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Amrita Mohan 

ABSTRACT 

A STUDY OF INTRINSIC DISORDER AND ITS ROLE IN FUNCTIONAL 

PROTEOMICS 

The last decade has witnessed the emergence of an alternate view on how protein 

function arises. This view attributes the functionality of many proteins to the presence of 

an ensemble of flexible regions popularly as ‘intrinsically disordered’ or ‘unstructured’. 

Several proteomic studies have corroborated the existence of either wholly disordered 

proteins or proteins that contain regions of disorder in them. The purpose of this 

dissertation was to investigate the consistency of such regions across experiments, their 

mechanism of facilitating function via disorder-to-order transitions, their presence and 

significance in pathogenic versus non-pathogenic organisms and their promise of 

applicability towards the computational prediction of peptides involved in the most 

common class of post-translational modifications, phosphorylation. Besides these, a new 

algorithm exploiting the strong correlation between phosphorylation and intrinsic 

disorder has also been proposed to improve the detection of phosphorylated peptides via 

high-throughput methods such as tandem mass-spectrometry (LC-MS/MS). Results 

presented in this study, guide us in understanding the robustness of unstructured regions 

in proteins to sequence changes and environment, their role in facilitating molecular 

recognition as well as improving currently available methods for identification of post-

translationally modified peptides. The findings and conclusions of this dissertation have 

the potential to impact ongoing structural genomics initiatives by suggesting alternative 
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methods for determining structure for targets containing regions of disorder. Additional 

ramifications of results from this work include directing attention towards the possible 

use of regions of intrinsic disorder by pathogenic organisms for host cell invasion. We 

believe that unlike the traditional reductionist approach in a scientific method, this study 

gathers strength and utility by investigating the role of intrinsic disorder on more than one 

front in order to provide a novel perspective to the understanding of complex interactions 

within biological systems. Concluding arguments presented in this study pique one’s 

curiosity regarding the evolution of disordered regions and proteins in general. On a 

technological side, the findings from this study unequivocally support the viable use of 

informatics methods in gaining new insights about a relatively young class of proteins 

known as intrinsically disordered proteins and its applicability to improve our present 

knowledge of cellular physiology. 
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CHAPTER ONE: INTRODUCTION 

What is intrinsic disorder (ID)? 

Traditional wisdom pertinent to the protein structure-function paradigm relies 

strongly on a single assumption that the three-dimensional structure of a protein is the 

key determinant of its function. However, results from many recent studies present 

evidence that an ‘unstructured’ or ‘intrinsically disordered’ conformation may in fact be 

responsible for the true functional state of some proteins.1-22 Some other popular terms 

used to describe proteins or their regions without a specific 3-D structure include: 

‘flexible’, ‘mobile’, ‘partially folded’, ‘natively unfolded’, ‘pre-molten globule’. This 

special class of flexible structure has been reported to be either partially or completely 

spanning the lengths of proteins. Despite the well adopted view that protein function is an 

immediate consequence of its three-dimensional structure, researchers discovered 

examples where fragments of proteins were found to be unstructured and contributing to 

the overall protein’s functionality. The compelling evidence that, intrinsically disordered 

proteins exist in vitro as well as in vivo justifies treating them as a separate class within 

the protein universe.2, 4, 10, 23, 24 

 

Function and significance of intrinsic disorder 

Many studies have confirmed the presence of disordered proteins in a number of 

proteomes and that their increase in abundance is directly proportional to the increasing 

organism complexity.25-27 28-30 This increased prediction of disorder in eukaryotes in 
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comparison to prokaryotes or the archaea has been presupposed to be a result of the 

increased need for cell signaling and regulation.27, 28, 30, 31 Two recent studies on the 

Plasmodium falciparum protozoan genome demonstrated the presence of asparagine-rich 

low complexity regions in as many as 50% of its translated genes.32, 33 It is believed that 

these low complexity regions indicate the presence of disorder and contribute to the 

overall uniqueness of each individual species within this diverse group of early-branching 

eukaryotes. In the case of Plasmodium species, which cause malaria, such regions have 

also been reported to hinder the identification of homologues, thus making functional 

genomics exceptionally challenging.34 

It is important to state here that even though the physical conformation of natively 

disordered proteins closely mimics the observed denatured states of structured (also 

known as ordered) proteins, the two are physiologically different. Unlike its denatured 

counterpart, proteins with disordered conformation do not lose their ability to function 

biologically.4, 35 Since the sighting of such observations, the field of intrinsic disorder and 

protein functionality resulting from intrinsic disorder has steadily garnered attention from 

around the globe. Many literary articles36-40 now contain confirmed reports of disordered 

regions that are crucial for protein function. The functional importance of protein 

disorder is further emphasized by its role in housekeeping cellular processes such as 

signal transduction, cell-cycle regulation, gene expression and molecular recognition as 

reported in.9, 10, 13, 28, 41 The widespread prevalence and importance of these intrinsically 

disordered proteins has called for reassessing the understanding of the classical protein 

structure–function paradigm.42 Among other functions, intrinsic disorder has been 

suggested to play an important role in molecular recognition as well as post-translational 
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modifications or PTMs. 5, 8, 41, 43-45 In addition to these, the functional importance of 

protein disorder in gene expression and cell cycle regulation has also been established.1, 46 

The following paragraphs provide a brief overview of molecular recognition and post-

translational modifications. 

 

Molecular recognition 

Molecular recognition is defined as a process by which biological entities 

specifically interact with each other or with small molecules to form complexes. 

Complex formation is often a prerequisite for biological function, but also serves as a 

mechanism of functional modulation and signal transduction. Disorder-mediated 

molecular recognition although highly specific, occurs with low affinity and typically 

involves regions that are capable of binding to multiple partners by adopting a spectrum 

of conformations. Since these characteristics are also shared by signaling and regulation 

interactions, intrinsic disorder has often been implicated in cell signaling and regulation. 

 

Post-translational modifications 

It is well known that the biological activity for many a proteins is regulated by 

different types of post-translational modifications (or PTMs). PTMs are chemically 

modified derivatives of translated proteins. Typically these modifications are the result of 

covalent additions of various chemical groups such as methyl, phosphoryl, glycosyl and 

acetyl to the side chains of particular amino acids such as serine, threonine, methionine 

etc. Occasionally, PTMs can also be the result of proteolytic cleavage of a peptide bond 
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by a special class of enzymes known as hydrolases.47 There are more than 200 reported 

post-translation modification types known to occur in eukaryotes depending on the 

chemical group that attaches to a protein. These include (but are not limited to) 

phosphorylation, ubiquitination, acetylation, methylation, acylation, glycosylation, 

sulfation and deamidation. Sometimes, PTMs are also classified based on the small-

molecule signaled for attaching at the site of modification (e.g., ubiquitination, 

SUMOylation) and based on the loss or gain of a chemical group on amino acids 

(deamidation, oxidation). Some proteins undergo a number of post-translational 

modifications to achieve their expected function. A good example for such types of 

proteins is provided by histones. Histones reportedly undergo methylation, 

phosphorylation, acetylation, ubiquitination, ADP-ribosylation, and SUMOylation at 

different time-intervals, to modulate histone–DNA interactions as well as histone–histone 

interations, that are closely involved in the control of nucleosome stability.48 Chemically 

modified residues of a polypeptide chain after translation offer an extended range of 

functionalities to the protein. 

Post-translationally modified instances of a protein play a crucial role in 

determining its active state, cellular localization, degradation, as well as interactions with 

other proteins. In signaling, for example, multiple kinase molecules are switched on and 

off by the reversible addition and removal of phosphate groups49, and in the cell cycle, 

ubiquitination marks cyclins for destruction at designated time intervals.50 In 

phosphorylation, molecules known as kinases attach phosphate groups to select amino 

acids such as serine (S), threonine (T) and tyrosine (Y). Ubiquitination on the other hand 

refers to the modification of a protein structure by the covalent attachment of one or more 
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ubiquitin monomers to a lysine side chain. Ubiquitination of proteins involves the 

combined action of three molecules viz., E1 or the ubiquitin-activating enzyme, E2 or the 

ubiquitin-conjugating enzymes and E3, the ubiquitin-protein ligase. It has been suggested 

that E3s work as 'docking proteins' that specifically bind to substrate proteins and specific 

E2s. At this stage, ubiquitin is transferred directly from E2s to substrates.51 A relatively 

small molecule, ubiquitin comprises only of 76 residues and functions to regulate protein 

turnover in a cell by closely regulating the degradation of other target proteins. Protein 

degradation is a crucial step in most biological processes as it facilitates the elimination 

of non-functional or abnormal proteins. Past research suggests links between 

ubiquitination and phosphorylation with diseases involving a variety of cellular activities 

including neural and muscular degeneration, DNA transcription and repair, apoptosis or 

programmed cell death and cell division.52 With a key role such as that of regulating a 

cell’s housekeeping events, it is unsurprising to see unabated efforts by scientific groups 

to develop bigger and better information repositories of protein phosphorylation and 

ubiquitination sites.  

In the past, Edman degradation was frequently employed in the identification of 

PTMs. Currently faster, more accurate methods such as the mass spectrometry (MS) 

based ones have gained popularity within the proteomics community. Notwithstanding 

the availability of advanced methods of detecting post-translationally modified peptides, 

their identification continues to entail major challenges due to the observation that at a 

given time only a fraction of the molecules of a given protein in the cell might actually be 

modified. Moreover, these modifications are often spread across multiple positions on a 

molecule resulting in a formidable heterogeneous population of the given protein at a 
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given point of time. As a consequence of this, a highly sensitive and selective analytical 

methodology is required for the thorough analysis of all the post-translationally modified 

copies of the proteins present in a cell.  

 

Mode of facilitating protein function by intrinsically disordered proteins 

Among other roles, disorder is believed to play a crucial role in the molecular 

recognition of protein molecules.5, 8, 41, 43-45 Molecular recognition is defined as a process 

by which proteins and other biological entities specifically interact with each other or 

with small molecules to form complexes. Complex assembly is often a necessary step for 

biological activity, and serves as a mechanism of functional regulation and signal 

transduction. Common characteristics of intrinsic disorder-mediated molecular 

recognition include: (a) a combination of high specificity and low affinity; (b) binding 

diversity in which one region specifically recognizes different partners by structural 

rearrangement; (c) binding commonality in which multiple, distinct sequences recognize 

a common binding site, such that these sequences may or may not assume dissimilar 

folds. These same features are also believed to be important for interaction-mediated 

signaling and modulation, which indicates that unfolded proteins may play a central role 

in signal transduction.1, 5, 8, 41, 43 Typically, functions of disordered proteins may arise 

directly due to its disordered state, switching between multiple disordered states, or from 

transitions between disordered and ordered states. 
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Characterization of Intrinsic Disorder 

In the past decade, there has been significant progress in our understanding of the 

wide-spread prevalence and function of intrinsically disordered proteins.1, 2, 6, 10, 23, 41, 53-55 

What once seemed to be a set of exceptions to the traditional structure-to-function 

paradigm, where every protein was believed to have stable 3D structure to carry out 

function, turned into a field where computational and experimental approaches were 

developed and combined to accurately characterize disordered proteins 9, 56, understand 

their function 1, 6, 55, 57-59, mechanisms of binding 10, 45, 60, 61 and estimate their abundance 

in the protein universe.10, 28, 31, 62, 63 Undoubtedly, bioinformatics analyses and methods, 

especially a set of predictors and statistical techniques, played a significant role in this 

process which estimated the broad functional repertoire of disordered proteins and 

provided early evidence of their prevalence in all kingdoms of life.55, 64 

 

Experimental determination of intrinsic disorder 

Several methods have been used to characterize disorder in proteins, each with its 

own strengths and limitations. Here we briefly discuss three of the leading methods for 

the experimental characterization of intrinsic disorder; X-ray crystallography, Nuclear 

Magnetic Resonance (NMR) spectroscopy and Circular Dichroism (CD). 

 

X-ray crystallography 

Regions with high flexibility found within proteins vary in location from one 

configuration to another and as a result fail to scatter X-rays as coherently. The absence 
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of X-ray scattering for such regions results in missing electron density. Therefore, 

presence of intrinsic disorder in a protein can be confirmed by the observation of missing 

electron density in protein structures determined using X-ray crystallography. This also 

explains why completely disordered proteins are difficult to crystallize. Crystallographers 

have often identified two configurations for disorder: static and dynamic.65, 66 A 

dynamically disordered region has the potential to freeze into a single preferred 

conformation at lower temperatures, while static disorder can remain persistent regardless 

of temperature.67 It is important to mention at this point that a missing region with one set 

of Ramachandran φ, ψ angles as determined by X-ray diffraction method, can also be a 

“wobbly domain” and not natively disordered owing to a flexible hinge in the protein’s 

backbone allowing the region to adopt multiple positions in the crystal lattice as a rigid 

body. Missing electron density in protein structures can also arise from failure to solve 

the phase problem, from crystal defects or even from unintentional proteolytic removal 

during protein purification. Therefore, information from X-ray diffraction experiments 

may not always be a confident indicator of intrinsic disorder and missing electron density 

regions obtained using X-ray crystallization techniques should be treated with caution. 

 

Nuclear magnetic resonance spectroscopy 

3D structures can be determined for proteins in solution by the method of nuclear 

magnetic resonance (NMR) spectroscopy. In 1978, the same year that functional disorder 

was indicated by X-ray crystallography, Aviles et al used NMR and found the highly 

charged, functional tail of histone H5 to be disordered.68 Since then, NMR 3D structural 
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determination has led to the characterization of several proteins containing functional, yet 

unstructured regions.69, 70 Another surprising result of NMR protein structure 

determinations was the discovery of functional proteins that lacked any type of structural 

predisposition, i.e., functional proteins that are disordered from end-to-end.71 Because 

NMR is more certain in its characterization of disorder than X-ray diffraction, the 

rediscovery of native disorder by NMR had significant impact.42 Intrinsically disordered 

proteins have a multitude of dynamic conformations that interchange on a number of 

timescales. NMR spectroscopy can detect such a scale of molecular motion with 

reasonably high accuracy. Moreover, the absence of the requirement for crystallization in 

NMR rids it of any possible biased estimates arising due to the commonness of disorder 

ascertained using X-ray crystallography. A typical NMR experiment provides motional 

information for a protein on a residue-by-residue basis72 by means of a variety of 

different isotopic labeling and pulse sequence experiments.73 Of particular use is the 15N-

1H hetereonuclear nuclear overhauser effect (NOE) measurement, which gives positive 

values for more slowly tumbling or ordered residues and negative values for more rapidly 

tumbling disordered residues.73, 74When these NOE data are looked up in reference to an 

amino-acid sequence, ordered regions can easily be identified by a series of consecutive 

positive values and disordered regions by contiguous stretches of negative values.69 

Unlike ordered proteins, very few regions with persistent secondary structure and 

yet an apparent lack of any specific tertiary structure (also known as “molten globules”) 

have been successfully characterized by NMR, indicating significant experimental 

difficulties encountered. A big reason for this difficulty stems from the fact that molten 

globular regions frequently aggregate at the concentrations typically required for NMR 
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experiments. In addition to this, molten globules are inherently heterogeneous by nature 

and individual conformations typically interconvert on the millisecond timescale; this 

leads to extreme broadening of the side-chain NMR peaks. In short, native molten 

globular protein domains are significantly underrepresented in any collection of 

disordered proteins characterized using NMR. 

 

Circular dichroism (CD) spectroscopy 

Structural information for proteins in solution can also be determined using 

circular dichroism.75 Far-UV CD spectra provide estimates of secondary structure and 

can help distinguish ordered and molten globular forms from random coil. On the other 

hand, near-UV CD show sharp peaks for aromatic groups when the protein is ordered, but 

these peaks disappear for molten globules and random coils due to motional averaging.76-

78 Therefore, the combined use of near and far-UV CD can help in determining whether a 

protein is ordered, molten globular, or random coil. However, this method provides only 

semi-quantitative data and lacks residue-specific information. In other words, circular 

dichroism spectroscopy does not provide clear information about proteins that contain 

both ordered and disordered regions. 

Some other popular methods of determining disorder in protein molecules include 

protease digestion and Stoke’s radius determination. Protease digestion relies on the 

assumption that a structured region needs to become unfolded over a length of 10 or more 

residues in order to be cut by standard proteases.79 Studies by Fontana et al., 80, 81 

demonstrate huge increases in digestion rates after the F-helix of myoglobin is converted 



11 

 

to a disordered state in apomyoglobin, with the cut loci for several different proteases 

occurring within the disordered region that arises from the F-helix. Although the exact 

disorder to order digestion rate ratio was not estimated, the authors indicated that typical 

rates are potentially in the 105 to 107 range. Thus, hypersensitivity to proteases is sure 

evidence of protein disorder. Protease digestion gives position-specific information. 

However, the requirement for protease-sensitive residues limits the demarcation of 

order/disorder boundaries by this method. Protease digestion is particularly helpful when 

used in combination with other methods such as X-ray diffraction to help sort out 

whether a region of missing electron density is due to a wobbly domain or due to intrinsic 

disorder.82, 83 Protease digestion has also been used in conjunction with circular 

dichroism. Finally, the combination of proteolysis and mass spectrometry10 for fragment 

identification shows special promise for indicating the presence of intrinsic disorder.  In 

Stoke’s radius determination method, the observation of significantly outsized radii for a 

given molecular weight serves as an indicator of disorder. This method has often been 

used in conjunction with CD spectroscopy,84, 85 to test the presence of random coil 

structure in proteins. Besides these, the use of optical rotatory dispersion (ORD)86, 

Fourier transform infrared13, Raman spectroscopy/Raman optical activity87 and 

fluorescence techniques88 has also been explored to determine intrinsic disorder.  

Regardless of the wide variety of methods available for the experimental 

determination of disorder, the outcome from each method greatly relies on experimental 

parameters (such as temperature, pH and salt concentration) supplied at the time of assay. 

Unfortunately, limited data is available to systematically evaluate the consequences of 

changes in experimental parameters on regions of disorder in polypeptides. 
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Computational prediction of intrinsic disorder 

With the number of disordered proteins with verifiable functions continuing to 

increase dramatically, it is unsurprising to observe a proportional hike in the number of 

predictors of disorder including Predictors of Natural Disordered Region (PONDR)89-92 

(70 – 82%), GlobPlot93 (62%), DISOPRED predictor94 (74%), NORSp95 (78%),  

DisEMBL96 (62%), IUPred97 (76%), RONN98 (85%),  FoldIndex99 (77%), DISpro100 

(93%) , PreLINK (93%)101 and Wiggle102 (66%)). The inclusion of disorder prediction as 

an independent category in the past four CASP experiments (CASP5103, 

CASP6104,CASP7 and CASP8) has further generated increased interest in disorder 

prediction by structural biologists across the globe. CASP (Critical Assessment of 

techniques for protein Structure Prediction) a community-wide competition for protein 

structure prediction serves as a quality platform for comparing different intrinsic disorder 

and protein structure prediction software. Each CASP competition is strictly conducted 

every two years to measure the performance of existing software tools and servers 

capable of modeling protein structure including intrinsic disorder. Ensuring accurate and 

efficient prediction of disorder not only directly contributes towards the overall goal of 

structural genomics projects but also can also indirectly help identify potential drug 

targets with critical functions.  

