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Abstract

Most programming languages do not allow programs to inspect their static type infor-

mation or perform computations on it. C++, however, lets programmers write template

metaprograms, which enable programs to encode static information, perform compile-time

computations, and make static decisions about run-time behavior. Many C++ libraries and

applications use template metaprogramming to build specialized abstraction mechanisms,

implement domain-specific safety checks, and improve run-time performance.

Template metaprogramming is an emergent capability of the C++ type system, and the

C++ language specification is informal and imprecise. As a result, template metaprogram-

ming often involves heroic programming feats and often leads to code that is difficult to

read and maintain. Furthermore, many template-based code generation and optimization

techniques rely on particular compiler implementations, rather than language semantics,

for performance gains.

Motivated by the capabilities and techniques of C++ template metaprogramming, this

thesis documents some common programming patterns, including static computation, type

analysis, generative programming, and the encoding of domain-specific static checks. It also

documents notable shortcomings to current practice, including limited support for reflection,

semantic ambiguity, and other issues that arise from the pioneering nature of template

metaprogramming. Finally, this thesis presents the design of a foundational programming

language, motivated by the analysis of template metaprogramming, that allows programs to

statically inspect type information, perform computations, and generate code. The language

is specified as a core calculus and its capabilities are presented in an idealized setting.
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CHAPTER 1

Introduction

This chapter motivates the work presented in this thesis. It begins by explaining the

need for programming languages to help programmers manage the inherent complexity of

large applications. Discussion then turns to the essential tension between abstraction and

performance as well as the need for safety checking of high-level abstractions. Static (or

compile-time) metaprogramming can be used to address performance and safety issues that

arise in software development.

1. The Challenges of Software Engineering

Computers keep getting faster, smaller, more powerful, and more pervasive, and with

these advances, ambitions for their potential uses increase as well. Computing professionals

and casual users continually dream of more and more sophisticated applications of comput-

ing technology.

Despite our dreams, however, advances in software do not keep pace with hardware

advances. The term software crisis was coined at the first NATO Software Engineering

Conference in 1968 to refer to the detrimental effects that increasing computing power has

had on software complexity [59]. Forty years later, software developers still face mounting

difficulties with building software that meets the needs and wants of users. To make mat-

ters worse, the stakes keep getting higher as society becomes more and more reliant upon

software and computers; as more of our data is published to the Internet, and only accessi-

ble from computers; as the details of our daily lives rely more and more on computers; as

our means of communication and interaction become more computerized; as our knowledge

gets stored in computers and retrieved by software; and as the scale of problems we attack

becomes so large that we must rely on computers over hand or paper calculations.

1



1. INTRODUCTION 2

The heart of the problem is that with increasing sophistication of computer applications

comes increasing inherent complexity of software solutions. More requirements must be

understood, specified, and related to each other. Larger software architectures must be

crafted to address greater functionality and greater interaction between components. And

of course much more software must be implemented to address larger domains and more

intricate requirements.

Every large software application imposes a substantial amount of complexity that can-

not be removed without fundamentally changing what the application can do [12]. This

inherent complexity must be managed. Software engineering is a human process, so it is

programmers who must use the tools at their disposable to decompose complex software

projects into implementable, maintainable, verifiable components that combine to produce

the right results.

Programming language design as a discipline directly addresses the concerns of mount-

ing software complexity. Language design involves developing features that programmers

can use to build well-organized software. Programming languages provide constructs like

procedures, classes, and module systems to help programmers break problems down into

manageable chunks. These organizational constructs offer programmers the means to ab-

stract and modularize, to systematically package code in ways that help them organize,

understand and reuse them. The most powerful abstractions allow programmers to group,

parameterize, and name program components.

For example, consider the C programming language. Two of its primary abstractions are

functions and structures (or structs). Structures provide a mechanism for data abstraction:

a C struct packages one or more data elements under a uniform named interface that can

be treated as a distinct semantic unit. C functions provide procedural abstractions, a means

to group a set of statements into a named and parameterized computation that can be

reused throughout a program. Functions are a beneficial way to factor out mostly-repetitive

computations: the parameters to a function capture any variance between computations.

One less acknowledged abstraction of C is its file structure, namely header files and

source files. C’s treatment of files is not as integrated with the language as structs and
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functions: header files are handled by the C preprocessor (CPP). Nonetheless, C program-

mers use file structure to build modular software components; it provides a means to package

computations as a component, hide local variable and function names from the rest of the

program, and publish an abstract interface that can be used by other components of an

application.

Object-oriented programming languages like C++ and Java provide classes and objects

as primary abstraction mechanisms. A class is a recipe for creating run-time computational

objects that maintain their own internal state and publish a common interface of routines

and publicly visible variables. Some languages also provide explicit means to define modules,

like C++ namespaces and Java packages. These mechanisms provide a more coarse-grained

aggregation and abstraction facility than classes, and integrate more closely with their

languages than does file structure as it is used in C.

In each of the languages described above, abstraction and aggregation facilities are used

to implement software libraries, cohesive collections of data structures and routines that

address some problem space. Software libraries are one popular and effective means to

tackle the inherent complexity of modern software.

Software libraries help developers break a problem into separate components that can

be separately developed. Libraries often address a general application area rather than a

particular piece of application software. Many software applications are implemented using

externally developed libraries to provide some of their needed functionality. In particular,

language implementations usually provide a foundation library of some sort that provides

the most basic and often-needed components for software development. Furthermore, both

free and commercial libraries implement solutions for a variety of problem domains that

require substantial and intimate knowledge to address.

Libraries are also used by development groups to organize the internals of large applica-

tions. It may not be that the library is ever visible outside of the development group, but it

is still vital to managing internal complexity. In fact, the ability to construct an application

from a collection of libraries makes it more possible to approach application development as
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a modular design and construction problem. The structure of an application’s implementa-

tion can reflect the structure of the organization that created it, and facilities for modularity

can simplify software construction in a modular organization. Libraries themselves can form

hierarchies of reusable components: not only do applications benefit from using libraries,

but libraries themselves may benefit from being implemented atop other simpler libraries.

Independently developing a piece of program logic that an available library provides

has its costs. Since libraries generally provide an opportunity to reuse the artifacts of

previous design, implementation, and validation efforts, foregoing this reuse means that

a development group must allocate resources to designing, implementing, and validating

functionality that might already be available. Beyond initial implementation, there is also

the continuing maintenance and improvement cost of such software, a nontrivial recurring

cost over the course of a product’s lifetime.

However, choosing to use an externally developed library has its own costs. For starters,

using any software interface requires knowledge of its invariants and semantics. As such,

using a library requires developers to spend time learning how it works. Furthermore, any

given software library must make certain design decisions regarding how it approaches a

problem space, and some of these decisions will be manifest in the library interface. When

the library interface does not correspond with an application’s design, an “impedance mis-

match” occurs. Limitations in the flexibility of a programming language’s abstraction mech-

anisms force some design decisions to be made in a library that will limit its applicability;

such design decisions are better handled at the application level. This loss of control can

restrict the convenience and benefit of using a particular software library until the costs

outweigh the benefits.

2. Two Pressing Concerns

Challenges remain to, and are possibly even exacerbated by, our current techniques

for decomposing software into modular libraries. In this section we consider two pressing

issues that hinder component-oriented design, the process of building software by combining

existing software artifacts to create new applications. One is the issue of performance and
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abstraction penalty: how our organizational techniques make our programs slower and

only get worse as the number of abstraction layers increase. We also consider the issue of

correctness: what language facilities can developers of large modular software use to provide

stronger assurances of a program’s behavior as well as the means to detect implementation

bugs.

2.1. Abstraction Penalty and Performance. Programming languages expose a

fundamental tension between modularity and performance. Language constructs for pro-

gram organization are meant to help programmers manage the complexity of sizable software

projects, but these constructs also affect what machine code is generated for execution. For

instance, functions help programmers organize blocks of code into value-parameterized units

that may be given names suggestive of their semantics—a significant aid to programmers

who must read and understand code later—and applied in as many locations throughout a

program as appropriate.

Computers do not benefit from the organizational properties of functions as humans

do, but when compilers translate programs with functions, the resulting executable code is

still affected by them. Consider what happens when functions and function calls are imple-

mented on a computer. Functions are generally compiled to a machine code representation

of a block of parameterized code, and function calls are compiled to branching operations

that pass parameters. Passing parameters and branching introduce overhead into the exe-

cution process, including memory or register traffic for preparing function arguments as well

as pipeline and cache effects due to branching. Furthermore, the branches introduced by

function calls can reduce the opportunities to apply local, intraprocedural, optimizations.

Decomposing problems into small-grained functions helps programmers construct main-

tainable software, but it also introduces function call overhead in the compiled program and

hides opportunities for optimization, thereby undermining run-time performance. Optimiz-

ing compilers alleviate some of this overhead by inlining, replacing a function call with a

specialized copy of the function implementation. However, excessive inlining can also harm

performance and näıve inlining can result in nonterminating compilation when faced with
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recursive function calls; for this reason compilers must rely on heuristics and analyses to

achieve reasonable performance gains from inlining. Furthermore, function inlining requires

access to the body of a function, and this requirement can limit modularity. In fact, some

programming systems package libraries of functions as dynamically loaded modules. This

binary representation of functions makes it much harder for a programming system or run-

time to perform function inlining. When performance is critical, the only recourse may be to

sacrifice functional abstractions and inline the relevant code by hand. Some programming

languages such as C++ provide means for programmers to explicitly implement functions

that can be inlined. User-controlled inlining is not a panacea, but it allows programmers

some control over the compilation of their code. Where automated techniques fall short,

programmer intervention can help.

Object-oriented programming languages use classes, objects, and late binding in order to

solve a number of organizational problems. However, in some cases, dynamic binding is used

to resolve problems that fundamentally involve static binding. For example, some object-

oriented programming patterns like the Template Method pattern [22] describe program

compositions that represent relationships between classes and objects that need not vary

as a program runs. In these cases, dynamic binding is treated as a universal least common

denominator for binding problems. While it simplifies a language to use one mechanism

for all such problems, this leads directly to a loss of static information that can be used to

improve performance.

These kinds of mapping issues can be seen by investigating how compilers translate other

abstractions to machine code, including modules and data structures. Modularity interferes

with the ability to optimize away abstractions. The performance impact of organizational

constructs on run-time performance is called abstraction penalty. Various programming

systems already use optimization techniques to improve performance while sacrificing some

modularity [37,95,97].

Robison [70] argues that the economics of compiler development will limit the number,

kind, and specificity of readily available optimizations in production compilers for the com-

ing years. To date the provision of a large suite of extensible custom compiler optimizations
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has not been viable. There is at the same time a need to provide mechanisms for expert de-

velopers to integrate custom optimizations into application components without sacrificing

the benefits of high-level abstractions [10,66,98].

Recent changes in hardware evolution also point to the need for mechanisms to alle-

viate abstraction penalty. For the past three decades, processor designs have followed a

trend where the number of transistors per unit area doubles every 18 months. Processor

developers have taken advantage of shrinking transistor sizes to increase clock rates and

deepen processor pipelines, thereby increasing serial performance of processors. As a result,

software applications have enjoyed passive performance improvements over the course of

this trajectory. In some cases, performance gains have made previously unaccepted devel-

opment techniques, such as high-level languages and dynamic components viable. In other

cases, developers use the computing power to build more sophisticated applications or ap-

plications that operate on greater scales of data than were previously available. In this

manner, software developers have been able to immediately take advantage of performance

gains introduced by faster processors.

Transistors are still getting smaller, and transistor counts are still growing, but due to

difficulties with cooling processors as clock rates increase, processor designers now dedicate

increasing transistor counts to adding more on-chip parallelism, primarily by fitting multiple

processor cores on a chip. It is assumed by the hardware industry that software developers

will find ways to extract parallel performance from applications in order to speed them up.

As a side effect, though, the free lunch of automatic serial performance gain is over: it is

not yet known how in general to build highly scalable parallel applications.

Even as performance gains increasingly come from parallel execution, sequential per-

formance may matter more than ever. Amdahl’s law states that the performance gains of

parallel execution are limited by the proportion of a program that can execute in paral-

lel. If a substantial portion of an application must execute serially, then increases in serial

performance are needed to get sizable performance improvements. As automatic hardware-

provided performance gains lessen, it becomes more cost-effective to allocate resources to
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increasing serial performance on the software/compiler side, whereas in the past it might

have sufficed to anticipate the speedups that come from upgrading machines.

2.2. Correctness. To build correct software that is partially built from libraries, de-

velopers require proper knowledge of how those libraries should be used, and they must have

confidence in the correctness of each library’s design and implementation. These criteria

impose a significant burden on developers, and that burden increases with the scale of the

software application under development.

Software construction is a particularly error-prone affair. Developers often introduce er-

rors into software while implementing it, and those bugs must be detected and eliminated.

In general, ensuring the correctness of software is an arduous and involved task. No single

technique has been shown to effectively address the problem of constructing correct code.

Today developer use methods like unit and functional testing, code reviews, formal specifi-

cation, and heavyweight verification techniques like model checking, to attempt to decrease

the number of defects in software. Practitioners argue that it takes a number of these tech-

niques combined to acquire acceptable confidence in the correctness of software [52]. Each

substantially different approach seems to help.

Software is prone to defects partly because it is so malleable. When constructing large

software projects, developers still operate at a fine level of granularity, often working in

low-level languages with some of the most basic units of computation. Whereas other

fields of engineering have large standard components that are known to interface with each

other in straightforward ways, software engineering still relies on custom-crafted parts [53].

Library development is one step toward producing larger-scale standard components for

software development. However, due to the internal complexity that must be contained

by some libraries, the challenge still remains to ensure the internal correctness of libraries

themselves, let alone ensuring that they are used correctly.

Another source of software defects can be seen in the representational nature of software.

Programs map particular problem domains into computational artifacts, specifically the

data and actions of a particular computer. Early programming languages like C and Fortran
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focus on providing a reasonable model of the underlying computer architecture so as to

simplify this mapping process. In particular, these languages ensure that the operations that

the computer runs are legal with respect to the machine’s operation. However, as software

addresses more complex domains, more help is needed with the process of representing

problem domain structures on a computer. Languages need to go beyond checking what

constitutes a legal operation on a computer. In particular, language tools are needed to

define what set of operations are legal on the artifacts being modeled in the computer

and to enforce constraints on the scope of those operations. In this sense, programming

languages must attach semantic significance to program data and operations, so that they

more closely model the meaning of the problem space, not just its implementation in the

computer. For example, a language like C represents boolean values using integral values:

The integer 0 represents the value “false” and any other integer represents the value “true”.

This representation works for most situations, but a real model of booleans does not support

arithmetic operations like addition or subtraction. In C, a boolean value can be accidentally

passed to a routine that performs arithmetic upon it. If the boolean abstraction were

respected by the language, such abuse would be recognized for the semantic error that it is

and the programmer would be alerted of the fault.

As individual modules of a software application are constructed, developers need ways

to ensure that the code is correct: that the implementation is correct relative to the require-

ments and that the implementation is correct relative to the specification. Nonetheless, cor-

rectness of each component does not imply correctness of an entire application constructed

from them: the components must be connected correctly as well.

Validating large-scale software is an extremely complex, if not intractable problem. As

such, mechanisms, tools, and techniques for guaranteeing partial correctness can combine

to provide relatively strong confidence in the total correctness of a software application and

to remove some of the burden for ensuring correctness from the programmers.

Programming languages provide mechanisms to help with attaining both (knowledge

and trust). In particular, programming language type systems provide a means for a com-

piler or interpreter to verify that a library is internally structured and externally used in
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a manner that is consistent with some basic correctness criteria. They enforce some basic

structural consistency in the library itself, while providing the user some insight into that

structure.

Type systems act as filters on programs that are about to be compiled. Many type

checkers take as input a program and at least conceptually return a boolean value indicating

whether the program type checks. Following this step, a compiler transforms the same

program that was passed as input to the type checking phase into machine code. Languages

like Fortran, C, and early C++ and ML are examples of languages with such type systems.

Programming language type systems have historically been intended to statically check

safety properties of programs and to enable some compiler optimizations.

Since typical type systems are tractable, they are necessarily incomplete. While every

well-typed program does not exhibit a certain class of errors, there are programs that cannot

pass the type checker but are also correct with respect to the same class of errors. In order to

provide nontrivial guarantees, a type system must be conservative, only accepting programs

that it can prove to be type safe. Limitations in the scope of type systems limit the proving

power of the type system. However, when designing a type system, the intention is generally

to avoid placing too much burden upon a programmer in order to produce a correct and

well-typed program.

Type systems at their most basic enable a compiler to compare the types assigned to

identifiers using basic type equality checks. This functionality, along with the ability to

define custom types gives programmers some ability to define types that represent semantic

properties of their program variables and to check those properties, but the kinds of checks

that can be encoded generally have some limitations. As the desire for stronger static check-

ing has grown, type systems have increased in sophistication. Today, some type systems

encode enough information that type checking becomes a more involved process. In fact,

some type systems support enough mechanism that programmers can encode non-trivial

computations within them.
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3. Metaprogramming for Library-Centric Software

Recent advances in the design of typed programming languages have introduced devel-

opers to an approach to software development that has had an impact on both abstraction

penalty and correctness. The C++ type system has been a platform for experimentation with

template metaprogramming, a family of programming idioms that leverage the power of C++

templates. A number of useful techniques centered around metaprogramming have been

developed and used to implement commercial, research, and open source C++ applications

and libraries.

Some C++ programs use template metaprogramming to implement high-level abstrac-

tions that avoid unacceptable performance penalties. Examples include the Matrix Tem-

plate Library (MTL) [77], Blitz++ Array Library [94], and the POOMA parallel partial

differential equation solver [68]. In other cases, template metaprogramming is used to

build expressive high-level abstractions that encode and enforce custom-tailored semantic

safety properties. Examples include the Generative Matrix Computation Library [15], the

Boost Python interface library [2], and the Boost Spirit Parsing Library [17]. All these

libraries leverage static type information to provide flexible, safe, and efficient software

components.

Success with building libraries and applications using template metaprogramming tech-

niques has inspired C++ language experts to investigate new techniques to achieve compu-

tationally useful results by exploiting the design of the C++ language. Several books have

been written about using template metaprogramming for software development [4,6,15].

Furthermore, the C++ language standard has been altered over the years to better support

some template metaprogramming idioms. In fact, an upcoming revision of the C++ lan-

guage will include new language features that were inspired by template metaprogramming

techniques [28,29,33].
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4. Project: Metaprogramming Revisited

Template metaprogramming was an emergent property of C++ templates, so much of the

power of template metaprogramming is not by explicit design: although C++ designers delib-

erately designed the template system to be flexible, they did not anticipate all the particular

applications of templates in modern C++ programs. As a result, template metaprogram-

ming has some severe shortcomings with respect to supporting those uses. Nonetheless,

expert C++ programmers resort to template metaprogramming because it helps them build

expressive high-level applications in a mostly portable way using a ubiquitous programming

language.

Programmers have adopted C++ template metaprogramming because of its practical

utility. However, few would argue that template metaprogramming directly expresses an

ideal programming model. Template metaprogramming is notoriously difficult and requires

conscious abuse of a number of C++ language facilities. Programmers joke about “the

determined Real programmer” who can “write Fortran programs in any language,” [65],

yet today C++ programmers regularly implement metaprograms in a language that was not

designed for it. Unfortunately, no language has been designed to explicitly support the

kinds of functionality that are written as template metaprograms.

However, the collected knowledge of template metaprogramming, more discovered than

designed, can be used to inspire such a design. Underlying the cobbled-together collection

of template metaprogramming tricks is a core set of traits that fundamentally embody the

power of template metaprogramming. These core traits can form the basis for an intentional

metaprogramming framework. Indeed this thesis documents such an approach.

This dissertation lays a foundation for addressing the current lack of intentional and

explicit support for the style of metaprogramming that is currently performed in C++. It

presents an analysis of pre-existing language mechanisms that enable productive metapro-

gramming. In particular, it studies the capabilities of the C++ programming language.

Programmers and researchers have explored the capabilities of C++ templates, and have

produced a family of template metaprogramming idioms. This thesis studies the techniques
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used to develop software using C++ template metaprograms and their limitations. It looks

at some of the properties of C++ templates that programmers use to perform metaprogram-

ming. It discusses some of the important idioms that these properties of templates enable.

The result is a selection of core capabilities that together make template metaprogramming

a practical tool for building software components.

A principled analysis of how programmers use C++ template metaprogramming reveals

that a well-founded programming language model can support the core capabilities that

make template metaprogramming useful. Based on this analysis of C++ templates and the

fundamental principles underlying template metaprogramming, this thesis formulates and

presents a foundational programming language design, or kernel language, that directly

supports capabilities found in C++ template metaprogramming, particularly the genera-

tion and composition of program fragments based on supplied and inferred static semantic

information.

The programming language design augments a simple language with support for compile-

time (or static) metaprogramming. The metaprogramming aspects of a program execute

prior to run-time and provide the programmer with direct means to control the final struc-

ture of a program using static semantic information, including types, to steer compilation.

Particular emphasis is placed on support for static computations and static reflection of

information, particularly type information and static data. These features are presented

in an idealized language that provides enough common language features to motivate the

presence of these richer static semantics.

This language captures the static and dynamic properties of compile-time computation,

however the resulting language is rather unwieldy. In order to present a language interface

that more closely matches a traditional programming language, the design for a surface

language is presented. It provides expressive extensions to the kernel language for actu-

ally writing metaprograms. This language interleaves metaprogramming code and normal

programming code in a lexically scoped manner. The phase distinction between the two

language levels is made implicit but well-defined. The language cleanly captures nesting

of metalanguage and object-language declarations and seamlessly transitions between the
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language layers. It also provides the means to define compile-time computations that look

like run-time computations, thereby enabling the creation of some pleasant and effective in-

terfaces to metaprogramming-driven functionality. The surface language has a well-defined

type system, and its full semantics are defined by type-directed translation to the kernel

language. Thus, the kernel language presents a model for a semantically sound but user-

friendly programming interface, while the kernel language specifies a full semantics for static

metaprogramming.

In order to liberate metaprogramming from the whims of language implementers, it is

necessary to capture a particular semantics for reflection, computation, and code genera-

tion in a language’s specification. In particular, the static semantics, including the type

system, of the programming language must pin down its generative behavior. For this

reason, both the static and dynamic semantics of the designed language are formalized,

building upon traditional sequent-calculus-based static semantics combined with small-step

reduction-based operational semantics. The semantics provides static guarantees about

which program fragments compose statically and how. This thesis establishes that the kind

of static metaprogramming that has evolved in C++ can be given a firm foundation and can

be explicitly and intentionally realized.

5. Layout of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents some background

that is necessary to understand this thesis. In particular it explains metaprogramming with

an emphasis on compile-time metaprogramming in a programming language setting.

Chapter 3 analyzes the core capabilities of C++ templates that make it a useful language

for doing metaprogramming. The techniques described illustrate some of the desirable

properties of a metaprogramming language. These properties motivate the design presented

later.
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Chapters 4 and 6 present a design for a foundational metaprogramming language. Chap-

ter 4 presents the kernel language, which captures the essence of compile-time metapro-

gramming in a framework that is easy to reason about. It explains how the language sup-

ports metaprogramming with types and how its semantics capture a form of compile-time

metaprogramming over an object language. The kernel language uses a number of explicit

mechanisms to facilitate presenting a full semantics for static metaprogramming. As such,

the language is rather cumbersome to use, even compared to C++ template metaprogram-

ming. Chapter 6 presents the surface language, which presents a more implicit and concise

language interface for metaprogramming. It also presents examples of how the languages

can encode static metaprogramming. These show how the surface language, though de-

fined in terms of the kernel language, provides a coherent and complete interface to static

metaprogramming capabilities.

The results of this thesis open the door to future work in designing languages for type-

manipulating static metaprogramming. As a guide to future work, Chapter 7 presents some

discussion as well as directions in which this work can be developed.



CHAPTER 2

Background

This chapter presents background information needed to understand the contributions

of this thesis. First, metaprogramming is introduced, starting with a broad conception

but eventually focusing on static metaprogramming languages. Because this work partic-

ularly addresses metaprogramming for statically typed languages, type systems in general

are discussed. Finally, the design space for compile-time metaprogramming is explored,

emphasizing the tradeoffs between different design decisions.

1. Metaprogramming

Metaprogramming in its most general sense refers to the idea that programs can treat

other programs as data. A metaprogram takes some representation of a program as input

and uses it to produce a result, possibly a new program, as output. The concept is simple

and general, and appears in many forms throughout software development. Because it is

so fundamental, metaprogramming in general is a broad topic that subsumes a number of

technologies, motivations, and principles.

The most näıve conception of metaprogramming considers any program that manip-

ulates another program to be a metaprogram. For instance any programming language

interpreter or compiler can be viewed as a metaprogram. An interpreter takes a program

as input and performs the actions that it encodes. This idea has been codified as a design

pattern: represent data as programs in a small language and write a simple interpreter

to process those programs [22]. A compiler translates a program in one language into an

equivalent program in another language. For example, a C++ compiler like GCC processes

C++ programs as its input and yields executable machine code as its output.

16
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Besides compilers for general-purpose languages, some specialized language-based tools

are considered instances of metaprogramming. Consider, for instance, the YACC parser

generator [35], a domain-specific language (DSL) that links context-free grammar produc-

tions to blocks of annotated C statements. The YACC processor takes a program written in

its input language and generates a parser written in C. The parser recognizes the language

defined by the grammar and performs the actions dictated by the C code from the input

file. YACC provides some sophisticated features that would be difficult for a programmer

to implement from scratch, such as facilities for debugging the input grammar. YACC’s

robustness and flexibility make its use generally preferable to hand-coding parsers.

This thesis focuses specifically on metaprogramming facilities that are integrated into

a programming language. A metaprogramming language is a programming language that

provides mechanisms that are well-suited to manipulating programs. Such a language pro-

vides some means to represent programs, usually programs in the language itself or a subset

of the language as data. It provides operations to manipulate elements that represent code.

Finally, it provides some way to either export or execute the code that it manipulates.

Metaprogramming facilities have long been available in programming languages. An

early example of a language with support for metaprogramming is Lisp [51]. Beginning with

its first implementation, Lisp supported metaprogramming. The syntax of the programming

language mirrored the syntax of its list data structures (s-expressions), so Lisp immediately

had an internal representation for its programs as data. Also, Lisp provided an eval function

which could be given a piece of data that represents a Lisp program and would evaluate

that program. Thus Lisp immediately provided facilities for constructing and executing

programs at run-time.

The Lisp language was extended later with even greater support for metaprogramming.

Lisp macros were introduced in 1963 in an MIT AI memo [30] that describes a mechanism

for adding new special forms to the language that do not obey the standard evaluation

rules. Although calls to these macros use the same syntax as normal Lisp functions, their

evaluation differs from that of standard Lisp function calls. When the evaluator encounters

one of these special forms, the entire expression is passed as an s-expression to a macro
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transformer, which performs computations on it and yields a new program fragment to be

evaluated.

Lisp introduced both eval and macros into the design space for programming languages.

Each of these metaprogramming mechanisms has been adopted by other programming lan-

guages: many languages (i.e., Tcl [61], Perl [96], MetaML [89], Metaphor [60]) support

some mechanism akin to eval, while many other languages (i.e., Scheme [41], Dylan [67],

JSE [7], Maya [8], MacroML [23], MetaBorg [11], JLE [92]) provide macros.

When a language supports metaprogramming, it presents two different conceptions of

programs: programs as computational processes and programs as data. To distinguish

them, we call the part of a metaprogramming language that performs computations on

other programs the metalanguage because it is the language in which one writes programs

“about” other programs. The metalanguage operates on some representation of programs

as data, which we call the object language. For instance, when using Lisp’s eval mechanism,

the Lisp language plays both the role of the metalanguage and the object language. The

same is true for Lisp macros, even though they are fundamentally different from eval.

Sheard [71] categorizes the space for metaprogramming systems in the following taxon-

omy:

Generators versus Analyses. Some metaprogramming systems are specifically geared

toward generating new object code and combining them in order to build output programs.

Other systems analyze existing object code in order to transform it or generate new code

or other artifacts. The C preprocessor and the Lisp macro system exhibit these two notions

of metaprogramming: program generation and program analysis. The C preprocessor is

only capable of program generation, the piecing together of bits of C code. C preprocessor

macros take arguments and generate new text in terms of them, but the result of a macro is

parametric over its arguments: they simply plug their arguments into the expected location

and return new text. Lisp macros, on the other hand, can decompose their arguments,

examine their structure and contents, and use that information to determine the output of

the macro.
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Representation. Different metaprogramming systems use different mechanisms to rep-

resent object programs. Some systems, like XVCL [99] work at the level of strings. This

representation is effective for capturing and manipulating syntactic patterns in programs

that have little structural or semantic content associated to them by the programming lan-

guage. As a result, the design is also language-neutral, though it loses the benefits gained

by having a semantic or structural representation of the object language

Like Lisp, some metaprogramming languages encode object language expressions using

the same kinds of data structures that are used for other kinds of data (i.e., Template

Haskell [72]). Other metaprogramming languages, like MetaML and MetaOCaml [87,89],

provide a special representation for code; Scheme macros [18] represent programs as syntax

objects and provide special operations to build and decompose them. The C preprocessor

represents its arguments as strings of tokens. Since preprocessor macros merely combine

strings of tokens, without analyzing them structurally, this is an adequate representation.

Automatic versus Manual . Many metaprogramming systems make an explicit distinc-

tion between object language programs and metalanguage programs, while others auto-

matically detect phase differences. In particular, partial evaluation [38, 39] performs an

automated binding analysis on programs so as to determine which parts should be evalu-

ated early and which parts left for normal run-time. However, partial evaluation is generally

seen more as an automated optimization method than as a metaprogramming technique.

Metaprogramming languages generally provide an explicit separation between metalanguage

expressions and object language expressions so as to capture the intent of the programmer.

For instance, the MetaML language is often compared to the output of automatic binding

analysis, the first stage of partial evaluation. MetaML requires user-placed annotations

because it does not perform automated binding analysis.

Heterogeneous versus homogeneous. Some integrated metaprogramming languages have

multiple distinct language layers, where the metalanguage differs significantly from the

object language. Other systems have a single language syntax split across multiple stages

of evaluation.
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For instance, the C preprocessor is a separate language from the rest of C. Historically, it

has had a separate implementation (the program CPP), which executes and passes the result

along to the real C compiler. On the other hand, Lisp macros are simply a feature of the Lisp

language. The body of a macro is a Lisp function that happens to receive an s-expression and

return an s-expression. Metaprogramming is implemented using the same facilities as those

of the normal language. On the other hand, Scheme’s syntax-rules [41] macro language is

distinct from the run-time Scheme language. It is a somewhat constrained pattern matching

and manipulation language that does not include run-time Scheme functionality.

Types. Type systems are a common feature for programming languages. Given that

a metaprogramming language involves a metalanguage and an object language (possibly

being the same language), there are design decisions to be made about whether and which

languages of the two are typed, as well as the relationship between those type systems.

For instance, Lisp is an untyped programming language and its macro language is also

untyped. As such, Lisp programs use eval to execute untyped programs that are constructed

at run-time. In contrast, a multi-stage metaprogramming language like MetaML [89] is a

typed programming language that also supports a run-time evaluation operator (called

run). MetaML generates and runs typed programs, and the object language programs that

it generates are given code types in the metalanguage. When run, a program returns a value

corresponding to the type of the code. The main idea behind multi-stage type systems is

“correctness by construction”. The type system guarantees that a program will neither

generate nor run code that results in type errors.

Pre-Scheme [43] is a statically typed dialect of Scheme that was used to implement

the Scheme 48 interpreter [42]. Pre-Scheme supports macros in an untyped fashion. As

such, Pre-Scheme is an example of a statically typed object language combined with a

dynamically typed metalanguage.

MacroML [23,88] is a macro language for ML dialects. These syntactic abstractions

are particularly interesting in that they are fully type checked. Its macros can be proven to

expand to type correct object code prior to macro expansion. Such safety imposes a cost:

MacroML has limited expressivity compared to other metaprogramming systems such as
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Scheme macros. MacroML is an example of a statically typed object language combined

with a statically typed metalanguage.

The shift from dynamic metaprogramming to static metaprogramming changes the focus

of types in a language design. Since a static metaprogram runs at compile-time, its execution

is complete by the time a program has become a full application that is ready for run-time

execution. It’s not as necessary for the metalanguage to generate type safe code since it

is executed prior to run time. No type errors are at risk of persisting into run time code

in this model. Whereas a dynamic metaprogramming language might be more concerned

about the safety of generated code for the sake of run-time correctness, this is not an issue

for static metaprograms. However, as we discuss later, metalanguage type safety affects the

modularity of static checking.

Multi-Level versus Two-Level . In the simplest metaprogramming systems, one program-

ming language is used to manipulate programs written in another programming language.

In these cases, the metaprogramming system is considered to have two levels. However, if

the manipulating language and the manipulated language are the same, then it becomes

possible to write programs that manipulate programs that manipulate programs, ad infini-

tum. Such systems are called multi-level, because their metaprograms can have an arbitrary

number of levels. A uniform language induces an infinite tower of metalanguages and ob-

ject languages. For instance, a Lisp program can use s-expressions to implement and eval a

program that itself calls eval on s-expressions. This capability adds substantial expressive

power to the system: the ability to write programs that write programs.

In Scheme the results of a macro call are passed back to the macro expander, so it is

possible for a Scheme macro call to introduce a new Scheme macro definition, even though

the languages do not coincide completely. So the input to the Scheme macro expander is

in the language of Scheme including macro definitions and calls and so is the intermediate

output, but the final output is pure macro-less Scheme code. Lisp eval, on the other hand,

operates on normal Lisp expressions, so the same language exists at both the meta-level

and the object level.
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Static versus Dynamic. Some metaprogramming languages complete all computations

on the object language programs before those programs are ever evaluated. Other systems

allow the interleaved evaluation of metaprograms and object programs. These differences

are sometimes phrased as “compile-time” versus “run-time” metaprogramming, however

these notions can be misleading given the existence of batch interpreters and interactive

compilers. We distinguish these notions as static and dynamic metaprogramming.

The distinctive property of a static metaprogramming system is that meta-level evalua-

tion can always be performed completely before the object language program is evaluated.

For instance, Scheme macros [18,45] are fundamentally static. When a Scheme expression

is evaluated in an interactive system, the expression first passes through the macro expan-

sion stage, during which macro definitions are evaluated and used to process macro calls.

The final output of macro expansion is a Scheme program that has no macro calls. This pro-

gram is then evaluated by the Scheme run-time evaluator. Macro systems are usually static,

but that is not always the case. Some early variants of Lisp macros expanded macro calls

on the fly, while interpreting expressions, and allowed programs to modify existing macro

definitions. Some of the ways that programmers took advantage of these behaviors could

not be done in a macro system that performs all macro expansion prior to interpretation.

In a dynamic metaprogramming system, evaluation of metalanguage computations may

have to occur during evaluation of the object language. For instance, a Lisp program

may construct an s-expression representation of a program, eval it, and use the results to

construct a second program and eval that as well. In this context, the part of the Lisp

program that constructs other Lisp expressions is the meta-level and the computations that

happen within eval are object-level. In this example, the meta-level computation cannot be

completed until some of the object-level computation is first executed. As such, meta-level

and object-level computation interleave. We say that dynamic metaprogramming systems

lack a phase distinction, meaning that meta-level and object-level computation cannot be

completely teased apart and performed sequentially.

The substantial difference between Lisp’s two metaprogramming facilities is that while

eval is a dynamic metaprogramming facility, macros are static. Using eval, a Lisp program
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can at run-time piece together a list representation of a program and then evaluate it.

Macros, on the other hand, allow a Lisp programmer to specify new special forms that can

be used within a program and are expanded away at compile-time.

Dynamic and static metaprogramming have tended to serve related but different pur-

poses. Dynamic metaprogramming is used to increase performance as well as to express

computations succinctly. Under some circumstances, building and evaluating a dynamic

metaprogram at run-time can alleviate interpretive overhead for repetitive tasks. Many

computations amount to interpreting some data structure as if it were a program. When

a particular interpretation undermines application performance, it is sometimes beneficial

to replace the interpretation with an embedded compiler. That is to say, rather than in-

terpret a data structure multiple times, compile the data structure into a program in the

language and subsequently evaluate it. The benefits of this process depend on the efficiency

of the evaluation mechanism as well as the overhead involved in compiling and using the

data. However, this embedded compiler approach can also pay expressiveness dividends: in

some cases translating data to a program requires less complexity than implementing an

interpreter for the data. In a sense, eval gives the programmer an interpreter for free. For

instance, the MetaOCaml language is used to implement interpreters for domain-specific

languages [86]. However, rather than simply interpreting a program, the metaprogram

compiles it to a MetaOCaml program and then executes that.

Rather than providing primitives for the development of interpreters, static metapro-

gramming offers facilities for implementing new abstractions that can be used directly within

the program itself. Static metaprogramming allows programmers to grow the language.

New abstractions can be provided along with domain-specific optimizations. Such ability is

critical to providing libraries of software for domains where performance is critical. They

also enable execution of nontrivial computations that are completed prior to application

run-time, especially in the case of batch compiled programs. This is generally done to

improve performance. However, static metaprogramming tends toward the development of

domain-specific embedded languages.
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In the following, our interest is more along the lines of Lisp macros than Lisp eval: we

focus on language support for static metaprogramming. As such, it is important to keep in

mind the distinction between the two and their associated uses.

2. Type Systems

A type system is a syntactic mechanism that constrains the structure of programs by

associating semantic information with their parts and restricting how those parts may be

combined. From a programmer’s perspective, a type system is a set of machine-checked

annotations on declarations. From a compiler writer’s perspective, a type system is a

source of static information that can be used to improve performance. From a language

theorist’s perspective, a type system is a discipline for structuring and reasoning about a

language. In short, types play many roles in programming languages.

The typical statically typed programming language requires each variable in a program

to have a particular domain of values it can refer to; each declared function must also operate

on particular kinds of arguments and return values of a particular kind. This information

may be explicitly declared using type annotations or inferred by a type checker. When

a statically typed program is compiled, a type checker interprets these annotations and

ensures that each variable is only assigned the right kinds of values and that functions are

only called with the right kinds of arguments. Many modern programming languages are

statically typed.

2.1. What are Type Systems for? Type systems serve different purposes in different

programming languages. Nonetheless, they follow a few themes. Pierce [62] identifies

several roles for type systems in programming languages. Here we discuss four of them.

Detecting Errors. Since type systems keep track of what kinds of arguments can go

where, they can detect pieces of code that assign values to invalid locations. Type sys-

tems can detect logical data flow errors in programs, regardless of whether those erroneous

statements will ever be executed. Thus they can guarantee the absence of a certain class of

programming errors from programs.
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Many programming errors amount to using the wrong data in the wrong places. Type

systems partition the space of legal values that can appear in each program context and

check for conformance to this partitioning at compile time. This coarse-grained check

can recognize many instances of misused data. Programmers rely on type checkers to

automatically detect such program errors before the program is even executed.

Abstraction. Types are used to abstract parts of a program so that they can be treated

more modularly. Much research has been done on abstract data types (ADTs) [49], a

facility for defining new types that hide their internal structure from the rest of a program.

Abstract data types publish an interface to their underlying representations, but hide those

representations from users. This kind of information hiding limits the dependencies between

program modules, making it possible to change the underlying implementation of an ADT

so long as the interface invariants are preserved. Abstract data types influenced the design

of type systems for object-oriented programming languages [84].

Another form of abstraction presented by type systems is overloading. Also known as

“ad hoc polymorphism,” overloading refers to the ability to provide multiple definitions of

the same identifier which can be disambiguated based on the types of the subexpressions in

the context where it is used. Overloading is most commonly associated with functions, but

values, like numeric constants, are also overloaded. Many typed languages provide simple

arithmetic overloading, where operators like addition and multiplication are defined for both

integers and floating-point numbers, say, and the language chooses the right implementa-

tion. Often, functions for printing data or serializing structures are also overloaded. Some

languages, like C++ and Haskell, allow programmers to define their own overloaded func-

tions. Overloading lets programmers naturally express a conceptually uniform operation

that requires different implementations for different kinds of arguments.

