the detach function may be called before the MPI designated

thread(s) prepare the internal MPI state, whenever makes the most sense for the MPI im-

plementation. The debugger will notice the call to the detach function and call the waiting

function in all threads in the MPI process. The MPI designated checkpoint thread(s) are

allowed to continue through this function in order to request the checkpoint from the CRS

while all other threads wait there for later release.

After the checkpoint is finished, the hook callback function is executed in each thread in

the MPI process by the CRS. Since all threads were placed in the breakpoint function before

the checkpoint was requested there is no need to reenter the function, so threads may be al-

lowed to fall though this function and continue waiting at the previous breakpoint function

call. After reconstructing the MPI state, the designated checkpoint thread(s) indicate to the



5. APPLICATION INTERACTION 115

debugger that it is safe to reattach (via message on stderr, see Section 2.1.2) then enter

the breakpoint function. The debugger then attaches to the MPI process as in Scenario 1.

2.2.4. Scenario 4: Debugger Detached on Restart. In this scenario, the debugger is at-

tached when the checkpoint is requested of the MPI process, but is not when the MPI

process is restarted from the checkpoint (a transition from the lower-left to upper-right

quadrants in Figure 5.10). This scenario is useful when analyzing the uninhibited behavior

of an application, periodically inspecting checkpoints for validation purposes or, possibly,

introducing tracing functionality to a running program. The process of creating the check-

point is the same as in Scenario 3. By inspecting the MPIR debug with checkpoint variable,

the MPI processes know to let themselves out of the waiting function afterwards.

When the MPI process is restarted, the hook callback function is executed in each thread

in the MPI process by the CRS. Since the debugger does not intend to attach, the threads

are allowed to exit the function without waiting. In order to escape the breakpoint function

that the threads were placed in by the debugger before the checkpoint, they must open the

MPIR checkpoint debug gate before exiting the hook function. The debugger will reset

this value when, if ever, it intends on attaching at a later point in time.

2.3. Implementation. The design described in this section was implemented using

GNU’s GDB debugger, Allinea’s DDT Parallel Debugger, the Open MPI implementation of

the MPI standard, and the BLCR Checkpoint/Restart Service (CRS). Open MPI implements

a fully coordinated C/R protocol [136] so when a checkpoint is requested of one process all

processes in the MPI job are also checkpointed. It should be pointed out again that noth-

ing about the specification requires a coordinated protocol, so other coordination protocols

(e.g., uncoordinated) can be used at the discretion of the MPI implementation.

2.3.1. Interlayer Notification Callback Functions. The Interlayer Notification Callback

(INC) functions are used in Open MPI to coordinate the internal state of the MPI imple-

mentation before and after checkpoint operation. After receiving notification of a check-

point request, Open MPI calls the INC checkpoint prep() function (See Figure 5.12).

This function quiesces the network, and prepares various components for a checkpoint
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void INC checkpoint prep() {
// Prepare the network and MPI state
Quiesce Network();
Prep Components();
// Identify this thread as a special thread
free threads[0] = thread self();
// Detach the Debugger
MPIR checkpoint debugger detach();
// Request the checkpoint
CRS request checkpoint();

}

FIGURE 5.12. Pseudo code of Open MPI’s checkpoint preparation INC function.

operation [135]. Once the INC is finished, it designates a checkpoint thread, calls the

MPIR checkpoint debugger detach() function, and requests the checkpoint from the CRS,

in this case BLCR.

After the checkpoint is created (called the continue state), or when the MPI process is

restarted (called the restart state), BLCR calls the hook callback function in each thread (See

Figure 5.8). The thread designated by Open MPI in the INC checkpoint prep() function

is allowed to exit this function without waiting, while all other threads must wait if the

debugger intends on attaching. The designated thread then calls the INC function for either

the continue or the restart phase, depending on if the MPI process is continuing after a

checkpoint or restarting from a checkpoint previously saved to stable storage. In Open

MPI, these functions operate in a similar manner, though differ slightly in complexity of

operation. In the continue phase, the MPI implementation can assume that most of the

cached system and network information remains valid, while in the restart phase it cannot

make such assumptions since processes have likely moved around in the system. For brevity,

we present the pseudo code for the INC function that is applicable for both of these states

in Figure 5.13.

If the debugger intends on attaching to the MPI process, then after reconstructing the

MPI state, the designated thread notifies the debugger that it is safe to attach by printing to
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void INC checkpoint recovery() {
// Reattach processes
Recover Network();
Recover Components();
// If the debugger is going to reattach
if( MPIR debug with checkpoint ) {

// Notify Debugger that it is ok to reattach
// MPIR debug info) localhost:789
print reattach message();
// Wait for Debugger to reattach
MPIR checkpoint debugger breakpoint();

}
}

FIGURE 5.13. Pseudo code of Open MPI’s checkpoint continue/restart INC function.

stderr the hostname and PID of each recovered process prefixed with “MPIR debug info)”

as mentioned in Section 2.1.2. The debugger can then attach and walk the threads out of the

breakpoint function (by opening the debug gate) and resume debugging. If the debugger

does not intend to attach to the MPI process, then after reconstructing the MPI state the

designated thread releases all the other threads and resumes normal execution.

2.3.2. Stack Modification. In Section 2.1.1, the debugger was required to force all

threads to call the waiting function before detaching before a checkpoint in order to pre-

serve the program counter in all threads across a checkpoint operation. We explored two

different ways to do this in the GDB debugger. The first required the debugger to force the

function on the call stack of each thread. In GDB we executed the the following command

in each thread:

call MPIR checkpoint debugger waitpoint()

Unfortunately this became brittle and corrupted the stack in GDB 6.8.

In response to this, we explored an alternative technique based on signals. Open MPI

registered a signal callback function (See Figure 5.14) that calls the MPIR checkpoint -

debugger waitpoint() function. The debugger can then send a designated signal (e.g.,
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// Signal handler for SIGTSTP
void MPIR checkpoint debugger signal handler(int num) {

MPIR checkpoint debugger waitpoint();
}

FIGURE 5.14. Open MPI’s signal handler function to support stack modification.

SIGTSTP) to each thread in the application, and the program will place itself in the waiting

function.

Though the signal based technique worked best for GDB, other debuggers may have

other techniques at their disposal to achieve this goal.

3. Conclusion

This chapter focuses on presenting interfaces to the C/R functionality (described in

Chapter 3 and 4) to applications and parallel debuggers. The application interfaces allow

an application to define quiescent regions, request checkpoints, restarts and process migra-

tions. The INC callbacks allow an application to participate in the checkpoint and restart

life-cycle. The self CRS even allows the application layer C/R mechanisms to take advantage

of the coordination (via SnapC) and storage (via SStore) features provided by Open MPI.