 

Why has little been known about intrinsic disorder until now? 

Traditional structure determination methods are designed such that they favor the 

production and characterization of well-folded, functional proteins. A typical biochemical 
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procedure initiates with plant, animal or bacterial cells being isolated and homogenized 

for use in assaying the function of interest. The homogenized sample is subjected to 

fractionation, chromatography and/or gel filtration. Finally, all available fractions are 

tested for the function of interest and the associated active protein is purified for sequence 

and structure determination.  

As can be realized by the order of aforementioned steps, such methodology is 

inherently driven to select only polypeptides with well-defined tertiary structures. 

Unfolded proteins under such conditions are much more prone to degradation by 

proteases under the conditions typically prevailing during such assays. In addition to this, 

typically disordered regions occupy a relatively smaller part of the larger proteins being 

studied and are therefore much more difficult for ascertainment. 

With the recent increase in the wealth of data supporting the presence and 

significance of disordered proteins there has been growing parallel interest to 

simultaneously improve the in vivo characterization of disorder. This growing attention 

has led to the invention and development of alternative biochemical approaches 

conducive to the experimental determination of disorder. Such methods can begin with 

the formulation of a function of interest (e.g. gain of signaling event) followed by 

mapping the function to a key gene using gene-function mapping tools. The gene can 

next be transcribed into a protein and purified (with or without binding partner) for 

structure determination using NMR or circular dichroism spectroscopy. 
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CHAPTER TWO: STATEMENT OF PROBLEMS 

The goal of this dissertation is to seek answers to some key questions regarding specific 

aspects of a relatively new class of protein conformation, intrinsic disorder and study its 

role in molecular recognition and post-translational modifications such as 

phosphorylation and explore its prevalence in a large group of pathogenic organisms in 

comparison to non-pathogenic organisms. In doing so, we pose the following questions: 

  

Are disordered regions perfectly repeatable experimentally? 

Despite the fact that since 1997, the number of predictors of disordered protein 

regions has continued to rise, with balanced accuracies within the 70 – 93% range, the 

individual disorder prediction accuracies of most sequence-based predictors of disorder at 

CASP7 were much lower.105  In addition to this, statistical evaluation of disorder 

predictions by various groups on CASP targets in CASP7106 revealed that despite similar 

distribution of the disordered segments between CASP7 and CASP6104 targets, no 

significant improvement in disorder predictions was made in CASP7 in comparison to 

CASP6. Assessors’ evaluations for the disorder prediction category in CASP8 (Brik et 

al., in press) concluded that the latest CASP experiment witnessed a marginal boost in the 

performance of disorder predictions in comparison to CASP7 however none of the 

submitted predictors achieved >85% accuracy. (Figure 1)  
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Figure 1: Best blind-test accuracies in CASP 6, 7 and 8 in disorder prediction category. 

 

Given this finding and the continued interest in predicting disorder from structural 

disorder researchers, at least two key questions arise about the assumptions behind their 

construction and whether further improvement in classification models is still possible. 

Are experimentally determined disordered regions preserved if the same or similar 

protein is characterized under the same or slightly different experimental conditions? Is 

there an upper limit to the accuracy of disorder prediction stemming from this 

experimental repeatability? 

We suspect that this apparent lack of improvement in prediction accuracies stems 

from the fact that all sequence based predictors of disorder stand to be limited by the type 

of data used to train them. Alternatively, learning to predict disorder accurately may 

imply perfect in vivo repeatability of disorder. Although it is known that the increasing 

variety in the lengths and compositions of disordered regions makes it harder for 

sequence-specific predictors to anticipate such regions with very high accuracy91, we 

believe that the reason behind this stagnation in prediction accuracies is as simple as the 
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existence of a practical limit to the experimental repeatability of disordered regions. Any 

upper limit to the repeatability of experimental disorder will also serve to restrict the 

highest achievable accuracy for intrinsic disorder prediction. In other words, the 

achievement of higher prediction accuracies for intrinsic disorder may, in fact, be limited 

due to the absence of perfect identity between disordered regions from highly similar 

sequences characterized in different experiments using differing experimental conditions.  

 

What distinguishes disorder-mediated interactions from other interactions? 

Previously, intrinsically disordered proteins have been shown to be prevalent across a 

multitude of eukaryotic proteomes25, 27 and are believed to play a central role in the 

process of molecular recognition by small molecules35, and especially so in the case of 

interaction-mediated signaling events. There are abundant advantages of disordered 

proteins or regions catering to this role. These include the decoupling of specificity and 

affinity44, the ability to recognize multiple partners through the accommodation of 

different conformations107 and faster coupling, perhaps, through the fly-casting108 

mechanism. A majority of disordered proteins perform their functions by undergoing 

disorder-to-order transitions upon binding to their target proteins.44, 45 A recent article 

cites the use of this disorder-to-order phenomenon to devise a methodology for obtaining 

the structure of a disordered protein that had previously failed in the high-throughput 

structure determination pipeline of structural genomics.109 The approach of crystallizing 

unfolded proteins in the presence of their molecular binding partners promises to greatly 

increase the number of proteins amenable to the traditional structure determination 
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methods. A previous work44 focused on a small set of fragments that adopted an α-helical 

structure after binding to their respective partners. However, the class of all such 

fragments is thought to be much broader and believed to include fragments of β-strand or 

irregular structure type. To improve our current understanding of how disorder-mediated 

interactions are facilitated a much larger data set of disorder fragments that gain structure 

when bound to their partners is needed. Clearly, the development of a complete data set 

of disordered proteins known to adopt well-formed three-dimensional conformations 

upon binding to their targets is the first step in this direction. The availability of such a 

data set, besides facilitating the development of a model for intrinsic disorder-mediated 

interactions will help us in answering other important questions. A few such queries 

include, what features distinguish disorder-based molecular recognition from other types 

of protein interactions? Are interaction surfaces on such fragments different from other 

interactions? Is there preference for a specific local secondary structure type in such 

fragments? Do inter-chain or intra-chain interactions have effect on the conformation of 

such fragments?  

 

Can intrinsic disorder be applied to improve the detection of post-translational 

modifications? 

An interesting study by Xie et al.,58 demonstrated that post-translational 

modifications can be segregated into two classes based on the conformational state of the 

modified site: the first class includes all PTMs where the modified sites are present 

within regions of structure and the second class includes all PTMs where the site of 
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modification is associated with intrinsic disorder. It is suggested that the inherent 

flexibility of disordered regions in proteins facilitates the easy binding of some of the 

important small-molecules such as the likes of kinases, phosphatases and ubiquitin 

ligases to their respective targeted residues. The former class encompasses PTMs that are 

vital for the execution of catalytic reactions, enzymatic activities and for stabilizing 

protein structure. Examples of such PTMs include oxidation, formylation and covalent 

attachment of polypeptides with organic heteroatoms. The latter group of modifications is 

closely involved with interactions relying on low affinity and high specificity binding 

(e.g. signaling events) attaching groups and their substrates. Examples of PTMs from this 

group include phosphorylation, ubiquitination, methylation, acetylation, prenylation, 

acylation, adenylylation and SUMOylation among others. Of these, phosphorylation and 

ubiquitination (also known as ubiquitylation) collectively account for more than half of 

the modifications crucial to signaling and transduction processes in biological systems. 

The dynamic nature of both these modifications makes them extremely important in 

cellular regulation mechanisms warranting the need for reliable, fast and sensitive 

methods for their identification. A recent study by Radivojac et al., 110 presented multiple 

lines of evidence indicating that a significant fraction of ubiquitination sites may be 

located in intrinsically disordered regions. The authors describe a novel random forest 

based predictor of ubiquitination sites, UbPred, designed to identify candidate 

ubiquitination sites using local sequence information, including the propensity of a 

residue to be disordered as predicted by VSL2B. UbPred achieved balanced accuracy and 

area under receiver operator curve of 72% and 80%, respectively. Besides this, many 

other studies have also presented arguments supporting the pivotal role intrinsic disorder 
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plays in ubiquitination.111-113 Previous research has also suggested that disordered regions 

are preferentially enriched in phosphorylation sites.114 This theory has repeatedly been 

validated by a number of recent studies including one that demonstrated that a majority of 

phosphorylation sites found in the mouse forebrain proteins are present within 

unstructured regions115 and disordered proteins in the Sacchromyces cervesiae proteome 

are putative substrates of a large number of kinases.112 It is therefore unsurprising to 

witness consistently rising interest in developing methodologies that strictly focus on the 

detection of post-translationally modified peptides such as phospeptides and those 

containing sites of ubiquitination as well as assembling comprehensive, independent data 

sets of phosphorylation and ubiquitination sites. 

 

Does structural disorder content in early-branching pathogenic organisms differ 

from non-pathogenic organisms? 

The study of early-branching eukaryotic cells carries great potential to provide 

valuable insights into the evolutionary landscape of cell developmental biology. Some of 

the oldest eukaryotic species are single-celled protozoa, a diverse array of organisms that 

live freely or have evolved into parasitic entities. Investigation of the parasitic varieties 

not only offers the benefit of studying organisms with limited knowledge about their 

phylogenetic neighbors, but also may have rewards of therapeutic relevance. Among the 

myriad of parasitic protozoa, are notorious pathogens that cause significant morbidity and 

mortality in humans and livestock. Consequently, parasitic protozoal infections also have 

profound economic and socioeconomic ramifications. Additionally, many of the genes in 
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Plasmodium species have been found to encode relatively large proteins that contain a 

large number of low complexity regions.32, 33, 116 Another study has reported that nearly 

90% of all proteins from chromosomes 2 and 3 in Plasmodium falciparum contain low 

complexity regions.34 The uniqueness of such genomes and the presence of a large 

number of low complexity regions cause difficulties in identifying homologues of 

Plasmodium proteins.34 Many Plasmodium proteins are also shown to be amenable to 

expression in heterologous systems.117 One of the leading explanations for low 

expression yields is the presence of intrinsically disordered regions.34  

 

Summary of problem statements 

Within the last two decades, the field of intrinsically disordered proteins has 

gradually metamorphosed from a novel hypothesis to a steadily maturing paradigm in cell 

biology. The arguments presented in the leading sections of this topic, allow an easy 

route to identify the fascinating diversity of biological processes and functions that make 

use of intrinsic disorder. From well-documented cases of signaling and transcription 

related proteins (MoRFs) to post-translational modifications (phosphorylation) to low-

complexity regions in a model pathogen, understanding the role of intrinsically 

disordered proteins in realizing functionality within each of these complex phenomena 

cannot easily be overlooked. With this idea in the background, this dissertation focuses 

on improving our understanding of how intrinsic is intrinsic disorder and investigate the 

role it can potentially play in helping expand our knowledge about other biological 

functions such phosphorylation, protein interactions and pathogenesis.  
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CHAPTER THREE: CONSISTENCY OF DISORDERED REGIONS 

Background 

Successful protein crystallization depends on the complexity of its structure but 

also on a number of experimental or environmental factors including purity of the protein 

sample, temperature, ionic strength, pH, and precipitants such as ammonium sulfate or 

polyethylene glycol.118 Traditionally, crystallization begins with procuring a sizable 

quantity of a protein (15mg to 1g) before growing a crystal.119 The experimental 

conditions are then systematically varied to determine optimal conditions for crystal 

formation. Once a reasonable estimate of conditions is made, the protein solution is 

supersaturated to facilitate crystal formation typically using vapor diffusion. Despite a 

number of steps that differ from the physiological conditions, there is evidence that 

protein structure, though a static representation, often corresponds to its native state.118 

To the best of our knowledge, no study to-date has singularly focused on the influence of 

experimental conditions at the time of crystallization on the global structure, especially to 

their influence on disordered protein regions. 

A survey of existing literature showed results from two recent studies that 

document the effects of varying pH conditions on regions of intrinsic disorder in the same 

protein.120, 121 More specifically, Palaninathan et al.,  121 report conformational changes 

observed in the tertiary and quaternary structures in the crystals of the native human 

transthyretin (TTR) at pH = 4.0 and pH = 3.5. The crystal structure of TTR at pH value of 

4.0 reveals that the native fold of the tetramer, including the crucial functional EF helix-

loop region between residues 75 and 90, remains mostly undisturbed. In contrast, in the 
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crystal structure at pH = 3.5, the EF helix-loop region was completely disordered. Both of 

these structures were studied at 1.7Å resolution. Zurdo et al., 120 studied two yeast 

ribosomal stalk proteins, P1α and P2β that despite high sequence similarity have different 

functional roles. Concluding arguments presented in by Zurdo et al., 120 suggest that 

differences in function could be associated to structural differences between both 

proteins. Even though neither protein is compact and regular in solution, under 

physiological pH and temperature, P1α is mostly disordered with very little helical 

content in comparison to P2β. This residual structure is reported to disappear at 

temperatures below 30°C, but is reportedly regained under low pH conditions or with 

addition of trifluoroethanol. In addition to experimental studies, computational analyses 

of redundant sets of experimental protein structures for identical proteins provide 

evidence of the existence of numerous protein fragments observed in ordered and 

disordered states.122 Results presented by Zhang et al., suggest that disorder may not 

always be an intrinsic (or physiological) feature for some fragments of proteins. In other 

words, some disordered protein fragments may not necessarily lack structure in all 

proteins containing them. The authors also hint towards the existence of a new class of 

fragments that lie precariously on the boundary between order and disorder, and, 

therefore, are more likely to be found in one state or another depending on environmental 

conditions or post-translational modifications. Owing to their presence in two different 

states, such fragments have also been referred to as the ‘dual-personality’ fragments.122 

A quick search of Protein Data Bank (PDB) by us resulted in the discovery of 

additional examples where slight changes in experimental conditions strongly correlated 

with the presence or absence of regions of intrinsic disorder. The following paragraphs 
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discuss two such proteins in further detail.  

 

(i) NusG. N-utilization substance G  

(NusG), an important elongation/termination modulator has been well studied in 

the past for its involvement in translational regulation. Two of its structure 

representatives in PDB include 1M1H-A and 1NPR-A. Structural alignment between 

these two molecules returned a z-score of 26 and rmsd of 2Å. Both these molecules are 

monomers with 100% sequence identity and have been crystallized at identical 

temperature of 291K and pH values of 5.8 and 7.5 respectively, resulting in different 

space groups (I222 for 1M1H and C2221 for 1NPR). Despite similar experimental 

methods used to crystallize both these proteins (vapor diffusion, sitting drop) 1M1H has a 

62 residue stretch (G187-I248) at its C-terminal that is completely disordered and missing 

in the crystal structure (Figure 2). This region is observed in its identical sequence, 

1NPR-A. A closer look at the crystal contact information for 1M1H revealed that as 

many as 31 of the 62 disordered residues are found participating in contact formation.  
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Figure 2:  Molecule 1M1H-A (blue) and 1NPR-A (pink) were crystallized under different pH values 

(5.8 vs. 7.5) and solved in different space groups. Regions that are observed as disordered in 1M1H-A 

are colored in red. 

 

(ii) Cyclophilin 40.  

Cyclophilin 40 (Cyp40) is one of the principal members of a family of large 

immunophilins found in mammals. Although the exact biological function of large 

immunophilins is not well understood, they are believed to be strongly associated with 

Hsp90 and play a crucial regulatory role in the upkeep of steroid receptor activity. In 

PDB, this protein has been stored as 1IIP-A and 1IHG-A. 1IIP-A is the tetraclonal 

conformation of cyclophilin 40, whereas 1IHG-A is its monoclinic form. Both structures 

have been obtained using the vapor diffusion, hanging drop method with recorded 
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temperature as 277K, but 1IIP-A was crystallized at a pH of 8.0, while 1IHG-A was 

crystallized at 6.1. Despite 100% sequence identity between the two proteins, an rmsd of 

14.2Å, z-score of 38.6 1IIP-A has a region between residues A299 and Y365 that is 

absent from the structure of 1IHG-A (Figure 3). A quick analysis of crystal contact 

formation in 1IIP-A using the CryCo software123 revealed that as many as 55 of the 67 

residues found disordered in it and ordered in 1IHG-A participate in crystal contacts. 

 

 

Figure 3: Molecule 1IIP-A (blue) and 1IHG-A (pink) were crystallized under different pH values (8.0 

vs. 6.1) and solved in different space groups. Regions that are observed as disordered in 1IHG-A are 

colored in red. 
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With little doubt it can be stated that the examples presented above shed light on 

the influence that experimental parameters can exert on disordered residues found in 

crystallized proteins (a complete list is provided in the supplementary section of Mohan 

et al124). The discovery of such protein pairs also suggests that minor variations in 

experimental conditions could potentially trigger local structural changes that, in turn, 

have consequences on the reproducibility of intrinsically disordered regions even for the 

same protein sequence. In such cases, a protein may crystallize in a different space group 

that is either caused by a changed structure or can lead to a different set of crystal 

contacts that stabilize an otherwise disordered region. Alternatively, the presence of a 

small molecule may influence structural changes. 

In the following paragraphs we propose experiments to attempt answers to these 

questions by investigating reproducibility of disordered regions with variations of 

sequence and environment and by estimating the upper limit of predictability of 

disordered proteins. We start with a hypothesis that the experimental reproducibility of 

disordered regions, e.g. those in crystallized structures, provides the upper limit on the 

predictability of disordered regions. In addition, we hypothesized that differences in 

experimental conditions during crystallization can play an important role in limiting the 

prediction accuracy of computational models. 

 

Materials and Methods 

Sequence data sets 

Our initial data set S comprised of 18,884 protein chains from PDB (March 2008). 
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Each of these chains was characterized using X-ray crystallography with a high-

resolution 2Å (Supplementary, Mohan et al.,124). This data set consisted of two subsets: 

D–a set of 14,646 chains containing at least one disordered region of length ≥ 3, 

identified by missing C-α atoms in the ATOM fields; and OD–a set of 4,238 completely 

ordered chains such that each sequence was ≥ 90% identical to one or more sequences in 

D. For each sequence in S we extracted experimental conditions: temperature, pH value, 

and concentration of salt (e.g. ammonium sulfate, potassium sodium tartrate, sodium 

cacodylate, and a number of others), whenever available (1 sequence in D and 1502 

sequences in OD, did not have any experimental conditions extracted due to differences 

in file format). While temperature and pH value can be obtained from designated fields in 

PDB, salt concentration was mined from REMARK200 and REMARK280 fields and 

manually confirmed in a number of cases. For simplicity of our analysis, each 

experimental condition was clustered into two groups, high and low (Figure 4). 

