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Abstract 

Yinglong Miao 

All-atom Multiscale Computational Modeling of Viral Dynamics 

Viruses are composed of millions of atoms functioning on supra-nanometer length scales 

over timescales of milliseconds or greater. In contrast, individual atoms interact on scales of 

angstroms and femtoseconds. Thus they display dual microscopic/macroscopic characteristics 

involving processes that span across widely-separated time and length scales. To address this 

challenge, we introduced automatically generated collective modes and order parameters to 

capture viral large-scale low-frequency coherent motions. With an all-atom multiscale analysis 

(AMA) of the Liouville equation, a stochastic (Fokker-Planck or Smoluchowski) equation and 

equivalent Langevin equations are derived for the order parameters. They are shown to evolve 

on timescales much larger than the 10-14-second timescale of fast atomistic vibrations and 

collisions. This justifies a novel multiscale Molecular Dynamics/Order Parameter eXtrapolation 

(MD/OPX) approach, which propagates viral atomistic and nanoscale dynamics simultaneously 

by solving the Langevin equations of order parameters implicitly without the need to construct 

thermal-average forces and friction/diffusion coefficients. In MD/OPX, a set of short replica 

MD runs with random atomic velocity initializations estimate the ensemble average rate of 

change in order parameters, extrapolation of which is then used to project the system over long 

time. The approach was implemented by using NAMD as the MD platform. Application of 
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MD/OPX to cowpea chlorotic mottle virus (CCMV) capsid revealed that its swollen state 

undergoes significant energy-driven shrinkage in vacuum during 200ns simulation, while for 

the native state as solvated in a host medium at pH 7.0 and ionic strength I=0.2M, the 

N-terminal arms of capsid proteins are shown to be highly dynamic and their fast fluctuations 

trigger global expansion of the capsid. Viral structural transitions associated with both processes 

are symmetry-breaking involving local initiation and front propagation. MD/OPX accelerates 

MD for long-time simulation of viruses, as well as other large bionanosystems. By using 

universal inter-atomic force fields, it is generally applicable to all dynamical nanostructures and 

avoids the need of parameter recalibration with each new application. With our AMA method 

and MD/OPX, viral dynamics are predicted from laws of molecular physics via rigorous 

statistical mechanics.  
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Part I. Background 

Overview 

Viruses are small infectious agents that can pose global threats to human health [2]. Such 

human pathogens include H1N1 influenza virus, SARS coronavirus, poliovirus, dengue virus, 

Human Papilloma virus and Human Rhinovirus. They cause a wide variety of diseases 

including influenza flu, poliomyelitis, AIDS, etc. To address viral threats necessitates the 

understanding of their structures and infection processes, e.g., assembly, structural transitions 

and disassembly. For rapid responses and pre-emptive strategies, forward-looking approaches 

are needed to predict properties of emerging viral strains before they become a pandemic. 

While mutants of viruses could be generated and analyzed experimentally as part of a 

forecasting strategy by using X-ray crystallography, nuclear magnetic resonance (NMR) 

spectroscopy, cryo-electron microscopy (cryoEM), solution X-ray scattering and biochemical 

techniques [3, 4], the potential risks and time bottlenecks are unacceptable.  

With rapid development of computational power and advances in molecular modeling[5], 

viruses can be easily mutated and computational modeling of virus or virus-like particles could 

provide a cost-effective approach for understanding their properties and thus facilitate the 

design of anti-viral drugs and vaccines[6]. In order to evaluate the interactions of a virus with 

therapeutical small molecules or a cell surface receptor[7, 8], a computational model that 

accounts for viral atomistic details is needed. Also, the prediction of whole virus behavior is 
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required, e.g., the evaluation of vaccine stability and the responses of viruses to anti-viral drugs. 

However, viruses are composed of millions of atoms functioning on supra-nanometer length 

scales over timescales of milliseconds or greater, while individual atoms interact on scales of 

angstroms and femtoseconds [9, 10]. As a result, the understanding of viral dynamics spanning 

widely separated time and length scales presents challenge in biophysical chemistry, structural 

virology and nano-medicine. 

Here an all-atom multiscale approach that addresses atomistic fluctuations and nanoscale 

processes simultaneously is presented for studying viral dynamics. It includes a theoretical 

all-atom multiscale formulation for viruses (i.e., all-atom multiscale analysis of the N-atom 

Liouville equation) [9, 11] and the implementation of a multiscale computational model for 

simulating viral dynamics, i.e., Molecular Dynamics/Order Parameter eXtrapolation (MD/OPX) 

[12-14]. With our unique AMA and MD/OPX approach, principles of viral dynamics are 

derived from laws of molecular physics via rigorous statistical mechanics and mathematical 

derivations. Both the mathematics and physics show that viruses undergo nanoscale coherent 

structural changes that involve collective motions of atoms. By capturing such phenomena with 

our automatically constructed collective modes and order parameters, viral dynamics can be 

effectively described and their modeling can be greatly facilitated. The underlying all-atom 

description used in our multiscale approach enables us to study a wide range of other 

bionanosystems as well, e.g., proteins, ribosomes and liposomes. 
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Chapter 1 Structures and Dynamics of Viruses 

1.1 Virus Structures 

Viruses are amongst the simplest life forms. Their structural descriptions are important to 

pure and applied studies of viral properties and infection mechanisms. They serve as an ideal 

system for validating our computational modeling approach. Viral behaviors revealed through 

our simulations could facilitate the design of anti-viral drugs and vaccines, functionalized 

nanoparticles for medical imaging and thermal cancer treatments, and nanocapsules for delivery 

of therapeutic agents in health sciences and biotechnology. 

Viruses exist in a wide range of sizes, shapes and internal structures from filamentous, 

rod-shaped to spherical, enveloped or non-enveloped and contain double-stranded DNA, 

single-stranded DNA, or single-stranded RNA as their genetic material [2]. Here we restrict the 

discussion to non-enveloped spherical RNA viruses exhibiting icosahedral symmetry, which 

constitutes the most studied group of viruses. They are basically composed of an outer protein 

shell, referred to as capsid, and RNA nucleic acid as genetic material. The primary role of the 

viral capsid is to protect the enclosed genetic material against adverse conditions and processes 

existing inside a cell or extracellular medium (e.g., enzymatic digestion).  

The genetic efficiency of a virus requires that its capsid assembles from multiple copies of 

one or few types of proteins instead of from a large number of different proteins. The simplest 

icosahedral virus has 60 copies of a protein subunit in its capsid with each located in structural 

identical environments on the capsid surface. As viral capsid increases its size for larger volume 
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to package more genetic material, more than one protein can be arranged in its asymmetric unit 

(referred to as capsid protomer), and 60 copies of the asymmetric unit will assemble to form the 

icosahedral capsid. 

In the “quasi-equivalence” geometric model proposed by Caspar and Klug [15, 16], an 

icosahedral viral capsid, composed of pentamers and hexamers of protein subunits, is generated 

by replacing 12 hexamers with pentamers at appropriate positions in a net of hexamers (Figure 

I.1a). Hexamers are initially considered planar and pentamers are considered convex, 

introducing curvature in the sheet of hexamers when they are inserted. To construct a model for 

an icosahedral quasi-equivalent lattice, one face of the icosahedron (i.e., an equilateral triangle 

connecting three pentamers) is first generated in a net of hexamers by replacing three of them 

with pentamers at the following positions: the origin, the (h, k) hexamer with h and k as zero or 

positive integers, and the third identified to complete the equilateral triangle. Twenty identical 

copies of the icosahedral face can then be arranged properly and folded into a three-dimensional 

quasi-equivalent lattice. A triangulation number T is defined as T=h2+hk+k2 to classify 

icosahedral quasi-equivalent lattices. Typically, T is equal to 1, 3, 4, 7, etc. and could be as 

large as 25. 

An example showing the construction of a T=3 (h=1, k=1) icosahedral shell is shown in 

Figure I.1b. The icosahedral face is defined by a triangle (see the shaded area) in a net of seven 

hexamer units with hexamers at the origin (0, 0), (1, 1) and (-1, 1) replaced by pentamers. The 

capsid asymmetric unit is one-third of the icosahedral face. It contains three quasi-equivalent 

subunits (two from the hexamer in the middle of the face and one from a pentamer). Twenty 
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identical copies of the icosahedral face are arranged as in the middle chart of Figure I.1b, and 

can be folded into the three-dimensional icosahedral shell as shown. Quasi-equivalent 

icosahedral capsids normally contain 60T protein subunits, which are arranged into 12 

pentamers and 10*(T-1) hexamers. 

 
(a) 

 
(b) 

Figure I.1 Icosahedral “quasi-equivalence” geometric model: (a) an icosahedral shell can be 
constructed by replacing 12 hexamers with pentamers at appropriate positions in a net of 
hexamers. One face of the icosahedral shell can be generated by replacing hexamers at the 
origin and (h, k) by pentamers with h and k as zero or positive integers, and the third 
replacement identified to complete the equilateral triangle. A triangulation number T is defined 
as T=h2+hk+k2 to classify the icosahedral quasi-equivalent lattices with T equal to 1, 3, 4, 7, etc. 
(b) the construction of a T=3 icosahedron: a T=3 icosahedral face is shaded in a net of seven 
hexamer units with (h=1, k=1) and twenty such identical faces can be arranged and folded into a 
three-dimensional T=3 quasi-equivalent icosahedral lattice. ((a) is adapted from Johnson 
1996[17] and (b) from Johnson and Speir, 1997 [15]). 
 

Figure I.2 shows four example icasohedral viral capsids that obey the above 

quasi-equivalence model, i.e., T=3 cowpea chlorotic mottle virus (CCMV), pseudo T=3 

poliovirus, T=4 Nudaurelia capensis ω virus (NωV), and T=7 HK97 bacteriophage.  CCMV is a 
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member of the bromovirus group of the Bromoviridae family and it is an extensively studied 

virus. Its genome consists of four positive-sense single-stranded RNA molecules, two of which 

are encapsulated separately in two virions and the remaining two form a third type of particle 

together. The crystal structure of wild-type CCMV was solved at 3.2Å resolution by X-ray 

crystallography (PDB ID: 1CWP) [18]. Its asymmetric unit contains three chemically identical 

protein subunits as colored in blue for A, red for B, and green for C as shown in Figure I.2a. Each 

protein subunit is composed of 190 amino acids and the viral capsid is comprised of 180 copies of 

the protein subunit (i.e., 60 copies of the asymmetric units) that form a 286Å diameter T=3 

icosahedral shell. Following from the quasi-equivalence model, CCMV capsid is formed by 12 

pentamers and 20 hexamers with 5 A subunits in each pentamer, and 3 B and 3 C subunits in each 

hexamer. The T=3 icosahedral face (i.e., h=1, k=1) is an equilateral triangle connecting three 

nearest pentamers with one hexamer located at the 3-fold axis in the middle of the triangle. Figure 

I.2b shows the capsid of poliovirus (mahony strain type 1, PDB ID: 2PLV) that displays a pseudo 

T=3 icosahedral symmetry. The capsid also has three protein subunits in its asymmetric unit that 

are arranged similar to those in T=3 CCMV capsid. But the subunit orientations in poliovirus are 

significantly different from those in CCMV, which cause dissimilar contacts at protein-protein 

interfaces and are responsible for the prominent peaks at the fivefold and threefold axes on the 

capsid surface [19]. 

The icosahedral capsid of T=4 NωV (PDB ID: 1OHF) is shown in Figure I.2c. It has four 

protein subunits (i.e., A, B, C, and D) in its asymmetric unit, and is composed of 12 pentamers 

and 30 hexamers with 5 A subunits in each pentamer and 2 B, 2 C, and 2 D subunits in each 
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hexamer. There is one hexamer between two nearest pentamers, i.e., the capsid icosahedral face 

is generated by replacing two hexamers at the origin and (h=2, k=0) or (h=0, k=2) with 

pentamers in the net of hexamers shown in Figure I.1a. In the larger T=7 HK97 bacteriophage 

capsid (PDB ID: 1OHG), there are seven subunits in its asymmetric subunit. The capsid is 

formed by 12 pentamers and 60 hexamers as shown in Figure I.2d with its icosahedral face 

generated by replacing the hexamer at (h=2, k=1) or (h=1, k=2) with a pentamer after one 

replacement at the origin. 

 
(a) T=3 CCMV 

 
(b) pseudo T=3 poliovirus 

 
(c) T=4 NωV 

 
(d) T=7 HK97 bacteriophage 
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Figure I.2 Four quasi-equivalent icosahedral viral capsids: (a) T=3 CCMV (h=1, k=1; PDB ID: 
1CWP), (b) pseudo T=3 poliovirus (h=1, k=1; PDB ID: 2PLV), (c) T=4 NωV (h=2, k=0 or h=0, 
k=2; PDB ID: 1OHF), and (d) T=7 HK97 bacteriophage (h=2, k=1 or h=1, k=2; PDB ID: 
1OHG) (images downloaded from VIPERdb website: http://viperdb.scripps.edu/). 
 

While methodological problems are encountered for solving structures of viral RNA (e.g., 

difficulty in RNA crystallization due to its highly dynamic nature)[20], many high resolution 

structures (atomic or near-atomic) have been determined for viral capsids by using X-ray 

crystallography, cryoEM, and NMR spectroscopy [3, 4]. They serve as a starting point for 

investigating viral stability and dynamics, which provides insights into the self-assembly, 

genome packaging/releasing, structural transitions (STs) and disassembly of viruses. Their 

structural features make them attractive scaffolds for the study of protein-protein and 

protein-nucleic acid interactions [17], and the development of functional nanomaterials [21]. 

Their computational modeling necessities an all-atom multiscale approach as presented below. 

Viral simulations are of great interest for understanding their behaviors and thus the 

implementation of biomedical applications. 

 

1.2 Viral Dynamics 

The self-assembly of viruses from identical capsid proteins and genetic material is a key 

step in propagating their infection. The understanding the viral self-assembly, especially 

formation of viral capsids, is important to molecular biology as well as medical sciences and 

design of supramolecular synthesis. It has been proposed that delineating pathways of viral 

assembly could elucidate viable targets for therapeutic intervention [22]. The self-assembly 

http://viperdb.scripps.edu/�
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mechanism of viral capsids has been applied to synthesize functionalized supramolecules [23] 

and themselves have been used as molecular containers for engineered nanomaterial synthesis 

[21, 24-27]. 

The generality of the quasi-equivalence model for icosahedral viruses indicates that the 

origin of the icosahedral symmetry comes from the topography of the free energy landscape of 

viral capsids [28, 29]. Assembly studies on hepatitis B virus (HBV) showed that the free energy 

change for a protein-protein intersubunit contact is -3 to -4 kcal/mol, which gives -720 to -960 

kcal/mol for a total of 240 contacts in the viral capsid assembly [30, 31]. However, a study has 

shown that the icosahedral symmetry is not a generic consequence of free energy minimization 

for a set of rigid capsomeres. Rather it requires optimization of internal configurations of capsid 

proteins [29]. 

In addition to the investigation of viral self-assembly thermodynamics, many experimental 

and theoretical studies have been undertaken to understand its chemical kinetics. For the 

assembly of icosahedral viral capsids, two different mechanisms have been proposed: one is the 

nucleation-and-growth mechanism, in which a nucleus involving protein dimers, trimers or 

capsomeric pentamers or hexamers is initially formed slowly, and then followed by a fast 

growth stage with the addition of protein subunits or dimers to form the complete capsid 

[32-35]; and the other is the formation mechanism similar to that for surfactant micelles, in 

which a relatively disordered micelle-like structure is initially formed, and through the 

optimization of capsid protein conformations, ordered protein capsomers emerge/reorganize to 

form structured icosahedral capsids [36].  
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It was proposed that the assembling unit of CCMV capsid is a protein dimer and the 

intermediate (nucleus) during capsid assembly is a β–hexamer of dimers (12mer) from CCMV 

structure study [18]. However, reexamination showed that the nucleus of CCMV capsid 

assembly is more likely a pentamer of dimers, rather than the hexamer of dimers, and is similar 

to that for brome mosaic virus (BMV) [33, 34]. For HBV, intermediates of trimer of dimers 

were found to be the assembly nucleus [35]. These experiments along with the theoretical 

studies suggest that the nucleation-and-growth mechanism is the most widely accepted 

assembly pathway[32].Although many of the above efforts have been made to study viral 

self-assembly, its chemical kinetics still remains unclear. The intermediates during viral 

self-assembly need to be better characterized and their assembly pathways are underdetermined 

[37]. Given the many possible pathways, a fully kinetic, first-principle model is of great interest 

and the objective of our approach[38]. 

Many viruses are known to undergo STs during maturation in vivo or in response to changes 

in their microenvironment in vitro, such as temperature, pH, ionic strength and cation 

concentrations [39-44]. These are often large-scale structural changes involving reorganization 

of the protein subunits or capsomers in the capsid. Significant changes in the morphology, 

surface charge and other properties of the virus can yield metastable transient structures during 

viral maturation, genome releasing/packaging, or disassembly.  

Native cowpea chlorotic mottle virus (CCMV) swells about 10% as pH is increased from 

5.0 to 7.5 in the absence of divalent cations at low ionic strength (I=0.2M) (Figure I.3) [1, 15, 

18, 39, 40, 45], indicating the existence a free energy minimum for its swollen structure. It 
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disassembles at high ionic strength (I=1.0M) [40]. In the expansion scheme proposed by Liu et 

al.[1], its swollen state can be generated by taking the pentamers and hexamers through the 

following rigid-body changes from their native configurations: translate pentamers by 24Å 

radially and rotate them counter-clockwise by 9° around their 5-fold axes; and translate hexamers 

by 21Å radially and rotate them counter-clockwise by 8° around their 3-fold axes. Irreversible 

poliovirus conformational changes are found in receptor-mediated cell entry, during which its 

coat protein VP4 and the N terminus of VP1 are externalized. Two putative cell entry 

intermediates (135S and 80S particles) are formed and they are both about 4% larger than the 

native virions (160S particles) [7, 8, 43, 44, 46]. The viral receptor behaves as a classic 

transition state theory catalyst, facilitating the ST from native virions to 135S intermediate 

particles by lowering the activation energy for the process by 50 kcal/mol [46]. 

Small-angle X-ray scattering (SAXS) experiments revealed that NωV [10, 41, 47, 48] and 

HK97 bacteriophage [49, 50] undergo STs during capsid maturation. NωV undergoes large 

conformational changes from a procapsid form (480 Å in diameter) to a compact capsid form 

(410 Å in diameter) when pH is decreased from 7.6 to 5.0. The transition is believed to take less 

than 100 ms and is accompanied by a slow autoproteolysis (taking hours) corresponding to the 

cleavage of 70 kDa coat proteins to 62 kDa and 8 kDa proteins. The conformational 

rearrangement is initially reversible until about 15% of the cleavage events are completed, at 

which point the particles are locked into the capsid conformation, regardless of pH [10, 47, 48]. 

A further study on a cleavage-defective mutant (N570T) of NωV showed that the transition 

from procapsid to capsid in the mutant is reversible, and that the reverse process is much slower, 
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with some capsids did not reexpand after 4 days of dialysis against pH 7.6 buffer. The 

reexpanded procapsids display slightly different properties than the original capsid, suggesting 

incomplete reversibility in the transition [41]. HK97 bacteriophage capsid expands from a 

metastable procapsid (prohead) to a mature icosahedral capsid (head) via three steps[51]: 1) 

local refolding of capsid subunit N-terminal arms, 2) global expansion of the capsid involving 

large-scale rearrangements of capsid subunits, and 3) additional subtle and slow structural 

changes contributing to cross-linking of capsid subunits that stabilize the mature capsid. While 

greatest structural changes take place during capsid global expansion, they are triggered by 

local refolding of the capsid subunit N-arms. Therefore, viral STs are typically accomplished 

through a series of steps involving intact translation and rotation of protein structural units (e.g. 

pentameric and hexameric capsomers) in the capsid. 

 
Figure I.3 Native CCMV swells about 10% as pH is increased from 5.0 to 7.5 in the absence of 
divalent cations. 

 

While native virions have genetic material within the capsid cavity, empty viral capsids can 

be assembled from protein subunits in vitro (e.g., CCMV) and probe nanoparticles (e.g. gold 

semiconductor or other nanoparticles) or therapeutic material (e.g. cancer drugs, small 
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interfering RNA (siRNA) or genes) are introduced into viral capsids for understanding the 

characteristics of the inner surface and the fluctuations of the capsid and biomedical 

applications. Empty viral capsids have also been adopted for nanomaterial synthesis by use of 

their STs [21, 24, 39]. The dynamics of these systems reflects the interplay of the fluctuations of 

the capsid and the internal particles, the interactions between the particles, and the screening or 

dielectric properties of the medium within the capsid. Thus the entrapped nanoparticles may 

form long-lived clusters, adhere to the capsid inner surface, and induce capsid STs or 

disassembly. 

Viruses involve STs that play a critical role in the virus life cycle, such as virus attachment 

to cell membranes, disassembly and release of the packaged nucleic acid from viral capsid into 

host cell. They are attractive scaffolds for synthesizing novel nanomaterials. They provide an 

excellent system for validating a new computational modeling approach and studying 

protein-protein and protein-RNA interactions of bionanosystems. 
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Chapter 2 Viral Computational Modeling 

2.1 Review of Viral Computational Models 

Theoretical approaches have been developed to simulate viral properties and dynamics, 

including (1) computational molecular dynamics (MD) [52-66], (2) lumped coarse-grained 

models[67, 68], (3) symmetry-constrained models[53], (4) normal mode analysis (NMA) 

[69-72], and (5) Poisson-Boltzmann (PB) approaches [73, 74], but they have suffered from one 

or more limitations as the following. 

MD has been used to model the dynamics of viruses and their interactions with drug 

molecules. But most of these simulations were run on only parts of a virus, e.g., a single 

protomer as for Human Rhinovirus (HRV) [53, 59, 60]. These studies revealed certain physical 

properties of viral components, such as compressibility of a HRV protomer, which were used to 

conjecture the ability of drug molecules to inhibit viral infection. A hypothetical short 

single-stranded RNA, 5’-R(PGpGpApCpUpUpCpGpGpUpCpC)-3’), was constructed to study 

RNA release of CCMV[66]. In the MD simulation, only one asymmetric unit of CCMV capsid 

was included. Results indicate that the RNA fragment loses its secondary structure and moves 

into the channel along the three quasi-threefold axis of CCMV capsid by free diffusion. 

However, these conclusions are not based on simulations of whole-capsid, full-length RNA 

behaviors. There has been an MD simulation on a complete satellite tobacco mosaic virus 

(STMV) using NAMD[75], a high-performance parallel MD code. The simulation took 50 days 

on a SGI 1,024 processor Altrix system using 256 processors and 128 GB of memory, but only 
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captured a physical time of 55 ns [52]. However, viral STs take milliseconds to minutes or 

longer to occur. With such an MD simulation, it would take about 2,500 years to obtain a 

physical result. Thus direct MD is not practical for whole-virus, millisecond to minute timescale 

modeling. 

Coarse-grained models [68, 76] use a reduced description composed of lumped elements 

representing clusters of atoms to allow more efficient sampling and larger timestep than MD. 

Residue and shape based coarse-grained modeling have been used to simulate protein-lipid 

systems and viruses [68, 77, 78]. While they allow for long-time simulations, it (1) must be 

recalibrated with each new application, (2) limits its prediction power with preconception of 

grouping atoms into rigid clusters, (3) lacks atomistic detail as needed to account for drug 

molecule or cell surface receptor interaction, (4) ignores the fact that nanosystem coherent 

motions involve all the atoms moving collectively[79], and (5) misses the feedback between 

atomistic fluctuations and virus-wide structural dynamics as shown in Figure I.4. 

NMA has been used to study virus capsids for insights into their structural dynamics [69-72]. 

Based on single-well (harmonic) potential approximations, NMA is used to explore 

low-frequency, large-scale structural changes. In these studies, various methods are applied to 

reduce the number of degrees of freedom (e.g., elastic network models and the 

rotation/translation of blocks method). Icosahedral symmetry was used to facilitate normal 

mode calculations via group theory. But an icosahedral virus does not maintain symmetry 

during disassembly or STs. Rather, initiation of instability is local, starting with the motion or 

deformation of a single structural unit, and then propagates across the virus. For pH-induced 
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CCMV capsid swelling, NMA provides candidate structures of intermediate and swollen 

CCMV, and a putative pathway for swelling. However, the method is not for simulating viral 

dynamics directly. NMA cannot capture the local, highly nonlinear, diffusive 

(friction-dominated) character of viral STs. Nor can it be readily used to study viral interactions 

with drugs or cell surface receptors for similar reasons.  

Electrostatics of icosahedral viruses has been modeled by solving the PB equation [74, 

80-82]. The electrostatic interaction between RNA and CCMV capsid has been simulated with a 

coarse-grained RNA model and a Monte Carlo approach [73]. In the model, each RNA 

nucleotide segment was treated as a sphere with a charge of –0.25e and no connectivity was 

enforced between the spheres. Results show that there is a very strong interaction between RNA 

segments and the highly positive N-terminal residues of the capsid proteins. RNA segments 

were predicted to form a shell close to the capsid with the highest densities associated under 

protein dimers. These high-density regions are connected to each other in a continuous net of 

triangles. Medium density of RNA is found under protein pentamers. These studies reveal viral 

interesting features, but they do not capture the RNA-wide structural constraints imposed by 

RNA connectivity. Furthermore, they have the limitations of other coarse-grained models and 

do not provide a general approach to whole-virus modeling. Also it is assumed that the 

electrical field is fixed (i.e., is imposed by the capsid), rather than being co-evolved with the 

RNA (and possible capsid ST) during a simulation. 
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Figure I.4 Order parameters characterizing nanoscale features affect the relative probability of 
atomistic configurations which, in turn, mediates the forces driving order parameter dynamics. 