The C/R-enabled parallel debugging protocol reduces the time spent debugging long-

running applications by returning a developer to an intermediary point in the computation

closer to the bug. The discussion of this protocol highlighted the debugger detach and

reattach problems and presented solution that preserver the always usable checkpoints goal.



6
Conclusions

Our research defined seven capabilities that, when taken together, form a complete trans-

parent, coordinated C/R fault tolerance infrastructure for MPI implementations to support

resilient MPI applications on HPC systems. Our implementation of these seven capabilities

in Open MPI provided end users with three often requested C/R-related services in a sin-

gle implementation. First, we provided applications with automatic and manual reactive

fault recovery services, allowing them to recover from unexpected process failure. Next, we

provided applications with a proactive process migration service that allows them to move

processes away from anticipated failure. Lastly, we provided a protocol for C/R-enabled

parallel debugging that reduces the time spent debugging long-running applications by al-

lowing the developer to return to an intermediary point in the computation closer to the

119
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bug. A significant contribution of our transparent C/R infrastructure is its ability to turn

a traditional MPI application into a resilient MPI application without application modifica-

tion. Our implementation in Open MPI is unique in that it provides reactive fault recovery,

proactive process migration, and C/R-enabled parallel debugging services within a single

implementation with clearly defined capabilities.

Application developers are concerned about the performance impact of incorporating

any fault tolerance techniques into their application, particularly transparent fault tolerance

techniques. With this in mind, we investigated the performance implications of our imple-

mentation on a variety of benchmarks and real applications including HPL, POP, LAMMPS,

NAS, and GROMACS. We verified that stable storage is the predominate C/R performance

bottleneck, representing up to 98% of the checkpoint overhead in a traditional configura-

tion. We demonstrated a significant reduction in checkpoint overhead (up to 38% for some

applications) by replacing the traditional stable storage approach with a staging model that

overlapped checkpoint establishment with normal computation. We assessed the impact of

using node-local caching and compression on automatic recovery and checkpoint overhead.

We found that node-local caching can significantly improve the performance and scalability

of automatic recovery. We showed that including off-line, node-local compression in the

staging pipeline not only saved stable storage space, but also improved the checkpoint la-

tency and overhead (up to 72% and 40%, respectively, for some applications). Post-restart

application performance is just as important as checkpoint performance. With this in mind,

we demonstrated a technique that preserves performance across process recovery by al-

lowing rediscovery of interconnects between processes to better adapt to availability and

process layout adjustments.

Applications can often further improve the performance of a C/R implementation by

guiding the checkpoint, restart and migration operations. Our implementation in Open

MPI provides a set of APIs and command line tools that were designed to increase end user

adoption and third party software integration. Such interfaces allow the application to,

optionally, break the transparency barrier to customize the C/R solution to the application’s

reliability and performance requirements.
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The C/R infrastructure in Open MPI separates each of the seven capabilities into individ-

ual frameworks; this makes the entire infrastructure more maintainable for MPI developers,

and extensible for fault tolerance researchers. Future implementers can build upon our re-

search to create more maintainable, extensible, and flexible designs. Further, our modular

design lowers the bar to entry for C/R researchers by allowing them to focus their develop-

ment on a subset of capabilities, spurring innovation. Lastly, applications can immediately

take advantage of this ongoing research by using our C/R-enabled MPI infrastructure in

Open MPI.

The capabilities defined for C/R fault tolerance are proving useful in supporting re-

search into alternative fault tolerance techniques. The run-through stabilization ErrMgr

component is being used to support research into fault tolerant MPI semantics. The non-

blocking process management MPI interface presented in this dissertation, combined with

the stabilization ErrMgr component, will allow an application to overlap process recovery

with normal computation, preserving performance during recovery. As HPC reliability de-

clines for long-running and scalable scientific applications, fault tolerance researchers must

quickly adapt to an application’s reliability requirements. A composable design with clearly

identifiable capabilities allows fault tolerance researchers to match their research efforts to

the pace of the application’s reliability requirements.

1. Future Work

Future extensions to the work presented in this dissertation is inevitable as technology

advances and research scrambles to adapt to future HPC systems. As applications begin to

experiment with MPI-2 and future MPI standard interfaces, implementations of the capa-

bilities presented in this dissertation will likely need to be extended and the relationship

between capabilities will need to be reassessed. For example, one-sided communication

and parallel I/O operations will require special attention when checkpointing to preserve

performance and account for file contents.

CRS implementations are becoming more available and maturing to include advanced

features such as memory inclusion/exclusion and incremental checkpointing [209]. The



6. CONCLUSIONS 122

CRS implementation in Open MPI will need to evolve to incorporate these features and

expose them to the application as necessary. The interaction between the CRS and SStore

capabilities will need to be adapted to better support incremental checkpointing since a

checkpoint carries a dependency on previous incremental checkpoints.

Since stable storage is the primary bottleneck in a C/R solution, future work should

investigate advanced staging and peer-based storage techniques. This dissertation high-

lighted some of the benefits of including off-line compression in the staging pipeline. A

formal model of the impact of compression in a staging pipeline will assist end users in

determining if and how compression might benefit their application. Future analysis of

compression techniques may wish to consider the benefits of using intermediary nodes and

alternative compression techniques. Future work into checkpoint storage should investi-

gate the benefits of peer-based storage (e.g., SCR [36]) and checkpoint-specific file systems

(e.g., stdchk [5]). Future work may also extend the implementation of the FileM capability

by supporting standard UNIX copy commands and high performance out-of-band commu-

nication channels for checkpoint file and directory management.

Even though stable storage is the primary bottleneck in a C/R solution, future work

should also explore alternative checkpoint coordination algorithms in the CRCP capability.

Alternative checkpoint coordination algorithms often allow for looser synchrony between

processes which may lead to a more scalable C/R solution [103, 263, 266].

Due to the checkpoint unfriendly nature of high-speed interconnects like InfiniBand and

Myrinet the Open MPI implementation is forced to shut down these interconnects at every

checkpoint request. Future work should improve the interaction between the interconnect

drivers and CRSs to reduce the checkpoint overhead by eliminating the need to shut down

and reconnect these drivers across a checkpoint operation.