Documentation. Many statically typed languages require programmers to annotate some

parts of their programs with type information. One classic example of this is the C pro-

gramming language, where every variable declaration states the type of values that it can

take, and every function definition states the types of its arguments as well as its return

type. Even languages with type inference require some type declarations. ML data type



2. BACKGROUND 26

declarations specify a set of constructors for each data type and the types of arguments for

each of those constructors.

Type declarations impose some burden on developers, but they also act as machine-

checked documentation, even when they are not mandatory. In Haskell, for instance, many

functions do not require declarations because their types can be inferred. Nonetheless,

many Haskell programmers provide type annotations for each top-level function, and those

annotations are checked by the compiler against the inferred type of the function. In

other languages, programmers must settle for specifying type declarations as comments and

manually ensuring their correctness. By annotating the contents of data types and the

arguments of functions, types provide a coarse-grained specification of a program’s data

flow. In this sense, they document program structure.

Efficiency . A well-typed program provides a compiler with information that it can use

to improve how it translates the program. Since variables have static types, the compiler can

decide locally how to represent those variables in machine code. This is particularly useful

when a variable can only hold values of one fixed type. For instance, most modern machine

architectures provide special registers for handling floating-point numbers, but they can

only be used when the value in question is known to be a floating-point number. Given

type information, a compiler can determine, for instance, that an argument to a function

is always a floating-point number. The compiler can compile the function such that it

receives that floating-point argument in a register rather than in memory. The same sort

of operation can be done for small but fixed-size data structures, which can be split across

multiple registers when passed as arguments. If the compiler consistently renders these

arguments at the interfaces, then calls to functions and the function implementations will

be in sync. Some programming languages, like Common Lisp [81], provide type annotations

solely to increase performance. Such type systems do not facilitate static guarantees about

how programs behave.
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2.2. Basic Properties of Type Systems. Although the term “type system” does

not have a definitive and universally accepted definition, most type systems share a number

of common properties.

Types. Every statically typed language has a set of types, which are essentially syntactic

entities that represent semantic properties. The most basic languages provide a set of

primitive types, like int for integers, as well as some types that are formed from other

types, such as arrays of ints or lists of ints and so forth. In the simplest case, all types are

denoted by particular symbolic names, and name equality is the only form of type equality.

Slightly more complicated languages allow programmers to declare type aliases, alternative

names for the same type. In these languages, type equality includes not only matching type

names, but also types that are explicitly declared as equivalent. Most practical languages

also provide structures, tuples, or other means by which programmers can define their own

composite types. In addition, some programming languages allow programmers to define

type constructors, type-level entities that can be applied to types to form other types. In this

manner, programmers can implement type-level abstractions that provide parameterized

types. When a language supports type constructors, the names of its types have a tree-like

structure. The structure of type names generally encode some semantic information about

the kinds of values that can have the given type. For instance, the function type A → B

describes a function that takes values of type A and produces values of type B.

Compositionality . In a statically typed language, each expression has a type, and that

type is at least in part a function of the types of its immediate subexpressions. For a simple

example, consider a conditional expression if a then b else c. In a typical language, the

type of this expression is fully determined by the types of its three subexpressions a, b,

and c. First, a must have boolean type and the types of b and c must be equal. Given

these restrictions, the entire expression has the same type as both b and c. This typing rule

captures the intuition that this expression will return either b or c. In general the rules for

typing expressions mirror the structure of the expressions themselves.

Although the types of well-typed expressions take on a compositional relationship, the

assignment of types to terms is context-dependent. For practical reasons, programming
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languages do not require programmers to explicitly specify the type of every subexpression

in a program. In general, languages associate types to their primitive constants and require

lexically scoped variables to have type annotations. In the case of type inference, only

user-defined data types need explicit type annotations. Then the type checker deduces the

types of subexpressions based on the variable and data type declarations. So the lexical

scope—more generally the context—in which an expression appears partially determines its

type.

Guarantees. Modern type systems try to do more than present haphazard mechanisms

for constraining the values that variables can take. Programming language theorists have

developed semantic techniques that express strong connections between a programming

language and its type system. A formally specified language like Standard ML [56] has a

dynamic semantics—a formalization of how its programs behave at run-time—as well as a

static semantics—a definition of the type system. To connect the dynamic semantics and

the static semantics, language designers prove a set of theorems that establish dynamic

properties of those programs that are well-typed by the static semantics. This idea is

captured in the phrase “well-typed programs don’t go wrong” (where “wrong” has a precise

meaning for each particular language) [55]. Two specific properties are usually established:

preservation, that a program remains consistently well-typed as it executes, and progress,

that a well-typed program will not fall outside the scope of the dynamic semantics.

2.3. Relevance of Types to Metaprogramming. Program text contains a great

deal of static information, some explicitly present in the text and some implicit until un-

covered during static semantic analysis. Type systems are one way of codifying static

information about a program. Adding sparse type annotations to a program causes every

subexpression of a program to have a type, as dictated by the structure of the type system.

These types encode useful semantic information that can be exploited by a metaprogram-

ming system. For instance, many C++ libraries use template techniques to access the types

of template function arguments and use them to custom generate algorithms (cf. Chap-

ter 3). In an untyped language like Scheme, however, this information must be explicitly
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threaded through a program as an extra argument to every function. Threading compro-

mises abstraction barriers and may complicate otherwise simple operations. Types can

implicitly carry information across abstraction layers.

The type system of an object language is resolved at compile-time. Likewise, the evalua-

tion of a metaprogram occurs at compile-time. These two operations can be made to interact

with each other. In a way, the type system of the object language is a metalinguistic fa-

cility that yields semantic information about program subexpressions. In fact, languages

like C++ and Haskell support metaprogramming through stylized use of their type systems.

We can go so far as to consider the object language types to also be metalanguage data. A

metalanguage can thus perform computations on types.

Metaprogramming can be and has been used to support the roles that types play while

leveraging the information that they add to programs. Metaprogramming becomes even

more powerful if the object language type system becomes more powerful and the metalan-

guage is extended to take advantage of it.

Detecting Errors. Types generally encode semantic information, but a standard type

system cannot necessarily interpret the semantic import of a particular type assignment.

Metaprogramming support can allow programmers to interpret type information in ways

that take advantage of their semantic content. In this way errors that go beyond matching

arguments with functions can be detected using sophisticated routines that execute during

compilation.

Abstraction. The same kinds of computations that are used to detect program errors

can be used to create and enforce abstractions. As described previously, overloading al-

lows a uniform abstraction to present differing implementations. Using metaprogramming,

contextual type information can be used to perform more sophisticated dispatches and can

even be used to generate customized program components.

Documentation. The same way that types can be treated as executable documentation,

metaprograms can be used to encode program invariants that are useful to a reader and

enforceable. One example is the use of metaprogramming in C++ to build concept-checking

libraries [54, 74]. Metaprogramming extends the reach of checkable documentation by
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making it possible for programmers to add even more terms and notions to the lexicon of

their executable documentation and to determine how it is interpreted during compilation.

Efficiency . Metaprogramming can combine domain knowledge with static information

to build program components at compile time that alleviate abstraction penalties. C++

programmers have been doing this for years [93].

Types can be a great source of information about a program and can be used by metapro-

grams to implement effective compile-time functionality. This opportunity to access seman-

tic information about a program is motivation for caring about a type system’s design when

thinking about metaprogramming. It is important to consider how the common traits of

type systems—primitive and compound types, compositionality, and context dependence—

can be leveraged for metaprogramming.

3. Considerations for Static Metaprogramming with Types

Having discussed metaprogramming and type systems in general, we now turn to the

design considerations for a language that supports static metaprogramming and can ma-

nipulate object language types from the metalanguage. This section discusses some of the

parameters of the space for static metaprogramming and tradeoffs that they entail.

Previously we talked about design decisions regarding static types in metaprogramming

languages. This subsection takes a closer look at some of the implications of types in a

language with support for static metaprogramming. It focuses particular attention on how

the metalanguage and its type system interacts with object language types.

3.1. Referential Transparency. Section 2 discussed some of the common properties

of type systems, namely types as syntactic notions, the compositional type structure of

expressions, and the context dependency of type assignment. These three properties can

be taken into account in the design of a metaprogramming language.

Since types come in both atomic and composite form, it makes sense for a metaprogram-

ming language to be able to examine their structure. In particular, a metaprogramming

language that manipulates types could deconstruct composite types into their parts and

examine them. Since type equality is the most fundamental property of types and type
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aliases, a metaprogramming language benefits from being able to compare types for their

equality.

Since type structure is compositional over expressions, it makes sense that a metapro-

gramming language be able to query the type of a subexpression of a program without

knowing the type of an entire program already. However, as discussed before, context in-

formation determines the types of variables and constants. To take this into account, a

design for a metaprogramming language could extend the notion of typing context to in-

clude metalanguage programs as well. That is to say that every object program expression,

even ones that are manipulated within a metaprogram, exists within a typing context.

This notion of typing context is closely related to the idea of referentially transparent

macros from the Scheme programming language. Any free object language identifiers that

are referenced within a Scheme macro definition refer to the bindings for those identifiers

that are in scope at the point of definition. Later uses of those macros may be passed other

identifiers as arguments, but the identifiers that were present in the definition, even as they

appear in the final program, refer to the bindings at the point of definition. In the same

sense, a metalanguage that functions we described here is referentially transparent with

respect to object language variable types. Object language identifiers that are referenced in

definitions of metalanguage computations refer to the bindings and types of variables that

are in context at the point of definition. Just as Scheme’s hygienic macros [45] respect the

binding structure of Scheme programs, a metaprogramming language can respect both the

binding and typing structure of object language programs.

3.2. Object Language and Metalanguage Types. A programming language with

support for metaprogramming has multiple notions of dynamic semantics—the run-time

behavior of a program—and multiple notions of static semantics—type checking and other

compile-time correctness properties. The metalanguage and the object language each have

their own set of semantics . Because of this, some special semantic issues arise in a metapro-

gramming language design.
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Consider the typical statically typed programming language. Its type system prevents

some program errors by detecting them at compile time; static metaprogramming is mostly

compatible with this behavior. Static metaprogramming executes user-designed metapro-

grams at compile time, and those metaprograms may signal errors for a variety of reasons.

However, these errors occur during execution of the metaprogram, which happens at compile

time. These errors happen at the same stage of computation during which object language

type checking occurs.

Things get interesting when the metalanguage also has a static type system. A meta-

language type system provides a means to reason about a metaprogram prior to executing

it. As such, this type system provides an additional stage of processing to program compila-

tion: first check the metalanguage type system, then execute the metaprogram, then check

the object language type system, then compile or interpret the object language program.

Just as the traditional type system may guarantee that a certain class of errors won’t hap-

pen during a program’s run-time, a metalanguage type system can guarantee that certain

errors won’t happen during the metacomputation part of program compilation. This extra

level of checking can provide strong guarantees. As mentioned in Section 1, the MacroML

programming language provides statically typed macros that are guaranteed to generate

only type safe code when they are used. This level of guarantee means that a macro can be

deployed with the knowledge that its correct use will never introduce a type error in a pro-

gram. Errors are caught at the point of macro definition. Contrast this with the PreScheme

language. Its macro language is not typed: programs are type checked following macro ex-

pansion. As such, a macro may generate ill-typed code at compile-time. Macro-induced

type errors are still caught prior to run-time, but not until the macro is used.

Type systems tend to provide some level of modularity. Often, typed programs can

be broken up into modules which have interface and implementation, and each module

can be compiled independently of the implementation of the other modules. In practice,

large programs are constructed by composing separately compiled components into a full

application. Each component (or module) is type-checked when it is compiled, and the result

is a binary representation of that component, as well as a typed interface that describes
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the operations and data descriptions exported by the component. Different modules can be

compiled with the expectation that they will be linked with other modules. In that case,

a separately compiled component uses only the interface of another component to perform

type checking and compilation. Later, the separately compiled components are linked to

form an executable. As such, type safety is guaranteed on a component-by-component basis,

and the linking process simply ensures that component implementations and interfaces have

not drifted out of sync. As long as the interfaces are kept in sync, it can be known that a

local module is type-correct prior to linking it with another module.

A static metaprogramming system may not support the same modular type-checking

guarantees as the typical typed programming language. Suppose a programming language

that supports both implementing and exporting of object language and metalanguage com-

ponents across module boundaries. Then, just as compiling a module requires access to

the type specifications of any interfaces upon which the module relies, the compiler also re-

quires access to metaprograms that are used across modules so it can execute them during

compilation. If metaprograms can signal errors during their execution, then some metapro-

gram errors may not manifest until some module invokes the computation defined by a

metaprogram from another module. Some compile-time errors may not be detected until a

metaprogram is linked with another module that uses it. Compilation of a second module

can signal an error due to a fault in the first module. Just as a type system can induce

guarantees on the execution of a normal program, a metalanguage type system can also

induce guarantees on the execution of metacomputations.

The unfortunate side-effect of a weak metalanguage type system is that a library con-

taining metaprogramming code could be shipped with a bug which cannot be detected

until it is linked with another module that uses it. On the other hand, a strong notion of

metalanguage type safety imposes strong restrictions on the expressive power of a metapro-

gramming language. Just as a traditional type system can reject correct programs, a meta-

language type system can reject correct metaprograms, and this loss in expressiveness must

be weighed against the fact that many static metaprogramming errors can be caught prior

to application run-time, since metaprograms execute at compile-time. There is a significant
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tension between modular safety and expressiveness when it comes to metalanguage type

systems.



CHAPTER 3

C++ Template Metaprogramming

C++ is a successful, if somewhat disparaged, example of the benefits of compile-time

metaprogramming, and the primary inspiration for this dissertation. This chapter takes

a close look at C++ templates and template metaprogramming. It discusses the C++ type

system, focusing on how C++ templates have enabled a powerful and broadly useful form of

metaprogramming. It gives background on C++ templates, discusses the history of template

metaprogramming, and presents an analysis of the core capabilities of C++ templates that

enable the use cases of template metaprogramming.

1. C++ Templates

Templates were added to C++ so that programmers could write and use type-safe poly-

morphic containers [84]. In particular, the C++ Standard Committee Libraries Working

Group needed templates so that they could provide type-safe containers as part of the

language’s standard library. Prior to the introduction of templates, C++ container designs

sacrificed either generality or type safety. Some software applications of the time included

multiple implementations of basic data structures like linked lists and binary trees, each

differing in only the type of data it could contain. Such data structures are type-safe, but

development and maintenance problems associated with this style of code repetition are

well known and best avoided. On the other hand, general-purpose container libraries could

not provide specialized data structures for every type of object used in an arbitrary appli-

cation. Instead, their containers had to discard type information and rely on application

developers to manage their types using static or run-time casts. Such data structures are

concise and general, but the development and maintenance problems associated with casts

are well known and best avoided as well.

35
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Developers quickly realized that they could leverage the C++ preprocessor to develop

container libraries that are both type-safe and general. Rather than implement the same

container for each type, the container is implemented as a single preprocessor macro that

abstracts as a parameter the type of the objects it can contain. Application developers then

generate containers for their data types by providing those type names to macro invocations.

Unfortunately, preprocessor macros achieve generality and type-safety at the expense of

language integration and identifier hygiene. Language integration is sacrificed to the extent

that the preprocessor is separate from the C++ language. The preprocessor operates directly

on lexical tokens: it does not recognize program constructs, nor does it respect them.

During compilation, preprocessor macros are expanded and removed from a program before

any semantic analysis occurs. As a result, preprocessor macros cause analysis tools such

as debuggers and profilers to provide imprecise information and cause compilers to issue

incoherent diagnostics. Identifier hygiene is sacrificed to the extent that the preprocessor

does not respect C++ name scoping rules. Preprocessor macros often require manual name

mangling to prevent multiple conflicting definitions of class, function, and variable names

and to prevent interference between identifiers introduced by an application developer and

identifiers generated by the macros. These problems led Stroustrup to propose the adoption

and standardization of templates [84].

2. The Design of C++ Templates

At the same time that Stroustrup was designing templates for C++, Stepanov and others

were investigating a style of programming now called generic programming [58]. Generic

programming is a design technique that seeks to define and implement algorithms in terms

of the abstract requirements of the algorithm, rather than in terms of a particular data

structure. These abstract requirements codify an interface to the algorithm, and any data

structure that implements that interface (i.e., meets the requirements) is valid input to the

algorithm. As such, generic algorithms are highly reusable and thus prevent the needless

reimplementation of algorithms that can be written once and for all. Musser and Stepanov

began their research in the languages Scheme [44] and ADA [57], but shifted their focus
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to C++, culminating in the design and implementation of the Standard Template Library

(STL). Stroustrup was impressed by the STL and eventually it was incorporated into the

C++ Standard Library [85]. The needs of generic programming influenced the design of

templates. In particular, Stepanov and others prototyped applications of templates using

the C++ preprocessor, and Stroustrup incorporated insights gleaned from those examples

into the design. Stepanov’s examples were derived from his work on generic programming

in ADA [84].

A template is a recipe for building similarly structured pieces of code. They are param-

eterized on types and values. To use a template, it is supplied with a list of arguments that

replace the parameter names. Using a template, one can define multiple related pieces of

code. C++ has two kinds of templates: class templates and function templates.

A class templates is a recipe for defining a data type, where some static parameters

have been abstracted. For instance, instead of implementing a family of individual linked

list data structures:

struct int_list {

int head;

int_list * tail;

};

struct char_list {

char head;

char_list * tail;

};

one might define a linked list class template:

template <typename T>

struct linked_list {

T head;

linked_list <T>* tail;

};

The linked_list template provides a skeleton for implementing any number of linked list

data structures. Now instead of explicitly defining a linked list for ints and chars, one can

use linked_list<int> and linked_list<char> respectively.
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More generally, class templates were conceived as a means to implement type-safe con-

tainers, such as resizable arrays, linked lists, hash tables, and associative arrays. Just like

any other class, a template can contain member functions and member data.

Similarly, a function template is a recipe for defining functions. Rather than writing a

family of functions:

int int_head(int_list * lst) {

return lst ->head;

}

char char_head(char_list * lst ) {

return lst ->head;

}

One can define a function template that covers all cases:

template <typename T>

T head(linked_list <T>* lst) {

return lst ->head;

}

The C++ template design assumes instantiation—the compile-time generation of new

code for each unique instance of template arguments. By generating new code for each

instance, instantiation ensures that templates can be used to construct statically polymor-

phic abstractions whose instances run as quickly as their hand-coded equivalents. Other

programming languages like Eiffel and Java have analogous template facilities, but do not

perform instantiation. Instead, each of their templates results in one unit of compiled code

shared by all instances. By using instantiation, templates can use pass-by-copy semantics,

where complex objects are constructed on the stack and returned as values, rather than

pass-by-reference. Each instantiation of a template is specialized to the needs of its types.

As a result, however, templates themselves are not compiled into applications. Rather, the

particular instantiations of a template are compiled into run-time code.

Though templates were intended to target a particular issue, their design reached beyond

the requirements of polymorphic containers. For starters, templates not only support type

parameters but they also support what are called non-type parameters. A template may be
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parameterized on primitive integral types and enumerations, as well as pointers to values,

functions, and member functions. These values may be used within the body of a template

as constant run-time values wherever applicable. For instance, one can define a statically

sized array abstraction in C++ as follows:

template <typename T, int N>

class array {

T data[N];

int size () { return N; }

...

};

The array class takes as one of its template parameters an integer that it uses to statically

determine the size of the array it stores. Furthermore, the class defines a size() member

function that immediately returns the size as a compile-time constant.

In addition to top-level class templates, which are used to implement containers, and

top-level function templates, which can define operations on all instances of a particular tem-

plate, the language also supports member function templates and nested template classes.

Both of these constructs can be defined within traditional classes or template classes. For

example, the following class:

class my_container {

template <typename T> my_container(linked_list <T>* data);

};

defines a templated copy constructor that can construct a my_container object from any

instance of the linked_list template. Though not strictly necessary for implementing type

safe containers, such templates are useful, and allowing them gives the language a more

orthogonal design.

Like traditional functions and member functions, function and member function tem-

plates are subject to overloading : any unambiguous function call refers to a particular

function or function template instantiation among a set of declarations that all have the

same name. As part of the support for function overloading, C++ supports implicit instan-

tiation: template functions need not be explicitly provided their template arguments when
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they are called. The type system deduces the template arguments to a function template

based on the types of its run-time arguments. For instance, the functions:

template <typename T>

size_t get_size (T&) { return sizeof(T); }

size_t get_size (char &) { return 1; }

can both be called without providing any extra annotation:

int x;

char y;

get_size(x); // calls the function template

get_size(y); // calls the normal function

and the compiler will deduce the template arguments where needed and insert them auto-

matically:

int x;

get_size <int >(x); // calls the function template

get_size(y); // calls the normal function

Class templates can also be overloaded. Once a class template has been declared, a

programmer can define a specialization, an implementation for any particular instance of

the template. For instance, the C++ Standard Library defines a vector template, which is

a resizable array:

template <class T > class vector { /* ... */ };

The vector template is specialized for the type bool. In C++ the bool type is represented

with a byte of data. The C++ vector<bool> implementation stores booleans using bits. That

way an 8-element vector of data needs only 1 byte of storage, rather than 8. the following

specialization covers the instance of vector with bool as its type argument:

template <> class vector <bool > { /* ... */ };

In general, a specialization is used in place of a template instantiation when the arguments

to the instance match the arguments declared by the specialization. A developer may

use specializations to override a class template with a special-case implementation for a

specific set of template arguments. More generally, a programmer may define a partial
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specialization, a special template with the same name as the original template and a list

of arguments that are compatible with the signature of the original template. However,

a partial specialization refers to some of its own template parameters within its list of

template specialization arguments. Whereas a specialization replaces a specific template

instantiation, a partial specialization replaces an entire family of template instantiations.

For instance, the vector template is also specialized for all pointer types:

template <class P> class vector <P* > { };

All instances of vector<P*> use the same implementation of the vector routines, one defined

for the pointer type void*. Since all pointers have the same size, one implementation can

be used for all the underlying machinery, and the particular specialization simply supplies

compile-time casts to ensure type safety. In this manner, the amount of code generated for

vectors of pointers is minimized.

Assuming an Ast template of one argument, the following partial specialization covers

every instance of Ast whose argument is also an instance of Ast:

template <class T> class Ast < Ast <T > > { /* ... */ };

In general, if some template instance matches the more specific signature of the partial

specialization, that template is instantiated in place of the more general template. C++

defines a set of ordering rules that determine the best matching template specialization.

As a result of these overloading and specialization features, templates can be implemented

such that the form of the resulting class or function depends on the particular arguments

to the class.

2.1. The Birth of Template Metaprogramming. As we can see, templates are

powerful. It turns out however, that templates can also perform general computations that

affect the resulting run-time code.

In 1994, during the C++ standardization process, Erwin Unrue approached the C++

standards committee with his discovery that C++ templates could be manipulated into

performing computation, not merely the generation of classes and functions. He wrote a

program that was invalid C++, but the resulting error message included an enumeration of
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prime numbers. It turns out however, that programs can do more interesting things with

templates than generate mathematically interesting error messages. They can also perform

general computations that affect the resulting run-time code. In fact C++ templates are

Turing complete (so long as you disregard the phrasing in the standard regarding template

instantiation depth; in practice compilers allow you to do just that) [9].

C++ templates spawned a genre of programming called template metaprogramming [93].

In addition to binding types to parameters, C++ templates are capable of performing com-

putations on values and types. This ability has proven useful for many applications.

3. Idioms of Template Metaprogramming

Template metaprogramming has been used to develop high-performance libraries for

linear algebra [25,78,79], graph algorithms and data-structures [47,48,76], message passing

for parallel programming [40], and many other domains. As developers have experimented

with template metaprogramming, certain patterns of programming have been discovered

and refined. These patterns comprise the basic idioms of template metaprogramming. In

this section we discuss those programming patterns and the language features that enable

them.

3.1. Static Computation. C++ supports the compile-time evaluation of constant in-

teger expressions and allows integers to be passed as template arguments and subsequently

used as constant values in run-time code. C++ metaprograms take advantage of this to

perform arbitrary mathematical calculations. They can precompute values at compile time

that would otherwise need to be computed at run time. For instance, the program:

template <int M, int N>

struct powMN { static const int value = M * powMN <M,N-1>:: value ; };

template <int M>

struct powMN <M,0> { static const int value = 1; };

int pow_7_5 = powMN <7,5>:: value;
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computes MN using a common idiom where struct templates are used like recursive func-

tions. Template partial specialization provides a pattern matching facility, and this program

uses it to handle the N = 0 base case. When compiled, this program assigns the variable

pow_7_5 the value of 75, 16807, without performing any run-time computation.

3.2. Code Specialization. C++ templates can also be used to specialize a piece of

code with respect to some values known at compile-time. This process is sometimes called

partial evaluation [39]. Rather than simply generate a value, a metaprogram can generate

code specialized for the constant data provided at compile time. A variation on the previous

example:

template <int N>

int powN(int M) { return M * powN <N-1>(M); }

template <>

int powN <0>(int M) { return 1; }

template int powN <5>(int);

implements the same operation, using function templates, but only the exponent is statically

determined. The instantiated function template takes a base value at run-time. The last line

of this example specializes the function for powers of 5, yielding a function that explicitly

multiplies its argument five times.

template <> int powN <5>(int M) { return M * M * M * M * M; };

Bear in mind, however, that this result partly depends on the sophistication of the

compiler. The semantics of templates do not force inlining as it is presented above. As

a result, a legal implementation could expand the template instantiation to a disastrous

cascading implementation:

template <> int powN <5>(int M) { return M * powN <4>(M); };

template <> int powN <4>(int M) { return M * powN <3>(M); };

...
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3.3. Type Structure Analysis. C++ templates can not only perform computations

on their value arguments, but they can also analyze types. In particular, template special-

izations and partial specializations can perform pattern matching against the structure of

the names of type arguments, especially the types of instantiated class templates.

Type analysis can be used to manipulate compile-time data structures. For instance,

consider the following code, which implements a type-level linked list structure:

template <typename H, typename T>

struct type_list { };

struct nil {};

typedef

type_list <int , type_list <double , type_list <float ,nil > > > a_list;

The type_list template can be used to construct lists of types that can be used as arguments

to other templates. In order to make use of the type_list, however, a metaprogram must

decompose it:

template <typename NilType >

struct list_length { static const int value = 0; };

template <typename H, typename T>

struct list_length < type_list <H,T> > {

static const int value = 1 + list_length <T>:: value;

};

int len = list_length <a_list >:: value;

This metaprogram has the same recursive structure as the numerical exponentiation exam-

ple, but this computation is driven by the structure of a type rather than the value of a

number.

3.3.1. Static Reflection. The ability to manipulate C++ types using templates is central

to template metaprogramming. For example, it is neither uncommon nor difficult to write a

metaprogram that generates one type from another type. Consider a template metaprogram

that turns one type into a pointer to that type:

template <class T> make_pointer {

typedef T* value;

};
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To use this metaprogram, simply provide a type argument and reference the internal type

alias: for instance, make_pointer<int>::value is equivalent to int*. A more complex

metaprogram changes a pointer into a base type and leaves non-pointer types unchanged:

template <class T> remove_pointer {

typedef T value;

};

template <class T> remove_pointer <T*> {

typedef T value;

};

This small metaprogram uses partial specialization to implement the case where the argu-

ment is some pointer, and the general template to handle the case where the argument is any

other type. For instance, both remove_pointer<int>::value and remove_pointer<int*>::value

are equivalent to int, and remove_pointer<int**>::value is equivalent to int*. Using tem-

plates to reason about the structure of C++ types is called static reflection.

3.4. Type Property Analysis. C++ templates give some structure to the names of

types, but C++ classes and structs, being nominally typed at heart, imply more semantic

information aside from their name-as-tree. For instance, C++, being an object-oriented

language, has notions of base classes and inheritance. Using a template metaprogram, it is

possible to query at compile-time whether one type is the base class of another type:

template <typename B, typename D> class is_base_of ; // declaration

class A { };

class B : public A { };

class C { };

is_base_of <A,B>:: value ; // compiles to ‘‘true ’’

is_base_of <C,B>:: value ; // compiles to ‘‘false ’’

Note that being a base class is not a property that can be seen in the structure of a class’s

name. B and C look altogether different.

Because of the popularity of these techniques, the next C++ standard will add new

metaprograms that require explicit compiler support. One example involves the notion of a

virtual destructor. Some C++ classes have virtual destructors because of the object-oriented
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aspects of the language. If you have a class that is going to be inherited from, and you wish

to correctly “delete” an instance of the subclass through a pointer to the superclass type,

then the superclass needs a virtual destructor because that will cause the proper destructor

definition to be accessed dynamically. For example, consider the following code

class A { virtual ~A() {} };

class B : public A {

HANDLE h;

B() { h = acquire_resource (); }

~B() { release_resource(h);

};

/* ... */

A* q = new B();

/* ... */

delete q;

If class A’s destructor were not virtual, then the delete call on the last line would fail

to properly release whatever resource B had acquired.

The next C++ standard will directly support ascertaining whether or not a class has a

virtual destructor. This information can be useful particularly within the definition of a

template, or a class that uses an object of the given type. As a result it is then possible to

write:

struct small_struct { int n; };

bool property_query =

has_virtual_destructor <small_struct >:: value;

After compilation, the result is as if the programmer had originally written:

struct small_struct { int n; };

bool property_query = false;

Metaprogramming-based type analysis provides some, but not all, of the capabilities of

a general reflection mechanism, as found in the run-time reflection facilities of Java. For

example, in Java reflection can be used to iterate over the member functions published by
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an object. Unfortunately C++ template metaprogramming does not support this kind of

reflection1.

4. Case Studies

To give a better grasp of the broad capabilities of template metaprogramming, I discuss a

few larger examples of how it has been used in production-quality applications and libraries.

4.1. Performance Improvement. The combination of static computation and code

generation has been used to implement performance enhancements for production software

libraries. The Matrix Template Library (MTL) [77], a C++ library of basic linear algebra

algorithms and abstractions, uses two sub-libraries to mitigate the abstraction penalty that

has plagued previous attempts to build linear algebra libraries with high-level domain-

based programming interfaces. Those previous efforts were deemed unsuccessful because

the scientists that would use these libraries demand the high performance that is usually

provided by the highly-tuned Basic Linear Algebra Subprograms (BLAS). The MTL, with

the help of its two sub-libraries, the Basic Linear Algebra Instruction Set (BLAIS) and the

Fixed Algorithm Size Template Library (FAST), provides high level abstractions for matrix

computations as well as standard optimizations such as matrix blocking, loop unrolling,

and inlining, thereby achieving performance comparable to the BLAS [78].

4.2. Type Reflection. The type analysis capabilities of C++ support important ap-

plications. For instance, the Boost Python library [3] uses type analysis to automate the

generation of foreign function interfaces for the Python scripting language [91]. For in-

stance, the function:

char const* greet () {

return "hello , world";

}

can be reflected into Python using the following code:

1Some clever metaprograms have been crafted to simulate querying members of C++ classes, but their
capabilities are generally quite limited.



3. C++ TEMPLATE METAPROGRAMMING 48

#include <boost/python.hpp >

using namespace boost :: python;

BOOST_PYTHON_MODULE(hello)

{

def(" greet", greet);

}

The above code is valid C++ (taking some advantage of the preprocessor), and succinctly

captures the more complicated process of manually specifying a foreign function interface

as specified for the C interface. Boost.Python uses sophisticated template metaprograms

to compute the signature of the greet function and generate the necessary code to link the

function into the Python interpreter.

4.3. Policy-Based Design and Generative Programming. Abstract data types

hide implementation complexity behind interfaces. They promote program understanding

by breaking software into units that can be understood and used without requiring intimate

knowledge of the underlying details. There are often many variations and tradeoffs in

the implementation of an ADT, with different design choices better suited to different

situations. In such situations a library may provide a suite of variations from which the

user can choose, but it is costly to maintain many implementations of closely-related data

types. One approach to decreasing this cost is to observe that different implementations

of a single ADT or related ADTs may have the same or very similar code. To facilitate

code maintenance, common functionality can be captured in shared pieces of code. Such

factoring limits the amount of repetition in the code base, shrinking the amount of code

that must be maintained. Factoring ADT implementations into pieces also makes it easier

to develop new variants by reusing the relevant pieces. Each ADT implementation becomes

a composition of code units that together suit a particular use case.

4.3.1. Policy-Based Design. Consider a design for a configurable list data structure.

Sophisticated containers may provide a variety of configuration options. For example, a

list class may support several memory management options for its contained elements. The

container may copy elements that are placed inside it, hold them by reference without
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Figure 1. Feature Diagram for Lists

taking ownership, or hold them by reference and delete them when the container itself is

destroyed. This and several other possible configuration options are presented in Figure 1.

C++ metaprogramming provides sophisticated means to implement this taxonomy. First,

C++ template techniques can be used to decompose an abstract data type into categories of

functionality and to implement a family of implementations for each category. Templates

are used to compose one variation from each category together and construct any particular

implementation of the ADT. This decomposition of categories and composition of data-types

is called a policy-based design [6]. In this manner, an exponential number of possible ADT

implementations can be provided using a linear number of implementation units.

The following simplified example shows how a policy-based design is implemented:

template <typename T, typename TracePolicy >

class policy_list {

T head_;

policy_list * tail_;

public:

policy_list(T& h, policy_list * t) : head_(h), tail_(t) { }

T& head () { TracePolicy :: report_head(head_ ); return head_ ; }

policy_list * tail () { TracePolicy :: report_tail(tail_ ); return tail_ ; }

};

struct DoNotTrace {

template <typename T> static void report_head(T&) {}

template <typename T> static void report_tail(T&) {}

};

The code implements a simple linked list template that is parameterized over a TracePolicy

type. The linked list never creates an object of that type. Rather, TracePolicy argument
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is a repository for compile-time configuration information. It determines whether and how

the list should trace or log its usage. For example, the DoNotTrace policy object inhibits

the list type from logging its use by providing vacuous implementations of the tracing

operations. This basic technique can be used in more sophisticated ways to implement

highly configurable data types that are parameterized over multiple interacting policies.

Policy-based designs impose implicit interface requirements on their policy arguments.

For example, the policy_list can only be instantiated with an argument type that provides

a nested report_head type and report_tail static member function. To do otherwise would

yield a compile-time error.

The sophisticated list design in Figure 1 requires more expressive facilities than the

simple example above illustrates. For instance, the list type might maintain a count of

the number of elements it contains, and provide that information via a count() member

function. However, when the counting option is not desired, the list type should not provide

that member function. Furthermore, the ownership and morphology options are interrelated

in a way that is best decomposed into more than two policy options apiece. However, we

desire the user interface to this sophisticated list to export the simple interface illustrated

in the figure. In some other complex designs, certain combinations of policy choices are

invalid. When restrictions apply they should be enforced. Techniques have been developed

for producing these results.

4.3.2. Generative Programming. Czarnecki and Eisenecker [15] introduced a technique

for using template metaprogramming to develop flexible C++ libraries based on the general

notion of generative programming. Following a thorough domain analysis, this technique

involves the synthesis of a set of diagrams, like that in Figure 1, that captures the feature

space of the domain. Then, using template metaprogramming, the policy-based components

that implement the desired feature space—and other metaprogramming-based constructs—

are constructed.

To map from the feature space to the pieces that comprise a data type, more template

metaprogramming techniques are used to implement a configuration language. It provides

the user with a representation of the feature space. To build a type, the user provides a
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combination of features to a generator metaprogram, which first checks the validity of the

feature combination and then uses them to determine how to glue the pieces together.

The configuration language for the list data type:

enum Ownership { ext_ref , own_ref , cp };

enum Morphology { mono , pol };

enum CounterFlag { with_counter , without_counter };

enum TracingFlag { with_tracing , without_tracing };

is simply a set of enumerated types: one for each category and one value for each option.

The list generator implementation, then, is declared as follows:

template < typename ElementType , Ownership ownership ,

Morphology morphology , CounterFlag counterflag ,

TracingFlag tracingflag >

class list_generator;

To construct a list data type, supply the list generator with a set of options and reference

the nested type type:

typedef list_generator <double , cp , mono ,

without_counter , with_tracing >::type list_type;

The resulting list_type holds double values, keeps its own copies of its elements, and

outputs trace information to the console.

The Matrix Template Library and the Boost Graph Library both use the techniques

described here to implement matrix and graph data types respectively. In both cases,

algorithms are the primary focus of the libraries, but the generative data types increase

their utility immensely by providing many variant structures to which the algorithms apply.

4.4. Domain-Specific Static Checks. Type systems enable compilers to statically

guarantee some program properties. As the expressiveness of type systems increases, so too

does the ability to provide more information to the type checker and guarantee more com-

plicated invariants. Some type systems are sophisticated enough to allow the programmer

to encode domain-specific properties. The ability to embed values in types, called dependent

types or indexed types, is one mechanism that enables this kind of domain-specific static

checking.
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Dependent typing differs from other template metaprogramming techniques in that it

has less to do with code generation than it does with encoding properties of programs for

the purpose of checking them at compile-time. Dependent typing in the more complex cases

involves computation, but unlike two-level programming, it does not involve the injection

of compile-time values into the run-time.

Consider the following code:

template <class T, int N, int M>

Vector <T,N+M>

concat(Vector <T,N>&, Vector <T,M>&);

It declares a function template that concatenates two Vector objects, one of length M and

one of length N, to yield a Vector of length M+N. The concatenation operation is templated

on an integral value, as is the array class, which encodes its length. This function guarantees

at compile-time the length of the resulting Vector.

For a more involved example, we turn to physical dimension analysis. Software applica-

tions often manipulate numeric values that have primitive physical dimensions of measure

such as mass, velocity, momentum, and charge, or complex dimensions composed from those

primitive dimensions. For example the Newton, a measure of force, is equivalent to kg.m/s2,

the change in momentum over time. Programming language type systems generally do not

account for physical dimensions [26]. C++ for instance merely has integral and floating-point

numbers. Keeping track of dimensions is generally left to the programmer, but template

techniques can be used to express and enforce them.

Primitive physical dimensions, such as mass, time, and length, and aggregate dimensions

such as velocity (distance per unit time) can be expressed using compile-time lists of integral

values:

template <typename T, int length , int mass , int time >

struct quantity {

T v;

quantity(T t) : v(t) {}

// ...

};
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typedef quantity <double , 1, 0, 0> length;

typedef quantity <double , 0, 1, 0> mass;

typedef quantity <double , 0, 0, 1> time;

typedef quantity <double , 1,0,-1> velocity;

typedef quantity <double , 1, 1, -1> momentum;

The quantity template models values that have physical dimensions. It is parameterized

on a value type and a list of compile-time integers, each of which represents a physical

dimension. Using type aliases, proper names can be given to the most common dimensions.

Arithmetic operations can then enforce dimensional semantics. Multiplying values sums

the dimension exponents:

template <typename T, int length1 , int length2 ,

int mass1 , int mass2 , int time1 , int time2 >

quantity <T,length1+length2 ,mass1+mass2 ,time1+time2 >

operator *(quantity <T,length1 ,mass1 ,time1 >& lhs ,

quantity <T,length2 ,mass2 ,time2 >& rhs ) {

return

quantity <T,length1+length2 ,mass1+mass2 ,time1+time2 >(lhs.v*rhs.v);

}

momentum a_momentum = a_mass*a_velocity;

but only values with the same dimensions may be added.

template <typename T, int length , int mass , int time >

quantity <T,length ,mass ,time >

operator +(quantity <T,length ,mass ,time >& lhs ,

quantity <T,length ,mass ,time >& rhs ) {

return

quantity <T,length ,mass ,time >(lhs.v+rhs.v);

}

momentum a_momentum = a_mass+a_velocity ; // type error!