 

While above computational approaches reveal interesting features of viral stability and 

dynamics, they do not meet the challenge of whole-virus simulation for one or more of the 

following reasons. They (1) are limited to simulation times that are much shorter than those of 

biological interest (i.e., milliseconds or longer), (2) require parameter recalibration with each 

new application, (3) lack the atomic-scale detail needed to address viral interaction with cell 

receptors or drug molecules, (4) impose symmetry constraints incompatible with the local, 

asymmetric nature of drug or cell receptor interaction at selected sites on the virus, (5) use 

small amplitude vibration theory, and thereby miss the nonlinear nature of STs, (6) ignore the 

highly dissipative nature of nanoscale dynamics (i.e., the important role of frictional forces), 

and (7) miss the inter-scale feedback whereby nanoscale structural variables (or order 

parameters as defined in Chapter 3) affect the statistical distribution of atomic-scale fluctuations 

which, in turn, mediate the entropic and free energy effects that drive the dynamics of the 

nanoscale features (see Figure I.4). This feedback loop is central to a complete understanding of 

nanosystems and the true nature of their dynamics. 
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2.2 Multiscale Analysis 

The central elements of a viral problem re suggested in Figure I.5, i.e. a virus is a massive 

and geometrically large aggregate of atoms immersed in a host medium that subjects it to 

frequent collisions. In the absence of macroscopic gradients in the host medium, these 

collisions result in a fluctuating force on the viral center-of-mass that averages out in time and 

across the surface of the virus but leads to a coupled Brownian translational/rotational/ST 

dynamics. In principle, viral dynamics can be understood in terms of a set of atoms evolving 

classically in an inter-atomic force field. The benefit of such an approach is that it enables one 

to develop a general virus model that does not need parameter calibration for each new 

application. The challenge is to implement this approach as a practical computational algorithm 

for systems with millions of atoms. A central objective is to capture atomic-scale detail and 

project the results into whole-virus scale responses. 

Since a virus is a collection of N atoms that exchange momentum and energy with the host 

medium mediated by the interatomic force field, the development of projection operators [83] is 

not directly applicable. Because it involves memory kernels that are not readily evaluated using 

standard MD. These kernels can be approximated when the order parameters describing overall 

system behaviors evolve much slower than atomistic collisions/vibrations. However, when 

there is a clear timescale separation, one can directly derive stochastic equations for the order 

parameters, all factors within which can be evaluated by using standard MD codes. Therefore 

projection operators are not particularly useful. Viruses along with other large biological 

complexes (e.g., hemoglobin, ribosomes, cytochromes) involve processes taking place across 
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widely separated time and length scales. While various methodologies, such as smoothing 

potential energy functions[84], identification of reaction paths[85-88], simulating rare but fast 

events [89, 90] and “milestoning” diffusive processes [91], have been developed to accelerate 

the dynamics simulations, great challenge remains to capture their dynamics over long time 

(e.g., milliseconds to minutes) [5, 92, 93]. In the following, we adopt a multiscale approach to 

study viral dynamics.  

 

Figure I.5 The essence physical picture of a virus: a massive and geometrically large aggregate 
of atoms immersed in a host medium that subjects it to frequent collisions. 
 

Multiscale analysis has been of interest since work on Brownian motion by Einstein 

[94-101]. It was shown that the wandering of a nanoparticle arises due to the interplay of 

short-scale random collisions and the large-scale, slow motions of the whole nanoparticle 

created by the separation in the magnitude of the mass of an atom versus that of the 

nanoparticle. In earlier studies, Fokker-Plank (FK) and Smoluchowski equations are derived 

from the Liouville equation for nanoparticles without internal atomistic structure [94-101]. 

Deutch and Oppenheim[95] presented an approach to study structureless Brownian particle 

(BP) dynamics based on the use of projection operators and a perturbation scheme developed in 
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the host particle/BP mass ratio. This approach set the stage for a series of studies of BP 

dynamics based on the Liouville equation and BP models that did not account for internal 

molecular structure (i.e. were structureless). Shea and Oppenheim[97] derived FP and 

equivalent Langevin equations for a single structureless BP in a bath of small particles via 

projection operators, a perturbation expansion in the mass ratio, and the assumption that 

gradients in the host medium are small. Peters [100, 101] derived FP equations for the coupling 

of rotational and translational motions of a structureless nonspherical BP near a surface. Shea 

and Oppenheim[98] analyzed the case of multiple BPs, introducing a number of smallness 

parameters including the mass ratio. Ortoleva[99] presented an approach based on a formal 

multiple space-time scaling approach integrated with a statistical argument derived from the 

BP/host particle size ratio and BP geometry that allows for a united asymptotic expansion for 

solving the Liouville equation; the result is an FP equation for single and multiple BPs and 

intra-BP dynamics. It also was shown formally that this approach leads to a set of coupled FP 

equations, one for each slow host mode when the slow hydrodynamics of the host medium is 

accounted for.  

While an all-atom multiscale analysis (AMA) to structured nanoparticles seems natural, the 

internal dynamics of the atoms constituting a nanoparticle introduces conceptual and technical 

difficulties associated with a description involving both the atomistic and nanometer scale 

properties of these systems and the potential overcounting of degrees of freedom. To overcome 

these difficulties we introduce a “nanocanonical ensemble” method to facilitate the multiscale 

analysis of the all-atom Liouville equation. Our approach overcomes technical difficulties 
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associated with the removal of secular behavior, which leads to FP type equations. Our 

approach ensures removal of all secular behavior in the N-atom probability density and not just 

that of a reduced distribution. Being based on a calibrated interatomic force field, our method 

has the potential to yield parameter-free universal models for nanoparticle dynamics. The 

objective of our research is to place above viral phenomena in the framework of rigorous 

statistical mechanics, i.e. to show how they emerge from an all-atom description via a 

multiscale analysis of the Liouville equation. We seek to understand how the coherent responses 

of a nanoscale life form emerge from atomistic chaos. To do so we introduced novel methods 

for constructing collective modes with slowly-varying order parameters to capture viral 

coherent motions and for deriving stochastic (FP or Smoluchowski) equations of the order 

parameters.  

We have advanced the multiscale approach to develop an AMA theory for dynamical 

nanoparticles [11] by (1) accounting for atomic-scale fluctuations of intraparticle structure; (2) 

introducing general, automatically-generated intraparticle collective modes and order 

parameters; (3) constructing ensembles of atomic configurations constrained to fixed values of 

the slowly varying order parameters, as needed to construct thermal-average forces and 

diffusion factors for the FP equations; (4) using a rigorous conservation law for the OP 

probability density, and expansion in length or time scale ratios, and the Gibbs hypothesis; and 

(5) establishing a criterion for the completeness of the set of order parameters. The AMA 

approach captures the cross-talk between the order parameters and atomistic variables 

rigorously as suggested in Figure I.4 [9, 11, 38, 81, 102, 103], and provides the conceptual 
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framework for our whole-virus simulation approach. 

A multiscale coupling (MSC) approach bridged the nano and mesoscopic scales by 

embedding a nanoscale-level system into a mesoscopic continuum [77, 104-106]. In the case of 

membrane simulations, MD was used to calculate material properties to parameterize an elastic 

membrane model; the surface tension of a local region is then calculated and applied back to the 

corresponding membrane zone as a boundary condition for its MD simulation [104, 105]. This 

MSC approach describes the interface between a local region of a mesoscopic system and the 

remainder of the system. However, it does not capture the cross-talk between the rapid atomistic 

fluctuations and coherent nanoscale modes during system structural changes, the nonlinearity of 

the membrane, and the highly dissipative nature of the system. In contrast, these facets are 

addressed in our all-atom multiscale approach which accounts for the feedback loop of Figure 

I.4. 

 

2.3 All-atom Multiscale Computational Modeling 

Based on concepts following from our AMA theory of nanosystem dynamics, we developed 

a multiscale MD/Order Parameter eXtrapolation (MD/OPX) approach for simulating viruses 

and other bionanosystems [12-14]. In the implementation, collective modes and order 

parameters constructed with basis functions (e.g., orthogonal polynomials or harmonic 

functions) of atomic coordinates of a reference configuration or atomic displacements between 

two known configurations are introduced to capture the slowly-varying nanoscale coherent 

motions of the system. Replica short MD runs with random atomic velocity initializations are 
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implemented to estimate the ensemble average rate of change in order parameters, which is then 

used to extrapolate the state of the system over a time period that is much longer than the 

10-14-second timescale of fast atomic vibrations and collisions. The approach is essentially 

equivalent to solving the Langevin equations for stochastic dynamics of the order parameters. 

Since the timescale for the evolution of order parameters is much larger than that of atomic 

vibrations and collisions, the OP extrapolation time can be many orders of magnitude greater 

than the MD simulation timestep. The resulting MD/OPX algorithm accelerates MD for 

long-time simulation of large bionanosystems and it addresses rapid atomistic fluctuations and 

slowly-varying nanoscale features simultaneously underlying viral structural dynamics. 

The equation free multiscale analysis (EFM) approach developed by Kevrekidis et al.[107] 

shares much of the flavor of MD/OPX, i.e., short bursts of MD simulations can be used to 

extrapolate coarse variables (i.e., order parameters here) over large time intervals and thus 

project the system over long time. It has been applied to an alanine dipeptide for molecular 

dynamics study by using the dipeptide dihedral angle (N-Cα-C-N) as its coarse variable[108]. 

However, the dipeptide is a very small system, and its dihedral angle does not appear to be a 

slow variable and therefore cannot be extrapolated over long time. PCA has been used to reduce 

the dimensionality of MD trajectories for analyzing large-scale structural changes, but PCA 

modes calculated for consecutive time windows of MD trajectories have been shown to display 

small similarity [79, 109-111]. This proves that they fail to capture system coherent motions 

over long time. It is thus not reliable to use PCA modes obtained from short MD runs to 

facilitate the long-time simulation of nanostructures because of limited sampling of long-range 



24 
 

correlations and forced orthogonalization of PCA modes[112-114]. In contrast, collective 

modes and order parameters automatically constructed with basis functions of atomic positions 

of a reference configuration or atomic displacements between two known configurations 

capture slow, nanoscale dynamics of viruses and other bionanosystems, and serve as a starting 

point for an all-atom multiscale analysis that justifies MD/OPX[79].While our AMA approach 

and MD/OPX with their underlying all-atom description of nanosystems enable the use of a 

universal inter-atomic force field and can be applied to all dynamical nanoparticles [11]. Here, 

we are focused on understanding the dynamics of icosahedral viruses, such as CCMV, NωV and 

poliovirus. Methods including AMA formulation of the N-atom Liouville equation with 

construction of order parameters capturing viral coherent motions, derivation of the stochastic 

equations for coarse-grained dynamics of order parameters, a multiscale single-order parameter 

model for viral dilatational STs, and MD/OPX algorithm and implementation are presented in 

Part II. In Part III, AMA and MD/OPX are applied to study the dynamics of icosahedral viruses, 

notably NωV and CCMV, with their ST pathway and mechanisms revealed and discussed. 

Conclusions and the usage of multiscale simulation predictions to guide experiments are 

provided in Part IV. 
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Part II. Methods 

Overview 

All-atom multiscale theoretical and computational methods for studying viral dynamics are 

presented in this part. In Chapter 3, all-atom multiscale analysis (AMA) is formulated for the 

N-atom Liouville equation of dynamical nanoparticles with viruses as our special interest[11]. 

Slow variables (i.e., order parameters) are identified to capture the internal structure of 

nanoparticles. By removing all secular behavior of the N-atom probability density using a 

“nanocanonical ensemble” approach, AMA of the Liouville equation for structured 

nanoparticles leads to a stochastic (Fokker-Planck (FP) or Smoluchowski) equation yielding the 

coarse-grained evolution of the order parameters. Systematic construction of collective modes 

and order parameters from atomic variables for capturing nanosystem coherent motions are 

provided [79] and generalizations of the AMA approach are also presented. In Chapter 4, order 

parameters capturing viral dilatational structural transitions are constructed, a FP equation for 

their long timescale dynamics is derived by following the AMA formulation in the inertial limit, 

and a transition state ansatz is presented for obtaining approximate solutions to the FP equation. 

In Chapter 5, the multiscale Molecular Dynamics/Order Parameter eXtrapolation (MD/OPX) 

approach is presented along with its implementation details [12-14]. 
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Chapter 3 All-atom Multiscale Analysis (AMA) 

3.1 AMA of the N-atom Liouville Equation 

The scaling approach and challenges involved in all-atom multiscale analysis (AMA) of the 

Liouville equation for structured nanoparticles (e.g., icosahedral viruses) are now introduced. 

Consider an N-atom system comprised of a nanoparticle of N* atoms and a host medium of N − 

N* atoms. To characterize the differences in length, mass and time scales involved in a 

nanosystem we introduce a unifying smallness parameter ( )1ε << . Thus the nanoparticle 

center-of-mass (COM) momentum and position are 1Pε −


 and 1Rε −


. With this, the N-atom 

probability density ρ is considered to be a function of the scaled COM momentum and position, 

as well as the momenta and positions { }, , ,i ip r i 1 NΓ = = 

  of the N atoms in the system. A key 

point is that the multiple distinct dependencies in ρ does not imply a violation of the restriction on 

the number of degrees of freedom; rather this is to state that ρ has multiple scale character – here 

the long range migration of the large mass nanoparticle in the presence of the rapidly fluctuating 

atomic variables Γ.     

Using the chain rule, ρ in the above multiscale form satisfies (see Appendix A) 
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In this formulation we have introduced the dimensionless parameter ε  such the ε 2 = m/m* for 

typical atomic mass m and nanoparticle mass m*. The net force fε


 on the nanoparticle can be 

written in terms of the individual atomic forces iF


: 

  
N

i i
i 1

f Fε Θ
=

=∑


 (3.1.4) 

where iΘ  is one for atoms within the nanoparticle and zero for host atoms. The net force on the 

nanoparticle is taken to be small; for the quasi-equilibrium states of interest there is much 

cancellation of the forces on the nanoparticle from those on individual atoms. It is further 

assumed that external forces are weak. Alternative scalings for nanoparticle mass, momentum, 

position and force can also be adopted to investigate other classes of behavior, but the above will 

serve to illustrate the present methodology. That derivatives in 0L  are at constant P


 and R


, 

while those in 1L  are at constant Γ , does not imply that Γ, P


 and R


 are independent degrees 

of freedom; rather they arise due to our attempt to express ρ’s multiscale character. Thus any 

integration over all states of the system would be over the dependence on Γ, including that in P


 

and R


 .    

The multiscale development proceeds by expanding ρ in a series in ε 2: 

  ( ), , , , 2n
n 0

n 0

P R t tρ ρ Γ ε
∞

=

=∑  

 (3.1.5) 

where 2n
nt tε=  and { }, ,1 2t t t=   is the collection of times characterizing the slow behaviors, 

i.e. that evolve on times of order ,2 4ε ε− −  and longer. 

 The lowest order distribution is assumed to reflect the quasi-equilibrium nature of the 
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biological phenomena of interest, i.e. ρ0 is independent of t0. Using the chain rule for t∂ ∂  (so 

that 2
0 1t t tρ ρ ε ρ∂ ∂ = ∂ ∂ + ∂ ∂ + ), the lowest order problem becomes 

  0 0 0ρ =L . (3.1.6) 

This equation yields solutions which are functions of the Hamiltonian H0 that generates L0, i.e. 

  
N 2

i
0

ii 1

p
H V

2m
=

= +∑  (3.1.7) 

where V is the N-atom potential. For example, ρ0 could be the canonical distribution exp(-βH0) 

which is normalized by the partition function Q: 

  ( )
*

exp6 N
0Q d HΓ β= −∫  (3.1.8) 

where 6 N 3 3 3 3
1 1 N Nd d p d r d p d rΓ =  . The * on the integration implies that R



 and P


 must be 

fixed, i.e. for any quantity A,    

  *
* N N

6 N 6 N
i i i i i

i 1 i 1

d A d P p R m r m AΓ Γδ ε Θ δ ε Θ
= =

   
= − −   

   
   

∑ ∑∫ ∫
 

  . (3.1.9) 

Such integrals can be accomplished via Monte Carlo methods and a constant P


, R


-constrained 

generation of Γ configurations. The O(ε 0) analysis typically concludes with the introduction of 

the slowly varying factor ( ), ,W P R t
 

, i.e. ( )exp1
0 0Q H Wρ β−= − . In Sects. 3.2 and 3.3 we 

demonstrate how the above formulation can be placed on more rigorous footing. 

 A difficulty with the above formulation is that while solving (3.1.6) one must keep the delta 

functions in (3.1.9) and the constrained integrations as part of the higher order multiscale 

analysis.  
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For example, a key difficulty arises in analyzing the O(ε 2) equation: 

  0
0 1 1 0

0 1t t
ρ

ρ ρ
  ∂∂

− = − +  ∂ ∂ 
L L . (3.1.10) 

To solve this equation one must recognize that the RHS can have contributions from the null 

space of 0L . In this recognition one would like to arrive at an expression for 1W t∂ ∂  by 

ensuring that the resulting secular behavior (i.e. divergence at large t0) is removed. The difficulty 

is that in the classic approach an expression for 1W t∂ ∂  follows from applying 
*

6 Nd Γ∫  to 

both sides of (3.1.10) and then using the fact that acceptable probability distributions vanish as 

ip →∞ , and invoking periodic boundary conditions on the ir
 -dependence of the probability. In 

studies of structureless nanoparticles this directly implies 6 N
0d A 0Γ =∫ L  for any distribution A 

and wherein particle N 1+  is the structureless nanoparticle. This yields the Fokker-Planck 

equation when computations are carried out to O(ε 4). The strategy is not clear for the structured 

nanoparticle wherein the constrained integration 
*

6 Nd Γ∫  must be used to preserve the 

P


, R


-dependence of ρ. This and related difficulties stem from the fact that unlike for the 

traditional approach, the structured nanoparticle’s atomic coordinates are already a complete set 

of dynamical variables so that either P


, R


 are redundant or ignoring their relation to Γ  would 

allow for atomic configurations that are inconsistent with P


and R


. Hence to avoid 

overcounting the number of degrees of freedom the 
*

6 Nd Γ∫  constrained integrals must be 

used. But then the boundary conditions on the ,i ip r   cannot be readily utilized. 
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 A more fundamental question also arises. Even if one can derive an expression for 
1

W t∂ ∂  

via a Γ -integration, the question remains that although secular behavior is removed from a 

reduced aspect of 
1

ρ  (e.g. 
*

6 N
1d Γ ρ∫ ), it is still not demonstrated that all the secular behavior 

in 
1

ρ  itself has been removed. What is needed is an approach wherein the nanoparticle COM 

degrees of freedom, or something related to them, are not independent dynamical variables which 

must ultimately be related to Γ , and a method that will remove all the secular behavior without 

resorting to Γ  integration. Such an approach is developed in Sects. 3.2 and 3.3.        

 The N-atom potential ( ),1 NV r r 

  does not explicitly depend on nanoparticle COM position 

R


. This is in contrast with the case of a structureless nanoparticle which can be taken as “atom” 

N 1+  whereby N 1r
+

  appears in V explicitly. To resolve this issue, introduce a set of modified 

coordinates is  such that 1
i i is r Rε Θ−= −



  . Thus the atoms in the nanoparticle are described in the 

relative frame while those of the host medium are in the laboratory frame. The is  are functions 

of ,1 Nr r 

 , ( ),i i 1 Ns s r r=   

 and, like R


, are dependent dynamical variables. With this, the 

potential V can be expressed in the form 

  { }( ) ( ), , , ,1
i i 1 NV R s i 1 N U r r Rε Θ− + = ≡

 

  

   (3.1.11) 

so that the explicit dependence of U on the ir
  is only through relative configuration { },1 Ns s 

 . 

With this the particle derivative of V with respect to R


 at constant nanoparticle internal 

configuration is given by   

  
,1 N

N

i i
s s i 1

V 1 F f
R

Θ
ε

=

∂  = − = − ∂  ∑
 






 . (3.1.12) 
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Finally note that the is  are not independent, i.e. 
1 1 1 N N N

m s m s 0Θ Θ+ =


 

 . This result forwards 

the multiscale analysis of the following sections. 

 

3.2 Nanocanonical Ensemble Approach 

In Sect. 3.1 we considered the nanoparticle to have a particular momentum and position that 

characterized the lowest order solution to the Liouville equation. However, it would seem more 

consistent, and is found to have technical advantages, to cast the problem in terms of the 

dynamics of the ensemble of uncertain nanoparticle states – i.e. to introduce a probability 

distribution with parameters that characterize the statistics of an ensemble of systems in various 

nanoparticle states. In the process of developing this notion, we show that the conceptual and 

technical difficulties encountered in Sect. 3.1 are overcome.  

 To solve the Liouville equation via a multiscale approach, we first seek a quasi-equilibrium 

solution to the lowest order equation: 

  .0 0 0ρ =L  (3.2.1) 

As ,0 0P R
 

L L  and 0 0HL  vanish, we seek a solution of (3.2.1) that is a function of H0 , P


 and 

R


. The lowest order solution of interest here is constrained such that the ensemble average of the 

Γ-dependent quantities ,0H R


 and P


 have prescribed values (that may vary on the slow 

timescale), and hence ,0H P


 and R


 themselves are not fixed. This difference from the 

approach of Sect. 3.1 yields great technical and conceptual advantages.  

 Using information theory, one obtains the following distribution through the imposition of the 
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aforementioned averages: 

 
( ),ˆ

0H P Re β µ κ

µ κρ
Ξ β ,µ ,κ

• •− + +

=

 







. (3.2.2) 

This lowest order solution depends on the dynamical variables Γ through H0, andP R
 

. It is 

implied by entropy maximization through the introduction of the Lagrange multipliers 

, andβ µ κ . We term andµ κ  reciprocal quantities in that they will be found to play roles 

similar to Fourier transform variables, e.g. κ  will, through inverse transformation, imply a 

derivative with respect to COM position in a Fokker-Planck equation, and similarly for the 

reciprocal momentum µ . As is familiar in classical systems, the quasi-equilibrium distribution 

,ˆµ κρ   separates into a momentum and a position factor, and similarly for the partition function 

( )Ξ β ,µ ,κ .  

 The partition function ( ), ,Ξ β µ κ  in (3.2.2) is given by  

 ( ), , exp6 N
0d H P RΞ β µ κ Γ β µ κ• • = − + + ∫

 

   . (3.2.3) 

The integration over all atomic degrees of freedom is unrestricted – i.e. one is not burdened with 

the complexity of restricting the coordinates of the atoms in the nanoparticle to a fixed COM 

location, and similarly for the momenta. In expressions like (3.2.3) andP R
 

 depend on all the 

viral ,i ir p  . This nanocanonical ensemble ensures that atomic configurations which correspond to 

large departures of the COM coordinates from the specified ,µ κ -dependent average values will 

be improbable.  

 Let 
,µ κ

  imply a ,ˆµ κρ  -weighted average over all configurations Γ : 
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,,
ˆ6 NA d A µ κµ κ

Γ ρ= ∫ 



 for any Γ -dependent quantity A . The averages 
,

P
µ κ



 and 
,

R
µ κ



 

are given by 

  
, ,

ln ln,P R
µ κ µ κ

Ξ Ξ
µ κ

∂ ∂
= =

∂ ∂
  

 



. (3.2.4)  

 The lowest order equation (3.2.1) is linear; thus it admits the more general supposition 

solution  

  ( ),ˆ , ,3 3
0 d d tµ κρ µ κ ρ Ψ µ κ= ∫ 

 , (3.2.5) 

for reciprocal distribution Ψ . As 0ρ  is unit normalized, and ,ˆµ κρ   is normalized by 

construction, then   

  ( ), ,3 3d d t 1µ κΨ µ κ =∫
 .  (3.2.6) 

With this, ensemble averages indicated by superscript m can be obtained. For example  

  ( )
,

, ,m 3 3P d d P t
µ κ

µ κ Ψ µ κ= ∫ 

 

  (3.2.7) 

  ( ) ( ), ,
ˆ , , , ,m 3 3 6 N 3 3f d d d f t d d f tµ κ µ κ

µ κ Γ ρ Ψ µ κ µ κ Ψ µ κ= =∫ ∫ ∫



  

   . (3.2.8) 

One may relate ( ), tΨ µ,κ  and the nanoparticle momentum-position density W. By definition  

 ( ) ( ) ( ) ( )
,

, , , ,3 3W p r t d d p P r R t
µ κ

µ κ δ δ Ψ µ κ= − −∫ 

 

     . (3.2.9)  

The definition of the delta function implies 

( ) ( ) ( ) ( )
( ) ( )exp

, , , ,
, ,

06 N 3 3 H p r
W p r t d d d p P r R t

β µ κ
Γ µ κ δ δ Ψ µ κ

Ξ β µ κ
• •− + +

= − −∫ ∫
  

 

    



.  (3.2.10) 

Defining ( ), ,Q p rβ    via 
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 ( ) ( ) ( ) ( ), , exp6 N
0Q p r d p P r R Hβ Γ δ δ β= − − −∫

 

    , (3.2.11) 

one obtains 

 ( )
( )

( )
( )

, , , ,
, , , ,

3 3 p rW p r t t
d d e

Q p r
µ κ Ψ µ κ

µ κ
β Ξ β µ κ

• •+= ∫
  

  

  

 (3.2.12) 

so that W/Q and Ψ Ξ  are related via a bilateral Laplace transform. The inverse of this 

relationship casts Ψ Ξ  in terms of an interesting integral of W/Q over imaginary nanoparticle 

momenta and positions (see Appendix B). 