In this dissertation we assessed the impact of an eager process migration protocol. Fu-

ture work may wish to investigate direct copy techniques that remove the logically cen-

tralized stable storage device from the process migration procedure in our implementa-

tion. Future work may also wish to investigate other process migration protocols like pre-

copy [257, 277] and quasi-asynchronous [66]. These techniques can potentially reduce the
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migration overhead by overlapping the migration of a process with the transfer of state and

normal computation.
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A
Checkpoint/Restart Application Programming

Interface

Chapter 5 presented a variety of non-MPI-standard Application Programming Interfaces

(APIs) that are available to the application as part of Open MPI’s Extended Interfaces. This

appendix provides more details and examples regarding these APIs.

1. Checkpoint/Restart Interface

The Checkpoint/Restart (C/R) API allows an MPI application to request a checkpoint or

restart the application from within the program. Unless otherwise specified, these calls are

collective over all processes in the MPI application.
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1.1. Interface. The application can request a checkpoint of the application by using the

OMPI CR CHECKPOINT API seen below. The OMPI CR CHECKPOINT returns a handle to

the global snapshot reference and a unique sequence number. No info keywords are defined

at this time.

OMPI CR CHECKPOINT(handle, seq, info)
OUT handle Global snapshot reference (string)
OUT seq Sequence number (int)
INOUT info A set of key−value pairs providing additional

information to the MPI implementation regarding how
to continue after quiescence (handle, significant on
all ranks)

int OMPI CR CHECKPOINT(char ∗∗handle, int ∗seq, MPI Info info);

Additionally the application can use the OMPI CR RESTART API to request a restart of

the application, also seen below. The OMPI CR RESTART function takes as arguments the

handle and sequence number returned by the OMPI CR CHECKPOINT or an external tool

like ompi-checkpoint. The restart command is not collective and may be called by any

process. The C/R infrastructure will act on each restart request in the order received. No

info keywords are defined at this time.

OMPI CR RESTART(handle, seq, info)
IN handle Global snapshot reference (string)
IN seq Sequence number (int)
INOUT info A set of key−value pairs providing additional

information to the MPI implementation regarding how
to continue after quiescence (handle, significant on
all ranks)

int OMPI CR RESTART(char ∗handle, int seq, MPI Info info);

1.2. Examples. This section presents some pseudo code examples of how the C/R in-

terfaces might be used in an MPI application.

1.2.1. Example 1: Application Directed Checkpoint. The application identifies a good

point in the execution to checkpoint. The application may optionally use CRS specific inter-

faces to identify temporary buffers that may be excluded from the checkpoint.



A. Checkpoint/Restart Application Programming Interface 150

#include <mpi.h>

#ifdef OPEN MPI
#include <mpi−ext.h>

#endif
{ MPI Init(argc, argv);

for(i=0; i < max iter; ++i) {
#ifdef OMPI HAVE MPI EXT CR

// Request a checkpoint before every step
OMPI CR Checkpoint(&handle, &seq, MPI INFO NULL);

#endif
// Resume normal operation.

}
}

1.2.2. Example 2: Application Directed Restart. The application identifies a possible

problem with one of the cooperating processes, and requests a restart of the entire applica-

tion. The application may have noticed erroneous results from a peer (possibly indicating

the effect of a soft-error) or received notification of a process failure from the MPI interface

(e.g., MPI SEND failed due to process loss).

#include <mpi.h>

#ifdef OPEN MPI
#include <mpi−ext.h>

#endif
{ MPI Init(argc, argv);

for(i=0; i < max iter; ++i) {
#ifdef OMPI HAVE MPI EXT CR

// Request a checkpoint before every step
OMPI CR Checkpoint(&handle, &seq);

#endif
// Resume normal operation.
if( MPI SUCCESS != MPI Send(...) ) {

#ifdef OMPI HAVE MPI EXT CR
// Restart from the last checkpoint, and keep processing
OMPI CR Restart(handle, seq, MPI INFO NULL);

#else
MPI Abort(MPI COMM WORLD, −1);
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#endif
}

}
}

2. Quiescence Interface

Parallel applications can benefit from having a synchronization call that synchronizes

all outstanding communication on a communicator. The quiesce operation on communica-

tors serves a similar purpose as MPI WIN FENCE does to one-sided RMA operations on a

window. The quiescence collective operations allow the application to force all outstanding

communication to the intended recipient of the communication.

A region of quiescence is defined between the start and end calls. This allows the

application to define a region of time where they are assured that no communication occurs

over the designated communicator. This can be useful when checkpointing an application,

or preparing buffer space for additional communication.

2.1. Interface. The interface to the blocking version of OMPI CR QUIESCE START

operation is below. Though a communicator argument is provided, it is required to be

MPI COMM WORLD in the prototype implementation in Open MPI. No info keywords are

defined at this time.

OMPI CR QUIESCE START(comm, info)
IN comm communicator (handle)
INOUT info A set of key−value pairs providing hints to the MPI

implementation regarding how this function should
behave (handle, significant on all ranks)

int OMPI CR QUIESCE START(MPI Comm comm, MPI Info info);

Below is the interface to the blocking version of the OMPI CR QUIESCE END operation.

Though a communicator argument is provided, the prototype implementation in Open MPI

requires it to be MPI COMM WORLD. No info keywords are defined at this time.
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OMPI CR QUIESCE END(comm, info)
IN comm communicator (handle)
INOUT info A set of key−value pairs providing additional

information to the MPI implementation regarding how
to continue after quiescence (handle, significant on
all ranks)

int OMPI CR QUIESCE END(MPI Comm comm, MPI Info info);

The OMPI CR QUIESCENCE CHECKPOINT function allows the application to option-

ally choose to use the MPI provided CRS. This interface assumes that the MPI library

has been quiesced by a previous call to the quiescence start function, in contrast to the

OMPI CR CHECKPOINT API (presented in Section 1) which has no such requirement.

Though a communicator argument is provided, it is required to be MPI COMM WORLD

in the prototype implementation in Open MPI. No info keywords are defined at this time.

OMPI CR QUIESCE CHECKPOINT(comm, handle, seq, info)
IN comm communicator (handle)
OUT handle Global snapshot reference (string )
OUT seq Sequence number (int)
INOUT info A set of key−value pairs providing hints to the MPI

implementation regarding how this function should
behave (handle, significant on all ranks)

int OMPI CR QUIESCE CHECKPOINT(MPI Comm comm, char ∗∗handle, int ∗seq,
MPI Info info);

2.2. Examples. Next we present some pseudo code examples of how the quiescence

interfaces might be used in MPI applications.