Temperature was clustered into group high (Th), containing temperatures greater than or 

equal to 200 K and group low (Tl), containing temperatures below 200 K at the time of 

experiment. pH value was clustered into Ph and Pl based on threshold 6.5, while the salt 

concentration was clustered into Sh and Sl based on the threshold of 100 mM.  
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Figure 4: Histogram of observed (a) temperature (b) pH and (c) salt concentration data used. 
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Non-redundant data sets were constructed in two ways to best support the 

experiments in this study. In the first approach, the initial data set was split into 

overlapping subsets, where each subset set Di contained proteins crystallized at 

experimental conditions Ei, where Ei  {Th, Tl, ThPh, ThPl, …, TlPlSl}. For example, data 

set containing proteins crystallized at conditions ThPh, had proteins solved at high 

temperature and high pH value, but the salt concentration could be from the entire range 

or unknown. Each data set Di was also filtered into a non-redundant set Di-nr such that no 

two chains had sequence identity greater than or equal to 25% on a global level 

(BLOSUM62 matrix, gap opening penalty = −11, and gap extension penalty = −1). This 

approach of defining non-redundant sets was used for estimating experimental 

reproducibility of disordered regions from class Ei to Ej. 

In the second approach, data set D was first filtered into a non-redundant set Dnr, and 

then split into non-overlapping subsets Dnr-i, based on experimental conditions Ei (clearly, 

|Dnr-i|  |Di-nr|). This approach was used for evaluating predictors of disordered regions 

trained for the specific experimental conditions Ei, because it was necessary to ensure 

that no two proteins within Dnr-i and across different subsets Dnr-i and Dnr-j are similar at 

25% or more. The final outcome is then an average over a non-redundant data set. The 

size of each data set is shown in Table 1. 
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Temperature Salt  pH 

    Thigh Tlow Shigh Slow Phigh Plow 

D # proteins 3,675 14,822 4,413 1,986 11,715 6,136 

 
# disordered 
residues 

41,868 220,068 55,870 24,191 158,063 96,378 

 
# ordered 
residues 

788,496 3,150,810 831,521 393,542 2,534,009 1,306,568 

Dnr # proteins 556 1,600 700 392 1,393 846 

 
# disordered 
residues 

10,196 33,815 13,699 7,724 27,717 18,695 

  
# ordered 
residues 

161,864 455,274 188,698 106,142 401,679 232,957 

 

Table 1: Number of proteins with available temperature, salt, and pH value data (pre- and post 

removal of redundant proteins) along with respective number of disordered and ordered residues in 

each class. 

 

Calculation of experimental reproducibility of disordered regions 

Experimental reproducibility of disordered regions was estimated by calculating the 

mean overlap of ordered and disordered regions in similar or identical protein chains, 

crystallized at the same or different experimental conditions. Two protein chains were 

considered to be similar if their global sequence identity was ≥ 90%. This threshold was 

selected to ensure not only highly similar 3-D structure between two proteins 117, 125, but 

also similar function.126 

The mean overlap between two globally aligned proteins p  Di–nr and q  Sj, where 

the sequence identity (si) between p and q was ≥90%, was calculated as follows. Let Op 

and Dp be the sets of positions of ordered and disordered residues in protein p, and Oq and 

Dq sets of positions of ordered and disordered residues in protein q, respectively, as 

shown in Figure 5. The residues corresponding to insertions and deletions were ignored. 
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Figure 5: Calculation of the mean overlap between ordered and disordered residues between two 

homologous proteins p and q. 

 

We calculate the overlap between ordered (oo) and disordered regions (od) as, 
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Equation 1: Calculation of order overlap 
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Equation 2: Calculation of disorder overlap. 

 

The average reproducibility of ordered and disordered regions for a pair (p, q) is 

calculated as, 
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Equation 3: Calculation of mean order and disorder overlap. 

We use the term accuracy for the mean overlap due to its similarity to a prediction 
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process in which ordered and disordered regions in one protein serve as predictions for 

the other protein and vice versa.  

These overlaps can now be generalized to the level of the data sets. An average 

accuracy for chain p is first calculated over all sequences q that are ≥90% identical to p, 

denoted by si(p, q) ≥ 0.9. Then, the average accuracy between data sets Di–nr and Sj, 

corresponding to experimental conditions Ei and Ej, is calculated as the mean over all 

proteins p. We formalize the entire calculation as, 
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Equation 4: Calculation of mean order and disorder overlap over all non-redundant data sets. 

 

Here, Ni    | Di   nr | and N j
p  is the number of sequences q  Sj that when aligned to p 

have sequence identity at least 90%. Note that q can be a completely ordered sequence. 

Assuming that the maximum prediction accuracy of intrinsically disordered 

regions is limited by experimental reproducibility of similar proteins, this approach 

serves to provide an estimator of the upper limit of the balanced sample accuracy over the 

given two sets of experimental conditions. 

Calculation of amino acid compositions 

Disordered residues from sequences belonging to six experimental groups Th, Tl, 

Sh, Sl, Ph, and Pl were used to study trends of amino acid compositions for the given 

experimental groups. Fractional difference of disordered residues from proteins 

crystallized at two sets of experimental conditions as, 
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௟௢௪ܥ – ௛௜௚௛ܥ

௟௢௪ܥ
 

Equation 5: Fractional amino acid composition at high and low temperature, pH and salt conditions. 

 

Where, Chigh represents the average amino acid composition of disordered regions for Th, 

Sh or Ph groups, and Clow represents the average amino acid composition of disordered for 

Tl, Sl or Pl groups, respectively. Average compositions and confidence intervals were 

obtained using bootstrapping on the protein level, iterated over 200 independent trials. 

 

Predictor development and evaluation 

During predictor development each residue was represented as a vector of 21 

features. Twenty relative amino acid frequencies as well as Shannon’s entropy were 

computed over a sliding window w  {21, 31 and 41}. Before training and testing our 

predictors, we used the t-test to select the most significant features for our data sets using 

the p-value threshold of 0.1. All selected features were normalized using the z-score 

approach before performing a principal component analysis (with 95% of retained 

variance) in order to further reduce the dimensionality and internal correlation within the 

data set.  

SVMlight software127 was used to predict disordered regions. We evaluated both 

linear and non-linear kernels, where non-linear kernels were polynomial (quadratic) and 

Gaussian ( = 10–4). The default value was used for capacity C in all experiments. As the 

main goal of this study was not to refine and train the best predictor for each group of 

experimental conditions, all parameters were selected based on prior experience with 
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similar problems, and only the data set representation window w and the kernel type were 

varied. 

In the case when predictors were evaluated within the group Dnr-i, we used per-

protein 10-fold cross validation to estimate prediction accuracy, while in the case of inter-

group validation the predictor was constructed on data set Dnr-i and then evaluated on Dnr-

j, where i ≠ j. We estimated sensitivity (sn), specificity (sp), balanced-sample accuracy 

acc = ½(sn + sp), and area under the ROC curve (AUC) to evaluate predictor’s 

performance. Sensitivity is defined as the prediction accuracy on the disordered regions 

and specificity corresponds to the prediction accuracy on the ordered regions. ROC curve 

shows sn as a function of 1 – sp over an entire range of decision thresholds. 

 

Results 

Experimental consistency of intrinsically disordered regions & its implications on 

predictors of intrinsic disorder 

To estimate the experimental reproducibility of disordered regions and the limits 

of its predictability, we studied the overlap of disordered regions in pairs of highly 

similar proteins crystallized under the same and different experimental conditions. At 

least one protein sequence in a pair was required to contain one or more disordered 

regions of length ≥ 3 and two proteins were considered similar if their global sequence 

identity was ≥ 90%. We investigated the influence of temperature, pH value, and salt 

concentration used at the time of experiment on the overall reproducibility of disordered 
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regions. To facilitate this analysis, each experimental condition was clustered into two 

groups, low and high. Thus, we refer to the experiments carried out under conditions 

clustered in the same or different groups as same (similar) and different (dissimilar) 

experimental conditions, respectively.  

Figure 6 shows the mean agreement of disordered residues obtained in pairs of 

identical proteins and proteins with sequence identity in the range [90, 100) %. When all 

experimental conditions were similar, the agreement of disordered residues for identical 

sequences was 92% (95% for monomers alone). For the same set of experimental 

conditions, however, and sequence identity in the range [90, 100) %, the agreement of 

disordered regions decreased to 52% for the set of all protein chains (p-value = 

1.4⋅10−48; Wilcoxon test) and 50% for monomers (p-value = 5.5⋅10−10; Wilcoxon test). 

We also investigated the situation when at least one experimental condition was different 

(e.g. temperature, salt concentration, and/or pH value). For both identical proteins and 

those in the [90, 100)% range, the reduction of the mean agreement of residues 

designated as disordered was about 11 percentage points124. In an attempt to estimate 

which of the experimental conditions had the largest influence on the variability of 

observed disordered regions, a count for each condition was incremented for each protein 

pair with inexact matches of disordered regions whenever this condition differed. We 

found that salt concentration had slightly larger impact (39%) than temperature (31%) 

and pH value (30%), as shown in Figure 6 (inset). Furthermore, we found that, in general, 

an increase in temperature (6%) and pH value (7%) lead to an increase in the number of 

disordered residues in identical or similar protein chains. In contrast, an increase in salt 

concentration (11%) leads to a decrease in the number of observed disordered residues. 
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Figure 6: Percentage of overlap of disordered residues between protein pairs with sequence identity 

[90, 100)% and identical proteins. 

 

We also grouped all pairs of sequences with identity ≥90% into those solved 

using at least one, two, or three similar experimental conditions and at least one, two, or 

three different experimental conditions. We estimate that, assuming unchanged 

experimental platforms for structure determination, the mean agreement of intrinsically 

disordered residues is 73% (79%, 83%) if one (two, three) or more experimental 

conditions are similar (Figure 7, left). When different experimental conditions were 

considered, the agreement of disordered residues was consistently around 50%. 
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Figure 7: Consistency of disordered residues and regions as a function of experimental conditions. 

 

In Table 2 we present complete results of the consistency measurements for both 

ordered and disordered regions for the pairs of chains with sequence identity ≥90%. 

Ordered regions from such pairs of proteins appeared as highly overlapping (>98%), 

which is a direct consequence of the unbalanced number of ordered and disordered 

residues in the non-redundant data set (14:1 ratio). 
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Table 2: Mean overlap for disordered (D) and ordered (O) regions for protein pairs with ≥90% 

sequence identity crystallized under similar and different experimental conditions. 

 

We estimated the mean agreement of disordered residues using pairs of similar 

and identical protein sequences wherein experimental information at the time of pair 

generation was not considered. If identical protein pairs are considered, the mean overlap 

of disordered and ordered residues was 89% and 99%, respectively. When we considered 

disordered regions of length 30 or more, the mean overlap was 93% and 98%, 

respectively (Figure 8). Interestingly, all pairs from our analysis in which long disordered 

regions significantly differed belonged to dissimilar experimental classes thus strongly 

suggesting that the appearance of disordered regions is influenced by variations in 

experimental conditions (e.g. 1COT-B and 1S6P-B). Consideration of similar sequences 

resulted in a significant reduction in the mean overlap: 31% for all disordered regions and 

35% for long disordered regions only. Note that the slightly smaller overlap of disordered 
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residues, compared to the one from Figure 8, is due to the influence of completely 

ordered proteins for which we were unable to extract experimental conditions and 

therefore were excluded from the analysis in Figure 8. 

 

 

 

Figure 8: The mean observed agreement between ordered and disordered residues in similar and 

identical protein chains. 

 

Amino acid compositions 

Amino acid compositions for the proteins crystallized under various experimental 
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conditions are shown in Figure 9A. As can be observed in this figure, disordered residues 

crystallized under high temperature, salt, and pH conditions exhibit pronounced 

enrichment in tyrosine (Y), glutamine (Q), and aspartic acid (D) in comparison to those 

crystallized under low temperature, salt and pH conditions. Unlike these, cysteine (C) and 

asparagine (N) are depleted in disordered regions crystallized using this group of 

experimental conditions. Most remaining amino acids appear to be similarly abundant in 

any of the high or low experimental group, but show some preference for a particular 

experimental condition. Some clear examples include the enrichment of tryptophan (W) 

under high salt and temperature conditions and its depletion in disordered regions 

characterized under high pH conditions. Similarly, isoleucine (I) appears to be enriched 

in disordered regions crystallized under high salt and high temperature and has no 

preference for a particular class of pH condition. 

Another compositional study compared the mean fractional content for each of 

the twenty basic amino acids in comparison to those obtained from a disorder data set, 

DOrep.
128 This data set contains all disordered regions characterized using X-ray, NMR 

and CD, and has frequently been considered the equivalent of a representative set of 

intrinsically disordered proteins. Compositions of each of the twenty basic amino acids 

from disordered regions found in sequences crystallized under each experimental group 

was compared with those obtained using the representative disorder set (Figure 9B). Not 

surprisingly, composition profiles of disordered regions from each of the six experimental 

groups closely mimic the trends observed in the representative disordered data set. More 

specifically, nearly all amino acids on the right hand side of the plot (G, Q, S, N, P, E, K) 

are enriched in all six data sets. On the other hand, buried residues (W, F, I) appear to be 
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depleted in comparison to DOrep. Interestingly, there is a clear difference prevailing 

between cysteine (C) and threonine (T) content in disordered segments crystallized in 

contrasting experimental conditions. Although cysteine seems to be depleted under high 

temperature, salt and pH conditions, threonine is enriched in data sets belonging to the 

same group of conditions. Also, disordered residues crystallized under low temperature, 

salt, and pH conditions have relatively higher concentrations of amino acids such as 

cysteine(C), asparagine (N), and proline (P) than a representative data set of disordered 

regions. A case-by-case look at some of the amino acid profiles suggests that higher pH 

conditions bring about decreased content of with tryptophan (W). Similarly, 

crystallization under high temperatures negatively affects the histidine (H) content in 

disordered regions. Finally, enrichment in comparison to representative contents of 

alanine (A) and glutamine (Q) in disordered proteins is apparent in disordered residues 

crystallized using high pH and high salt concentrations. 

To summarize, disordered regions from homologous sequences crystallized under 

varying conditions exhibit preferential compositional profiles with respect to one another. 

Differences between high and low experimental classes are especially pronounced in the 

case of buried residues such as W, C, I and Y. Flexible residues, from disordered regions 

on the other hand seem much less affected by changes in experimental conditions. 
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Figure 9: Fractional amino acid composition profiles of proteins crystallized using  high  

temperature, salt and pH conditions with respect to (A) proteins crystallized at low temperature, salt 

and pH conditions and (B) a representative set of disordered proteins, DOrep. 

 

Prediction accuracies 

With the goal of assessing whether a condition-specific predictor of intrinsically 

disordered regions is feasible and useful, we constructed a prediction model for each 

experimental group of data and evaluated it both on the data for that experimental group 

as well on the remaining groups. Within its own group, accuracy of each predictor was 

estimated using 10-fold cross-validation, while the performance across groups was 

estimated by training the model on the entire data set for one experimental group and 

testing it on the other group (out-of-sample testing). All proteins within one group and 
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across different groups were non-redundant, i.e., the global sequence identity between 

any two sequences within or across data sets was below 25%. Full details of the data set 

construction process have been provided previously in the Materials and Methods 

section. 

Due to the small number of sequences in various subsets and especially due to the 

small number of disordered residues, we used only the six largest categories of 

experimental conditions. That is, Ei  {Tl, Th, Pl, Ph, Sl, Sh}, where Ei = Tl indicates that 

each protein in data set Di was crystallized under low temperature, while the remaining 

two variables (pH value, salt concentration) were allowed to have any value (low, high or 

unknown). As described earlier in the Materials and Methods sections, features for all 

predictors comprised of moving averages of 20 basic amino acid compositions over a 

window of length w as well as the sequence complexity, calculated using Shannon’s 

entropy formula.129 A support vector machine with linear, polynomial (quadratic) and 

Gaussian ( = 10—4) kernels with a default value for the capacity parameter was also 

constructed. Table 3 lists the estimated prediction accuracy (acc) and area under the ROC 

curve (AUC) for each case. It can be observed that each individual model achieved higher 

accuracy when evaluated on the proteins from its own experimental group, compared to 

the accuracy on a different experimental group. The difference in accuracy ranged from 

1.2 percentage points (Gaussian kernel, w = 21) to 5.7 percentage points (polynomial 

kernel, w = 21), suggesting that there exist certain amino acid biases in each group that 

can be exploited by the machine learning models and that the optimal decision boundary 

is also condition specific. Similarly, the difference in the AUC values ranged from 0.9 

percentage points to 6.9 percentage points. 
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As summarized in Table 3, we also find that on average the polynomial kernel 

achieved highest accuracies and AUCs (w = 21) when the training and test data sets 

belonged to similar experimental conditions. Interestingly, the same predictor also 

produced the lowest accuracies and AUCs (w = 41) when trained and tested on data sets 

belonged to different experimental groups. 

 
Window 

Mean Accuracy(AUC) 

 

training & testing datasets from 

similar experimental conditions 

training & testing datasets from 

different experimental conditions 

L
in

ea
r 

21 71.8(78.8) 70.4(77.5) 

31 71.2(77.5) 69.8(76.2) 

41 70.1(75.8) 68.6(74.5) 

P
ol

yn
om

ia
l 21 74.3(81.5) 69.3(75.6) 

31 74.1(81.1) 68.4(74.2) 

41 73.4(79.8) 67.4(73.0) 

G
au

ss
ia

n 

21 72.0(79.0) 70.8(78.1) 

31 71.6(78.0) 70.1(76.7) 

41 70.5(76.4) 68.9(75.0) 

 

Table 3: 10-fold CV results for condition specific predictors of disorder over overlapping windows of 

length 21, 31 and 41 for linear, non-linear and Gaussian kernels. 

 

In Table 4, the experimental scenario was slightly tweaked. First, in predicting 

disordered regions using similar conditions, we again split Di into training (90% כ  (|௜ܦ|

and test (10% כ  ௜|) sets and applied cross-validation. However, the training set wasܦ|

augmented by including all sequences from D, which are non-redundant (<25% sequence 



45 

 

identity) with respect to any sequence in Di. In this way, we tested whether simply 

enlarging the data set, without considering experimental conditions, is likely to improve 

classification accuracy. The results in Table 4 show that for the different experimental 

conditions the addition of extra sequences (potentially also from the same experimental 

group) is beneficial (increase of about 2 percentage points). However, for the same 

experimental conditions the addition of extra sequences had either no significant effect, 

or it caused a decrease in predictor performance (2-3 percentage points for polynomial 

kernel). This indicates that a higher quality prediction of disordered regions is achievable 

when experimental conditions are accounted for and that the changes in disordered 

regions with respect to experimental conditions are predictable to some degree. 