More sophisticated metaprogramming techniques can be used to build a more robust

and extensible system that also supports numerical conversions between differing unit mea-

sures. Combined with operator overloading, it becomes possible to write clear and succinct

expressions that use units:

mass value = (5 * kilogram ) +

(7 * pound ); // == 8.17514659 * kilogram
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This can significantly increase both the readability and reliability of software.

5. Shortcomings of C++ Templates for Metaprogramming

Clearly template metaprogramming can be used to perform some staggering feats of

programming. However this mechanism is not ideal for the contexts in which programmers

use it.

Because template metaprograms use traditional language constructs in nontraditional

ways, it is not immediately obvious what is intended by the code that makes up a metapro-

gram. For instance, keywords that normally signal the definition of a data type may actually

indicate the definition of a recursive compile-time function.

Furthermore, although template metaprogramming is used to generate tuned high-

performance kernels, this capability is not guaranteed by the language semantics. A con-

forming C++ compiler is guaranteed to generate static values as computed in the two-level

model, however the calls to function templates are not guaranteed to be inlined. If inlining

does not occur, then the code will exhibit function call overhead which is often enough

to negate the expected benefits of specialization. Because of this, some metaprograms are

highly sensitive to the quality of a particular compiler implementation. Sometimes a com-

piler can perform inlining more effectively than a programmer, but in those cases where a

programmer desires and deserves control, that capability should be available.

In fact, C++ template metaprogramming does not support the generation of stand-alone

expressions: only functions, classes, unions, member functions, and so on. Programmers

simulate generating expressions by making the expression of interest a function template,

passing it the necessary arguments (via template and run-time parameters) and tweaking

the resulting code until the compiler reliably inlines the function.

Another common complaint about metaprogramming-intensive libraries regards how

slowly compilers process them. The compile-time cost of template metaprogramming can

seriously undermine the application development process. This cost is partly due to how

class template metaprograms abuse the language’s facilities for implementing templates. A
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great deal of additional and useless bookkeeping must be done by the compiler in addition

to performing desired computations.

One prevalent complaint regarding libraries that take advantage of template metapro-

gramming is that when something goes wrong because of an error in either the implemen-

tation or use of the library, the compiler will spew an often large and inscrutable error

messages expressed in terms of the language constructs that have been hijacked to im-

plement the metaprograms [74]. As a result it is difficult to distinguish user error from

implementation error. In the case of user error, the resulting message exposes the imple-

mentation details of the library instead of expressing what preconditions the library user

has violated.

Despite the power and expressiveness of C++ templates, they are a far cry from the ideal

metaprogramming language. Nonetheless, programmers resort to metaprogramming-based

solutions when there is no other solution that stays within the confines of the C++ language.

The extent to which developers have used C++ templates suggests a great deal about the

ingenuity of those developers and their desire for such facilities and expressive power. It

clearly says little about how pleasant and accessible C++ template metaprogramming is.

With more sophisticated type systems comes the ability to verify more properties of pro-

grams, including domain-specific properties that are specified by programmers. However,

the C++ experience has shown that in addition to verifying static properties, direct pro-

grammatic access to the static semantics of a programming language can provide software

developers with greater expressive power. A type system can enable one part of a program

to reason about the static semantics of another part of the same program and use that

information to select its own behavior. Static reasoning can guide the generation of type-

safe application-specific codes, thereby limiting the quantity of code that must be written

by developers while simultaneously increasing the expressive power of software applications

and libraries.



CHAPTER 4

A Kernel Language for Metaprogramming

This chapter presents a foundational kernel language for compile-time metaprogram-

ming. To first lay groundwork, a simply-typed object language is presented. This language

describes the output of metaprogram execution. Its description introduces the static and

dynamic semantic frameworks in which the metaprogramming language is defined.

Following the explication of the object language, the kernel language for metaprogram-

ming is presented. Examples demonstrate how the language constructs operate, and give a

sense of how compile-time evaluation proceeds. Finally the formal metatheory of the kernel

language is briefly presented. In particular, the kernel language is type safe.

1. A Simply Typed Object Language

Metaprogramming involves computations that treat programs as data. As such, metapro-

grams require some notion of programs that serve as data for them. This section presents

a simple language, called henceforth the object language, over which metaprogramming is

defined.

The object language is an extension of the the simply-typed lambda calculus [13], a small

language that is well-suited to many foundational programming language investigations. Its

syntax follows:

γ ::= 〈type constant〉
x ::= 〈variable〉
c ::= 〈value constant〉
f ::= 〈function constant〉
τ ::= γ | τ → τ (type)
e ::= x | λx : τ.e | e e | c | f

| if e then e else e

56
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The expressions of the object language include variable references, x, first-class func-

tional abstractions, λx : τ.e, and function applications, e e, as well as conditional expres-

sions, if e then e else e. To more closely model the capabilities of practical languages,

the language is parameterized on some set of function constants f and some set of basic

constants c upon which those function constants operate. These are the primitives of the

programming language. For instance, a language that can perform basic integral numeric

operations will have among its basic constants all the integers (0, 1,−1, 2,−2, · · · ) as well

as some operations upon those integers like sub1 for unary subtraction and zero? to query

whether an integral value is equal to zero. In what follows particular constants are assumed

as needed.

The object language is statically typed. Each variable in a program is associated with

the type of values that it may hold. Just as in languages like C and Java, a variable may

be declared to only be bound to integral values (int), or perhaps only to character values

(char). Since the language supports first-class functions—functions as values—variables

can also be given function types. The type τ1 → τ2 indicates a function that can be applied

to values of type τ1 to yield values of type τ2. The language assumes some set of basic types

γ, which correspond to the types of basic constants c. Two basic constants, true and false

are assumed and they are associated with the bool type for boolean values.

The object language singles out a subset of the expressions as values v.

v ::= c | f | λx : τ.e

Intuitively, values are the expected results of evaluating programs or subprograms.

This language is small, but it can simulate many standard language constructs. For

instance, to simulate the let variable binding construct

let x = e1 in e2

use the expression

(λx : τ.e2) e1

where τ is the type of e1.
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Presenting variable binding as a derived form keeps the foundational core of the ob-

ject language small. Derived forms enable non-essential but pragmatically useful language

constructs to be understood in terms of more basic constructs, and also suggest an imple-

mentation strategy.

1.1. Dynamic Semantics. The dynamic semantics of the object language is formal-

ized using the reduction semantics approach [20]. In reduction semantics, the operational

behavior of language constructs is expressed using term-rewrite rules over distinguished

subexpressions of a program. The object language has four basic rewrites, called its notions

of reduction:

r → e

(λx : τ.e) v → e[v/x]
fc → δ(f, c) (f, c) ∈ DOM (δ)
if true then e1 else e2 → e1

if false then e1 else e2 → e2

Each reduction rule transforms a redex, the expression on the left hand side of the

arrow, into a contractum, the result of a reduction. Two of the object-language reduction

rules handle application expressions where both the operator and operand are values, v1 v2.

The first rule is the call-by-value βv rule of the lambda calculus [64]: when a function

abstraction is applied to a value, the value is substituted throughout the function’s body

for its bound variable. The notation e[v/x] denotes the process of replacing every free

instance of the variable x in e with the value v. The second reduction rule handles the

constant parameters of the language. An auxiliary partial function δ(f, c) defines the result

of applying a function constant f to a basic constant c. For example, if the object language

is augmented with natural numbers and a successor function add1 , then δ(add1 , n) = n+1,

where n is a natural number. The δ function need not be defined for every combination of

constants; for instance, in a language that also has character constants, δ(zero?, ’x’) need

not be defined. The last two notions of reduction address conditional expressions and rely

on the two assumed boolean constants true and false.
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The notions of reduction express how a subexpression might be evaluated, but they do

not imply what order expressions might be evaluated in. To establish an order of evaluation,

the reduction semantics uses evaluation contexts.

E ::= � | E[� t] | E[v �] | E[if � then e1 else e2]

An evaluation context represents a program with a single hole in it, represented by

the symbol �. An evaluation context E can be turned into an object-language expression

by plugging an expression e into its hole, generally expressed with the notation E[e]. For

instance, the context � is simply a hole, so plugging a term into it yields the term itself:

�[e] = e.

Evaluation contexts are constructed by progressively filling in the hole of a context with a

new expression that has a hole in it. For example,

(�[add1 �])[� 7] = add1 (� 7)

The definition of evaluation contexts limits the set of legal “subexpressions with holes” that

can extend a context.

Evaluation contexts are used specifically to define program evaluation steps.

r → e
E[r] 7−→ E[e]

The one-step evaluation relation e 7−→ e′ specifies how and where each single step of reduc-

tion happens in a program. It decomposes a program into a context and a redex, performs

a notion of reduction on the redex, and plugs the resulting contractum into the context.

Multi-step evaluation, →7−→, is defined as the reflexive-transitive closure of single-step eval-

uation

e →7−→ e
e1 →7−→ e2 e2 7−→ e3

e1 →7−→ e3

This, in turn is used to define an evaluator, a partial function from programs (closed

expressions) to values.
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Definition 1. If e is a program, then

eval(e) =


c if e →7−→ c

f if e →7−→ f

closure if e 7−→ λx : τ.e

Evaluation contexts impose an order of evaluation on expressions. They restrict which

subexpressions of a program can be operated on. For instance, notice that two kinds of

contexts, E[� t] and E[v �] have to do with applications. The first kind allows a context

to always decompose down into the operator position of an application. The second kind,

on the other hand, only allows the operand position of an application to be visited if

the operator position is a value. These two contexts together force evaluation to proceed

from left to right when faced with an application expression. Also, the evaluation context

E[if � then e1 else e2] establishes that the predicate position of a conditional is evaluated

prior to either the consequent or alternative.

For example, take the following program.

(λx : int.add1 7) if zero? 1 then 6 + 7 else 5

This program has three subexpressions that are redexes and could thus be reduced based

on the notions of reduction: add1 7, zero? 1, and 6 + 7. However, the evaluation contexts

impose a strict ordering on which subexpressions to reduce.

(λx : int.add1 7) if zero? 1 then 6 + 7 else 5 7−→

(λx : int.add1 7) if false then 6 + 7 else 5 7−→

(λx : int.add1 7) 5 7−→ add1 7 7−→ 8

As a result of this ordering, the redex 6 + 7 is never reduced; by reducing the conditional

expression early, this redex is discarded.

In order to guarantee that the evaluator defined by the semantics is a function, it is

sufficient to show that one-step reduction is deterministic, and therefore implementable on

a computer. The property that guarantees this determinism is called unique decomposition.
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Lemma 1 (Unique Decomposition). If e is a closed program, then one and only one of

the following is true:

(1) e is a value (v).

(2) There is a unique evaluation context E and a unique value application v1 v2 such

that e = E[v1 v2].

(3) There is a unique evaluation context E and a unique conditional expression

if v then e1 else e2 such that e = E[if v then e1 else e2].

The unique decomposition lemma proves that given any program, there is at most one

possible redex that can be reduced using one-step reduction. If the term is a value, then

there are no such redexes and evaluation is complete (according to our definition of eval) If

the program decomposes to a redex r, then one-step reduction applies. Finally, a program

might only decompose to terms that are not redexes. One example is the term c1 λx : τ.e.

No application redex has a basic constant as its operator. When such a situation arises,

evaluation has become stuck : one-step reduction can make no further progress.

Consider the following example programs of the object language and the result of eval-

uating them:

7 →7−→ 7

add1 (add1 3) →7−→ 5

if zero? 5 then 4 else 9 →7−→ 9
The expression if zero? 5 then 4 else 9 checks if 5 is equal to zero . Upon determining

that it is not, evaluation skips over the consequent expression 4 and evaluates the alternate

expression, producing the value 9.

The derived let form declares variables and binds values to them. For instance, consider

the following expression and its result:

let x = 9

in

sub1 x

→7−→ 8
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Typing Environment
ε ::= x : τ (environment bindings)
Γ ::= εi (typing environment)

Γ ` e : τ Well-typed expression

(x : τ) ∈ Γ
Γ ` x : τ

type(c) = γ

Γ ` c : γ

type(f) = γ1 → γ2

Γ ` f : γ1 → γ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ ` e1 : bool
Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

Figure 1. Type System for the Object Language

It binds the value 9 to the variable x within the scope of its body, which is marked off by in

and delimited by indentation-sensitive syntax as is done in Python or Haskell. The value

of x is used to compute sub1 x and yield the value 8.

Recall that the language has first-class functions, introduced as λ abstractions. Each

abstracted variable is annotated with a type, which indicates the type of the argument to

the function. Consider the following examples:

let f = (λx : int.double x) in f 5 →7−→ 10

let f = (λg : int → int.g 7) in f (λx : int.double x) →7−→ 14

Here, (λx : int.double x) is the function that takes any value of type int and doubles

it. Functions are first-class in that they can be passed as arguments to other functions or

defined and used immediately. Functions can be named by let -binding them to variables.

The function (λg : int → int.g 7) accepts a function that transforms ints into ints, and

returns the result of applying that function to 7.

1.2. Static Semantics. The static type system for the object language is defined as

a three-place typing relation, Γ ` e : τ . The relation is inductively defined using the set of

type rule schema defined in Figure 1.

The type system for this language is standard [62]. It is parameterized over the set

of basic types γ, as well as the functional and basic constants, f and c. For example, the

object language may include the ground type int in order to classify integral values. To
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connect the constants to their types, a typing function type maps each basic constant to a

primitive type and each function constant to a function type. The type function assigns the

bool type to the constants true and false.

The typing relation Γ ` e : τ asserts that in the typing environment Γ, the expression e

has the type τ . A well-typed program is a closed expression that can be typed in the empty

context, i.e., ` e : τ .

To account for the function, value, and type constant parameters of the language, a

restriction is imposed on the definition of the delta function δ of the dynamic semantics and

the type function of the static semantics: If Γ ` f c : τ , then δ(f, c) must be defined and

type(δ(f, c)) = τ .

To connect these static semantics to the object language’s dynamic semantics, type

safety properties must be established. Type safety implies that all well-typed programs

have certain desirable properties with respect to their types and how they are evaluated by

the reduction semantics. In short, the well-typing relationship imposes certain guarantees

on the dynamic semantics of programs. Type safety boils down to two properties: progress

and preservation.

Theorem 1 (Progress). If e is a program and ` e : τ then either e is a value or there

is some e′ such that e 7−→ e′.

With respect to the one-step reduction relation, a program can be stopped at the final

value, stuck at an invalid application, or able to take a reduction step. The progress theorem

proves that well-typed programs are never stuck.

Theorem 2 (Preservation). If e is a program and ` e : τ , and e 7−→ e′, then ` e′ : τ .

One-step reduction transforms one program into another program. The trace of a

program’s evaluation is then a progression of programs. The preservation theorem proves

that one-step reduction never transforms a well-typed program into an ill-typed program.

When combined with the progress theorem, this means that evaluation can never get stuck if
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it starts with a well-typed program: it only terminates when the program has been reduced

to a value.

1.3. Extending the Object Language. As discussed earlier, let binding can be

simulated in the kernel language rather than added explicitly to it. In fact, it is possible to

extend the kernel language syntax with this construct and mechanically transform programs

from such an extended language down to the original kernel language.

Consider the object language extended with let binding

e ::= . . . | let x = e in e

Corresponding to the change above, the type system is also extended.

Γ ` e1 : t2 Γ, x : τ1 ` e2 : t2
Γ ` let x = e1 in e2

Now, instead of extending the dynamic semantics of the language with new rules for the

behavior of these constructs, a translation is defined from the extended language to the core

language. Recall that the translation from a let binding to the core language introduces

additional type information. Because types play a role in the translation, it must use type

information. For this reason, the translation is defined over typing derivations, rather than

directly defining it upon the terms of the language.

A translation system augments a type system with an extra term that represents the

output of the translation process. In the case of the object language, Γ ` e : τ becomes

Γ ` e  e′ : τ . The translation rules for the core language terms extend the original type

rules in a straightforward manner: they define translation in terms of the translation of

subterms. For instance, consider the translation rule for applications.

Γ ` e1  e′1 : τ1 → τ2 Γ ` e2  e′2 : τ1

Γ ` e1 e2  e′1 e′2 : τ2

The translation of an application e1 e2 is simply the application of the translations of

its immediate subterms. The rule for let, on the other hand, performs the nontrivial
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transformation described earlier.

Γ ` e1  e′1 : τ1 Γ, x : τ1 ` e2  e′2 : τ2

Γ ` let x = e1 in e2  (λx : τ1.e
′
2) e′1 : τ2

Vital to the soundness of this translation is the property that this translation preserves

typability. That is to say, if e is a well-typed term of the extended language that translates

to e′, then e′ is a well-typed term in the core kernel language. It is thus necessary to prove

separately that translation always produces well-typed terms.

Theorem 3. If Γ ` e e′ : τ , then Γ ` e′ : τ .

Using this translation strategy, the dynamic semantics of let expressions is fully deter-

mined by how they are translated to more basic core language expressions.

2. The Kernel Metaprogramming Language

Having fully specified the object language, this section defines a language for compile-

time metaprogramming over it. By design, the language is syntactically a pure superset of

the object language. All object-language programs are legal input to the metaprogramming

language: they correspond to programs that perform no metacomputations.

The metaprogramming language has a stratified syntax. Instead of simply one kind

of expression, the language is split into two language levels that are defined in terms each

other: the code language and the metalanguage. The expressions of the code language are

as follows:

x ::= 〈variable〉
c ::= 〈basic constant〉
f ::= 〈function constant〉
e ::= x | λx : es.e | e e (code language)

| c | f | if e then e else e
| ∼es

Code-language expressions represent programs-as-data in the metaprogramming language,

extending the object language with support for metaprogramming. The code language

differs in two ways from the object language. First, the set of expressions is augmented
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with a form ∼es. Second, rather than annotating each abstraction variable with some type

τ , the variables are annotated with a term es. However, as is explained below, the terms

es include the types τ , so an abstraction λx : τ.e from the object language is a legal term

of the code language. In fact, all expressions in the simple object language are valid code-

language expressions. Just as the object language distinguishes a subset of expressions as

values, the metaprogramming language distinguishes a subset of code-language expressions

as pure code.

τ ::= γ | τ → τ (ground type)
eo ::= x | λx : τ.eo | eo eo | c | f | if eo then eo else eo (pure code)

Pure code is the subset of the code language that corresponds exactly to the terms of the

object language. This is by design: the final result of evaluating a metaprogram is a program

in the object language.

Terms es are expressions of the metalanguage.

α ::= 〈type variable〉
γ ::= 〈type constant〉
cs ::= γ | γ? |→?| dom | cod | typeof (metalanguage constants)
es ::= x | α | λx : τ s.es | es es | Λα.es | es[τα] (metalanguage)

| c | f | if es then es else es

| cs |≺e�| %es | es → es | es =τ es

Metalanguage expressions represent portions of a program that encode static computa-

tions. Whereas the code language represents programs as data, the metalanguage repre-

sents programs that operate on programs. The metaprogramming language is a two-level

language, featuring computations that execute across two different stages, the metaprogram

at compile-time and the object program at run-time.

The metalanguage and the code language have much in common. Both languages include

among their terms the variables x, the basic constants c, and the function constants f ; each

includes a form of function abstraction, λx : τ s.es for the metalanguage, and λx : es.e
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for the code language; and each has a form of function application es es and conditionals

if es then es else es.

Each of the languages explicitly refers to the other. The metalanguage expression ≺e�

includes a subexpression from the code language, while the code-language expression ∼ es

includes a metalanguage expression as a subexpression. These alone suffice to show that

the two language definitions are mutually recursive.

As with the code language, a subset of metalanguage expressions is distinguished and

called the metalanguage values.

cs− ::= γ? |→?| dom | cod | typeof (non-type metaconstant)
vs ::= c | f | cs− | ≺eo� | τ | λx : τ s.es | Λα.es (metavalue)

The basic and function constants are values of the metalanguage. Also, any type τ of the

code language is a value of the metalanguage. This hints at the metalanguage’s ability to

perform computations over types. In fact, base types γ are constants of the metalanguage,

just like the basic constants c. Furthermore, the function type constructor → is an expres-

sion of the metalanguage, es → es. This explains why the code language annotates bound

variables with metalanguage expressions: these expressions can denote code-language types.

Thus the code language can use metalanguage computations to determine the types of its

variables. Code expressions ≺ eo�, where the code subexpression is pure object-language

code, are also values of the metalanguage. This property highlights that metaprograms can

produce object-language code as values.

The code-language expression∼es provides the ability for the code language to explicitly

escape to the metalanguage, compared to the implicit escape that occurs in typing contexts.

The metaprogramming language is intended to be able to manipulate programs as data,

and here is one place that this capability is highlighted. The code-language expression

∼ es is called a splice. The code language escapes to the metalanguage, which performs a

computation and returns a code object, ≺eo�. The metalanguage expression ≺e� performs

the analogous role of the code-language ∼es expression: it allows the metalanguage to drop
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back into the code language. In particular, such an expression is a code object constructor.

The result of a code object constructor is a piece of object-language code. When such

an object is the result of a code-language splice expression ∼ es, the object-language code

is spliced inline into the code-language expression. This behavior is analogous to Lisp’s

unquote operation. These operations are described in more detail below.

The metalanguage includes all of the basic constants and function constants of the code

language, but it also includes some of its own. Besides the primitive code-language types

γ, the language also includes a set of function constants that operate on types. For each

primitive type γ, the language includes a predicate γ?, which determines whether or not its

type argument is equivalent to the type γ. The language also offers operators specifically

geared toward function types. The operator →? operates on a type and returns a boolean

indicating whether the type given is a function type τ1 → τ2. The dom(or domain) and cod

(or codomain) operators decompose function types into their constituent parts, extracting

the domain or codomain, respectively, of a function type, and acting as identity on any

non-function type. The language also provides a type equality operator τ1 =τ τ2 which

given two types indicates whether they are equivalent.

The typeof operator provides a means to access the type of a piece of code. This

operator brings into play observations about type systems from Chapter 2.

Section 1 presents the static type system for object-language programs. Since meta-

language code objects are terms in this language, the typeof operation appeals to its type

system to compute the type of expressions. The type system of the simple object language

is expressed as a ternary relation Γ ` e : τ , meaning that in a particular type environment Γ,

the term e has the type τ . On the one hand, the type of an expression is partly determined

by the types of its subexpressions; but on the other hand, the type environment Γ used to

type each subexpression of a term is partly determined by the larger expression in which

it is embedded. Specifically, a lambda abstraction λx : τ.e is assigned a type based on the

type of its body e when typed in a context that maps the variable x to the type τ . Thus,

typing is partly compositional, partly context-dependent.
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The type system itself induces the compositional type structure of expressions. However,

the source of typing context is not as obvious. In particular, given a call to typeof in

a metaprogram, a reasonable type environment Γ is needed to compute the type. The

source of the proper type environment lies in the structure of metacomputations. Since a

metaprogram is also an expression of the code language, all metalanguage computations

are reached through escapes from the code language, either as a splice expression or as a

type-annotation computation. Some of those escapes may occur in the body e of a code-

language expression λx : es.e. If the metalanguage expression that annotates the variable

above is well-formed, then it evaluates to a code-language type τ . Thus, as far as the code

language is concerned, the term e exists in the lexical context of the binding x : τ . Since

free code-language variables are bound by lambda abstractions, the metalanguage uses those

bindings to determine the typing context used by a typeof. As formalized below, those

context bindings exist within the evaluation context, or run-time stack, of metaprogram

execution. Therefore the typeof operator conceptually performs stack inspection [14] to

determine the relevant type environment.

The basic and functional constants of the code language are constants of the metalan-

guage. This suggests opportunities for the metalanguage to interact with the code language.

In particular, the metalanguage provides the expression form %es, which is referred to as

cross-stage persistence [89]. The % operator, when applied to a basic constant, yields a

piece of code in the code language that contains the constant. This operator is the means

by which metalanguage constants can be embedded into the run-time language. Thus, for

instance, a metaprogram can perform a sophisticated computation at compile-time and em-

bed the result of that computation into the output program. This is an instance of pure

static computation. Cross-stage persistence can only be applied to basic constants, however.

Metalanguage abstractions cannot be persisted because they can contain computations that

do not have a run-time analog. For instance, the run-time language has no values of type

code or type. As such, persisting metalanguage expressions that manipulate these entities

would have no meaning in the final output program.
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The metaprogramming language has three different variable abstraction forms: code-

language term variable abstraction, e = λx : es.e, metalanguage term variable abstraction,

es = λx : τ s.es, and metalanguage type variable abstraction, es = Λα.es. As is standard, the

language formalization implies a variable convention. The free variables in any expression

are assumed to be different from any bound variables that appear in the same context.

Furthermore, the variables bound by any abstraction are subject to alpha-conversion as fits

the context. Since the code language and the metalanguage use the same term variables,

and both kinds of abstraction can contain each other, all bound variables from either form

are assumed to differ. In the metaprogramming language, programs are identified with the

closed expressions of the code language, meaning that no term or type variables are free.

2.1. Dynamic Semantics. To formalize the discussion above, this subsection presents

a reduction semantics for the metaprogramming language. Figure 2 presents the evaluation

contexts for the language. Just as the syntax for the metaprogramming language is defined

as two mutually recursive categories, the same is true of the evaluation contexts. The

evaluation contexts split into two groups: the metalanguage contexts Es and the code

contexts E. Since all programs of the metaprogramming language are terms of the code

language, each evaluation context represents a term of the code language that has a hole in

it. A metalanguage context Es is equivalent to a term of the code language that has a hole

in a location that expects a term of the metalanguage. A code context E is a term of the

code language with a hole in a location that expects a term of the code language. The base

case of all evaluation contexts is a code context hole E = �. Some code contexts E are

formed by extending metalanguage contexts Es and vice-versa. For instance, a code context

E whose hole is plugged with the splice form ∼� becomes a metalanguage context E[∼�]

. Similarly, a metalanguage context Es whose hole is filled with the code constructor form

≺�� becomes a code context Es[≺��].

As is standard practice for reduction semantics, the metaprogramming language defines

a set of redexes, which are distinguished terms of the metalanguage es, and notions of
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Es ::= Es[� es]
| Es[vs �]
| Es[if � then es else es]
| E[λx : �.e]
| E[∼�]
| Es[%�]
| Es[�→ es]
| Es[τ → �]
| Es[� =τ es]
| Es[vs =τ �]
| Es[�[τα]]

E ::= �
| E[� e]
| E[eo �]
| E[λx : τ.�]
| E[if � then e else e]
| E[if eo then � else e]
| E[if eo then eo else �]
| Es[≺��]

Figure 2. Kernel Language Evaluation Contexts

reduction which represent computational steps of the metalanguage. Redexes are denoted

by the metavariable r.

In combination with metalanguage contexts, each notion of reduction captures a step

of metaprogram execution.

(meta-eval)
es
1 →Es es

2

Es[es
1] 7−→ Es[es

2]

Thus, if a program can be decomposed into a metalanguage context and a metalanguage

term that corresponds to one of the metalanguage redexes, then the program can be reduced

one step using the corresponding notion of reduction.

The metaprogramming language includes a function application reduction.

(λx : τ s.es) vs →Es es [vs/x]s

Its behavior is equivalent to function application in the dynamic semantics of the object

language. Function application is defined in terms of capture-avoiding substitution, as is

standard, but substitution in this language must take into account the hygiene of both
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metalanguage variables and code-language variables. For instance, consider the following

reduction.

(λf : code. ≺λx : int.x ∗ ∼f�) ≺x + 7�7−→≺λz : int.z ∗ ∼≺x + 7��

The code-language variable x is free in the code object ≺ x + 7�, but the same variable

is bound in the code expression ≺ λx : int.x ∗ ∼ f �. In order to prevent the inadver-

tent capture of x by the code-language abstraction, substitution must rename the bound

variable in the code expression. This means that during substitution, variable renaming

occurs in both the metalanguage and the code language. During metaprogram evaluation,

substitution never applies to code variables. Nonetheless, code variables must sometimes

be renamed.

The polymorphic type application rule is expressed in terms of a type substitution

operation.

(Λα.es)[τα] →Es es {τα/α}s

This substitution differs from the analogous mechanism from the polymorphic lambda cal-

culus in that type variables also appear as term expressions in the metalanguage. Take, for

instance the following trace.

(Λα.λf : α → bool.λc : α.
if (f c) then ≺λt : α.λf : α.t� else ≺λt : α.λf : α.f�)[int] zero? 5 7−→

(λf : int → bool.λc : int.
if (f c) then ≺λt : int.λf : int.t� else ≺λt : int.λf : int.f�) zero? 5 →7−→

if (zero? 5) then ≺λt : int.λf : int.t� else ≺λt : int.λf : int.f�7−→

≺λt : int.λf : int.f�

The type int is substituted into the polymorphic function, and as a result the type anno-

tations of the metalanguage variables f and c become ground types. However, the type

variable α also appears in the type annotations of the code objects ≺ λt : α.λf : α. . . .�.

In such contexts, type annotations are metalanguage expressions. As such metalanguage
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type variables play two roles, as parameters to metalanguage types and as parameters to

metalanguage terms.

The cross-stage persistence (CSP) rule encodes the semantics described earlier: CSP

coerces constant values into their equivalent code representations.

%c →Es≺c�

For example, consider the following trace.

(λn : int ≺7 ∗ ∼%(n + 4)�) 6 7−→≺7 ∗ ∼%(6 + 4)�7−→

≺7 ∗ ∼%10�7−→≺7 ∗ ∼≺10��

After 6 is substituted for n in the function, reduction focuses on the body of the CSP

operation, reducing the sum 6 + 4 to 10. The CSP operation then becomes the current

redex, and it coerces the metalanguage value 10 to the piece of code ≺10�.

The reduction steps for conditional expressions are standard, as is the delta rule for

applying functional constants.

if true then es
1 else es

2 →Es es
1

if false then es
1 else es

2 →Es es
2

f c →Es δ(f, c) (f, c) ∈ DOM (δ)

The → operator is not associated with a particular notion of reduction because it

plays the role of a data constructor in the language. Once its two arguments have been

evaluated, the arrow operator returns a type as a value. For example, the expression

int → (if true then bool else int) evaluates to the object-language type int → bool.

The rules for γ? and →? query the identity or structure, respectively, of type values.

γ? γ →Es true
γ? τ →Es false τ 6≡ γ
→? (τ1 → τ2) →Es true
→? τ →Es false τ 6≡ τ1 → τ2

The dom and codoperations access the domain and codomain, respectively, of a function

type.
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dom(τ1 → τ2) →Es τ1

dom(τ) →Es τ τ 6≡ τ1 → τ2

cod(τ1 → τ2) →Es τ2

cod(τ) →Es τ τ 6≡ τ1 → τ2

If either is applied to a type that is not a function, the operation acts as identity. The

language defines these operations in this manner for simplicity and accessibility. A more full-

fledged metaprogramming language would replace these operations with a pattern-matching

and dispatch facility.

Finally, the type equality operation =τ performs a structural comparison between any

two types.

τ =τ τ →Es true
τ1 =τ τ2 →Es false τ1 6≡ τ2

In addition to the notions of reduction of the metalanguage, the metaprogramming

language defines one reduction step for the code language. Since only one reduction rule

applies to terms of the code language, it is presented as part of the corresponding program

reduction step, though it could be considered a notion of reduction for the code language.

(splice)
E[∼≺eo�] 7−→ E[eo]

If a program can be decomposed into a code context and a splice operation applied to a

piece of pure object-language code, then the pure code is spliced into place. For an example

of splicing in action, consider the following program trace.

∼((λf : code → code. ≺∼(f ≺2�) ∗ ∼(f ≺3�)�) (λx : code. ≺5+ ∼x�)) 7−→
∼≺∼((λx : code. ≺5+ ∼x�) ≺2�) ∗ ∼((λx : code. ≺5+ ∼x�) ≺3�)�7−→

∼≺∼≺5+ ∼≺2�� ∗ ∼((λx : code. ≺5+ ∼x�) ≺3�)�) 7−→
∼≺∼≺5 + 2� ∗ ∼((λx : code. ≺5+ ∼x�) ≺3�)�) 7−→
∼≺(5 + 2) ∗ ∼((λx : code. ≺5+ ∼x�) ≺3�)�) →7−→

∼≺(5 + 2) ∗ (5 + 3)�
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The first step of reduction substitutes a function for the variable f , and the second step

substitutes the code ≺2� for the variable x, but the next two steps focus on splices of pure

code and each splices a pure code object into its surrounding code object.

Finally, the metaprogramming language specifies the typeof operation as two context-

sensitive rules.

(typeof)
Γs(Es) ` eo : τ

Es[typeof ≺eo�] 7−→ Es[τ ]
(notype)

∀τ.Γs(Es) 6` eo : τ

Es[typeof ≺eo�] 7−→ ⊥

As described earlier, the typeof operation is specified in terms of the type system for the

object language. If the code argument to the operation is typeable in terms of the object-

language type system, then that type is the result of this operation. If the code argument

cannot be typed, then execution of the metaprogram aborts by transitioning to ⊥.

The definition of typeof relies on two properties of the object-language type system.

First, in the simply-typed calculus, every typeable expression has one and only one type.

Therefore, the mapping from typeable expressions and contexts to types is a function,

meaning that the result of typeof is well-defined and single-valued. Second, the type

system of the simply-typed calculus is decidable, which means that given a term and a

typing context, it is always possible to determine whether or not a term can be typed in

the object-language type system.

Furthermore, unlike every other reduction step of the metaprogramming language, the

typeof operation is in part a function of the current evaluation context Es. The typeof

operation relies on stack inspection to determine the proper type environment to use for

typing its argument.

Γ∗(E∗) : E∗ → xi : τi

Γ(E[λx : τ.�]) = Γ(E), x : τ
Γ∗(E∗[. . . ]) = Γ∗(E∗)

The functions Γs(Es) and Γ(E) traverse the evaluation context, collecting variable-type

annotation pairs from code-language function abstractions. The definition above uses the

notation Γ∗ to abbreviate the trivial cases, which do not directly contribute bindings to the



4. A KERNEL LANGUAGE FOR METAPROGRAMMING 76

type environment. The dynamic context of a metaprogram corresponds to the lexical con-

text of the code-language expression under construction. For this reason, the variable-type

annotations embedded in the current evaluation context correspond to the type environ-

ment that the object-language type system would use to deduce the type of an expression

at the same position in the program.

Consider a simple use of the typeof operator to compute a type annotation for a lambda

abstraction:

λx : int.(λy : (typeof ≺zero? x�).x ∗ 4) false

The typeof operator uses the object-language type system to type the expression

zero? x in a context where the variable x has the type int, resulting in the bool type.

The result of metacomputation is as follows.

λx : int.(λy : bool.x ∗ 4) false

One notable property of the metaprogramming language is that even though metapro-

grams can only construct syntactically well-formed object-language expressions, they can

still construct ill-typed object code. Because of this, the typeof operation can fail, and

the behavior of the language is to abort evaluation, as though an uncaught exception were

thrown. Such behavior is not ideal for a practical programming language, but it suffices for

theoretical purposes. A more complete language definition could guarantee production of a

complete program by allowing typeof to optionally produce a type. One simple approach

to this introduces an optional type to the language, like the Maybe type of Haskell.

Since a metaprogram might never call typeof during its computation, the final re-

sult of metaprogram execution may be a well-formed but ill-typed object-language pro-

gram. A complete language infrastructure with support for metaprogramming must still

type-check the output of metaprogram execution in order to guarantee that the resulting

object-language program is well-typed. Nonetheless, the metaprogramming language de-

sign enables metaprograms to take advantage of intermediate type information gleaned from
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subexpressions using the typeof operator. By combining metaprogram execution with full

type checking, all type errors are still guaranteed to be caught prior to run-time.

2.2. The Type System. The metalanguage provides constructs to manipulate the

types of the code language/object language, but the metalanguage itself is also statically

typed. Thus, the metaprogramming language distinguishes a set of metalanguage types.

τ s ::= α | γ | code | type | τ s → τ s | ∀α.τ s

The set of types τ s subsumes the set of code-language types τ . Thus every function

from the language of pure code is syntactically a legal metalanguage function.

Just as in the code language, the variables abstracted by lambda expressions have type

annotations, λx : τ s.es. The types of the metalanguage extend the types of the code

language: every code-language type is a valid metalanguage type.

The metalanguage adds two particular types to the language in order to address its role

as a metaprogramming language. The type type is the type of all pieces of metalanguage

data that represent types. For instance, the int type, when used as data in the metalan-

guage, is given the type type. The type type plays the same role as the kind ∗ from formal

type theory. In type theory, a kind is the type of a type. Analogously, the type of each

code-language type is type.

The metalanguage also has a type code, which is the type of constructed pieces of object

code. Recall that code is created in the metalanguage using expressions of the form ≺e�.

This operation drops computation into the code language, which may escape back into the

metalanguage. The result of such an expression, when its body has completed evaluation, is

a piece of well-formed object-language code. That code has type code. Notice that all code

has a single type. This is in stark contrast to a multi-stage metaprogramming language

like MetaML [89], where the type of a code-forming expression is also annotated with its

eventual type. In this model, the object-language type of a code language is not statically

known. This makes the type system weaker, but it also raises restrictions on the capabilities

of the metaprogramming language. Since the metalanguage type system does not need to
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prove the type of the code-language expressions it constructs, metaprograms have greater

flexibility in the kinds of code objects they can construct.

As is standard, the type system of the metaprogramming language is defined using type

environments Γ.

ε ::= x : τ s | x : dyn | α : ∗ (environment bindings)
Γ ::= εi (environment)

Type environments for the metaprogramming language contain three kinds of type bind-

ings. One kind of binding associates a variable with a metalanguage type τ s. This is the

binding used for metalanguage variables. Another kind of binding marks a term variable

as dyn, meaning it belongs to the code language. The final binding establishes that a type

variable α is active in the current type environment. In practice this annotation ensures

that the variable convention is preserved.

The language definition imposes well-formedness conditions upon type environments.

A type environment can only contain one binding for any term or type variable, so a type

environment can be treated as a partial function on variables. Also, since metalanguage

types can contain references to type variables, those type variables must be accounted for.

Therefore, a type environment is well-formed only if every type variable α referenced in a

binding of the form x : τ s appears in an earlier binding α : ∗ in the environment.

Γ wf

∅ wf
Γ wf α /∈ FV (Γ)

Γ, α : ∗ wf
Γ wf x /∈ FV (Γ)

Γ, x : dyn wf

Γ wf x /∈ FV (Γ) FV (τ s) ⊆ FV (Γ)
Γ, x : τ s wf

From here on, well-formedness of type environments is assumed.

The type system is defined as two mutually recursive relations, one that establishes

metalanguage terms as well-typed (Γ ` es : τ s), and one that establishes code-language

terms as well-formed (Γ ` e wf). As is suggested by the form of these two relations, the

code-language expressions do not directly have types associated with them: a code-language
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expression is simply considered well-formed or not. On the other hand, expressions in the

metalanguage have types.

The rules for well-formed variable references in the code language and well-typed variable

references in the metalanguage are similar.

(x : τ s) ∈ Γ
Γ ` x : τ s

(x : dyn) ∈ Γ
Γ ` x wf

A metalanguage term variable is well-typed if the type environment associates it with a

type τ s. Similarly, a code-language term is well typed if the type environment marks it as

dynamic, x : dyn. Due to the well-formedness requirements of type environments, bindings

are unique, so any particular term variable can only be associated with the metalanguage

or the code language. This property ensures that a bound variable in a well-typed term can

only be used in contexts that correspond to its binding context: code-language-bound vari-

ables can only be referenced in code-language subterms and metalanguage-bound variables

can only be referenced in metalanguage subterms.

The relationship between the types of the metalanguage and the well-formedness criteria

of the code language can be seen in the expressions that sit at the intersection between the

two languages. For instance, take the splice rule.

Γ ` es : code
Γ `∼es wf

A splice is an expression of the code language, but it has an expression of the metalanguage

as a subexpression. In order for a splice expression to be well-formed, the metalanguage

expression must have type code, meaning that its evaluation will result in a piece of object-

language code that can be spliced into place.