2.2.1. Example 1: Application-Level Checkpoint/Restart. The application requires assur-

ance that all sent messages have been either received by or cached by the recipient on the

communicator before taking an application-level checkpoint. On restart, the application is

responsible for distributing the checkpoint data, and, if necessary, specifying to the applica-

tion that it is restarting.
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#include <mpi.h>

#ifdef OPEN MPI
#include <mpi−ext.h>

#endif
{ MPI Init(argc, argv);
#ifdef OMPI HAVE MPI EXT CR

OMPI CR Quiesce start(MPI COMM WORLD, MPI INFO NULL);
// Prepare application for application−level checkpoint.
// Wait on any important outstanding receives
// Save application state
OMPI CR Quiesce end(MPI COMM WORLD, MPI INFO NULL);

#endif
// Resume normal operation.

}

2.2.2. Example 2: Application Controlled System-Level Checkpoint/Restart. The applica-

tion requires the ability to perform action during the quiescent region before or after the

system-level checkpoint is requested from the MPI implementation provided CRS. For exam-

ple, the application may want to highlight temporary buffers that should not be preserved

in the checkpoint to reduce the size of the checkpoint.

#include <mpi.h>

#ifdef OPEN MPI
#include <mpi−ext.h>

#endif
{ MPI Init(argc, argv);
#ifdef OMPI HAVE MPI EXT CR

OMPI CR Quiesce start(MPI COMM WORLD, MPI INFO NULL);
// Prepare application for checkpoint.
// Wait on any important outstanding receives
// Mark some memory regions for exclusion
OMPI CR Quiesce checkpoint(MPI COMM WORLD, &handle, &seq,

MPI INFO NULL);
OMPI CR Quiesce end(MPI COMM WORLD, MPI INFO NULL);

#endif
// Resume normal operation.

}
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3. Process Migration Interface

The process migration API allows an MPI application to migrate processes defined by a

communicator, possibly away from their current resources. The MPI application may do so

to avoid a predicted node failure or to better load balance their application.

3.1. Interface. The application can request a migration of the application by using the

OMPI CR MIGRATE API seen below. The group of migrating processes is defined by the

communicator passed. The application can optionally specify a hostname or rank to move

the current rank onto or close to. If the CR OFF NODE MPI INFO keyword to true then

the process is moved away from the current host to a spare or sparsely loaded host. The

operation is collective across the communicator provided.

OMPI CR MIGRATE(comm, hostname, rank, info)
IN comm Communicator of processes to migrate
IN hostname Name of the machine to move this rank onto.

May be NULL. (string)
IN rank Process rank to move this rank close to.

May be negative, indicating NULL. (int)
INOUT info A set of key−value pairs providing hints to the MPI

implementation regarding how this function should
behave (handle, significant on all ranks)

int OMPI CR MIGRATE(MPI Comm comm, char ∗hostname, int rank, MPI Info info)

3.2. Examples. This section presents some pseudo code examples of how the process

migration interfaces might be used in MPI applications.

3.2.1. Example 1: Application Directed Fault Avoidance. Individual ranks in the applica-

tion receive external notification that their machine is going to fail in the near future. The

processes can then use previously created communicators to migrate, or individually choose

to move using MPI COMM SELF.
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#include <mpi.h>

#ifdef OPEN MPI
#include <mpi−ext.h>

#endif
{ MPI Info qinfo;

MPI Init(argc, argv);

for(i=0; i < max iter; ++i) {
// Receive notification that this node is going to fail

#ifdef OMPI HAVE MPI EXT CR
// Asked to be migrated anywhere else in the system,
// except this node.
MPI Info set(qinfo, "CR OFF NODE", "true");
OMPI CR MIGRATE(MPI COMM SELF, NULL, −1, MPI INFO NULL);

#endif
// Resume normal operation.

}
}

3.2.2. Example 2: Application Directed Load Balancing. In Figure A.1 the application

identifies a section of time when it wishes to reposition the processes in the computation to

reduce message delay. This is useful for applications that have multiple distinct phases of

computation with different communication patterns.

4. Interlayer Notification Callback Callbacks

Figure A.2 presents the INC registration functions. Table A.1 presents the various ar-

guments passed to these callback functions. Applications can use these callbacks to syn-

chronize additional libraries (e.g., accelerators [253]) or files that would not otherwise be

accounted for in the local snapshot. The INC callbacks are called before and after the under-

lying MPI library’s callbacks. This allows the application to use MPI function to coordinate

processes during checkpoint preparation and upon recovery, if necessary.
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#include <mpi.h>

#ifdef OPEN MPI
#include <mpi−ext.h>

#endif
{ MPI Init(argc, argv);

...
// Stage 1: Communication Pattern A
for(i=0; i < max iter; ++i) {

...
}

#ifdef OMPI HAVE MPI EXT CR
// Since the communication pattern is changing,
// re−position my processes by using process migration.
neighbor rank = get best neighbor(my rank);
OMPI CR MIGRATE(MPI COMM WORLD, NULL, neighbor rank,

MPI INFO NULL);
#endif

// Stage 2: Communication Pattern B
for(i=0; i < max iter; ++i) {

...
}

}

FIGURE A.1. Process Migration API Example.

// INC Registration Function
int OMPI CR INC register callback(OMPI CR INC callback event t event,

OMPI CR INC callback function function,
OMPI CR INC callback function ∗prev function);

// INC Callback Function Signature
typedef int (∗OMPI CR INC callback function)(OMPI CR INC callback event t event,

OMPI CR INC callback state t state);

FIGURE A.2. Open MPI INC Registration API.
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OMPI CR INC callback event t
State Description
OMPI CR INC PRE CRS PRE MPI Pre-checkpoint, before OMPI INC.
OMPI CR INC PRE CRS POST MPI Pre-checkpoint, after OMPI INC.
OMPI CR INC POST CRS PRE MPI Continue/Restart, before OMPI INC.
OMPI CR INC POST CRS POST MPI Continue/Restart, after OMPI INC.

OMPI CR INC callback state t
State Description
OMPI CR INC STATE PREPARE Pre-checkpoint
OMPI CR INC STATE CONTINUE Continue
OMPI CR INC STATE RESTART Restart
OMPI CR INC STATE ERROR Error

TABLE A.1. Open MPI INC function callback events and states.



B
Command Line Tools

This chapter describes the command line tools: ompi-checkpoint, ompi-restart and

ompi-migrate. These commands are used by an end user (e.g., scheduler, resource man-

ager, system administrator, developer) to interact with the C/R functionality in Open MPI

from the command line. These commands transparently activate the appropriate C/R func-

tionality in the running MPI application.