Window 

Mean Accuracy 

training & testing datasets from 

similar experimental conditions 

training & testing datasets from 

different experimental conditions 

L
in

ea
r 

21 71.4(78.3) 71.0(78.1) 

31 70.6(76.9) 70.3(76.8) 

41 69.3(75.2) 69.1(75.1) 

P
ol

yn
om

ia
l 21 72.0(79.2) 71.0(77.9) 

31 71.4(78.5) 70.3(76.9) 

41 70.5(77.1) 69.3(75.8) 

G
au

ss
ia

n 

21 71.7(78.8) 71.3(78.3) 

31 71.0(77.6) 70.5(77.0) 

41 70.0(76.1) 69.5(75.6) 

 

Table 4:10-fold CV results for new predictors of disorder over overlapping windows of length 21, 31 

and 41 for linear, non-linear and Gaussian kernels. 
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CHAPTER FOUR: DISORDER-MEDIATED MOLECULAR RECOGNITION 

Background 

A previous work presented what is now known as the Molecular Recognition 

Feature or MoRF hypothesis to explain the process of disorder-mediated protein 

interactions.44 This hypothesis proposed that disordered regions of relatively short lengths 

(e.g. length ≤ 70) undergo a disorder-to-order transition upon binding to their partner. 

Such regions have been estimated to be common in proteomes and especially enriched in 

those belonging to higher organisms. In 2005, Oldfield et al., 44 focused on a set of 15 

disordered protein fragments from 13 PDB proteins that gained α-helical structure upon 

binding (also known as α-MoRFs) to their partners. A good example conforming to the 

MoRF hypothesis is the p53 α-MoRF (as shown in Figure 10). Another example of an α-

MoRF although of length greater than 70 residues is, calmodulin (also known as CaM). 

CaM is an important transducer of calcium signals and is known to interact with multiple 

partners in eukaryotic cells.130  The CaM molecule reportedly undergoes disorder-to-

order transitions upon binding to each of its target proteins.131 Here we propose the 

development of a comprehensive data set of Molecular Recognition Features (MoRFs) 

and their partners as available from the RCSB Protein Data Bank. We suggest using this 

data set to study MoRFs in greater detail to directly impact our understanding of MoRFs 

and MoRF-binding proteins, especially, their physiochemical and structural propensities, 

interaction surface properties besides improving our knowledge about disorder-to-order 

interactions (also known as coupled-folding and binding interactions.  We further propose 

to use this data set to study the differences between other protein interaction surfaces with 
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respect to MoRF–interaction surfaces to examine the computational predictability of 

MoRF interaction surfaces.  

 

Figure 10: α-MoRF of p53 bound to MDM2 (PDB code 1YCR)  

 

We anticipate that such a study will help us attempt answers to a variety of 

currently unknown aspects of disorder mediated protein interactions including the 

identification of other specialized classes of MoRFs, how MoRFs distinguish themselves 

from representative disordered and ordered sequences, a baseline set of characteristics 

corresponding to MoRF-binding partners, their compositional preferences and more.  

 

Materials and Methods 

A data set of MoRFs and their partners 

An initial set of MoRFs was collected from PDB SEQRES file by selecting 

protein chains of less than 70 residues bound to other protein chains greater than 100 

residues. The PDB SEQRES data set contains all the protein sequences available in the 

PDB along with the residues observed in protein crystals or in solution. Sequences in this 
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data set also include residues not present in the crystal model (e.g. disordered, lacking 

electron density, cloning artifacts, and His–tags). The choice for selecting protein chains 

with lengths less than 70 residues was ad-hoc and stemmed from the generally accepted 

notion that such proteins would be less likely to form a stable structure without the 

presence of a partner, especially, prior to interaction. In other words, such protein chains 

would less likely be able to develop significant buried surface area before participating in 

the molecular recognition event. 

Using these constraints, a starting data set consisting of 2,512 protein chains was 

assembled, where upon these chains were reduced to give the final non-redundant MoRF 

data set. Information for each of these steps can be found in more detail in.107 PDB files 

corresponding to the initial 2,512 proteins were downloaded to obtain sequences, 

secondary structure and information on Ramachandran's φ and ψ angles. Once the initial 

data set was gathered, the next step was to remove all chains containing ambiguous 

sequence information (e.g. sequences containing X designations instead of standard 

amino acid designations). Protein fragments with lengths ≤10 were also removed to 

facilitate mapping MoRF chains to their parent sequences. That is, many MoRF chains in 

the PDB are fragments of longer proteins and such short peptides may not be long 

enough to be specific to the parent protein sequence. At the end of this step, 1,261 chains 

remained. The next step was to remove sequence redundancy, which was done through 

application of length-dependent thresholds of sequence identity. This was necessary in 

order to overcome length variations and the overall short lengths of the MoRFs. It has 

been shown that pair-wise sequence identity alone is a poor definition of the twilight 

zone, which is the point where the inference of structural similarity from sequence 
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similarity becomes ambigous.132 The use of length dependent cut-offs to ascertain 

degrees of similarity within the MoRF data set helps to correlate sequence alignments to 

actual structural similarity more strongly. Rost's formula132  was used to dynamically 

calculate the sequence identity threshold based on each chain's length. Our final data set 

comprised of 372 clusters with a single representative MoRF for each cluster.  Table 5 

(modified from Mohan et al.,107)  lists the number of MoRFs including the number of 

residues at each preprocessing step. 

  Number of MoRFs 

Total qualifying PDB fragments  2,512 

Removal of fragments with ambigous 
sequence information 

1,261 

Filtering for redundancy  372 

 

Table 5: Number of MoRFs after each data processing step. 

 

The selected structures consisted of 336 X-ray structures, 23 NMR structures, and 

five cryo-electron microscopy structures. The average resolution of the X-ray structures 

was 2.41(±0.60) Å. The minimum number of members per cluster was 1 and the 

maximum number of members was 177 (Thrombin, Alpha-Thrombin). Analysis of the 

lengths for all MoRFs revealed that approximately two-thirds of the selected chains had 

lengths between 10 and 20 residues. All but 53 MoRFs were found with a mapping to 

longer sequences. For comparative analyses, three data sets of ordered proteins were also 

prepared, namely: ordered monomers (OM), ordered complexes (OC), and PDB select 

25133 (PDB_25). The OM set contained unique monomeric proteins from PDB X-ray 

structures with an average resolution of 2.04(±0.50) Å. The OC set represents chains 
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from PDB X-ray structures that are ordered prior to complex formation, with an average 

resolution of 1.86(±0.43) Å. The PDB_25 set is a non-redundant data set that is 

representative of all chains in the PDB, where no chain in this set has a resolution poorer 

than 3.5 Å. Secondary structure assignment for all MoRFs was determined using the 

DSSP program, which was designed to standardize protein secondary structure 

assignments.134  

 

MoRF and MoRF-binding protein interfaces 

A follow-up study done later in 2007135 studied all of the binding partners in 

complex and not in complex with their respective 372 MoRFs. Since the main goal of this 

study was to analyze the interaction surfaces between MoRFs and their binding partners, 

external data sets from previous studies done by Jones and Thornton136, 137 and Conte et 

al., 138  were used for comparison controls. Protein surfaces and interfaces were analyzed 

at the residue level using the Molecular Surface (MS) software package from Biohedron 

(http://www.biohedron.com). This package is an implementation of the Connolly surface 

algorithm139 and was run for individual MoRF-MoRF partner chains to determine solvent 

accessible surface area for them. 

 

Calculation of amino acid compositions 

Twenty basic amino acid compositional profiles for MoRFs were derived using 

the fractional difference between MoRF compositions and PDB_25 compositions. The 

fractional difference was calculated as shown in the following equation: 
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௢௥ௗ௘௥ܥ – ெ௢ோிܥ

௢௥ௗ௘௥ܥ
 

Equation 6: Fractional amino acid compositions of MoRFs with respect to PDB Select 25 data set. 

 

 Here, CMoRF is the averaged amino acid composition of a MoRF data set, and 

Corder is the averaged amino acid composition in PDB_25. Standard errors for amino acid 

compositions were calculated from 200 bootstrap iterations.  

A later update to this database using the October 2006 version of PDB SEQRES 

data set improved the original of number of MoRFs from 372 to 486 and 2,512 total 

fragments to 4,410 qualifying PDB fragments.  

 

Results 

Visual inspection of MoRFs 

The structures of a few examples of MoRFs were visualized with respect to their 

residue-wise VLXT predictions in Figure 11.107 This illustration provides an example of 

each of α, β, ι, and complex-MoRFs (e.g. Figure 11(a), (g), (c), and (d), respectively), and 

also provides examples of structural polymorphism in a MoRF bound to two different 

partners (Figure 11(b) and (c), (d) and (e)). 

Tumor suppressor p53 is a protein well known for its pivotal role in the regulation 

of cellular division processes in response to mutations and DNA damage and is estimated 

to be present in more than half of all known human cancer occurences.140 The upper plot 

in Figure 11 shows the four domains crucial to p53 function in context of the VLXT 
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prediction for p53. These four domains include: an N-terminal MoRF, the DNA binding 

domain (Figure 11, box 1), the tetramerization domain (Figure 11, box 2), and a C-

terminal MoRF (Figure 11, both overlapping red boxes). Both the N and C-terminal 

MoRFs have been verified to be disordered in the absence of binding partners.141, 142 In 

p53, the N-terminal fragment is an example of an α-MoRF and corresponds to the 

transactivation domain of p53 bound to MDM2 (Figure 11(a))143 where this interaction 

inhibits p53′s transactivation activity and downstream cell cycle arrest.144 The C-terminal 

region, on the other hand, contains a fragment that serves as a good example of an ι-

MoRF and is shown interacting with the CDK2/cyclin A complex (Figure 11(b)). This 

interaction facilitates phosphorylation and subsequent activation of p53.145 An 

overlapping region of p53 also interacts with S100ββ, an interaction that blocks 

oligomerization and phoshorylation146, 147, in turn blocking activation, of p53, and forms 

an α-helix when bound (Figure 11(c)).141 The C-terminal region of p53 represents a 

single MoRF that interacts with multiple partners; it is an example of the richness of 

function possible under the MoRF model.  

Another protein known as the Wiskott–Aldrich syndrome protein (WASP) plays 

an important role in Arp2/3-mediated modulation of the actin cytoskeleton.148 Four 

domains important for WASP function are shown in the context of the WASP VLXT 

prediction (Figure 11, center plot), which are, from the N to C termini: the N-terminal 

WH1 domain (Figure 11, box 3), a complex-MoRF that corresponds to the GTPase 

binding domain (GBD; Figure 11, both overlapping red boxes), an α-MoRF 

corresponding to the WH2 domain, and the C-terminal VCA region (Figure 11, green 

box). Of these, only the GDB MoRF is currently found in our data set as the WH2-actin 
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complex structure (Figure 11(f))149 was released after construction of the data set. In 

addition to this, the VCA-GDB complex (Figure 11(e))150 is found as a single chimerical 

chain, which was discarded by the MoRF selection criteria. However, both the VCA and 

WH2 domain are consistent with MoRF criteria and are therefore considered here. The 

VCA domain interacts directly with the Arp2/3 complex and, together with the actin 

binding activity of the WH2 domain (Figure 11(f)),149 stimulates polymer nucleation.148 

Interestingly, the Arp2/3 binding activity of the VCA MoRF is auto-inhibited by the 

GDB MoRF (Figure 11(e)). This auto-inhibitory interaction is interrupted by binding of 

the GDB MoRF to activated Cdc42 (Figure 11(d)), which releases the VCA MoRF to 

interact with Arp2/3. The two GDB MoRF complexes (Figure 11(d) and (e)) show 

radically different structures, which is an extreme example of multiple binding affinities 

through bound structure conformational heterogeneity. 
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Figure 11: Examples of VLXT predictions of MoRF containing proteins and complexes between 

MoRFs and their binding partners. 
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Characteristics of MoRFs 

Our study determined that there are primarily three classes of MoRFs based on 

their secondary structure types. These classes included 68 α-, 20 β-, and 176 ι-MoRFs 

respectively. In addition to these three classes, a fourth class comprising of 108 complex-

MoRFs containing a combination of α-helical, β-structural and/or irregular structural 

elements, was also identified.  

Secondary structure analysis revealed that 27% of the residues in the MoRF data 

set have an α-helical conformation, 12% have β-sheet like conformation and 

approximately 48% were residues of irregular structure. The remaining 13% were 

residues with missing coordinates in the corresponding PDB files suggesting their highly 

flexible (disordered) nature. We compared these results with those from the OM data set 

(Figure 12). 

 

 

Figure 12: Secondary structure distribution of residues in the MoRF data set and in the OM data set. 
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 The two distributions are found to be significantly different by a χ2 (chi-square) 

test (p-value =4×10−80), but the relative χ2 value (0.003) indicates that the difference 

although significant, is relatively minuscule. On an average, MoRFs have a higher 

content of irregular structure (+6%) than OMs. More importantly, in comparison to OM 

residues, a larger number of MoRF residues have missing density indicating a possible 

bias for intrinsic disorder. These observations are supplemented by a proportional 

decrease in the α-helix and β-strand content in MoRFs. Between OM and MoRF data 

sets, irregular structure is the most abundant secondary structure type followed by α-helix 

whereas β-strand is the least.  

 

The effect of local and non-local interactions on MoRFs 

Since the adoption of secondary structural configurations can be influenced by 

local as well as non-local interactions, we studied the relative roles of both these types of 

interactions in determining the secondary structures of MoRFs with respect to OMs. The 

role of non-local interaction, both inter-chain interactions and intra-chain interactions 

between residues distant in sequence, in the determination of local structure is 

contentious. Some authors have found local interactions to be dominant over long range 

interactions in determining local structure,151 while others have shown long range 

interactions to have a direct effect on accuracy of predictions of local structure.152 Here, 

we take the view that different proteins, and likely different regions in the same protein, 

vary in the relative contributions of local and non-local interaction to local structure, but 

we make no attempt to contribute to the debate over the relative degree of these 
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contributions. The role of non-local interactions was examined by comparing the 

secondary structure prediction accuracies, using the single sequence PHD predictor,153 for 

the MoRF and OM data sets. In the single sequence mode, the PHD secondary structure 

prediction algorithm uses a series of neural networks applied over the local sequence 

only. As predictions consider only windows of an entire sequence and not the complete 

protein sequence itself, predicted secondary structure is assumed to be a good indicator of 

the secondary structural preferences of the local sequence, excluding influences from 

non-local interactions and bound partners.  

Typically the PHD algorithm uses sequence profiles generated from multiple 

alignments for better accuracy. Using multiple alignments allows a local representation of 

information about non-local interactions. Since this was not an intended goal of this 

study, we limited ourselves to the use of a single-sequence (or non - multiple-sequence 

alignment) mode PHD algorithm for this analysis. In the non-MSA mode, differences 

between DSSP assigned secondary structure and predicted secondary structure can help 

determine the extent to which interactions between distance residues in a sequence (in the 

case of monomers) or binding partners (in the case of MoRFs), have an influence on the 

final protein conformation. We find that the overall prediction performance is consistent 

with the reported accuracy of PHD, with a single sequence prediction accuracy of 61% 

and a reduced accuracy of prediction for β-strands relative to α-helices and irregular 

structure (Table 6).  

 

 



58 

 

  α‐helices 
(%) 

β‐strands 
(%) 

irregular 
(%) 

Missing density    
(%) 

MoRFs  {74,9,17}  {11,55,34}  {21,15,64}  {18,10,72} 

OM  {65,9,32}  {16,51,32}  {20,18,61}  {31,27,41} 

 

Table 6: PHD secondary structure prediction accuracies for MoRFs and OM assigned secondary 

structure classes; Table entry legend: {predicted helix, predicted beta-strand, predicted irregular} 

 

Between MoRFs and OMs, the accuracy of secondary structure predictions for 

MoRFs is better than that for OMs by 5%. Furthermore, prediction accuracy is better for 

MoRFs for all defined secondary structure types, where much of this difference is due to 

the prediction accuracy for α-helices (+9%) rather than for β-strand (+4%) or irregular 

structure (+3%). These data suggest that the local secondary structural propensity of 

MoRFs is somewhat better preserved in their bound state, especially for helical regions, 

than the local secondary structural inclination of OMs. The secondary structure 

predictions for regions of missing density are also revealing. We observe that missing 

density in MoRFs is predominantly predicted to be in an irregular conformation with 

much less of the missing density in OMs predicted to be irregular (+31%). As mentioned 

earlier in the Background section, all missing density cannot be treated as intrinsic 

disorder, since missing density may correspond to mobile, structured domains or even 

other artifacts of crystallization experiments. However, the lower content of predicted 

regular secondary structure in MoRFs, relative to OMs, may be an indication that the 

missing density in MoRFs is more likely to be disordered than the missing density in 

OMs. This provides further support to the idea that MoRFs occur in a disordered context, 

since the majority of missing density in these chains occurs in the N and C-terminal tails 
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of the crystallized fragments.  

Structural types were further analyzed in terms of contiguous structural regions. 

The MoRF set was broken into 1,880 regions of sequence contiguous elements of 

secondary structure or missing density. Examination of the different structural types107 

revealed that 14% regions were α-helical while 20 were β-strands. The larger proportion 

of β-strand regions than α-helix regions can be reconciled with the larger number of α-

helix residues than β-strand residues (Figure 12) by observing that α-helical regions are 

on average longer than β-strand regions, with average lengths of 10±8 and 3±2 residues, 

respectively. More than half of the total regions (~53%) were found to have an irregular 

conformation. The remaining 13% regions were disordered. The average lengths of 

irregular regions (5±5 residues) and missing density regions (5± 6 residues) are of 

intermediate length compared to α-helices and β-strands. These results have also been 

tabulated in Table 7 for the reader. 

Region length  Missing density 
(%) 

α‐helices 
(%) 

β‐strands 
(%) 

Irregular    
(%) 

1 ‐ 9  86  62  99  85 

10 ‐19  11  28  1  13 

20 ‐29  2  6  0  1 

30 ‐ 69  1  3  0  1 

 

Table 7: Region wise distribution in different structural types of MoRFs. 

 

Composition profiles, charge and aromatic content in MoRFs  

It has been reported that local amino acid composition, flexibility, hydropathy, 

charge, coordination number and several other physiochemical properties of intrinsically 
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disordered protein regions are significantly different from the same characteristics 

derived using ordered protein regions.10, 154 These properties have been examined for 

MoRFs, in comparison to ordered proteins, to explore the order/ disorder propensity of 

MoRF regions. For this analysis, PDB_25 was used, since this set has been well 

characterized in terms of composition relative to intrinsically disordered proteins.10, 154 

Previous research31, 154 has shown that, amino acid profiles derived using intrinsically 

disordered proteins shows depletion of order-promoting residues, such as C, V, L, I, M, 

Y, F, and W, and the abundance of disorder-promoting residues, such as Q, S, P, E, K, G, 

and A, relative to ordered proteins. We observe a similar trend for the MoRF data set. 

More specifically, in comparison to the PDB_25 data set (Figure 13) MoRFs are enriched 

in many of the disorder promoting residues such as, R, G, S and P and depleted in many 

of the order promoting amino acids such as W, I, Y, V and L. These biases suggest that 

MoRFs are similar in composition to general intrinsically disordered proteins. 

