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Abstract

In this thesis we present a system for automatic human tracking and activity recognition from

video sequences. The problem of automated analysis of visual information in order to derive de-

scriptors of high level human activities has intrigued computer vision community for decades and is

considered to be largely unsolved. A part of this interest is derived from the vast range of applica-

tions in which such a solution may be useful. We attempt to find efficient formulations of these tasks

as applied to the extracting customer behavior information in a retail marketing context. Based on

these formulations, we present a system that visually tracks customers in a retail store and performs

a number of activity analysis tasks based on the output from the tracker.

In tracking we introduce new techniques for pedestrian detection, initialization of the body

model and a formulation of the temporal tracking as a global trans-dimensional optimization prob-

lem. Initial human detection is addressed by a novel method for head detection, which incorporates

the knowledge of the camera projection model.The initialization of the human body model is ad-

dressed by newly developed shape and appearance descriptors. Temporal tracking of customer

trajectories is performed by employing a human body tracking system designed as a Bayesian

jump-diffusion filter. This approach demonstrates the ability to overcome model dimensionality

ambiguities as people are leaving and entering the scene.

Following the tracking, we developed a two-stage group activity formulation based upon the

ideas from swarming research. For modelling purposes, all moving actors in the scene are viewed

vi



here as simplistic agents in the swarm. This allows to effectively define a set of inter-agent interac-

tions, which combine to derive a distance metric used in further swarm clustering. This way, in the

first stage the shoppers that belong to the same group are identified by deterministically clustering

bodies to detect short term events and in the second stage events are post-processed to form clusters

of group activities with fuzzy memberships.

Quantitative analysis of the tracking subsystem shows an improvement over the state of the

art methods, if used under similar conditions. Finally, based on the output from the tracker, the

activity recognition procedure achieves over 80% correct shopper group detection, as validated by

the human generated ground truth results.

Keywords: Human Tracking, Human Activity Modeling and Recognition, Swarming, Back-

ground Subtraction, Camera Calibration
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1

Motivation and Problem Statement

1.1 Motivation

There is an increasing amount of research interest in the area of video analytics and video

mining, in application to automated scene surveillance and subsequent behavior analysis. This, in

part, is motivated by the increased awareness of potential security applications, but also by a growing

interest toward such research in the industrial sector, in particular, by marketing departments of retail

companies. Another moving force is the increased accessibility and speed of current computer

hardware and a growing base of public domain pattern recognition, vision, and neural network

processing software made available by the international research community.

Visual surveillance is entering a new more intelligent phase. Surveillance systems are no longer

simply recording the observed visual information, but are attempting to extract low-level motion in-

formation and, more recently, to analyze complex behaviors in the scene. The novelty of this work is

that it brings the marketing applications perspective to the computer vision sphere and implements

one such application — detection and tracking of shopper groups based on the paths traveled by the

customers. Of particular interest for marketing intelligence are moving customers, the products or

fixtures they interact with, as well as how the customers interact with each other. Detecting shopper

1



1. Motivation and Problem Statement 2

groups can provide several useful statistics to be subsequently used by the marketing research com-

munity and implemented in practice by the retailers. This is particularly so as marketing intelligence

is switching to a new paradigm of managing customer experience, where such indicators as store

traffic, shopping path, aisle penetration, dwell time, product interaction and conversion rate become

of essence. Statistics extracted from the tracking data are now becoming used to highlight social

aspects of shopping habits. This is the area where activity analysis of shopper groups can contribute

the most.

As marketing researchers in academia and industry are seeking tools to aid their decision mak-

ing, their interest is increasingly involved with computer vision and in particular human tracking

systems. Unlike other types of sensors, vision presents an ability to observe customer experience

without separating it from the environment and without the intrusiveness of other, more active ob-

servation methods using other sensor modalities. By tracking the path traveled by the customer

inside the store, important pieces of information, such as customer dwell time, aisle penetration

and product interaction statistics can be collected [4, 35]. In our work we have concentrated on

extracting from video, one of the most important customer statistics: information about the shopper

groups.