1. ompi-checkpoint

The ompi-checkpoint command is provided to checkpoint an MPI application. The one

required argument to this command is the PID of the mpirun process. This command must

be launched on the same machine as the running mpirun process. Once a checkpoint request

has completed ompi-checkpoint will return a global snapshot reference and a sequence

158
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shell$ ompi−checkpoint PID OF MPIRUN [OPTIONS]
shell$ ompi−restart GLOBAL SNAPSHOT REF [OPTIONS]
shell$ ompi−migrate PID OF MPIRUN [OPTIONS]

FIGURE B.1. Open MPI ompi-checkpoint, ompi-restart, and
ompi-migrate commands.

Argument Description
PID OF MPIRUN PID of the mpirun process
-h --help Display help
-v --verbose Display verbose output
-V # Display verbose output up to a specified level
--term Terminate the application after checkpoint.
-s --status Display status progression messages of the checkpoint.
-l --list Display a list of checkpoint files available on this machine
--stop Send SIGSTOP to application just after checkpoint.
--detach Do not wait for debugger to re-attach after a checkpoint.
--attach Wait for debugger to attach after a checkpoint.

TABLE B.1. Open MPI ompi-checkpoint arguments.

number. This information will allow the end user to properly restart the MPI application at

a later time.

End users familiar with the LAM/MPI checkpoint/restart commands should notice that

the ompi-checkpoint does not require the user to tell it which CRS (e.g., BLCR or SELF)

to use when checkpointing the application. This information is automatically detected and

stored with the checkpoint snapshots.

1.1. Interface. Figure B.1 presents the interface to the ompi-checkpoint command.

Table B.1 explains the command line arguments for this command.

1.2. Example. Figure B.2 presents a brief example of how the ompi-checkpoint com-

mand could be used to checkpoint a running MPI application. The checkpoint command

generated two checkpoints with sequence numbers 0 and 1, and a global snapshot reference

of ompi-global-snapshot-1234.
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shell$ mpirun my−app <args> &
shell$ export PID OF MPIRUN=1234
shell$ ompi−checkpoint $PID OF MPIRUN
Snapshot Ref.: 0 ompi−global−snapshot−1234
shell$ ompi−checkpoint $PID OF MPIRUN
Snapshot Ref.: 1 ompi−global−snapshot−1234

FIGURE B.2. Open MPI ompi-checkpoint example.

Argument Description
GLOBAL SNAPSHOT REF Global snapshot reference
-h --help Display help
-v --verbose Display verbose output
-a --apponly Only create the app context file, do not restart from it.
-s --seq The sequence number of the checkpoint to start from.

(Default: -1, or most recent)
--hostfile --machinefile Provide a hostfile to use for launch.
-i --info Display information about the checkpoint
--mpirun opts Options to pass directly to mpirun
--crdebug Restart and wait for the debugger to attach.

TABLE B.2. Open MPI ompi-restart arguments.

2. ompi-restart

The ompi-restart command is provided to restart a previously-checkpointed MPI ap-

plication. The one required argument to this command is the global snapshot reference

returned by ompi-checkpoint. The global snapshot reference contains all of the necessary

information to properly restart an MPI application. Invoking ompi-restart results in a new

mpirun being exec()’ed in its place.

End users familiar with the LAM/MPI checkpoint/restart commands should notice that

the ompi-restart does not require the user to tell it which CRS (e.g., BLCR or SELF) was

used when checkpointing the application. This information is stored with the checkpoint

snapshot and automatically used by the ompi-restart command.

2.1. Interface. Figure B.1 presents the interface to the ompi-restart command. Ta-

ble B.2 explains the command line arguments.
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Argument Description
PID OF MPIRUN PID of the mpirun process
-h --help Display help
-v --verbose Display verbose output
-x --off List of nodes to migrate off of (comma separated).
-r --ranks List of MPI COMM WORLD ranks to migrate (comma separated).
-t --onto List of nodes to migrate onto (comma separated).

TABLE B.3. Open MPI ompi-migrate arguments.

2.2. Example. Below is a brief example of how the ompi-restart command could be

used to restart a previously checkpointed MPI application. ompi-global-snapshot-1234

is the global snapshot reference returned by ompi-checkpoint, this checkpoint has 2 se-

quence numbers. The first example restarts from the most recent sequence number (1).

The second example restarts from the first sequence number (0).

shell$ ompi−restart ompi−global−snapshot−1234
shell$ ompi−restart −s 0 ompi−global−snapshot−1234

3. ompi-migrate

The ompi-migrate command is provided to migrate, using the C/R infrastructure, a

group of MPI processes in a running application. The two required arguments to this com-

mand are the PID of the mpirun process, and the hosts or MPI COMM WORLD ranks to

migrate. Optionally, the end user can specify a destination set of resources. This command

must be launched on the same machine as the running mpirun process.

3.1. Interface. Figure B.1 presents the interface to the ompi-migrate command. Ta-

ble B.3 explains the command line arguments for this command.

3.2. Example. Below is a brief example of how the ompi-migrate command could be

used to migrate a C/R enabled MPI application. In this example, we are requesting that all

processes be migrated off of node1 and node2.

shell$ ompi−migrate $PID OF MPIRUN −−off node1,node2



C
self CRS

The self Checkpoint/Restart Service component will invoke user-defined functions to save

and restore checkpoints. It is simply a mechanism for user-defined function to be invoked

at Open MPI’s checkpoint, continue, and restart phases to support application-level C/R.

Hence, the only data that is saved during the checkpoint is what is written in the applica-

tion’s checkpoint function - no MPI library state is saved. As such, the model for the self

component is slightly different than, for example, the BLCR component. Specifically, the

restart function is not invoked in the same process image of the process that was check-

pointed. The restart phase is invoked during MPI INIT of a new instance of the application

(i.e., it starts over from main()).
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This chapter presents an example application that takes advantage of the self CRS.

Checkpointing and restarting of the MPI job occurs exactly as in the transparent cases (i.e.,

by using the ompi-checkpoint and ompi-restart tools or the API).

1. Interface

Open MPI uses dlsym to search for function signatures that can be used by the self CRS.

This saves the application the inconvenience of being required to explicitly register these

functions in the code.

// Default Checkpoint Callback
int opal crs self user checkpoint(char ∗∗restart cmd);
// Default Continue Callback
int opal crs self user continue(void);
// Default Restart Callback
int opal crs self user restart(void);

If the application would rather explicitly register the function it may do so using the

registration functions below.