Consider also the code-language lambda expression rule.

Γ ` es : type Γ, x : dyn ` e wf
Γ ` λx : es.e wf

The variable annotation position of a code-language abstraction is also an expression of

the metalanguage, and it must have type type, meaning that the subexpression must

yield an object-language type. The metalanguage can produce both object-language types
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and object-language code. However the metalanguage is more versatile. Its type system

includes typings for all basic and functional constants, meaning that the language can

express general computations: all code-language expressions can be expressed and executed

in the metalanguage.

The body of a code-language abstraction must be deemed well-formed in an environ-

ment extended with its abstracted variable x tagged as dyn. By well-formedness of type

environments, the variable x cannot already be bound in the current type environment, but

by the variable convention the binding of x can be renamed implicitly if it conflicts with

any variable in the current type environment. Thus, any reference to x in the body of e

refers to this particular binding.

Now, consider how the metalanguage type rules interact with the code language, par-

ticularly in the code-forming expression form.

Γ ` e wf
Γ `≺e�: code

This expression of the metalanguage contains a code-language subexpression. In order for

a code expression to be well-typed, in which case it will have type code, the code-language

subexpression must be well-formed: any nested splice expressions must have type code,

and any type annotations must have type type.

Now consider the cross-stage persistence form of the metalanguage.

Γ ` es : γ

Γ ` %es : code

This expression has a metalanguage subexpression, but that expression is restricted to

yield a value of a primitive type. Intuitively, this means that the result of evaluating that

expression must be a basic constant c, which is both a legal metalanguage expression and

code-language expression.

In the code language, basic constants and function constants are always well-formed.

Γ ` c wf Γ ` f wf
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Recall, however, that the meta-language can construct ill-typed expressions in the object

language. Thus the type system ensures that the combination of code-language expressions

fits the syntactic structure of the code language.

On the other hand, basic constants and function constants are typed when they appear

in the metalanguage.

type(f) = γ1 → γ2

Γ ` f : γ1 → γ2

type(c) = γ

Γ ` c : γ

By assumption, the types assigned to basic constants and function constants are the same

as the types that are assigned to them by the type system of the code language.

code-language application expressions and conditional expressions are well-formed so

long as their immediate subexpressions are well-formed.

Γ ` e1 wf Γ ` e2 wf
Γ ` e1 e2 wf

Γ ` e1 wf Γ ` e2 wf Γ ` e3 wf
Γ ` if e1 then e2 else e3 wf

In contrast, metalanguage application and conditional expressions are typed in the standard

simply-typed fashion.

Γ ` es
1 : τ s

1 → τ s
2 Γ ` es

2 : τ s
1

Γ ` es
1 es

2 : τ s
2

Γ ` es
1 : bool Γ ` es

2 : τ s Γ ` es
3 : τ s

Γ ` if es
1 then es

2 else es
3 : τ s

Similarly, the type rules for metalanguage lambda abstractions are standard.

Γ, x : τ s
1 ` es : τ s

2

Γ ` λx : τ s
1 .es : τ s

1 → τ s
2

The metalanguage introduces a number of constants specifically for metaprogramming.

Each of these constants is given an appropriate type by the type system. In fact, just as

the type function establishes the types of basic and function constants, a similar function

could be used to define the types of these operators and any other metalanguage-specific

operators and constants. Here, however, their type rules are explicitly presented because

they are fundamental to the uses of the metaprogramming language. Their type assignments
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are straightforward.

Γ ` dom : type → type Γ ` cod : type → type Γ ` γ? : type → bool

Γ `→?: type → bool Γ ` typeof : code → type

The type equality operation =τ can be considered a special case of the language con-

stants that uses infix notation and takes two arguments.

Γ ` es
1 : type Γ ` es

2 : type
Γ ` es

1 =τ es
2 : bool

Metalanguage type abstractions are typed in a manner similar to the polymorphic

lambda calculus [27,69].
Γ, α : ∗ ` es : τ s

Γ ` Λα.es : ∀α.τ s

As with term abstractions, A type abstraction is well typed if its body is well-typed in a

context where the abstracted variable is added to the current environment. Rather than

specifying a type for the type variable, it is specified to have kind ∗, meaning that it is the

type of a term. In this language, the kind marker adds no extra information, but in an

extended language, type variables could have a variety of kinds, as in the calculus Fω [27].

Type applications are also well-typed along standard lines.

Γ ` es
1 : ∀α.τ s Γ ` τα : type

Γ ` es
1[τ

α] : τ s {τα/α}τ

The operator position of a type application must be a computation that results in a value of

polymorphic type. The operand position of a type application is restricted so that it does

not have the computational power of the metalanguage: only code-language types with

type variables are allowed. Nonetheless, these operands must meet well-typing criteria. In

particular, the operand must be a valid type according to the current type environment.

In practice this means that every type variable that occurs in the operand must be in the

domain of the current type environment. This property helps ensure that the type system

respects the variable convention.
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The type system has three rules that relate to metalanguage terms denoting code-

language types.

(α : ∗) ∈ Γ
Γ ` α : type Γ ` γ : type

Γ ` es
1 : type Γ ` es

2 : type
Γ ` es

1 → es
2 : type

All primitive types γ, when used as expressions, have type type. Also, the function type

constructor → takes as its arguments two well-typed metalanguage expressions of type

type, and the result itself is of type type. Finally, any type variable that is in the domain

of the type environment is a valid expression of type type. In a sense, the type rules for γ

and → together replace the syntactic (BNF) definition of an object-language type, replacing

syntactic set membership with computational type membership.

2.3. Reflective Parametric Polymorphism. The design of parametric polymor-

phism in the metalanguage illustrates an interesting aspect of the language design. The

traditional model of parametric polymorphism is System F [27]. That language is es-

sentially the simply typed lambda calculus augmented with a type abstraction and type

application operation. These operations make it possible to express generalized programs

that are not tied to a particular family of ground types but would otherwise require multiple

implementations of the same code with different types in order to function, leading to re-

dundant code. In System F, a type variable can represent any type, and a type application

can take any type of the language, including parametric types.

The type system of the metaprogram introduces similar type application and abstraction

operators to the metalanguage. However, significant restrictions are placed on them. In

particular, the operand of a type application can only be a variable-parameterized type of

the object language. Types like code, type, and even quantified types ∀α.τ s cannot be

arguments to a type application.

This form of parametric polymorphism, in its limited scope, adds expressiveness to

the metaprogramming language. In System F, types only appear as type annotations on

variables, as arguments to type applications, and as abstracted type variables. In the

metaprogramming language, however, type variables can also appear in term contexts. In
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fact, as the syntax of the metalanguage dictates, a type variable α can appear anywhere that

a term variable x can appear, so long as that context expects a value of type type. Type

variables extend the expressiveness of the language because they can also appear in the types

of metalanguage terms τ s, and can appear in the operand position of type applications, two

positions where term variables x are not legal. A program can be abstracted over code-

language types and abstracted types can, in turn, be used both as data in the metalanguage

and as type information.

One downside of this hybrid polymorphism is that as specified it does not cooperate

with cross-stage persistence. For instance, the program

(Λα.λx : α.%x)[int] 5

Is not well typed, because x does not have a type γ in the expression %x, even though the

dynamic semantics of the language would produce the desired answer. The metaprogram-

ming language type system can be altered to support parameterized cross-stage persistence,

however the resulting type system further limits type parameterization. First, replace the

type schemes τa with primitive type schemes.

γα ::= γ | α
es ::= . . . | es[γα]

The type rule for cross-stage persistence could then be altered accordingly.

es : γα

%es : code

As a result of these changes, type parameterization only applies to primitive types, but

cross-stage persistence can be used in type-parametric contexts.

(Λα.λf : α → α.λx : α.%(f (f x)))[int] add1 4

In this example, a type parameterized expression applies some function twice to some value

of primitive type before coercing the result into code.
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While the above approach limits the expressiveness of hybrid type parameterization

in order to extend cross-stage persistence to type-parameterized values, a more expansive

approach could extend the language and type system so that some functional values can

also be persisted into the code language (cf. Chapter 7).

2.4. Metatheory. Given the formal definition of the metaprogramming language, it is

now possible to reason precisely about its behavior, in particular to ensure that the language

specification does in fact define a consistent language with well-behaved functionality.

Theorem 4 (Unique Decomposition). If Γ ` e wf, and e is not proper code, then e can

be uniquely decomposed into one and only one of Es[x], Es[α], Es[r], or E[∼≺eo�].

This theorem implies a term e can only be subject to reduction e 7−→ e′, in one way. Any

given code-language term can only be decomposed into a context and a redex at most one

way. Another lemma guarantees that a closed code-language term cannot be decomposed

into a metalanguage context Es and a term or type variable. Thus, a well-typed program

e is either proper code, which is the final result of running a metaprogram, or subject to a

step of reduction.

Theorem 5 (Progress).

(1) If e is closed, Γ ` e wf, then e is proper code or there is some e′ such that e 7−→ e′

or e 7−→ ⊥.

Theorem 6 (Preservation). If e is closed, Γ ` e wf, and e 7−→ e′, then Γ ` e′ wf.

These two theorems validate the relationship between the static and dynamic semantics

of the metaprogramming language. Bear in mind that a type safe program can still fail

to terminate with an answer if an application of typeof cannot produce a type for its

code-language argument. However, this is by design: the language allows typeof to fail.

2.5. Examples. Now that the entire metaprogramming language has been introduced,

consider some example programs that utilize its capabilities. The first example demonstrates
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how the language can stage programs so that parts of them can be pre-computed prior to

traditional run-time.

∼((λctSum : int. ≺(λrtSum : int.rtSum− ∼%ctSum) (5 + 3)�) (5 + 3))

This program escapes to the metalanguage in order to compute the value of 5 + 3. That

value is bound, via function application, to ctSum, and the function body creates a piece

of code that persists the value of ctSum into a larger expression.

The result of metacomputation is the following object-language program.

(λrtSum : int.rtSum − 8) (5 + 3)

The computation for rtSum’s value is left intact, but ctSum has been computed and its

value substituted in its place.

This next example also performs a computation at compile-time and embeds the result

in run-time code.

∼((λpow : int → int → int.%(pow 5 7))
(fix (λp : int → int → int.

λm : int.λn : int.
if zero? n then 1 else m ∗ (p m (sub1 n)))))

This example assumes support for recursion via a fixpoint operator fix. A recursive

exponentiation function is defined and passed to a function under the name pow . There,

the function is used to compute the value of 57, which is injected into a code object. The

final result of evaluating this program is 78125, which is the result of splicing the code

object into the otherwise empty program.

A variant of the previous example implements an exponentiation function generator,

rather than immediately performing the operation.

∼((λpow : code → int → code. ≺λm : int. ∼(pow ≺m� 7)�)
(fix (λp : code → int → code.

λm : code.λn : int.
if zero? n then ≺1� else ≺∼m ∗ ∼(p m (sub1 n))�)))

The next example defines a function that takes a type and returns the number of curried

arguments it takes, zero if the type is not a function:
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∼((λnumArgs : type → code.%(numArgs (int → bool → int)))
(fix (λn : type → code.

λt : type.
if (→? t) then 1 + n (cod t) else 0)))

Finally, the following example takes two type definitions and computes a new type that

could represent the result of adding values of the two types:

∼((λpromote : type → type → code.
≺(λx : promote int float.x ∗ x) (55 + 7.7)�)

(λx : type. λy : type.
if x =τ y then x

else if (int?x) && (float?y) then float
else . . . ))

The result of evaluating this program is an object-language program with a definite

type annotation on its argument.

(λx : float.x ∗ x) (55 + 7.7)



CHAPTER 5

Modelling the Kernel Language

This chapter describes an implementation of the kernel language developed using the

PLT Redex [50] system for directly implementing reduction semantics.

1. Motivation

To gain intuitions about the kernel language, as well as to provide a tool for learning

about the style of metaprogramming that it provides, implementing and observing programs

in action is key. Furthermore, an implementation provides a means to experiment actively

with the language design. This section describes an implementation of the full kernel lan-

guage using the PLT Redex modeling tool. PLT Redex is a library of the Dr. Scheme [21]

programming system. It provides tools for directly implementing, debugging, and executing

reduction semantics. The full implementation is presented in Appendix C

2. Syntax

The syntax of a reduction semantics is represented using the language form. For in-

stance, the definition of the kernel metalanguage begins as follows.

(define meta -k

(language

(g int bool)

(x variable -not -otherwise -mentioned)

(a variable -not -otherwise -mentioned)

(c number #t #f)

(f add1 zero? not sub1)

(bop + < - *)

...

...))

88
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The above specification is comparable to the specification given on Page 65. The

language form consists of a list of productions. Each production begins with a nonter-

minal symbol and enumerates all constructions that are instances of that nonterminal. In

the partial definition above, the nonterminal g is equivalent to γ in the formal specification

of the kernel language, and it represents all primitive types. This particular model includes

integral (int) and boolean (bool) types. The nonterminal c uses the special keyword number

as well as the literal Scheme boolean values #t and #f to include the integrals and booleans

in the language. The nonterminal f includes several common unary operators, as well as

several binary arithmetic and boolean operators. The binary operators are a straightforward

extension of the language design.

In addition to the basic constants and primitive operators, the language also defines

metalanguage-specific operators.

(g? int? bool?)

(cs - g? ->? dom cod typeof)

(cs g cs -)

The nonterminal g? corresponds to the primitive type predicates γ? from the kernel language

specification. The other metalanguage operators directly correspond to the specification.

Since PLT Redex represents language syntax using s-expressions, prefix notation is the

most natural way to specify the structure of programs. As such, the kernel language is

given a prefix-based notation.

;; e - code language

(e x (lam (x e^s) e) (e e) c f (if e e e) ( splice e^s)

(bop e e))

;; e^o - pure code

(e^o x (lam (x t) e^o) (e^o e^o) c f (if e^o e^o e^o)

(bop e^o e^o))

The code language uses essentially Lisp notation. A function abstraction of the form λx :

es.e is rendered (lam (x e^s) e). The notation for conditionals drops the then and else

keywords. The splice operation ∼ es is rendered (splice e^s), and binary operations are

expressed using prefix notation.
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Superscripts are replaced with carets; for instance, the object language symbol eo is

rendered e^o.

The meta language is represented as follows, and corresponds to the specification on

Page 66.

;; e^s - metalanguage

(e^s x (lam (x t^s) e^s) (e^s e^s) (fix (x t^s) e^s)

(tlam a e^s)

(tapp e^s t^a)

c f

(if e^s e^s e^s)

cs

(code e)

(csp e^s)

(-> e^s e^s)

(=t e^s e^s)

(bop e^s e^s))

;; v^s - metalanguage values

(v^s c f cs - ( code e^o) t (lam (x t^s) e^s) ( tlam a e^s))

(v^s+ v^s x (fix (x t^s) e^s))

Expressions ≺ e �, which create object language code, are rendered (code e). Type

abstractions Λα.es are rendered (tlam a e^s) and type applications es[τα] are rendered

(tapp e^s t^a).

To enable writing interesting recursive programs, the model adds a recursive fixpoint

expression (fix (x t^s) e^s) to the metalanguage. This syntax is equivalent to fix (λx :

τ s.es).

The symbol τ for types is replaced with the character t. Thus, the various type formation

rules are represented as follows.

(t g (-> t t))

(t^a a g (-> t^a t^a))

(t^s a g code type (-> t^s t^s) ( forall (a) t^s))

Finally, since evaluation can abort in the case of a failed call to typeof , the language

specifies an equivalent to ⊥.

;; abort expression

(bottom bottom)
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The kernel language was specified in Chapter 4 using inside-out contexts. Its contexts

are built by progressively filling in the hole of a context with expressions that have holes.

Since PLT Redex does not support this style of context definition, the evaluation contexts

had to be modified from the specification in Figure 2 for implementation.

(E^s hole (E^s e^s) (v^s E^s) ( code E)

(if E^s e^s e^s) (csp E^s) (-> E^s e^s) (-> t E^s)

(=t E^s e^s) (=t v^s E^s) ( tapp E^s t^a)

(bop E^s e^s) (bop v^s E^s))

(E (hole spl) (E e) (e^o E) (lam (x E^s) e) (lam (x t) E)

(splice E^s) (if E e e) (if e^o E e) (if e^o e^o E)

(bop E e) (bop e^o E))

In this model, a context E^s represents a metalanguage term es with a hole in it and

a context E represents a code-language term e with a hole in it. In contrast, the kernel

language specification presents only contexts that represent code-language terms with holes.

This PLT Redex model’s evaluation contexts achieves the same results as the specification by

differentiating holes that are plugged with code-language terms from holes that are plugged

with meta language holes. In particular, named holes (hole spl) are filled with code-

language expressions, whereas unnamed holes hole are filled with metalanguage expressions.

The reduction rules utilize these two kinds of holes to express which expressions they are

applicable to.

In PLT Redex, each notion of reduction →Es from the metalanguage becomes its own

context-sensitive reduction step because the system does not directly support defining a

generalized reduction rule like (meta-eval) from Page 2.1. Consider a typical metalanguage

reduction rule, particularly the addition rule.

(--> (in -hole E_1 (+ number_1 number_2 ))

(in -hole E_1 ,(+ ( term number_1 ) ( term number_2 )))

"+")

The reduction rules are specified as a list including the arrow -->, a context-sensitive pattern

to match, the result, a title string, and in some cases a side condition for the rule. In this

syntax, the pattern (in-hole E_1 (+ number_1 number_2)) is equivalent to the specification
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E[n1 +n2]. This reduction rule, like all the other metalanguage reduction rules, relies on an

unnamed hole in its pattern matching. In contrast, the splice rule utilizes the named hole

to ensure that the expression is detected in a context that is plugged with a code-language

term.

(--> (in -named -hole spl E_1 ( splice (code e^o_1 )))

(in -hole E_1 e^o_1)

"splice ")

Since the named hole is part of the E contexts, it clearly indicates a hole waiting for a

code-language expression.

The rule for function application takes advantage of a substitution function mesubst.

(--> (in -hole E_1 (( lam (x_1 t^s_1) e^s_1) v^s_1))

(in -hole E_1 ( mesubst (x_1 v^s_1 e^s_1)))

"lam")

The function mesubst directly implements the specification of es [es/x]s, capture-avoiding

substitution of metalanguage expressions for metalanguage variables in metalanguage terms.

Its implementation is mutually recursive with the mcsubst function e [es/x]s, which is its

code-language counterpart. The formal specification of both functions can be found in

Appendix C.

The reduction rule for fix substitutes itself for any instance of its bound variable within

its body.

(--> (in -hole E_1 (fix (x_1 t^s_1) e^s_1))

(in-hole E_1 ( mesubst (x_1 (fix (x_1 t^s_1) e^s_1) e^s_1)))

"fix")

The typeof operator is implemented using a function compute-type-of, which inspects

the current evaluation context to produce a typing context.

(--> (in -hole E_1 ( typeof (code e^o_1 )))

(in-hole E_1 (compute -type -of (E_1 ( typeof (code e^o_1 )))))

"typeof"

(side -condition

(test -match meta -k t_1

(term (compute -type -of (E_1 ( typeof (code e^o_1 ))))))))



5. MODELLING THE KERNEL LANGUAGE 93

(--> (in -hole E_1 ( typeof (code e^o_1 )))

bottom

"notype"

(side -condition

(eq? ( term (compute -type -of (E_1 ( typeof (code e^o_1 )))))

(term bottom ))))

If the code expression is not well-typed, the compute-type-of function returns bottom, which

then becomes the result of the entire program evaluation.

3. Examples

To evaluate a program, the redex model implements a function k-red, which given a

kernel metaprogram evaluates it to completion. To illustrate this in action, consider some

example programs from Chapter 4, each juxtaposed with its equivalent Redex program.

Consider first the program from Page 86, which statically computes an exponent and

persists the result into the final program. Evaluation of this program produces a constant

value, such that no computation is performed at run-time.

> (k-red

’(splice (( lam (pow (-> int (-> int int )))

(csp ((pow 5) 7)))

(fix (p (-> int (-> int int)))

(lam (m int)

(lam (n int)

(if (zero? n)

1

(* m ((p m) ( sub1 n))))))))))

78125

The next example, from Page 86, uses a statically determined exponent to custom-

generate an exponentiation function. Evaluating this metaprogram produces a custom-

tailored implementation of exponentiation.

> (k-red

’(splice (( lam (pow (-> code (-> int code )))

(code (lam (m int) ( splice ((pow (code m)) 7)))))

(fix (p (-> code (-> int code )))

(lam (m code)

(lam (n int)

(if (zero? n)
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(code 1)

(code (* ( splice m)

(splice ((p m) ( sub1 n))))))))))))

(lam (m4 int ) (* m4 (* m4 (* m4 (* m4 (* m4 (* m4 (* m4 1))))))))

The final example, from Page 86, produces the number of curried arguments to a par-

ticular function type.

> (k-red

’(splice (( lam ( numargs (-> type code))

(csp ( numargs (-> int (-> bool int )))))

(fix (n (-> type code))

(lam (t type)

(if (->? t)

(add1 (n (cod t)))

0))))))

2



CHAPTER 6

Extending the Metaprogramming Language

The metaprogramming language of Chapter 4 provides functionality for expressing static

metaprograms, and precisely specifies both its static and dynamic semantics, but its con-

structs can be inconvenient for some common operations. In particular, some metapro-

gramming idioms used in languages like C++ are awkward to express in the kernel language.

In this chapter, a surface language for metaprogramming is defined. The surface lan-

guage provides more expressive language features on top of the kernel metaprogramming

language. It introduces new constructs and simple coercions that make some programming

idioms more convenient and give the metaprogramming language a more stylized presenta-

tion.

The semantics of the surface language is formalized as a static type system that induces

a type-directed translation to the kernel language, the same technique used in Chapter 4 to

add let binding to the object language. Just as the let translation makes necessary use of

type information, the surface language uses the information acquired from its type checking

rules to determine how programs translate to the kernel language. As such, the meaning of

programs is type-dependent. To establish soundness of the surface language, type-directed

transformation is proven to preserve well-typing.

1. Motivation for a Surface Metaprogramming Language

The metaprogramming language from the last chapter supports many of the metapro-

gramming capabilities discussed earlier. It supports performing general computations prior

to run-time and the use of those computations in programs; it supports the programmatic

construction and combination of programs and subexpressions, in essence the ability to

treat programs as data; it supports performing computations over the types of programs,

95
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deconstructing them into parts, comparing them for equality, as well as deducing and using

the types of programs and subexpressions.

However since the kernel metaprogramming language captures the essence of a model

of metaprogramming, its features exhibit a minimalist, though comprehensive, model for

metaprogramming that is short on usability conveniences.

For instance, quoting and unquoting is quite natural for a run-time metaprogramming

language, but it is not as well-suited to a static metaprogramming language. A run-time

metaprogramming language, like Lisp with its eval mechanism, is generally constructed

under the assumption that the meta-level, which manipulates programs as data, is the

language level at which most programs are written. Adding eval to the language makes

the standard interface to the language into a metalanguage. This feature is very power-

ful, but most Lisp programs do not make extensive use of it. Building programs as data

and then running them is a well-supported but special-case use of Lisp. Thus run-time

metaprogramming capabilities augment the existing run-time language.

In contrast, a static metaprogramming language augments the language that it extends

such that the existing language becomes an object language, not a metalanguage. As such,

the language for programs as data is the level at which most program logic is written. This

change of priorities suggests that a programming language with support for static metapro-

gramming might be best organized if the metaprogramming features are integrated in a

way that localizes metaprogramming and gives preference to the code language. Consider

the design of C++. Its template language extends the previously existing run-time language

while preserving the general structure of programs. Templates are a compile-time mecha-

nism that builds on the existing run-time language. Extending an existing language with

minimally intrusive features seems to be a wise design philosophy for static metaprogram-

ming features.

This chapter introduces extensions to the kernel metaprogramming language that give

preference to the code language in the style described above. Treating the kernel language as

a lower-level target language, the surface language introduces constructs that complement

the basic metaprogramming model with more expressive features. These constructs utilize
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type information to simplify the presentation of metaprograms, resulting in a less invasive

interface to metaprogramming functionality.

2. Syntax

The surface language has a similar structure to the kernel language. Its definition is

also split into a code language and a metalanguage, each of which is defined in terms of

the other. The syntax of the surface code language is close in design to the kernel code

language.

x ::= 〈variable〉
c ::= 〈value constant〉
f ::= 〈function constant〉
e ::= x | λx : es.e | e e (code language)

| let x = e in e
| let meta x = es in e
| if e then e else e
| c | f
| es[es]

In fact, the surface code language is almost a pure extension. It includes the same variables,

function abstractions, applications, conditionals, and constants from the kernel language.

It adds three new forms: two forms of let binding and a new form of application, es[es].

The surface language omits the splice form ∼es, but as shown below, its absence causes no

loss of expressive power.

The syntax of the metalanguage is also similar to its kernel language counterpart.

α ::= 〈type variable〉
γ ::= 〈type constant〉
cs ::= γ | γ? |→?| dom | cod | typeof (metalanguage constants)
es ::= x | α | λx : τ s.es | es es (metalanguage)

| let x = es in es

| if es then es else es

| c | f | cs

| es =τ es |≺e�| es → es

| fgen [xi](x : code τx).es

| fgen [αi](x : meta τα).es
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The surface metalanguage also adds a form of let binding, as well as two new forms of

functional abstraction, marked with the fgen keyword. Absent from this language is the

syntax for type abstraction Λα.es and type application es[τα]. These features are omitted

for simplicity, but as discussed below, much of their functionality is still present in this

language.

As with the kernel language, the surface code language and metalanguage are defined

by mutual induction: the code language e contains the metalanguage es and vice-versa. In

particular, the syntax for code-language expressions e includes the metalanguage es in terms

with the form es[es] and let meta x = es in e as well as in the type annotations of function

abstractions λx : es.e; the syntax for metalanguage expressions es includes code-language

terms e as the body of code construction expressions ≺e�.

3. Translational Semantics

In Chapter 4, the semantics of the kernel language are expressed in terms of a re-

duction semantics that transforms metaprograms into pure object programs and a type

system that guarantees that well-typed programs will not get stuck. The surface language

builds upon this language definition. In particular, its features are defined in terms of how

they correspond to terms of the kernel language. This chapter presents the surface lan-

guage semantics as a type-directed translation from surface language expressions to kernel

language expressions. The technique was introduced in the last chapter, where object-

language let expressions are defined by translation into direct function applications. The

surface language translation system is embodied in two mutually recursively defined re-

lations, Γ ` es : τ s  eks and Γ ` e  ek. The first relation indicates that a surface

metalanguage term es is well-typed, having the surface language type τ s, and translates to

the kernel metalanguage term eks; the second relation indicates that a surface code-language

term e is well-formed and translates to the kernel code-language term ek. A type-directed

translation system of this sort doubles as a type system: discarding the final term of each

translation relation yields a standard type system.
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Throughout this chapter, relations, terms, and types of the kernel language are differ-

entiated from the same components of the surface language by adding a superscript k. For

instance, the well-typedness relation of the kernel metalanguage is written Γk `k eks : τks.

3.1. Direct Translation Cases. The basic and function constants of the surface

metalanguage and code language have the same meanings as they do in the kernel lan-

guage.
type(c) = γ

Γ ` c : γ  c

type(f) = γ1 → γ2

Γ ` f : γ1 → γ2  f

The translation rules for constants use the same type function as the kernel language.

The metalanguage-specific constants also have trivial translations and the same type

assignments as in the kernel language.

Γ ` γ : type γ Γ ` dom : (type → type) dom

Γ ` typeof : (code → type) typeof Γ ` cod : (type → type) cod

Γ `→?: (type → bool) →? Γ ` γ? : (type → bool) γ?

Metalanguage term and type variable references are typed using the same rules as in

the kernel language. Similarly, code-language references to variables marked dyn in the

type context have equivalent type rules as the kernel language.

x : τ s ∈ Γ
Γ ` x : τ s  x

α : ∗ ∈ Γ
Γ ` α : type α

x : dyn ∈ Γ
Γ ` x x

The translation rules given in Figure 1 are defined to be simple congruences. Each

of these type rule has the same structure as the analogous rule for the kernel language

and the surface language term that it addresses translates to a term fully defined by the

translations of its subterms. For instance, the rule for meta-language if requires that the

predicate position have bool type and that both the consequence and alternative have the

same type. The translation of such a term is a kernel language if term where each of the

three subexpressions is replaced with its translation. Surface language translation rules are

compositional in this manner when the surface language expression has the same meaning

as the corresponding syntax in the kernel language.
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Γ ` es
1 : (τ s

1 → τ s
2 ) eks

1 Γ ` es
2 : τ s

1  eks
2

Γ ` es
1 es

2 : τ s
2  eks

1 eks
2

Γ ` es
1 : type eks

1 Γ ` es
2 : type eks

2

Γ ` es
1 → es

2 : type eks
1 → eks

2

Γ ` es
1 : type eks

1 Γ ` es
2 : type eks

2

Γ ` es
1 =τ es

2 : bool eks
1 =τ eks

2

Γ ` es
1 : bool eks

1 Γ ` es
2 : τ s  eks

2 Γ ` es
3 : τ s  eks

3

Γ ` if es
1 then es

2 else es
3 : τ s  if eks

1 then eks
2 else eks

3

Γ ` e ek

Γ `≺e�: code ≺ek�
Γ ` τ s

1  τks
1 Γ, x : τ s

1 ` es : τ s
2  eks

Γ ` λx : τ s
1 .es : τ s

1 → τ s
2  λx : τks

1 .eks

Γ ` es : type eks Γ, x : dyn ` e ek

Γ ` λx : es.e λx : eks.ek

Γ ` e1  ek
1 Γ ` e2  ek

2

Γ ` e1 e2  ek
1 ek

2

Γ ` e1  ek
1 Γ ` e2  ek

2 Γ ` e3  ek
3

Γ ` if e1 then e2 else e3  if ek
1 then ek

2 else ek
3

Figure 1. Congruent Translation Rules

3.2. Code-Language Metavariable Binding. Metaprograms often define metalan-

guage expressions, bind them to variables, and use them throughout a computation. In

C++ this is done by defining templates; in Scheme it is done by defining or lexically binding

a macro. The kernel language does not have an explicit mechanism for binding a meta-

level variable to a meta-level value, but it provides enough expressiveness to achieve that

effect. Kernel metalanguage and code-language variable bindings obey a lexical scope disci-

pline. The type system does not allow metalanguage variables to be referenced in the code

language, and vice versa, but a code-language expression can refer to any code-language

variable abstraction that encloses it, even if that abstraction escapes to the metalanguage

between the point of variable binding and the point of variable reference. For instance, the

expression:

λx : int. ∼((λy : int ≺x�) 7)
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refers to the code-language bound variable x inside a metalanguage function that contains a

code object expression; This is perfectly legal. Similarly, metalanguage expressions can refer

to any metalanguage-bound variables, regardless of intervening splices and code expressions.

A metalanguage variable can be bound to a value for the scope of a code-language

expression using a lambda application. Recall that in the object language, a let binding

form can be simulated using an immediate application of a typed function to an expression.

In the metaprogramming language, a similar idiom occurs. However this idiom binds a

variable of the metalanguage so that it can be used later in the scope of a code-language

expression. A number of examples at the end of Chapter 4 have the following general

structure:

∼((λx : int. ≺ . . .�) es

This code-language construction performs a disciplined procedure: it escapes to the meta-

language, evaluates the value of es, binds it to the metalanguage variable x, and reverts to

the code language to evaluate the expression ≺ . . .�. This code structure resembles the let

simulation, except that it operates across multiple language levels. The variable x is bound

in the metalanguage, and is in scope for the code-language expression represented by the

ellipses, ≺ . . .�.

The surface language captures this common idiom with a language form: its code lan-

guage adds a new form of declaration: let meta.

e ::= . . . | let meta x = es in e

The let meta form enables a metalanguage identifier to be defined from within the code

language and sets the scope of that definition as the nested code-language expression. Just

as let enables the declaration of run-time variables bound to run-time expressions, let meta

enables the declaration of metalanguage variables bound to metalanguage expressions. As

with the let expression, the body of a let meta expression is the scope of the variable it

binds. The let meta expression is a code-language expression and its body, the scope of

the variable binding, is a code-language expression. As such, this form is a code-language

mechanism for defining metalanguage variables. It binds lexically scoped metalanguage
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variables to compile-time expressions. The example code idiom above can be rewritten

simply using this new form.

let meta x = es in . . .

The let meta syntax implicitly switches from the code language to the metalanguage and

back. The translation rule for let meta captures the kernel language idiom directly.

Γ ` es : τ s  eks Γ, x : τ s ` e ek Γ ` τ s  τks

Γ ` let meta x = es in e ∼((λx : τks. ≺ek�) eks)

The structure of this rule matches the rule for let from the object language, although the

body of the form uses the code-language translation rule.

3.3. Implicit Phase Distinction. The kernel language provides the ability to explic-

itly embed metalanguage values into code-language objects using the CSP operator %es,

as well as the ability to integrate those code objects into larger code-language expressions

using the splice operator, ∼es. While this machinery clearly distinguishes phases of compu-

tation and the operations that connect the metalanguage and code language, it often seems

to impose a verbosity that clutters metaprograms.

For instance, consider how the kernel language treats variable references. The kernel

language scoping rules determine whether a variable was bound in the metalanguage or the

code language. However, even though the two language levels share the same variables,

introducing the result of a metalanguage computation to the code language requires an

explicit escape to the metalanguage. If a kernel metalanguage variable is bound to a code-

language code object, then the only sensible role it can play in the code language is to be

the object of a splice operation. Nonetheless, the kernel language requires that the variable

be spliced explicitly, as in the following metalanguage function.

es = (λx : code. ≺4+ ∼x >)

In the kernel language, it would be a type error to refer to the variable x directly in the

code language because it is a variable of the metalanguage.
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Bear in mind that this restriction on the kernel language is justified. The kernel lan-

guage dynamic semantics use a pair of capture-avoiding substitution functions e[vs/x] and

es[vs/x]s to substitute a metalanguage value for free metalanguage references to the vari-

able x in the body of a code-language term e or a metalanguage term es respectively. The

two functions are defined by mutual recursion because each language contains subterms

belonging to the other language. The code-language substitution function leaves code-

language variable references unchanged (x[vs/x] = x) while the metalanguage substitution

function performs substitution (x[vs/x]s = vs). This specification guarantees that the sub-

stitution operation is well-defined: substitution into a code-language term always yields a

code-language term and substitution into a metalanguage term always yields a metalan-

guage term. A substitution function that operates uniformly across both language levels

could substitute metalanguage-specific values—for instance the dom function constant—

into code-language expressions, yielding results that do not even syntactically conform to

the structure of metaprograms.

Because the kernel language is defined by type-directed translation, it is possible to ac-

count for type information in its semantics. In particular, some references to metalanguage

variables from the code language can be given well-defined meanings. The code language

treats references to variables of type code in its code language as implicit splice operations.

x : code ∈ Γ
Γ ` x ∼x

Furthermore, since values of primitive type can be persisted into the kernel code language

by using the CSP operator, variables of primitive type are implicitly persisted and spliced

into code-language contexts.
x : γ ∈ Γ

Γ ` x ∼%x

This implicit phase distinction, automatically introducing metalanguage computations

into the code language, is used in several places in the surface language. To present it

uniformly, a subset of surface language types is distinguished as the spliceable types.

τ∼ ::= γ | code
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A translation-time function [[τ∼]] determines how an expression of a particular type must

be “escaped” in the kernel language in order to make the phase distinction explicit.

[[τ∼]] =


∼ if τ∼ = code

∼% if τ∼ = γ

Using these definitions, the rules for variable references can be combined into a single rule.

x : τ∼ ∈ Γ
Γ ` x [[τ∼]]x

This rule does not clash with the standard code variable reference rule since x : τ∼ does

not overlap with x : dyn. This rule does not allow references to metalanguage variables

that do not have spliceable types. Thus, the meaning of code-language variable references

is type-dependent in an intuitive way.

One side-effect of support for implicit phase distinction is that the kernel language splice

operator ∼es is not needed in the surface language. Any use of ∼es can be replaced with

let meta x = es in x.

3.4. Direct Metalanguage Function Calls. Implicit phase distinction combined

with the let meta binding form enables programs to escape to the metalanguage to perform

computations and to embed the results of those computations into the code language.

However, these forms currently give preference to embedding values that have already been

computed. In order to embed the results of function calls, they must currently be given

names and subsequently referenced. Since the metalanguage and code language share the

same set of variable references, no syntactic change is necessary to the language in order

to add metalanguage variable references to the code language. With function applications,

this is not the case. Metalanguage anonymous functions extend the language with new

types, expressions, and forms, that are not compatible with the syntax. In order to embed

metalanguage function calls into the code language, Syntactic support is needed.

By providing a different syntax for direct metalanguage function applications, it be-

comes straightforward to write expressions that use metalanguage functions from the code
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language. The surface language provides the syntax es[es] for applying metalanguage func-

tions. Since this syntax differs from that of a normal function application, the two meta-

language subexpressions can be recognized as an application of a metalanguage function to

a metalanguage argument and transform it in the obvious manner.

Γ ` es
1 : τ s

1 → τ∼  eks
1 Γ ` es

2 : τ s
1  eks

2

Γ ` es
1[e

s
2] [[τ∼]](eks

1 eks
2 )

To ensure compatibility with the implicit phase distinction rules of the surface language, the

operator must return a spliceable type. This guarantees that the operation has well-defined

semantics in the kernel language.

3.5. Functional Generators. For software engineering purposes, it sometimes makes

sense to build abstractions that do not telegraph their underlying implementation. For

instance, many Lisp macros have interfaces that look like normal function calls, even as they

perform syntactic manipulations in their implementations. The surface language extensions

introduced so far go a long way towards building a seamless interface between metalanguage

and code language. Nonetheless, metalanguage function calls are always obvious because

of their special syntax. However, by taking advantage of type information, the surface

language can introduce a new kind of expression that looks like a normal function call but

hides metalanguage operations.

The surface language introduces functional generators, modeled after C++ function tem-

plates, as another form of static abstraction. They are specifically meant to provide unob-

trusive interfaces to metalanguage code from the code language. In particular, the syntax for

applying a functional generator to an argument is the same as the standard object-language

syntax for function application, with the restriction that the operator position is always a

metalanguage variable reference of a particular type. Distinguishing a functional generator

call from a traditional function application requires contextual information from the surface

language. In a sense, functional generator calls resemble macro calls from languages like

Lisp and Scheme.
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In short, functional generators ascertain the types of their arguments and make them

available to the metalanguage expression that defines their bodies. Because of their syn-

tactic connection to standard code-language applications, they can hide metaprogramming

machinery behind an interface that looks like a normal function call.

Functional generators are functional abstractions in that they define parameterized ex-

pressions that expect arguments and yield values that depend on them. There are two kinds

of functional generators, and each kind treats its arguments differently. Although the two

variants broadly perform the same tasks, their semantics differ in ways that are forced by

the rest of the language semantics.

The two kinds of functional generators are differentiated by their syntax, especially the

qualifying annotation associated with their arguments. If the parameter of a functional

generator is marked meta, then the generator expects a static value of the object language,

computable at compile-time, meaning it must be a constant or the result of a metalanguage

expression.

es ::= . . . | fgen [αi](x : meta τα).es

If a parameter of a functional generator is marked code, then the argument must be an

expression in the code language. That piece of code will be passed as an argument to the

generator body during metacomputation.

es ::= . . . | fgen [xi](x : code τx).es

The two kinds of functional generators are called metagenerators and code generators, re-

spectively.

Both kinds of functional generator can manipulate type information gleaned from their

arguments. Each functional generator abstracts a set of either term variables [xi] for code

generators, or type variables [αi] for metagenerators. The argument position of a code

generator or a metagenerator is annotated with a type pattern τx or a type schema τα

respectively. A type pattern is an object-language type that is parameterized with meta-

language term variables; a type schema is an object-language type that is parameterized
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with metalanguage type variables. The pattern and qualifier annotate the generator’s pa-

rameter variable. The body of a functional generator is a metalanguage expression that

can use its type parameters as well as its argument parameter. In this manner, functional

generators reflect on the types of the arguments to which they are applied. This behavior

is analogous to how function templates perform type deduction in C++.