Intriguingly, some other biases contradict this simple explanation. For instance, MoRFs 

are depleted or show similar composition to PDB_25 in charged residues except R, which 

are believed to be disorder promoting. It is likely that the lower charge density of R 

relative to K makes it less likely to maintain a twofold role in both ordered and 

disordered states. Another bias inconsistency between MoRFs and intrinsically 

disordered proteins is the enrichment of C and F in MoRFs. Cysteine and phenylalanine 

are well known to be order promoting and found depleted in disordered proteins. Since 

cysteine is important for the formation of disulfide bonds, its presence was further 

investigated. We find that of the 372 MoRFs, 36 contain at least one intra-chain disulfide 

bond, 18 contribute to at least one inter-chain disulfide bond, and 4 have at least one of 



61 

 

each intra and interchain disulfide bonds. The cysteine residues involved in these bonds 

account for 73% of the cysteine residues in the MoRF data set, which suggests that 

reduced cysteine is less prevalent feature of MoRF regions. The presence of intra-chain 

disulfide bonds in MoRF sequences has clear implications for the hypotheses that these 

sequences are disordered in the absence of binding partners, as disulfide bridges are well-

known to stabilize proteins.155 Since disulfide bonds potentially stabilize as many as 11% 

of MoRFs in this data set in the absence of their binding partners, we classify these 

fragments as pseudo-MoRFs. 

 

Figure 13: (a) Relative amino acid composition of MoRFs with respect to PDB_25. (b) Relative amino 

acid composition of different structural types (α-helical, β-structural, and irregular) of MoRFs with 

respect to the same structural types in PDB_ 25. Inset represents graph (b) with a reduced relative 

frequency range. 
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A comparison of the total charge (K+R+D+E), net charge (K+R–D–E), proline, 

and aromatic content (F+W+Y) of MoRF proteins and PDB_25 proteins is shown in 

Figure 14. Despite being depleted in lysine, aspartic acid, and glutamic acid, MoRFs 

demonstrate a higher net charge than the PDB_25 proteins. The enrichment in arginine in 

MoRFs is apparent from the positive net charge of MoRFs, compared to the negative net 

charge in PDB_25. This is similar to a previous description of intrinsically disordered 

proteins.156 MoRFs also show lower proportions of aromatic amino acid residues in 

comparison with PDB_25 proteins, despite being enriched in phenylalanine. However, 

the vast majority of MoRF regions contained at least one aromatic residue, often 

phenylalanine. This is consistent with the molecular recognition function of MoRFs, 

since the side-chains of aromatic amino acids tend to make strong and specific 

interactions157. Finally, the proline content observed in MoRFs exceeds that found in 

PDB_25 proteins by nearly 50%. This high concentration of proline was further 

examined for the presence of polyproline II helices by Mohan et al in 2006107 the results 

of which showed that while many MoRFs contained regions of polyproline II helix, this 

conformation does not occur as the predominant secondary structure for any of the 

examples found to date.107  
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Figure 14: Total and net charge (calculated as charge per 100 residues) and the proportion of proline 

and aromatic amino acid residues in MoRFs and PDB_25. Error bars representing one standard 

error, calculated using 200 bootstrap iterations. 

 

Predictions of Order-Disorder 

Computational structure and sequence-based evaluations of order and disorder 

were performed to provide support for the idea that MoRFs are disordered in isolation 

and undergo a disorder-order transition upon binding to targets. Structure-based 

evaluations of disorder were performed using the criteria of Gunasekaran et al.,158 who 

showed that the complexes of intrinsically disordered proteins have much larger interface 

and surface areas than those of ordered proteins. Sequence-based evaluations used 

prediction of disorder from sequence using both VLXT62, 154, 159 and VL3.160 The 

behavior of VLXT on MoRF containing proteins has been characterized on a small set of 
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validated MoRFs44, whereas the behavior of VL3 has not been characterized in this 

respect. 

Gunasekaran et al.,158 have demonstrated that intrinsic disorder in the unbound 

state is reflected in structures of the bound state through relatively large surface and 

interface areas. A structural analysis of the bound structures of MoRFs in this data set 

was carried out using the previously characterized158 OC data set as a negative control 

(Figure 15). Almost all MoRFs in the data set were above the order-disorder boundary 

suggested by Gunasekaran et al., which indicates that these regions are likely to be 

disordered in isolation, while all structured proteins were below this boundary, which 

indicates that these proteins are probably ordered in isolation. Only two of the β-MoRFs 

and one of the ι-MoRFs falls below the suggested boundary. This analysis should be 

viewed with some caution, since the data set used to derive the boundary was relatively 

small. Indeed, only a slight shift in the boundary would put all of the MoRFs above it. 

Thus, the boundary provides a strong indication that the MoRFs in this data set are indeed 

disordered in the absence of their binding partners and undergo a disorder-to-order 

transition upon complex formation. It should also be noted that disulfide bonds are not 

considered in this analysis, and so the indication that oxidized pseudo- MoRFs are 

disordered in the absence of their binding partners is likely to be in error. However, this 

analysis suggests that pseudo-MoRFs would probably be disordered in the absence of 

their binding partners and in the reduced state.  
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Figure 15: Surface and interface area normalized by the number of residues in each chain for the 

MoRF and the OC data sets. 

 

Sequence based predictions of order/disorder, made with both the VLXT62, 154, 159 

and VL3160 predictors, seem to contradict the structure based results. Specifically, 

predictions of disorder in MoRF regions (Figure 16(a)) suggest that, while many MoRFs 

are highly disordered, some MoRFs may be ordered. This is in part due to the large 

content of cysteine in these sequences, which is strongly correlated with prediction of 

order.154 Also, it has been previously observed that disorder-to-order binding regions 

within larger disordered regions are often predicted to be ordered44, 161 and our findings 

likely reflect these earlier observations. 

The previously observed bias of disorder-to-order transition serves as a false 

indication of intrinsic order in many MoRF sequences. This bias is evident by the 

extreme behavior of disordered predictions for MoRFs (Figure 11(a)), where most 

MoRFs are predicted to be either highly disordered or highly ordered. Therefore, disorder 
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predictions were also examined for the entire sequences of proteins containing MoRFs 

and the sequence regions to the N and C sides of MoRFs in these sequences, in order to 

provide support for the idea that these regions occur in longer region of disorder. 

Disorder predictions for the full-length proteins that contain MoRFs (Figure 16(b)), 

relative to OM proteins (Figure 16(c)), suggest that many MoRF containing proteins are 

highly disordered. For the calculation of disorder in regions surrounding MoRFs, the 

fraction of residues predicted to be disordered was calculated over two windows of 

residues in the parent sequence of the MoRF, one on the C side and one on the N side of 

the MoRF. For ordered proteins, random sequence windows of equal size were taken 

from the OM data set. Similar to the entire sequence of proteins containing MoRFs, the 

sequence regions immediately surrounding MoRFs show a high content of predicted 

disordered residues, relative to OM proteins (Figure 17). This suggests that these MoRFs 

frequently occur in longer regions of predicted disorder.  



67 

 

 

Figure 16: Disorder distribution in (a) MoRFs and (b) MoRF containing proteins and (c) OM 

proteins estimated by VLXT and VL3 predictors. 
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Figure 17: Fraction of residues predicted to be disordered for regions surrounding MoRFs and 

regions taken from ordered monomers using (a) VLXT and (b) VL3. 

 

MoRF interface analysis 

In another study135 we investigated the specific properties of 62 α-, 20 β- and 176 

ι-MoRF interfaces obtained using the Connolly surface algorithm.139 Our results show 

that all MoRF interfaces (from MoRFs and MoRF-binding partners) are generally 

depleted in the six most exposed residues: N, D, Q, E, R and K and enriched in the six 

most highly buried residues: C, I, V, L, F and M. These trends are indicative of the 

propensity of these residues towards interaction. We also find that MoRF interfaces are 



69 

 

very different from the interfaces found using a non-redundant set of hetero-complexes 

earlier presented by Jones and Thornton.136, 162 This suggests that MoRF interaction 

surfaces are distinct from those of other complexes.  

Our investigations135 on the predictability of different types of interaction surfaces 

using a combination of physicochemical properties and multiple geometric parameters 

such as accessible surface area, planarity etc applied to naïve Bayes classifiers revealed 

that it is possible to predict MoRF surfaces with balanced accuracies within the 84 – 94% 

interval. Surfaces on MoRF binding partners however are predictable with only 77 – 88% 

accuracy. 
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CHAPTER FIVE: APPLICABILITY OF DISORDER IN DETECTION OF POST-

TRANSLATIONALLY MODIFIED PEPTIDES 

Background 

Until two decades ago most phosphorylation sites were identified by the 

application of standard knockout and/or mutation techniques to a residue in a protein of 

interest. The availability of mass spectrometry methods, eased access to high sensitivity 

means of phosphosite detection. To describe briefly, mass spectrometry (also referred to 

as MS) methods measure the mass-to-charge ratio (m/z) for peptides derived from an 

enzyme (e.g. trypsin) digested protein sample. Due to this method’s ability to be able to 

identify component molecules at extremely low concentrations, it is often used to analyze 

organic compounds such as plasma and blood serum samples. An MS experiment 

typically consists of five parts (diagrammatically represented in Figure 18): sample 

introduction, ionization, mass analyses, ion detection (green box) and spectral data 

processing (blue box).  

 

Figure 18: Standard mass spectrometry procedure for the identification of phospeptides 
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These days, a more accurate variant of MS, known as tandem mass spectrometry 

is being used for the analysis of post-translational modifications such as phosphorylation. 

Tandem mass spectrometry refers to multiple rounds of MS, also referred to as MS/MS 

(or MS2) or MS/MS/MS (or MS3). Due to the use of more than one mass analyzer, it is 

more specific nature and can identify the exact location of a modification on a peptide 

with better accuracy as compared to simple MS. Based on the type of mass analyzer used 

in MS, experiments can be customized. Occasionally the sample introduction step is 

preceded by an enrichment step to improve the chances of phospeptide identification by 

reducing the sample size while increasing the concentration of phospeptides in it. Some 

of the preferred methods for enrichment include immunoprecipitation with phospeptide 

specific antibodies, phosphoamidate chemistry and β-elimination.163, 164 Depending on 

the type of mass analyzers used (e.g. time-of-flight (TOF), quadrapole time-of-flight (Q-

TOF), orbitrap or linear ion trap) mass spectra with varying degrees of resolution can be 

acquired in large-scale proteomic studies. Standard outputs include a fragmentation 

pattern of peptides along with its corresponding molecular mass. Since post-translational 

modifications of proteins involve a change in their molecular masses, in addition to 

catering to the identification of the amino acid sequence of a protein, traditional MS 

methods have also served as a means to study and characterize PTMs in the past.165    

Often, the combined use of liquid chromatography (LC) and tandem mass 

spectrometry is also applied in the process of phospeptide identification. This method is 

also popularly referred to as shotgun proteomics. In this approach, the sample is 

collectively digested into smaller peptides, selectively separated using liquid 

chromatography and then analyzed using standard mass spectrometry techniques.  The 



72 

 

use of LC as a separation device in shotgun proteomics helps in increasing the number 

generated mass spectra. Each of the corresponding peptides or spectra is compared to a 

peptide database or theoretical spectra in order to determine the sequence composition of 

individual peptides. All identified peptides are finally used to identify their respective 

source proteins. 

 

Database search algorithms used in phospeptide detection 

Two of the leading search engines for database search in proteomics include 

Mascot166 and Sequest.167 Such tools strongly rely on the use of use of informal rules168 

or unified probabilistic models166 to estimate the likelihood that a given spectrum was 

generated from its matching sequence returned by the database search. The highest 

scoring peptide corresponding to a given spectrum is assumed to be the best match for the 

spectrum. The success of all known database search algorithms depends on the 

assumption that the search database is complete and that the scoring algorithms used to 

draw peptide-spectrum matches are error-free. In other words, results of peptide 

identification are strongly influenced by the underlying scoring algorithms and database 

content employed during the search.169 Although such methods are highly specific and 

serve as a promising technology in the study of cellular proteins especially those that are 

post-translationally modified, a typical experiment can identify only about 20 – 30% of 

the originally obtained spectra and can confidently map only a few peptides per protein. 

Besides this, the computational requirements for phospeptide identification continue to 

remain substantial, especially when peptides contain more than one modification. This 
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experience is further intensified when considering more than one protein modification. 

With high-confidence phospeptide detection as the underpinning of all phosphoproteomic 

initiatives, there is a pressing need to explore faster, more rigorous methods of 

phospeptide identification, both in terms of the number of identified peptides and their 

quantity in the sample. 

One way to alleviate this search problem would be to reduce the number of non-

phospeptide spectra and retain only those spectra that contain phosphorylation site 

information. This can be treated as a spectral filtering approach to improve the chances of 

identifying phospeptides by eliminating background noise before a database search. A 

recent article,170 suggested the use of support vector machines to screen tandem-mass 

spectra with the goal of improving the chances of detecting phospeptide spectra. 

Although this method can effectively search 80% of the available tandem-mass spectra 

from rat brain to identify 95% of the total phospeptide spectra, we find that it has limited 

portability and expansion to non-+2 charge data sets. Another method to reduce the 

peptide search space can be to systematically filter all unlikely phospeptide candidates 

from the protein database. By doing so, comparisons with peptides that are unlikely to be 

identified in a phosphorylated form can be avoided, thereby significantly reducing the 

time required to perform a search for phospeptides. To this effect, we propose a new 

algorithm that can systematically filter peptide-spectrum matches thereby reducing the 

searched protein database used to identify phospeptides in MS/MS. Our proposed 

methodology exploits previously established concepts such as peptide detectability171 and 

the fact that phosphorylation sites are closely correlated to the degree of intrinsic disorder 

in the parent protein. Peptide detectability is defined as the probability of detecting a 
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peptide given that its parent protein exists at standard quantity.172 It has been shown that 

predicted peptide detectability can be successfully used in protein inference.171 Our 

proposed algorithm is a supervised learning based one which can be used to estimate the 

probability of detecting a phospeptide in MS/MS and later towards prioritizing a database 

of peptides used for phospeptide search. 

To summarize, while high-throughput mass spectrometers can capably generate a 

large number of spectra, the algorithms used to search and identify phospeptides from 

these spectra are comparably slower and have low sensitivity. This not only impedes the 

overall goal of improving our existing repositories of phosphorylation but also hampers 

our complete understanding of the role of phosphorylation in cells. Here we propose the 

development of a new, faster algorithm to search for phospeptides that uses the peptide 

detectability concept and scores from a disorder-based predictor of phosphorylation sites 

to learn and predict MS/MS identified phospeptides. 

 

Materials and Methods 

This analysis makes use of mouse liver tissue sample as provided by Quanhu 

Sheng at the Shanghai Institutes for Biological Sciences. Protein phosphorylation has 

been reported to play a crucial role in normal liver development and function.173 

Previously, sites determined using liver tissue have been reported to have assisted in 

increasing our understanding of phosphorylation-related liver conditions such as those 

related to aberrant glucose and lipids metabolism.174 
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Sample preparation 

A linear ion trap/Orbitrap (LTQ-Orbitrap) hybrid mass spectrometer 

(ThermoFinnigan, San Jose, CA, USA) equipped with an NSI nanospray source was 

operated in data dependent mode to automatically switch between MS and MS/MS 

acquisition with ion transfer capillary of 200 °C and NSI voltage of 1.85 kV. Normalized 

collision energy was set at 35.0. According to the different detectors (Orbitrap and LTQ) 

used for the MS scan, two surveys of full scan mass spectra acquired modes were used to 

obtain final spectral data. The mass spectrometer was set such that, one full MS scan was 

acquired in the Orbitrap parallel to (or following) ten MS/MS scans in the linear ion trap 

on the ten most intense ions from the full MS spectrum with the following Dynamic 

Exclusion™ settings: repeat count 2, repeat duration 30 seconds, exclusion duration 90 

seconds. The resolving power of the Orbitrap mass analyzer was set at 100,000 

(m/ᇞm50% at m/z 400) for the precursor ion scans. To establish a benchmark for the 

number of phospeptides and non-phospeptides identified using this data set, all resultant 

spectra were searched using Mascot. Forward database was constructed using sequences 

corresponding to the source proteins returned for every peptide-spectrum match. By 

reversing each of the sequences from the forward database we generated our decoy 

database.  

 

Sequence data sets 

Our initial data set S contained 1,290,314 peptide-spectrum (230,340 unique 

spectra) pairs as returned by Mascot. This data set comprised of eight subsets, S+1, S+2, 



76 

 

S+3…S+8 based on the charge of a peptide from each peptide-spectrum pair. Individual 

statistics for each of the subsets have been provided in Table 8.  

 

Data set 
Number of peptide-
spectrum matches 

S+1 21,305 
S+2 601,714 
S+3 647,129 
S+4 18,535 
S+5 1,463 
S+6 128 
S+8 40 

 

Table 8: Distribution of peptide-spectrum matches returned by Mascot. 

 

Since the majority of the peptides in S were either +2 or +3, all further analyses 

were restricted to S+2 and S+3.  S+2 and S+3 data sets were further split into two sets:   

DSTY-P or the set of all peptide-spectrum matches containing at least one identified 

phosphorylation site and, DSTY-NP consisting of all peptide-spectrum matches with at least 

one serine, threonine or tyrosine in the matched peptide and without any observed 

phosphorylation site. A standard Mascot search was performed on each data set DSTY-P 

and DSTY-NP to identify phospeptides and non-phospeptides at 1% and 5% false discovery 

rates. DisPhos114 predictions were made on all proteins identified as the source of 

peptides belonging to S+2 and S+3. This included both forward and reverse sequences. 

Mean and maximum DisPhos scores over all sites for each peptide from S+2 and S+3 were 

computed. Peptide detectability predictions were also made for each peptide in both data 

sets using an in-house detectability predictor.  
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Training data sets (+2 and +3) for phospeptide predictor were generated as 

follows. All peptides from S+2 with a modified serine, threonine or tyrosine and a mascot 

score ≥ 25 were considered in the construction of the positive data set. Remaining 

peptides from S+2 with at least one serine, threonine or tyrosine were considered in the 

construction of the negative data set. Finally, positive and negative data sets were filtered 

such that only unique peptides were used to train +2-phospredictor. A similar procedure 

using S+3 was followed to prepare positive and negative data sets for a +3 phospredictor 

however with a mascot score of 28 instead of 25. The choice of Mascot scores used to 

construct training data sets for +2 and +3 phospeptide predictors was based on scores 

returned from a standard Mascot search for phospeptides at 5% false discovery rate. All 

peptides common between either of the positive and negative data sets were retained only 

in the positive data set and eliminated from the negative data set. 