// SELF CRS Checkpoint Registration Function
int OMPI CR self register checkpoint callback(OMPI CR self checkpoint fn function);
// SELF CRS Callback Function Signature
typedef int (∗OMPI CR self checkpoint fn)(char ∗∗restart cmd);

// SELF CRS Continue Registration Function
int OMPI CR self register continue callback(OMPI CR self continue fn function);
// SELF CRS Callback Function Signature
typedef int (∗OMPI CR self continue fn)(void);

// SELF CRS Restart Registration Function
int OMPI CR self register restart callback(OMPI CR self restart fn function);
// SELF CRS Callback Function Signature
typedef int (∗OMPI CR self restart fn)(void);
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2. Compiling

For the dlsym functionality to work the application must export symbols at compile

time. Below is an example of exporting the symbols using gcc and the Open MPI wrapper

compiler, mpicc.

shell$ mpicc my−app.c −export −export−dynamic −o my−app

3. Running

The application is launched as normal by specifying the ft-enable-cr AMCA parameter to

mpirun. Optionally, the end user can specify the crs self prefix MCA parameter to help the

dlsym function find function that are prefixed with the default names.

shell$ mpirun −np 2 −am ft−enable−cr my−app
shell$ mpirun −np 2 −am ft−enable−cr −mca crs self prefix my personal my−app

4. Example Application

/∗
∗ Example Open MPI CRS ’self’ program
∗ Author: Josh Hursey
∗/

#include <mpi.h>

#include <stdio.h>

#include <signal.h>

#include <string.h>

#define LIMIT 100

/∗∗∗ Function Declarations ∗∗∗/
void signal handler(int sig);

/∗ Default OPAL crs self callback functions ∗/
int opal crs self user checkpoint(char ∗∗restart cmd);
int opal crs self user continue(void);
int opal crs self user restart(void);
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/∗
∗ OPAL CRS self callback functions. Use the following MCA parameter:
∗ crs self prefix=my personal
∗/

int my personal checkpoint(char ∗∗restart cmd);
int my personal continue(void);
int my personal restart(void);

/∗∗∗ Global Variables ∗∗∗/
int am done = 1;
int current step = 0;
char ckpt file[128] = "my-personal-cr-file.ckpt";
char restart path[128] = "/full/path/to/personal-cr";

/∗∗∗ Main ∗∗∗/
int main(int argc, char ∗argv[]) {

int rank, size;
current step = 0;
MPI Init(&argc, &argv);

/∗ So we can exit cleanly ∗/
signal(SIGINT, signal handler);
signal(SIGTERM, signal handler);

for(; current step < LIMIT; current step += 1) {
printf("%d) Step %d\n", getpid(), current step);
sleep(1);
if(0 == am done) {

break;
}

}
MPI Finalize();
return 0;

}
void signal handler(int sig) {

printf("Received Signal %d\n", sig);
am done = 0;

}
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/∗ OPAL crs self default callbacks for checkpoint ∗/
int opal crs self user checkpoint(char ∗∗restart cmd) {

printf("opal crs self user checkpoint callback...\n");
my personal checkpoint(restart cmd);
return 0;

}
int opal crs self user continue(void) {

printf("opal crs self user continue callback...\n");
my personal continue();
return 0;

}
int opal crs self user restart(void) {

printf("opal crs self user restart callback...\n");
my personal restart();
return 0;

}

/∗ OPAL crs self callback for checkpoint ∗/
int my personal checkpoint(char ∗∗restart cmd) {

FILE ∗fp;
∗restart cmd = NULL;
printf("my personal checkpoint callback...\n");

/∗ Open our checkpoint file ∗/
if( NULL == (fp = fopen(ckpt file, "w")) ) {

fprintf(stderr, "Error: Unable to open file (%s)\n", ckpt file);
return;

}

/∗ Save the process state ∗/
fprintf(fp, "%d\n", current step);
/∗ Close the checkpoint file ∗/
fclose(fp);
/∗ Figure out the restart command ∗/
asprintf(restart cmd, "%s", strdup(restart path));

return 0;
}
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int my personal continue() {
printf("my personal continue callback...\n");
/∗ Don’t need to do anything here since we are in the
∗ state that we want to be in already. ∗/

return 0;
}

int my personal restart() {
FILE ∗fp;

printf("my personal restart callback...\n");

/∗ Open our checkpoint file ∗/
if( NULL == (fp = fopen(ckpt file, "r")) ) {

fprintf(stderr, "Error: Unable to open file (%s)\n", ckpt file);
return;

}

/∗
∗ Access the process state that we saved and
∗ update the current step variable.
∗/

fscanf(fp, "%d", &current step);
fclose(fp);

printf("my personal restart: Restarting from step %d\n", current step);
return 0;

}



D
Nonblocking Process Creation and Management

Operations

It is well established that many applications can see performance improvements by overlap-

ping communication and computation. Nonblocking process management routines allow

an application to overlap the creation of processes and/or establishment of communication

channels with other computation. The amount of overlap can become substantial when

creating or connecting a large number of processes. The proposal presented in this chapter

focuses adding nonblocking interfaces to the existing interfaces described in Chapter 10 of

the MPI 2.2 standard entitled “Process Creation and Management”.
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The section titles in this chapter match those in the current standard to aid the reader

in locating modifications to the original text.

1. Process Manager Interface

For all of the nonblocking routines described in this section an MPI REQUEST object is

returned. All of the completion calls (e.g., MPI WAIT, MPI TEST) are supported for these

nonblocking routines. Upon returning from a completion call, the MPI ERROR field of

the MPI STATUS object is set appropriately. The values of the MPI SOURCE and MPI TAG

fields are undefined. The parameters marked as OUT should not be accessed until the request

has been completed by one of the completion calls.

Matching blocking and nonblocking version of the MPI ICOMM SPAWN, MPI ICOMM -

SPAWN MULTIPLE, MPI ICOMM ACCEPT, MPI ICOMM CONNECT, and MPI ICOMM JOIN

operations is not allowed.

Rationale: The algorithms implemented for the blocking and nonblocking versions of

these operations may not be equivalent for reasons of efficiency.

2. Starting Processes and Establishing Communication

MPI ICOMM SPAWN(command, argv, maxprocs, info, root, comm,
intercomm, array of errcodes, request)

IN command name of program to be spawned
(string , significant only at root)

IN argv arguments to command
(array of strings , significant only at root)

IN maxprocs maximum number of processes to start
(integer, significant only at root)

IN info a set of key−value pairs telling the runtime system
where and how to start the processes
(handle, significant only at root)

IN root rank of process in which previous arguments are examined
(integer)

IN comm intracommunicator containing group of spawning processes
(handle)
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OUT intercomm intercommunicator between original group and the newly
spawned group
(handle)

OUT array of errcodes one code per process
(array of integer)

OUT request process creation request
(handle)

This call starts a nonblocking variant of MPI COMM SPAWN. It is erroneous to call

MPI REQUEST FREE or MPI CANCEL for the MPI REQUEST associated with the MPI -

ICOMM SPAWN operation.