The scope of metagenerator and code generator type parameters differ from each other.

Since a metagenerator’s type is parameterized over type variables α, then just as in the ker-

nel language, those variables can be used as types in metalanguage type annotations as well

as in metalanguage expressions. On the other hand, the type parameters of code generators

are metalanguage term variables x, so they can only appear in contexts where metalan-

guage expressions of type type are valid. They cannot be used in the type annotations of

metalanguage expressions.

Corresponding to the code generators and metagenerators are generator type.

τ s ::= . . . | [xi](code τx) ⇒ τ∼

| [αi](meta τα) ⇒ τ∼

These types provide information used to translate applications of functional generators into

kernel language terms. Thus, the type system differentiates functional generators from

normal metalanguage functions. Functional generators can only return spliceable types

τ∼ because they can only be used from the code language, so their results must then be

compatible with the implicit phase distinction. They are specifically designed to implement

interfaces between the code language and the metalanguage.

The translation rule for a code generator expression shows that code generators encode

substantial logic.

xi ` τx wf xτ /∈ FV (es)
eks
i = xicpat(τx, xτ ) Γ, xi : type, x : code ` es : τ∼  eks

Γ ` fgen [xi](x : code τx).es : [xi](code τx) → τ∼

 λx : code.
(λxτ : type.

((λxi : type. eks ) eks
i ))

typeof x)
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For a code generator expression to be well-typed and translatable to the kernel language,

its type parameter τx must be well-formed relative to the set of parameter variables xi: each

variable must appear once and only once in the type parameter. The translation relies on a

function cpat , which generates for each parameter variable xi a metalanguage expression eks
i

that corresponds to querying a metalanguage type value xτ for the type corresponding to its

position in τx. For instance, given the type parameter x1 → (x2 → x3), the corresponding

expressions are eks
1 = dom xτ , eks

2 = dom (cod xτ ) and eks3 = cod (cod xτ ) (a more

complete definition checks for arrow types and signals errors as needed). Furthermore, the

body of the generator must be well-typed in a typing context that binds each variable xi

to type type and binds the variable x to type code. The body es must translate to some

kernel language expression eks.

The entire code generator translates to the kernel language as follows. The resulting

expression is a function that takes an argument x of type code, and immediately ascertains

its type using the typeof operation. The type of x is bound to a variable xτ , which is used

to decompose the type of x in accordance with the pattern τx. This is done by binding

each variable xi to the results of the expression eks
i that accesses the relevant portion of the

type xτ . Finally, in the context of the variable x and the variables xi, the translated body

of the generator eks is evaluated.

By comparison, the translation rule for a metagenerator definition is simple.

αi ` τα wf Γ, αi : ∗, x : τα ` es : τ∼  eks

Γ ` fgen [αi](x : meta τα).es : [αi](meta τα) → τ∼

 Λαi.λx : τα.eks

The translation binds the type variable parameters αi using the kernel type abstraction

form Λα.es, and then abstracts the generator argument x as having the given type pattern

type. As it turns out, the heavy lifting for metagenerators happens when they are used.

Functional generators are expressions of the metalanguage, but they are used exclusively

in the code language. When a functional generator is bound to a metalanguage variable,

that variable can be used as the operator of an application expression in the code language.
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This functionality is analogous to how macros in Lisp are bound to identifier names and

recognized when they are used as the operator of an expression. The surface code language

can readily detect when an application in the code language is a functional generator call,

rather than a traditional code-language application expression: the operator position of

the application must be a variable and the variable must have a functional generator type.

Were this expression a normal application, the variable would be bound to the dyn marker

for code-language-bound expressions. If the operator position is not a variable reference,

then the application cannot be a functional generator call.

The translation rule for code generator applications is very simple.

Γ ` x : [xi](code τx) → τ∼  x Γ ` e ek

Γ ` x e [[τ∼]](x ≺ek�)

As discussed above, an application whose operator is a variable with code generator type is

a code generator call. A code generator application is well formed if the argument to the

generator is a well-formed code-language expression. The application translates into an ex-

pression that escapes to the metalanguage and passes the argument, transformed into a code

expression, to the generator. The translation of the code generator’s definition computes

the argument’s type and decomposes it as needed, so the translation of the application is

simple. This simplicity is not possible for the metagenerators because the kernel language

does not support decomposing metalanguage types.

The translation rule for applications of metagenerators to arguments is more involved

than for code generators.

Γ ` x : [αi](meta τα) → τ∼  x

Γ ` eo : τα′  eks τα
i = αimpat(τα, τα′)

Γ ` x eo  [[τ∼]](x[τα
i ] eks)

The type rules for these functional generators require the argument to the generator to fit

the syntax of the object language eo, but be well-typed in the metalanguage. Every object-

language expression is a sensible expression of both the code language and the metalanguage.

Metagenerators utilize this property to embed metalanguage expressions directly into the

code language. Every code-language term eo is also a metalanguage term, and the type
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system of the metalanguage subsumes the type system of the object language, so that the

static semantics of this argument are standard.

The above translation rule interprets the argument to a metagenerator as a metalan-

guage expression rather than as a code-language expression. The rule implicitly elevates

its argument to the syntax of the metalanguage and induces well-typed translation. When

the argument to the generator is a constant expression, the behavior is as straightforward

as possible. However, in the case of a complex expression, all variables referenced in the

metagenerator’s argument must be bound in the metalanguage. These semantics do not

cause any ambiguity because any references to code-language variables results in ill-typed

code.

The metagenerator application rule uses an external function mpat to decompose the

deduced type τα′ of the argument eo according to the pattern specified by τα, yielding a

list of type expressions τα
i . In the translation, these type expressions are applied to the

variable representing the functional generator, followed by the translation of the argument.

In short, the translation of a metagenerator uses the type information gleaned from type

checking to determine the type arguments to the generator. Then the result of evaluating

the actual argument as a metalanguage expression is passed as the final argument.

Although metagenerators utilize the parametric polymorphism facilities of the kernel

language in their implementation, they do not capture all possible uses of that feature.

However, metagenerators conveniently present an expressive analogue to code generators,

and give the surface language the benefits ascribed to implicit instantiation in other lan-

guages that support genericity. It captures a usage pattern that relates closely to how

templates are used in C++.

This description points out a substantial difference between code generators and meta-

generators. A code generator translates into metaprogramming code that when executed

deduces the type of its argument, destructs that type according to a pattern, and makes that

information available to a computation. In contrast, metagenerator applications destruct

the type of their argument during the type-directed translation process. Whereas a type
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mismatch with a code expression will get caught during execution of a metaprogram, the

analogous error in a metagenerator application is detected before metaprogram execution.

The rules for functional generators perform the automatic splicing and CSP based on

their return type, so the results of a functional generator call are embedded in the sur-

rounding code-language expression. Furthermore, functional generators give a flavor of

first-class macros because they can be passed as values to functions in the metalanguage

that subsequently use them.

Functional generators are in essence type-directed abstractions. This is especially the

case with the code generators, which take a code argument and decompose the type. The

same code as generated by the translation, though tedious, could be written in the kernel

language. On the other hand, the type decomposition performed in the application of

metagenerators is related to implicit instantiation in languages with support for generics,

whose addition is more than cosmetic [24] With metagenerators, though there is some

concern about scope confusion. If the argument to a metagenerator is simple, like an

integer or some such, then all is clear. When it becomes a function, then since the expression

must be from the metalanguage an implicit language level phase shift occurs. All variables

referenced in the argument to a metagenerator must be metalanguage variables. Because

of the phase distinction, however, it is not possible for an expression to change meaning

because it goes from being the argument to a typical code expression to being the argument

of a metagenerator. The worst that can happen is that a well-phased program becomes

ill-phased when an argument to a metagenerator references code-language abstractions.

Chapter 4 discusses the implications of altering the set of types that can be represented

by type variables α in the kernel language. Restricting type variables to primitive types

enables parametric CSP operations in polymorphic functions. If the parametric part of the

kernel type system is restricted to only allow primitive types, then the pattern matching

system for metagenerators must be similarly restricted in order to match the kernel language

model, but this would enable the bodies of metagenerators to persist values of parametric

type.
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3.6. Alternative Binding Translation. For convenience, the metalanguage can also

be augmented with a traditional let form that allows the definition of metalanguage iden-

tifiers when operating at the meta level.

Γ ` τ s
1  τks

1 Γ ` es
1 : τ s

1  eks
1 Γ, x : τ s

1 ` es
2 : τ s

2  eks
2

Γ ` let x = es
1 in es

2 : τ s
2  (λx : τks

1 .eks
2 ) eks

1

This translation exactly matches the structure of the definition of let for the object language

from the last chapter. It relies on being able to assign a type the bound value es
1 so that the

variable x can be given a type annotation, since it is bound by a function abstraction in the

kernel language that specifies the type of x. The type system determines the type that the

surface language assigns to es
1, but that type must be re-interpreted in the context of the

kernel language type system. To do this, the typing rule appeals to a relation Γ ` τ s
1  τks

1 ,

which transforms surface language types to kernel language types. This relation is discussed

further in Section 4.

The surface code language also has a let form, which serves the same purpose as the

form by the same name defined for the object language in Chapter 4. However, since the

kernel language does not have such a binding form, the surface language provides it as an

additional extension.

Γ ` e1  ek
1 Γ, x : dyn ` e2  ek

2

Γ ` let x = e1 in e2  (λx : typeof ≺ek
1� .ek

2) ek
1

Although the metalanguage let uses the standard technique, the code-language binding form

takes advantage of the capabilities of the metaprogramming language to define let. The

surface language type system does not compute the types of code-language expressions, but

the kernel metalanguage can dynamically ascertain types using the typeof form. For this

reason, surface code-language let forms translate into immediate application of a function,

as is typical for this translation, but the type annotation on the variable is a metalanguage

expression that computes the type of the bound expression. If the expression ek
1 is ill-typed

in the object-language type system, then an error is flagged during execution of the kernel

language metaprogram.
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4. Metatheory

Whereas the static semantics of the kernel language merely isolates a set of well-behaved

programs, The translation system for the surface language defines both its static and dy-

namic semantics. The well-formed surface language programs are identified with the set of

closed code-language expressions e that can be translated in the empty type environment

` e ek; the dynamic semantics of those programs is identified with the dynamic semantics

of their translations ek into the kernel language.

The type system of the kernel language is linked to its reduction semantics by a proof of

type safety, which establishes guarantees for the behavior of well-typed programs. Because

the surface language static semantics links it to the kernel language dynamic semantics, a

similar statement of guarantees can be proven.

As with the kernel language type system, the surface language translation system uses

type environments and imposes well-formedness conditions on them. However, the well-

formedness relation on type environments, like the type system, doubles as a translation

relation from surface language type environments to kernel language type environments.

The translation is trivial for term variables that are marked dynamic x : dyn and for type

variable bindings α : ∗. Translating metalanguage term variables, however, is more involved.

Γ Γk Γ ` τ s  τks

Γ, x : τ s  Γk, x : τks

The translation for metalanguage term variable bindings appeals to a type translation re-

lation Γ ` τ s  τks to determine the kernel language equivalent of each surface language

type assignment. Most types from the surface language have the same representation in the

kernel language as in the surface language, but functional generator types must be trans-

lated to types that correspond to the kernel language expressions that implement functional
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generators.

xi ` τx wf Γ ` τ∼  τks

Γ ` [xi](code τx) ⇒ τ∼  code → τks

αi ` τα wf Γ, αi : ∗ ` τ∼  τks

Γ ` [αi](meta τα) ⇒ τ∼  ∀αi.τ
α → τks

Code generator types translate into function types that accept code objects and return

spliceable values. Metagenerator types, on the other hand, translate into polymorphic types

that accept multiple parametric type arguments and a value type and return a spliceable

value. Each functional generator type must be well-formed. The expressions xi ` τx wf

and αi ` τα wf guarantee that the type pattern or type schema associated with a functional

generator uses each abstracted variable once and only once. Furthermore, the return types

of generators must be well-formed.

The relations that translate surface language types, and in turn surface language envi-

ronments, into kernel language artifacts facilitate a proof that the translation rules given

above define a sound metaprogramming language.

Theorem 7 (Preservation of Well-Typing across Translation).

(1) If Γ ` es : τ s  eks, Γ Γk, and Γ ` τ s  τks, then Γk `k eks : τks;

(2) If Γ ` e ek, and Γ Γk, Γk `k ek wf.

The preservation theorem in short says that the translation system of the surface lan-

guage associates well-formed surface language programs with well-formed kernel language

programs. As such, the execution of well-formed surface programs have the same guarantees

as those for well-formed kernel language programs.

The semantics of the surface language makes essential use of the kernel language se-

mantics for its implementation. The surface language’s dynamic semantics is dependent on

its type system. For example, the translation of a functional metagenerator application in

the code language differs substantially from the translation of a traditional code-language
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application, which means that their dynamic semantics are quite different. That transla-

tion depends critically on the types that are assigned to terms by the surface language type

system. In fact, an ill-typed program in the surface language has no semantics whatsoever,

because only well-typed surface language programs have dynamic semantics, as given by

their kernel language translations.

On the other hand, the kernel language dynamic semantics are independent of its type

system. The behavior of both typed and untyped kernel language programs is well defined,

even if some of those programs are not well-behaved. As such, the translation process from

surface to kernel language eradicates the type-dependencies of the surface language forms,

lowering programs into a language whose dynamic semantics are independent of its type

system, but whose type system provides guarantees about dynamic behavior.

5. Examples

Chapter 4 presents some example programs that utilize the capabilities of the kernel

metaprogramming language. Comparing those examples to their surface language equiva-

lents shows how the features of the surface language help support metaprogramming.

To illustrate how the surface language presents a comprehensible model of computation

even without viewing programs through the lens of translation to the kernel language infor-

mal dynamic semantics are presented for some programs in terms of the surface language

syntax (retaining the code-language let form for clarity).

The kernel language program

∼((λctSum : int. ≺(λrtSum : int.rtSum− ∼%ctSum) (5 + 3)�) (5 + 3))

which demonstrates variable binding and computation at both language levels is rendered

in the surface language as follows.

let meta ctSum = 5 + 3 in
let rtSum = 5 + 3 in

rtSum − ctSum
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This program presents two bindings, one of ctSum and one of rtSum to the same right-

hand-side expressions, and in the context of both computes rtSum − ctSum.

Rather than switching from code language to metalanguage and back, the surface lan-

guage version of this program uses the let meta binding form to introduce metalanguage

variables. Because ctSum is bound using let meta, it is a metalanguage variable, whereas

rtSum is a code-language value because it is bound using let. This means that the ac-

tual value of ctSum can be used in computations during compilation. The example also

relies on type-directed implicit phase distinction to introduce the results of metaprogram

computations into code-language expressions.

Conceptually, evaluation of this metaprogram proceeds as follows. First, the right-hand

side of ctSum is evaluated:

let meta ctSum = 8 in
let rtSum = 5 + 3 in

rtSum − ctSum

Then its value is substituted wherever it is referenced

let meta ctSum = 8 in
let rtSum = 5 + 3 in

rtSum − 8

Once computation completes, the let meta binding is no longer needed, so the residual

program is left behind.

let rtSum = 5 + 3 in
rtSum − 8

These computation steps occur in the kernel language, but a programmer may reason in

terms of the surface language syntax.

A variant of the above kernel language program binds a piece of code to a metalanguage

variable and then uses a splice alone rather than a splice and CSP combination to introduce

the value into the code language.

(λrtSum : int. ∼((λctSumCode : code. ≺rtSum− ∼ctSumCode�) ≺5 + rtSum�)) (5 + 3)
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This program renders in the surface language in a similar manner as the last example.

let rtSum = 5 + 3 in
let meta ctSumCode =≺5 + rtSum� in

rtSum − ctSumCode

In this case, the two variable bindings are reversed, ctSumCode being bound in the

scope of rtSum. This is needed because ctSumCode is bound to a code value that references

rtSum. The surface language is lexically scoped, just like the kernel language, so variable

references are always statically resolved. The body of these expressions is the same as in

the previous example. In particular, the reference to ctSumCode does not require splicing:

type directed translation inserts the needed splice.

Conceptually, this program evaluates to an object-language term that substitutes the

code object bound to ctSumCode where that variable is referenced.

let rtSum = 5 + 3 in
rtSum − (5 + rtSum)

The next variant uses a direct call to a metalanguage function from the object language.

let rtSum = 5 + 3 in
let meta ctSumGen = λx : int. ≺x + rtSum� in

rtSum − ctSumGen[5]

In this program, the metalanguage variable ctSumGen is bound to a function that

accepts a static integer value and returns a piece of code. In the body of the example,

the generator is applied to the metalanguage constant 5, and yields the same code as was

assigned to ctSumCode in the previous example. Neither the reference to x nor the call to

ctSumGen require escaping.

The next two examples use functional generators in programs similar to the above.

let rtSum = 5 + 3 in
let meta ctSumA =

fgen [t](m : meta t). ≺m + rtSum� in
rtSum − (ctSumA (2 + 3))
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This example binds the metalanguage variable ctSumA to a metagenerator that takes an

integral argument and returns a piece of code. The body of the expression applies ctSumA

to an expression 2 + 3, and since the operator is a metagenerator, the operand is treated as

an expression of the metalanguage, evaluating it to 5. The argument is then passed to the

body of the metagenerator, yielding the code object ≺ 2 + 3�, which is spliced into place

to yield the same result as the previous example.

A variant on the above example uses a code generator instead of a metagenerator.

let rtSum = 5 + 3 in
let meta ctSumB =

fgen [t](n : code t). ≺5 + n� in
rtSum − (ctSumB rtSum)

In this program, the code generator ctSumB takes a code argument and produces an anal-

ogous piece of code. In this case, though, the body is applied to rtSum, which is a code-

language variable. Since ctSumB is a code generator, it is passed its operand as a code

object ≺ rtSum �. The code is spliced into the larger object which is returned to the site

of the code generator call and spliced into place.

As in the last chapter, recursive metaprogramming functions can be constructed if a

construct for well-typed recursion is added to the language. In this case, a recursive variant

of let meta is assumed.

The next example implements a compile-time exponentiation function:

letrec meta pow : int → int → int =
λn : int.λm : int.

if zero? n
then 1
else m ∗ pow (sub1 n) m) in

let meta pow5 = pow 5 in
pow5 [7]

A variant of the previous example generates exponentiation expressions.
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letrec meta pow : int → code → code =
λn : int.λm : code.

if zero? n
then ≺1�
else ≺m ∗ (pow (sub1 n))[m]� in

let meta pow5 = pow 5 in
λm : int.pow5 [≺m�]

The next example, also derived from the last chapter, defines a metalanguage function

that takes a type and returns the number of curried arguments it takes, zero if the type is

not a function:

letrec meta numArgs : type → int =
λt : type.

if (→? t)
then 1 + (numArgs (cod t))
else 0 in

numArgs[int → bool → int]

Finally, the last example recreates the kernel language program that takes two type

definitions and computes a new type that could represent the result of adding values of the

two types:

let meta promote =
λx : type.λy : type.

if x =τ y then x

else if int? x and float? y then float
else . . . in

(λx : (promote int (typeof 7.7)). . . . )(55 + 7.7)



CHAPTER 7

Discussion

The following chapter concludes this dissertation. It discusses what has been done

and its implications, suggests some directions in which this work can be advanced, and

concludes.

1. Metaprogramming as a Language Laboratory

Some of the metaprogramming techniques and mechanisms described in Chapter 3 have

contributed substantially to the construction of C++ programs, as evidenced by the number

of libraries and applications that utilize them. However, a number of those libraries provide

C++ with partial implementations of facilities that other languages provide natively and

more completely, features like tuples [32], first-class functions [34], and named function

parameters [1]. But as discussed in Chapter 1, uses of these techniques have led to advances

in the design of the language, including novel but effective features.

One goal of this work is to explore the capabilities of undecidable metaprogramming

and to build a system in which to investigate new static abstractions, then later find ways

to validate programs that use them before they are deployed and executed. Many advances

in type systems have come from trying to build type systems that encapsulate useful func-

tionality available in untyped or dynamically checked languages. This work extends that

tradition by building an expressive language in which programmers can experiment with

new constructs and principles. Static metaprogramming can be seen as a means to deploy

immediately useful abstractions as well as a language laboratory for discovering fundamental

abstractions that can be added to a traditional type system or programming language.

120
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2. Future Work

The work presented in the previous chapters lays the groundwork for future investiga-

tions into the potential scope, safety, and expressive power for static metaprogramming. It

points toward some next steps as well as toward some broader questions.

2.1. Broader Support for Cross-Stage Persistence. Static metaprograms derive

great expressive power from the ability to embed the results of metalanguage computations

into object-language programs. This technique is used heavily in C++ template metapro-

gramming to construct programs that are specialized to compile-time invariants.

The language designs presented in Chapters 4 and 6 support the persisting of object-

language basic constants into object-language programs. This capability, however, does not

capture the full potential for cross-stage persistence.

In a multi-stage programming language like MetaML, any value whatsoever can be

persisted across metalanguage stages, including especially first-class functions. In a homo-

geneous metaprogramming language this capability is semantically coherent because any

artifact of an early computation stage has a representation in a later stage computation.

The static metaprogramming language presented here, however, is heterogeneous, and

some computations from the metalanguage have no analogue in the object language, the

output of metaprogramming. For instance, the metalanguage can manipulate code and

types, which are values that do not exist in the run-time language. In the syntax of the

kernel metaprogramming language, the programs ∼ %int and ∼ % ≺ 7 � are nonsense

because the code language does not contain a run-time representation of types as values

or of code as values. However, the programs ∼ %add1 and ∼ %λx : int.x can be given

quite sensible semantics. Heterogeneous programming languages must take greater care

with support for persistence [19].

In the semantics of the kernel language, basic constants are the only elements that can

be persisted because the current type system is not capable of differentiating the nonsense

expressions above from the sensible expressions. For instance, the expression

λx : int.if int? bool then x else 0
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has the same type as λx : int.x in the metalanguage type system, but only the latter can be

sensibly persisted into the code language. On the other hand, values with primitive types γ

are always basic constants, making them clearly safe for persistence. This limitation to basic

constants is analogous to what is currently possible with C++ template metaprogramming.

Only a few kinds of types can be persisted into the run-time code. Not even floating point

numbers can be persisted in that language, even though they could be considered a form of

basic constant.

In order to semantically support cross-stage persistence more broadly from values of

the metalanguage to expressions of the code language, the metalanguage type system must

be further refined. In particular, the type system must be able to differentiate values

that contain metalanguage-only expressions from values that also belong to the object

language. Metalanguage-only values can only be mistaken for object-language values if

they are contained in function abstractions. For this reason, it seems likely that a new form

of function typing, perhaps assisted by a different form of function abstraction, can help

the metalanguage type system more precisely type function abstractions.

One approach to this problem involves splitting the current metalanguage function

abstraction expression into two different varieties, a pure abstraction λx : τ.eo, which can

only contain forms and types from the object language, and an impure abstraction λ?x :

τ s.es, which supports all metalanguage expressions. The type system could then vary how

the two expressions are typed. The pure abstraction could be typed in terms of the object-

language type system `o to ensure that it is safe for persistence.

Γ, x : τ1 `o eo : τ2

Γ ` λx : τ1.e
o : τ1 → τ2

Syntactically, the object language eo is the “safe subset” of both languages, capturing the

set of persistable expressions. However, in order to ensure that no subexpressions of eo

use variables with metalanguage-only types like code or type, it is necessary to type the

expression using the object-language type system.

To differentiate pure from impure functions, a new function type τ s ⇒ τ s could be

added to the language for impure metalanguage functions. Then the typing rule for impure
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functions would be identical to the current function type rule.

Γ, x : τ s
1 ` es : τ s

2

Γ ` λ?x : τ s
1 .es : τ s

1 ⇒ τ s
2

The typing rule for cross-stage persistence could then be updated to support all pure types.

Γ ` es : τ
Γ ` %es : code

Ideally, pure metalanguage functions would be usable anywhere that impure metafunctions

are expected. To support this, some safe form of coercion or subtyping between pure

function types and impure function types is necessary.

Γ ` es : τ → τ
Γ ` es : τ ⇒ τ

The design of such a coercion scheme requires great care to guarantee that an impure

function can never be coerced to a pure function.

Besides a safe typing model, the implementation model for persisting pure functions

into code-language code needs to be investigated. While constants are generally seen as

straightforward to persist into a language, persisting functions that may have resulted from

partial applications is not as obvious.

If the metalanguage is extended to support persistence of all terms of object-language

type, then the parametric polymorphic functions of the metalanguage can be extended to

support persistence of any value with type τα, since those types instantiate to pure object-

language types. The following function then becomes legal:

Λα.λx : α → α.λy : α. ≺∼%(x y)�

This function parametrically takes a function x, a function y, and persists the result of

applying x to y. Even though the exact type of this result is unknown, it is guaranteed to

be a persistable value since any instantiation of α must be an object-language type τ .

2.2. Expressive Types in the Code Language. The metaprogramming language

explicitly supports the programmatic manipulation of the object-language type system.

However, the set of object-language types is limited compared to what is available in most
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functional programming languages. In particular, the type system of the object language

is simply typed and explicitly supports one type constructor for building arrow types. Pro-

gramming languages like Standard ML and Objective Caml feature type systems that sup-

port parametric polymorphism, type constructors, and the definition of new types.

The framework presented in this thesis seems compatible with these more expressive

type systems, and adding support for them to a metalanguage is likely to involve more

engineering than innovation.

Two aspects of such an undertaking are worth discussing. A language that combines

type constructors and parametric polymorphism can have type-level variables that either

represent pure types or also type constructors. To support more complex type variables, the

type system of the metalanguage must extend the definition of well-formed types to ensure

that the types assigned to variables are always properly constructed, meaning of kind ∗,

and that the types of types reflect the richer structure added to the type level.

Furthermore, an object language with parametric polymorphism has types that bind

variables. The metalanguage mechanisms for analyzing such types must take variable bind-

ing into account. Recent work on nominal logic [63] and languages with support for pro-

gramming with binders [46,73] provide possible models for defining the dynamic semantics

of metaprograms that manipulate polymorphic types.

Finally, some languages feature types that exhibit richer relations than merely struc-

ture and equivalence. In particular, some types in object oriented languages have subtype

relationships between each other. Other languages feature type systems that have qualified

types [29,36], which associate complex predicates to types, and singleton types [82], which

are types that represent particular run-time values. These extensions to the relationships

between types offer new opportunities for increasing the expressiveness of metaprogram-

ming.

2.3. Metaprogramming over Declarations. Unlike the typical production pro-

gramming language, the object language has no constructs for adding declarations. In
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particular, most programming languages provide a means to declare new types, type con-

structors, algebraic data types for functional programming languages, and classes for object-

oriented languages. Support for more sophisticated code-language types involves being able

to reason about types once they have been declared, but a metaprogramming language could

also support computations that generate new type declarations. Programming paradigms

like generative programming require the ability to construct new declarations while execut-

ing metaprograms. Given the popularity and significance of these techniques, the design

space for metaprogramming over type declarations and the like requires investigation.

To support metaprogramming over declarations, the metalanguage type system must be

augmented to support types that refer to declarations. Mechanisms for declaration metapro-

gramming are likely to vary substantially with the kind of declaration being constructed.

It is likely that the relationship between well-typed expressions of the metalanguage and

syntactically well-formed expressions of the object language will apply to these extensions.

2.4. Practical Implementation. This thesis presents a primarily theoretical per-

spective on static metaprogramming. The analysis of the mechanisms of C++ template

metaprogramming provide enough understanding of the techniques, idioms, and core ca-

pabilities of metaprogramming to inspire the presented design. Furthermore the examples

presented above demonstrate how this language design captures many of those idioms in

a more principled, intentional, and modern approach. The formal specification of the lan-

guages provides a precise definition of their semantics, and metatheoretic results verify that

the concepts presented are coherent, consistent, and sound.

In order to further elaborate the design toward practical ends, this language design

would be improved by gaining experience developing software libraries and applications that

take advantage of them. In order to do so, an implementation geared toward these ends

is proposed. In particular, a metaprogramming extension to the G generic programming

language is proposed [80], starting with its theoretical underpinnings, the calculus FG [75].

The G research programming language has been used to demonstrate language support

for generic programming and has been used to develop substantial case studies in library
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design. Adding support for static metaprogramming extensions to G will introduce even

greater support for library-centric software design to the language.

Several issues in implementing the metaprogramming language deserve consideration.

First, the semantics of the language require that hygiene be preserved for code-language

expressions. The same techniques used to implement hygienic macros [45] and multi-stage

metaprogramming languages [90] can be applied to preserve hygiene in static metaprograms.

Previous work on stack inspection for security [5,14] has produced state-passing imple-

mentations of stack-based access privilege checks. The same implementation model applies

to the typeof type reflection operator. While general mechanical techniques have been de-

veloped for deriving abstract machines from reduction semantics [16], more care is required

to produce a correct corresponding compositional interpreter.

Cross-stage persistence as presented in previous chapters can be implemented simply,

so long as every run-time value of the object language can be given a textual representa-

tion. However extension of persistence to higher-order values, as proposed in Section 2.1,

presents more implementation challenges. The ability to persist functions that are used in

the metalanguage into the code language implies that the metaprogram run-time system

must maintain a representation of functions that can be executed and serialized into code

objects. This suggests that the closures representing persistable functions must carry an

intentional representation that is parameterized on the values over which their environ-

ments are closed. Functions that cannot be persisted need not carry such a representation,

and in fact any operation that coerces persistable functions to non-persistable functions

may discard this extra information. Developing an effective and reasonably space- and

time-efficient implementation model for metaprogramming with higher-order persistence is

a problem worthy of consideration.

2.5. Metaprogramming for Languages with Implicit Typing. The metapro-

gramming language takes advantage of manifest type annotations in the code language

in order to perform some of its computations. In particular, the typeof operation col-

lects type annotations from the metaprogram evaluation stack in order to compute the
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type of subexpressions. However, production functional programming languages tend to

have inference-based type systems. Rather than mandating that all variable abstractions

be annotated, these languages perform type checking by using the structure of program

expressions to construct a set of equations that constrain the types of variables and then

solving them. It is not obvious that a type system based entirely on inference and featuring

no type annotations would be suited to this metaprogramming model. Nonetheless, many

languages that do not support full type inference still support some form of local inference,

possibly limited to the bodies of top-level function definitions.

Since the type information in the context of an expression may be incomplete at any

point during metacomputation, waiting for more type variable constraints to impose defin-

itive form on a type. It may be possible to perform some metacomputations using partial

information, but the need for more complete type information could lead to “deadlock” on

computations that cannot complete. This situation seems to call for a more demand-driven

evaluation order, possibly based on data-flow or logic programming.

Though the prevalence of nontrivial type annotations in mainstream programming lan-

guages provide great opportunity for leveraging type information at the meta-level, the

extent to which type deduction and type inference systems at the object-language level are

compatible with static metaprogramming may yield fruitful insights into the nature of type

structure and the scope of the presented design.

2.6. Intensional Code Analysis. One notable feature of macro systems is support

for code analysis, the ability to decompose programs as data into their bare components.

Unrestrained manipulation of data that represents programs provides the greatest level of

flexibility, but this flexibility can undermine expressiveness if it is not provided in a manner

that is compatible with higher-level reasoning principles. Just as hygienic macros support

reasoning about programs while respecting variable structure, so should static metapro-

gramming support reasoning about programs while respecting type structure. Hygienic

macros have advanced to provide the benefits of hygiene in a framework that also supports

the expressiveness of unrestrained computation [18]. A model for metaprogramming that



7. DISCUSSION 128

supports code analysis benefits from achieving an analogous balance between expressive

power and structure-preserving reasoning principles.

2.7. Stronger Type Guarantees. As mentioned earlier, a metaprogram may signal

an error during static computation, even if it is well-typed. This design raises modular-

ity concerns. For instance, a buggy library of metaprogramming routines can generate

ill-typed code under certain conditions. These errors may not be detected until an appli-

cation developer uses the library in an application. The same issue arises with template

metaprograms in C++. Efforts have been made to build systems that provide meta type

safety guarantees [31], the property that a metaprogram can be statically checked prior to

compile-time computation and be guaranteed to never produce compile-time type-related

errors. Such guarantees often impose strong constraints on the computational power of the

metaprogramming system. In future work on static metaprogramming language design,

the relationship between power and safety deserves further investigation as well as efforts

to develop metaprogramming type systems that strengthen metacomputation guarantees

without unreasonably compromising expressive power.

3. Conclusion

Christopher Strachey said it best: “A programming language is a rather large body

of new and somewhat arbitrary mathematical notation introduced in the hope of making

the problem of controlling computing machines somewhat simpler [83].” In the 40 years

since Strachey offered this definition, massive effort has been applied to the problem of con-

trolling computing machines. Many control and organizational language constructs have

been proposed and explored in an ongoing attempt to improve the software development

process. This dissertation investigates a model of static metaprogramming that supports

the treatment of code as data and the acquisition and manipulation of type information. Its

approach was especially inspired by those who mined the depths of an untamed language’s

capabilities to uncover new principles for program organization and abstraction. By exam-

ining those principles and placing them on a firm foundation, this undertaking furthers the

hopes ascribed to programming languages for the last four decades.
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Symbol Classes
γ ::= 〈type constant〉
x ::= 〈variable〉
α ::= 〈type variable〉
c ::= 〈basic constant〉
f ::= 〈function constant〉
cs− ::= γ? |→?| dom | cod | typeof (non-type meta constant)
cs ::= γ | cs− (meta constant)

Terms
pgm ::= e (program)

e ::= x | λx : es.e | e e (code language)
| c | f | if e then e else e
| ∼es

eo ::= x | λx : τ.eo | eo eo (pure code)
| c | f | if eo then eo else eo

es ::= x | α | λx : τ s.es | es es | Λα.es | es[τα] (metalanguage)
| c | f | if es then es else es

| cs

| ≺e�
| %es

| es → es

| es =τ es

vs ::= c | f | cs− | ≺eo� | τ | λx : τ s.es | Λα.es (meta value)

Types
τ ::= γ | τ → τ (ground type)
τα ::= α | γ | τα → τα (type scheme)

Meta Types
τ s ::= α

| γ
| code
| type
| τ s → τ s

| ∀α.τ s

ε ::= x : τ s | x : dyn | α : ∗ (environment bindings)
Γ ::= εi (environment)

Figure 1. Kernel Language Syntax
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Γ wf

∅ wf
Γ wf α /∈ FV (Γ)

Γ, α : ∗ wf
Γ wf x /∈ FV (Γ)

Γ, x : dyn wf

Γ wf x /∈ FV (Γ) FV (τ s) ⊆ FV (Γ)
Γ, x : τ s wf

Figure 2. Well-formed Environment

Γ ` es : τ s

(x : τ s) ∈ Γ
Γ ` x : τ s

(α : ∗) ∈ Γ
Γ ` α : type Γ ` dom : type → type

Γ ` cod : type → type Γ ` γ? : type → bool Γ `→?: type → bool

Γ ` typeof : code → type
type(f) = γ1 → γ2

Γ ` f : γ1 → γ2

type(c) = γ

Γ ` c : γ

Γ ` es
1 : bool Γ ` es

2 : τ s Γ ` es
3 : τ s

Γ ` if es
1 then es

2 else es
3 : τ s Γ ` γ : type

Γ ` e wf
Γ `≺e�: code

Γ ` es
1 : type Γ ` es

2 : type
Γ ` es

1 → es
2 : type

Γ ` es
1 : type Γ ` es

2 : type
Γ ` es

1 =τ es
2 : bool

Γ ` es : γ

Γ ` %es : code
Γ ` es

1 : τ s
1 → τ s

2 Γ ` es
2 : τ s

1

Γ ` es
1 es

2 : τ s
2

Γ, x : τ s
1 ` es : τ s

2 x /∈ FV (Γ)
Γ ` λx : τ s

1 .es : τ s
1 → τ s

2

Γ, α : ∗ ` es : τ s α /∈ FV (Γ)
Γ ` Λα.es : ∀α.τ s

Γ ` es
1 : ∀α.τ s Γ ` τα : type

Γ ` es
1[τ

α] : τ s {τα/α}τ

Γ ` e wf

(x : dyn) ∈ Γ
Γ ` x wf Γ ` c wf Γ ` f wf

Γ ` es : type Γ, x : dyn ` e wf x /∈ FV (Γ)
Γ ` λx : es.e wf

Γ ` e1 wf Γ ` e2 wf
Γ ` e1 e2 wf

Γ ` e1 wf Γ ` e2 wf Γ ` e3 wf
Γ ` if e1 then e2 else e3 wf

Γ ` es : code
Γ `∼es wf

Figure 3. Kernel Language Static Semantics
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Evaluation Contexts
Es ::= Es[� es]

| Es[vs �]
| Es[if � then es else es]
| E[λx : �.e]
| E[∼�]
| Es[%�]
| Es[�→ es]
| Es[τ → �]
| Es[� =τ es]
| Es[vs =τ �]
| Es[�[τα]]

E ::= �
| E[� e]
| E[eo �]
| E[λx : τ.�]
| E[if � then e else e]
| E[if eo then � else e]
| E[if eo then eo else �]
| Es[≺��]

E∗ ::= E | Es

Figure 4. Evaluation Contexts
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r →Es es Notions of Reduction

(λx : τ s.es) vs →Es es [vs/x]s (term application)
(Λα.es)[τα] →Es es {τα/α}s (type application)
%c →Es ≺c� (cross-stage persistence)
if true then es

1 else es
2 →Es es

1

if false then es
1 else es

2 →Es es
2

f c →Es δ(f, c) (f, c) ∈ DOM (δ) (delta rules)
γ? γ →Es true (base type match)
γ? τ →Es false τ 6≡ γ (base type mismatch)
→? (τ1 → τ2) →Es true (arrow type match)
→? τ →Es false τ 6≡ τ1 → τ2 (arrow type mismatch)
dom(τ1 → τ2) →Es τ1 (arrow type domain)
dom(τ) →Es τ τ 6≡ τ1 → τ2 (non-arrow type domain)
cod(τ1 → τ2) →Es τ2 (arrow type codomain)
cod(τ) →Es τ τ 6≡ τ1 → τ2 (non-arrow type codomain)
τ =τ τ →Es true (type equality)
τ1 =τ τ2 →Es false τ1 6≡ τ2 (type inequality)

‡Γ ` f c : γ ⇒ (f, c) ∈ DOM (δ) ∧ Γ ` δ(f, c) : γ.

e 7−→ e ∪ {⊥} Context-Sensitive Reduction

(meta-eval)
es
1 →Es es

2

Es[es
1] 7−→ Es[es

2]
(splice)

E[∼≺eo�] 7−→ E[eo]

(typeof)
Γs(Es) ` eo : τ

Es[typeof ≺eo�] 7−→ Es[τ ]
(notype)

∀τ.Γs(Es) 6` eo : τ

Es[typeof ≺eo�] 7−→ ⊥

Figure 5. Reduction Rules
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Γs(Es) : Es → xi : τi

Γs(Es[� es]) = Γs(Es)
Γs(Es[vs �]) = Γs(Es)
Γs(Es[if � then es else es]) = Γs(Es)
Γs(Es[%�]) = Γs(Es)
Γs(Es[�→ es]) = Γs(Es)
Γs(Es[τ → �]) = Γs(Es)
Γs(Es[� =τ es]) = Γs(Es)
Γs(Es[vs =τ �]) = Γs(Es)
Γs(Es[�[τα]]) = Γs(Es)
Γs(E[λx : �.e]) = Γ(E)
Γs(E[∼�]) = Γ(E)