 

Predictor development and evaluation 

Our initial three predictors were constructed using data sets Df
i where ݅ א

ሼ ൅2, ൅3ሽ and feature 

א ݂ ሼ݀݅ݏ݋݄݌ݏ, ,ݕݐ݈ܾ݅݅ܽݐܿ݁ݐ݁݀ ݁݀݅ݐ݌݁݌ ׫ ݏ݋݄݌ݏ݅݀  ሽ data sets forݕݐ݈݅݅ݒܽݐܿ݁ݐ݁݀ ݁݀݅ݐ݌݁݌

each of these predictors were generated using five basic sequence features including 

length of a peptide, number of serines, threonines and tyrosines in a peptide and peptide 

mass. Additional features in all of the data sets included mean and maximum DisPhos 

score, peptide detectability, and mean DisPhos, maximum DisPhos in conjunction with 

peptide detectability scores, respectively. A control data set Dspectral
i  was assembled using 
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only spectral features as described in Lu et al.,170 These features included: number of 

peaks corresponding to neutral loss of 98 pairs, precursor “neutral loss of 98/base peak” 

intensity ratio, number of peaks corresponding to neutral loss of 49 pairs, number of 

peaks corresponding to neutral loss of 80 pairs and precursor “neutral loss of 49/base 

peak” intensity ratio. The purpose of the control data set was to measure our predictor’s 

performance in comparison to a spectral-feature based predictor previously suggested to 

screen collision-induced dissociated tandem mass spectra prior to a database search for 

phospeptides.170 The mean and standard deviation corresponding to each of these features 

were calculated for positive and negative data sets from both data sets. These statistics 

have been reported in Table 9. 

 

Table 9:  Table of statistics for features used for training the positive and negative data sets. 

Feature

Sequence mean std mean std mean std mean std
1 Average disphos score 0.78 0.20 0.48 0.26 0.79 0.16 0.44 0.25
2 Max disphos score 0.85 0.19 0.56 0.27 0.88 0.10 0.54 0.27

3 Peptide detectability 0.60 0.39 0.56 0.40 0.53 0.40 0.54 0.40

4 Number of serines 2.39 1.46 1.16 1.16 2.55 1.62 1.44 1.38
5 Number of threonines 0.75 0.92 0.86 0.92 1.05 1.02 1.02 1.03
6 Number of tyrosines 0.27 0.61 0.45 0.71 0.31 0.63 0.51 0.74

7 Peptide mass 1836.22 413.48 1734.04 495.89 2545.86 562.39 2317.32 572.61
8 Length of peptide 16.92 4.01 15.56 4.54 23.59 5.87 20.86 5.50

Spectral
1 Peak-NL pairs(98) 2.00 0.00 2.00 0.00 3.00 0.00 3.00 0.00
2 NL/Base peak intensity ratio 8.69 2.98 5.63 2.33 3.99 2.60 4.95 2.46
3 Peak-NL pairs/+2 0.55 0.43 0.06 0.11 0.33 0.38 0.04 0.09
4 Peak-NL pairs(80) 2.37 1.86 1.27 1.28 8.44 3.65 4.55 2.43
5 H2OLoss/Base peak ratio 0.68 0.91 1.74 1.34 0.58 0.88 1.53 1.26

6
Percentage of ions with 
intensities above 1% 

0.01 0.05 0.05 0.13 0.00 0.02 0.01 0.05

7
Intensity difference between the 
highest and second highest 
peaks

0.03 0.05 0.02 0.02 0.04 0.07 0.04 0.07

Phospeptides Nonphospeptides Phospeptides Nonphospeptides

Charge
+2 +3
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Prior to training our predictors, we used paired t-tests to select the most 

significant features in each data set using a p-value threshold of 0.1. All selected features 

were normalized using the z-score approach before performing a principal component 

analysis (with 95% of retained variance) in order to further reduce the dimensionality and 

internal correlation within data sets.  

SVMlight software175 was used to predict phosphorylated peptides. We evaluated a 

linear and non-linear kernel, where non-linear kernel was gaussian radial basis (σ = 10–4). 

The default value was used for capacity c for all experiments. 10-fold cross validation 

was applied on Df
i (training =90% כ | Df

i|, test =10% כ | Df
i|)) to evaluate prediction 

accuracy. Sensitivity (sn), specificity (sp), balanced-sample accuracy acc = ½⋅ (sn + sp), 

and area under the ROC curve (AUC) was estimated to evaluate each predictor’s overall 

performance. Sensitivity is defined as the prediction accuracy on the phospeptides and 

specificity corresponds to the prediction accuracy on non-phospeptides. As sensitivities 

achieved by the linear kernel predictor were higher in comparison to those obtained using 

Gaussian kernel we decided to use the linear kernel predictor for all subsequent analyses. 

 

Filtering peptide-spectrum matches before database search 

For each filtering experiment, all peptides in data set S+i, ݅ א ሼ ൅2, ൅3ሽ were 

sorted based on feature f - predictor scores where, 

א ݂ ሼ݀݅ݏ݋݄݌ݏ, ,ݕݐ݈ܾ݅݅ܽݐܿ݁ݐ݁݀ ݁݀݅ݐ݌݁݌ ׫ ݏ݋݄݌ݏ݅݀  ሽ. Standardݕݐ݈݅݅ݒܽݐܿ݁ݐ݁݀ ݁݀݅ݐ݌݁݌

Mascot search for phospeptides and non-phospeptides was repeated using all data sets 

after eliminating candidate phospeptides from bottom jth 
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percentile ݆ א ሼ 10, 20, 30, 40, 50, 60, 70, 80, 90, 100ሽ. To ensure correctness of the 

algorithm we specifically included a final checkpoint step of eliminating all unlikely 

phospeptides from lowest 100th percentile. A schematic representation of this algorithm 

has been provided in the following flowchart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Flowchart of a novel algorithm for searching phospeptides in tandem mass-spectrometry  
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Results 

Identification of phospeptides and non-phospeptides 

By applying a standard Mascot search at 5% on data set D+2 we found 20,747 

peptides including 2,754 phospeptides and 17,993 non-phospeptides. The total number of 

unique phospeptides and non-phospeptides was 498 and 3,726. A similar search using 

data set D+3 found 4,543 peptides including 212 phospeptides and 4,331 non-

phospeptides. The total number of unique phospeptides and non-phospeptides was 78 and 

1,525. Searches for identified phospeptides and non-phospeptides were also repeated at 

1% FDR. Table 10 presents a summary of results from this exercise. 

 

  Phospeptides  Nonphospeptides 
Total peptides 

FDR Charge Total Unique # Sites Total Unique 
1% +2 2,219 387 2,524 15,476 3,150 17,695 

 +3 138 41 153 3,772 1,278 3,910 
5% +2 2,754 498 3,252 17,993 3,726 20,747 

 +3 212 78 239 4,331 1,525 4,543 

 

Table 10: Identified phospeptides and non-phospeptides at 1%FDR and 5%FDR. 

 

Peptide detectability and mean DisPhos score distribution  

Figure 20 shows box plots of the peptide detectability (Figure 20A) and mean 

DisPhos (Figure 20B) scores corresponding to all non-redundant identified phospeptides, 

identified non-phospeptides and all unidentified peptides in data sets set D+2 and D+3 

determined using a Mascot search. As seen in the figure, on an average, identified 

phospeptides have higher DisPhos scores in comparison to identified non-phospeptides as 
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well as unidentified peptides. This finding supports previous conclusions suggesting the 

incidence of phosphorylation sites within regions of intrinsic disorder in proteins. This 

figure also shows that identified phospeptides as well as identified non-phospeptides have 

much higher peptide detectability scores in comparison to unidentified peptides. These 

results clearly suggest that a disorder-based predictor of phosphorylation sites can be 

used to computationally learn the predictability of detectable and identified phospeptides 

in LC-MS/MS experiments. Additionally, peptide detectability also correlates well with 

identified peptides (both, phospeptides and non-phospeptides) and can be used to serve as 

a feature in predicting peptides likely to be determined via LC-MS/MS experiments.  

 

Figure 20: Boxplots depicting (A) peptide detectability distribution for +2 (top) and +3 (bottom) (B) 

mean DisPhos score distribution for +2 (top) and +3 (bottom) in identified phospeptides (left), 

identified non-phospeptides (center) and unidentified peptides (right). 

A B
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Prediction of phospeptides 

Our predictor trained on sequence features (as described above in Materials and 

Methods section) achieved 72% and 84% accuracy on +2 and +3 phospeptides 

respectively. Both predictors reached sensitivities of 62% and 73%. It is important to note 

that given the disproportionate sizes of positive and negative data sets we considered 

comparing sensitivity and the area under the receiver operator characteristic (ROC) curve 

achieved by this predictor and not accuracies alone. Our results show that by using 

simple sequence relevant features such as peptide detectability, mean DISPHOS scores, 

twenty basic amino acid compositions, serine, threonine and tyrosine counts, peptide 

mass and peptide length,  it is possible to discriminate identified phospeptides from other 

peptides with high accuracy.  

Since, to the best of our knowledge, no other sequence based predictors of 

phospeptides was available at the time of this study we compared the performance of our 

predictor with a previously developed SVM predictor, Colander, which makes use of 

spectral features in predicting phospeptide spectra.170 We recreated Colander to compare 

its performance with our sequence-based predictor in terms of the phospeptide prediction 

accuracy. Accuracy, sensitivity and AUC for predictors constructed using sequence and 

spectral features have been presented in Table 11. As seen in Table 11, lower prediction 

scores were obtained using spectral features alone suggesting that while spectral features 

can be used to predict phospeptide spectra (and thereby phospeptides) they may not be as 

generalizable across MS data sets as sequence features may be.  
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Predictor Charge 
Accuracy 

(%) 
AUC 
(%) 

Sn 
 (%) 

Ddisphos u detectability u AA 
+2 73 78 62 
+3 81 87 83 

Dspectral 
+2 70 76 52 
+3 73 79 71 

 

Table 11: Prediction accuracy, AUC and sensitivity for sequence feature based and spectral feature 

based predictors. 

 

Feature analysis 

A paired t-test was performed to compare the means of all attributes used in the 

construction of each of the five predictors. Among the top 10 significant attributes (p-

value < 0.05) for ܦ௦௘௤௨௘௡௖௘
ାଶ  and ܦ௦௘௤௨௘௡௖௘

ାଷ though with varying degrees of contribution 

were peptide standard detectability, mean DisPhos score for a peptide, maximum 

DisPhos score for a peptide, number of threonines, number of tyrosines and amino acid 

compositions corresponding to aspartic acid (D), glutamic acid (E) , threonine (T), 

cysteine (C) and phenylalanine (F). 

 

A novel algorithm for improved detection of phospeptides in LC-MS/MS  

We observe that by eliminating 80% of the low scoring + 2-phospeptides at 1% 

false discovery rate we are able to improve the total count of +2-unique phospeptides 

identified by 18% and their corresponding phosphosites by 31%. Similarly, we find that 

by removing 80% of the poorly scoring + 3-phospeptides we gain nearly 44% more 
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unique + 3-phospeptides and as many as 23% more phosphorylation site. At 5%FDR, the 

number of +2 and + 3-phospeptides gained after eliminating 80% of poorly ranked 

phospeptides is slightly lower (13% and 22% respectively). The number of non-

phospeptides identified remained unaffected by the process of elimination of less likely 

phospeptides for both data sets. To validate the correctness of our results we also 

calculated the overlap between phospeptides identified by a standard Mascot search and 

those identified by our method at each percentile step (as described in the Materials and 

Methods section). We find that by using only the top 20% scoring phospeptides our 

method was able to detect 97% of the phospeptides identified by the standard Mascot 

search.   

 

Detailed results from this experiment, including the number of phospeptides and 

phosphorylation sites identified at 1% and 5% FDR have been illustrated in Figure 21 

(top and bottom). 
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Figure 21:Number of phospeptides identified at (Top) 1%FDR and (Bottom) 5% FDR,  after 

eliminating phospeptides from bottom 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% 

peptides 

Our results show that our proposed method is not only able to search phospeptides 

by using a reduced protein database but can also help in identifying more phospeptides 

and phosphorylation sites compared to a Mascot search. The observation is consistent for 

both, +2 and +3 data sets. 

Most functions in the methodologies described here and previously have been 

designed using Matlab v7.8 (R2009a) with the exception of a few scripts that were 

written in Perl or bash shell.     

Top 

Bottom 
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CHAPTER SIX: EVALUATING DISORDER IN PATHOGENIC APICOMPLEXANS 

VERSUS NON-PATHOGENS 

Background 

Pathogenic apicomplexans and their diseases 

Parasitic protozoa belong to the phylum apicomplexa that have a significant 

impact on humans. This phylum includes anaerobic organisms such as Giardia lamblia 

and Entamoeba histolytica. G. lamblia, a diplomonad, is one of the most common 

intestinal protozoans that cause diarrhoea.176 E. histolytica, causing colitis and liver 

abscesses, is the second leading cause of death from parasitic diseases in the world, 

killing up to 100,000 people a year.177 The kinetoplastids include Trypanosoma brucei 

and Trypanosoma cruzi, which are the causative agents of African sleeping sickness and 

Chagas’ disease respectively. An estimated 18 million persons are infected with T. cruzi 

in Latin America178 and 300 000–500 000 cases of African sleeping sickness occur per 

year. Currently, there are very few treatment regimes available for the Trypanosoma 

species, some of which are highly toxic.  

Also included in this group are the Plasmodium species (the primary causative 

agent of malaria), the Cryptosporidium species, (causative agent of an intestinal infection 

leading to substantial water-borne outbreaks resulting in serious strains on agricultural 

and medical resources179) and Toxoplasma gondii, (implicated in congenital birth defects 

and with known links to neurological disorders and behavioral anomalies in humans.)180-

182 Malaria is one of the most catastrophic infectious diseases of our times, having 

infected nearly 500 million people in 2002 and resulting in at least 1 million casualties, a 
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majority of which were children.183, 184 Cryptosporidium and Toxoplasma are also known 

to cause fatal infections in immunocompromised individuals (as in the case of AIDS), 185 

and have therefore been categorized by the National Institute of Allergy and Infectious 

Disease (NIAID) as category B  pathogens that are relevant to bio-defense research.186  

With genome sequences now readily accessible for a number of these protozoa, 

we now have the unique opportunity to explore phenomena that may help us in 

understanding the basic cell biology within pathogens and explain why some 

apicomplexan protozoan organisms cause disease while others do not. This, in turn, may 

ultimately lead us to the discovery and development of novel and effective therapies to 

manage diseases caused by pathogens. Having said that, there are several complications 

that hamper functional genomic studies in protozoan parasites.187 For example, most 

protozoal genomes contain a high number of genes that lack reasonably confident 

orthologues in other organisms.188  

 

Abundance of intrinsic disorder in P.falciparum 

Several computational studies have estimated the abundance of intrinsic disorder 

in proteins of P. falciparum. For example, it has been reported that at least 35% of 

proteins encoded by genes on chromosomes 2 and 3 in this pathogen are predicted to 

contain long (up to 40 consecutive residues) disordered regions.25 A later study claimed 

that this number was in fact an underestimate, and nearly 52–67% of the proteins are 

predicted to contain long disordered regions.31 Furthermore, it was shown that, proteins 

expressed in the sporozoites of P. falciparum were more intrinsically disordered 
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compared to those expressed during other life cycle stages.34 

Each of the above findings naturally pushes us into asking a few questions: Are 

low-complexity regions common amongst pathogenic organisms? Does the presence of 

low-complexity regions (and therefore likely disordered regions) have a role in the 

pathogenic behavior of such organisms? Does intrinsic disorder lend a functional 

advantage to apicomplexan pathogens? To attempt an answer to these, we propose a 

study that closely analyzes the disorder content in multiple pathogenic proteomes and 

compare it to those from non-pathogenic organisms. In the following pages, we describe 

methods to investigate the compositional, motif and charge-hydropathy preferences 

within proteins from pathogens as well as non-pathogens. We also compare the results 

from both these groups with a model eukaryote and a prokaryote. 

 

Materials and Methods 

Sequence data sets 

Various online databases were used as sources for annotated genomes 

corresponding to the following species: Plasmodium falciparum (excluding 

mitochondrial and plastid proteins), P. berghei, P. chabaudi, P. vivax, P. yoelii (Release 

3.4),189, 190 Toxoplasma gondii (Release 4.1),191 Theileria parva (http://www.tigr.org/),192 

Cryptosporidium hominis and Cryptosporidium parvum 

(http://cryptodb.org/cryptodb/),193, 194Candida albicans and Candida glabrata,195 

Entamoeba histolytica (http://www.tigr.org/), Giardia lamblia196 and  Trypanosoma 

brucei (http://www.tigr.org/). In addition to these, annotated data corresponding to the 
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non-pathogenic free-living protozoan Tetrahymena thermophila (http://www.tigr.org/), 

the slime mold Dictyostelium discoideum (http://dictybase.org/) and the yeast 

Saccharomyces cerevisiae (http://www.yeastgenome.org/) were obtained to serve as 

control organisms. Caenorhabditis elegans (http://www.wormbase.org/) and Vibrio 

cholerae (http://www.tigr.org/) were used as models for a multicellular eukaryote and 

prokaryote, respectively. All occurrences of ambiguous residues such as B, X, or Z in the 

data sets were replaced by alanine, due to its neutrality to order as well as disorder. The 

total numbers of sequences, mean sequence lengths, and number of ambiguous residues 

for each working data set have been summarized in Table 12. 

 

 

Table 12:  Summary of number of sequences, mean sequence length, and ambiguous residues in each 

of the 19 proteomes. 

 

The choice of these organisms relies on their known pathogenicity in mammalian 

organisms as described here. P. falciparum causes the most dangerous form of malaria in 
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humans. P. vivax is the most frequent and widely distributed cause of recurring malaria 

though benign, in humans. P. berghei, P. chabaudi, and P. yoelii are three of the four 

malaria parasites of African murine rodents. T. gondii causes toxoplasmosis in warm-

blooded vertebrates. T. parva is the causative agent of East Coast Fever (ECF), an acute, 

tick-borne disease causing high rates of morbidity and mortality in cattle. 

Cryptosporidium species cause diarrhoeal illness. C. albicans is a diploid fungus (a form 

of yeast) capable of causing opportunistic oral and genital infections in humans. C. 

glabrata is now recognized as a highly opportunistic pathogen of the urogenital tract as 

well as of the bloodstream in immunocompromised individuals. E. histolytica and G. 

lamblia are anaerobic protozoan parasites that infect the gastrointestinal tract. T. brucei is 

a parasitic protist that causes African trypanosomiasis (sleeping sickness) in humans and 

animals. D. discoideum (also known as slime mold) a non-pathogen, is a soil-living 

amoeba that exists in uni- and multi-cellular forms. T. thermophila is a non-pathogenic 

free-living ciliated protozoan. Saccharomyces cerevisiae is a species of the budding 

yeast. C. elegans is a freeliving nematode. V. cholerae is a gram negative bacterium that 

causes cholera in humans. 