Humans engage in various types of activities that can be analyzed for different purposes. For

example, in the field of marketing, customer activities are analyzed to improve quality of service

or increase sales. Marketing and retail researchers analyze customer behavior in videos by manual

coding. However, manual identification of individuals and their activities can be time and resource

consuming. Visual observation by human coders, physically present in the store, has proven it-

self to be an extremely intrusive methodology, which often interferes with the daily operation of

businesses. Automating the recognition of human behavior by analyzing video material becomes

an important task as it helps to overcome these limitations. Because many retailers are already

gathering video data, methods of computer vision and video mining can be applied to the problem.

[4]
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The task of automated activity recognition for marketing purposes can include various subtasks

such as customer-product interaction, unusual event detection, customer group behavior analysis

and others. Activity recognition is an ordinary task for the human observer. To have an automated

system discriminate between various types of activities is, in large, an attempt to simulate the results

of high level visual information processing in a human brain by means of computer vision. It is a

combination of the state-of-art methods and the knowledge about how humans process this type of

information, such as creating higher level abstractions, from the visual observations. Apart from

productivity gains and resource savings, this is why automated customer activity analysis is an

interesting and challenging problem.

1.2 Goals

One of the most important goals in the video analytics domain is to extract semantic informa-

tion about a scene. Humans and their interactions are some of the most significant components in

the scene, actively affecting the environment and the actors surrounding them. Studying human

activities in retail contexts can be considered an attempt to formalize these interactions as applied

to marketing, to be further used in developing formal indicators of the retail store performance.

Despite a large array of research activities in short term tracking there have been few attempts to

produce a consistent track throughout time spans substantial enough to attempt human behavior in-

terpretation. Typically, in machine vision publications of the past, visual tracking is performed on

sample video datasets of not more than several minutes in duration. In some scenarios this length is

enough to detect simple actions involving a single human (sitting down or picking up an object) or

even short interactions involving multiple humans (a handshake or meet-then-split sequence). Alas,

the information contained in such short video sequences is usually insufficient to derive any reliable

conclusions about high level group behaviors. The reason for this is because such behaviors have

multiple manifestations that may be separated in time. For example imagine a scenario where a

group of people interact as they enter the store, later people in the group split to do their individual
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shopping, but at the end the group re-assembles to proceed to the checkout.

The ultimate goal of this research is to achieve automated information collection from video

sequences observed in retail stores. This translates into extracting semantic, high-level information

about human behaviors from long tracking sequences with the aim to pin-point specific types of

activities that are interesting from the marketing research viewpoint. One particular type of infor-

mation of interest is the location of customers at each instant of time and their interactions with

products, peers, and employees.

The aim of this study in automated human tracking and activity recognition is the marketing

driven analysis of retail store environments. The purpose of building a computer vision system for

customer activity recognition then becomes twofold: to develop a set of methods for automated

recognition of human activities in crowded environments and to recognize specific patterns of cus-

tomer movements in order to facilitate marketing analysis

To identify the customers who are shopping as a group we have designed a distance metric,

measured on the traveled trajectories. This metric, which incorporates space and time deviations

between two paths is then used in a clustering system to label shopper groups in the input video.

We further perform histogram analysis to detect store employees and motion dynamics analysis to

detect dwelling customers.

To summarize, in this work we will address the following problems:

• Detecting and tracking human bodies in complex environments using a single stationary cam-

era

• Creating formalized definitions of grouping events and activities

• Developing methods to detect grouping events and activities in tracking sequences

• Collecting quantitative statistics about grouping activities
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1.3 Contributions

Visual tracking is a difficult problem for computer vision because human body is a highly articu-

lated, non-rigid and often a self-occluding object. Each human body is unique due to the differences

in shape, clothing color and texture, as well as gait and other dynamically changing characteristics.

The case of a retail store, which is a crowded environment where multiple, partial and full occlu-

sions may occur, makes this task even more challenging. Moreover, computer science has little

understanding of how to formally define human activity or which manifestations of particular activ-

ities can be considered indicative. The problem then can be stated as follows: as manual analysis of

customer activities in the retail environment becomes time- and resource consuming, it is necessary

to develop an automated computer vision system to detect patterns of customer activities as well as

to record time, place, duration and other relevant characteristics of their activities.