 The results (3.2.12) and (3.2.5) imply 

 
( ) ( ), ,

, ,

0H

0
e W P R t

Q P R

β

ρ
β

−

=
 

 
. (3.2.13) 

Note that here W depends on P


 and R


, which, in turn, are functions of Γ and hence are 

dependent dynamical variables. In contrast, p  and r  in (3.2.10) are not dynamical variables 

(e.g. ip p∂ ∂  is zero). 

 As we are interested in developing an equation of motion for W, we adopt (3.2.13) as the 

starting point of our analysis rather than the Ψ  formulation. This is shown to rather directly lead 

to an equation for W in the next section wherein we show that this follows by removing secular 

behavior using a method that does not involve an integration over Γ. 

 Before proceeding further, we examine the structure of Q in more detail. First we introduce a 

configurational factor ( ),Z Rβ


 such that 

  ( ) *,
N

3 3 V
1 N i i i

i 1

Z R d r d r R m r m e ββ δ ε Θ −

=

 
= − 

 
 

∑∫
 



 , (3.2.14) 
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where the R


-dependence of V is noted in (3.1.11). Similarly we introduce a momentum factor Y 

such that   

  ( ),
N

3 3 K
1 N i i

i 1

Y P d p d p P p e ββ δ ε Θ −

=

 
= − 

 
 

∑∫
 



 , (3.2.15) 

  
N

2
i i

i 1

K p 2m
=

=∑ . (3.2.16) 

With this, ( ) ( ) ( ), , , ,Q P R Y P Z Rβ β β=
   

. Introducing the new variables 
i

π  via 

i i i i
p m P mπ ε Θ= +



  , and neglecting terms that vanish as 0ε → , one finds 

exp
N N 2

i3 3
1 N i i

ii 1 i 1

Y d d
2m
π

π π δ Θ π β
= =

   
= −   

   
   
∑ ∑∫ 

   so that Y, and hence Q, is independent of 

P


. Thus we write ( ),Q Rβ


 in the developments of the next section. From its definition and 

(3.1.12) 

  ln / ThQ R fβ∂ ∂ =


 (3.2.17)  

where Thf  is the scaled net force on the nanoparticle averaged over all atomic configurations 

consistent with the nanoparticle having COM at 1Rε −


. 

 

 

3.3 Derivation of a Fokker-Planck equation for Stochastic Dynamics of Order Parameters 

The objective of the present section is to complete the nanocanonical derivation of a 

Fokker-Planck equation for structured nanoparticles. The starting point is the lowest order 

solution (3.2.13). As pointed out at the end of the previous section, Q does not depend on P


 and 
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thus is written ( ),Q Rβ


 henceforth. With this we rewrite 0ρ  as 

 
( ) ( ) ˆ, ,

,

0H

0
e W P R t W

Q R

β

ρ ρ
β

−

= ≡
 


. (3.3.1) 

By writing (3.3.1) in this form, we do not take P


 and R


 to be independent variables.  The 

apparent independence of P


 and R


, as in the partial derivatives in 0L  and 1L , is only to 

highlight the distinct ways (direct in Γ  itself and indirect through P


 and R


) that ρ depends on 

the all-atom state Γ. To be sure one could take P


 and R


 to be dynamical variables and then 

eliminate six atomic variables (e.g. 
1

p  and 
1

r ). But this would lead to a cumbersome 

formulation with much tedious bookkeeping and complexity of computation.  

 An equation for W  is obtained via an examination of higher order terms in the Liouville 

equation. To ( )O 2ε  and in light of (3.1.11 and 3.1.12) the Liouville equation implies, upon 

dropping the 0 on t0 henceforth,  

 ( ) ( )ˆˆ , , ;Th
0 1

1

W P P W Wf f W f G P R W
t t m m R P

ρ β ρ Γ ρ• • •
 ∂ ∂ ∂ ∂ − = − + − + + ≡   ∂ ∂ ∂ ∂   

 

  
 

 L  (3.3.2) 

where Thf


 arises from a Q R∂ ∂


 term as in (3.2.17): in the present context  

 
*

ˆTh 6 Nf d fΓ ρ= ∫
 

. (3.3.3) 

This yields, upon taking 1ρ  to be zero at t 0= , a solution of the form 

 ( ) ( ) ˆ, , ;0
t t t

1 0
dt e G P R Wρ Γ ρ′−′= ∫

 L . (3.3.4) 

Assembling the above results and using 0 0 0H P


L , L  and 0 R


L  vanish, and 

( ) ( ) ( ) ( )ˆˆ, , ; , , ;0 0t t t te G P R W e G P R WΓ ρ ρ Γ′ ′− −  = 
   L L  yields 
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 ( ) ( ) ˆ0
t t t Th

1 0
1

W P W W Pt dt e f f f W
t m R P m

ρ β ρ• • •
′−  ∂ ∂ ∂′= − + + + −  ∂ ∂ ∂  

∫
 

  

 

L . (3.3.5) 

Secular behavior is seen in the 
1

W t∂ ∂  term. However there are others as well. For example, 

with the change of variables t t τ′ = +  one has  

 ( ) ( )0
t 0t t Th

0 t
dt e f d f t fτ τ′−

−
′ = ≈∫ ∫

 L  for large t. (3.3.6) 

A fundamental hypothesis of statistical mechanics asserts the equivalence of time and ensemble 

averages in quasi-equilibrium systems. This implies  

  ( )limit 0 Th

t

1 d f ft t
τ τ

−
=→∞ ∫

 

. (3.3.7) 

where ( ) 0f e fττ −=
 L . Hence secular behavior is removed from 1ρ  if  

 Th

1

W P W Wf
t m R P

• •
∂ ∂ ∂

= − −
∂ ∂ ∂





  . (3.3.8) 

Combining the above results, one obtains 

  ( ) ( )ˆ 0
t t t Th

1 0

Pdt e f f W
m P

ρ ρ β•
′−  ∂′= − − + ∂ 

∫


 



L , (3.3.9) 

and 1 0ρ =  as t →∞ . 

 Note that these results were obtained without integrating the Liouville equation at ( )O 2ε  

over Γ and using the fact that ρ vanishes as 
i

p →∞  and is periodic in the 
i

r . This traditional 

method does not guarantee that the full 
1

ρ  is free of secular behavior. The present method 

addresses the full time dependence of 
1

ρ , ensures that it, and not an integrated reduction of it, has 

no secular behavior.  Furthermore, the technical difficulties due to the fact that the Γ integrals 
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applied must be restricted as in (3.3.3) in order to preserve the number of degrees of freedom. 

 To ( )O 4ε  one finds 

 0 1
0 2 1 1

2 1t t t
ρ ρρ ρ∂ ∂ ∂ − = − − + ∂ ∂ ∂ 

L L .  (3.3.10) 

Again with 2 0ρ =  at t 0= , we find 

  ( ) ˆ0
t t t 1

2 1 10
2 1

Wdt e
t t

ρρ ρ ρ′−  ∂ ∂′= − − + ∂ ∂ 
∫ L L . (3.3.11) 

Using (3.3.9) for 
1

ρ  we obtain 

( ) ( ) ( )ˆ .0 0
t tt t t t Th

2 0 0
2

W P Pt dt e f dt e f f W
t m R P m P

ρ ρ β• • •
′′ ′ ′′− −    ∂ ∂ ∂ ∂′ ′′= − + + − + +    ∂ ∂ ∂ ∂    

∫ ∫
 

  

   

L L (3.3.12)  

The missing term from 1 1tρ∂ ∂  only involves one Thf f−
 

 term and is seen upon invoking 

(3.3.7) to make no secular contribution. Using arguments as for 
1

ρ  to ensure that 
2

ρ  has no 

secular behavior, and the new variables ,τ σ  such that ,t t t tτ τ σ′ ′′= + = + + , we obtain 

 ( )limit .0 0
0 0 Th

t t
2

W 1 P Pdt e f d e f f Wtt t m R P m P
τ σ

τ
τ σ β• • •

− − −

   ∂ ∂ ∂ ∂
= + − +   →∞∂ ∂ ∂ ∂   

∫ ∫
 

  

  

-L -L   (IV13)  

As ˆ0 0ρ =L  implies that only the f


 factors are affected by the evolution operators has been 

used in obtaining this result. To complete the analysis, consider the key term 

  ( )( )0

1 2 1 2 2

0 0 Th

t t
t J d e f d f fτ

α α α α ατ
τ σ σ

− − −
≡ −∫ ∫-L , (3.3.14) 

where ( )
2

fα σ  is the 
2

α Cartesian component of f


 evolved to time σ . For large but finite t 

the first integral with the evolution operator ( )exp 0τ−L  is approximately t times the ensemble 

average, i.e.     
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  ( ) ( )( )( )1 2 1 2 2

Th0 Th

t
t J t d f 0 f fα α α α ατ

σ σ
− −

≈ −∫ . (3.3.15) 

Since τ  is fixed but t is arbitrarily large, and the integrand vanishes as σ  gets large and 

negative, (i.e. f


 and ( )f σ


 are independent random variables for large σ ), we obtain 

  ( ) ( )( )1 2 1 2 2

Th0 ThJ d f 0 f fα α α α ασ σ
−∞

 ≈ − ∫ . (3.3.16) 

Using this result, secular behavior in 
2

ρ  is removed when 

  
,

2

1 2
1 2 1 2

3

12

PW W
t P m P

α
α α

α α α α

γ β
=

 ∂ ∂ ∂
= +  ∂ ∂ ∂ 
∑ , (3.3.17) 

where the tensorial friction coefficient 
1 2α αγ  is given by 

  ( ) ( )( )1 2 1 2 1 2

0 Th Th Thd f 0 f f fα α α α α αγ σ σ
−∞

 ≡ −  ∫ . (3.3.18) 

i.e. 
1 2α αγ  is given by autocorrelation of the force on the nanoparticle. For anisotropic systems, 

i.e. a virus migrating in a membranous cell interior, 
1 2α αγ  is a second order tensor reflecting 

possible preferred migration directions. 

 Letting 
1

T t=  we recompose the above results to obtain 

 Th 2W P W W Pf W
T m R P P m P

ε γ β• •
 ∂ ∂ ∂ ∂ ∂

= − − + + ∂ ∂ ∂ ∂ ∂ 

 






     (3.3.19) 

in tensor notation. 

 Application of (3.3.19) to specific systems requires the use of Monte Carlo methods to 

estimate the friction coefficient and thermal average force. Note that the above results apply 

when the thermal average force evolves on the 
2

t  scale, i.e. for an externally applied force that 

varies on a time scale much longer than that of atomic vibrations and collisions.   
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3.4 Collective Modes and Order Parameters for N-atom Nanosystems 

AMA of the Liouville equation starts with identification of a set of slow variables (i.e., 

order parameters). In hydrodynamics, conserved quantities are the traditional choice. For the 

present application, we suggest that they can be chosen according to the following criteria: 

A: they are expressible in terms of the 6N atomic momenta and positions; 

B: they can be shown via Newton’s equations to evolve on a timescale that is long 

compared to that of atomic vibrations or collisions; 

C: they capture the nanoscale phenomena of interest; 

D: the set of order parameters is complete, i.e. they are not strongly coupled to other order 

parameters not included in the model; and 

E: the energy of the system can be expressed in terms of these variables and residual 

rapidly-fluctuating atomistic variables. 

As there are initial data or applied fields that can make any variable change rapidly, a corollary 

to criterion B is that the special conditions on problems of interest are met.  

A nanoparticle in an aqueous medium has internal dynamics, e.g. the structural transitions of 

a viral capsid or genome. As the nanoparticle migrates across the system, it often has a closely 

associated layer of water molecules. The motion of the nanoparticle may excite hydrodynamic 

modes in the host fluid. Multiple nanoparticles, viruses, nanocapsules with therapeutic payloads, 

and other elements may interact – constituting a complex, composite of nanoscale subunits that 

may repel each other, bind, coalesce or self-assemble into nanomaterials. We seek a method to 

construct collective modes and order parameters that can be programmed to capture the salient 
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features of such systems and phenomena.  

Principal component analysis (PCA) has been applied to reduce the dimensionality of MD 

trajectories for analyzing large-scale structural changes [115-117], it has been suggested to use 

PCA modes to characterize protein coherent motions and thus facilitate the simulation of 

long-time protein dynamics. Here we investigate its suitability for extracting our collective 

modes and order parameter as follows. PCA involves diagonalization of the positional 

covariance matrix for selected atoms (like Cα in protein backbone), which generates an 

orthogonal set of eigenvectors (i.e., modes), denoted { }, , ,kU u k 1 3N≡ =

 , each associated 

with an eigenvalue that indicates the amplitude of fluctuations along that mode. Eigenvalues 

divided by their sum represent the relative contributions of the corresponding modes to the total 

conformational change of the trajectory.  

In order to use PCA modes obtained from short MD run to facilitate simulating long-time 

protein dynamics, it was hoped that the PCA modes with largest eigenvalues evolve slowly, 

characterizing coherent motions over long timescales, and those with small eigenvalues are 

high-frequency ones. Thus a few essential PCA modes can be chosen as a reduced 

representation for long-time protein dynamics. But its suitability has become controversial since 

the mid 1990s. It was noted in 1996 that due to the limited achievable sampling time of protein 

dynamics, PCA cannot extract properly the slowly-varying modes precluding it for 

dimensionality reduction [110]. In 2006, other authors arrived at the opposite conclusion [109] 

with one of the arguments being that it is more relevant to check the convergence of PCA 

subspaces (i.e., the summation of subspace modes weighted by their eigenvalues), rather than 
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that of individual modes. However, more studies showed that it is not reliable to use PCA 

modes for dimensionality reduction due to limited sampling of long-range correlations and 

forced orthogonalization of PCA modes [112-114].  

To reexamine this issue, i.e., the suitability of using PCA for dimensionality reduction, we 

recently analyzed a 100ps ensemble-averaged MD trajectory of swollen CCMV capsid that was 

obtained by averaging 30 replica MD runs with random atomic velocity initializations at 

298.15K [79]. By dividing the trajectory into 10 time windows, our calculations showed that 

PCA modes extracted from consecutive time windows display small similarities, which prove 

that they fail to capture system coherent motions. However, nanosystems are expected to 

undergo large-scale motions with atoms moving collectively and this is verified by the large 

correlations of the 3N-dimensional atomic displacement vectors from consecutive time 

windows of the CCMV capsid trajectory. 

In light of above findings, we construct collective modes to capture coherent motions of 

many-atom nanosystems by using atomic coordinates as follows. Consider a system embedded 

in a box (a cube for simplicity of presentation) of volume 3L . Basis functions ( )ku x  (e.g., 

polynomials or harmonic functions) labeled with integer index k are introduced such that  

  ( ) ( )
2

/ 2

L

k k' kk'
L

dxu x u x δ
−

=∫  (3.4.1) 

for Kronecker delta kk'δ . Composite functions ( )kU s  are defined such that 

  ( ) ( ) ( ) ( )
1 2 3

k k k k
U s u x u y u z= , (3.4.2) 
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where ( ), ,s x y z= for box centered at s 0=


 . According to the space-warping method[118], a 

nanostructure embedded in a space ( s  here) is considered to be a deformation of a reference 

space 0s . The deformation of space is used to introduce order parameters via  

  ( )0
k k

k
s U s= Ψ∑



  . (3.4.3) 

As the kΨ


 change, s -space is deformed, and so is the nanosystem embedded in it. The kΨ


 

constitute a set of vector order parameters that serve as the starting point of our AMA approach 

provided that they can be related to the atomic configuration of the nanosystem and can be shown 

to evolve slowly.  

Each atom in the system is moved via the above deformation by evolving kΨ


. However, 

given a finite truncation of the k  sum in (3.4.3), there will be some residual displacement of 

individual atoms that is not accounted for. Denoting this residual for atom i  as ,iσ
  we write  

  ( )0
i k i k i

k
s U s σ= Ψ +∑



   . (3.4.4) 

This gives is in the deformed state for the instantaneous values of the kΨ


 and iσ
 , and the 

reference configuration 0
is . If a sufficient number of terms are retained in the sum and the basis 

functions are chosen properly, then the iσ
  will be small. The exception to this theme is for cases 

where the inter-diffusion of molecules is a key part of the phenomenon of interest, e.g. viscous 

drug molecules in an aqueous medium. This follows because there is an angstrom distortion of 

space needed to keep track of the motion of each small molecule relative to its neighbors. In this 

case we expect that the iσ
  could grow as square root of time, i.e. to display typical random walk 

behaviors. However, even this case could be addressed as the system configuration is extremely 
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stray so that the reference configuration ( )0 , ,is i 1 2=

  could be regularly updated at a type of 

“piecewise continuation” in time by monitoring the iσ
  in the course of a simulation. 

To evolve kΨ


 via Newtonian mechanics, and thereby start our multiscale analysis, kΨ


 must be 

expressed in terms of the is . Assume im  is the mass of particle i and 
1

1 N

i
i

m m
N =

= ∑ . We 

determine kφ


 to minimize the mass-weighted root mean square residuals (RMSR), i.e., 

N
2i
i

i 1

1 m
N m

σ
=
∑  , which yields 

  ( ) ( ) ( )
3 3

0 0 0

1 1
, .

N N
i i

qk k q i i qk q i k i
k i i

m mL LB U s s B U s U s
N m N m= =

Ψ = =∑ ∑ ∑


     (3.4.5) 

The iσ
  contribution is neglected in arriving at this definition of kΨ



 as iσ
 fluctuates with i 

and hence with space, while the basis functions that capture overall nanostructural features vary 

smoothly by design, i.e., capture overall features such as nanoparticle position, orientation, size 

and shape. Thus, (3.4.5) is not an approximation; rather, the above discussion is a way to argue 

for the definition (3.4.5) of order parameters that captures coherent behaviors of a nanosystem. 

With this definition of kΨ


, (3.4.5) is an exact relationship, since the iσ
 correct errors in the 

displaced atomic positions over-and-above the coherent contribution from the kΨ


 sum.  

As we did not make any assumptions about the structure of the nanosystem for our 

derivations, there may be one nanoparticle in an aqueous host, multiple nanoparticles, viral 

capsids composed of protein capsomers, a virus and a cell membrane, or a lipsome with its 

therapeutic payload. The ability to address composite nanosystems is a great benefit of the 
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present formulation. The orthogonality of the basis functions (3.4.1) implies that the matrix B  is 

nearly diagonal and the order parameters can easily be computed numerically in terms of the 

atomic positions. Especially when most of the space in the system is occupied with atoms, the i 

sum is essentially a Monte Carlo integration. The orthogonality of the normailized basis 

functions implies that qk qkB δ≈  and (3.4.5) can be approximated as 

  ( )
3

0

1
.

N
i

q q i i
i

mL U s s
N m=

Ψ ≈ ∑


   (3.4.6) 

In our implementation of the method, we provide both options to solve a linear system of 

equations in (3.4.5) for kΨ


 or compute them directly via (3.4.6). Inclusion of im  in the above 

expressions gives the order parameters the character of generalized COM variables. Thus, if kU  

is constant then kΨ


 is proportional to the COM. Therefore, dimensionality reduction for 

nanostructures from the N-atom configuration to M order parameters is achieved through 

  { } { }, , , , , ,ku
i kk 1 Ms i 1 N k k k= Ψ =









 



, (3.4.7) 

In the above formulation, atomic coordinates of a reference configuration are used to 

construct the nanostructure collective modes and their summation given by Eqn. (3.4.4) results 

in a new configuration that the system can evolve to. Instead atomic displacements calculated 

from two known configurations of the nanostructure can be used to construct its collective 

modes and their summations weighted by order parameters would describe system coherent 

motions directly [79]. Both of them can serve as reduced representation of the long-time 

dynamics of nanosystems. But for ease of implementation, the atomic positions of a reference 



46 
 

configuration are preferred, which avoids the need to find another system configuration to draw 

atomic displacements, even though it can be obtained through a short-time MD run or two states 

known to be available to the system (e.g., the native and swollen states for CCMV). 

 

3.5 Free energy and friction coefficients 

To implement AMA for viral structural transitions (STs), one needs to construct the free 

energy and friction coefficients for the range of slow variable values of interest. In this section, 

an approach for using constrained evolution to generate the nanocanonical ensemble for 

computing viral free energy and friction coefficients is presented and its computational 

feasibility of the approach is discussed. 

Configurations and corresponding energies for fixed values of order parameters can be 

generated using the following non-inertial dynamics approach, i.e., constrained evolution for 

nanocanonical ensemble. The approach can also be generalized to generate the inertial 

dynamics needed to construct the friction coefficients. The ensemble of detailed atomic 

configurations for free energy computations are generated by solving the pseudo-dynamics 

equations 

  
i

i i i
ii

dr VB A
dt r
α

α α α
αα

′ ′ ′ ′
′ ′′ ′

 ∂
= − + 

∂  
∑ , (3.5.1) 

where irα  is the α-th position coordinate of atom i , V is the N -atom potential and iA α′ ′  is 

a random force. The B  matrix is introduced to ensure that the ir
  only explore configurations 

consistent with given values of the order parameters. Consider a set of M order parameters 
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{ }, ,
k

k 1 MΦ Φ≡ =  . From each slow variable we construct the 3N  length column vectors 

, , ; , ,
k i

r i 1 N 1 2 3
α

Φ α∂ ∂ = = . From these we form a set of M orthonormalized row k  and 

column k  vectors and thereby the projection matrix k k . Then, in matrix notation, 

B I 1 1 M M= − − . With this and (3.5.1), one finds that , ,
k

d dt 0 k 1 MΦ = =  . The 

ensemble generation can be stabilized by replacing V with ( ); ,1 NU r rΦ  

  defined in Sect. 3.1. 

Thus (3.5.1) drives the system to a state with Φ -dependent minimum and there is no gradual 

drift of the Φ  due to numerical round-off. The ensembles so generated can be enriched by 

using multiple initial datasets for the 
i

r
α

 to avoid being trapped in a local minimum of U. 

Space-warping can be used to generate these configurations as it facilitates transitions between 

configurations with significantly different properties. The utility of this approach in 

minimization has already been demonstrated[118]. The ensemble for each choice of the order 

parameters can be used as a basis of a Monte Carlo integration algorithm to compute the 

thermal average forces needed for the FP equation. 

As reviewed in Sect. 2.1, an all-atom molecular dynamics simulation on a complete satellite 

tobacco mosaic virus has been achieved on a SGI 1,024-processor Altix system by using 256 

processors and 128 GB memory with a performance of 1.1 ns/day (7.85×10-2 sec/time step)[52]. 

We believe that it should take about 10000 such cycles with intermittent major moves using our 

space-warping technique to obtain a free energy variation with 20 wisely-chosen slow variable 

values. This would take 4.36 hours on a computer platform with similar performance to the 

Altix system noted above. A more complete temporal dynamics will be used in a similar way to 

construct thermal average forces and friction coefficients. These computations will benefit from 
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published methods [100, 119-122]. 

  

3.6 Generalizations 

The AMA methodology can be generalized to complex systems involving nanoparticles 

with complex internal structure or the interaction of multiple nanoparticles. For example, due to 

its size, a nanoparticle may experience phase transition-like behaviors. In this case the 

associated order parameters, COM position and orientation constitute a set of order parameters 

denoted R; with the latter are conjugate momenta P. This theme can be extended to many 

nanoparticle systems and complex host media like a cell’s interior. As for the COM variables of 

Sects. 3.2 and 3.3, one can introduce a nanocanonical ensemble such that  

  ( )
( ),

expˆ
, ,

0
M K

H M P K R
M K

β
ρ

Ξ β
• •− + +

=  (3.6.1) 

where 

  ( ), , 0H M P K R6 NM K d e βΞ β Γ • •− + += ∫ . (3.6.2) 

The transformation W QΨ Ξ →  follows directly as in Sect. 3.2, as does the removal of secular 

behavior without atomic momentum-position integration as in Sect. 3.3. The result of the 

multiscale computations is a generalized Fokker-Planck equation in the inertial limit. While 

computations without the present approach would require applying 6 Nd Γ∫  but with 

integrations involving complex restrictions (stemming from the many R, P variables that must be 

respected in order to conserve the number of degrees of freedom). 

As general collective modes and order parameters are systematically constructed in Sect. 3.4 
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to capture the coherent motions of nanosystems, they can be taken as input for AMA of the 

N-atom Liouville equation. This may need the analysis of the scaled Liouville equation to orders 

higher than 4ε and lead to stochastic equations for the dynamics of the system collective modes 

and order parameters, which provide more complete, general multiscale models for describing 

the structural transitions of viruses and other nanosystems. Note that our above AMA formulation 

was derived in the inertial limit for order parameters, for which a FP equation was obtained. In the 

friction-dominant case, AMA of the Liouville equation could result in a Smoluchowski equation 

for the time evolution of order parameters [102, 123, 124]. 
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Chapter 4 Transition State Theory for Viral Dilatational Structural Transitions 

4.1 Multiscale Viral Dilational Structural Transition Model 

Following from the AMA formulation presented in Chapter 3, order parameters capturing 

viral dilatation are constructed below and a Fokker-Planck (FP) equation for their long 

timescale dynamics is derived. First denote the COM position of the virus *R


: 

  *
*

N
i i

i
i 1

m rR
m

Θ
=

=∑




, *
N

i i
i 1

m mΘ
=

=∑ , (4.1.1) 

where i 1Θ =  if atom i is in the virus and 0 otherwise, and *m  is the total viral mass. 