Γ(E) : E → xi : τi

Γ(�) = ∅
Γ(E[� e]) = Γ(E)
Γ(E[eo �]) = Γ(E)
Γ(E[λx : τ.�]) = Γ(E), x : τ
Γ(E[if � then e else e]) = Γ(E)
Γ(E[if eo then � else e]) = Γ(E)
Γ(E[if eo then eo else �]) = Γ(E)
Γ(Es[≺��]
Γ(Es[≺��]) = Γs(Es)

Figure 6. Type Context Extraction
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(·) [es/x]s : es → es

x [es
0/x]s = es

0

x1 [es
0/x2]

s = x1 x1 6≡ x2

α [es
0/x]s = α

(λx : τ s.es) [es
0/x]s = λx : τ s.es

(λx1 : τ s.es) [es
0/x2]

s = λx3 : τ s.es [x3/x1]
s [es

0/x2]
s x1 6≡ x2

x3 =

{
x1 x1 /∈ FV s(es

0) or x2 /∈ FV s(es)
xf for xf /∈ FV s(es

0) ∪ FV s(es)
(es

1 es
2) [es

0/x]s = es
1 [es

0/x]s es
2 [es

0/x]s

(if es
1 then es

2 else es
3) [es

0/x]s = if es
1 [es

0/x]s then es
2 [es

0/x]s else es
3 [es

0/x]s

(Λα.es) [es
0/x]s = Λα.es [es

0/x]s

(es[τα]) [es
0/x]s = (es [es

0/x]s)[τα]
c [es

0/x]s = c
f [es

0/x]s = f
cs [es

0/x]s = cs

(es
1 =τ es

2) [es
0/x]s = es

1 [es
0/x]s =τ es

2 [es
0/x]s

≺e� [es
0/x]s = ≺e [es

0/x]�
(%es) [es

0/x]s = %es [es
0/x]s

(es
1 → es

2) [es
0/x]s = es

1 [es
0/x]s → es

2 [es
0/x]s

(·) [es
0/x] : e → e

x1 [es
0/x2] = x1

(λx1 : es.e) [es
0/x2] = λx3 : es [es

0/x2]
s .e|x3

x1
[es

0/x2]

x3 =

{
x1 x1 /∈ FV s(es

0) or x2 /∈ FV (e)
xf for xf /∈ FV s(es

0) ∪ FV (e)
(e1 e2) [es

0/x] = e1 [es
0/x] e2 [es

0/x]
c [es

0/x] = c
f [es

0/x] = f
(if e1 then e2 else e3) [es

0/x] = if e1 [es
0/x] then e2 [es

0/x] else e3 [es
0/x]

(∼es) [es
0/x] = ∼es [es

0/x]s

Figure 7. Term Substitution
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(·) {τα/α}s : es → es

x {τα/α}s = x
α {τα/α}s = τα

α1 {τα/α2}τ = α1 α1 6≡ α2

(λx : τ s.es) {τα/α}s = λx : τ s {τα/α}τ .es {τα/α}s

(es
1 es

2) {τα/α}s = es
1 {τα/α}s es

2 {τα/α}s

(if es
1 then es

2 else es
3) {τα/α}s = if es

1 {τα/α}s then es
2 {τα/α}s else es

3 {τα/α}s

(Λα.es) {τα/α}s = Λα.es

(Λα1.e
s) {τα/α2}s = (Λα3.e

s{α3/α1}s {τα/α2}s) α1 6≡ α2

α3 =

{
α1 α1 /∈ FV s(τα) or α2 /∈ FV s(es)
αf for αf /∈ FV s(τα) ∪ FV s(es)

(es[τα
1 ]) {τα

2 /α}s = es {τα
2 /α}s [τα

1 {τα
2 /α}τ ]

c {τα/α}s = c
f {τα/α}s = f
cs {τα/α}s = cs

(es
1 =τ es

2) {τα/α}s = es
1 {τα/α}s =τ es

2 {τα/α}s

≺e� {τα/α}s = ≺e {τα/α}�
(%es) {τα/α}s = %es {τα/α}s

(es
1 → es

2) {τα/α}s = (es
1 {τα/α}s → es

2 {τα/α}s)

(·) {τα/α} : e → e

x {τα/α} = x
(λx1 : es.e) {τα/α} = (λx1 : es {τα/α}s .e {τα/α})
(e1 e2) {τα/α} = e1 {τα/α} e2 {τα/α}
c {τα/α} = c
f {τα/α} = f
(if e1 then e2 else e3) {τα/α} = if e1 {τα/α} then e2 {τα/α} else e3 {τα/α}
(∼es) {τα/α} = ∼es {τα/α}s

(·) {τα/α}τ : τ s → τ s

α {τα/α}τ = τα

α1 {τα/α2}τ = α1 α1 6≡ α2

γ {τα/α}τ = γ
code {τα/α}τ = code
type {τα/α}τ = type
(τ s

1 → τ s
2 ) {τα/α}τ = τ s

1 {τα/α}τ → τ s
2 {τα/α}τ

(∀α.τ s) {τα/α}τ = (∀α.τ s)
(∀α1.τ

s) {τα/α2}τ = (∀α3.τ
s{α3/α1}τ {τα/α2}τ ) α1 6≡ α2

α3 =

{
α1 α1 /∈ FV s(τα) or α2 /∈ FV s(τ s)
αf αf /∈ FV s(τα) ∪ FV s(τ s)

Figure 8. Type Schema Substitution
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(·)|x2
x1

s : es → es

x3|x2
x1

s = x3

α|x2
x1

s = α
(λx3 : τ s.es)|x2

x1

s = λx4 : τ s.es [x4/x3]
s |x2

x1

s

x4 =

{
x3 x3 6≡ x2 or x1 /∈ FV s(es)
xf for xf /∈ {x2 } ∪ FV s(es)

(es
1 es

2)|x2
x1

s = es
1|x2

x1

s es
2|x2

x1

s

(if es
1 then es

2 else es
3)|x2

x1

s = if es
1|x2

x1

s then es
2|x2

x1

s else es
3|x2

x1

s

(Λα.es)|x2
x1

s = Λα.es|x2
x1

s

(es[τα])|x2
x1

s = es|x2
x1

s[τα]
c|x2

x1

s = c
f |x2

x1

s = f
cs|x2

x1

s = cs

(es
1 =τ es

2)|x2
x1

s = es
1|x2

x1

s =τ es
2|x2

x1

s

≺e� |x2
x1

s = ≺e|x2
x1
�

(%es)|x2
x1

s = %es|x2
x1

s

(es
1 → es

2)|x2
x1

s = es
1|x2

x1

s → es
2|x2

x1

s

(·)|x2
x1

: e → e

x1|x2
x1

= x2

x3|x2
x1

= x3 x3 6≡ x1

(λx1 : es.e)|x2
x1

= λx1 : es|x2
x1

s.e
(λx3 : es.e)|x2

x1
= λx4 : es|x2

x1

s.e|x4
x3
|x2
x1

x3 6≡ x1

x4 =

{
x3 x3 6≡ x2 or x1 /∈ FV (e)
xf for xf /∈ {x2 } ∪ FV (e)

(e1 e2)|x2
x1

= e1|x2
x1

e2|x2
x1

c|x2
x1

= c
f |x2

x1
= f

(if e1 then e2 else e3)|x2
x1

= if e1|x2
x1

then e2|x2
x1

else e3|x2
x1

(∼es)|x2
x1

= ∼es|x2
x1

s

Figure 9. Code Variable Renaming
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FMV s(es) : es → X

FMV s(x) = {x }
FMV s(α) = ∅
FMV s(c) = ∅
FMV s(f) = ∅
FMV s(cs) = ∅
FMV s(λx : τ s.es) = FMV s(es)− {x }
FMV s(es

1 es
2) = FMV s(es

1) ∪ FMV s(es
2)

FMV s(if es
1 then es

2 else es
3) = FMV s(es

1) ∪ FMV s(es
2) ∪ FMV s(es

3)
FMV s(Λα.es) = FMV s(es)
FMV s(es[τα]) = FMV s(es)
FMV s(≺e�) = FMV (e)
FMV s(%es) = FMV s(es)
FMV s(es

1 → es
2) = FMV s(es

1) ∪ FMV s(es
2)

FMV s(es
1 = es

2) = FMV s(es
1) ∪ FMV s(es

2)

FMV (e) : e → X

FMV (x) = ∅
FMV (c) = ∅
FMV (f) = ∅
FMV (λx : es.e) = FMV s(es) ∪ FMV (e)
FMV (e1 e2) = FMV (e1) ∪ FMV (e2)
FMV (if e1 then e2 else e3) = FMV (e1) ∪ FMV (e2) ∪ FMV (e3)
FMV (∼es) = FMV s(es)

Figure 10. Free Meta Variables
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FCV s(es) : es → X

FCV s(x) = ∅
FCV s(α) = ∅
FCV s(c) = ∅
FCV s(f) = ∅
FCV s(cs) = ∅
FCV s(λx : τ s.es) = FCV s(es)
FCV s(es

1 es
2) = FCV s(es

1) ∪ FCV s(es
2)

FCV s(if es
1 then es

2 else es
3) = FCV s(es

1) ∪ FCV s(es
2) ∪ FCV s(es

3)
FCV s(Λα.es) = FCV s(es)
FCV s(es[τα]) = FCV s(es)
FCV s(≺e�) = FCV (e)
FCV s(%es) = FCV s(es)
FCV s(es

1 → es
2) = FCV s(es

1) ∪ FCV s(es
2)

FCV s(es
1 = es

2) = FCV s(es
1) ∪ FCV s(es

2)

FCV (e) : e → X

FCV s(x) = {x }
FCV s(c) = ∅
FCV s(f) = ∅
FCV s(λx : es.e) = FCV s(es) ∪ (FCV (e)− {x })
FCV (e1 e2) = FCV (e1) ∪ FCV (e2)
FCV (if e1 then e2 else e3) = FCV (e1) ∪ FCV (e2) ∪ FCV (e3)
FCV (∼es) = FCV s(es)

Figure 11. Free Code Variables
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FTV s(es) : es → X

FTV s(x) = ∅
FTV s(α) = {α }
FTV s(c) = ∅
FTV s(f) = ∅
FTV s(cs) = ∅
FTV s(λx : τ s.es) = FTV s(τ s) ∪ FTV s(es)
FTV s(es

1 es
2) = FTV s(es

1) ∪ FTV s(es
2)

FTV s(if es
1 then es

2 else es
3) = FTV s(es

1) ∪ FTV s(es
2) ∪ FTV s(es

3)
FTV s(Λα.es) = FTV s(es)− {α }
FTV s(es[τα]) = FTV s(es) ∪ FTV s(τα)
FTV s(≺e�) = FTV (e)
FTV s(%es) = FTV s(es)
FTV s(es

1 → es
2) = FTV s(es

1) ∪ FTV s(es
2)

FTV s(es
1 = es

2) = FTV s(es
1) ∪ FTV s(es

2)

FTV (e) : e → X

FTV s(x) = ∅
FTV s(c) = ∅
FTV s(f) = ∅
FTV s(λx : es.e) = FTV s(es) ∪ FTV (e)
FTV (e1 e2) = FTV (e1) ∪ FTV (e2)
FTV (if e1 then e2 else e3) = FTV (e1) ∪ FTV (e2) ∪ FTV (e3)
FTV (∼es) = FTV s(es)

Figure 12. Free Type Variables

FV (e) : e → X ∪ A
FV s(es) : es → X ∪ A

FV (e) = FCV (e) ∪ FMV (e) ∪ FTV (e)
FV s(es) = FCV s(es) ∪ FMV s(es) ∪ FTV s(es)

Figure 13. Free Variables
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E∗ ≤ E∗ Context Prefix

E∗
1 = E∗

2

E∗
1 ≤ E∗

2

E∗
1 < E∗

2

E∗
1 ≤ E∗

2

E∗
1 < E∗

2 E∗
2 <1 E∗

3

E∗
1 < E∗

3

E∗
1 <1 E∗

2

E∗
1 < E∗

2

Es <1 Es[� es] Es <1 Es[vs �] E <1 E[λx : �.e]

Es < Es[if � then es else es] E <1 E[∼�] Es <1 Es[%�]

Es <1 Es[�→ es] Es <1 Es[τ → �] Es <1 Es[� = es]

Es <1 Es[vs = �] Es <1 Es[�[τα]] E <1 E[� e] E <1 E[eo �]

E <1 E[λx : τ.�] E <1 E[if � then e else e]

E <1 E[if eo then � else e] E <1 E[if eo then eo else �]

Es <1 Es[≺��]

Figure 14. Context Prefix Relations
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Lemma 2 (Inversion of Typing and Well-Formedness).
(1) If Γ ` x : τ s, then (x : τ s) ∈ Γ.
(2) If Γ ` α : τ s, then τ s = type and (α : ∗) ∈ Γ.
(3) If Γ ` dom : τ s, then τ s = type → type.
(4) If Γ ` cod : τ s, then τ s = type → type.
(5) If Γ ` γ? : τ s, then τ s = type → bool.
(6) If Γ `→?: τ s, then τ s = type → bool.
(7) If Γ ` typeof : τ s, then τ s = code → type.
(8) If Γ ` c : τ s, then τ s = γ for some γ.
(9) If Γ ` f : τ s, then τ s = γ1 → γ2 for some γ1 and γ2.

(10) If Γ ` if es
1 then es

2 else es
3 : τ s then Γ ` es

1 : bool, Γ ` es
2 : τ s, and Γ ` es

3 : τ s.
(11) If Γ ` γ : τ s, then τ s = type.
(12) If Γ `≺e�: τ s, then τ s = code and Γ ` e wf.
(13) If Γ ` es

1 → es
2 : τ s, then τ s = type and Γ ` es

1 : type and Γ ` es
2 : type.

(14) If Γ ` es
1 =τ es

2 : τ s, then τ s = bool and Γ ` es
1 : type and Γ ` es

2 : type.
(15) If Γ ` %es : τ s then τ s = code and Γ ` es : γ.
(16) If Γ ` es

1 es
2 : τ s, then there is a type τ s′ such that Γ ` es

1 : τ s′ → τ s and Γ ` es
2 : τ s′.

(17) If Γ ` λx : τ s
1 .es : τ s, then there is a type τ s′ such that Γ, x : τ s

1 ` es : τ s′ and
τ s = τ s

1 → τ s′; x /∈ FV (Γ).
(18) If Γ ` Λα.es : τ s, then for some τ s′, τ s = ∀α.τ s′ and Γ, α : ∗ ` es : τ s′; α /∈ FV (Γ).
(19) If Γ ` es

1[τ
α] : τ s Then there is a type ∀α.τ s′ such that Γ ` es

1 : ∀α.τ s′ and
τ s = τ s′ {τα/α}τ .

(20) If Γ ` x wf, then (x : dyn) ∈ Γ.
(21) If Γ ` λx : es.e wf, then Γ ` es : type and Γ, x : dyn ` e wf; x /∈ FV (Γ).
(22) If Γ ` e1 e2 wf, then Γ ` e1 wf and Γ ` e2 wf.
(23) If Γ ` if e1 then e2 else e3 wf then Γ ` e1 wf, Γ ` e2 wf, and Γ ` e3 wf.
(24) If Γ `∼es wf, then Γ ` es : code.

Proof. By cases on derivations of Γ ` es : τ s and Γ ` e wf. �

Lemma 3 (Context Typing).
(1) If Γ ` E[e] wf, then Γ′ ` e wf for some Γ′.
(2) If Γ ` Es[es] wf, then Γ′ ` es : τ s for some Γ′.

Proof. By mutual induction on the structure of E and Es.

Case (E = �). Γ ` �[e] wf = Γ ` e wf.

Case (E = E′[� e′]).

Γ ` (E′[� e′])[e] wf = Γ ` E′[e e′] wf I.H.⇒ Γ′ ` e e′ wf lm 2⇒ Γ′ ` e wf.

Case (E = E′[eo �]).

Γ ` (E′[eo �])[e] wf = Γ ` E′[eo e] wf I.H.⇒ Γ′ ` eo e wf lm 2⇒ Γ′ ` e wf.

Case (E = E′[λx : τ.�]).

Γ ` (E′[λx : τ.�])[e] wf = Γ ` E′[λx : τ.e] wf I.H.⇒

Γ′ ` λx : τ.e wf lm 2⇒ Γ′, x : dyn ` e wf.
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Case (E = E′[if � then e else e]).

Γ ` (E′[if � then e1 else e2])[e] wf = Γ ` E′[if e then e1 else e2] wf I.H.⇒

Γ′ ` if e then e1 else e2 wf lm 2⇒ Γ′ ` e wf.

Case (E = E′[if eo then � else e]).

Γ ` (E′[if eo then � else e′])[e] wf = Γ ` E′[if eo then e else e′] wf I.H.⇒

Γ′ ` if eo then e else e′ wf lm 2⇒ Γ′ ` e wf.

Case (E = E′[if eo then eo else �]).

Γ ` (E′[if eo
1 then eo

2 else �])[e] wf = Γ ` E′[if eo
1 then eo

2 else e] wf I.H.⇒

Γ′ ` if eo
1 then eo

2 else e wf lm 2⇒ Γ′ ` e wf.

Case (E = Es′ [≺��]).

Γ ` (Es′ [≺��])[e] wf = Γ ` Es′ [≺e�] wf I.H.⇒ Γ′ `≺e�: τ s lm 2⇒ Γ′ ` e wf.

Case (Es = Es′ [� es′ ]).

Γ ` (Es′ [� es′ ])[es] wf = Γ ` Es′ [es es′ ] wf I.H.⇒

Γ′ ` es es′ : τ s lm 2⇒ Γ′ ` es : τ s′ → τ s.

Case (Es = Es′ [vs �]).

Γ ` (Es′ [vs �])[es] wf = Γ ` Es′ [vs es] wf I.H.⇒ Γ′ ` vs es : τ s lm 2⇒ Γ′ ` es : τ s′ .

Case (Es = E′[λx : �.e′]).

Γ ` (E′[λx : �.e′])[es] wf = Γ ` E′[λx : es.e′] wf I.H.⇒ Γ′ ` λx : es.e′ wf lm 2⇒
Γ′ ` es : type.

Case (Es = Es′ [if � then es
1 else es

2]).

Γ ` Es′ [if � then es
1 else es

2][e
s] wf = Γ ` Es′ [if es then es

1 else es
2] wf I.H.⇒

Γ′ ` if es then es
1 else es

2 : τ s lm 2⇒ Γ′ ` es : bool.

Case (Es = E′[∼�]).

Γ ` (E′[∼�])[es] wf = Γ ` E′[∼es] wf I.H.⇒ Γ′ `∼es wf lm 2⇒ Γ′ ` es : code.

Case (Es = Es′ [%�]).

Γ ` (Es′ [%�])[es] wf = Γ ` Es′ [%es] wf I.H.⇒ Γ′ ` %es wf lm 2⇒ Γ′ ` es : γ.

Case (Es = Es′ [�→ es]).

Γ ` (Es′ [�→ es′ ])[es] wf = Γ ` Es′ [es → es′ ] wf I.H.⇒

Γ′ ` es → es′ : τ s lm 2⇒ Γ′ ` es : type.
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Case (Es = Es′ [τ → �]).

Γ ` (Es′ [τ → �])[es] wf = Γ ` Es′ [τ → es] wf I.H.⇒

Γ′ ` τ → es : τ s lm 2⇒ Γ′ ` es : type.

Case (Es = Es′ [� =τ es]).

Γ ` (Es′ [� =τ es′ ])[es] wf = Γ ` Es′ [es =τ es′ ] wf I.H.⇒

Γ′ ` es =τ es′ : τ s lm 2⇒ Γ′ ` es : type.

Case (Es = Es′ [vs =τ �]).

Γ ` (Es′ [vs =τ �])[es] wf = Γ ` Es′ [vs =τ es] wf I.H.⇒

Γ′ ` vs =τ es : τ s lm 2⇒ Γ′ ` es : type.

Case (Es = Es′ [�[τα]]).

Γ ` (Es′ [�[τα]])[es] wf = Γ ` Es′ [es[τα]] wf I.H.⇒ Γ′ ` es[τα] : τ s lm 2⇒

Γ′ ` es : ∀α.τ s′ .

�

Lemma 4 (Replacement).

(1) If Γ ` E[e1] wf, and Γ′ ` e1 wf implies Γ′ ` e2 wf for all Γ′, then
Γ ` E[e2] wf.

(2) If Γ ` Es[es
1] wf, and Γ′ ` es

1 wf implies Γ′ ` es
2 wf for all Γ′, then Γ ` Es[es

2] wf.

Proof. By mutual induction on the structure of E and Es.

Case (E = �). Γ ` �[e1] wf = Γ ` e1 wf and by assumption, Γ ` e2 wf.

Case (E = E′[� e]).

Γ ` (E′[� e])[e1] wf = Γ ` E′[e1 e] wf lm 3⇒ Γ′ ` e1 e wf lm 2⇒ Γ′ ` e1 wf; Γ′ ` e wf
hyp⇒ Γ′ ` e2 wf ⇒ Γ′ ` e2 e wf I.H.⇒ Γ ` E′[e2 e] wf = Γ ` (E′[� e])[e2] wf.

Case (E = E′[eo �]).

Γ ` (E′[eo �])[e1] wf = Γ ` E′[eo e1] wf lm 3⇒ Γ′ ` eo e1 wf lm 2⇒ Γ′ ` eo wf; Γ′ ` e1 wf
hyp⇒ Γ′ ` e2 wf ⇒ Γ′ ` eo e2 wf I.H.⇒ Γ ` E′[eo e2] wf = Γ ` (E′[eo �])[e2] wf

Case (E = E′[λx : τ.�]).

Γ ` (E′[λx : τ.�])[e1] wf = Γ ` E′[λx : τ.e1] wf lm 3⇒

Γ′ ` λx : τ.e1 wf lm 2⇒ Γ′, x : dyn ` e1 wf
hyp⇒ Γ′, x : dyn ` e2 wf ⇒

Γ′ ` λx : τ.e2 wf I.H.⇒ Γ ` E′[λx : τ.e2] wf = Γ ` (E′[λx : τ.�])[e2] wf
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Case (E = E′[if � then e3 else e4]).

Γ ` (E′[if � then e3 else e4])[e1] wf = Γ ` E′[if e1 then e3 else e4] wf lm 3⇒

Γ′ ` if e1 then e3 else e4 wf lm 2⇒ Γ′ ` e1 wf; Γ′ ` e3 wf; Γ′ ` e4 wf
hyp⇒

Γ′ ` e2 wf ⇒ Γ′ ` if e2 then e3 else e4 wf I.H.⇒
Γ ` E′[if e2 then e3 else e4] wf = Γ ` (E′[if � then e3 else e4])[e2] wf

Case (E = E′[if eo then � else e]).

Γ ` (E′[if eo then � else e3])[e1] wf = Γ ` E′[if eo then e1 else e3] wf lm 3⇒

Γ′ ` if eo then e1 else e3 wf lm 2⇒ Γ′ ` eo wf; Γ′ ` e1 wf; Γ′ ` e3 wf
hyp⇒

Γ′ ` e2 wf ⇒ Γ′ ` if eo then e2 else e3 wf I.H.⇒
Γ ` E′[if eo then e2 else e3] wf = Γ ` (E′[if eo then � else e3])[e2] wf

Case (E = E′[if eo
1 then eo

2 else �]).

Γ ` (E′[if eo
1 then eo

2 else �])[e1] wf = Γ ` E′[if eo
1 then eo

2 else e1] wf lm 3⇒

Γ′ ` if eo
1 then eo

2 else e1 wf lm 2⇒ Γ′ ` eo
1 wf; Γ′ ` eo

2 wf; Γ′ ` e1 wf
hyp⇒

Γ′ ` e2 wf ⇒ Γ′ ` if eo
1 then eo

2 else e2 wf I.H.⇒
Γ ` E′[if eo

1 then eo
2 else e2] wf = Γ ` (E′[if eo

1 then eo
2 else �])[e2] wf

Case (E = Es′ [≺��]).

Γ ` (Es′ [≺��])[e1] wf = Γ ` Es′ [≺e1�] wf lm 3⇒ Γ′ `≺e1�: code lm 2⇒

Γ′ ` e1 wf
hyp⇒ Γ′ ` e2 wf ⇒

Γ′ `≺e2�: code I.H.⇒ Γ ` Es′ [≺e2�] wf = Γ ` (Es′ [≺��])[e2] wf

Case (Es = Es′ [� es]).

Γ ` (Es′ [� es])[es
1] wf = Γ ` Es′ [es

1 es] wf lm 3⇒ Γ′ ` es
1 es : τ s lm 2⇒

Γ′ ` es
1 : τ s′ → τ s; Γ′ ` es : τ s′ hyp⇒ Γ′ ` es

2 : τ s′ → τ s ⇒

Γ′ ` es
2 es : τ s I.H.⇒ Γ ` Es′ [es

1 es] wf = Γ ` (Es′ [� es])[es
1] wf

Case (Es = Es′ [vs �]).

Γ ` (Es′ [vs �])[es
1] wf = Γ ` Es′ [vs es

1] wf lm 3⇒ Γ′ ` vs es
1 : τ s lm 2⇒

Γ′ ` vs : τ s′ → τ s; Γ′ ` es
1 : τ s′ hyp⇒ Γ′ ` es

2 : τ s′ ⇒

Γ′ ` vs es
2 : τ s I.H.⇒ Γ ` Es′ [vs es

2] wf = Γ ` (Es′ [vs �])[es
2] wf
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Case (Es = E′[λx : �.e]).

Γ ` (E′[λx : �.e])[es
1] wf = Γ ` E′[λx : es

1.e] wf lm 3⇒ Γ′ ` λx : es
1.e wf lm 2⇒

Γ′ ` e wf; Γ′ ` es
1 : type

hyp⇒ Γ′ ` es
2 : type ⇒

Γ′ ` λx : es
2.e wf I.H.⇒ Γ ` E′[λx : es

2.e] wf = Γ ` (E′[λx : �.e])[es
2] wf.

Case (Es = Es[if � then es else es]).

Γ ` (E′[if � then es
3 else es

4])[e
s
1] wf = Γ ` E′[if es

1 then es
3 else es

4] wf lm 3⇒

Γ′ ` if es
1 then es

3 else es
4 : τ s lm 2⇒ Γ′ ` es

1 : bool; Γ′ ` es
3 : τ s; Γ′ ` es

4 : τ s hyp⇒

Γ′ ` es
2 : τ s ⇒ Γ′ ` if es

2 then es
3 else es

4 : τ s I.H.⇒
Γ ` E′[if es

2 then es
3 else es

4] wf = Γ ` (E′[if � then es
3 else es

4])[e
s
2] wf

Case (Es = E′[∼�]).

Γ ` (E′[∼�])[es
1] wf = Γ ` E′[∼es

1] wf lm 3⇒ Γ′ `∼es
1 wf lm 2⇒ Γ′ ` es

1 : code
hyp⇒ Γ′ ` es

2 : code ⇒ Γ′ `∼es
2 wf I.H.⇒ Γ ` E′[∼es

2] wf = Γ ` (E′[∼�])[es
2] wf.

Case (Es = Es′ [%�]).

Γ ` (Es′ [%�])[es
1] wf = Γ ` Es′ [%es

1] wf lm 3⇒ Γ′ ` %es
1 : code lm 2⇒ Γ′ ` es

1 : γ

hyp⇒ Γ′ ` es
2 : γ ⇒ Γ′ ` %es

2 : code I.H.⇒ Γ ` Es′ [%es
2] wf = Γ ` (Es′ [%�])[es

2] wf.

Case (Es = Es′ [�→ es]).

Γ ` (Es′ [�→ es])[es
1] wf = Γ ` Es′ [es

1 → es] wf lm 3⇒ Γ′ ` es
1 → es : type lm 2⇒

Γ′ ` es
1 : type; Γ′ ` es : type

hyp⇒ Γ′ ` es
2 : type ⇒

Γ′ ` es
2 → es : type I.H.⇒ Γ ` Es′ [es

2 → es] wf = Γ ` (Es′ [�→ es])[es
2] wf.

Case (Es = Es′ [τ → �]).

Γ ` (Es′ [τ → �])[es
1] wf = Γ ` Es′ [τ → es

1] wf lm 3⇒ Γ′ ` τ → es
1 : type lm 2⇒

Γ′ ` τ : type; Γ′ ` es
1 : type

hyp⇒ Γ′ ` es
2 : type ⇒

Γ′ ` τ → es
2 : type I.H.⇒ Γ ` Es′ [τ → es

2] wf = Γ ` (Es′ [τ → �])[es
2] wf.

Case (Es = Es′ [� =τ es]).

Γ ` (Es′ [� =τ es])[es
1] wf = Γ ` Es′ [es

1 =τ es] wf lm 3⇒ Γ′ ` es
1 =τ es : bool lm 2⇒

Γ′ ` es
1 : type; Γ′ ` es : type

hyp⇒ Γ′ ` es
2 : type ⇒

Γ′ ` es
2 =τ es : bool I.H.⇒ Γ ` Es′ [es

2 =τ es] wf = Γ ` (Es′ [� =τ es])[es
2] wf.
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Case (Es = Es′ [vs =τ �]).

Γ ` (Es′ [vs =τ �])[es
1] wf = Γ ` Es′ [vs =τ es

1] wf lm 3⇒ Γ′ ` vs =τ es
1 : bool lm 2⇒

Γ′ ` vs : type; Γ′ ` es
1 : type

hyp⇒ Γ′ ` es
2 : type ⇒

Γ′ ` vs =τ es
2 : bool I.H.⇒ Γ ` Es′ [vs =τ es

2] wf = Γ ` (Es′ [vs =τ �])[es
2] wf.

Case (Es = Es′ [�[τα]]).

Γ ` (Es′ [�[τα]])[es
1] wf = Γ ` Es′ [es

1[τ
α]] wf lm 3⇒ Γ′ ` es

1[τ
α] : τ s lm 2⇒ Γ′ ` es

1 : ∀α.τ s′

hyp⇒ Γ′ ` es
2 : ∀α.τ s′ ⇒ Γ′ ` es

2[τ
α] : τ s I.H.⇒ Γ ` Es′ [es

2[τ
α]] wf = Γ ` (Es′ [�[τα]])[es

2] wf.

�

Lemma 5 (Canonical Forms).
(1) If Γ ` vs : type then vs = τ .
(2) If Γ ` vs : τ s

1 → τ s
2 then vs = λx : τ s

1 .es or vs = f or vs = cs−.
(3) If Γ ` vs : ∀α.τ s then vs = Λα.es.
(4) If Γ ` vs : code then vs =≺eo�.
(5) If Γ ` vs : γ then vs = c.

Proof. By induction on the rules of Γ ` es : τ s. To give a flavor of the proof, consider
Item 1. Most rules are vacuously true. For example,

Case (Γ ` x : τ s). x 6= vs so this case is vacuous.

Only two rules are not vacuously true:

Case (Γ ` γ : type). Γ ` γ : type. γ = τ .

Case (Γ ` es
1 → es

2 : type). By the induction hypothesis, es
1 = τ1 and es

2 = τ2. Thus
τ1 → τ2 is both a value and a τ .

�

Lemma 6 (Decomposition of Well-Formed Terms).
(1) Let e be a term of the code language, E a code context, and Γ an environment.

Then if Γ ` E[e] wf, one of the following is true:
(a) e is pure code (eo).
(b) There is a redex r and an evaluation context Es′ such that E[e] = Es′ [r].
(c) There is a term variable x and an evaluation context Es′ such that E[e] =

Es′ [x].
(d) There is a type variable α and an evaluation context Es′ such that E[e] =

Es′ [α].
(e) There is a pure code term eo and a code context E′ such that

E[e] ≡ E′[∼≺eo�].
(2) Let es be a term of the metalanguage, Es an evaluation context, and Γ an envi-

ronment. Then if Γ ` Es[es] wf, one of the following is true:
(a) es is a metalanguage value (vs).
(b) There is a redex r and an evaluation context Es′ such that Es[es] = Es′ [r].
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(c) There is a term variable x and an evaluation context Es′ such that Es′ [es] =
Es′ [x].

(d) There is a type variable α and an evaluation context Es′ such that Es[es] =
Es′ [α].

(e) There is a pure code term eo and a code context E′ such that
Es[es] = E′[∼≺eo�].

Proof. By mutual induction over the structure of e and es.

Case (e = x). e is pure code.

Case (e = c). e is pure code.

Case (e = f). e is pure code.

Case (e = λx : es.e′).
• If e = λx : τ.eo, then e is pure code.
• Suppose es is not a value. Let Es′ = E[λx : �.e′]. Then E[e] = Es′ [es] and by the

induction hypothesis the case is true.
• Suppose es is a value and e′ is not pure code. Then by Lemma 2and Lemma 5,

es = τ . Let E′ = E[λx : τ.�]. Then E[e] = E′[e′] and by the induction hypothesis,
the case is true.

Case (e = e1 e2).
• Suppose e1 is not pure code. Let E′ = E[� e2]. Then E[e] = E′[e1], and by the

induction hypothesis, the case is true.
• Suppose e1 is pure code and e2 is not. Let E′ = E[e1 �]. Then E[e] = E′[e2], and

by the induction hypothesis, the case is true.

Case (e = if e1 then e2 else e3). • Suppose e1 is not pure code. Let E′ =
E[if � then e2 else e3]. Then E[e] = E′[e1], and by the induction hypothesis the
case is true.

• Suppose e1 is pure code and e2 is not. Let E′ = E[if e1 then � else e3]. Then
E[e] = E′[e2], and by the induction hypothesis the case is true.

• Suppose e1 and e2 are pure code and e3 is not. Let E′ = E[if e1 then e2 else �].
Then E[e] = E′[e3], and by the induction hypothesis the case is true.

Case (e =∼es).
• Suppose es is a value. Then by Lemma 2 and Lemma 5, es =≺ eo�, and E[e] =

E[∼≺eo�].
• Suppose es is not a value. Let Es′ = E[∼�]. Then E[e] = Es′ [es]. and by the

induction hypothesis, the case is true.

Case (es = x). Es[es] = Es[x].

Case (es = α). Es[es] = Es[α].

Case (es = c). es is a value.

Case (es = f). es is a value.

Case (es = cs). es is a value.
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Case (es = λx : τ s.es). es is a value.

Case (es = es
1 es

2). By Lemma 3, Γ′ ` es
1 es

2 : τ s for some τ s, so by Lemma 2, Γ′ ` es
1 :

τ s′ → τ s and Γ′ ` es
2 : τ s′ .

• Suppose es
1 is not a value. Let Es′ = Es[� es

2]. Then Es[es] = Es′ [es
1] and by the

induction hypothesis the case is true.
• Suppose es

1 is a value and es
2 is not. Let Es′ = Es[es

1 �]. Then Es[es] = Es′ [es
2]

and by the induction hypothesis, the case is true.
• Suppose that both es

1 and es
2 are values. Then by Lemma 5, es

1 es
2 is a redex r and

Es[es] = Es[r].

Case (es = if es
1 then es

2 else es
3). • Suppose es

1 is not a value. Then let Es′ =
Es[if � then es

2 else es
3]. Then Es[es] = Es′ [es

1], and by the induction hypothesis
the case is true.

• Suppose es
1 is a value. Then es is a redex.

Case (es = Λα.es). es is a value.

Case (es = es′ [τα]).
• Suppose es′ is not a value. Then Let Es′ = Es[�[τα]]. Then Es[es] = Es′ [es′ ], and

by the induction hypothesis, the case is true.
• Suppose es′ is a value. Then by Lemmas 3,2, and 5, es is a redex r and Es[es] =

Es[r].

Case (es =≺e�).
• Suppose e is pure code. Then es is a value.
• Suppose e is not pure code. Then let E′ = Es[≺��]. Then Es[es] = E′[e] and by

the induction hypothesis, the case is true.

Case (es = %es′). By Lemma 3 and Lemma 2, Γ′ ` es : γ for some gamma.
• Suppose es′ is a value. Then by Lemma 5, es = c and so es is a redex r and

Es[es] = Es[r].
• Suppose es′ is not a value. Then let Es′ = Es[%�]. Then Es[es] = Es′ [es′ ] and by

the induction hypothesis, the case is true.

Case (es = es
1 → es

2). By Lemma 3 and Lemma 2, Γ′ ` es
1 : type and Γ′ ` es

2 : type.

• Suppose es
1 is not a value. Then let Es′ = Es[�→ es

2]. Then Es[es] = Es′ [es
1] and

by the induction hypothesis, the case is true.
• Suppose es

1 is a value and es
2 is not. By Lemma 5, es

1 = τ , so let Es′ = Es[es
1 → �].

Then Es[es] = Es′ [es
2] and by the induction hypothesis, the case is true.

• Suppose both es
1 and es

2 are values. Then by Lemma 5, es
1 = τ1 and es

2 = τ2, so es

is a value.

Case (es = es′
1 =τ es′

2 ). By Lemma 3 and Lemma 2, Γ′ ` es
1 : type and Γ′ ` es

2 : type.

• Suppose es
1 is not a value. Then let Es′ = Es[� =τ es

2]. Then Es[es] = Es′ [es
1] and

by the induction hypothesis, the case is true.
• Suppose es

1 is a value and es
2 is not. Then let Es′ = Es[es

1 =τ �] Then Es[es] =
Es′ [es

2] and by the induction hypothesis, the case is true.
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• Suppose both es
1 and es

2 are values. Then by Lemma 5, es
1 = τ1 and es

2 = τ2, so es

is a redex.

�

To prove unique decomposition, we appeal to the set of potentially stuck terms, a subset
of metalanguage terms.

Potentially Stuck Terms
pt ::= x | α | vs vs | vs[τα] | %vs | vs =τ vs

Note that the productions for pt are mutually exclusive.

Lemma 7. If Γ ` pt : τ s and pt is not a variable x or α, then pt is a redex.

Proof. By case analysis on potentially stuck terms. Each case follows from Lemma 5.
�

Lemma 8. The set of potentially stuck terms pt and metalanguage values vs are disjoint.

Proof. By case analysis on the structure of pt. �

Lemma 9.
(1) If Es[vs] = Es′ [es] where Es < Es′, then es is a value vs.
(2) If Es[vs] = E′[e] where Es < E′, then e is pure code eo.
(3) If E[eo] = E′[e] where E < E′, then e is pure code eo.
(4) If E[eo] = Es′ [es] where E < E′, then es is a value vs.

Proof. By induction on the structure of vs and eo.

Case (eo = x). There is no extension of E′[x].

Case (eo = f). There is no extension of E′[f ].

Case (eo = c). There is no extension of E′[c].

Case (eo = eo
1 eo

2). There are two possible immediate extensions of E: E[eo] =
(E[� eo

2])[e
o
1] and E[eo] = (E[eo

1 �])[eo
2]. By the induction hypothesis, both cases extend as

in the lemma.

Case (eo = λx : τ.eo). There are two immediate extensions of E: E[eo] = (E[λx :
�.eo])[τ ] and E[eo] = (E[λx : τ.�])[eo]. By the induction hypothesis, both cases extend as
in the lemma.

Case (vs = c). There is no extension of Es[c].

Case (vs = f). There is no extension of Es[f ].

Case (vs = cs). There is no extension of Es[cs].

Case (vs =≺eo�). There is one immediate extension of Es: Es[vs] = (Es[≺��])[eo].
The induction hypothesis completes this case.

Case (vs = τ). This case is by induction on the structure of τ . If τ = γ, then there
is no extension of Es[γ]. If τ = τ1 → τ2 then there are two immediate extensions of E:
Es[vs] = (Es[�→ τ2])[τ1] and Es[vs] = (Es[τ1 → �])[τ2]. By induction, each of these cases
extends as per the lemma.
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Case (vs = λx : τ s.es). There is no extension of Es[λx : τ s.es].

Case (vs = Λα.es). There is no extension of Es[Λα.es].

�

Lemma 10.
(1) If Es[pt] = Es′ [es] where Es < Es′, then es is a value vs.
(2) If Es[pt] = E′[e] where Es < E′, then e is pure code eo.
(3) If E[∼≺eo�] = E′[e] where E′ < E, then e is pure code eo.
(4) If E[∼≺eo�] = Es′ [es] where E < Es′, then es is a value vs.