If a MPI REQUEST for MPI ICOMM SPAWN or MPI ICOMM SPAWN MULTIPLE is

marked for cancellation using MPI CANCEL, then it must be the case that either the op-

eration completed normally, in which case the processes launched and communicator was

created, or that the operation is canceled, in which case the processes are not launched

and the communicator is not created. MPI CANCEL can be called from any participating

process.

Advice to implementors: The root can decide if it is able to or safe to cancel the request

when it is notified of the cancellation request. If the processes have already started to be

launched, the implementation is allowed to refuse the cancellation request if it is unable

or unwilling to terminate the new processes. Alternatively, the implementation may decide

that it is willing and able to terminate a newly launched process. Care should be taken

when doing so since the process may cause side effects in the system. For example, if the

launched process interacts with the file system before calling MPI INIT this may influence

already running processes.

Side Note: MPI COMM GET PARENT does not have a nonblocking counterpart since it

is a completely local operation.

2.1. Starting Multiple Executables and Establishing Communication. This call starts

a nonblocking variant of MPI COMM SPAWN MULTIPLE.
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MPI ICOMM SPAWN MULTIPLE(count, array of commands, array of argv,
array of maxprocs, array of info, root, comm,
intercomm, array of errcodes)

IN count number of commands
(positive integer, significant to MPI only at root)

IN array of commands programs to be executed
(array of strings , significant only at root)

IN array of argv arguments for commands
(array of array of strings , significant only at root)

IN array of maxprocs maximum number of processes to start for each command
(array of integer, significant only at root)

IN array of info info objects telling the runtime system where and how
to start processes
(array of handles, significant only at root)

IN root rank of process in which previous arguments are examined
(integer)

IN comm intracommunicator containing group of spawning processes
(handle)

OUT intercomm intercommunicator between original group and newly
spawned group
(handle)

OUT array of errcodes one error code per process
(array of integers )

OUT request process creation request
(handle)

If a MPI REQUEST for MPI ICOMM SPAWN or MPI ICOMM SPAWN MULTIPLE is

marked for cancellation using MPI CANCEL, then it must be the case that either the op-

eration completed normally, in which case the processes launched and communicator was

created, or that the operation is canceled, in which case the processes are not launched

and the communicator is not created. MPI CANCEL can be called from any participating

process.

2.2. Nonblocking Spawn Example. Below is an pseudo code example of a use of the

nonblocking spawn interface.
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int foo(int num children) {
for(i = 0; i < num children; ++i) {

MPI Icomm spawn("myapp", argv, 1, info, 0, MPI COMM SELF,
&intercomm[i], &array of statuses[i], &(requests[i]));

}
prepare work units();
MPI Waitall(num children, requests, statuses);
begin work();

}

3. Establishing Communication

3.1. Server Routines. This call starts a nonblocking variant of MPI OPEN PORT. Since

this might involve communication with an external name service, an application may want

to perform computation while waiting on a response.

MPI IOPEN PORT(info, port name, request)
IN info implementation−specific information on how to establish an address

(handle)
OUT port name newly established port

(string )
OUT request connection request

(handle)

If a MPI REQUEST for MPI IOPEN PORT is marked for cancellation by using MPI -

CANCEL, then it must be the case that either the operation completed normally, in which

case the port is opened, or that the operation is canceled, in which case the port is not

opened.

MPI ICLOSE PORT(port name, request)
IN port name a port

(string )
OUT request connection request

(handle)
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This call starts a nonblocking variant of MPI CLOSE PORT. Again, since this might

involve communication with an external name service computation overlap may be advan-

tageous.

If a MPI REQUEST for MPI ICLOSE PORT is marked for cancellation by using MPI -

CANCEL, then it must be the case that either the operation completed normally, in which

case the port is closed, or that the operation is canceled, in which case the port remains in

its previous state.

MPI ICOMM ACCEPT(port name, info, root, comm, newcomm, request)
IN port port name

(string , used only on root)
IN info implementation−specific information

(handle, used only on root)
IN root rank in comm of the root node

(integer)
IN comm intracommunicator over which call is collective

(handle)
OUT newcomm intercommunicator with client as remote group

(handle)
OUT request connection request

(handle)

This call starts a nonblocking variant of MPI COMM ACCEPT.

If a MPI REQUEST for MPI ICOMM ACCEPT is marked for cancellation by using MPI -

CANCEL, then it must be the case that either the operation completed normally, in which

case the connection is established, or that the operation is canceled, in which case the any

pending requests will be canceled returning MPI ERR NOT CONNECTED to any processes

waiting in MPI COMM CONNECT or MPI ICOMM CONNECT. MPI CANCEL can be called

from any participating process.

3.2. Client Routines. This call starts a nonblocking variant of the MPI COMM CON-

NECT operation.
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MPI ICOMM CONNECT(port name, info, root, comm, newcomm, request)
IN port name network address

(string , used only on root)
IN info implementation−specific information

(handle, used only on root)
IN root rank in comm of the root node

(integer)
IN comm intracommunicator over which call is collective

(handle)
OUT newcomm intercommunicator with client as remote group

(handle)
OUT request connection request

(handle)

If a MPI REQUEST for MPI ICOMM CONNECT is marked for cancellation by using

MPI CANCEL, then it must be the case that either the operation completed normally, in

which case the connection is established, or that the operation is canceled, in which case

the connection is not established. If the connection was establishing when the cancellation

occurred then the matching MPI COMM ACCEPT or MPI ICOMM ACCEPT call may return

MPI ERR NOT CONNECTED. MPI CANCEL can be called from any participating process.

3.3. Name Publishing. This call starts a nonblocking variant of the MPI PUBLISH -

NAME operation.

MPI IPUBLISH NAME(service name, info, port name, request)
IN service name a service name to associate with the port

(string )
IN info implementation−specific information

(handle)
IN port name a port name

(string )
OUT request connection request

(handle)

If a MPI REQUEST for MPI IPUBLISH NAME is marked for cancellation by using MPI -

CANCEL, then it must be the case that either the operation completed normally, in which
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case the port is published, or that the operation is canceled, in which case the port remains

unpublished.