Newton’s equations imply that * *dR dt R= −
 

L , in which L  is the Liouville operator  

  
N

i
i

i i ii 1

p
F

m r p
• •

=

 ∂ ∂
= − + 

∂ ∂  
∑





 

L , (4.1.2) 

where 
j i

i
i r

VF
r

≠

 ∂
= −  ∂ 





 is the force on atom i and ( ),1 NV r r 

  is the N-atom potential. With 

this and introducing the total viral momentum *P


 we obtain * * *dR dt P m=
 

 for 

*
N

i i
i 1

P pΘ
=

=∑


 . Similarly, * *
N

i i
i 1

dP dt P FΘ
=

= − =∑
  

L  (the net force on the virus). 

The virus contains many atoms and hence has large size relative to that of an atom; thus we 

take it to have diameter of ( )O 1ε −  for small parameter ε . Since we are interested in 

significant migration distances (i.e. greater than or equal to the viral diameter), we scale *R


 to 

be ( )O 1ε − . The scaling *2 m mε =  for typical atomic mass m  is adopted under the 
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assumption that the virus is empty–i.e. we develop a theory for the dynamics of a viral capsid. 

Other cases may easily be considered as well (e.g. *m  is ( )O 3ε −  for a complete virus with 

genome in the capsid’s cavity). Under the assumption that the system is near equilibrium, a 

typical viral COM kinetic energy * *2P 2m  is ( )O Bk T . Thus *P


 scales as *m , i.e. is 

( )O 1ε − . With this we adopt the scaled variables R


 and P


 such that 

  * 1R Rε −=
 

, * 1P Pε −=
 

. (4.1.3) 

Let 
N

1
i i

i 1
f Fε Θ−

=

= ∑




 be the scaled net force on the virus; this scaling emerges from the 

near-equilibrium assumption and that the viral diameter is ( )O 1ε −  and hence its surface area 

is ( )O 2ε − ; for short range interactions with the host medium the number of contributions to the 

net force on the virus is proportional to its surface area; however near equilibrium there is much 

cancellation of these forces so that the residual force over-and-above its zero average is small 

and hence scaled to be on the order of one over the square root of the number of individual 

atomic contributions, i.e. ( )O ε . This is one example of the corollary to criterion B, i.e. the net 

force is sufficiently small that the momentum evolves slowly. In contrast, if the host medium is 

experiencing a shock wave, the number of host atoms on one side of the virus would be much 

larger than on the other and hence P


 would change rapidly as the shock is passing. In 

summary, under the above assumptions Newton’s equations imply 

  ,2 2dR P dP f
dt m dt

ε ε= =
  



, (4.1.4) 

proving that R


 and P


 are slowly varying. 
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To characterize intraviral structural dynamics, we introduce relative coordinates is  for viral 

atoms such that 

  *
i i ir s RΘ= +



  . (4.1.5) 

Next an order parameter Φ  is introduced to describe viral dilatation. In particular we take Φ  to 

be a measure of the viral size relative to that of a reference structure, e.g. an X-ray crystal 

structure. To this end consider the definition 

  

N
0

i i i i
i 1

N
02

i i i
i 1

m s Xs

m s

Θ
Φ

Θ

•

=

=

=
∑

∑





 

, (4.1.6) 

where X




 is a length-preserving rotation matrix (see below) and 0 0
i is s=  . We now demonstrate 

that this order parameter and the associated momentum Π  are order parameters. This ,Φ Π  

order parameter description will serve as the basis for a simple viral dilatation phase transition 

theory.  

The equation of motion of Φ  is 

  
*

*

4 N
0i
i i i

i 1 i

pd P Xs m
dt m m m
Φ εΦ Θ•

=

 
= − = − ′  

∑








L , 
N

4 02
i i i

i 1
m m sε Θ

=

′ ≡ ∑ . (4.1.7) 

The scaling of m′  is consistent with our earlier assumption that the number of atoms in the virus 

is ( )O 2ε − , and its diameter is ( )O 1ε − . Introducing relative velocities 
*

*
i i

i i

p P
m m m
π

= −


 

 for viral 

atoms yields 
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  2d
dt m
Φ ΠΦ ε= − =

′
L , *2Π ε Π= , *

N
0

i i i
i 1

XsΠ π Θ
=

≡∑ 





  . (4.1.8) 

The scaling of Π  is based on the assumption that while there are ( )O 2ε −  atoms in the virus, 

the contributions to *Π  are of fluctuating sign, but each term has an 0
is  factor which, like the 

viral diameter, is ( )O 1ε − ; thus *Π  is ( )O 2ε − . With this 

  *

0N N
j j2 0

i i j i
i 1 j 1

m Xsd F Xs
dt m
Π Π ε Θ Θ

= =

 
 = − = −
 
 

∑ ∑









 

L . (4.1.9) 

The j-sum in (4.1.9) is over a large number of vector contributions which tend to cancel; as the 

*m  factor in this term is proportional to the number of atoms in the virus, the j-sum is small 

relative to 0
iXs




 . Thus to good approximation we rewrite (4.1.9) as 

  2d g
dt
Π ε= , 

N
0

i i i
i 1

g F Xs Θ
=

=∑ 



 

 , (4.1.10) 

for “dilatation force” g that is the analogue of the COM force f


. The scaling of g  as implied in 

(4.1.10) differs from that of f


 as each term in g has an additional 0
is  factor (which is ( )O 1ε − ). 

With this we conclude that Φ  and Π  are also order parameters. 

Viral rotation can also be shown to be slow due to the large moment of inertia. First relate the 

rotation matrix X




 to the relative atomic configuration { },i is 1Θ = . If the intraviral state only 

changes due to overall rotation and isotropic dilatation, then the 2α  component of is  is given 

by 

  
2 2 1 1

1

3
0

i i
1

s X sα α α α
α

Φ
=

= ∑ . (4.1.11) 
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Multiplying by 
3

0
i is α Θ  and summing over i yields 

  
3 2 2 1 3 1

1

3
0

1
Y X Yα α α α α α

α

Φ
=

= ∑ , (4.1.12) 

  
3 2 3 2

N
0
i i i

i 1
Y s sα α α α Θ

=

=∑ , 
3 1 3 1

N
0 0 0

i i i
i 1

Y s sα α α α Θ
=

=∑ . (4.1.13) 

Taking d dt  of both sides of (4.1.12) and recalling that 0
is  is a reference configuration (and not 

a dynamical variable) yields 

  3 2 2 1

3 1 2 1 3 1
1 1

0N 3 3
i i i 0 0

i 1 1 1i

s dX dY X Y
m dt dt

α α α α
α α α α α α

α α

π Θ ΦΦ
= = =

= +∑ ∑ ∑ . (4.1.14) 

Since the virus diameter is ( )O 1ε − , then so are is  and 0
is  for viral atoms. This implies that 

3 1

0Yα α  is ( )O 4ε −  as it is a sum of ( )O 2ε −  positive terms (at least for the diagonal elements). 

Consider the trace of the LHS of (4.1.14), i.e. the sum of /0
i i is mπ•   terms. Using an argument as 

for *Π , it is expressed to be ( )O 2ε − . With this, and that d dtΦ  is ( )O 2ε , dX dt




 is seen to 

be ( )O 2ε  so that rotation is slow. 

While more order parameters characterizing the viral internal structure need to be explored 

apart from their COM position, orientation, dilatational order parameter and their associated 

momenta as constructed above, the AMA formulation of the N-atom Liouville equation will be 

demonstrated with above order parameters ( P


, R


, Π , Φ , X




 and Ω




) to investigate STs of 

icosahedral viruses. Since icosahedral viruses are nearly spherical, this symmetry and the 

conjecture that centrifugal forces do not have significant effect on STs, we expect that effects of 

overall rotation (i.e. X




 and Ω




) should decouple from those of STs. Hence the reduced 
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distribution for the order parameters ( ), , , ,W P R tΠ Φ
 

 can be factorized into X




, Ω




, and P


, 

R


, Π , Φ  dependent parts. With this, the N-atom probability density ρ  is taken to have the 

dependence ( ); , , , , ,0P R t tρ Γ Π Φ
 

 with { }, , ,1 1 N Np r p rΓ ≡    

  while X




 and Ω




 are ignored 

henceforth.  

 

4.2 Order Parameter Dependences of System Energy and Lowest Order Probability 

Density 

To complete the multiscale analysis, the N-atom potential V and kinetic energy K must be 

expressed in terms of slow coordinates ( R


, Φ , X




 for viral dilatational STs), the residual 

dependence on ,
1 N

r r 

 , and the associated momenta. To accomplish this for V we write 

  ( )1 0
i i i ir R Xsσ Θ ε Φ−= + +



 

   . (4.2.1) 

The *R


 term accounts for migration of the viral COM, the XΦ




 contribution generates an 

atomic displacement due to rotation and dilatation, and iσ
  is the residual (incoherent) 

displacement over-and-above the coherent effects of R


, Φ , and X




,. With this we introduce the 

explicit potential function U  via 

  ( ) ( ){ }( ), , ; , ; ,1 0
1 N i i iU R X r r V R Xs i 1 NΦ σ Θ ε Φ−= + + =

 

   

   

  . (4.2.2) 

The gradient of V  with respect to Φ  is given by the derivative of U  with respect to Φ  

keeping R


, X




, and the residual ir
 -dependence fixed; this shows the utility in introducing U , 

i.e. the residual dependence on the ir
  from the iσ

  is explicit. With this the scaled net force on 

the virus f


 and dilatation force g  are given by 
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, , ,

,
1 N

N
1

i i
i 1 X r r

Uf F
R Φ

ε Θ−

=

∂ = = − ∂ 
∑





 






  (4.2.3) 

  
, , ,

.
1 N

N
0

i i i
i 1R X r r

Ug F Xs Θ
Φ =

∂ = − = ∂ 
∑



 

 





 



  (4.2.4) 

The kinetic energy K  of the virus is given by 

  
2N
i

i
i 1 i

pK
2m

Θ
=

=∑ . (4.2.5) 

Letting inc
i i ip m σ= − L  and ( )coh

i i i ip m r σ= − −  L , we obtain 

  ( ) ( )
N 2 2inc inc coh coh

i i i i i
i 1 i

1K p 2 p p p
2m

Θ•

=

 = + +  ∑   . (4.2.6) 

Consider the coh/inc cross-term; for a small cluster (say 100) of the million atoms in the virus. 

The coh
ip  in this cluster are in the same direction but the inc

ip  will have varying directions. Even 

if there is a small residual contribution from the cross-term of one cluster, it is likely that there is 

another to cancel it. With this we take the cross-term to be negligible. 

Letting 2 Xε Ω = −
 

 

L , we find that 

  coh 2 0 2 0
i i i i i

Pp m Xs s
m m

ΠΘ ε ε ε ΦΩ
 

= + ′ 



 

 

  + . (4.2.7) 

Note that the Π  contribution corresponds to motion along the 0
iXs




  direction while the Ω




 

contribution is a rotation about the COM; thus the Π  and Ω




 contributions are orthogonal. 

With this, and recalling that 0 0
i iXs s=




 , we obtain 
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( )

'

2coh 2 2N N 2icoh 2 4 02 4 2 0
i i i i i2 2

i 1 i 1i

p 1 PK m s s
2m 2 m m

ΠΘ Θ ε ε ε Φ Ω
= =

 
= = + 

 
∑ ∑







+ . (4.2.8) 

Cross-terms of P


 with Π  or Ω




 are dropped as the latter contributions are in many directions 

so that the i-sum makes them negligible. Note that cohK  is then independent of the residual 

variations in Γ  (i.e. those over-and-above that in P


, Π  and Ω




) so that the partition function 

Q  (see below) can be written as a configuration part (i.e. one dependent on R


, Φ  and X




)  

times exp( )cohKβ− . The incoherent part of K  can be written as 

  
( )2incN N 2iinc cohi

i i i
i 1 i 1i i

p
K p p

2m 2m
ΘΘ

= =

= = −∑ ∑   . (4.2.9) 

In the lowest order solution to the scaled Liouville equation as analyzed in Sect. 4.1, we have the 

following factor 

  
( )

( )
ˆ

, ,

incK V

inc

e

Q R X

β

ρ
β Φ,

− +

=


 

, (4.2.10) 

  ( )expinc 6 N incQ d K VΓ∆ β = − + ∫ , (4.2.11) 

where ∆  is a product of delta functions of R


, Φ  and X




 centered around their Γ -dependent 

values.  As inc coh
i i ip p p= −    and coh

ip  is ( )O ε , ˆ Pρ∂ ∂


, ρ̂ Π∂ ∂ and ρ̂ Ω∂ ∂




 are zero. 

  

4.3 Derivation of the Fokker-Planck equation of Order Parameters 

With the N-atom probability density ρ  taken to have the dependence 

( ); , , , , ,0P R t tρ Γ Π Φ
 

 with { }, , ,1 1 N Np r p rΓ ≡    

 , we introduce a set of scaled times 

, , ,2n
nt t n 0 1ε= =  . With this and the chain rule, the Liouville equation takes the form 
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 ( )2n 2
0 1

nn 0
t
ρε ε ρ

∞

=

∂
= +

∂∑ L L  (4.3.1)   

 
N

i
0 i

i i ii 1

p
F

m r p
• •

=

 ∂ ∂
= − + 

∂ ∂  
∑





 

L  (4.3.2)   

 1
P f g
m R P m

∂ Π ∂
∂ ∂Φ Π

• •
∂ ∂

= − − − −
′∂ ∂





 L . (4.3.3) 

The operators 0L  and 1L  arise from the chain rule in the course of accounting for the direct and 

indirect dependence of ρ  on Γ ; therefore these operators only have meaning when acting on 

ρ  in its present form as a function of both Γ  and the order parameters. 

 At first sight one might suggest choosing the relative variables ,i isπ   of Sect. II for the viral 

atoms to express 0L  and 1L  and develop the theory, rather than the ,i ip r   defined in the 

laboratory frame as used here. However, 
N

i i
i 1

0π Θ
=

=∑


  and 
N

i i i
i 1

m s 0Θ
=

=∑


 . This implies that the 

{ }, ;i i is 1π Θ =   do not constitute a set of independent variables. In contrast, the ,i ip r   are 

independent. While the order parameters depend on Γ , the partial derivatives of ρ  with 

respect to the ,i ip r   at constant order parameters in 0L , and conversely for derivatives in 1L , 

only reflect the use of the chain rule to account for the direct and indirect dependencies of ρ  on 

Γ . It does not constitute a validation of the number of degrees of freedom. In contrast, ignoring 

the fact that the iπ
  and is  are not independent variables would introduce a violation of the 

number of degrees of freedom. 

 Development of the theory proceeds by constructing a perturbative solution for ρ , i.e.  
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 2n
n

n 0
ρ ρ ε

∞

=

=∑ . (4.3.4) 

To lowest order, with the assumption that 0ρ  is independent of the microscopic time 0t , we 

arrive at 0 0 0ρ =L ; this implies that the biological phenomena of interest have quasi-equilibrium 

character (e.g. we are not interested in processes on the 10-12 sec timescale). The nanocanonical 

quasi-equilibrium solution of this equation is found to be 35 

 
( ) ( ) ˆ, , , ,

, ,

0H

0
e W P R t W

Q R

β

ρ Π Φ ρ
β Φ

−

= ≡
 


. (4.3.5) 

This illustrate the multiple dependencies on Γ , i.e. direct and indirect through 0H , and 

indirectly through the order parameters appearing in Q  and W . The reduced distribution W can 

be shown to be the average of the microscopic density ( ) ( ) ( ) ( )p P r Rδ δ δ π − Π δ φ −Φ− −
 

   

for the lowest order N-atom distribution 0ρ . The variables , , ,p r π φ   are particular values of the 

dynamical variables P


, R


, Π , Φ  but are not dynamical variables (i.e. Γ -dependent 

quantities themselves). In contrast, 

 *, , ,

N
0

i i i iN N N
2 0i i i 1

i i i i i i N
02i 1 i 1 i 1

i i i
i 1

m s Xs
m rP p R Xs
m m s

ε ε Π ε π Φ
•

=

= = =

=

Θ
≡ Θ ≡ Θ ≡ Θ ≡

Θ

∑
∑ ∑ ∑

∑






 





  

   . (4.3.6)   

The ,r φ -dependent partition function Q is given by 

 ( ) ( ) ( ), , ,0H6 NQ r d r R e ββ φ Γ δ δ φ −Φ −= −∫


   (4.3.7)   

 
( ) ( ), ; ,

2N inc
i

0 i 1 N
ii 1

p
H U R r r

2m
Θ Φ

=

= +∑ 

 

 , (4.3.8)   
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where inc
ip  is defined in terms of the ip  and the order parameters of (4.3.6) in (A.9). 

 To O(ε 2) the Liouville equation implies 

 0
0 1 1 0

1t t
ρ

ρ ρ
∂∂ − = − + ∂ ∂ 

L L , (4.3.9)   

where we drop the 0 on  for simplicity henceforth. Assuming that initially ρ  is 

near-equilibrium, 
1

ρ  can be taken to be zero at t 0= . With this, the O(ε 2) equation admits the 

solution 

 ( ) ˆˆ0
t

t t
1 10 1

Wdt e W
t

ρ ρ ρ′−  ∂′= − + 
∂  

∫ L L . (4.3.10)   

Applying 1L  and noting that ˆ
0 0ρ =L  yields 

 ( )ˆˆ 0
t

t t
1 01

W Pt dt e f g W
t m R P m

∂ Π ∂ρ ρ ρ
∂ ∂Φ Π

• •
′−∂  ∂ ∂ ′= − − + + + ′∂ ∂ ∂ ∫




 

L . (4.3.11)   

The statistical mechanical postulate “the longtime and ensemble averages for equilibrium 

systems are equal” implies 

 ˆlim 0
0

t 6 N th
t t

1 dt e A d A A
t

Γ ρ′′−

→∞ −
′′ = ≡∫ ∫L  (4.3.12)   

for any dynamical variable ( )A Γ . Changing variables via t t t′′ ′= −  in (4.3.11), it is found that 

removal of the secular behavior in 1ρ  at large t  implies 

 th th

1

W P f g W
t m R P m

∂ Π ∂
∂ ∂Φ Π

• •
 ∂ ∂ ∂

= − + + + ′∂ ∂ ∂ 





  , (4.3.13)   

where thf


 and thg  are the ρ̂ -weighted thermal average quantities and the equivalence of long 
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time and thermal averages have been assumed. With this 

 ( ) ( ) ( )ˆ
'

0
t

t t th th
1 0

Pdt e f f g g W
m P m

Πρ ρ β β
Π

′−   ∂ ∂  ′= − − + + − +    ∂ ∂  ∫


 



L
 . (4.3.14) 

Note that the use of the long time/ensemble average equivalence avoids the traditional use of the 

integration of the Liouville equation over Γ  which both erases ambiguities (i.e. do not include 

the Γ -dependence in the order parameters) and insures that all secular behavior in ρ  is 

removed, not just that in a reduced distribution. This completes the ( )O 2ε  analysis. 

 To ( )O 4ε  one finds 

 0 1
0 2 1 1

2 1t t t
ρ ρρ ρ∂ ∂ ∂ − = − − + ∂ ∂ ∂ 

L L .  (4.3.15) 

Again with 2 0ρ =  at t 0= , we find 

  ( ) ˆ0
t t t 1

2 1 10
2 1

Wdt e
t t

ρρ ρ ρ′−  ∂ ∂′= − − + ∂ ∂ 
∫ L L . (4.3.16) 

Removal of the secular behavior in 2ρ  at large t  implies 

  

.

ff fg
2

gf gg

W P
t P m P P m

P W
m P m

Πγ β γ β
Π

Πγ β γ β
Π Π Π

•

•

  ∂ ∂ ∂ ∂ ∂ = + + +    ′∂ ∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂ + + + +    ′∂ ∂ ∂ ∂   





 

  







 (4.3.17) 

 The friction tensors are given by 
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( ) ( )( )

( ) ( )( )

( ) ( )( )

( ) ( )( )

,

,

,

,

,

,

,

, , , .

0 th th th
ff kl k l k l

0 th th th
fg k k k

0 th th th
gf k k k

0 th th th
gg

dt f 0 f t f f

dt f 0 g t f g

dt g 0 f t g f

dt g 0 g t g g

k l 1 2 3

γ

γ

γ

γ

−∞

−∞

−∞

−∞

 ≡ −
 
 ≡ −
 
 ≡ −
 
 ≡ −
 

=

∫

∫

∫

∫

 (4.3.18) 

Thus the friction coefficients are related to force correlation functions as expected. 

 Letting 
1

tτ =  we recompose the above results43 to obtain a FP equation for the reduced 

distribution of viral order parameters ( ), , , ,W P R tΠ Φ
 

 as: 

  

••

.

th th

2
ff fg

gf gg

W P f g W
m R P m

P
P m P P m

P W
m P m

Π
τ Φ Π

Πε γ β γ β
Π

Πγ β γ β
Π Π Π

•

•

∂  ∂ ∂ ∂ ∂ 
= − + + + + ′∂ ∂ ∂ ∂ ∂ 
 ∂  ∂  ∂ ∂ + + +    ′∂ ∂ ∂ ∂  

∂  ∂  ∂ ∂ + + + +    ′∂ ∂ ∂ ∂   





 





 

  







 (4.3.19) 

In this FP equation the COM and ST order parameters are coupled in three ways. The 

thermally-averaged forces thf


 and thg  depend on R


 and Φ  (except for a virus in an 

otherwise uniform medium wherein there is only Φ -dependence). Coupling is also provided 

through the R


, Φ -dependence of the friction coefficients. The cross-friction coefficients fgγ  

and gfγ  provide additional coupling. However, for a virus in an isotropic medium, fgγ  and gfγ  

vanish because the thermal average of any vector (e.g. ( ) ( )( )th
f 0 g t


) is zero for an isotropic 

system. 

To deduce some of the implications of (4.3.19) for viral STs, consider an isolated virus in an 
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isotropic medium, and that the viral COM momentum is at equilibrium. In this case 

( )exp 2
CMW W P 2m Qβ= −  where CMQ  insures normalization for the COM part of W . In 

this case, the reduced order parameter distribution ( , , )W Π Φ τ  satisfies 

  th 2
gg

W g W W
m m
Π Πε γ β

τ Φ Π Π Π
∂ ∂ ∂ ∂ ∂   = − + + +  ′ ′∂ ∂ ∂ ∂ ∂   



  , (4.3.20) 

as can be verified upon substituting the product solution for W  in (4.3.19). Let ln Q Fβ= −  for 

Φ -dependent free energy F . Then thg F Φ= −∂ ∂  from which we see that (4.3.20) has the 

equilibrium solution that is proportional to ( )exp 2 2m Fβ Π ′− +  . Note that Π  ranges over 

all positive and negative values, while Φ  is strictly positive and F →∞  as 0Φ →  (as 0Φ =  

represents a virus wherein all atoms are at the COM). 

  

4.4 Transition State Theory 

In this section, TS theory for obtaining approximate solutions to the FP equation (4.3.20) in 

the inertial limit and estimating the free energy barrier of viral STs with their free energy profile 

sketched in Figure II.1 is presented as below. The TS ansatz is designed for the case where the 

barrier height is much greater than BTk . Thus the system resides for an appreciable time in a 

given free energy well, and one may thus define a viral state as the subset of detailed slow 

variable configurations residing within the well. TS theory can be used to compute the evolving 

statistics of the subset of viruses whose state resides within a given well. 
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Figure II.1 (a) a double well free energy profile F  vs. Φ  implied by the hysteresis in NωV 
capsid ST and (b) the associated probability distribution W  vs. Φ . 

 

 As suggested in Figure II.1, the value of Φ  in the TS is cΦ , the location of the barrier 

separating the left (− ) and right ( + ) wells. To start the analysis, define the total probabilities 

W±
  of occupation of the (− ) and ( + ) wells via 

  ( ) ( , , )c

0
W d d W

Φ
τ Φ Π Π Φ τ− = ∫ ∫  , ( ) ( , , )

c

W d d W
Φ

τ Φ Π Π Φ τ
∞

+ = ∫ ∫  . (4.4.1) 

Integrating (4.3.20) over Φ  from cΦ  to ∞  (and similarly from 0 to cΦ ) and over all Π  

yields 

  ( , , )c
dW d W
d m

ΠΠ Π Φ τ
τ
± = ±

′∫


 . (4.4.2) 

In obtaining (4.4.2) we used the fact that because F  →∞ as 0Φ →  or ∞ , the probability of 

finding a virus in such extreme configurations is zero, i.e. ( , , ) ( , , )W 0 W 0Π τ Π τ= ∞ =  .  