Proof. Every immediate decomposition of a pt focuses on a value; the only immediate
decomposition of a ∼≺eo� focuses on pure code. The rest follows by Lemma 9. �

Corollary 1. If e = Es[pt] or e = E[∼≺ eo �], then there is no decomposition that
extends the given context and leads to either kind of term.

Lemma 11. Suppose Es
1[e

s
1] = Es[pt] where Es

1 < Es, and Es
1[e

s
1] = Es

2[e
s
2] where Es

1 <1

Es
2 but Es

2 6≤ Es. Then es
2 is a value vs. Analogous results are true for each combination of

E1[e1], E2[e2] and E[∼≺eo�] in place of Es
1[e

s
1], Es

2[e
s
2], and Es[pt] respectively.

Proof. If Es < Es
2 etc., then by Lemma 9, es

2 must be a value, etc. The proof is by
cases on the structure of Es

1 and E1.

Case (E1 = �). All decompositions of a term have � as a prefix, so this case is
vacuously true.

Case (E1 = E′[� e]). Then E1[e1] = E′[e1 e]. Then for E2 to not be a prefix of E,
E2 = E′[eo �]. But this is impossible because by Lemma 9, e1 cannot be a value since
E1 < E.

Case (E1 = E′[eo �]). Then E1[e1] = E′[eo e1]. Then for E2 to not be a prefix of E,
E2 = Es[� e1]. But since E1[e1] = E2[eo], then by Lemma 9, any extension of E2 will focus
on a value.

Case (E1 = E′[λx : τ.�]). Then E1[e1] = E′[λx : τ.e1]. To not be a prefix of E,
Es

2 = E′[λx : �.e1]]. But since E1[e1] = Es
2[τ ], then by Lemma 9, any extension of Es

2

focuses on a value.

Case (E = E′[if � then e2 else e3]). Then E1[e1] = E′[if e1 then e else e]. Then
to not be a prefix of E, E2 = E′[if � then e2 else e3], but this is impossible because by
Lemma 9, e1 cannot be a value.

Case (E = E′[if eo then � else e]). Then E1[e1] = E′[if eo then e1 else e2]]. Then
to not be a prefix of E, E2 = E′[if � then e2 else e3], but since E1[e1] = E2[eo], then by
Lemma 9, any extension of E2 focuses on a value.

Case (E = E′[if eo then eo else �]). Then E1[e1] = E′[if eo
1 then eo

2 else e1]. Then
to not be a prefix of E, E2 = E′[if � then eo

2 else e1] or E2 = E′[if eo
1 then � else e1] but

since E1[e1] = E2[eo
1] or E1[e1] = E2[eo

2], then by Lemma 9, any extension of E2 focuses on
a value.

Case (E1 = Es′ [≺��]).
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Case (Es
1 = Es′ [� es]). Then Es

1[e
s
1] = Es′ [es

1 es]. Then for Es
2 to not be a prefix of

Es, Es
2 = Es[vs �]. But this is impossible because by Lemma 9, es

1 cannot be a value.

Case (Es
1 = Es′ [vs �]). Then Es

1[e
s
1] = Es′ [vs es

1]. Then for Es
2 to not be a prefix of

Es, Es
2 = Es[� es

1]. But since Es
1[e

s
1] = Es′

2 [vs], then by Lemma 9, any extension of Es′
2 will

focus on a value.

Case (Es
1 = E′[λx : �.e]). Then Es

1[e
s
1] = E′[λx : es

1.e]. Then for Es
2 to not be a prefix

of Es, Es
2 = Es[� es

1]. But since Es
1[e

s
1] = Es′

2 [vs], then by Lemma 9, any extension of Es′
2

will focus on a value.

Case (Es = Es[if � then es
2 else es

3]). Then Es
1[e

s
1] = Es[if es

1 then es
2 else es

3]. There
is no immediate extension of Es

1 that is not extended by Es.

Case (Es
1 = E′[∼�]). Then Es

1[e
s
1] = E′[∼es

1]. There is no immediate extension of Es
1

that is not extended by Es.

Case (Es
1 = Es′ [%�]). Then Es

1[e
s
1] = E′[%es

1]. There is no immediate extension of Es
1

that is not extended by Es.

Case (Es
1 = Es′ [�→ es]). Then Es

1[e
s
1] = Es′ [es

1 → es]. Then for Es
2 to not be a prefix

of Es, Es
2 = Es[τ → �]. But this is impossible because by Lemma 9, es

1 cannot be a value.

Case (Es
1 = Es′ [τ → �]). Then Es

1[e
s
1] = Es′ [τ → es

1]. Then for Es
2 to not be a prefix

of Es, Es
2 = Es[�→ es

1]. But since Es
1[e

s
1] = Es′

2 [τ ], then by Lemma 9, any extension of Es′
2

will focus on a value.

Case (Es
1 = Es′ [� =τ es]). Then Es

1[e
s
1] = Es′ [es

1 =τ es]. Then for Es
2 to not be a

prefix of Es, Es
2 = Es[τ =τ �]. But this is impossible because by Lemma 9, es

1 cannot be
a value.

Case (Es
1 = Es′ [vs =τ �]). Then Es

1[e
s
1] = Es′ [vs =τ es

1]. Then for Es
2 to not be a prefix

of Es, Es
2 = Es[� =τ es

1]. But since Es
1[e

s
1] = Es′

2 [vs], then by Lemma 9, any extension of
Es′

2 will focus on a value.

Case (Es
1 = Es′ [�[τα]]). Then Es

1[e
s
1] = Es′ [es

1[τ
α]]. There is no immediate extension

of Es
1 that is not extended by Es.

�

Lemma 12 (Unique Decomposition). If Γ ` e wf, and e is not proper code, then e can
be uniquely decomposed into one and only one of Es[x], Es[α], Es[r], or E[∼≺eo�].

Proof. Lemma 6 proves that a decomposition exists. Lemma 11 proves that no other
such decomposition exists. Lemma 3 and Lemma 7 prove that non-variable decompositions
are redexes. �

Lemma 13.
(1) For all meta contexts Es and es, FMV s(es) ⊆ FMV (Es[es]);
(2) For all code contexts E and e, FMV (e) ⊆ FMV (E[e])

Proof. By mutual induction on the structure of E and Es.

Case (E = �). FMV (e) = FMV (�[e]).
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Case (E = E′[� e′]).

FMV (e) ⊆ FMV (e e′) = FMV (e) ∪ FMV (e′)
I.H.
⊆

FMV (E′[e e′]) = FMV ((E′[� e′])[e]).

Case (E = E′[eo �]).

FMV (e) ⊆ FMV (eo e) = FMV (eo) ∪ FMV (e)
I.H.
⊆

FMV (E′[eo e]) = FMV ((E′[eo �])[e]).

Case (E = E′[λx : τ.�]).

FMV (e) ⊆ FMV (λx : τ.e) = FMV s(τ) ∪ FMV (e)
I.H.
⊆

FMV (E′[λx : τ.e]) = FMV ((E′[λx : τ.�])[e]).

Case (E = E′[if � then e2 else e3]).

FMV (e) ⊆ FMV (if e then e2 else e3) = FMV (e) ∪ FMV (e1) ∪ FMV (e3)
I.H.
⊆

FMV (E′[if e then e2 else e3]) = FMV ((E′[if � then e2 else e3])[e])

Case (E = E′[if eo then � else e2]).

FMV (e) ⊆ FMV (if eo then e else e2) = FMV (eo) ∪ FMV (e) ∪ FMV (e2)
I.H.
⊆

FMV (E′[if eo then e else e2]) = FMV ((E′[if eo then � else e2])[e])

Case (E = E′[if eo
1 then eo

2 else �]).

FMV (e) ⊆ FMV (if eo
1 then eo

2 else e) = FMV (eo
1) ∪ FMV (eo

2) ∪ FMV (e)
I.H.
⊆

FMV (E′[if eo
1 then eo

2 else e]) = FMV ((E′[if eo
1 then eo

2 else �])[e])

Case (E = Es′ [≺��]).

FMV (e) = FMV s(≺e�)
I.H.
⊆ FMV (Es′ [≺e�]) = FMV ((Es′ [≺��])[e]).

Case (Es = Es′ [� es]).

FMV s(es) ⊆ FMV s(es es′) = FMV s(es) ∪ FMV s(es′)
I.H.
⊆

FMV (Es′ [es es′ ]) = FMV ((Es′ [� es′ ])[es]).

Case (Es = Es′ [vs �]).

FMV s(es) ⊆ FMV s(vs es) = FMV s(vs) ∪ FMV s(es)
I.H.
⊆

FMV (Es′ [vs es]) = FMV ((Es′ [vs �])[es]).

Case (Es = E′[λx : �.e′]).

FMV s(es) ⊆ FMV s(λx : es.e) = FMV s(es) ∪ FMV (e)
I.H.
⊆

FMV (E′[λx : es.e]) = FMV ((E′[λx : �.e])[es]).
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Case (Es = Es[if � then es
2 else es

3]).

FMV s(es) ⊆ FMV s(if es then es
2 else es

3) =

FMV s(es) ∪ FMV s(es
1) ∪ FMV s(es

3)
I.H.
⊆

FMV s(E′[if es then es
2 else es

3]) = FMV s((E′[if � then es
2 else es

3])[e
s])

Case (Es = E′[∼�]).

FMV s(es) = FMV (∼es)
I.H.
⊆ FMV (E′[∼es]) = FMV ((E′[∼�])[es]).

Case (Es = Es′ [%�]).

FMV s(es) = FMV s(%es)
I.H.
⊆ FMV (Es′ [%es]) = FMV ((Es′ [%�])[es]).

Case (Es = Es′ [�→ es]).

FMV s(es) ⊆ FMV s(es → es′) = FMV s(es) ∪ FMV s(es′)
I.H.
⊆

FMV (Es′ [es → es′ ]) = FMV ((Es′ [�→ es′ ])[es]).

Case (Es = Es′ [τ → �]).

FMV s(es) ⊆ FMV s(τ → es) = FMV s(τ) ∪ FMV s(es)
I.H.
⊆

FMV (Es′ [τ → es]) = FMV ((Es′ [τ → �])[es]).

Case (Es = Es′ [� =τ es]).

FMV s(es) ⊆ FMV s(es =τ es′) = FMV s(es) ∪ FMV s(es′)
I.H.
⊆

FMV (Es′ [es =τ es′ ]) = FMV ((Es′ [� =τ es′ ])[es]).

Case (Es = Es′ [vs =τ �]).

FMV s(es) ⊆ FMV s(vs =τ es) = FMV s(vs) ∪ FMV s(es)
I.H.
⊆

FMV (Es′ [vs =τ es]) = FMV ((Es′ [vs =τ �])[es]).

Case (Es = Es′ [�[τα]]).

FMV s(es) = FMV s(es[τα])
I.H.
⊆ FMV (Es′ [es[τα]]) = FMV ((Es′ [�[τα]])[es]).

�

Corollary 2. If e is meta variable-closed then
(1) If e = Es[es] then es is meta variable-closed.
(2) If e = E[e] then e is meta variable-closed.

Lemma 14.
(1) For all meta contexts Es and es, FTV s(es) ⊆ FTV (Es[es]);
(2) For all code contexts E and e, FTV (e) ⊆ FTV (E[e])

Proof. Same form as Lemma 13. �
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Corollary 3. If e is type variable-closed then
(1) If e = Es[es] then es is type variable-closed.
(2) If e = E[e] then e is type variable-closed.

Lemma 15.
(1) If e is closed and e = E[e′] then FCV (e′) ⊆ Γ(E).
(2) If e is closed and e = Es[es′ ] then FCV (es′) ⊆ Γ(Es).

Proof. By mutual induction on the structure of E and Es. �

Theorem 8 (Progress).
(1) If e is closed, Γ ` e wf, then e is proper code or there is some e′ such that e 7−→ e′

or e 7−→ ⊥.

Proof. Lemma 14 and Lemma 13 prove that e cannot be decomposed to a meta vari-
able or type variable. Then by Lemma 12, e can be decomposed to a redex Es[r] or
E[∼≺eo�]. �

Lemma 16 (Permutation).
(1) If Γ ` e wf and Γ′ is a well-formed permutation of Γ, then Γ′ ` e wf.
(2) If Γ ` es : τ s and Γ′ is a well-formed permutation of Γ, then Γ′ ` es | τ s.

Proof. By mutual induction on the structure of e and es. The only interesting cases
are for e = x, es = x, and es = α, and are immediate. �

Lemma 17 (Weakening).
(1) If Γ ` e wf and x /∈ FV (Γ), then Γ, x : τ s ` e wf.
(2) If Γ ` es : τ s and x /∈ FV (Γ), then Γ, x : τ s ` es : τ s.

Analogous results apply for x : dyn and α : ∗

Proof. By mutual induction on the structure of e and es. �

Lemma 18 (Term Substitution).
(1) If Γ, x : τ s

1 ` e wf and Γ ` vs : τ s
1 , then Γ ` e [vs/x] wf.

(2) If Γ, x : τ s
1 ` es : τ s

2 and Γ ` vs : τ s
1 , then Γ ` es [vs/x]s : τ s

2 .

Proof. By mutual induction over the structure of e and es.

Case (e = x). Since x [vs/x] = x, this case is immediate.

Case (e = c). Since c [vs/x] = c, this case is immediate.

Case (e = λx′ : es.e′). Assume wolog that x′ /∈ FMV (vs).

Γ, x : τ s
1 ` λx′ : es.e′ wf lm 2⇒

x′ /∈ FV (Γ, x : τ s
1 ); Γ, x : τ s

1 ` es : type; Γ, x : τ s
1 , x′ : dyn ` e′ wf lm 16⇒

Γ, x′ : dyn, x : τ s
1 ` e′ wf lm 17⇒ Γ, x′ : dyn ` vs ` τ s

1
I.H.⇒

Γ ` es {vs/x}s : type; Γ, x′ : dyn ` e′ {vs/x} wf ⇒
Γ ` λx′ : (es {vs/x}s).(e′ {vs/x}) wf = Γ ` (λx′ : es.e′) {vs/x} wf
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Case (e = e1 e2).

Γ, x : τ s
1 ` e1 e2 wf lm 2⇒ Γ, x : τ s

1 ` e1 wf; Γ, x : τ s
1 ` e2 wf I.H.⇒

Γ ` e1 [vs/x] wf; Γ ` e2 [vs/x] wf ⇒
Γ ` (e1 [vs/x]) (e2 [vs/x]) wf = Γ ` (e1 e2) [vs/x] wf.

Case (e = if e1 then e2 else e3).

Γ, x : τ s ` if e1 then e2 else e3 wf lm 2⇒

Γ, x : τ s ` e1 wf; Γ, x : τ s ` e2 wf; Γ, x : τ s ` e3 wf I.H.⇒
Γ ` e1 [vs/x] wf; Γ ` e2 [vs/x] wf; Γ ` e3 [vs/x] wf ⇒

Γ ` if e1 [vs/x] then e2 [vs/x] else e3 [vs/x] wf =

Γ ` (if e1 then e2 else e3) [vs/x] wf

Case (e =∼es).

Γ, x : τ s
1 `∼es wf lm 2⇒ Γ, x : τ s

1 ` es : code
I.H.⇒ Γ ` es [vs/x]s : code ⇒ Γ `∼es [vs/x]s wf

= Γ ` (∼es) [vs/x] wf.

Case (es = x′). Suppose x′ ≡ x. Then τ s
1 = τ s

2 and
Γ, x : τ s

1 ` x [vs/x]s : τ s
1 = Γ, x : τ s

1 ` vs : τ s
1 , which is true by assumption. Suppose x′ 6≡ x.

Then x′ [vs/x]s = x′ and the result is immediate.

Case (es = α). Since α [vs/x]s = α, this case is immediate.

Case (es = c). Since c [vs/x]s = c, this case is immediate.

Case (es = cs). Since cs [vs/x]s = cs, this case is immediate.

Case (es = λx′ : τ s
3 .es). Assume wolog that x′ /∈ FMV (vs). Then

Γ, x : τ s
1 ` λx′ : τ s

3 .es : τ s
3 → τ s

4 .
lm 2⇒ x′ /∈ FV (Γ, x : τ s

1 ); Γ, x : τ s
1 , x′ : τ s

3 ` es : τ s
4

lm 16⇒

Γ, x′ : τ s
3 , x : τ s

1 ` es : τ s
4

lm 17⇒ Γ, x′ : τ s
3 ` vs : τ s

1
I.H.⇒

Γ, x′ : τ s
3 ` es [vs/x]s : τ s

4 ⇒
Γ ` λx′ : τ s

3 .es [vs/x]s : τ s
3 → τ s

4 = Γ ` (λx′ : τ s
3 .es) [vs/x]s : τ s

3 → τ s
4

Case (es = es
1 es

2).

Γ, x : τ s
1 ` es

1 es
2 : τ s

2
lm 2⇒ Γ, x : τ s

1 ` es
1 : τ s′ → τ s

2 ; Γ, x : τ s
1 ` es

2 : τ s′

I.H.⇒ Γ ` es
1 [vs/x]s : τ s′ → τ s

2 ; Γ ` es
2 [vs/x]s : τ s′

⇒ Γ ` (es
1 [vs/x]s) (es

2 [vs/x]s) : τ s
2

= Γ ` (es
1 es

2) [vs/x]s : τ s
2
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Case (es = if es
1 then es

2 else es
3).

Γ, x : τ s ` if e1 then e2 else e3 wf lm 2⇒

Γ, x : τ s ` e1 : bool Γ, x : τ s ` e2 : τ s; Γ, x : τ s ` e3 : τ s I.H.⇒
Γ ` e1 [vs/x]s : bool; Γ ` e2 [vs/x]s : τ s; Γ ` e3 [vs/x]s : τ s ⇒

Γ ` if e1 [vs/x]s then e2 [vs/x]s else e3 [vs/x]s : τ s =

Γ ` (if e1 then e2 else e3) [vs/x]s : τ s

Case (es = Λα.es).

Γ, x : τ s
1 ` Λα.es : τ s

2
lm 2⇒

α /∈ FV (Γ, x : τ s
1 ); τ s

2 = ∀α.τ s′ ; Γ, x : τ s
1 , α : ∗ ` es : τ s′ lm 16⇒

Γ, α : ∗, x : τ s
1 ` es : τ s′ lm 17⇒ Γ, α : ∗ ` vs : τ s

1
I.H.⇒ Γ, α : ∗ ` es [vs/x]s : τ s′ ⇒

Γ ` Λα.es [vs/x]s : τ s
2 = Γ ` (Λα.es) [vs/x]s : τ s

2

Case (es = es[τα]).

Γ, x : τ s
1 ` es[τα] : τ s

2
lm 2⇒

Γ, x : τ s
1 ` es : ∀α.τ s′ ; τ s

2 = τ s′ {τα/α}τ I.H.⇒ Γ ` es [vs/x]s : ∀α.τ s′ ⇒
Γ ` (es [vs/x]s)[τα] : τ s

2 = Γ ` (es[τα]) [vs/x]s : τ s
2

Case (es =≺e�).

Γ, x : τ s
1 `≺e�: code lm 2⇒ Γ, x : τ s

1 ` e wf I.H.⇒
Γ ` e [vs/x] wf ⇒ Γ `≺e [vs/x]�: code = Γ `≺e� [vs/x]s : code

Case (es = %es).

Γ, x : τ s
1 ` %es : code lm 2⇒ Γ, x : τ s

1 ` es : γ
I.H.⇒

Γ ` es [vs/x]s : γ ⇒ Γ ` %es [vs/x]s : γ = Γ ` (%es) [vs/x]s : γ

Case (es = es
1 → es

2).

Γ, x : τ s
1 ` es

1 → es
2 : type lm 2⇒ Γ, x : τ s

1 ` es
1 : type; Γ, x : τ s

1 ` es
2 : type

I.H.⇒ Γ ` es
1 [vs/x]s : type; Γ ` es

2 [vs/x]s : type

⇒ Γ ` (es
1 [vs/x]s) → (es

2 [vs/x]s) : type

= Γ ` (es
1 → es

2) [vs/x]s : type

Case (es = es
1 =τ es

2).

Γ, x : τ s
1 ` es

1 =τ es
2 : bool lm 2⇒ Γ, x : τ s

1 ` es
1 : type; Γ, x : τ s

1 ` es
2 : type

I.H.⇒ Γ ` es
1 [vs/x]s : type; Γ ` es

2 [vs/x]s : type

⇒ Γ ` (es
1 [vs/x]s) =τ (es

2 [vs/x]s) : bool = Γ ` (es
1 =τ es

2) [vs/x]s : bool

�
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Lemma 19 (Type Substitution).
(1) If Γ, α : ∗,Γ′ ` e wf and Γ ` τα : type, then Γ, (Γ′ {τα/α}τ ) ` e {τα/α} wf.
(2) If Γ, α : ∗,Γ′ ` es : τ s

2 and Γ ` τα : type, then Γ, (Γ′ {τα/α}τ ) ` es {τα/α}s :
τ s
2 {τα/α}τ .

Proof. By mutual induction over the structure of e and es.

Case (e = x). Since x {τα/α} = x, this case is immediate.

Case (e = c). Since c {τα/α} = c, this case is immediate.

Case (e = λx : es.e′). Assume wolog that and x /∈ FMV s(vs).

Γ, α : ∗,Γ′ ` λx : es.e′ wf lm 2⇒

x /∈ FV (Γ, α : ∗,Γ′); Γ, α : ∗,Γ′ ` es : type; Γ, α : ∗,Γ′, x : dyn ` e′ wf I.H.⇒
Γ, (Γ′ {τα/α}τ ) ` es {τα/α}s : type; Γ, (Γ′ {τα/α}τ ), x : dyn ` e′ {τα/α} wf ⇒

Γ, (Γ′ {τα/α}τ ) ` λx : (es {τα/α}s).(e′ {τα/α}) wf =

Γ, (Γ′ {τα/α}τ ) ` (λx : es.e′) {τα/α} wf

Case (e = e1 e2).

Γ, α : ∗,Γ′ ` e1 e2 wf lm 2⇒ Γ, α : ∗,Γ′ ` e1 wf; Γ, α : ∗,Γ′ ` e2 wf I.H.⇒
Γ, (Γ′ {τα/α}τ ) ` e1 {τα/α} wf; Γ, (Γ′ {τα/α}τ ) ` e2 {τα/α} wf ⇒

Γ, (Γ′ {τα/α}τ ) ` (e1 {τα/α}) (e2 {τα/α}) wf =

Γ, (Γ′ {τα/α}τ ) ` (e1 e2) {τα/α} wf.

Case (e = if e1 then e2 else e3).

Γ, α : ∗ ` if e1 then e2 else e3 wf lm 2⇒

Γ, α : ∗ ` e1 wf; Γ, α : ∗ ` e2 wf; Γ, α : ∗ ` e3 wf I.H.⇒
Γ ` e1 {τα/α} wf; Γ ` e2 {τα/α} wf; Γ ` e3 {τα/α} wf ⇒

Γ ` if e1 {τα/α} then e2 {τα/α} else e3 {τα/α} wf =

Γ ` (if e1 then e2 else e3) {τα/α} wf

Case (e =∼es).

Γ, α : ∗,Γ′ `∼es wf lm 2⇒ Γ, α : ∗,Γ′ ` es : code I.H.⇒
Γ, (Γ′ {τα/α}τ ) ` es {τα/α}s : code ⇒ Γ, (Γ′ {τα/α}τ ) `∼es {τα/α}s wf =

Γ, (Γ′ {τα/α}τ ) ` (∼es) {τα/α} wf.

Case (es = x). Γ, α : ∗,Γ′ ` x : τ s lm 2⇒ x : τ s ∈ (Γ, α : ∗,Γ′). By (Γ, α : ∗,Γ′) wf α ∈
τ s ⇒ x : τ s ∈ Γ′, and α 6∈ τ s ⇒ x : τ s {τα/α}τ = τ s, so Γ, (Γ′ {τα/α}τ ) ` x : τ s {τα/α}τ .

Case (es = α′). Suppose α′ ≡ α. Then τ s
1 = τ s

2 = type and
Γ, (Γ′ {τα/α}τ ) ` α {τα/α}s : type = Γ, (Γ′ {τα/α}τ ) ` τα : type, which is true by
Lemma 17. Suppose α′ 6≡ α. Then α′ {τα/α}s = α′ and α′ : ∗ ∈ Γ, (Γ′ {τα/α}τ ). It follows
that Γ, (Γ′ {τα/α}τ ) ` α′ : type.
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Case (es = c). Since c {τα/α}s = c, this case is immediate.

Case (es = cs). Since cs {τα/α}s = cs, and this case is immediate.

Case (es = λx : τ s
3 .es).

Γ, α : ∗,Γ′ ` λx : τ s
3 .es : τ s

2
lm 2⇒

x /∈ FV (Γ, α : ∗,Γ′); τ s
2 = τ s

3 → τ s′ ; Γ, α : ∗,Γ′, x : τ s
3 ` es : τ s′ I.H.⇒

Γ, (Γ′ {τα/α}τ ), x : τ s
3 {τα/α}τ ` es {τα/α}s : τ s′ {τα/α}τ ⇒

Γ ` λx : τ s
3 {τα/α}τ .es {τα/α}s : τ s

2 {τα/α}τ =

Γ ` (λx : τ s
3 .es) {τα/α}s : τ s

2 {τα/α}τ .

Case (es = es
1 es

2).

Γ, α : ∗,Γ′ ` es
1 es

2 : τ s
2

lm 2⇒ Γ, α : ∗,Γ′ ` es
1 : τ s′ → τ s

2 ; Γ, α : ∗,Γ′ ` es
2 : τ s′ I.H.⇒

Γ, (Γ′ {τα/α}τ ) ` es
1 {τα/α}s : τ s′ → τ s

2 {τα/α}τ ;

Γ, (Γ′ {τα/α}τ ) ` es
2 {τα/α}s : τ s′ {τα/α}τ ⇒

Γ ` (es
1 {τα/α}s) (es

2 {τα/α}s) : τ s
2 {τα/α}τ = Γ ` (es

1 es
2) {τα/α}s : τ s

2 {τα/α}τ

Case (es = if es
1 then es

2 else es
3).

Γ, α : ∗ ` if e1 then e2 else e3 wf lm 2⇒

Γ, α : ∗ ` e1 : bool Γ, α : ∗ ` e2 : τ s; Γ, α : ∗ ` e3 : τ s I.H.⇒
Γ ` e1 {τα/α}s : bool; Γ ` e2 {τα/α}s : τ s; Γ ` e3 {τα/α}s : τ s ⇒

Γ ` if e1 {τα/α}s then e2 {τα/α}s else e3 {τα/α}s : τ s =

Γ ` (if e1 then e2 else e3) {τα/α}s : τ s

Case (es = Λα′.es). Assume wolog that α′ /∈ FTV s(vs). Then

Γ, α : ∗,Γ′ ` Λα′.es : ∀α′.τ s′ lm 2⇒

α /∈ FV (Γ, α : ∗,Γ′); Γ, α : ∗,Γ′, α′ : ∗ ` es : τ s′ I.H.⇒

Γ, (Γ′ {τα/α}τ ), α′ : ∗ ` es {τα/x}s : τ s′ {τα/α}τ ⇒

Γ, (Γ′ {τα/α}τ ) ` Λα′.es {τα/x}s : ∀α′.τ s′ {τα/α}τ =

Γ, (Γ′ {τα/α}τ ) ` (Λα′.es) {τα/x}s : (∀α′.τ s′) {τα/α}τ .

Case (es = es[τα
2 ]).

Γ, α : ∗,Γ′ ` es[τα
2 ] : τ s

2
lm 2⇒ Γ, α : ∗,Γ′ ` es : ∀α′.τ s′ ;

Γ, α : ∗,Γ′ ` τα
2 : type; τ s

2 = τ s′
{
τα
2 /α′}τ I.H.⇒

Γ, (Γ′ {τα/α}τ ) ` es {τα/α}s : ∀α′.τ s′ {τα/α}τ ;

Γ, (Γ′ {τα/α}τ ) ` τα
2 {τα/α}τ : type ⇒

Γ ` (es {τα/α}s)[τα
2 {τα/α}τ ] : τ s

2 {τα/α}τ = Γ ` (es[τα
2 ]) {τα/α}s : τ s

2 {τα/α}τ
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Case (es =≺e�).

Γ, α : ∗,Γ′ `≺e�: code lm 2⇒ Γ, α : ∗,Γ′ ` e wf I.H.⇒
Γ, (Γ′ {τα/α}τ ) ` e {τα/α} wf ⇒ Γ, (Γ′ {τα/α}τ ) `≺e {τα/α}�: code =

Γ, (Γ′ {τα/α}τ ) `≺e� {τα/α}s : code

Case (es = %es).

Γ, α : ∗,Γ′ ` %es : code lm 2⇒ Γ, α : ∗,Γ′ ` es : γ
I.H.⇒

Γ, (Γ′ {τα/α}τ ) ` es {τα/α}s : γ ⇒ Γ, (Γ′ {τα/α}τ ) ` %es {τα/α}s : code =

Γ, (Γ′ {τα/α}τ ) ` (%es) {τα/α}s : code

Case (es = es
1 → es

2).

Γ, α : ∗,Γ′ ` es
1 → es

2 : type lm 2⇒ Γ, α : ∗,Γ′ ` es
1 : type; Γ, α : ∗,Γ′ ` es

2 : type I.H.⇒
Γ, (Γ′ {τα/α}τ ) ` es

1 {τα/α}s : type; Γ, (Γ′ {τα/α}τ ) ` es
2 {τα/α}s : type ⇒

Γ, (Γ′ {τα/α}τ ) ` (es
1 {τα/α}s) → (es

2 {τα/α}s) : type =

Γ, (Γ′ {τα/α}τ ) ` (es
1 → es

2) {τα/α}s : type

Case (es = es
1 =τ es

2).

Γ, α : ∗,Γ′ ` es
1 =τ es

2 : bool lm 2⇒ Γ, α : ∗,Γ′ ` es
1 : type; Γ, α : ∗,Γ′ ` es

2 : type I.H.⇒
Γ, (Γ′ {τα/α}τ ) ` es

1 {τα/α}s : type; Γ, (Γ′ {τα/α}τ ) ` es
2 {τα/α}s : type ⇒

Γ, (Γ′ {τα/α}τ ) ` (es
1 {τα/α}s) =τ (es

2 {τα/α}s) : bool =

Γ, (Γ′ {τα/α}τ ) ` (es
1 =τ es

2) {τα/α}s : bool

�

Lemma 20. If Γ `∼≺eo� wf then Γ ` eo wf.

Proof. By applications of Lemma 2. �

Lemma 21. If Γ ` r : τ s and r →Es e′ then Γ ` es wf

Proof. By cases on r →Es e′. Most of the cases are straightforward applications of
inversion.

Case ((λx : τ s.es) vs →Es es [vs/x]s). Consequence of Lemma 18

Case ((Λα.es)[τα] →Es es {τα/α}s). Consequence of Lemma 19

Case (f c →Es δ(f, c)). This follows from Lemma 2 and from the restrictions on f , c,
and δ.

�

Theorem 9 (Preservation). If e is closed, Γ ` e wf, and e 7−→ e′, then Γ ` e′ wf.

Proof. If e 7−→ e′, then there are three cases

Case (e = Es[r] and r → es). This can be proved by cases on →. The r = (λx :
τ s.es) vs is a consequence of Lemma 3, Lemma 21, and Lemma 4. The r = (Λα.es)[τα]
case is a consequence of Lemma 3, Lemma 21, and Lemma 4. The rest of the cases are
straightforward
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Case (e = Es[typeof ≺eo�]). Es[typeof ≺eo�] 7−→ Es[τ ], and both the redex and
contractum have type type. The case follows from Lemma 4.

Case (e = E[∼≺eo�]). Consequence of Lemma 3, Lemma 20, and Lemma 4.

�
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Symbol Classes
γ ::= 〈type constant〉
x ::= 〈variable〉
c ::= 〈value constant〉
f ::= 〈function constant〉

Terms
pgm ::= e (program)

e ::= x | λx : es.e | e e (code language)
| let x = e in e
| let meta x = es in e
| if e then e else e
| c | f
| es[es]

es ::= x | α | λx : τ s.es | es es (metalanguage)
| let x = es in es

| if es then es else es

| c | f
| γ | γ? |→?| dom | cod | es =τ es

| typeof
| ≺e�
| es → es

| fgen [xi](x : code τx).es

| fgen [αi](x : meta τα).es

eo ::= x | λx : τ.eo | eo eo | let x = eo in eo

| c | f | if eo then eo else eo

Types
τ ::= γ | τ → τ (type)
τx ::= x | γ | τx → τx (type pattern)
τα ::= α | γ | τα → τα (type schema)

Parameters
τ s ::= γ | α | code (meta types)

| type
| τ s → τ s

| [xi](code τx) ⇒ τ∼

| [αi](meta τα) ⇒ τ∼

τ∼ ::= γ | code (splice types)

ε ::= x : τ s | x : dyn | α : ∗ (environment bindings)
Γ ::= εi (translation environment)

Figure 1. Surface Language Syntax
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Γ ` es : τ s  eks Translate Metalanguage

x : τ s ∈ Γ
Γ ` x : τ s  x

α : ∗ ∈ Γ
Γ ` α : type α Γ ` γ : type γ

Γ ` dom : (type → type) dom Γ ` typeof : (code → type) typeof

Γ ` cod : (type → type) cod Γ `→?: (type → bool) →?

Γ ` γ? : (type → bool) γ?

Γ ` es
1 : (τ s

1 → τ s
2 ) eks

1 Γ ` es
2 : τ s

1  eks
2

Γ ` es
1 es

2 : τ s
2  eks

1 eks
2

Γ ` es
1 : type eks

1 Γ ` es
2 : type eks

2

Γ ` es
1 → es

2 : type eks
1 → eks

2

Γ ` es
1 : type eks

1 Γ ` es
2 : type eks

2

Γ ` es
1 =τ es

2 : bool eks
1 =τ eks

2

Γ ` τ s
1  τks

1 Γ ` es
1 : τ s

1  eks
1 Γ, x : τ s

1 ` es
2 : τ s

2  eks
2

Γ ` let x = es
1 in es

2 : τ s
2  (λx : τks

1 .eks
2 ) eks

1

Γ ` es
1 : bool eks

1 Γ ` es
2 : τ s  eks

2 Γ ` es
3 : τ s  eks

3

Γ ` if es
1 then es

2 else es
3 : τ s  if eks

1 then eks
2 else eks

3

type(c) = γ

Γ ` c : γ  c

type(f) = γ1 → γ2

Γ ` f : γ1 → γ2  f
Γ ` e ek

Γ `≺e�: code ≺ek�

Γ ` τ s
1  τks

1 Γ, x : τ s
1 ` es : τ s

2  eks

Γ ` λx : τ s
1 .es : τ s

1 → τ s
2  λx : τks

1 .eks

xi ` τx wf xτ /∈ FV (es)
eks
i = xicpat(τx, xτ ) Γ, xi : type, x : code ` es : τ∼  eks

Γ ` fgen [xi](x : code τx).es : [xi](code τx) → τ∼

 λx : code.
(λxτ : type.

((λxi : type. eks ) eks
i ))

typeof x)

αi ` τα wf Γ, αi : ∗, x : τα ` es : τ∼  eks

Γ ` fgen [αi](x : meta τα).es : [αi](meta τα) → τ∼

 Λαi.λx : τα.eks

Figure 2. Translation to Kernel Language, Part 1
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Γ ` e ek
†

Translate Code Language

x : dyn ∈ Γ
Γ ` x x

x : τ∼ ∈ Γ
Γ ` x [[τ∼]]x

Γ ` es : type eks Γ, x : dyn ` e ek

Γ ` λx : es.e λx : eks.ek

Γ ` e1  ek
1 Γ ` e2  ek

2

Γ ` e1 e2  ek
1 ek

2

Γ ` e1  ek
1 Γ, x : dyn ` e2  ek

2

Γ ` let x = e1 in e2  (λx : typeof ≺ek
1� .ek

2) ek
1

Γ ` e1  ek
1 Γ ` e2  ek

2 Γ ` e3  ek
3

Γ ` if e1 then e2 else e3  if ek
1 then ek

2 else ek
3

Γ ` c c Γ ` f  f

Γ ` x : [αi](meta τα) → τ∼  x

Γ ` eo : τα
0  eks τα

i = αimpat(τα, τα
0 )

Γ ` x eo  [[τ∼]](x[τα
i ] eks)

Γ ` x : [xi](code τx) → τ∼  x Γ ` e ek

Γ ` x e [[τ∼]](x ≺ek�)

Γ ` es : τ s  eks Γ, x : τ s ` e ek Γ ` τ s  τks

Γ ` let meta x = es in e ∼((λx : τks. ≺ek�) eks)

Γ ` es
1 : τ s

1 → τ∼  eks
1 Γ ` es

2 : τ s
1  eks

2

Γ ` es
1[e

s
2] [[τ∼]](eks

1 eks
2 )

†[[τ∼]] =

{
∼ if τ∼ = code
∼% if τ∼ = γ

Figure 3. Translation to Kernel Language, Part 2
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mpat(τα, τα) = σ Match Type Schema

mpat(α, τα) = [τα/α] mpat(γ, τα) = ∅

mpat(τα
11, τ

α
21) = σ1 mpat(τα

12, τ
α
22) = σ2

mpat(τα
11 → τα

12, τ
α
21 → τα

22) = σ1 ◦ σ2

cpat(τx, x) = σ Match Type Pattern

cpat(x′, x) = [x/x′] cpat(γ, x) = ∅

cpat(τx
1 , x) = [es

i1
/xi1 ] cpat(τx

2 , x) = [es
i2

/xi2 ]

cpat(τx
1 → τx

2 , x) = [dom es
i1

/xi1 ] ◦ [cod es
i2

/xi2 ]

Figure 4. Pattern Matching Metafunctions

Γ ` τ s  τks Translate Meta Type

α : ∗ ∈ Γ
Γ ` α α Γ ` γ  γ Γ ` code code Γ ` type type

Γ ` τ s
1  τks

1 Γ ` τ s
2  τks

2

Γ ` τ s
1 → τ s

2  Γ ` τks
1 → τks

2

xi ` τx wf Γ ` τ∼  τks

Γ ` [xi](code τx) ⇒ τ∼  code → τks

αi ` τα wf Γ, αi : ∗ ` τ∼  τks

Γ ` [αi](meta τα) ⇒ τ∼  ∀αi.τ
α → τks

xi ` τx wf Well-formed Type Pattern
αi ` τx wf Well-formed Type Schema

xi ` τx : ∅
xi ` τx wf

x /∈ xi, xj

xi, x, xj ` x : xi, xj xi ` γ : xi

xi ` τx
1 : xi

′ xi
′ ` τx

2 : xi
′′

xi ` τx
1 → τx

2 : xi
′′

Figure 5. Translation to Kernel Language, Part 4
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Γ Γk Translate Type Environment

∅ ∅
Γ Γk Γ ` τ s  τks

Γ, x : τ s  Γk, x : τks

Γ Γk

Γ, x : dyn Γk, x : dyn

Γ Γk

Γ, α : ∗ Γk, α : ∗

Figure 6. Translation to Kernel Language, Part 5
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Lemma 22 (Inversion of Translation).

(1) If Γ ` x : τ s  eks, then eks = x and (x : τ s) ∈ Γ.
(2) If Γ ` α : τ s  eks, then eks = α, τ s = type, and (α : ∗) ∈ Γ.
(3) If Γ ` γ : τ s  eks, then eks = γ and τ s = type.
(4) If Γ ` dom : τ s  eks, then eks = dom and τ s = type → type.
(5) If Γ ` cod : τ s  eks, then eks = cod and τ s = type → type.
(6) If Γ ` γ? : τ s  eks, then eks = γ? and τ s = type → bool.
(7) If Γ `→?: τ s  eks, then eks =→? and τ s = type → bool.
(8) If Γ ` typeof : τ s  eks, then eks = typeof and τ s = code → type.
(9) If Γ ` c : τ s  eks, then eks = c and τ s = γ for type(c) = γ.