 

Compositional profiling 

To gain an insight into the relationships between sequence and disorder, amino 

acid compositions from different data sets were compared using an approach recently 

developed for intrinsically disordered proteins.197 To this end, the fractional difference in 

composition between a given set of proteins and a set of reference proteins (either a set of 
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ordered proteins154, disordered proteins from DisProt database,198 or proteins from 

Tetrahymena thermophila, Caenorhabditis elegans or Vibrio cholerae) was calculated for 

each amino acid residue. The fractional difference was calculated as, 

௥௘௙௘௥௘௡௖௘ܥ – ௫ܥ

௥௘௙௘௥௘௡௖௘ܥ
 

Equation 7: Fractional amino-acid compositions for proteins from apicomplexan pathogens and non-

pathogens. 

 

where, CX is the content of a given amino acid in a given protein (or protein set), and 

Creference is the corresponding content in a set of reference proteins and plotted for each 

amino acid. In corresponding plots, the amino acids were arranged from the most rigid to 

the most flexible according to the Vihinen’s flexibility scale, which is based on the 

averaged B-factor values for the backbone atoms of each residue type as estimated from 

92 proteins.199  

 

Predictions of intrinsic disorder 

Disorder predictions for proteins corresponding to each of the above listed 

organisms were made using VLXT154, 159 and VSL2B.91 Cumulative distribution function 

(CDF) curves200 were generated for each data set using VLXT scores for each of the 19 

organisms. CDF analysis discriminates between order and disorder by means of a 

boundary value. This value can be interpreted as a measure of proportion of residues with 

low and high disorder predictions. Additionally, charge-hydropathy (CH) distributions 

were also analyzed for these organisms using methods as described in Uversky et al., 156 
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Predicting alpha-MoRFs 

The predictor of α-helix forming Molecular Recognition Features, -MoRF, is 

based on observations that predictions of order in otherwise highly disordered proteins 

corresponds to protein regions that mediate interaction with other proteins or DNA. This 

predictor focuses on short binding regions within long regions of disorder that are likely 

to form helical structure upon binding.27 It uses a stacked architecture, where VLXT is 

used to identify short predictions of order within long predictions of disorder, and then a 

second level predictor determines whether the order prediction is likely to be a binding 

site based on attributes of both the predicted ordered region and the predicted 

surrounding disordered region. An -MoRF prediction indicates the presence of a 

relatively short (20 residues), loosely-structured helical region within a largely disordered 

sequence.27 Such regions gain functionality upon a disorder-to-order transition induced 

by binding to partner.107, 135 

We also made use of a protein–protein interaction map from P. falciparum 

published recently.201 This map contains 19,979 interactions involving 2,321 proteins. 

This map was generated using logistic regression methods to interpret protein–protein 

interactions involved in conserved protein interactions, their underlying domain 

interactions and listed supplemental experimental data.201 Our goal for working with this 

map was to compare the connectivity of P. falciparum proteins (i.e. how many 

interactions a given protein participates in) and their extent of intrinsic disorder. 
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Results 

Amino acid composition profiles  

Amino acid compositions of fifteen early-branching eukaryotic organisms (the 

nine apicomplexa P. falciparum, P. berghei, P. chabaudi, P. vivax, P. yoelii, T. gondii, T. 

parva, C. hominis, and C. parvum, C. albicans and C. glabrata, T. brucei, amoebozoa D. 

discoideum and E. histolytica, and G. lamblia) were compared with compositions of 

proteins from a representative disordered (Figure 22A) and ordered (Figure 22B) data set. 

Compositions of all organisms except D.Discoideum were compared to the freeliving 

non-pathogenic protozoan T. thermophila (Figure 23A), D. Discoideum (Figure 23B) and 

S. cerevisiae (Figure 23C). In addition to these, profiles have been plotted in comparison 

to C. elegans (Figure 24) and V. cholerae (Figure 25).  

These figures depict fractional relative compositions, with the amino acids 

arranged from left to right in increasing order of surface accessibility in globular proteins 

(also known as the Vihinen flexibility scale). Several trends emerge in these figures. For 

instance, parasitic protozoan data sets are significantly depleted in tryptophan (W) and 

enriched in lysine (K), in comparison to ordered sequences (Figure 22A). However, in 

comparison to the disordered data set, most of the protein sets are depleted in tryptophan 

(W) (Figure 22B). It is interesting to note that in comparison to ordered as well as 

disordered sequences, majority of these fourteen organisms are enriched in phenylalanine 

(F), isoleucine (I) and tyrosine (Y). Comparison of Figure 22A and B suggests that early-

branching eukaryotes represent a unique group whose proteomes are compositionally 

different when compared to typical ordered and disordered proteins.  
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Figure 22: Compositional profiling of early-branching eukaryotes in comparison with a (A) set of 

ordered and (B) experimentally characterized disordered proteins.  
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Figure 23: Amino acid compositions of pathogenic early-branching eukaryotic proteomes in 

comparison to three non-pathogens, Tetrahymena thermophila (A), Dictyostelium discoideum (B) and 

Sacchromyces cerevisiae (C). 
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The high abundance of phenylalanine and tyrosine residues might be related to 

peculiarities of protein folding and/or functionality.202 Several intrinsically disordered 

proteins have shown to be enriched in these residues. For example, multiple tyrosine 

residues were shown to be essential for the function of the Ewings sarcoma (EWS) fusion 

proteins (EFPs). EFPs are potent transcriptional activators and reportedly interact with 

other proteins required for mRNA biogenesis. A characteristic functionality of EFPs is 

associated with the EWS activation domain (EAD), containing multiple degenerate 

hexapeptide repeats (consensus SYGQQS) with a conserved tyrosine residue. This 

intrinsically disordered domain was shown to be responsible for transcriptional activation 

and cellular transformation.203 Furthermore, these multiply conserved tyrosines were 

shown to be essential for the EAD function. Intriguingly, they can be effectively 

substituted by phenylalanine, showing that an aromatic ring can confer EAD function in 

the absence of tyrosine phosphorylation.203 Other examples include a set of 

phenylalanine–glycine repeat-containing nucleoporins (FG-Nups), specific proteins from 

nuclear pore complexes (NPCs) that are embedded in the nuclear envelope of eukaryotic 

cells. There are 13 such proteins in the Saccharomyces cerevisiae NPC. These are known 

to bind to karyopherins and facilitate the transport of karyopherin–cargo complexes. All 

these proteins were found to be intrinsically disordered and the FG repeat regions of 

Nups were shown to form a meshwork of random coils at the NPC through which nuclear 

transport proceeds. Another example is the immunoreceptor tyrosine-based activation 

motif (ITAM)-containing cytoplasmic domains of many immune receptors, which were 

recently shown to represent a novel class of intrinsically disordered proteins.204, 205 
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In comparison to their free-living, non-pathogenic counterpart (i.e., Tetrahymena 

thermophila), pathogenic early-branching eukaryotes are significantly enriched in 

aspartic acid (D), proline (P) and valine (V) along with polar residues such as tryptophan 

(W) and histidine (H). However, depletion of the polar residue glutamine (Q) appears to 

be common across all species in comparison to T. thermophila (Figure 23A). Compared 

to C. elegans or V. cholerae, depletion of tryptophan (W) and valine (V), both order-

promoting residues, is apparent in the microbes analyzed (Figure 24, Figure 25). 

Although many other amino acids are also depleted in various proteomes, W and 

V are the only two residues with consistent behavior across all species in comparison to 

C. elegans and V. cholerae. These figures also show evidence for a pronounced lysine 

(K) content amongst most parasites. 

 

Figure 24: Amino acid compositions of pathogenic early-branching eukaryotic proteomes in 

comparison to a multicellular eukaryote, Caenorhabditis elegans. 
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Figure 25: Amino acid compositions of pathogenic early-branching eukaryotic proteomes in 

comparison to a model prokaryote, Vibrio cholerae. 

 

CDF and CH-plot analyses 

The sequences of protozoan proteins were also used to predict whether these 

proteins are likely to be predominantly disordered using two binary algorithms of 

intrinsic disorder: the charge-hydropathy plot (CH-plot) algorithm156, 200 and the 

cumulative distribution function approach (CDF analysis).200 Both these methods classify 

whole proteins as either (a) mostly disordered or (b) mostly ordered. Here, the outcome 

of ‘mostly ordered’ suggests that proteins contain more ordered residues than disordered 

residues. Similarly, the outcome ‘mostly disordered’ indicates proteins that proteins 

contain more disordered residues than ordered residues.200 A simultaneous observation of 
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low mean hydropathy and relatively high net charge is typical for the ‘‘natively 

unfolded’’ proteins, which are characterized by absence of a compact, collapsed 

structure.156 Therefore, ordered and disordered proteins plotted in CH 2-dimensional 

space can be separated by a linear boundary, with proteins located above this boundary 

line being natively unfolded and with proteins lying below the boundary line being 

ordered. CDF analysis, on the other hand, summarizes the per-residue disorder 

predictions by plotting scores against their cumulative frequency. This allows ordered 

and disordered proteins to be separated based on the distribution of disorder prediction 

scores alone. In this study, order–disorder classification is based on whether a CDF curve 

is above or below a majority of boundary points: proteins with high scores will have CDF 

curves that have low cumulative values over most of the CDF curve, and proteins with 

low scores will have CDF curves that have high cumulative values over most of the CDF 

curve.200 The individual results of CH-plot and CDF analyses for each of the 19 

organisms are shown in Figure 26A-B. Figure 27 and 28 show CH-CDF analyses results 

for (A) 13 pathogens and (B) 3 non-pathogens in our data set.  

Table 15 shows that there is a reasonable discrepancy between these two methods 

and the level of disorder predicted by CDF is on average 1.25-fold higher than that 

predicted by CH-plots. The difference between these two methods in the magnitude of 

predicted disorder supports previously published data206. This difference has been 

attributed to the fact that, a CH-plot is a linear classifier that considers only two 

properties of a particular sequence— net charge and hydropathy, whereas the results of a 

CDF analysis is strongly tied to the output of the nonlinear neural network based VLXT 

predictor. This predictor has been trained to learn order and disorder by using a much 
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larger feature space besides net charge and hydropathy. Owing to these methodological 

differences, CH-analysis learns to differentiate proteins with extended disorder (random 

coils and pre-molten globules) from proteins with globular conformations (molten 

globule-like and rigid well-structured proteins). On the other hand, VLXT based CDF 

analysis serves to segregate all disordered conformations including molten globules from 

rigid well-folded proteins. We believe that exploiting this difference in learning 

approaches of CDF and CH-plot can provide a computational tool to discriminate 

‘‘natively unfolded’’ proteins in the apicomplexan phylum from native molten globules, 

that are predicted to be disordered by CDF, but compact by CH-plot. This model is 

consistent with the behavior of several intrinsically disordered proteins. Work is currently 

in progress to analyze the generality of this approach. Particularly in the context of 

protozoan proteins, this implies that some of them are predicted as extended, whereas 

others can possess molten globule-like properties. 
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Figure 26: (A) Charge-Hydropathy plots (X-axis: Mean normalized hydropathy, Y-axis: Absolute 

mean net charge) (B) Cumulative distribution function curves (X-axis: Score, Y-axis: Cumulative 

fraction of residues) for all 19 organisms. 
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Figure 27: Charge-hydropathy plots corresponding to (A) 14 pathogens and (B) 3 non-pathogens as 

listed in Table 12. 
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Figure 28: (A): Cumulative distribution function curves corresponding to (A) 14 pathogens and (B) 3 

non-pathogens as listed in Table 12. 
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Table 13: CH, CDF and α-MoRF prediction results for all 19 organisms. 

 

Figure 29 compares the results of the CH-plot and CDF analyses by showing the 

distributions of proteins in each proteome within the CH–CDF phase space. In these 

plots, each colored data point represents a single protein whose spatial coordinates are 

calculated as a distance of this protein from the boundary in the corresponding CH-plot 

(y-coordinate) and an averaged distance of the corresponding CDF curve from the 

boundary (x-coordinate). Positive and negative y values correspond to proteins, which, 

according to CH-plot analysis, are predicted to be natively unfolded or compact, 

respectively. On the other hand, positive and negative x values are assigned to proteins 

that, by the CDF analysis, are predicted as ordered or intrinsically disordered, 

respectively. Therefore, each plot contains four quadrants (see an explanatory panel in the 

low right corner of Figure 29): (-, -) contains proteins predicted to be disordered by CDF, 

but compact by CH-plot (i.e., proteins possibly with molten globule-like properties); (-, 
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+) includes proteins predicted to be disordered by both methods (i.e., random coils and 

pre-molten globules); (+, -) contains ordered proteins; (+, +) includes proteins predicted 

to be disordered by CH-plot but ordered by the CDF analysis. The sharp cut-off at the 

right side of each plot is due to the upper limit of a difference between the CDF curve 

(which has a maximum value of 1.0) and the boundary separating IDPs and ordered 

proteins in CDF plots. Analysis of the (-, -) and (-, +) quadrants in Figure 29 shows that 

the majority of the wholly disordered proteins from C. elegans, S. cerevisiae, and V. 

cholerae likely possess molten globule-like properties. In contrast, protozoan proteomes 

are generally characterized by a more balanced distribution between compact and 

extended disordered proteins. This balance is also observed in the case of C. albicans and 

C. glabrata proteomes demonstrating some prevalence for the extended disordered 

proteins. 

 

Figure 29: Comparison of the CDF and CH-plot analyses of whole protein order-disorder via 

distributions of proteins in each proteome within the CH-CDF phase space. 
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Prediction of disorder  

We used two more approaches to further assess the presence of intrinsic disorder 

in each of the early-branching eukaryotic proteomes. First, the abundance of predicted 

intrinsic disorder in various organisms was estimated by calculating the fractions of 

proteins containing predicted disordered regions of a given length (e.g. ≥30, ≥40). This 

approach has earlier been used to show the presence of intrinsic disorder in signaling and 

cancer-associated proteins43 and in proteins involved in cardiovascular diseases. 206 

Figure 30A202 shows that intrinsic disorder is predicted to be relatively abundant in early-

branching eukaryotes. The percentages of proteins with 30 or more consecutive residues 

predicted to be disordered by VSL2B and VLXT (corresponding numbers are shown in 

brackets) were 87.8%  (89.8%) for T. gondii, 80.3%  (82.5%) for P. vivax, 79.0% 

(81.0%) for P. falciparum, 75.3% (76.8%) for D. discoideum, 73.8%  (75.1%) for C. 

parvum, 72.4% (74.1%) for C. albicans, 71.9%  (73.1%) for C. glabrata, 71.4%  (72.4%) 

for T. thermophila, 70.4%  (72.0%) for T. brucei, 69.7% (70.9%) for C. hominis, 67.5% 

(68.9%) for T. parva, 63.0%  (64.5%) for P. yoelii, 62.6%  (64.1%) for S. cerevisiae, 

63.0%  (64.3%) for C. elegans, 58.2%  (59.5%) for E. histolytica, 52.1% (53.2%) for G. 

lamblia, 42.5%  (43.4%) for P. berghei, 40.3%  (41.3%) for P. chabaudi and 24.9%  

(25.1%) for V. cholerae. 

A previous study using VLXT showed a set of eukaryotic proteins from Swiss-

Prot and a set of ordered proteins from PDB Select 25, contained 47(±4)% and 13(±4)% 

proteins with 30 or more consecutive residues predicted to be disordered.43 Therefore, in 

comparison to a set of ordered proteins, microbial proteomes were found enriched in 

proteins containing long disordered regions. Furthermore, the vast majority of the early-



108 

 

branching eukaryotic organisms (except for G. lamblia, P. berghei, and P. chabaudi) 

contained more proteins with long disordered regions than a set of representative 

eukaryotic proteins from Swiss-Prot. 

 In the second approach to assess the prevalence of intrinsic disorder in early-

branching eukaryotes, we compared the percentages of residues in long disordered 

regions (30 or more consecutive residues) as predicted by VSL2B (VLXT). These 

percentages were as follows (Figure 30B202): 58.3%  (36.1%) T. gondii, 42.7%  (7.3%) 

for P. falciparum, 41.5%  (21.2%) for P. vivax, 37.9%  (6.5%) for T. thermophila, 37.1%  

(6.9%) for P. yoelii, 34.4%  (16.4%) for D. discoideum, 29.6%  (6.1%) for P. chabaudi, 

29.5%  (13.7%) for C.albicans, 29.2%  (4.2%) for P. berghei, 28.5%  (14.5%) for C. 

glabrata, 27.7% (15.6%) for C. elegans, 27.6%  (13.5%) for S. cerevisiae, 27.5%  

(17.8%) for T. brucei, 27.2%  (10.4%) for C. hominis, 26.2%  (9.4%) for C. parvum, 

24.6%  (12.5%) for G. lamblia, 23.5%  (9.4%) for T. parva, 19.6%  (6.6%) for E. 

histolytica, and 6.2%  (6.7%) for V. cholerae. According to previous VLXT estimates, 

there were 6.5(±0.5)% and 1.48(±0.45)% residues in long disordered regions of 

eukaryotic proteins from Swiss-Prot and of non-homologous ordered proteins from PDB, 

respectively.43 The data presented here suggests that sequences from early-branching 

eukaryotes, contain more disordered residues than eukaryotic Swiss-Prot proteins and 

ordered PDB proteins.   
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Figure 30: VSL2B disorder prediction results on 19 proteomes: C. parvum, C. hominis, P. falciparum, 

P. berghei, P. chabaudi, P. vivax, P. yoelii, T. parva, T. gondii, E. histolytica, G. lamblia, T. brucei, C. 

albicans, C. glabrata, D. discoideum, T. thermophila, S. cerevisiae, C. elegans, and V. cholerae. (A) 

Percentages of proteins in the 19 proteomes with 30 to 90 consecutive residues predicted to be 

disordered. (B) Percentages of residues in these 19 proteomes predicted to be disordered within 

segments of length 30 to 90. 

 

Predictions of alpha-MoRFs 

Table 13 also shows that, on average, nearly 20% of protozoan proteins contain α-

MoRFs, ranging from 7.5% in P. berghei to 48.3% in T. gondii. The number of a-MoRF-
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containing proteins in the prokaryotic representative V. cholerae is relatively smaller 

(1.9%). Importantly, in each proteome some long, highly disordered proteins have 

multiply predicted a-MoRF regions (Supplementary Table S1, Mohan et al.,202) that may 

potentially serve as binding sites for multiple proteins. For example, C. elegans protein 

CE25234 (4900 amino acid residues) has 49 predicted -MoRFs. Similarly, T. gondii 

proteins 44.m02695 (putative protein phosphatase 2C, 3966 amino acids) and 42.m03467 

(mediator complex subunit SOH1-related, 4253 amino acids) contain 24 and 22 predicted 

a-MoRFs respectively.  