MPI IUNPUBLISH NAME(service name, info, port name, request)
IN service name a service name

(string )
IN info implementation−specific information

(handle)
IN port name a port name

(string )
OUT request connection request

(handle)

This call starts a nonblocking variant of MPI UNPUBLISH NAME.

If a MPI REQUEST for MPI IUNPUBLISH NAME is marked for cancellation by using

MPI CANCEL, then it must be the case that either the operation completed normally, in

which case the port is unpublished, or that the operation is canceled, in which case the port

remains in its previous state before the call to MPI IUNPUBLISH NAME.

MPI ILOOKUP NAME(service name, info, port name, request)
IN service name a service name

(string )
IN info implementation−specific information

(handle)
OUT port name a port name

(string )
OUT request connection request

(handle)

This call starts a nonblocking variant of MPI LOOKUP NAME.

If a MPI REQUEST for MPI ILOOKUP NAME is marked for cancellation by using MPI -

CANCEL, then it must be the case that either the operation completed normally, in which

case the port name variable contains the value found, or that the operation is canceled,

in which case the port name variable remains in its previous state before the call to MPI -

ILOOKUP NAME.
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3.4. Reserved Key Values. The timeout key value is defined in an Advice to Implemen-

tors note in the MPI 2.0 standard notes for MPI Comm connect in Chapter 5, Section 5.4.3.

We strengthen this commentary by standardizing a timeout for the MPI INFO object that

can be passed to either the blocking or non-blocking versions of both MPI COMM ACCEPT

and MPI COMM CONNECT.

The timeout reserved key indicates the time out period for the MPI COMM ACCEPT,

MPI COMM CONNECT, MPI OPEN PORT, MPI PUBLISH NAME, MPI LOOKUP NAME,

and the MPI UNPUBLISH NAME operations. The value is specified as a positive integer

representing the timeout in units of MPI WTICK. The timeout is defined as the time it takes

for the entire operation to complete. If the value is set to 0 then the timeout is set to an MPI

implementation defined limit. The keyword is only meaningful at the root. If an implemen-

tation supports this reserved key it must behave as specified in this section. The standard

does not specify how long an implementation should take to return to the application after

a timeout. A good quality implementation will return to the application after a timeout

within an implementation defined time bound

Rationale: The server might stall for a variety of reasons (e.g., fault recovery, over-

loaded). The client may want to limit their sensitivity to slow servers. The timeout key

allows them to cancel a blocking connection establishment operation.

Advice to implementors: If the MPI implementation provides the timeout key, then it

is suggested to set the default timeout to an indefinite timeout value. Additionally, the

timeout for a collective operation should start once all processes arrive. This is important for

the nonblocking variations of these connection establishment calls in order to account for

process skew. Once the timeout has started, the timeout is between the roots representing

the collective group in the paired operations. For example, the timeout starts on the server

side once all processes have called MPI COMM ACCEPT or MPI ICOMM ACCEPT. The

timeout starts on the client side once all processes have called MPI COMM CONNECT or

MPI ICOMM CONNECT. The connection establishment operation is timed out between the

root in MPI COMM ACCEPT and the root in MPI COMM CONNECT, not any other process

in either intracommunicator.
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MPI COMM CONNECT will try for the specified amount of time to establish a con-

nection to the remote server. If the command cannot connect within the time specified,

the library will raise either the error class MPI ERR NOT RESPONDING or the error class

MPI ERR NOT AVAILABLE. The error class MPI ERR NOT RESPONDING indicates that

the remote server is alive, but has not responded to the connection request within the time-

out bounds (i.e., no MPI COMM ACCEPT posted at the remote server). The MPI ERR -

NOT AVAILABLE error class indicates that the remote server state is unknown, and has not

responded to the connection request within the timeout bounds.

Advice to implementors: If the MPI implementation does not have the ability to distin-

guish between an active server and an unresponsive server, the implementation is allowed

to return the stricter of the two error classes, namely MPI ERR NOT AVAILABLE.

MPI COMM CONNECT will raise the error class MPI ERR NOT CONNECTED if the

connection to the remote server has started but could not be finished. This situation may

be caused by a failure of the remote server during the connection establishment handshake.

Additionally, this could be caused by a timeout on the operation when set by the application.

MPI COMM ACCEPT will try for the specified amount of time to accept a connec-

tion from a remote client. It is a valid behavior for the MPI COMM ACCEPT call to

timeout with accepting connections, and should not be considered an error. This sce-

nario is indicated by setting newcomm to MPI COMM NULL, and returning MPI SUCCESS.

MPI COMM ACCEPT will raise the error class MPI ERR NOT CONNECTED if the connec-

tion to the remote client has started but could not be finished. This situation may be caused

by a failure of the remote client during the connection establishment handshake.

If MPI ERRORS RETURN is not set on the communicator then the MPI ERR NOT -

RESPONDING, MPI COMM NOT AVAILABLE, and MPI ERR NOT CONNECTED are fatal

as defined by the default of MPI ERRORS ARE FATAL, even though the error code may

have been caused by the timeout on the operation.

Rationale: It was recognized that the application, by setting the timeout key value,

may expect that the errors caused by the timeout of the operation should not be fatal.

However, by making this class of errors non-fatal, will cause previous standard conformant
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applications to break since functions that they assumed would only return MPI SUCCESS

would then return a wider class of errors.

3.5. Releasing Connections. This call starts a nonblocking variant of MPI COMM -

DISCONNECT.

MPI ICOMM DISCONNECT(comm, request)
INOUT comm communicator

(handle)
OUT request connection request

(handle)

If a MPI REQUEST for MPI ICOMM DISCONNECT is marked for cancellation using

MPI CANCEL, then it must be the case that either the operation completed normally, in

which case the communicator is disconnected, or that the operation is canceled, in which

case the communicator is still valid.

3.6. Another Way to Establish MPI Communication. This call starts a nonblocking

variant of MPI COMM JOIN.

MPI ICOMM JOIN(fd, intercomm, request)
IN fd socket file descriptor
OUT intercomm new intercommunicator

(handle)
OUT request connection request

(handle)

If a MPI REQUEST for MPI ICOMM JOIN is marked for cancellation by using MPI -

CANCEL, then it must be the case that either the operation completed normally, in which

case the communicator is created, or that the operation is canceled, in which case the

communicator is not created.

The file descriptor must not be used between the call to MPI ICOMM JOIN and corre-

sponding call to the request completion call. Upon return from request completion call on

the request from MPI ICOMM JOIN, the file descriptor will be open and quiescent.
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