(10) If Γ ` f : τ s  eks, then eks = f and τ s = γ1 → γ2 for type(f) = γ1 → γ2.
(11) If Γ ` if es

1 then es
2 else es

3 : τ s  eks then Γ ` es
1 : bool eks

1 ,
Γ ` es

2 : τ s  eks
2 , Γ ` es

3 : τ s  eks
3 , and eks = if eks

1 then eks
2 else eks

3 .
(12) If Γ `≺e�: τ s  eks, then τ s = code, Γ ` e ek, and eks =≺ek�.
(13) If Γ ` es

1 → es
2 : τ s  eks, then τ s = type, Γ ` es

1 : type  eks
1 , Γ ` es

2 : type  
eks
2 , and eks = eks

1 → eks
2 .

(14) If Γ ` es
1 =τ es

2 : τ s  eks, then τ s = bool, Γ ` es
1 : type  eks

1 , Γ ` es
2 : type  

eks
2 , and eks = eks

1 =τ eks
2 .

(15) If Γ ` es
1 es

2 : τ s  eks, then there is a type τ s′ such that
Γ ` es

1 : τ s′ → τ s  eks
1 and Γ ` es

2 : τ s′  eks
2 and eks = eks

1 eks
2 .

(16) If Γ ` λx : τ s
1 .es′ : τ s  eks, then there is a type τ s′ such that

Γ, x : τ s
1 ` es′ : τ s′  eks′, τ s = τ s

1 → τ s′, Γ ` τ s
1  τks

1 , and
eks = λx : τks

1 .eks; x /∈ FV (Γ).
(17) If Γ ` let x = es

1 in es
2 : τ s  eks then Γ ` es

1 : τ s
1  eks

1 ,
Γ, x : τ s

1 ` es
2 : τ s  eks

2 , Γ ` τ s
1  τks

1 , and eks = (λx : τks
1 .eks

2 ) eks
1 .

(18) If Γ ` fgen [xi](code τx).es : τ s  eks, then xi ` τx wf, Γ, xi : type, x : code `
es′ : τ∼  eks′, τ s = [xi](τx) → τ∼, and

eks = λx : code.
(λxτ : type.

((λxi : type. eks′ ) eks
i ))

typeof x),

where xτ /∈ FV (es′), and eks
i = xicpat(τx, xτ ) for each i.

(19) If Γ ` fgen [αi](meta τα).es : τ s  eks, then αi ` τα wf, Γ, αi : ∗, x : τα ` es′ :
τ∼  eks′, τ s = [αi](τα) → τ∼, and eks = Λαi.λx : τα.eks′.

(20) If Γ ` x ek, then one and only one of the following is true:
(a) ek = x and (x : dyn) ∈ Γ;
(b) For some τ∼, ek = [[τ∼]]x and (x : τ∼) ∈ Γ;

(21) If Γ ` λx : es.e′  ek, then Γ ` es : type  eks, Γ, x : dyn ` e′  ek′, and
ek = λx : eks.ek′; x /∈ FV (Γ).

(22) If Γ ` e1 e2  ek, then one and only one of the following is true:
(a) Γ ` e1  ek

1, Γ ` e2  ek
2, and ek = ek

1 ek
2.

(b) e1 = x, e2 = eo, Γ ` x : [αi](meta τα) → τ∼  x, Γ ` eo : τα
0  eks, and

ek = [[τ∼]](x[τα
i ] eks) where τα

i = αimpat(τα, τα
0 ) for each i.
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(c) e1 = x, Γ ` x : [xi](code τx) → τ∼  x, Γ ` e2  ek
2, and ek = [[τ∼]](x ≺

ek
2�).

(23) If Γ ` if e1 then e2 else e3  ek then Γ ` e1  ek
1, Γ ` e2  ek

2, Γ ` e3  ek
2,

and ek = if ek
1 then ek

2 else ek
3.

(24) If Γ ` es
1[e

s
2]  ek then Γ ` es

1 : τ s → τ∼  eks
1 , Γ ` es

2 : τ s  eks
2 , and

ek = [[τ∼]](eks
1 eks

2 ).
(25) If Γ ` let x = e1 in e2  ek then Γ ` e1 : ek

1, Γ, x : dyn ` e2  ek
2, and

ek = (λx : typeof ≺ek
1� .ek

2) ek
1

(26) If Γ ` let meta x = es in e′  ek then Γ ` es : τ s
1  eks, Γ, x : τ s

1 ` e′  ek′,
Γ ` τ s

1  τks
1 , and ek =∼((λx : τks

1 . ≺ek′�) eks).

If Γ ` c ek then ek = c.
If Γ ` f  ek then ek = f .

Proof. By cases on derivations of Γ ` es : τ s  eks and Γ ` e ek. �

Lemma 23. If Γ wf then

(1) Γ ` τ s  τks is a function to τks.
(2) if x : τ s ∈ Γ then Γ ` τ s  τks.
(3) Γ Γk and if x : τ s ∈ Γ then x : τks ∈ Γk where Γ ` τ s  τks.
(4) Γ ` τ∼  τ∼.

Lemma 24. If Γk ` eks : τ∼ then Γk `k [[τ∼]]eks wf.

Theorem 10 (Well-Typing Preservation).

(1) If Γ ` es : τ s  eks, Γ Γk, and Γ ` τ s  τks, then Γk `k eks : τks;
(2) If Γ ` e ek, and Γ Γk, Γk `k ek wf.

Proof. By mutual induction on the structure of es and e.

Case (e = x). If Γ ` x ek then there are two cases:

(1) ek = x; x : dyn ∈ Γ lm 23⇒ x : dyn ∈ Γk ⇒ Γk `k x wf.

(2) ek = [[τ∼]]x; (x : τ∼) ∈ Γ lm 23⇒ x : τ∼ ∈ Γk ⇒ Γk `k x : τ∼
lm 24⇒ Γk `k [[τ∼]]x wf.

Case (e = c). Immediate.

Case (e = f). Immediate.

Case (e = λx : es.e).

Γ ` λx : es.e λx : eks.ek lm 22⇒ Γ ` es : type eks; Γ, x : dyn ` e ek I.H.⇒

Γk `k eks : type; Γk, x : dyn `k ek wf ⇒ Γk `k λx : eks.ek wf.

Case (e = e1 e2). This case splits into three subcases.

(1)

Γ ` e1 e2  ek
1 ek

2
lm 22⇒ Γ ` e1  ek

1; Γ ` e2  ek
1

I.H.⇒

Γk `k ek
1 wf; Γk `k ek

2 wf ⇒ Γk `k ek
1 ek

2 wf.
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(2)

Γ ` x eo  [[τ∼]](x[τα
i ] eks) lm 22⇒ Γ ` x : [αi](meta τα) ⇒ τ∼  x;

Γ ` eo : τα
0  eks; τα

i = αimpat(τα, τα
0 ) I.H.⇒ Γk `k x : ∀αi.τ

α → τ∼;

Γk `k eks : τα
0 ⇒ Γk `k x[τα

i ] : τα
0 → τ∼ ⇒ Γk `k x[τα

i ] eks : τ∼ ⇒

Γk `k [[τ∼]](x[τα
i ] eks) wf.

(3)

Γ ` x e [[τ∼]](x ≺ek�) lm 22⇒ Γ ` x : [xi](code τx) ⇒ τ∼  x;

xi ` τx wf; Γ ` e ek lm 22⇒ Γk ` x : code → τ∼; Γk `k ek wf ⇒

Γk `k≺ek�: code ⇒ Γk `k x ≺ek�: τ∼ ⇒

Γk `k [[τ∼]](x ≺ek�) wf.

Case (e = if e1 then e2 else e3). Straightforward.

Case (e = es
1[e

s
2]).

Γ ` es
1[e

s
2] [[τ∼]](eks

1 eks
2 ) lm 22⇒ Γ ` es

1 : τ s → τ∼  eks
1 ; Γ ` es

2 : τ s  eks
2

I.H.⇒

Γk `k eks
1 : τks → τ∼; Γk `k eks

2 : τks ⇒ Γk `k eks
1 eks

2 : τ∼ ⇒

Γk `k [[τ∼](eks
1 eks

2 ) wf.

Case (e = let x = e1 in e2).

Γ ` let x = e1 in e2  (λx : typeof ≺ek
1� ek

2) ek
1

lm 22⇒ Γ ` e1  ek
1;

Γ, x : dyn ` e2  ek
2

I.H.⇒ Γk ` ek
1 wf; Γ, x : dyn ` ek

2 wf ⇒

Γk `≺ek
1�: code ⇒ Γk ` typeof ≺ek

1�: type ⇒

Γk ` (λx : typeof ≺ek
1� ek

2) ek
1 wf.

Case (e = let meta x = es in e).

Γ ` let meta x = es in e (λx : τks. ≺ek�) eks lm 22⇒ Γ ` es : τ s  eks;

Γ, x : τ s ` e ek I.H.⇒ Γk `k eks : τks; Γk, x : τks `k ek wf ⇒

Γk, x : τks `k≺ek�: code ⇒ Γk `k λx : τks. ≺ek�: τks → code ⇒

Γk `k (λx : τks. ≺ek�) eks : code ⇒ Γk `k∼((λx : τks. ≺ek�) eks) wf

Case (es = x).

Γ ` x : τ s  x
lm 22⇒ x : τ s ∈ Γ lm 23⇒ x : τks ∈ Γk ⇒ Γk `k x : τks.

Case (es = α).

Γ ` α : type α
lm 22⇒ α : ∗ ∈ Γ lm 23⇒ α : ∗ ∈ Γk ⇒ Γk `k α : type.

Case (es = c).

Γ ` c : γ  c
lm 22⇒ type(c) = γ ⇒ Γk `k c : γ.
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Case (es = f).

Γ ` f : γ1 → γ2  f
lm 22⇒ type(f) = γ1 → γ2 ⇒ Γk `k f : γ1 → γ2.

Case (es = cs). Straightforward.

Case (es = λx : τ s.es).

Γ ` λx : τ s.es : τ s → τ s′  λx : τks.eks lm 22⇒ Γ, x : τ s ` es : τ s′  eks I.H.⇒

Γk, x : τks `k eks : τks′ ⇒ Γk `k λx : τks.eks : τks → τks′ .

Case (es = es
1 es

2). Straightforward.

Case (es = if es
1 then es

2 else es
3). Straightforward.

Case (es = es′
1 → es′

2 ). Straightforward.

Case (es = es′
1 =τ es′

2 ). Straightforward.

Case (es = fgen [xi](x : code τx).es).

Γ ` fgen [xi](x : code τx).es : [xi](τx) → τ∼  

λx : code.
(λxτ : type.

((λxi : type. eks ) eks
i ))

typeof x) lm 22⇒

xi ` τx wf; Γ, xi : type, x : code ` es : τ∼  eks; eks
i = xicpat(τx, xτ )

I.H.⇒

Γk, xi : type, x : code ` eks : τ∼; ⇒ λx : code.
(λxτ : type.

((λxi : type. eks ) eks
i ))

typeof x) : code → τ∼

Case (es = fgen [αi](x : meta τα).es).

Γ ` fgen [αi](x : meta τα).es : [αi](τα) → τ∼  Λαi.λx : τα.eks lm 22⇒

αi ` τα wf; Γ, αi : ∗, x : τα ` es : τ∼  eks I.H.⇒

Γk, αi : ∗, x : τα `k eks : τ∼ ⇒ Γk `k Λαi.λx : τα.eks : ∀αi.τ
α → τ∼.

Case (es = let x = es
1 in es

2).

Γ ` let x = es
1 in es

2 : τ s  (λx : τks
1 .eks

2 ) eks
1

lm 22⇒ Γ ` es
1 : τ s

1  eks
1 ;

Γ, x : τ s
1 ` es

2 : τ s  eks
2

I.H.⇒ Γk `k eks
1 : τks

1 ; Γk, x : τks
1 `k eks

2 : τks ⇒

Γk `k λx : τks
1 .eks

2 : τks
1 → τks ⇒ Γk `k (λx : τks

1 .eks
2 ) eks

1 : τks.

�



APPENDIX C

Kernel Language Implementation

The following is the full listing for the PLT Redex model of the kernel metaprogramming
language.

;;

;; kernel.ss - a PLT Redex implementation of the metaprogramming

;; kernel language

;;

;; Author : Ronald Garcia

;; ( language ( nonterminal -name rhs -pattern ...) ...)

(module kernel mzscheme

(require ( planet "reduction -semantics.ss" (" robby " " redex.plt " 3 9))

(planet "gui.ss" (" robby " " redex.plt " 3 9)))

(define meta -k

(language

(g int bool)

(x variable -not -otherwise -mentioned)

(a variable -not -otherwise -mentioned)

(c number #t #f)

(f add1 zero? not sub1)

(bop + < - *)

;; metalanguage -specific constants

(g? int? bool?)

(cs - g? ->? dom cod typeof)

(cs g cs -)

;; e - code language

(e x (lam (x e^s) e) (e e) c f (if e e e) ( splice e^s)

(bop e e))

;; e^o - pure code

(e^o x (lam (x t) e^o) (e^o e^o) c f (if e^o e^o e^o)

179
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(bop e^o e^o))

;; e^s - metalanguage

(e^s x (lam (x t^s) e^s) (e^s e^s) (fix (x t^s) e^s)

(tlam a e^s)

(tapp e^s t^a)

c f

(if e^s e^s e^s)

cs

(code e)

(csp e^s)

(-> e^s e^s)

(=t e^s e^s)

(bop e^s e^s))

;; v^s - metalanguage values

(v^s c f cs - ( code e^o) t (lam (x t^s) e^s) ( tlam a e^s))

(v^s+ v^s x (fix (x t^s) e^s))

(t g (-> t t))

(t^a a g (-> t^a t^a))

(t^s a g code type (-> t^s t^s) ( forall (a) t^s))

;; abort expression

(bottom bottom)

;; Contexts

(E^s hole (E^s e^s) (v^s E^s) ( code E)

(if E^s e^s e^s) (csp E^s) (-> E^s e^s) (-> t E^s)

(=t E^s e^s) (=t v^s E^s) ( tapp E^s t^a)

(bop E^s e^s) (bop v^s E^s))

;; The named hole for E makes the splicing rule possible

(E (hole spl) (E e) (e^o E) (lam (x E^s) e) (lam (x t) E)

(splice E^s) (if E e e) (if e^o E e) (if e^o e^o E)

(bop E e) (bop e^o E))

))

;; ( reduction -relation meta -kernel

;; (--> lhs -pattern consequence ) ...)
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(define red

(reduction -relation

meta -k

;; binary operations

(--> (in -hole E_1 (+ number_1 number_2 ))

(in-hole E_1 ,(+ ( term number_1 ) ( term number_2 )))

"+")

(--> (in -hole E_1 (- number_1 number_2 ))

(in-hole E_1 ,(- (term number_1 ) ( term number_2 )))

"-")

(--> (in -hole E_1 (< number_1 number_2 ))

(in -hole E_1 ,(< (term number_1 ) ( term number_2 )))

"<")

(--> (in -hole E_1 (* number_1 number_2 ))

(in -hole E_1 ,(* ( term number_1 ) ( term number_2 )))

"*")

;; unary operations

(--> (in -hole E_1 (add1 number_1 ))

(in -hole E_1 ,(add1 (term number_1 )))

"add1")

(--> (in -hole E_1 (sub1 number_1 ))

(in -hole E_1 ,(sub1 (term number_1 )))

"sub1")

(--> (in -hole E_1 (zero? number_1 ))

(in -hole E_1 ,(zero ? ( term number_1 )))

"zero ?")

(--> (in -hole E_1 (not #t))

(in -hole E_1 #f)

"not -t")

(--> (in -hole E_1 (not #f))

(in -hole E_1 #t)

"not -f")

;; ...

(--> (in -hole E_1 (if #t e^s_1 e^s_2))

(in -hole E_1 e^s_1)

"if -t")

(--> (in -hole E_1 (if #f e^s_1 e^s_2))

(in -hole E_1 e^s_2)

"if -f")



C. KERNEL LANGUAGE IMPLEMENTATION 182

(--> (in -hole E_1 (( lam (x_1 t^s_1) e^s_1) v^s_1))

(in -hole E_1 ( mesubst (x_1 v^s_1 e^s_1)))

"lam")

(--> (in -hole E_1 (tapp (tlam a_1 e^s_1) t^a_1))

(in-hole E_1 ( tesubst (a_1 t^a_1 e^s_1)))

"tlam")

(--> (in -hole E_1 (fix (x_1 t^s_1) e^s_1))

(in -hole E_1 ( mesubst (x_1 (fix (x_1 t^s_1) e^s_1) e^s_1)))

"fix")

(--> (in -hole E_1 (csp c_1))

(in -hole E_1 (code c_1))

"csp")

(--> (in -hole E_1 (int? t_1))

(in -hole E_1 ,(eq? ( term t_1) ( term int)))

"int?")

(--> (in -hole E_1 (bool? t_1))

(in -hole E_1 ,(eq? ( term t_1) ( term bool )))

"bool ?")

(--> (in -hole E_1 (->? (-> t_1 t_2 )))

(in -hole E_1 #t)

"->?-t")

(--> (in -hole E_1 (->? t_1))

(in -hole E_1 #f)

"->?-f"

(side -condition

(not (test -match meta -k (-> t_2 t_3) ( term t_1 )))))

(--> (in -hole E_1 (dom (-> t_1 t_2 )))

(in -hole E_1 t_1)

"dom")

(--> (in -hole E_1 (dom t_1))

(in -hole E_1 t_1)

"dom -t"

(side -condition

(not (test -match meta -k (-> t_2 t_3) ( term t_1 )))))

(--> (in -hole E_1 (cod (-> t_1 t_2 )))

(in -hole E_1 t_2)

"cod")
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(--> (in -hole E_1 (cod t_1))

(in -hole E_1 t_1)

"cod -t"

(side -condition

(not (test -match meta -k (-> t_2 t_3) ( term t_1 )))))

(--> (in -hole E_1 (=t t_1 t_2))

(in -hole E_1 ,(equal ? ( term t_1) ( term t_2)))

"=t")

(--> (in -hole E_1 ( typeof (code e^o_1 )))

(in -hole E_1 (compute -type -of (E_1 ( typeof (code e^o_1 )))))

"typeof"

(side -condition

(test -match meta -k t_1

(term (compute -type -of (E_1 ( typeof (code e^o_1 ))))))))

(--> (in -hole E_1 ( typeof (code e^o_1 )))

bottom

"notype"

(side -condition

(eq? ( term (compute -type -of (E_1 ( typeof (code e^o_1 )))))

(term bottom ))))

(--> (in -named -hole spl E_1 ( splice (code e^o_1 )))

(in -hole E_1 e^o_1)

"splice ")

))

;;

;; The substitution functions

;;

;; mesubst x v^s+ e^s - substitute a value into a metaterm

(define -metafunction mesubst

meta -k

;; replace x_1

[(x_1 v^s+_1 x_1) v^s+_1]

;; x_1 and x_2 are different , so don ’t replace

[(x_1 v^s+_1 x_2) x_2

(side -condition (not (eq? ( term x_1) ( term x_2 ))))]
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;; ignore type variables

[(x_1 v^s+ a_1) a_1]

;; x_1 bound , so don ’t continue in body ...

[(x_1 v^s+_1 (lam (x_1 t^s_1) e^s_1))

(lam (x_1 t^s_1) e^s_1)]

;; general purpose capture avoiding case

[(x_1 v^s+_1 (lam (x_2 t^s_1) e^s_1))

,(term -let ([ x_new

(variable -not -in (term (v^s+_1 e^s_1 )) ( term x_2 ))])

(term

(lam (x_new t^s_1)

(mesubst (x_1 v^s+_1 ( mesubst (x_2 x_new e^s_1 )))))))]

;; x_1 bound , so don ’t continue in body ...

[(x_1 v^s+_1 (fix (x_1 t^s_1) e^s_1))

(fix (x_1 t^s_1) e^s_1)]

;; general purpose capture avoiding case

[(x_1 v^s+_1 (fix (x_2 t^s_1) e^s_1))

,(term -let ([ x_new

(variable -not -in (term (v^s+_1 e^s_1 )) ( term x_2 ))])

(term

(fix (x_new t^s_1)

(mesubst (x_1 v^s+_1 ( mesubst (x_2 x_new e^s_1 )))))))]

;; term application

[(x_1 v^s+_1 (e^s_1 e^s_2))

(( mesubst (x_1 v^s+_1 e^s_1 )) ( mesubst (x_1 v^s+_1 e^s_2 )))]

;; conditionals

[(x_1 v^s+_1 (if e^s_1 e^s_2 e^s_3))

(if ( mesubst (x_1 v^s+_1 e^s_1))

(mesubst (x_1 v^s+_1 e^s_2))

(mesubst (x_1 v^s+_1 e^s_3 )))]

;; type abstraction

[(x_1 v^s+_1 (tlam a_1 e^s_1))

(tlam a_1 ( mesubst (x_1 v^s+_1 e^s_1 )))]

;; type application

[(x_1 v^s+_1 (tapp e^s_1 t^a_1))

(tapp ( mesubst (x_1 v^s+_1 e^s_1)) t^a_1)]
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;; basic constants

[(x_1 v^s+_1 c_1) c_1]

;; function constants

[(x_1 v^s+_1 f_1) f_1]

;; metaconstants

[(x_1 v^s+_1 cs_1) cs_1]

;; type equality

[(x_1 v^s+_1 (=t e^s_1 e^s_2))

(=t ( mesubst (x_1 v^s+_1 e^s_1 )) ( mesubst (x_1 v^s+_1 e^s_2 )))]

;; arrow expressions

[(x_1 v^s+_1 (-> e^s_1 e^s_2))

(-> (mesubst (x_1 v^s+_1 e^s_1 )) ( mesubst (x_1 v^s+_1 e^s_2 )))]

;; binary operations

;; arrow expressions

[(x_1 v^s+_1 ( bop_1 e^s_1 e^s_2))

(bop_1 ( mesubst (x_1 v^s+_1 e^s_1))

(mesubst (x_1 v^s+_1 e^s_2 )))]

;; code expressions

[(x_1 v^s+_1 (code e_1))

(code ( mcsubst (x_1 v^s+_1 e_1 )))]

;; csp expressions

[(x_1 v^s+_1 (csp e^s_1))

(csp ( mesubst (x_1 v^s+_1 e^s_1 )))])

;; mcsubst x v^s+ e - substitute a value into a code term

(define -metafunction mcsubst

meta -k

;; let it alone

[(x_1 v^s+ x_2) x_2]

;; general purpose capture avoiding case

[(x_1 v^s+_1 (lam (x_2 e^s_1) e_1))

,(term -let ([ x_new

(variable -not -in (term (v^s+_1 e_1 )) ( term x_2 ))])

(term

(lam (x_new ( mesubst (x_1 v^s+_1 e^s_1)))
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(mcsubst (x_1 v^s+_1 ( cvcsubst (x_2 x_new e_1 )))))))]

[(x_1 v^s+_1 (e_1 e_2))

(( mcsubst (x_1 v^s+_1 e_1 )) ( mcsubst (x_1 v^s+_1 e_2 )))]

[(x_1 v^s+_1 (if e_1 e_2 e_3))

(if ( mcsubst (x_1 v^s+_1 e_1))

(mcsubst (x_1 v^s+_1 e_2))

(mcsubst (x_1 v^s+_1 e_3 )))]

[(x_1 v^s+_1 ( bop_1 e_1 e_2))

(bop_1 ( mcsubst (x_1 v^s+_1 e_1))

(mcsubst (x_1 v^s+_1 e_2 )))]

[(x_1 v^s+_1 c_1) c_1]

[(x_1 v^s+_1 f_1) f_1]

[(x_1 v^s+_1 ( splice e^s_1))

(splice ( mesubst (x_1 v^s+_1 e^s_1 )))])

;; cvesubst x x e^s - substitute a code variable into a metaterm

(define -metafunction cvesubst

meta -k

;; ignore meta variables

[(x_1 x_n x_2) x_2]

;; ignore type variables

[(x_1 x_n a_1) a_1]

;; general purpose capture avoiding case

[(x_1 x_n (lam (x_2 t^s_1) e^s_1))

,(term -let ([ x_new

(variable -not -in (term (x_n e^s_1 )) ( term x_2 ))])

(term

(lam (x_new t^s_1)

(cvesubst (x_1 x_n ( mesubst (x_2 x_new e^s_1 )))))))]

;; general purpose capture avoiding case

[(x_1 x_n (fix (x_2 t^s_1) e^s_1))

,(term -let ([ x_new
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(variable -not -in (term (x_n e^s_1 )) ( term x_2 ))])

(term

(fix (x_new t^s_1)

(cvesubst (x_1 x_n ( mesubst (x_2 x_new e^s_1 )))))))]

;; term application

[(x_1 x_n (e^s_1 e^s_2))

(( cvesubst (x_1 x_n e^s_1 )) ( cvesubst (x_1 x_n e^s_2 )))]

;; conditionals

[(x_1 x_n (if e^s_1 e^s_2 e^s_3))

(if ( cvesubst (x_1 x_n e^s_1))

(cvesubst (x_1 x_n e^s_2))

(cvesubst (x_1 x_n e^s_3 )))]

;; type abstraction

[(x_1 x_n (tlam a_1 e^s_1))

(tlam a_1 ( cvesubst (x_1 x_n e^s_1 )))]

;; type application

[(x_1 x_n (tapp e^s_1 t^a_1))

(tapp ( cvesubst (x_1 x_n e^s_1)) t^a_1)]

;; basic constants

[(x_1 x_n c_1) c_1]

;; function constants

[(x_1 x_n f_1) f_1]

;; metaconstants

[(x_1 x_n cs_1) cs_1]

;; type equality

[(x_1 x_n (=t e^s_1 e^s_2))

(=t ( cvesubst (x_1 x_n e^s_1 )) ( cvesubst (x_1 x_n e^s_2 )))]

;; arrow expressions

[(x_1 x_n (-> e^s_1 e^s_2))

(-> ( cvesubst (x_1 x_n e^s_1 )) ( cvesubst (x_1 x_n e^s_2 )))]

;; binary operations

[(x_1 x_n ( bop_1 e^s_1 e^s_2))

(bop_1 ( cvesubst (x_1 x_n e^s_1 )) ( cvesubst (x_1 x_n e^s_2 )))]

;; code expressions



C. KERNEL LANGUAGE IMPLEMENTATION 188

[(x_1 x_n (code e_1))

(code ( cvcsubst (x_1 x_n e_1 )))]

;; csp expressions

[(x_1 x_n (csp e^s_1))

(csp ( cvesubst (x_1 x_n e^s_1 )))])

;; cvcsubst x x e - substitute a code variable into a code term

(define -metafunction cvcsubst

meta -k

;; replace x_1

[(x_1 x_n x_1) x_n]

;; x_1 and x_2 are different , so don ’t replace

[(x_1 x_n x_2) x_2

(side -condition (not (eq? ( term x_1) ( term x_2 ))))]

;; x_1 bound , so don ’t continue in body ...

[(x_1 x_n (lam (x_1 e^s_1) e^s_2))

(lam (x_1 ( cvesubst (x_1 x_n e^s_1 ))) e^s_2)]

;; general purpose capture avoiding case

[(x_1 x_n (lam (x_2 e^s_1) e_1))

,(term -let ([ x_new

(variable -not -in (term (x_n e_1 )) ( term x_2 ))])

(term

(lam (x_new ( cvesubst (x_1 x_n e^s_1)))

(cvcsubst (x_1 x_n ( cvcsubst (x_2 x_new e_1 )))))))]

[(x_1 x_n (e_1 e_2))

(( cvcsubst (x_1 x_n e_1 )) ( cvcsubst (x_1 x_n e_2 )))]

[(x_1 x_n (if e_1 e_2 e_3))

(if ( cvcsubst (x_1 x_n e_1))

(cvcsubst (x_1 x_n e_2))

(cvcsubst (x_1 x_n e_3 )))]

[(x_1 x_n ( bop_1 e_1 e_2))

(bop_1 ( cvcsubst (x_1 x_n e_1))

(cvcsubst (x_1 x_n e_2 )))]

[(x_1 x_n c_1) c_1]
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[(x_1 x_n f_1) f_1]

[(x_1 x_n ( splice e^s_1))

(splice ( cvesubst (x_1 x_n e^s_1 )))])

;; tesubst a e^s - substitute a type schema into a metaterm

(define -metafunction tesubst

meta -k

;; replace a_1 with e_1

[(a_1 t^a_1 a_1) t^a_1]

;; a_1 and a_2 are different , so don ’t replace

[(a_1 t^a_1 a_2) a_2

(side -condition (not (eq? ( term a_1) ( term a_2 ))))]

;; ignore term variables

[(a_1 t^a x_1) x_1]

;; a_1 bound , so don ’t continue in body ...

[(a_1 t^a_1 (tlam a_1 e^s_1))

(tlam a_1 e^s_1)]

;; general purpose capture avoiding case

[(a_1 t^a_1 (tlam a_2 e^s_1))

,(term -let ([ a_new

(variable -not -in (term (t^a_1 e^s_1 )) ( term a_2 ))])

(term

(tlam a_new

(tesubst (a_1 t^a_1 ( tesubst (a_2 a_new e^s_1 )))))))]

;; just go into fix

[(a_1 t^a_1 (fix (x_1 t^s_1) e^s_1))

(fix (x_1 ( ttsubst (a_1 t^a_1 t^s_1)))

(tesubst (a_1 t^a_1 e^s_1 )))]

;; term application

[(a_1 t^a_1 (e^s_1 e^s_2))

(( tesubst (a_1 t^a_1 e^s_1 )) ( tesubst (a_1 t^a_1 e^s_2 )))]

;; conditionals

[(a_1 t^a_1 (if e^s_1 e^s_2 e^s_3))

(if ( tesubst (a_1 t^a_1 e^s_1))

(tesubst (a_1 t^a_1 e^s_2))
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(tesubst (a_1 t^a_1 e^s_3 )))]

;; term abstraction

[(a_1 t^a_1 (lam (x_1 t^s_1) e^s_1))

(lam (x_1 ( ttsubst (a_1 t^a_1 t^s_1)))

(tesubst (a_1 t^a_1 e^s_1 )))]

;; type application

[(a_1 t^a_1 (tapp e^s_1 t^a_2))

(tapp ( tesubst (a_1 t^a_1 e^s_1 )) ( ttsubst (a_1 t^a_1 t^a_2 )))]

;; basic constants

[(a_1 t^a_1 c_1) c_1]

;; function constants

[(a_1 t^a_1 f_1) f_1]

;; metaconstants

[(a_1 t^a_1 cs_1) cs_1]

;; type equality

[(a_1 t^a_1 (=t e^s_1 e^s_2))

(=t ( tesubst (a_1 t^a_1 e^s_1 )) ( tesubst (a_1 t^a_1 e^s_2 )))]

;; arrow expressions

[(a_1 t^a_1 (-> e^s_1 e^s_2))

(-> (tesubst (a_1 t^a_1 e^s_1 )) ( tesubst (a_1 t^a_1 e^s_2 )))]

;; binary operations

[(a_1 t^a_1 ( bop_1 e^s_1 e^s_2))

(bop_1 ( tesubst (a_1 t^a_1 e^s_1 )) ( tesubst (a_1 t^a_1 e^s_2 )))]

;; code expressions

[(a_1 t^a_1 (code e_1))

(code ( tcsubst (a_1 t^a_1 e_1 )))]

;; csp expressions

[(a_1 t^a_1 (csp e^s_1))

(csp ( tesubst (a_1 t^a_1 e^s_1 )))])

;; tcsubst x t^a e - substitute a type schema into a code term

(define -metafunction tcsubst

meta -k

;; replace x_1 with e_1

[(a_1 t^a x_2) x_2]
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;; term abstraction

[(a_1 t^a_1 (lam (x_1 e^s_1) e_1))

(lam (x_1 ( tesubst (a_1 t^a_1 e^s_1)))

(tcsubst (a_1 t^a_1 e_1 )))]

[(a_1 t^a_1 (e_1 e_2))

(( tcsubst (a_1 t^a_1 e_1 )) ( tcsubst (a_1 t^a_1 e_2 )))]

[(a_1 t^a_1 (if e_1 e_2 e_3))

(if ( tcsubst (a_1 t^a_1 e_1))

(tcsubst (a_1 t^a_1 e_2))

(tcsubst (a_1 t^a_1 e_3 )))]

[(a_1 t^a_1 ( bop_1 e_1 e_2))

(bop_1 ( tcsubst (a_1 t^a_1 e_1))

(tcsubst (a_1 t^a_1 e_2 )))]

[(a_1 t^a_1 c_1) c_1]

[(a_1 t^a_1 f_1) f_1]

[(a_1 t^a_1 ( splice e^s_1))

(splice ( tesubst (a_1 t^a_1 e^s_1 )))])

;; ttsubst a t^a t^s - substitute a type schema into a meta -type.

(define -metafunction ttsubst

meta -k

;; replace a_1 with e_1

[(a_1 t^a_1 a_1) t^a_1]

;; a_1 and a_2 are different , so don ’t replace

[(a_1 t^a_1 a_2) a_2

(side -condition (not (eq? ( term a_1) ( term a_2 ))))]

;; ignore base types

[(a_1 t^a_1 g) g]

[(a_1 t^a_1 code) code]

[(a_1 t^a_1 type) type]

[(a_1 t^a_1 (-> t^s_1 t^s_2))

(-> (ttsubst (a_1 t^a_1 t^s_1 )) ( ttsubst (a_1 t^a_1 t^s_2 )))]
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[(a_1 t^a_1 ( forall (a_1) t^s_1))

(forall (a_1) t^s_1)]

;; general purpose capture avoiding case

[(a_1 t^a_1 ( forall (a_2) t^s_1))

,(term -let ([ a_new

(variable -not -in (term (t^a_1 t^s_1 )) ( term a_2 ))])

(term

(forall (a_new)

(ttsubst (a_1 t^a_1 ( ttsubst (a_2 a_new t^s_1 )))))))])

;; given a metacode context and a typeof expression ,

;; compute the type of the code in the argument to typeof.

(define -metafunction compute -type -of

meta -k

[(E_1 ( typeof (code e^o_1 )))

,(term -let ([ any_1 (make -gamma (term E_1 ))])

(term (type -of (any_1 e^o_1 ))))])

;; Extract all the relevant lambda bindings from the context.

(define (make -gamma E)

(let ([m

;; Use test -match to extract all the (x_1 t_1) pairs

;; in the current context.

;; This relies on the outside -in ordering of matches.

(test -match meta -k

(in -named -hole spl E_2

(in -hole (lam (x_1 t_1) E_1) hole))

E)])

(if m

(reverse ;; because we want them in inside -out order

(map

(lambda (m)

(let ([ ribs (bindings -table (mtch -bindings m))])

(let ([ alist (map cons (map rib -name ribs)

(map rib -exp ribs ))])

(list (cdr (assq (term x_1) alist ))

(cdr (assq (term t_1) alist )))))) m))

’())))
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;; typeof :: ( Gamma e^o) -> t

(define -metafunction type -of

meta -k

[( any_1 #t) bool]

[( any_1 #f) bool]

[( any_1 number_1 ) int]

[( any_1 add1) (-> int int)]

[( any_1 zero ?) (-> int bool)]

[( any_1 not) (-> bool bool)]

[( any_1 (+ e_1 e_2))

int

(side -condition (eq? ( term (type -of (any_1 e_1 ))) ( term int)))

(side -condition (eq? ( term (type -of (any_1 e_2 ))) ( term int )))]

[( any_1 (- e_1 e_2))

int

(side -condition (eq? ( term (type -of (any_1 e_1 ))) ( term int)))

(side -condition (eq? ( term (type -of (any_1 e_2 ))) ( term int )))]

[( any_1 (< e_1 e_2))

bool

(side -condition (eq? ( term (type -of (any_1 e_1 ))) ( term int)))

(side -condition (eq? ( term (type -of (any_1 e_2 ))) ( term int )))]

[( any_1 (if e_1 e_2 e_3))

(type -of (any_1 e_2))

(side -condition (eq? ( term (type -of (any_1 e_1 ))) ( term bool )))

(side -condition (equal ? ( term (type -of (any_1 e_2)))

(term (type -of (any_1 e_3 )))))]

[((( x_1 t_1 ) ...) x_2)

,(cadr (assq (term x_2 ) ( term (( x_1 t_1 ) ...))))

(side -condition (assq (term x_2) ( term ((x_1 t_1 ) ...))))]

[( any_1 (e_1 e_2))

,(term -let ([ t_2

((term -match/single meta -k

[(-> t_1 t_2) ( term t_2)])

(term (type -of (any_1 e_1 ))))])

(term t_2))

(side -condition (test -match meta -k

(-> t_1 t_2 ) ( term (type -of ( any_1 e_1 )))))

(side -condition

(term -let ([t_1

((term -match/single meta -k

[(-> t_1 t_2) ( term t_1)])

(term (type -of (any_1 e_1 ))))])

(eq? ( term t_1) ( term (type -of (any_1 e_2 ))))))]

[((( x_1 t_1 ) ...) ( lam (x_2 t_2) e_1))

,(term -let ([ t_3 (term
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(type -of ((( x_2 t_2) (x_1 t_1 ) ...) e_1 )))])

(term (-> t_2 t_3 )))]

;; no type

[( any_1 any_2) bottom ])

(define (show -trace term ) ( traces meta -k red term))

(define (red* term ) (apply -reduction -relation * red term))

(define (k-red term ) (car (red* term )))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Examples programs

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(k-red ’(splice ((lam (f code)

(code (lam (x int ) (* x ( splice f)))))

(code (+ x 7)))))

;; ( lam (x1 int ) (* x1 (+ x 7)))

(k-red

’(splice ((( tapp (tlam a

(lam (f (-> a bool))

(lam (c a)

(if (f c)

(code (lam (t a)

(lam (f a) t)))

(code (lam (t a)

(lam (f a) f)))))))

int) zero ?) 5)))

;; ( lam (t int ) ( lam (f2 int) f2))

(k-red

’(splice (( lam (n int ) ( code (* 7 ( splice (csp (+ n 4)))))) 6)))

;; (* 7 10)

(k-red

’(splice (( lam (f (-> code code))

(code (* ( splice (f (code 2)))

(splice (f (code 3))))))
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(lam (x code ) ( code (+ 5 ( splice x)))))))

;; (* (+ 5 2) (+ 5 3))

(k-red

’(lam (x int ) (( lam (y ( typeof (code (zero? x)))) (* x 4)) #f)))

;; ( lam (x int ) (( lam (y bool ) (* x 4)) #f))

(k-red

’(splice (( lam ( ctsum int)

(code ((lam (rtsum int)

(- rtsum ( splice (csp ctsum ))))

(+ 5 3))))

(+ 5 3))))

;; (( lam ( rtsum1 int) (- rtsum1 8)) (+ 5 3))

(k-red

’(splice (( lam (pow (-> int (-> int int )))

(csp ((pow 5) 7)))

(fix (p (-> int (-> int int)))

(lam (m int)

(lam (n int)

(if (zero? n)

1

(* m ((p m) ( sub1 n))))))))))

;; 78125

(k-red

’(splice (( lam (pow (-> code (-> int code )))

(code (lam (m int) ( splice ((pow (code m)) 7)))))

(fix (p (-> code (-> int code )))

(lam (m code)

(lam (n int)

(if (zero? n)

(code 1)

(code (* ( splice m)

(splice ((p m) ( sub1 n))))))))))))

;; ( lam (m4 int ) (* m4 (* m4 (* m4 (* m4 (* m4 (* m4 (* m4 1))))))))

(k-red
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’(splice (( lam ( numargs (-> type code))

(csp ( numargs (-> int (-> bool int )))))

(fix (n (-> type code))

(lam (t type)

(if (->? t)

(add1 (n (cod t)))

0))))))

;; 2

) ;; module meta -k
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