 

Analysis of Plasmodium falciparum protein–protein interaction map 

The goal of this analysis was to study a published interaction map of P. 

falciparum while paying special attention to the degree of intrinsic disorder in the 

network. This map includes 2,321 proteins involved in 19,979 protein–protein 

interactions.200 A log–log plot of the number of proteins versus the number of interactions 

shows that the published interaction map closely mimicked the properties of a scale-free 

network (Figure 31). Such networks are characterized by the presence of a few proteins 

participating in a high number of interactions (also known as hubs) and a large number of 

proteins having few or no interactions. This finding is further supported by a regression 

analysis of the data using the least squares method that showed that the data fits a linear 

equation with a negative slope. The fact that the R2 value (0.9) is close to 1 is indicative 

of a reasonably good fit. 
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Figure 31: Analysis of P. falciparum interaction map. (A) Number of protein–protein interactions (x-

axis) vs. number of proteins (y-axis) based on P. falciparum interaction map published in Wuchty 

and Ipsaro, 2007 (B) Log–log plot obtained using data from Figure 31A. 

 

VSL2B predictions of proteins from the interaction map show that there is ≈45% 

disorder in this map. This number is marginally higher than the overall amount of 

disorder present in all annotated proteins from P. falciparum  (41.6%) and is significantly 

higher than the level of intrinsic disorder in the C. elegans proteome (35.9%), the V. 

cholera proteome (22.2%), as well as the all early-branching eukaryotes (39.0%, see 
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Table 14). We also found that the correlation score between per protein VLXT score and 

the number of interactions by it was only 0.13 (p-value = 0.0001). Such a low correlation 

score is indicative of a weak association between intrinsic disorder and connectivity in 

the P. falciparum protein–protein interaction map. 

α-MoRF predictions for these data reveal that, of the 529 putative hub proteins 

(i.e., proteins involved in 10 or more protein–protein interactions), 134 contain one or 

more predicted α-MoRF regions (25.3%).202 In comparison to this, 600 of the 1792 likely 

non-hub proteins had a corresponding -MoRF prediction (33.5%). Both these numbers 

are higher than the average number of eukaryotic proteins with predicted -MoRFs 

(≈23%) and are significantly higher than a number of MoRF-containing proteins in 

bacteria (≈3%) and archaea (≈2.5%). In other words, both protein sets are highly enriched 

in disordered segments that are potentially involved in molecular recognition and that 

undergo disorder-to-order transitions upon interaction with their binding partners. 

Interestingly, non-hub proteins on average contain more -MoRFs than hubs. On the 

other hand, the VLXT scores of 24.5% and 19.7% characterize hub and non-hub proteins 

respectively. This apparent discrepancy can be explained by the fact that MoRFs are short 

ordered regions (around 20 residues) located within long disordered regions. Therefore, 

higher MoRF content should correspond to lower overall disorder score. 
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CHAPTER SEVEN: DISCUSSION 

A practical limit to intrinsic disorder prediction 

Our study on the reproducibility of intrinsic disorder in Chapter Three addresses 

the relationship between intrinsically disordered protein regions and crystallographic 

structure determination. We find that the experimental reproducibility of disordered 

regions between highly similar proteins (≥90% global sequence identity) is strongly 

dependent on the parameters applied to a crystallization experiment, such as temperature, 

pH, and salt concentration. For the highly similar proteins crystallized under the 

agreement of all experimental parameters, the reproducibility of disordered regions was 

about 81%, while for completely different experimental conditions this reproducibility 

dropped to 40%. We believe that other extraneous factors such as the presence/absence of 

ligands is less likely to influence experimental factors. We also propose that experimental 

reproducibility of disordered regions can be used as a good indicator of an upper bound 

for the predictability of disordered regions. Given the continued use of current 

crystallization methods, we estimate that a standard computational experiment based on 

the crystallized proteins from PDB can achieve about 80% accuracy on average. If 

experimental conditions are taken into consideration, this accuracy may reach about 90%, 

while in the case when experimental conditions are different; this accuracy drops to 69%.  

Since the estimated reproducibility of disordered regions reflects the overall 

likelihood of a protein residue to be disordered, we also constructed prototype predictors 

of disordered regions when experimental conditions are taken into consideration. The 

results of accuracy estimation show that a smaller sample of non-redundant proteins used 
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during training, but from the same class of experimental conditions, is either sufficient or 

even better for prediction accuracy than when a larger sample of proteins from all classes 

of experimental conditions are considered. This is an interesting finding because it 

suggests that the relationship between disordered regions and experimental conditions of 

structure determination is non-random and predictable, to a certain degree, just by using 

amino acid compositions from such proteins. One possible way of interpreting these 

results is that there is still room for improving prediction of intrinsically disordered 

regions. It is possible that the limits suggested here may not be achieved by the use of 

sequence based predictors alone. Therefore, methods that can exploit tertiary interactions 

as well as experimental conditions may be able to narrow the gap. Although it does not 

include experimental condition-specific features, a recent work presented a sequence-

based and structure-based method for prediction of disordered regions.207  We believe 

that the analyses in this study not only provides a quantitative view of the 

crystallographic inaccuracy, especially with respect to modeling protein dynamics using a 

static view, but also provides further clues with respect to driving crystallographic 

experiments through the incorporation of experimental conditions.  

 

Molecular recognition by MoRFs involve disorder-to-order transitions 

The purpose of manually examining a few examples of MoRFs in Chapter Four 

was to visualize a few instances of proteins or protein fragments that envelop their 

respective protein partners and participate in molecular recognition by a disorder-to-order 

transition. We have shown that MoRFs are unstructured in their unbound form via amino 
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acid compositional profiles, secondary structure predictions, interaction surface analyses 

and predictions. Each of these experiments has shown that MoRFs mimic the general 

properties of intrinsically disordered proteins in isolation of their binding partners and 

therefore conform to the MoRF theory. The disordered state of MoRFs allows them to 

bind to specific partners via a disorder-to-order transition. 

Protein binding via disorder-to-order transition can be treated as a special type of 

protein folding mechanism. Conventional protein folding involves the formation of 

tertiary structure that stabilizes secondary structure elements. In disorder-to-order 

binding, formation of contacts between a MoRF and its binding partner stabilizes the 

secondary structural elements on the MoRF. We suggested two mechanisms in which 

MoRFs gain structure. The first mechanism is the inherent-structure mechanism which 

reflects the predominance of a specific local secondary structure type among the highly 

fluctuating conformations of the unbound MoRF. In this case, the structure of the MoRF 

is not entirely random and shows some features that are later stabilized in the bound state. 

In the second mechanism or the induced-structure mechanism, the MoRF is entirely 

disordered before binding and makes initial intra- and inter-chain contacts with its partner 

randomly. These contact points serve as nucleation sites for the subsequent folding and 

formation of secondary structure under the influence of subsequent contacts with the 

partner molecule. In such a mechanism, the inherent conformational preferences of the 

intrinsically disordered protein itself are overridden by interactions with the partner. The 

inherent-structure mechanism has been substantiated by comparing experimental and 

predicted secondary structure of MoRFs. The second mechanism or the induced-structure 

mechanism has been supported by presenting the accuracy of predicted structures of 
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MoRFs in comparison to monomers. It is equally likely that a combination of both of 

these mechanisms is at play in MoRF mediated interactions.  

 

Identification of phospeptides in LC-MS/MS can be improved with application of 

DisPhos and peptide detectability scores 

Although machine learning approaches have been applied to proteomics research 

in the past most of these approaches have largely concentrated on either the 

preprocessing of the tandem-mass spectra or the post-processing the peptide 

identification results by the use of traditional tools such as Mascot and Sequest. In 

Chapter Five, we described a novel approach that combines functional-residue predictors 

based on intrinsic disorder and sequence properties, with LC-MS/MS proteomics 

algorithms to improve identification of phospeptides. Our decision to develop such an 

approach stems from a number of previous articles that have noted the presence of 

phosphorylation sites in regions of intrinsic disorder. In addition to this, our method also 

incorporates a previously proposed concept known as ‘peptide detectability’ which is the 

probability of observing a peptide in a standard sample analyzed by a proteomics 

experiment. Our linear support vector machine predictor based on DisPhos (a logistic-

regression based predictor of phosphorylation sites) generated features, peptide 

detectability, twenty basic amino acid compositions, the number of serines, threonines 

and tyrosines in a peptide, the length and mass of a peptide,  can predict +2 and +3 LC-

MS/MS peptides containing phosphorylation sites can be predicted with 73 – 81% 

accuracy. In addition to this, we also suggested an algorithm where only phospeptides 
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with top n% prediction scores were used for a Mascot search and compared it with the 

standard Mascot process which utilizes all likely phospeptides. Our results show that the 

proposed approach is able to identify all phospeptides identified by a standard Mascot 

search by using a reduced protein database. In addition to being able to effectively select 

the correct phospeptides, our algorithm is also able to gain as many as 26% more + 2 

phospeptides (+31% phosphorylation sites) and nearly doubles +3 phospeptides at 1% 

FDR by removing unlikely phospeptide candidates, thereby maximizing the efficient use 

of computational resources. This gain was achieved by using only the top 20% and 10% 

scoring phospeptides respectively.  

 

Pathogenic organisms have increased intrinsic disorder content in comparison to 

non-pathogenic organisms 

Our study probing the degree of intrinsic disorder in pathogenic organisms in 

Chapter Six provides new insights into the evolution of intrinsic disorder in the context of 

adapting to a parasitic lifestyle. We describe and discuss a systematic bioinformatics 

approach that was used for the discovery and analysis of unfoldomes, the complement of 

intrinsically disordered proteins in a given proteome) of early-branching eukaryotes.  Our 

results suggest that sequences from early-branching eukaryotes are predisposed to a 

higher degree of unfoldedness than eukaryotic Swiss-Prot proteins and ordered PDB 

proteins. We have also established that many protozoan sequences (20 - 60% depending 

on the organism) contain long disordered regions, disordered regions (lengths ≥ 90 

consecutive residues). This corresponds to a 7-fold increase in comparison to the number 
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of similar regions from a PDB Select 25 data set. Therefore we believe that early-

branching eukaryotic proteins are significantly enriched in predicted disorder in 

comparison to representative eukaryotic proteins from Swiss-Prot and ordered proteins 

from the Protein Data Bank. Finally, we proposed that regions of intrinsic disorder in 

pathogenic protozoa provide a flexible means to facilitate host cell invasion and 

overcome immune response. Our results stress upon the need for continued research in 

this direction to ascertain the contribution of intrinsically disordered proteins in the 

cellular physiology of parasitic organisms. 
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CHAPTER EIGHT: SUMMARY AND FUTURE WORK 

Summary of dissertation 

This dissertation aims to address the delicate balance that exists between intrinsically 

disordered regions and the linear sequence of amino acids harboring such regions in two 

important contexts: (1) the influence of the sequence environment on the presence or lack 

of such regions and (2) the role of such regions on the functionality embedded within 

complex biological processes as well as systems.  

Our investigations on the former front convey that the existence, position, and 

length of disordered regions in highly similar proteins are strongly dependent on the 

variations in amino acid sequence as well as the parameters of crystallographic 

experiments, such as temperature, pH, and salt concentration. We find that for identical 

protein sequences, a majority of the observed modulations in the crystal lattice can be 

explained by variations applied to experimental conditions at the time of crystallization. 

For highly similar chains, both experimental conditions and the intrinsic change of 

protein structure were significant factors. At this time, we are hesitant to assign relative 

importance to these factors since the observed sequence differences in PDB are likely to 

be non-random (for example, mutations with functional or phenotypic significance are 

frequently of interest for structure determination). Having said that, the effect of chemical 

ligands on our analysis was limited, thereby making them less significant in the overall 

placement of disordered regions. The presence of a disordered region under one set of 

experimental conditions and absence under another can be understood through the 

framework of the probabilistic theory of protein folding. At any time instant, a protein 
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can be assigned a probability of any particular conformation based on its energy 

landscape.208, 209 For ordered proteins, such energy landscapes are characterized by single 

(or a small number of) deep minima with high probabilities associated with the 

corresponding conformations. Since the number of conformations in the high energy 

states is enormous and the barriers for moving away from the dominant conformation are 

relatively large, the energy landscape has a shape of a funnel.208 This minimum energy 

state is often associated with protein function and is called the native state. On the other 

hand, the energy landscapes for disordered proteins are shallower, typically characterized 

by flat and rugged valleys, i.e. they contain a large number of energy minima with 

relatively small barriers for transitioning between distinct conformations.209 

Consequently, the probability of each conformation corresponding to an energy minimum 

is relatively low. The absence of a high probability conformation eventually leads to 

missing electron density during crystallographic experiments. Thus, the variability in 

structures of identical proteins solved under different experimental conditions is caused 

by the environment-driven changes of the energy landscape (Figure 32). The altered 

probability distribution over the space of allowed tertiary structures ultimately results in a 

population shift between ensembles of pre-existing conformational isomers.208-210 
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Figure 32: Stylized depiction of the energy landscape as a function of the environment. 

 

In general, our work provides evidence that disordered protein regions are very 

sensitive to changes in amino acid sequence and experimental conditions of 

crystallographic experiments. The success of such crystallographic experiments depends 

on the complexity of a protein's structure and also on a number of experimental or 

environmental factors including purity of the protein sample, temperature, ionic strength, 

pH, and precipitants such as ammonium sulfate or polyethylene glycol.118 Undoubtedly, 

there are a number of factors that distinguish crystallization conditions from 

physiological conditions, but there is also a body of evidence that supports that protein 

structures often correspond to their native states.118 Therefore, it is reasonable to 

speculate that a wide range of intracellular and extracellular conditions may have similar 
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effects on the dynamics of protein 3D structure in vivo. The habitats for many living 

organisms vary from acidic to cold or hot, with various species being able to tolerate 

wide ranges of environmental conditions. The summary from our analysis suggests that, 

any similar variations in cellular environments could have profound effects on protein 

structure, dynamics, and function. Sensitivity to sequence changes, on the other hand, 

may facilitate the evolution of function, especially for proteins with the same fold 

classification. 

We also examined the role of intrinsic disorder in molecular recognition, post-

translational modifications and pathogenesis to address our second objective for this 

dissertation.  

Our section presenting multiple examples of intrinsically disordered molecular 

recognition features or MoRFs such as tumor suppressor p53, Wiskott-Aldrich syndrome 

protein (WASP), the VCA and WH2 domains highlighted a novel way in which disorder 

mediates protein-protein interactions via the process of molecular recognition. MoRFs 

bind to their specific partners through a disorder-to-order transition. We studied the 

occurrence of comparably short fragments (< 70 residues), loosely structured protein 

regions within longer, largely disordered sequences that were characterized as bound to 

larger proteins also known as molecular recognition features (MoRFs). We show that, 

upon binding to their partner(s), MoRFs undergo disorder-to-order transitions.  

Through extensive use of available computational tools for a bioinformatics 

analysis, we demonstrated that there is indeed an abundance of intrinsic disorder in the 

proteomes of early-branching eukaryotes, many that are pathogenic. While our analysis 

of a published P. falciparum interactome revealed a weak correlation between disorder 
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and the proclivity to engage in protein–protein interactions, many more similar networks 

must be evaluated before reaching a definitive conclusion on this front. Our study of 

fourteen apicomplexan pathogens in comparison to a non-pathogen apicomplexan, a 

model eukaryote as well as a model prokaryote suggests that pathogens in general have 

much higher content of intrinsically disordered proteins in comparison to their 

contemporaries. This could indicate that pathogenic organisms have evolved to retain 

larger fractions of low complexity regions than other organisms, especially non-

pathogens, perhaps to bypass the host system’s immune response at the time of invasion. 

Several other interesting patterns in the amino acid compositions, α-MoRF predictions, 

charge-hydropathy scores and cumulative distribution frequencies were also discovered 

in pathogenic organisms.  Given the high degree and unusual nature of the intrinsically 

disordered regions we have analyzed here, it is clear that further steps to elucidate their 

biological roles in the context of parasite physiology and pathogenesis will be well worth 

the effort.  

In summary, the conclusions and arguments presented in this dissertation 

emphasize the renewed need to explore the mechanics underlying the still unknown 

behavior of cellular systems must be initiated with special care being paid this time on 

intrinsically disordered proteins and their contribution to overall cellular physiology.  

Finally, given the well-established links between intrinsic disorder, cancer and 

neurodegenerative diseases we believe the work discussed and presented here will have 

positive ramifications in areas such as protein engineering and synthetic biology with 

emphasis on cancer therapeutics and discovery of preventive care for neurodegenerative 

conditions. 
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Future Research 

With positive correlation established between intrinsic disorder and cancer43, 

neurodegenerative211, cardiovascular diseases206 and pathogenic organisms202 there is a 

pressing need to develop fast and accurate methods and tools that can predict a protein’s 

structural and functional propensities. These can help establish the likelihood of an 

organism being susceptible to such diseases. An important step towards achieving this 

objective is trying to overcome the suggested upper limit to the prediction of intrinsic 

disorder by exploring novel methods that include structure and crystallization features. 

Our observation that disordered regions are responsive to environmental parameter 

perturbations motivates further studies probing environmental factors that affect protein 

function. We may thus be able to gain insights into the evolution of such regions and 

proteins. Our findings also have a direct impact on the ability to make educated estimates 

about experimental conditions for future structure characterization projects.  

The discussion on MoRF examples presented in Chapter Four (Figure 11) 

suggests the possibility of a positive correlation between VLXT predictions and the 

sequence location of MoRFs in proteins. This finding has direct repercussions to our 

currently limited understanding of protein-protein interactions especially those involving 

structural disorder. By exploiting this new information presented on MoRFs, we can 

approach the problem of protein binding site predictors with a renewed perspective. 

Aside from this, the availability of a relatively larger number of MoRFs can also guide 

the development of more sophisticated MoRF predictors.  

Previously significant correlations have been drawn between phosphorylation 

sites and cancer-associated proteins. 212 With the development of a new method that can 
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improve the identification of phosphorylation sites in high-throughput experiments, 

detecting phosphorylation sites in proteins found in tumorigenic tissues can be expedited. 

Any new sites discovered can potentially play a role in modulating tumor cell survival 

rates thereby controlling the length and success of anti-cancer drug clinical trials. 

Lastly, our observation that a high degree of intrinsic disorder exists in 

apicomplexan pathogen proteomes suggests that further steps to elucidate the biological 

roles of disordered regions in the context of parasite physiology and pathogenesis would 

be effort well spent. Some of the interesting questions that can be asked here include, 

whether changes in pH, temperature, salt or other environmental conditions in host cells 

affect the survivability of a pathogen? Can docking of pathogens onto host cell proteins 

be disrupted by stabilizing disordered regions in them? By answering such questions and 

more, we can advance our understanding of host-pathogen interactions and learn to 

predict the progress of evolving diseases caused by pathogens besides identifying suitable 

anti-infective therapeutics and vaccination strategies, potentially before the onset of 

epidemics or pandemics. 

To summarize, the results and analyses presented in this dissertation challenge the 

traditional, three-dimensional structure-based approach towards understanding the 

functionality and cellular physiology of proteins. The novel aspects of intrinsically 

disordered proteins presented here highlight the possibility of an alternative evolutionary 

niche occupied by disordered proteins thereby compelling one to re-think the evolution of 

protein function with a renewed perspective.  
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