According to TS theory, in the right well W  is essentially an equilibrium distribution and 

hence is proportional to ( )exp 2 2m Fβ Π ′− +  ; therefore the W -weighted average of Π   

is zero in the well, showing that there is no contribution to dW dτ+
  except from a small 
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region of Φ  near cΦ . The TS ansatz for ( , , )W Π Φ τ  is developed as follows. When the 

barrier is much higher than BTk , the two domains (Φ  to the left or right of cΦ ) act as if they 

were independent; hence W  is essentially its equilibrium value for the left and right wells 

independently. Only infrequently is the barrier surmounted. Thus W  is proportional to 

( )exp 2 2m F Zβ Π
−

 ′− +   for cΦ Φ<  and ( )exp 2 2m F Zβ Π
+

 ′− +   for cΦ Φ> , 

where 

  ( )2c 2m F

0
Z d d e

Φ β ΠΦ Π ′− +
− = ∫ ∫ , ( )2

c

2m FZ d d e β Π

Φ
Φ Π

∞ ′− +
+ = ∫ ∫ . (4.4.3) 

With this and the definition of W±
  in (4.4.1), the proportionality constants are determined and 

we obtain 

  

( )

( )

exp ,

exp , .

2
c

2
c

W
2m F

Z
W

W
2m F

Z

β Π Φ Φ

β Π Φ Φ

−

−

+

+


 ′− + <  


= 
  ′− + > 








 (4.4.4) 

However, near cΦ  infrequent barrier-crossing takes place. The TS theory suggests that at cΦ  

the right-going viruses are predominantly coming from the left near-equilibrium well, and vice 

versa. Thus 

  ( / )( , , ) ( ) ( )
2

c2m F
c

W WW e
Z Z

β ΠΠ Φ τ θ Π θ Π′− + − +

− +

 
= + − 

 

 

 , (4.4.5) 

  ( ) { ,
, ,

0 x 0x 1 x 0θ <= >  (4.4.6) 

and cF  is F  evaluated at cΦ . With this ansatz, (4.4.2) becomes  
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where 

  2
1 2

m
ω

πβ
 

=  ′ 
, (4.4.8) 

  c F

0
Y d e

Φ β∆Φ −−
− = ∫ , 

c

FY d e β∆

Φ
Φ +

∞ −
+ = ∫ , (4.4.9) 

  F F F∆ ± ±= − , (4.4.10) 

where F−  and F+  are F  evaluated at the minimum of the left and right well respectively. 

The superscript c  on cF∆
±

 indicates evaluation at cΦ . The quantity ω  is the thermal 

average of mΠ ′  and hence has dimensions of sec-1. As W W 1+ −+ =  , a second equation for 

W−
  is not needed. Recalling that 2tτ ε= , one should add a factor *2 m mε =  to the RHS of 

(4.4.7) to get dW dt+
  ( 2dW dε τ+=  ). 
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Chapter 5 Molecular Dynamics/Order Parameter eXtrapolation (MD/OPX) 

5.1 Characteristics of Order Parameters 

Newton’s equations and statistical considerations can be used to argue that the order 

parameters kΨ


 constructed in Sect. 3.4 evolve slowly, i.e., on a timescale longer than the 

10-14-second timescale of fast atomistic vibrations and collisions. As i i ids dt p m=   for 

momentum ip  of atom i, from Eqn. (3.4.6) one has  

  
( )3 0

1

,

.

k k

N

k k i i
i

d
dt Nm

L U s p

Π

Π
=

Ψ
=

≈ ∑

 



 

 (5.1.1) 

While kΨ


 has a sum of N atoms many of which have similar directions due to the smooth 

variation in kU  with 0
is , the momenta have fluctuating direction and tend to cancel near 

equilibrium. Hence thermal average of kΠ


 is small and hence kΨ


 tend to evolve slowly and 

the ratio of the characteristic time of kΨ


 to that of fast atomic vibrations and collisions should 

be on the order of the number of atoms in the system, i.e., O(N).  

To demonstrate the slowly-varying characteristics of order parameters, 33 order parameters 

generated with Legendre polynomials of order (0, 1, 2) in X, Y, and Z directions for the 1ns MD 

simulation output trajectory of the swollen CCMV capsid (refer to Chapter 7 for simulation 

details) are plotted versus time. Figure II.2a shows time courses of the capsid order parameters 

labeled with indices (1, 0, 0) in the X-direction, (0, 1, 0) for Y and (0, 0, 1) for Z (X100, Y010 and 

Z001), reflecting an isotropic shrinkage of the capsid. The order parameters vary slowly and can 
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be readily extrapolated to long time on a timescale of ns. Other order parameters shown in Figure 

II.2b are seen to fluctuate rapidly around zero over 1ns. A closer look at these order parameters 

from 60ps to 100ps (Figure II.2c) shows that their values are comparatively stable on a timescale 

of 10ps, which implies their characteristic time periods are 10ps or longer. This means that all the 

order parameters display much less stochastic behavior than do individual atoms and have much 

longer characteristic time than the 10-14 second timescale of fast atomic vibrations and collisions 

as expected; thus the order parameters satisfy one of the criteria for the applicability of MD/OPX. 

The origin of the OP fluctuations in Figure II.2b is likely that they indicate the elastic vibrations 

of the capsid in free space. We expect that when the capsid is placed in an aqueous medium, 

frictional effects will dampen these fluctuations so that the higher order order parameters have 

longer characteristic time and can also be extrapolated over larger time intervals. 

 

 
(a) 
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(b) 

 
(c) 

Figure II.2 Time courses of CCMV capsid order parameters corresponding to Legendre 
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polynomials in the X, Y, and Z directions of the MD simulation: (a) three order parameters 
labeled with indices (1, 0, 0) in the X-direction, (0, 1, 0) for Y and (0, 0, 1) for Z (X100, Y010 and 
Z001) reflecting an isotropic shrinkage of the capsid can be readily extrapolated to long time on 
a timescale of ns, (b) other order parameters fluctuating rapidly around zero over 1ns and (c) a 
closer look at them from 60ps to 100ps showing that their characteristic time is roughly 10ps. 

 

Another feature of order parameters is identified by investigating the coherent and residual 

contributions to the atomic configuration along its simulated trajectory. Figure II.3 shows a 

snapshot of the CCMV capsid after 1ps MD simulation with atomic coordinates given by their 

coherent coordinates plus the residuals. Similar to the results presented in Part IV.2, the coherent 

coordinates calculated with 33 order parameters are found to reflect overall capsid structure with 

the residuals close to zero. This suggests that the slow collection motions in viral STs are captured 

with coherent coordinates computed through the slowly-varying order parameters while the fast 

motions including atomic vibrations and collisions are accounted for by the rapidly-fluctuating 

residuals. 

 

 
Figure II.3 A snapshot of the CCMV capsid after 1ps MD simulation showing that the atomic 
coordinates are equal to their coherent contribution plus small residuals. 

 

= + 
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5.2 MD/OPX Approach 

In the above section, the order parameters automatically constructed with orthogonal basis 

functions of atomic variables are shown to evolve on timescales much larger than the 

10-14-second fast atomic vibrations and collisions based on both statistical analysis of Newton’s 

equations and calculations on output atomic trajectories of viral molecular dynamics simulations. 

AMA of dynamical nanosystems [11, 102] demonstrates the existence of a stochastic 

(Fokker-Planck or Smoluchowski) equation and equivalent Langevin equations for the dynamics 

of order parameters kΨ


. In this section, we will present MD/OPX, a computational approach to 

solving the Langevin equations of order parameters implicitly without the need to construct the 

thermal-average forces and friction coefficients. 

Since an MD simulation generates the evolution of the all-atom configuration of a 

nanostructure, it yields our order parameters via Eqn. (3.4.5). In a small time interval tδ  (e.g., 

100 MD timesteps), an MD code output can be used to generate ( )k t tδΨ +


. Then, the change 

( ) ( )k kt t tδΨ + −Ψ
 

 divided by tδ  represents the deterministic part of the Langevin dynamics. 

With this, one approximates ( )k t tΨ +∆


 for a timestep t∆  via 

( ) ( ) ( ) ( )k k k kt t t t t t t tδ δ Ψ + ∆ ≈ Ψ + ∆ Ψ + −Ψ 
   

, where t tδ∆ >>  but smaller than the 

characteristic time for OP dynamics. In this way, one may advance kΨ


 via a sequence of dual 

( tδ , t∆ ) cycles. We use Eqn. (3.4.4) to reconstruct the all-atom configuration after the OP 

advancement to t t+ ∆ , taking the residual iσ
  to be its value at t tδ+ . We justify the use of 

( )i t tσ δ+ to approximate ( )i t tσ + ∆  because we find that (1) with a sufficient number of basis 
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functions kU  chosen the iσ
 are small and (2) various ways (e.g. energy minimization and short 

MD run) can be used to “anneal” them to be consistent with states of nanostructures likely to 

appear under biological conditions. The flowchart in Figure II.4a shows the above dual timestep 

MD/OPX algorithm. Starting from a PDB structure, an initial minimization and an initial MD run 

are applied before MD/OPX cycling commences.  

 
(a) 

 
(b) 

Figure II.4 Schematic flowchart of MD/OPX (a) and its implementation with dynamic adaptive 
run parameter adjustment (b): energy minimization and a short δt0 MD run are applied to anneal 
the simulated all-atom structure after OPX and run parameters (notably δt and ∆t) are adjusted 
dynamically according to structural and dynamic indicators to optimize the balance between 
program accuracy and CPU speed. 
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A variety of steps were taken to optimize and stabilize the MD/OPX simulations. First, the 

OPX over t∆  deforms all space continuously. This can lead to unphysical atomic structures, 

such as stretched bonds, unreasonable bond angles and dihedrals, close/overlapping atoms, etc. 

Thus we perform an energy minimization and a short MD run to anneal these unphysical 

structures after obtaining the all-atom structure that is generated from extrapolated order 

parameters. Next we implement an adaptive cycling. Simulation parameters including tδ , t∆ , 

the amount of energy minimization steps and the length of the short MD run ( )0tδ  for structure 

annealing are adjusted dynamically during program running to optimize the balance between 

accuracy and CPU speed. Total forces on atoms of the simulated structure are loaded and atomic 

accelerations are calculated as indicators of the unphysical structures after OPX. Specifically, the 

average atomic acceleration of the evolving structure after OPX and the maximum atomic 

acceleration after energy minimization are used as the indicators for on-the-fly parameter control. 

If the indicators are within the chosen boundaries, our code increases t tδ∆  ratio by a factor of 

1.1 to accelerate the simulation. If they are beyond the critical values, the t tδ∆  ratio is 

decreased by a factor of 0.5. The difference between the acceleration and deceleration feature was 

found to stabilize and optimize the overall algorithm. The objective of our adaptive procedure is 

to dynamically seek the optimum – i.e., to minimize the total CPU time for a given biological 

time by varying the run parameters. The final flowchart for adaptive MD/OPX is shown in Figure 

II.4b. 

Several cautionary notes are in order. The deterministic forces of the Langevin equations 
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contribute to kΠ


 (associated momenta of kΨ


) to order t∆ , while the random forces contribute 

to order 1 2O( )t∆ . Thus, the cumulative effect of the random Langevin force can be 

overestimated by the MD/OPX scheme. This difficulty is overcome by proper choice of tδ  and 

t∆ . Another source of error is that tδ  might not be large enough. If tδ  is too short, this would 

in effect violate the assumed equivalence between the long-time and ensemble averages on which 

our derivation of the Langevin equations is based [11]. We address this by performing 

simulations to determine an acceptable tδ , for which results become insensitive to further tδ  

increases. Thus tδ  cannot be too short, but the extrapolation scheme requires that tδ  also be 

short relative to the characteristic time for which the order parameters change appreciably. Thus, 

one must make use of the adaptive choice of tδ  and t∆  provided in MD/OPX to achieve an 

acceptable balance between accuracy and efficiency. 

 

5.3 MD/OPX Implementation and Optimization 

While Figure II.4 shows the flowchart of MD/OPX for simulating nanostructures in vacuum 

(i.e., gas phase) [12, 13], modules have been developed to account for water molecules and ions 

for simulating nanostructures solvated in host media. Figure II.5 shows the workflow of 

MD/OPX, which is presently implemented by using NAMD[75] as the MD platform. VMD is 

used for “solvation” and “resolvation” of simulated nanostructures and analysis of output 

trajectories. 
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Figure II.5 Schematic flowchart of MD/OPX implemented by using NAMD and VMD as the 
platform for simulating nanostructures in vacuum or solvated in host media. Modules 
highlighted in bold are needed for simulations of nanostructures in host media. 
 

MD/OPX starts with an initial structure that can be determined from X-ray crystallography, 

NMR spectroscopy, and cryoEM. For system preparation, the structure is solvated in water and 

neutralized under certain pH and ionic strength if needed by using VMD. The resulting system 

along with its structural topology is then taken as input to NAMD for initial energy 

minimization and equilibration, after which the simulation is performed in MD/OPX cycles 

until it reaches the end of specified time. In each MD/OPX cycle, short MD run(s) are used to 

generate the time evolution of atomic configuration of the system. With several snapshots 
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chosen from the system trajectory, nanostructure without water molecules and ions is extracted 

for calculating the structural order parameters (Sect. 3.4) and therefore estimating their rates of 

changes, i.e., time derivatives, which are then used to extrapolate order parameters over long 

time. The nanostructure atomic configuration is then reconstructed from newly obtained order 

parameters. A Fortran program was written to read NAMD output all-atom structures, calculate 

the resultant order parameters by solving Eqn. (3.4.5), extrapolate the order parameters for t∆ , 

generate an atomic configuration at t t+ ∆  with the extrapolated order parameters. The resulting 

all-atom structure is resolvated in the host medium that keeps the same number of water 

molecules and ions without change in the system structural topology. Energy minimization and 

MD thermalization are applied to the resulting system before running short MD for another 

cycle. 

In the “resolvation” module, the OPX resulting nanostructure is first put back to the host 

medium by using the final configuration of one short MD run, which keeps the same number of 

water molecules and ions (i.e., same system structural topology) as needed for continuing the 

simulation in NAMD. Water molecules and ions that are within a certain distance of the 

nanostructure (denoted ds) are removed and then redistributed as follows since many of them 

may overlap with the nanostructure or be embedded in it. First, a water box that is large enough 

to solvate the nanostructure with at least a water boundary of ds (3403 Å3 for simulation of 

CCMV capsid swelling) is prepared and equilibrated under 298.15K and 1atm by running MD 

for 100ps. With the nanostructure placed in the center of the equilibrated water box, the 

coordinates of water molecules, which are selected as within ds and not overlapping with the 
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nanostructure, are retrieved to replace those of the above removed water molecules and ions. 

Note that the number of the retrieved water molecules may not be exactly the same as that of 

the needed for redistribution due to the water density difference between the two systems. Thus 

ds is adjusted iteratively by small increments for selecting water molecules in the equilibrated 

water box until they are enough for the redistribution of the removed water molecules and ions. 

The ions are moved to positions that are nearest to their original ones and the overlapping water 

molecules are removed. This generates the final configuration that has no overlapping between 

the nanostructure and host particles, and maintains local density and pressure of the host 

medium. 

Our MD/OPX implementation greatly enhances the utility of standard MD codes for large 

bionanosystem applications. Options provided by MD/OPX include: (1) adaptive choice of tδ  

and t∆ , (2) different types of basis functions kU , (3) automated choice of the number of order 

parameters, and (4) compute kΨ


 at the beginning and end of the tδ  MD interval and use them 

for simple Euler extrapolation,  or compute kΨ


 multiple times during the tδ  MD interval and 

then smooth the kΨ


 profiles via least squares fitting to better estimate kd dtΨ


 for carrying out 

the extrapolation to t t+ ∆ .  

MD/OPX has also been optimized by (1) averaging a set of short replica MD runs with 

random atomic velocity initializations to compute ensemble-average rates of change in order 

parameters, which allows larger timestep for extrapolation, (2) updating the reference 

configuration for constructing system order parameters at a certain frequency such that the 

latest collective motions of the structure can be effectively captured, (3) improving the maturing 
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of OPX resulting structure by applying energy minimization, graduate heating, and short-time 

MD equilibration before running short replica MD bursts for OPX, and (4) choosing optimal 

OP timestep for extrapolation and atomic acceleration indicators to evaluate the OPX resulting 

structure to achieve adaptive variation of MD/OPX parameters. 
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Part III. Results and Discussion 

Overview 

In this part, methods developed in Part II are used to study viral structural transitions, 

notably in NωV and CCMV. In Chapter 6, the transition state theory derived from the 

multiscale viral dilatational structural transition model is applied to NωV capsid, for which the 

free energy barrier of its structural transition from the capsid immature form (procapsid) to the 

mature capsid is estimated roughly [9]. In Chapter 7, MD/OPX is demonstrated on CCMV 

capsid with a 1ns simulation of the capsid swollen state analyzed quantitatively and the results 

are shown to agree well with those of a direct MD simulation[12]. After the demonstration, 

MD/OPX is applied to the shrinkage of swollen CCMV capsid in vacuum in Chapter 8. 200ns 

MD/OPX simulation of the swollen state of CCMV capsid reveals that it undergoes significant 

energy-driven shrinkage, which is a symmetry-breaking process involving local initiation and 

front propagation [13]. In Chapter 9, with modules added to account for water molecules and 

ions, MD/OPX is applied to the swelling of native CCMV capsid solvated in host media [14]. 

Simulation results show that the N-terminal arms of capsid proteins undergo fast fluctuations 

during early stage of the simulation and their structural changes trigger global expansion of the 

capsid. Swelling of CCMV capsid is also a symmetry-breaking process involving local 

initiation and front propagation. Prospects for using our simulation predictions to guide 

experiments are discussed. 
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Chapter 6 Application of Transition State Theory to NωV Capsid 

6.1 Hysteresis, Irreversibility and the Free Energy Profile in Viral Structural Transitions 

Hysteresis of capsid assembly/disassembly in hepatitis B virus (HBV) has been observed 

and studied with a chemical kinetic model [125]. CCMV capsid undergoes a pH and metal ion 

dependent reversible swelling transition between close native and open swollen forms [1, 15, 18, 

39, 40, 45]. This expansion is reversible and titration experiments revealed that it involves 

hysteresis at low salinity (I=0.2M) [126]. Hysteretic effects have also been found in the 

maturation of NωV [41]. NωV undergoes large conformational changes from a procapsid form 

(480 Å in diameter) to a compact capsid form (410 Å in diameter) when pH is decreased from 

7.6 to 5.0. The transition takes less than 100 ms and is accompanied by a slow autoproteolysis 

(taking hours) corresponding to the cleavage of 70 kDa coat proteins to 62 kDa and 8 kDa 

proteins. The conformational rearrangement is initially reversible until about 15% of the 

cleavage events are completed, at which point the particles are locked into the capsid 

conformation, regardless of pH [10, 47, 48]. A further study on a cleavage-defective mutant 

(N570T) of NωV showed that the transition from procapsid to capsid in the mutant is reversible, 

and that the reverse process is much slower, with some capsids never reexpanded after 4 days of 

dialysis against pH 7.6 buffer, and the reexpanded procapsids display slightly different 

properties than the original capsid, suggesting hysteresis but not complete reversibility in the 

transition [41]. Irreversible poliovirus conformational changes are found in receptor-mediated 

cell entry, during which its coat protein VP4 and the N terminus of VP1 are externalized. Two 
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putative cell entry intermediates (135S and 80S particles) are formed and they are both about 

4% larger than the native virions (160S particles) [7, 8, 43, 44, 46]. The viral receptor behaves 

as a classic TS theory catalyst, facilitating the ST from native virions to 135S intermediate 

particles by lowering the activation energy for the process by 50 kcal/mol [46]. 

 
Figure III.1 The cleavage-defective mutant of NωV undergoes hysteretic ST when pH in the 
host medium changes. The curve indicates values of Φ  for which the virus/host system’s free 
energy is a minimum.  
 

Hysteresis in the NωV ST implies that there are two structurally-distinct states of the virus 

for a given range of host pH. Such states correspond to free energy wells, suggesting a free 

energy landscape with double-well character. Viruses make transitions between fluctuating 

states defined by deep, local free energy wells. The residence time within a given well is 

determined by the intensity of thermal fluctuations, the mass and size of the virus, the number 

of states within the well and the height of free energy barriers that must be crossed in exiting 

the well. 

As suggested in Figure III.1, when pH changes in the host medium, an order parameter Φ  

(i.e. the relative overall size of the virus as defined in Sect. 4.1) of the cleavage-defective 
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mutant of NωV can make a hysteric transition between two states with distinct structures, i.e. 

residing within different free-energy wells. Underlying the transition is a double-well free 

energy profile as suggested in Figure II.1. In more complex systems, e.g. for HK97 

bacteriophage [49, 50], there are multiple wells in a multidimensional order parameter space 

and transitions between them. Even for systems supporting a single transition, there are likely 

several key order parameters so that a true picture of the ST must follow from an analysis of 

landscapes in higher dimensional order parameter space. A single order parameter model 

supporting two states with distinct structures implied by different ranges of Φ  is suggested in 

Figure III.1 along with the associated probability distribution. 

 

6.2 Free Energy Barrier of NωV capsid Structural Transition 

Time-resolved small-angle X-ray scattering (TR-SAXS) experiments show that the capsid 

ST during NωV maturation occurs on timescales in the range of 0.1 to 100 sec with the 

detection of a fast-forming intermediate in the transition [10]. To evaluate this in our 

formulation via TS theory, consider the purely forward contribution to (II.5.7) as recast in the 

form 

 ( )1 exp
2

c
2

B

dW F 1 W
dt Y T

∆ε ω+ −
+

−

 
= − − 

 





k
. (6.2.1) 

Several factors are seen from (6.2.1) to limit the rate of a viral ST: (1) a factor 1/2 as only 

viruses undergoing purely forward transitions at the TS contribute, (2) the 2ε  factor 

expressing the great size of a virus relative to a single atom (i.e. -6102ε ≈ ), (3) 



83 
 

exp c
BF T∆ − − k  expressing a free energy barrier effect, and (4) Y−  introducing entropic 

effects that account for the number of Φ  configurations collectively labeled the (− ) state in 

the left free energy well. 

The rate law (6.2.1) is in the form ( )dW dt k 1 W+ += −  . From the aforementioned 

experimental data, the rate coefficient k  varies from 10 to 0.01 sec-1. To use this data in 

estimating cF∆ − , we adopt the following assumptions. Y−  is the range of Φ  in the (− ) well 

for which c
BF T∆ − > k . As a crude estimate, we use the fact that a change in the radius upon 

transition is about 16% for NωV capsid and then take Y−  to be smaller than this, in particular 

1% of the capsid radius, i.e. 0.01Y
−
≈ . Using the carbon atom mass as typical for the average 

atom in the capsid, a capsid radius of 198 Å and * -6102 m mε = ≈ , m′  is given by (II.1.7), i.e. 

 
( )

-3 -1 2-10 -48 2
23 -1

12.01 10 kg mol 198 10 m = 7.73 10 kg m
6.022 10 mol

N
4 02 2

i i i
i 1

m m sε Θ ε
=

× ⋅′ ≡ ≈ × × × × ⋅
×∑ .(6.2.2) 

This yields 

 
1 2-23 2 -2 -1

13 -1
-48 2

2 1.38 10 m kg s K 298.15K = 1.84 10 s
7.73 10 kg m

1 2
2
m

ω
πβ π

   × × ⋅ ⋅ ⋅ ×
= ≈ ×  ′ × × ⋅   

. (6.2.3) 

Using this and (6.2.1) to evaluate cF∆ −  in kcal/mol, we have 

 
-1

-1 -1

10.86 kcal mol, = 10 s2ln
4186 J kcal 14.95kcal mol, = 0.01 s

c A
B 2

kN kYF T
k

∆
ε ω

−
−

= − ≈ ⋅ 
k . (6.2.4) 

The transition of native poliovirus (160S particle) to an infectious intermediate (135S 

particle) during cell entry is determined to have a free energy barrier of 30 kcal/mol without the 

cell receptor [46, 127]. Our calculations based on crude estimates show that the NωV capsid ST 
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has a lower free energy barrier and it depends on how we change the pH to induce the ST. 

When pH is lowered from 7.6 to 5.0, it occurs on 0.1 sec timescale with a free energy barrier of 

10.86 kcal/mol; with a less drastic pH change (pH lowered to 5.8 or 5.5 instead of 5.0), the ST 

occurs more slowly on a 100 sec timescale with a higher free energy barrier of 14.95 kcal/mol. 

The activation enthalpy for the poliovirus ST is known to be lowered by 50 kcal/mol in the 

presence of cell receptor and capsid-binding drugs for poliovirus are shown to inhibit the 

receptor-mediated ST through a combination of enthalpic and entropic effects. We suggest that 

viral STs must be understood in terms of free energy barriers and the entropics of viral states, as 

well as inertial effects (manifest in the ε2 factor in (6.2.1)). Inertial effects emerge from the 

large contrast in the mass of a whole virus, or one of its structural units, and that of an atom. 

This is one way in which the timescale of viral migration or overall structural change is much 

longer than that of individual atomic vibrations and collisions. However, there is also the effect 

of energy barrier crossing from one free energy well to another which implies that a virus 

resides in a given well for an extended time, only occasionally crossing the barrier separating 

wells where the virus experiences an unlikely thermal fluctuation. Finally entropics can also 

inhibit the rate of exiting a free energy well, i.e. a virus spends an extended period of time 

exploring many detailed configurations before making a ST. For example, this is why capsid 

assembly is much slower than disassembly. 

The TS estimate of the free energy barrier of NωV capsid ST provides an upper bound, i.e. 

the single order parameter model likely misses lower energy barrier pathways for a viral capsid 

transition. However, it can also be argued that an overall dilatational fluctuation could provide 
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more room for capsid structural units to translate and rotate relative to their neighbor units and 

thereby initiate a ST. In either case, the single order parameter model of Chapter 4 can be used 

as a baseline to interpret experimental results in terms of free energy barrier and entropic effects 

that can then be compared with estimates from more complete models. 

The AMA approach enables one to analyze viral STs from first principles and a calibrated 

interatomic force field. Our formulation can be generalized for multiple order parameter models 

to account for lower free energy barrier pathways for viral STs. The theory with its all-atom 

description can be applied to nonviral nanoparticles as well. 
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Chapter 7 MD/OPX Validation with CCMV Capsid Structural Transitions 

7.1 Background of CCMV and its Capsid Structural Transitions 

As reviewed in Chapter 1, CCMV is a member of the bromovirus group of the 

Bromoviridae family. Its genome consists of four positive-sense single-stranded RNA 

molecules, two of which are encapsulated separately in two virions and the remaining two form 

a third type of particle together. Because the purified RNA and coat protein of CCMV can 

reassemble in vitro to produce infectious virions, CCMV is an excellent system for studying 

protein-protein and protein-RNA interactions, which provide important information in the 

assembly and disassembly of icosahedral viruses, ribosomes and other bionanosystems. 

The crystal structure of wild-type CCMV was solved at 3.2Å resolution by X-ray 

crystallography[18]. Its capsid is comprised of 180 chemically identical protein subunits that 

form a 286Å diameter icosahedral shell displaying a T=3 quasi-symmetry. Each protein subunit 

is composed of 190 amino acids taking three quasi-equivalent positions on the capsid surface. 

As such, one asymmetric unit (i.e., protomer) of the capsid includes three subunits that are 

colored in blue for A, red for B, and green for C in Figure III.2. The icosahedral capsid can also 

be divided into 12 pentamers and 20 hexamers with 5 A subunits in each pentamer, and 3 B and 

3 C subunits in each hexamer. 

Like many plant viruses, the morphology and stability of CCMV is affected by conditions 

in the host medium (e.g. pH, temperature and ionic strength)[1, 18]. Native CCMV is stable in a 

compact form around pH 5.0. When pH is raised to 7.0 at low ionic strength (< 0.2 M) in the 
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absence of divalent cations, the capsid undergoes a 10% radial expansion at the quasi-threefold 

axes. In the expansion scheme proposed by Liu et al.[1], the swollen capsid (Figure III.2c) can 

be generated by taking the pentamers and hexamers through the following rigid-body changes 

from their native configurations: translate pentamers by 24Å radially and rotate them 

counter-clockwise by 9° around their 5-fold axes; and translate hexamers by 21Å radially and 

rotate them counter-clockwise by 8° around their 3-fold axes. This scenario provides a good test 

for our MD/OPX methodology. 

 
(a) 

 
(b)  

(c) 
Figure III.2 (a) Crystal structure of a CCMV protomer with its three quasi-threefold related 
subunits colored in blue (A), red (B) and green (C). (b) Native CCMV capsid organized in 12 
pentameric and 20 hexameric capsomers with 5 blue A subunits in each pentamer and 3 red B 
and 3 green C subunits in each hexamer. (c) The swollen CCMV capsid generated 
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computationally by rigid-body translations and rotations of the pentamers and hexamers 
according to the expansion scheme proposed by Liu et al.[1]. 

 

7.2 Order Parameters Capturing Capsomer Dynamics during CCMV Capsid Expansion 

To demonstrate the viability of our order parameters, 4 intermediate structures and the final 

swollen one were generated from native CCMV capsid equally distributed along its expansion 

path as described below. Order parameters generated with orthonormalized Legendre 

polynomials for the 5 atomic structures were calculated by setting the native capsid as the 

reference configuration. Results show that our structural order parameters are able to capture 

the nanoscale dynamics of the capsomers, i.e. radial translation and rotation around their 

symmetric axes, during the capsid expansion as follows. 

Starting from the native CCMV capsid, 5 steps were applied to transform the native capsid 

structure into the swollen structure with 4.8Å-translation and 1.8°-rotation for pentamers and 

4.25Å-translation and 1.6°-rotation for hexamers in each step. The inner shell view of the 5 

result structures are shown in Figure III.3 (a1) to (a5)). With these 5 atomic structures, we 

calculated the order parameters using Eqn. (II.5) and then the coherent contribution to their 

atomic coordinates, i.e., the first term on the RHS of Eqn. (II.4). These coherent structures 

generated with order parameters were compared with the 5 original structures to investigate the 

performance of the order parameters. 

Four sets of calculations were performed to evaluate the effects of varying the number of 

order parameters, notably 33, 43, 53 and 63. For n3 order parameters, Legendre polynomials of 



89 
 

order ( )0,1, , 1n −  in the X, Y and Z directions were used (see Sect. 3.4). Figure III.3 (b1) to 

(b5) show a sample set of structures visualized with the coherent contribution of atomic 

coordinates calculated from 33 order parameters. They are found to reflect the overall expansion 

of the capsid, although the openings formed around the quasi-threefold axes during the 

expansion are lost. As the number of order parameters is increased from 33 to 63, the calculated 

coherent structures become closer to their original atomic structures.  

 

 
(a1) 

 
(b1) 

 
(a2) 

 
(b2) 
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(a3) 

 
(b3) 

 
(a4) 

 
(b4) 

 
(a5) 

 
(b5) 

Figure III.3 (a1) to (a5) in the left column show the inner shell view of the 4 intermediate 
CCMV capsid structures and the final swollen one generated from the native capsid and (b1) to 
(b5) in the right column show their corresponding coherent structures calculated from 33 order 
parameters.  
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To focus on the translation and rotation of capsomers, one pentamer and one hexamer were 

extracted from the 5 capsid structures along the expansion pathway, as well as their coherent 

structures calculated from 33, 43, 53 and 63 order parameters. The center of mass (CM) positions 

of the protein subunits included in the pentamer from these structures were visualized in Figure 

III.4a, and similarly for the hexamer in Figure III.4b. In the figure, the black bead represents the 

COM position of the capsid, which stays at the origin for all structures; blue beads represent 

COM positions of the protein subunits in the chosen pentamer and hexamer extracted from the 

5 original capsid structures; while the red, green, cyan and purple beads correspond to the 

protein subunits from the 5 coherent structures calculated from 33, 43, 53 and 63 order 

parameters. Top view of the blue beads slightly off the symmetry axes of the pentamer and 

hexamer in Figure III.4 (a) and (b) shows their radial translation and rotation accompanying the 

capsid expansion. The trajectories of the other 4 sets of beads show that the translation of the 

pentamer and hexamer during the capsid expansion can be captured with just 33 order 

parameters (red beads) and the accuracy increases with the number of order parameters, and 

partial of the pentamer and hexamer rotation is captured with 53 (cyan beads) and 63 (purple 

beads) order parameters while it is not revealed with 33 (red beads) or 43 (green beads) order 

parameters. This can be explained by noting that CCMV capsid has 12 pentamers and 20 

hexamers and their total translation and rotation degrees of freedom (DoF) are both 96, which is 

smaller than 53 and 63, but greater than 33 and 43. When the number of order parameters is 

smaller than the total translation DoF of capsomers (i.e., preserved structural units defined here), 
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partial of the capsomer translation is captured and when the number of order parameters 

exceeds the translation DoF, the capsomer rotation starts to be captured. This suggests that our 

order parameters capture the ST dynamics when enough order parameters are used. The 

positions and orientations of beads in a coarse-grained model are in a sense a subset of our 

order parameters. However, as we construct our order parameters from the all-atom 

configuration of the nanosystem, universal interatomic force fields can be used for our 

MD/OPX simulations without recalibration of force field parameters as needed for 

coarse-grained models. Furthermore, our approach is free from assumptions on the identity of 

structural units, i.e. forces and energies dictate which structural units are preserved along the 

transition pathway. This greatly enhances the predictive potential of our methodology over 

coarse-grained phenomenological bead models. 

 

 
(a) 

 
(b) 

Figure III.4 Demonstration of using order parameters to capture the translation and rotation of 
a pentamer (a) and a hexamer (b) during the native CCMV capsid expansion: the black bead 
represents the COM position of the capsid, which stays at the origin for all structures; blue 
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beads represent COM positions of the protein subunits in the chosen pentamer and hexamer 
from the 5 original capsid structures; while the red, green, cyan and purple beads correspond to 
the protein subunits from the 5 coherent capsid structures calculated from 33, 43, 53 and 63 order 
parameters. 

 

7.3 Comparison of MD and MD/OPX Simulations on CCMV Capsid 

Even though the native CCMV capsid in an aqueous medium is known to undergo a 

swelling process in response to changes in host medium conditions, direct MD simulations 

show that when the N-terminal residues are omitted from the capsid proteins by only using the 

X-ray structure downloaded from PDB (ID: 1CWP), the native CCMV capsid does not undergo 

significant structural changes over 10ns in vacuum (see Sect. 8.1). To study the evolution of our 

order parameters of Sect. 3.4 and demonstrate our MD/OPX methodology, we started with the 

swollen CCMV capsid structure constructed as described above and then simulated its ensuing 

shrinkage in vacuum. For the MD/OPX simulation, Legendre polynomials of order (0, 1, 2) 

were used to generate 33 order parameters for capturing capsid shrinkage dynamics. 1000 

MD/OPX cycles were run with each cycle composed of 100 1fs-MD steps, i.e. tδ =100fs and 

one OPX of 900 equivalent MD steps, i.e. t∆ =1000fs. Results, including snapshots of the 

simulated trajectories, time courses of the capsid radii, root mean square deviation (RMSD) 

from the starting structure, individual order parameters and program timing are compared with 

those of a direct MD simulation as follows. 
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(a) 

 
(b) 

Figure III.5 Ribbon representations of the output structures of the swollen CCMV capsid after 
1ns simulation using MD (a) and MD/OPX (b). 

 

The structures after 1ns simulation using MD (a) and MD/OPX (b) are shown in Figure 

III.5. To quantitatively compare them, the profile of the average, minimum and maximum radii 

of the capsid backbone (the distance between one of the protein backbone atoms and the capsid 

CM) over time are presented in Figure III.6a. These radius values for MD/OPX and MD 

simulation are seen to be in good agreement. In both simulations, the average capsid radius is 

decreased from 141Å to about 136Å (i.e., by 3.5%). The contributions from MD and OPX to 

the overall capsid shrinkage in the MD/OPX simulation are computed as 85.2% for OPX and 

the rest 14.8% for MD (values are obtained through averaging over 1000 “MD-OPX” cycles). 

Given the fact that each MD/OPX cycle is composed of 100 1fs-MD steps and one OPX of 900 

equivalent MD steps, the capsid shrinkage captured by OPX (85.2%) is close to its simulated 

time portion (90%) and the contribution is significant. Note that the contribution from OPX to 

the bionanosystem dynamics in MD/OPX simulations is proportional to its simulated time 

portion, i.e., as the ratio of the OP timestep to the MD run time increases in each cycle, the 
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contribution from OPX becomes more significant. Figure III.6b shows time courses of the 

RMSD of atomic positions between the simulated CCMV capsid structure along the trajectory 

and its starting structure using MD and MD/OPX. There is only a small difference between the 

two curves. Both show that the RMSD is increased to about 6Å in 1ns and there is still an 

increasing trend at the end of the simulation, indicating the capsid will continue undergoing 

significant changes after 1ns. 

With the above comparison, predictions of the MD/OPX simulation for shrinkage of the 

swollen CCMV capsid in vacuum are found to agree well with those of MD. Finally, even 

though only 33 order parameters were used, the agreement was excellent. This shows that while 

the order parameters may not capture all the details, the residuals (see Eqn. II.4) retain the 

details lost by the order parameters. This suggests that completeness of the set of order 

parameters is not a concern as long as the residuals needed to correct the coherent dynamics are 

not too large. In the results cited above the residuals satisfy this criterion (see below). 

 
(a) 

 
(b) 

Figure III.6 Comparison of 1ns MD and MD/OPX simulations: (a) Time courses of the 
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average, minimum and maximum radii of the CCMV capsid backbone (b) RMSD of atomic 
positions between the simulated CCMV capsid structure along the trajectory and its starting 
structure. 

 

7.4 MD/OPX Performance 

Above simulations were run on the Big Red cluster at Indiana University with 64 IBM 

processors for parallel MD and 1 processor for the serial OPX code. Timing results show that 

about 0.097 seconds are needed for one MD step and 15 seconds for one OPX step. As a result, 

the OPX in each cycle is 372 times faster than the MD run for the 900 equivalent MD steps. For 

a 1ns simulation, MD/OPX is 9.76 times faster than direct MD.  

Because the overall speedup of MD/OPX over MD is directly proportional to the t tδ∆  

ratio, the above performance results can be improved by increasing the OP timestep. By using 

ten replica short MD runs with random atomic velocity initializations for OPX, the average OP 

timestep obtained from adaptive MD/OPX cycles can be largely increased to 60ps. However, 

additional energy minimization and short MD thermalization are needed to anneal the OPX 

resulting structure, which could downgrade the program running performance (see Sects. 5.3 

and 8.2). The present implementation of MD/OPX makes use of the Tcl scripting in NAMD. 

Atomic structures are transferred inefficiently via file saving and reading between NAMD and 

the Fortran OPX program. And for the adaptive procedure, forces on all atoms are loaded to 

calculate their accelerations as indicators redundantly. These can be avoided by integrating 

MD/OPX into the core code of NAMD so that the indicators used to judge the structure of OPX 

can be queried efficiently and less computation is expected for annealing the structure, i.e., 
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fewer energy minimization steps and shorter MD run. Also as the order parameters we 

constructed display different timescales (10ps to 1ns), multiple timesteps can be implemented to 

further optimize the procedure and a larger average timestep for order parameters can be 

obtained to accelerate the simulations. 
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Chapter 8 Viral Capsid Structural Transition Mechanisms Revealed via Long-time 

MD/OPX Simulation 

8.1 Insights into CCMV Capsid Stability through Short-Time MD Simulations 

To identify key elements for carrying out long-time MD/OPX simulation of CCMV capsid, 

NAMD was firstly implemented to run short-time MD simulations (10ns) on its native and 

swollen states for insights into their structural stability. VMD[128] was used to create the capsid 

structural topology and NAMD[75] was implemented to simulate the native and swollen states 

of CCMV capsid in vacuum by using CHARMM22 force field [129, 130] for capsid proteins. 

Both simulations started with an initial energy minimization for 10,000 steps using the 

conjugate gradient algorithm, with which the system potential energies decrease to local 

minima and stay constants. Two energy-minimized structures were then gradually heated to 

298.15K and equilibrated under this temperature for 20ps. Product MD runs capturing 10ns 

dynamics of the two capsid states were obtained to investigate their stability. A 

multiple-time-stepping algorithm[75] was employed for the MD simulations: bonded 

interactions were computed for every timestep, short-range nonbonded interactions every two 

timesteps and long-range electrostatic interactions every four timesteps. 

With 10ns MD trajectories of the two structures obtained, frames taken for every 0.1ns were 

superimposed to their simulation starting configurations respectively to remove overall 

translation and/or rotation of the capsid. Then change in the capsid size was analyzed by 

calculating the decrement of capsid average radius, i.e., the average distance of non-hydrogen 
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atoms in capsid backbone to their center of mass (COM), from their initial values. The 

calculation results plotted in Figure III.7a show that the native state of CCMV capsid shrinks 

during the first 3ns of simulation with its average radius decreased by 4.6Å and becomes stable 

afterwards, while its swollen state shrinks much more significantly with the capsid average 

radius decreased by 11.8Å along the trajectory and still keeps shrinking at the end of the 

simulation at 10ns.  

 

 
(a) 

 
(b) 

Figure III.7 10ns MD simulation of the native and swollen states of CCMV capsid: (a) time 
courses of the decrement in capsid average radius from their initial structures and (b) RMSD of 
atomic positions between their trajectory snapshots and the initial structures. 
 

Structural changes in two states of the capsid can also be verified by observing time courses 

of the root mean square deviation (RMSD) of atomic positions between their trajectory 

snapshots and the initial configurations as shown in Figure III.7b. RMSD for the capsid native 

state is found to increase from 0Å to 6Å during 3ns and level off afterwards, while RMSD for 

its swollen state increases more dramatically (8.4Å at 3ns) and still displays increasing trend at 

10ns. Therefore, native CCMV capsid tends to be stable after short, small shrinkage in vacuum, 
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while its swollen state undergoes shrinkage over a time period that is expected to be much 

longer than 10ns. With this, MD/OPX is implemented to simulate the long-time dynamics of 

swollen CCMV capsid in the following. 

 

8.2 Shrinkage of Swollen CCMV Capsid in vacuum Captured by Long-time MD/OPX 

Simulation 

MD/OPX simulation of swollen CCMV capsid started with the resultant structure of its MD 

simulation at 1ns as described above and proceeded with cycles of short replica MD runs and 

projection of the atomic structure by extrapolating its ensemble-averaged order parameters over 

long time. In each cycle, ten 500fs replica MD runs with random atomic velocity initializations 

under 298.15K were obtained for computing the ensemble-average rates of change in capsid 

order parameters, which are then used to extrapolate the order parameters over long time. The 

newly obtained order parameters were taken to reconstruct atomic configuration of the capsid 

that will go through 1000-step energy minimization, 6-stepwise graduate heating to 298.15K, 

and 5ps MD equilibration. Atomic accelerations of the resulting structure were computed as 

indicators to determine whether the structure is mature for the next MD/OPX cycle and the 

timestep for extrapolation of order parameters is adjusted adaptively to ensure the simulation is 

stable. By repeating such cycles, swollen CCMV capsid was simulated for 200ns in vacuum 

with its shrinkage captured. The OP timestep obtained from adaptive MD/OPX cycles was 

found to undergo periodic oscillations and its average for the entire simulation was determined 

to be 60ps. With this, the ratio of average OP timestep to the time interval of short MD bursts is 
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largely increased to 120, compared with 10 obtained from the MD/OPX demonstration 

simulation by using only a single short MD run for OPX (see Chapter 7) [12]. When comparing 

the simulation time of MD/OPX to that of one single MD run, the overall speedup of MD/OPX 

over MD is by a factor of 6. However, as ten short replica MD runs were used in MD/OPX for 

extrapolating the order parameters, ensemble average effects have been accounted for and our 

MD/OPX becomes 60 times faster than an ensemble of 10 replica MD runs. The simulation was 

run on Indiana University Big Red cluster with performance of 0.06 days/ns when using 256 

processors and 0.11 days/ns for 128 processors. 

 

 
(a)  

 
(b) 

Figure III.8 200ns MD/OPX simulation of the swollen CCMV capsid: (a) time courses of the 
decrement in the average, minimum and maximum radii of the capsid backbone from the 
simulation starting structure, and (b) RMSD of atomic positions between capsid snapshots 
along the trajectory and the initial structure. 
 

Analysis on the simulation output trajectory shows that swollen CCMV capsid shrinks with 

the average radius of its backbone decreased by 19.15Ǻ during 200ns (Figure III.8a). It thickens 

by 11Ǻ during shrinkage and undergoes fluctuations as indicated by the time courses of the 
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decrement in the minimum and maximum radii of the capsid backbone (i.e., the minimum and 

maximum distances of capsid backbone atoms to the capsid COM). RMSD of atomic positions 

between capsid snapshots along the trajectory and its starting structure increases from 0Ǻ to 

21.01Ǻ in 200ns (Figure III.8b). The capsid is found to shrink fast in early stage of the 

simulation with quick drop in the capsid average radius and sharp increase in the capsid RMSD, 

and the shrinkage slows down as the capsid approaches its near-equilibrium state that is 

expected to be close to the native. 

To identify characteristics of the shrinkage of swollen CCMV capsid in vacuum, interior 

view of its back half (selected through z < 0 with the capsid centered at origin) for the 

simulation starting and final structures are shown in Figure III.9 (a) and (b). In Figure III.9c, 

arrows are drawn from subunit COMs of the capsid initial structure to their final positions. It 

can be observed that pentamers and hexamers in the capsid translate radially inwards and rotate 

in a clockwise manner during capsid shrinkage. As a result, the openings between the 

capsomeres along the quasi-threefold axes become small heading towards the “closed” native 

state. This acts as a reverse process to the pH-induced expansion of native CCMV capsid into 

its swollen state in host medium. 
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(a) 

 
(b) 

 
(c) 

Figure III.9 Interior views of (a) swollen CCMV capsid, (b) the final structure of 200ns 
MD/OPX simulation, and (c) the COM displacements of protein subunits from their initial 
configurations to the final that depict shrinkage of the capsid. 
 

To examine the suitability of considering pentamers and hexamers as rigid units during 

CCMV capsid shrinkage, we choose a pentamer and a hexamer from the capsid, calculate their 

RMSD of atomic positions between trajectory snapshots and their initial configurations after 

structure superimposition, and compare them to that for the entire capsid. Results in Figure 

III.10a show that RMSD for a pentamer or a hexamer increases to ~5Ǻ in 1ns and displays 

slight changes afterwards, while RMSD for the entire capsid keeps increasing through the 

simulation as described above. This indicates that the pentamer and hexamer adjust their 
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internal structures quickly during early stage of the simulation and become stable afterwards 

during shrinkage of the capsid, which then can be considered as a process of rearranging the 

capsid pentamers and hexamers by overall translation and rotation. Calculations on the average 

translation distances and rotation angles of 12 pentamers and 20 hexamers during capsid 

shrinkage give us quantitative results as follows. As shown in Figure III.10 (b) and (c), 

pentamers translate radially inwards by 20.11Ǻ on average during 200ns and hexamers translate 

by 18.84Ǻ, and they undergo clockwise rotation by about 6.19° and 3.26° respectively with  

moderate fluctuations. The simulated capsid shrinkage transforms pentamers and hexamers in 

directions that are reverse to those applied to generate the swollen capsid from its native state. 

 

 
(a) 
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(b) 

 
(c) 

Figure III.10 (a) RMSD of atomic positions for a selected pentamer and a hexamer (see Figure 
III.11a for P1 and H1) between trajectory snapshots and their initial configurations in 
comparison to that for the entire capsid, (b) the average COM translation distance as a function 
of time for pentamers and hexamers, and (c) time courses of the average rotation angle for 
pentamers and hexamers calculated through fitting their structures to the initial configurations. 

 

While above results are obtained by averaging translation distances and rotation angles over 

the pentamers and hexamers, a further step is to look into the transformation of capsomeres 

individually during capsid shrinkage. To do this, 12 pentamers from P1 to P12 and 20 hexamers 

from H1 to H20 are first labeled in icosahedral CCMV capsid according to the scheme provided 
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in Figure III.11a.Then their COM translation distances from the initial positions are plotted as a 

function of time in Figure III.11 (b) and (c) for pentamers and hexamers respectively. Results 

show that the 12 pentamers do not translate at the same speed with P11 and P7 moving the 

fastest, P8 and P12 the slowest, and the others between through most of the simulation time. 

Notice that P1 and P3 lead the translation of pentamers from 170ns to the end of simulation. For 

hexamers, H13, H20, and H4 are in the fast moving group, while H15 and H17 belong to the 

slowly-moving. By examining the distribution of these capsomeres in Figure III.11a, one can 

find that the fast moving hexamers and pentamers tend to be neighboring capsomeres, e.g., H13 

to P11 and H20 to P7, and similarly for the slowly-moving ones, e.g., H15 to P8 and H17 to 

P12. This implies that the motions of capsomeres are largely correlated and it results from the 

structural features of CCMV capsid. According to CCMV structural studies [131], the 

carboxyl-terminal arms of protein subunits in its pentamers and hexamers are known to 

“invade” their neighboring capsomeres, through which the capsomeres are tightly intertwined 

with each other. Thus capsomeres would undergo cooperative motions with strongly-coupled 

allosteric interactions. As a result, swollen CCMV capsid does not preserve its icosahedral 

symmetry during shrinkage and it involves symmetry-breaking cooperative motions of the 

capsomeres. 
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(a) 

 
(b) 

 
(c) 

Figure III.11 (a) Schematic representation of icosahedral CCMV capsid with 12 pentamers 
(blue pentagons) labeled from P1 to P12 and 20 hexamers (red hexagons) from H1 to H20, and 
time courses of the COM translation distance of (b) pentamers and (c) hexamers from their 
original positions. 

 

8.3 Mechanisms of Viral Capsid Structural Transition 

As indicated above, shrinkage of swollen CCMV capsid in vacuum involves large-scale 

rearrangements of the pentamers and hexamers and icosahedral symmetry is not preserved 

during the transition. Symmetry-breaking is a well-known feature in the self-organization and 
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structural phase transitions of macroscopic systems [132, 133]. For example, martensitic 

transformations that are characterized by a collective movement of large numbers of atoms 

occur in solid-state materials, such as iron and metal alloys, and they are found to change 

system symmetries [134, 135]. 

It has been suggested that STs in viral capsids are analogous to structural phase transitions 

in macroscopic solids and thus methods in solid-state physics can be applied to viral capsids. 

Based on this hypothesis, viral capsid STs were studied with phenomenological continuum 

theory adapted from the Ginzburg-Landau model of soft-mode solid structural phase transitions. 

The theory predicts that the STs are characterized by a pronounced softening of the capsid 

elasticity and external force applied by an AFM probe can drive a capsid into a state of phase 

coexistence where the capsid is partly in the immature state and partly in the mature state with 

two of them separated by a phase boundary[136]. 

To understand the mechanisms of viral capsid ST, allosteric coupling has been proposed by 

Caspar [137]. It states that the conformational change in one capsid subunit triggers that in 

neighboring subunits, which then induces structural changes in more subunits across the capsid. 

Such cooperative conformational changes display symmetry-breaking behaviors as found for 

pentamers and hexamers in swollen CCMV capsid during its shrinkage. This is common to STs 

of many other viral capsids during maturation as well [138, 139]. 

Experimental and theoretical studies on HK97 bacteriophage capsid show that it undergoes 

expansion from a metastable procapsid (prohead) to a mature icosahedral capsid (head) via 

three steps[51]: 1) local refolding of capsid subunit N-terminal arms, 2) global expansion of the 
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capsid involving large-scale rearrangements of capsid subunits, and 3) additional subtle and 

slow structural changes contributing to cross-linking of capsid subunits that stabilize the mature 

capsid. While greatest structural changes take place during capsid global expansion, they are 

triggered by local refolding of the capsid subunit N-arms. This suggests that the capsid does not 

preserve its symmetry during the initial highly-localized conformational changes and even the 

cooperative motions of capsid subunits during its expansion [139]. MD simulations on satellite 

tobacco mosaic virus (STMV) [52] show that its capsid also undergoes symmetry-breaking ST. 

While the complete virion (capsid embedded with RNA) deviates its shape from icosahedral 

symmetry with only minor, local ones over 13ns of simulation, empty viral capsid was found to 

collapse and its shape becomes very different from the initial state after 10ns with the 

icosahedral symmetry lost completely. 

While pH-induced CCMV swelling has been determined to be a first-order transition as 

suggested by hysteresis of CCMV in its titration curves under certain conditions [126] and 

pH-driven softening of capsid elasticity in AFM experiments[140], exact mechanisms of the 

capsid ST remain unclear [45]. With our all-atom multiscale MD/OPX simulation of swollen 

CCMV capsid, we are able to obtain a microscopic view of its STs, and therefore explore the 

exact symmetry-breaking mechanisms during capsid shrinkage. Figure III.12 shows interior 

view of the capsid trajectory snapshots at (a) initial swollen state, (b) 5ns, (c) 20ns, (d) 50ns, (e) 

100ns, and (f) 200ns. Atoms in the capsid are colored by their displacements from the original 

positions in a blue-white-red color scale (i.e., 0 Å for blue, 24 Å for red, and white as the 

midpoint) to investigate conformational changes in the swollen CCMV capsid. It is seen that 
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atomic displacements are not constrained to icosahedral symmetry, i.e., atoms in the capsid do 

not change their colors simultaneously in a symmetry-preserving manner. Shrinkage of swollen 

CCMV capsid involves an “initiation and front propagation” mechanism: it starts from the 

upper pentamer as shown in trajectory snapshots and several other local regions of the capsid in 

which atoms change their colors from blue to white and to red first. This nucleation needs 20ns 

to occur. The structural transition then propagates across the capsid seen as spreading of the red 

areas. The propagation of cooperative motions from one capsomere to its neighboring ones 

takes place on a timescale of 10ns. Thus the propagation speed is ~0.6nm/ns with the average 

capsomere distance considered as 6nm. Therefore, STs of viral capsids start with local 

conformational changes that break icosahedral symmetry of the capsid, followed by global 

structural changes that involve large-scale cooperative translations and rotations of capsid 

structural units (e.g., capsomeres or protein subunits) through strong allosteric interactions. 

 

 
(a) initial 

 
(b) 5ns 



111 
 

 
(c) 20ns 

 
(d) 50ns 

 
(e) 100ns 

 
(f) 200ns 

Figure III.12 Interior view of the capsid shrinkage trajectory snapshots with atoms colored by 
their displacements from the original positions in a BWR color scale (0Å for blue, 24Å for red, 
and white as the midpoint): (a) initial state with all atoms in blue, (b) 5ns, (c) 20ns, (d) 50ns, (e) 
100ns, and (f) 200ns of simulation. It can be seen that atoms in the upper pentamer of shown 
trajectory snapshots (i.e., P11 as labeled in Figure III.11a) start to change their color from blue 
to white and to red first, and then this color change propagates across the capsid. Thus capsid 
shrinkage is a symmetry-breaking/front propagation process. 

 

To evaluate symmetry-breaking of CCMV capsid during its shrinkage quantitatively, we 

calculate the RMSD of atomic positions between pentamer 1 as labeled in Figure III.11a and 

the 11 others after rigid-body transformation of the chosen pentamer to the positions of others 

according to icosahedral symmetry. These RMSDs (Figure III.13) are found to increase up to 
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about 140ns with structural changes breaking capsid symmetry, and then decrease afterwards as 

the capsid transforms towards its near-equilibrium state (one close to the icosahedral native 

state). As a result, even though the initial and final states of swollen CCMV capsid have 

icosahedral symmetry, symmetry is not preserved during its shrinkage. 

 

 
Figure III.13 Time courses of RMSD of atomic positions between pentamer P1 as labeled in 
Figure III.11a and the 11 others after rigid-body transformation of P1 to the positions of other 
pentamers according to icosahedral symmetry. 

 

The fact that shrinkage of swollen CCMV capsid in vacuum is symmetry-breaking at first 

seems to conflict with prevailing thinking. For example, symmetry has been used to facilitate 

the simulation of icosahedral viruses by assuming symmetry is preserved during their STs [53, 

69, 72]. However, as with structural phase transitions in macroscopic solids, viral capsid STs 

start locally and then propagate across the capsid, i.e., they proceed via intermediate states that 

are not constrained to the capsid symmetry[134]. Examples of such viral symmetry-breaking 

STs include those induced by local interactions of viral capsids with cell receptors or antiviral 

drug molecules [7, 43, 60, 127]. Given the fact that viral capsid STs are symmetry-breaking 
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processes, the use of symmetry-constrained models in studying the pathways and mechanisms 

of STs in CCMV and other icosahedral viruses is not appropriate. Particularly, the energy 

barrier for making coherent translations and rotations of all capsomeres or capsid subunits in 

the course of viral capsid STs is much greater than that for a single or local cluster of these 

substructures. Thus one expects that prediction of transition time based on a 

symmetry-constrained model should be unphysically long. 

 

8.4 Shrinkage of Swollen CCMV Capsid is Energy-driven 

In the following, we examine system energies for shrinkage of swollen CCMV capsid in 

vacuum simulated via MD/OPX. Since MD/OPX cycles are composed of short replica MD runs, 

projection of system configuration through extrapolation of its order parameters and maturation 

of the OPX resulting structure by applying energy minimization, graduate heating and 

short-time MD equilibration (see Experimental Procedures), and temperature control is applied 

all through the simulation, we first look into variations of the system temperature and energies 

in one typical MD/OPX cycle.  

For our analysis, the 32nd MD/OPX cycle of the simulation running from 3,010,100fs to 

3,075,100fs with the ratio of OP timestep to the time interval of short MD runs obtained as 120 

(also the average value for the entire simulation) was chosen. In Figure III.14a, the system 

temperature was plotted as a function of time: it starts from 0K as a result of energy 

minimization of the OPX resulting configuration from previous cycle; increases to ~298.15K in 

a 6-stepwise manner as the system is heated gradually by 50K for each of the first 5 steps and 
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48.15K for the last step (100fs equilibration for each temperature increase); becomes stable as 

the system is equilibrated to 298.15K for 4400fs; stays around 298.15K under which ten 500fs 

short replica MD bursts are run for calculating the ensemble-averaged rate of change in system 

order parameters; and drops to 0K as the atomic configuration is reconstructed with newly 

extrapolated order parameters over 60, 000fs and energy minimization is performed. Note that 

for each heating step, atomic velocities are reinitialized for the system to reach a higher 

temperature, after which there is a slight drop in system temperature due to conversion of the 

system kinetic energy into potential energies as seen below.  

 
(a) 

 
(b) 
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(c) 

Figure III.14 Variations of the system temperature (a) and energies (b) in one typical MD/OPX 
cycle capturing 3,010,100-3,075,100fs of the simulation, and (c) the system kinetic and total 
energies plotted versus time during 200ns capsid shrinkage. 
 

In Figure III.14b, system energies for the 32nd MD/OPX cycle were plotted versus time 

corresponding to the system temperature shown in Figure III.14a. Starting from comparatively 

low values computed for the energy-minimized configuration of previous cycle, bonded 

energies (i.e., bond, angle, dihedral and improper torsion energies) were found to increase 

significantly during stepwise heating of the system, while there are slight increases to the 

system non-bonded energies (i.e., electrostatic and van der Waals energies). As a result, heat 

supply from thermal bath (i.e., increase in system kinetic energy) is converted into system 

potential energies and system total energy is increased. After the graduate heating procedure, 

capsid energies level off as the system is equilibrated and stay nearly constants during short 

replica MD runs that are used for OPX. As for the OPX resulting configuration, it can lead to 

high potential energies, especially for non-bonded van der waals and electrostatic energies, 

which are due to unphysical structures, such as overlapped atoms and stretched bonds/angles. 

They are seen as spikes in energy curves during early stage of system energy minimization. 
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These spikes disappear and system potential energies decrease significantly as more energy 

minimization steps are applied, which prepare the system atomic configuration to be ready for 

MD thermalization of next cycle. 

For the entire 200ns MD/OPX simulation, kinetic and total energies of swollen CCMV 

capsid were collected approximately every 10ns from the short replica MD runs of MD/OPX 

cycles and plotted as shown in Figure III.14c. The system kinetic energy was found to stay 

constant with small fluctuations, which suggests that the graduate heating and MD equilibration 

are sufficient to thermalize the energy-minimized OPX resulting configuration for running short 

replica MD runs and thus computing ensemble-average rate of change in system order 

parameters for extrapolation. On the other hand, the system total energy was shown to decrease 

monotonically from 498,406kcal/mol to 447,539kcal/mol. This indicates that the system 

potential energy decreases accordingly along the trajectory. As the shrinkage of swollen CCMV 

capsid mostly involves large-scale rearrangements of its pentamers and hexamers through 

cooperative motions as described above, the system entropy is expected to stay roughly 

constant, and thus CCMV capsid shrinkage is an energy-driven process. 
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Chapter 9 All-atom Multiscale MD/OPX Simulation of CCMV Capsid Swelling 

9.1 Insights into CCMV Capsid Swelling through Short-Time MD Simulations 

Similarly, to identify key elements needed to carry out long-time MD/OPX simulation of 

CCMV capsid swelling, short-time MD simulation was first run on native CCMV capsid that is 

solvated in a host medium at pH 7.0 and ionic strength I=0.2M. The X-ray crystal structure of 

CCMV protomer (i.e., asymmetric unit) was downloaded from online Protein Data Bank (PDB 

ID: 1CWP) and the missing N-terminal residues of protein subunits were added and optimized 

(refer to the scheme provided in Zhang et al. [73]) (Figure III.15).  

 
Figure III.15 X-ray crystal structure of CCMV protomer with the missing N-terminal residues 
added and optimized. Three quasi-threefold related protein subunits are colored in blue (A), red 
(B) and green (C) respectively, and the N-terminal arms in yellow. 
 

Native CCMV capsid was generated by reorienting 60 copies of its protomer (i.e., 

asymmetric unit) according to the icosahedral symmetry and solvated in the center of a water 

cube with 7Å boundary in each direction and neutralized with K+ and Cl- to I=0.2M by using 

VMD. A schematic representation of the resulting system is shown in Figure III.16a. Then the 

system along with its structural topology file were taken as input for NAMD[75] simulation by 
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using the CHARMM22 force field[129, 130] for capsid proteins and TIP3P model for water 

molecules[141]. The simulation proceeded with initial energy-minimization, thermalization 

with graduate heating and MD equilibration under constant temperature (298.15K) and pressure 

(1atm) control (i.e., NPT ensemble). The system was equilibrated after 20ps when the system 

temperature and pressure fluctuate around target values. Product MD run lasting 3ns was 

obtained to investigate structural changes of the capsid to identify essential features needed to 

model swelling of the capsid.  

 
(a) 

 
(b) 

Figure III.16 Schematic representations of CCMV capsid solvated in (a) a water cube and (b) a 
water truncated octahedron at pH 7.0 and ionic strength I=0.2M used for our simulations with 
the water box created using VMD “volmap” plugin and ions represented in CPK. 
 

Analysis of the MD trajectory shows that the capsid shrinks by 1.60Å in the average radius 

of its backbone (i.e., the average distance of atoms in the capsid backbone to their COM) as a 

result of initial energy minimization, thermalization, and MD equilibration. Especially during 
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the MD equilibration under pressure control, the capsid is compressed with the entire system 

scaled isotropically to reach 1atm pressure. The capsid then starts to swell after equilibration. 

For the resulting structure at 3ns, its average radius is 2.95Å greater than the equilibrated 

structure and 1.35Å greater than the native CCMV capsid. It was also found to be 13.99Å 

thicker than the native state with its maximum radius (i.e., the maximum distance of capsid 

backbone atoms to the capsid COM) increased from 142.49Å to 148.23Å and the minimum 

radius decreased from 82.32Å to 73.85Å (Figure III.17a). The thickness of water layer 

surrounding the capsid backbone in X, Y and Z directions, which are calculated by averaging 

the minimum distance between non-hydrogen atoms in the capsid backbone (excluding those in 

protein side chains) and the faces of water box on two sides of each direction, were found to 

decrease as the capsid swells (Figure III.17b). As a result, the distance between the capsid 

surface and that of its replicas in neighboring periodic cells decreases. When it reaches the 

cutoff distance of non-bonded atomic interactions (usually 12Å for short-range van der Waals 

and electrostatic interactions in MD simulation), the capsid starts to interact with the replicas of 

its neighboring cells, which slows down swelling of the capsid. 

The above MD simulation shows that native CCMV capsid swells in 3ns when placed in a 

host medium at pH 7.0 and ionic strength I=0.2M. However, the simulation takes 2.60 days to 

finish 1ns by using 256 processors on Indiana University Big Red cluster. And as the capsid 

swells, the water box needs to be expanded to appropriately simulate swelling of the capsid (see 

discussions below). With the system size largely increased, the performance of MD simulation 

is downgraded and it becomes even more time-consuming to simulate the swelling of CCMV 
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capsid. Since viral STs involve processes taking place across multiple time and length scales, 

we will apply multiscale MD/OPX to CCMV capsid swelling, which accelerates MD for 

long-time simulation and addresses the atomistic fluctuations and nanosystem coherent motions 

simultaneously. Simulation results are presented in following. 

 
(a) 

 
(b) 

Figure III.17 3ns MD simulation of native CCMV capsid solvated in a water cube with an 
initial 7Å water boundary: (a) changes in the average, minimum and maximum radii of the 
capsid backbone from the starting configuration, (b) averaged thickness of water layer 
surrounding the capsid backbone in X, Y and Z directions, and (c) RMSD of atomic positions 
between snapshots of capsid backbone along the trajectory and the starting configuration. 
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9.2 MD/OPX Simulation of CCMV Capsid Swelling 

Since earlier MD/OPX studies [12, 13], new modules have been added to account for water 

molecules and ions and thus achieve simulating bionanosystems in host media. Here MD/OPX 

is used to simulate swelling of CCMV capsid at pH 7.0 and ionic strength I=0.2M. As native 

CCMV capsid is expected to expand by ~24Å to reach the size of its swollen state[18], 

simulation of its swelling process is divided into the following two parts for efficiency: (1) 

increase the water boundary from 7Å used in the above MD simulation to 15Å for solvating 

native CCMV capsid (denoted Ncap) and run MD/OPX on the resulting system until the capsid 

swells to the size limit of the water cube, and (2) extract the intermediate capsid structure 

obtained from (1) (denoted Icap) and solvate it in a larger water cube for further simulation of 

the capsid swelling. 

For the first part of the simulation, MD/OPX started with native CCMV capsid (Ncap) 

solvated in a water box with 15Å water boundary. The simulation proceeded with cycles of 

short MD runs and projection of the atomic structure by extrapolating its structural order 

parameters over long time. In each cycle, one 100fs replica MD runs with random atomic 

velocity initializations under 298.15K was obtained for computing the rates of change in capsid 

order parameters, which are then used to extrapolate the order parameters over long time. The 

newly obtained order parameters were taken to reconstruct atomic configuration of the capsid 

that will be resolvated in a host medium as described above and go through 5000-step energy 

minimization, 6-stepwise graduate heating to 298.15K, and 5ps MD equilibration. Atomic 

accelerations of the resulting structure were computed as indicators to determine whether the 
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structure is mature for the next MD/OPX cycle and the timestep for extrapolation of order 

parameters is adjusted adaptively to ensure the simulation is stable. By repeating such cycles, 

the simulation capturing 3ns dynamics of the capsid was obtained to study its structural 

changes.  

 

 
(a) Initial 

 
(b) 0.5ns 

 
(c) 1.5ns 

 
(d) 3ns 
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Figure III.18 MD/OPX trajectory snapshots showing the expansion of native CCMV capsid 
(Ncap) in water cube with an initial 15Å water boundary: (a) the starting configuration, (b) 
0.5ns, (c) 1.5ns and (d) 3ns. 
 

Figure III.18 shows trajectory snapshots of the capsid in water cube at: (a) the starting 

configuration, (b) 0.5ns, (c) 1.5ns, and (d) 3ns. The capsid was seen to expand in the MD/OPX 

trajectory, which agrees with the above MD simulation. Quantitative analysis of the MD/OPX 

trajectory shows that the capsid swells with the average radius of its backbone increased by 

~3Ǻ in 3ns (Figure III.19a). RMSD of atomic positions between capsid snapshots along the 

trajectory and its starting structure increases from 0Ǻ to 12Ǻ in 3ns (Figure III.19b). The capsid 

is found to swell fast up to 2ns, and the swelling slows down thereafter. Calculations show that 

the thickness of water layer surrounding the capsid backbone decreases as a result of the capsid 

swelling. It reaches 6Ǻ (half of the cutoff distance for atomic non-bonded interactions) at 1.5ns, 

within which the capsid starts to interact with the replicas of its neighboring cells. Therefore, it 

is reasonable to extract the capsid structure from the trajectory snapshot at 1.5ns and solvate it 

in a larger water cube for further swelling simulation. 
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(a) 

 
(b) 

 
(c) 

Figure III.19 Analysis of 3ns MD/OPX trajectory of native CCMV capsid (Ncap): (a) time 
course of the change in capsid average radius from the starting configuration, (b) RMSD of 
atomic positions between snapshots of capsid backbone along the trajectory and the starting 
configuration, and (c) averaged thickness of water boundary surrounding the capsid backbone 
in X, Y and Z directions. 
 

With the intermediate capsid structure (Icap) extracted from the above MD/OPX trajectory 

snapshot at 1.5ns, it was solvated in a larger water cube (25Å water boundary) for further 

simulation of the capsid swelling with 17.04ns dynamics captured. Analysis of the output 

MD/OPX trajectory shows that the capsid swells by 13.93Ǻ in its backbone average radius 
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during 17.04ns with fluctuations found in the minimum and maximum radii of the capsid 

backbone (Figure III.20a). RMSD of atomic positions between capsid snapshots along the 

trajectory and its starting structure (Icap) increases from 0Ǻ to 16.05Ǻ in 17.04ns (Figure 

III.20b). The capsid was found to swell fast in early stage of the simulation with quick drop in 

the capsid average radius and sharp increase in the capsid RMSD, and the swelling slows down 

as the capsid approaches its near-equilibrium state. 

 

 
(a)  

 
(b) 

Figure III.20 17.04ns MD/OPX simulation of the swelling of capsid intermediate (Icap): (a) 
time course of the change in the capsid average radius and (b) RMSD of atomic positions 
between snapshots of capsid backbone along the trajectory and the initial structure. 

Combining the above two MD/OPX trajectories into one, we obtained 18.54ns dynamics of 

CCMV capsid swelling from its native state. The total increase in the capsid average radius is 

14.93Ǻ. Analysis of the entire trajectory (Figure III.21) showed that the capsid cavity volume 

increases from 3.52x106 Ǻ3 to 6.02x106 Ǻ3 by 71% during the course of swelling. The volume 

of the capsid (i.e., shell) increases from 6.17x106 Ǻ3 to 6.77x106 Ǻ3 by ~10%. The capsid 

solvent-accessible surface area (SASA) was found to increase from 1.65x106 Ǻ2 to 1.90x106 Ǻ2 

at 6ns and level off with small fluctuations thereafter. These indicate that regions of capsid 
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proteins that have been buried in the capsid interior in its native state are exposed to the solvent 

during capsid swelling, which also leads to increase in the capsid volume. 

 

 
(a)  

 
(b) 

Figure III.21 Analysis of CCMV capsid along the entire 18.54ns MD/OPX trajectory: (a) the 
volume of the capsid (i.e., protein shell) and its cavity, and (b) the capsid SASA. 

 

9.3 CCMV Capsid Swelling Mechanisms 

To characterize the collective motions of CCMV capsid during its swelling, we calculated 

the average COM translation distances and rotation angles of 12 pentamers and 20 hexamers 

along the trajectory obtained from above MD/OPX simulation. As shown in Figure III.22, 

pentamers were found to translate radially outwards by 15.86Ǻ on average in 16.8ns and 

14.77Ǻ for hexamers, and there are slight drop at the end of the simulation; they also undergo 

counter-clockwise rotation by about 2.92° and 2.28° respectively with fluctuations along the 

trajectory. These agree with experimental data and other computational studies on the 

expansion of CCMV capsid from its native to the swollen state through rigid transformations of 

the capsomers [1, 18], even though the entire swelling process of CCMV capsid has not been 
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completely capture in 18.54MD/OPX simulation here. Therefore, the swelling of CCMV capsid 

in host media involves large-scale translation and rotation of the pentamers and hexamers, 

which was also found in the shrinkage of swollen CCMV capsid in vacuum studied earlier[13]. 

The capsomeres undergo cooperative motions through strongly-coupled allosteric interactions 

during viral capsid STs. 

 

 
(a) 

 
(b) 

Figure III.22 Collective motions of pentamers and hexamers during 18.54ns CCMV capsid 
swelling: time courses of (a) their average COM translation distances and (b) their average 
rotation angles calculated through structure fitting to the initial configurations in native CCMV 
capsid. 
 

We now explore the swelling mechanisms of CCMV capsid by observing the atomistic 

motions of the capsid. Fig. 10 shows interior view of the capsid trajectory snapshots at (a) 

initial native state, (b) 1.8ns, (c) 3ns, (d) 6ns, (e) 12ns, and (f) 18ns. Atoms in the capsid are 

colored by their displacements from the original positions in a blue-white-red color scale (i.e., 0 

Å for blue, 24 Å for red, and white as the midpoint) to investigate conformational changes in 

the capsid. N-terminal arms of the capsid proteins are highlighted in ribbons and they are 
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colored according to the displacements of atoms as well. It is seen that atomic displacements 

are not constrained to the icosahedral symmetry, i.e., atoms in the capsid do not change their 

colors simultaneously in a symmetry-preserving manner. Especially, the N-terminal arms 

change their color from blue to red during early stage of the simulation (see trajectory snapshots 

at 1.8ns and 3ns). This indicates that the N-terminal arms are highly dynamic and their 

structural changes trigger global expansion of the capsid. 

 

 
(a) native 

 
(b) 1.8ns 

 
(c) 3ns 

 
(d) 6ns 
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(e) 12ns 

 
(f) 18ns 

Figure III.23 Interior view of the capsid swelling trajectory snapshots with atoms colored by 
their displacements from the original positions in a BWR color scale (0Å for blue, 24Å for red, 
and white as the midpoint): (a) initial native state with all atoms in blue, (b) 1.8ns, (c) 3ns, (d) 
6ns, (e) 12ns, and (f) 18ns. N-terminal arms of the capsid proteins are highlighted in ribbons 
and they are colored according to the displacements of atoms as well. It is seen that the 
N-terminal arms change their color from blue to red during early stage of the simulation and 
their structural changes trigger global expansion of the capsid. Swelling of CCMV capsid is a 
symmetry-breaking process involving local initiation and front propagation. 
 

Similar to the shrinkage of swollen CCMV capsid in vacuum as simulated earlier[13], the 

ST of CCMV capsid during its swelling also involves “local initiation and front propagation”. 

The nucleation takes about 6ns to occur seen as the color change of two capsomers from blue to 

red in the trajectory snapshot. This is 14ns shorter than the nucleation time needed for the 

shrinkage of swollen CCMV capsid in vacuum. One reason is that N-terminal arms of capsid 

proteins were added in simulating the swelling of native CCMV capsid in host media and their 

fast fluctuations accelerate the nucleation of capsid ST. After the nucleation, the capsid ST then 

propagates across the capsid seen as spreading of the red areas. The propagation of cooperative 

motions from one capsomere to its neighboring ones takes place roughly on a timescale of 10ns. 

Thus the propagation speed can be calculated as ~0.6nm/ns with the average capsomere 
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distance considered as 6nm, which is similar to the ST in swollen CCMV capsid during its 

shrinkage in vacuum. Therefore, STs of viral capsids start with local conformational changes 

that break icosahedral symmetry of the capsid (e.g., fluctuations in N-terminal arms of capsid 

proteins), followed by global structural changes that involve large-scale cooperative translations 

and rotations of capsid structural units (e.g., capsomeres or protein subunits) through strong 

allosteric interactions. 

 

9.4 Dependence of CCMV Capsid Swelling on System Conditions 

The above simulations show that CCMV capsid swells over tens of nanoseconds, while 

such viral STs were observed to occur on timescales of milliseconds to minutes in experiments 

[51, 142, 143]. In the following, we present a list of simulations that indicate the swelling of 

CCMV capsid is largely dependent on system conditions. As listed in Table III.1, four 

simulations starting from the capsid native state were performed. For the first three simulations, 

the capsid was solvated in a water cube with two different water boundaries, i.e., 7Å (sim1) and 

15Å (sim2 and sim3). For sim4, a truncated octahedron with 26Å water boundary was used for 

solvating the capsid (see a schematic representation in Fig. 3b). The water boundary here is the 

minimum distance between atoms on the capsid surface and the faces of water box (square face 

for cube and hexagonal face for truncated octahedron). Note that sim1 has been used to identify 

key elements for long-time simulation of the capsid selling as discussed above. There are 

522,000 atoms in CCMV capsid and the total number of atoms in the systems ranges from 
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~2.41 to ~2.86 million depending on the shape of water box and the thickness of water 

boundary used for solvation. 

 

Table III.1 Simulations showing CCMV capsid swelling is largely dependent on system 
conditions. 

Simulation 
Shape of 
water box 

Capsid 
interfacea 

Water 
boundaryb Natoms

c Ensembled Performancee 
(days/ns) 

Time 
Increase 

in 
radiusf 

sim1 Cube 2.4Å 7Å 2,411,918 NPT 2.60 3ns 1.35Å 
sim2 Cube 2.4Å 15Å 2,845,915 NPT 2.95 3ns 1.58Å 
sim3 Cube 2.4Å 15Å 2,845,915 NVT 2.36 5ns 10.48Å 

sim4 Truncated 
octahedron 1.8Å 26Å 2,864,687 NPT 2.95 8ns 0.35Å 

a Capsid interface is the minimum distance between water molecules and atoms on the capsid 
surface used for solvation, b water boundary is the minimum distance between atoms on the 
capsid surface and faces of the water box (square face for cube and hexagonal face for truncated 
octahedron); c there are 522,000 atoms in CCMV capsid and the total number of atoms in the 
systems ranges from ~2.41 to ~2.86 million depending on the shape of water box used for 
solvation and the thickness of water boundary; d NPT is constant pressure (1atm) and 
temperature (298.15K) ensemble and NVT is constant volume (unchanged from the initial 
dimensions of systems prepared with VMD) and temperature (298.15K) ensemble; e 
performance here is for running simulations with 256 processors on Indiana University Big Red 
cluster; and f the capsid radius calculated is the average distance of non-hydrogen atoms in the 
capsid backbone to their center of mass. 
 

For MD simulations, periodic boundary conditions were applied. Constant volume and 

temperature control (i.e., NVT ensemble) was used for sim3, and the others were performed 

under constant pressure and temperature control (i.e., NPT ensemble). The specified 

temperature was 298.15K and the pressure was 1atm for NPT simulations. With the above 

settings, NAMD was used to simulate these four systems to investigate factors of CCMV capsid 

swelling. It was found that the unit cell for systems prepared with VMD “solvate” plugin by 
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using its default parameters need to be compressed in order to reach 1atm pressure in NPT 

simulations (e.g., sim1 and sim2). Without pressure control, the systems would have a pressure 

much lower than 1atm in NVT simulation (e.g., sim3). The analysis of the output trajectories is 

as follows. 

CCMV capsid was found to swell much faster and more dramatically in sim3 under NVT 

control (i.e., constant volume, low pressure) than in NPT simulations. While the capsid swells 

only 1.58Å in its average radius during 3ns NPT simulation in sim2 and 1.35Å in sim1, the 

capsid as simulated under NVT control swells 10.03Å in 3ns and 10.48Å in 5ns in sim3. During 

the 5ns significant swelling, the capsid thickens by 16.91Å with its exclusion volume increased 

from 6.17*106 Å3 to 6.89*106 Å3 and the capsid SASA increased from 1.65*106 Å2 to 1.92*106 

Å2; the volume of capsid cavity is increased by 42% from 3.52*106 Å3 to 5.01*106 Å3. In early 

stage of the simulation, water molecules flux from the capsid cavity into the capsid to solvate 

proteins and small regions of vacuum are formed inside the capsid. As the capsid continues 

swelling, water molecules flux from the capsid exterior into the capsid cavity. The density of 

water inside the capsid cavity decreases significantly from 975.51kg/m3 to 752.83kg/m3 at the 

end of the 5ns simulation, while density of water outside of the capsid stays roughly constant. 

When pressure control is applied as in sim1 and sim2, the system is compressed to reach 

1atm pressure and the swelling rate of CCMV capsid is decreased. The capsid cavity volume, 

the exclusion volume of the capsid and its SASA are also found to increase accompanying the 

capsid swelling. The density of water in the capsid cavity decreases during early stage of the 

simulation due to swelling of the capsid and the flux of water molecules into the capsid to 
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solvate proteins. It then increases as the capsid swelling slows down and the water molecules 

flux from the capsid exterior into the capsid cavity under the pressure control. In the case of 

sim2, the water density inside the capsid cavity decreases from 975.48kg/m3 to 797.32kg/m3 at 

1ns and then increases to 821.25kg/m3 at 3ns. 

To understand the different swelling behaviors of CCMV capsid found in the NPT and NVT 

simulations, we compare the system pressure profiles of sim2 and sim3. The pressure of the 

entire NVT simulated system in sim2 was found to level off around -178atm after equilibration, 

which is much lower than that of the NPT equilibrated system in sim3, i.e., ~1atm. The high 

negative pressure was encountered in sim2 because the system volume was kept constant and 

unphysically large. Next, with the simulation box divided into horizontal slices of ~10Å 

thickness in Z-direction, we calculate the local pressure of each slice by using the pressure 

profile analysis module provided in NAMD [75, 144]. Calculation results showed that the 

average pressure difference between slices that sandwich CCMV capsid at the bottom and the 

top (both from the capsid cavity surface to the capsid exterior) is 88atm at 0.1ns in sim3, which 

is ~13atm greater that in sim2. This suggests the pressure gradient across the capsid in sim3 is 

higher than that in the latter. As the capsid swells, the pressure of the system slice right below 

or above the capsid (i.e., pressure of water outside of the capsid) keeps increasing. It takes 0.6ns 

to decrease the pressure gradient across the capsid to zero in sim2, while 1ns (i.e., 0.4ns longer) 

in sim3. As a result, the capsid swells faster and more dramatically in NVT simulation sim3 

than in NPT simulation sim2. 
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It was seen that water molecules flux into the capsid to solvate proteins during early stage of 

the above simulations and small regions of vacuum can be formed inside the capsid. This was 

also discovered in the MD simulation of satellite tobacco mosaic virus [52]. It could result from 

a large parameter in system preparation defined for the distance between water molecules and 

the capsid surface. In the VMD “solvate” plugin, the default value for the minimum distance 

between water molecules and the solute is 2.4Å, while it can be as small as 1.8Å as obtained 

through our NPT simulations (sim1 and sim2). In light of this finding, we used 1.8Å as the 

minimum distance between water molecules and atoms on the capsid surface for solvating the 

capsid in sim4. With this, the flux of water molecules into the capsid proteins is greatly 

reduced. CCMV capsid was found to hardly swell with its average radius increased by only 

0.35Å during the 8ns simulation. The capsid cavity volume actually decreases from 3.52*106 

Å3 to 3.24*106 Å3 as the capsid increases its exclusion volume, i.e., regions of the capsid 

proteins protrude into the cavity. The density of water in the capsid cavity was found to 

increase from 974.41 kg/m3 to 1035.69 kg/m3 with water molecules still flux from the capsid 

interior into the capsid cavity. The water density outside of the capsid stays constant 

(~990kg/m3) close to that obtained for pure water (997.05 kg/m3) at 298.15K and 1atm 

pressure. Therefore, the high density of water surrounding the capsid compared with that of the 

above three simulations and the incompressibility of water stop the capsid from large-scale 

swelling. 

Therefore, the swelling of CCMV capsid in a host medium is strongly dependent on 

simulation parameters (e.g., the interfacial distance between water molecules and capsid 
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proteins used for solvation and system water boundary) and physical factors (e.g., the density of 

water inside the capsid cavity and that outside of the capsid, and the pressure gradient across 

the capsid). The capsid swells slightly over a timescale of nanoseconds when the density of 

water surrounding and within the capsid is close to that of pure water (sim4). While this might 

share the same timescale for capsid swelling as observed from experiments (i.e., milliseconds to 

minutes) with the real system conditions reflected, it is not feasible to simulate the entire capsid 

swelling process with the current computational power[5]. Under specific system conditions, 

one can simulate the swelling of CCMV capsid over tens of nanoseconds, which provides 

insights into its ST pathways. 

In addition to factors discussed above, discrepancies between the timescale for capsid 

swelling obtained from our simulations and that observed from experiments include the 

following. (1) The free energy landscape is populated by many minima. Thus along the pathway 

connecting the original to the final structure the system can reside for appreciable time at these 

minima. In the transition for one minimum to the next, many transition states and associated 

energy barriers are encountered. (2) The free energy landscape can be so populated with 

minima that the system is driven by a higher-order entropy, i.e., the system loses track of where 

it is going although it is driven by an overall energy gradient; this is a complex analog of a two 

well potential with a broad, shallow well and a narrow shallow one; in that case the system 

could prefer to be in the relatively high energy well. (3) The dynamics of viral capsid is likely 

highly frictional; thus despite a large free-energy gradient the kinetics can be slow. (4) Factors 

enhancing attractive forces between capsomeres (e.g., divalent cations) will repress capsid 
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swelling, which requires overcoming the energy barriers. 

 

 

9.5 Prospects of multiscale MD/OPX simulation 

The pH-induced swelling of CCMV has been suggested to be a first order phase transition 

at low salinity (I=0.2M) with hysteresis found in its titration curve [126]. However, divalent 

cations, such as Mg2+ and Ca2+, are known to bind CCMV capsid proteins at the quasi-threefold 

axes, and thus stabilize the capsid and the complete virus [18, 39]. By adding magnesium ions 

to the solution ([Mg2+]=0.01M), hysteresis in the titration curve of CCMV can be abolished [40, 

126] and thus CCMV swelling becomes fully reversible. This indicates that virus swelling can 

become a second order phase transition in the presence of divalent cations. It was also found 

that the effect of a high concentration in potassium ions (e.g., 0.8M KCl) is identical to that of 

magnesium for eliminating hysteresis in the CCMV titration curve. Furthermore, as salinity is 

increased from 0.2M to 0.3M, the hysteresis loop size is reduced by a factor of 2. While the 

above controlling factors for the swelling of complete CCMV have been determined, those for 

the empty CCMV capsid swelling are still under investigation [145]. 

Our all-atom multiscale simulation can be used to create a phase diagram for CCMV capsid 

mapping out regions in the space of pH, salinity, concentration of divalent cations, and 

temperature wherein first and second order transitions take place. As capsid fluctuations are 

believed to play an important role in vial STs, identifying conditions where critical fluctuations 

are realized will be of great interest. The simulations will be used to suggest the experimental 
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conditions wherein large fluctuations and the most dramatic STs occur. From our simulations, 

swelling of CCMV capsid was found to start locally and then spread across the capsid. 

However, one might suggest that viral STs occur simultaneously. If this is the case, there should 

be instantaneous communication of proteins across the viral capsid, e.g., as follows from 

Coulomb interactions. Therefore, decreasing salinity will increase the length scale of effective 

interactions, which is limited to the Debye length. In this way, we will determine theoretically if 

there is an observable transition between the nucleation/propagation and the 

global/simultaneous ST mechanism as salinity changes. This suggests that at low salinity the 

system should be highly cooperative and global so that critical fluctuations would be repressed; 

alternatively, the high salinity system is expected to act more like a two or three dimensional 

system and display critical behavior. 

As found through our MD/OPX simulation, the N-terminal arms of CCMV capsid proteins 

are highly dynamic. They undergo fast fluctuations during early stage of the simulation and 

their structural changes trigger global expansion of the capsid. Such fluctuations are found to 

take place in other viral capsids. They are believed to play important roles in packaging viral 

genome during virus maturation or engineered nanomaterial synthesis by using viral capsids as 

molecular containers [24]. For example, the N-terminus of the poliovirus capsid protein VP1 

that is entirely internal in native virion becomes externalized upon cell attachment, and the 

exposed N-terminus of VP1 was shown to be responsible for liposome binding [43, 44]. These 

fluctuations can be predicted from our simulations and used to guide experimental studies, e.g., 

chemical labeling[146]. If the protein terminal domains are protruding/retracting in a 
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fluctuating manner, then the degree of labeling will increase when such fluctuations are large. 

Furthermore, the depth of penetration of the labeling should increase as critical fluctuation 

intensity increases. 
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Part IV. Summary and Prospects 

Viruses and other nanoparticles display mixed microscopic/macroscopic characteristics. It is 

natural to develop an understanding of their dynamics via a multiscale analysis of the Liouville 

equation following prescriptions introduced for the study of Brownian motion. However the 

internal dynamics of the atoms constituting a nanoparticle introduces conceptual and technical 

difficulties associated with a description involving both the atomistic and nanometer scale 

properties of these systems and the potential overcounting of degrees of freedom. To overcome 

these difficulties we introduce a “nanocanonical ensemble” method to facilitate the all-atom 

multiscale analysis (AMA) of the N-atom Liouville equation. Slow variables (i.e., order 

parameters) are identified to capture the internal structure of nanoparticles, but not to be 

thought of as new dynamical variables. Rather they are a way to make the multiscale character 

of the N-atom probability density explicit. Using this formulation and the chain rule, the need 

for tedious bookkeeping to ensure conservation of the total number of degrees of freedom was 

avoided.  

A further advance of our AMA approach is to ensure removal of all secular behavior in the 

N-atom probability density and not just that of a reduced distribution. It is straightforward to 

remove the secular behavior in the N-atom probability density for structureless nanoparticles by 

integration over a reduced set of atomic degrees of freedom (i.e. of the host atoms), but it 

cannot be readily carried out for the structured nanoparticles. In AMA, the fast variable 
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integration is avoided by using the fundamental hypothesis of statistical mechanics, “the 

long-time and ensemble averages are equivalent near equilibrium for systems with slowly 

varying collective behaviors”. The nanocanonical formulation and integration-free removal of 

secular overcome conceptual and technical difficulties encountered in a multiscale analysis of 

the Liouville equation for structured nanoparticles, which leads to a stochastic (FP or 

Smoluchowski) equation yielding the coarse-grained evolution of the slow variables. Being 

based on a calibrated interatomic force field, our method can yield parameter-free universal 

models for nanoparticle dynamics. 

Following from the AMA formulation, order parameters capturing viral dilatational 

structural transitions (STs) are constructed, a FP equation for their long timescale dynamics is 

derived, and a transition state ansatz is presented for obtaining approximate solutions to the FP 

equation in the inertial limit. While viral free energy and friction coefficients need to be 

computed from a calibrated interatomic force field and the FP equation solved to realize the full 

implications of this approach, we calculate the free energy barrier for the ST of NωV capsid 

from its procapsid form to the compact capsid form based on crude estimates. Calculation 

results show that the transition has a lower free energy barrier than that for the transition of 

native poliovirus to a cell entry intermediate, and it depends on how we change the pH to 

induce the ST: when pH is lowered from 7.6 to 5.0, it occurs on 0.1 sec timescale with a free 

energy barrier of 10.86 kcal/mol; with a less drastic pH change (pH lowered to 5.8 or 5.5 

instead of 5.0), the ST occurs more slowly on a 100 sec timescale with a higher free energy 

barrier of 14.95 kcal/mol. This transition state estimate of the free energy barrier provides an 
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upper bound for the capsid ST, i.e. the single order parameter model likely misses lower energy 

barrier pathways for the capsid transition, and more order parameters that characterize the 

deformation of viruses apart from their COM position, orientation, dilatational order parameter 

and their associated momenta are needed.  

To capture the large-scale low-frequency coherent motions of nanosystems, we construct 

collective modes and order parameters with basis functions (e.g., orthogonal polynomials or 

harmonic functions) of atomic coordinates of a reference configuration or atomic displacements 

between two known configurations. A structural change in the virus is expressed as a 

summation of the chosen collective modes weighted by order parameters that are determined to 

minimize the root mean square residuals due to mode truncation. These collective modes are 

demonstrated to be capable of capturing nanoscale dynamics of capsomers during the expansion 

of native CCMV capsid.  

Based on AMA and the slowly-varying characteristics of order parameters, a multiscale 

MD/OPX computational modeling approach is developed to simulate large bionanosystems, 

especially viruses of our interest. In the implementation, replica short MD runs with random 

atomic velocity initializations are implemented to estimate the ensemble average rate of change 

in the order parameters, which is then used to extrapolate the state of the system over a time 

period that is much longer than the 10-14-second timescale of fast atomic vibrations and 

collisions. MD/OPX essentially solves the Langevin equations for the stochastic dynamics of 

order parameters implicitly. Since the timescale for the evolution of order parameters is much 

larger than that of atomistic vibrations and collisions, the OP extrapolation time (e.g., 60ps) can 
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be many orders of magnitude greater than the MD simulation timestep. Traditional 

coarse-grained models start with lumping clusters of atoms into structureless beads and 

simulate their time evolution, which misses the feedback between the atomistic fluctuations and 

the coherent nanoscale dynamics. They ignore the facts that system coherent motions involve 

all the atoms moving collectively. In contrast, our MD/OPX captures the cross-talk between the 

order parameters and atomistic variables rigorously and addresses the atomistic fluctuations and 

nanoscale coherent motions simultaneously. 

MD/OPX is validated on the STs of CCMV capsid. Simulations show that the swollen state 

of the capsid undergoes significant shrinkage in vacuum and the MD/OPX trajectory analysis 

results agree well with those of direct MD simulation. MD/OPX is found to be 9.76 times faster 

than NAMD. After the validation, MD/OPX is applied to investigating the ST mechanisms of 

viral capsids still by choosing CCMV as our model system. Insights into the stabilities of the 

native and swollen states of CCMV capsid in vacuum were obtained through short-time MD 

simulation. With the results showing that native CCMV capsid becomes stable after short, small 

shrinkage in 10ns, while its swollen state shrinks over a timescale that is much longer than 10ns, 

long-time MD/OPX simulation was run on the swollen state with 200ns dynamics of its 

shrinkage captured. Shrinkage of swollen CCMV capsid was found to be an energy-driven, 

symmetry-breaking process that involves large-scale translation and rotation of pentamers and 

hexamers in the capsid. The capsomeres undergo cooperative motions through strongly-coupled 

allosteric interactions during capsid shrinkage.  

While native CCMV capsid is fairly stable in vacuum, it was found to swell in a host medium 
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at pH 7.0 and ionic strength I=0.2M as obtained through short-time MD simulations. The 

application of MD/OPX to the swelling of native CCMV capsid also shows that the N-terminal 

arms of capsid protein subunits are highly dynamic and their fast fluctuations trigger global 

expansion of the capsid. The capsid swelling is also a symmetry-breaking process involving 

local initiation and front propagation. Viral STs start locally and then propagate across the 

capsid, i.e., they proceed via intermediate states that are not constrained to the capsid symmetry. 

This suggests that it is not appropriate to use symmetry-constrained models to study the pathways 

and mechanisms of viral STs. 

With our AMA method and MD/OPX, viral dynamics are predicted from first principles. 

MD/OPX accelerates MD for long-time simulation of viruses, as well as other bionanosystems, 

and it addresses rapid atomistic fluctuations and slowly-varying nanoscale dynamics 

simultaneously. However, the following factors limit the applicability of MD/OPX as presently 

implemented: (1) structural changes that involve bond breaking (e.g., proteolysis of capsid 

proteins during virus maturation [10, 48, 147]) necessitate the incorporation of a quantum 

chemistry model, i.e., quantum mechanics/molecular mechanics (QM/MM), or a force field that 

can account for bond breaking, (2) highly fluctuating OPs that do not display linear trend lines 

are not appropriate for extrapolation; therefore inclusion of additional OPs does not necessarily 

improved accuracy or performance, (3) systems that involve fast inter-diffusion of small 

molecules and host particles cannot necessarily be described using OPs as presently 

implemented MD/OPX; to simulate such systems, one must use OP density variables [102, 148] 

and implement a module analogous to “resolvation” explained in Section 5.3, and (4) inherent 
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limitations in the CHARMM and AMBER force fields (e.g., dielectric channeling) will also be 

part of MD/OPX predictions as presently implemented; however, as NAMD is improved, so 

will MD/OPX. 

In the above MD/OPX simulation of CCMV capsid swelling in a host medium, water 

molecules and ions are modeled explicitly. Instead, an implicit solvent approach can be used to 

accelerate the simulations. Our AMA formulation also justifies the development of a direct 

Langevin solver for stochastic dynamics of the order parameters. A theoretical speed-up of the 

solver over MD by a factor of O(N) is expected for large bionanosystems composed of N atoms 

with larger timesteps applied for the time integration and a much smaller number of unknown 

variables to solve, though this theoretical speed-up is overestimated due to the computations 

needed for constructing the frictions coefficients and thermal average forces in the early rapidly 

changing stage of the OP evolution. While the CCMV capsid used to demonstrate our MD/OPX 

approach has ~0.5 million atoms, many systems of biological interest are supra-million atoms 

in size (e.g. large viruses and cell membranes) and as the size of the simulated system increases, 

the simulation speed-up of our multiscale approach over direct MD will become greater.  

Viral dynamics have been captured over timescales of tens to hundreds of nanoseconds with 

our multiscale MD/OPX simulations. While they are still short compared with the 

millisecond-to-minute timescales for viral STs believed to take place in experiments [51, 142, 

143], MD/OPX and the direct Langevin solver of system order parameters [11, 102] based on 

our AMA methodology hold great promise for long-time simulation of viruses and other 

bionanosystems. To do so, one must address the possibility of large activation energy for barrier 
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crossing and additional extremely slow order parameters, such as the H+ concentration. The 

latter would be important, e.g., if the long-timescale of viral STs is associated with the diffusion 

of protons to eliminate supra-micron scale non-uniformities accompanying addition of H+. 

Their benefits for health sciences and biotechnology include the computer-aided design of 

antiviral drugs and vaccines, functionalizing nanoparticles for medical imaging and thermal 

cancer treatments, and designing nanocapsules (e.g. viral capsids and liposomes) for delivery of 

therapeutic agents. 
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Appendix A: Decomposition of the Liouville equation 

The Liouville equation for the N-atom probability density ( ), , , ,1 1 N Np r p r tρ    

 is taken to 

consist of a nanoparticle of N* atoms and a host medium of N − N* atoms. The Liouville 

equation for this system can be written as 
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 is the force on atom i. 

Our development starts by considering ρ  to be dependent on the nanoparticle COM 

position *r  and momentum *p , as well as individual atomic positions and momenta. 

Nanoparticle mass *m  and COM variables are expressed in terms of atomic variables via 

  
* *
*

*

/

,

N i i
i i

i 1 i

r m r m
p p

mm
Θ

=

      =   
     

∑




   (A.2) 

where i 1Θ =  (atom i in the nanoparticle), = 0 (otherwise). In the multiscale analysis with slow 

variables *p  and *r , the N-body probability density is taken to have the dependence 

( )* * *, , , , , ,1 1 N Np r p r p r tρ      

 . Upon invoking the chain rule, *ρ  is found to satisfy 
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where a superscript * on an operator implies that , , ,1 1 N Np r p r   

 , *r  and *p  are the 
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independent variables. Hence 
*

ir
 ∂
 ∂ 


 implies an ir
  partial derivative keeping j ir

≠
 , all jp , 

*r  and *p  constant. Finally, 
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This concludes the first reformulation. 

Next we introduce a scaling ansatz and further definitions. Taking the scaled variables 

* 2m mε −= , * 1p Pε −=


  and * 1r Rε −=


 , and introducing a set of scaled times 

, , ,2n
nt t n 0 1ε= =  , the N-atom probability density is taken to have the dependence 
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  . With this and the chain rule **ρ  satisfies 
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Letting a superscript ** on an operator indicates that , , ,1 1 N Np r p r   

 , P


 and R


 are the 

independent variables, we find 
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where *1 N
f F Fε = + +


 

  is the net force on the virus and n 0=L  for n 2≥ . The ** will be 

dropped for simplicity henceforth. 

While above formulation shows the decomposition of the N-atom Liouville equation with 

slow variables P


 and R


, it can be generalized with a set of slow variables. In the case of 
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viral dilatational STs with slow variable set { , , ,P R Π Φ
 

}, the scaled Liouville operators have 

the following form: 
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Appendix B: Fourier/bilateral Laplace transformation 

Given 

  ( ) ( )ˆ kxf k dxe f x
+∞

−∞
= ∫  (B.1) 

one may show that the inverse relation reads 
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Results in Sect. III follow upon generalization to six dimensions. For example, one may obtain 

the inversion formula 
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Thus Ψ Ξ  is related to the integration of W/Q over all imaginary momenta and positions. 
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