In its foundation, the system presented here segments foreground regions in each frame by

using our novel, adaptive background model. Because each foreground region may contain multiple

people, we further hypothesize the number of human bodies within each such region by using the

head-candidate selection algorithm. The head is chosen as the most distinguishable, visible and

pronounced part of the human body, especially when the observation is made with a multitude of

objects occluding the lower parts of the body. Here we present a new method for head candidate

detection, which uses the knowledge of camera model to achieve more discriminating estimates

of head locations. For human tracking, we construct a Bayesian inference model operating on a

Markov chain, where the states of the chain represent the parameters of the tracked customers. The

inference is based on the a priori knowledge of the human body parameters, the store layout and

geometry, observations of the body appearances at each frame and the temporal link to the previous

state. To make the inference computationally efficient, we introduce a number of new reversible

transformations with respect to the system state and apply them as part of the Monte-Carlo stochastic

optimization approach.
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The activity recognition work in this thesis was inspired by the studies of swarming behav-

iors in living organisms and their consequent implementations for modeling systems with complex

intra-connectivities. We present a generalized extensible framework for automated recognition of

swarming activities in video sequences. As one instance of this framework we present a method to

detect shopper groups in tracked video sequences of retail stores. Our system uses tracked coor-

dinates of customers to detect a series of swarming events, i.e., the scenarios where several people

behave with intrinsic group characteristics. There can be multiple events for a single group as peo-

ple who enter the store as a group may repeatedly split apart and reconvene. Therefore, swarming

events serve as short-term manifestations of a longer-term group behavior, which we call a swarm-

ing activity. In Chapter 5 we describe how two stages of agglomerative clustering can be used

to detect shopper groups. At the first stage, to detect swarming events we employ a deterministic

clustering of inter-actor discrepancies in location, orientation and dwelling status. The number of

clusters and termination criteria is determined automatically by optimizing the clustering validity

indexes. At the second stage our system integrates large quantities of swarming events to obtain a

shorter list of more meaningful clusters, corresponding to shopper groups. Considering several clus-

tering methodologies, we found that the fuzzy agglomerative techniques, proposed in [25], achieve

the best segmentation and are robust to noise in the form of outliers.

The results obtained in this work demonstrate the ability of our method to detect such activities

in congested surveillance videos. In particular, in three hours of indoor retail store videos, our

method has correctly identified around 80% of valid “shopper-groups” with a < 2% level of false

positives, validated against human coded ground truth.

The structure of this thesis is as follows. Chapter 1 defines the scope, goals and key contributions

of this thesis. In Chapter 2, we provide an overview of the existing research in human tracking and

activity recognition with focus on retail applications. Chapter 3 describes the experimental setup,

hardware, and computational modules involved in the system. Chapter 4 describes the algorithms

and underlying model for human tracking and Chapter 5 presents the conceptual groundwork and a
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method for detecting group activities. We present quantitative results for both tracking and activity

recognition, and highlight several interesting findings in Chapter 6. We conclude by summarizing

main achievements of this thesis, analyzing imminent shortcomings and highlighting some future

work in Chapter 7. A comprehensive bibliography and index are included at the end of this thesis

for the convenience of the reader. Appendices include in-depth formal descriptions of algorithms

and illustrations too large to appear in the main part of the thesis.



2

Related Work

The area of my concentration is human tracking in complex environments and human activity

recognition. In this chapter we review existing approaches in tracking people in videos from station-

ary cameras and the methods for detecting activities of groups of people in these video sequences.

2.1 Human Tracking

The problem of automatic, real-time human detection and tracking has received a lot of attention

in the machine vision community and is now identified as one of the key issues in numerous ap-

plications ranging from surveillance, autonomous navigation, and robotic systems [13, 51] through

crowd behavior modeling and human activity recognition [29, 53, 56].

Significant progress has been made in detection and tracking of people. The majority of the

studies address tracking of isolated people in well controlled environments (typically the office

space), however, there is increasing effort in tracking people specifically in crowded environments

[11, 52, 29, 28, 31, 23]. It is worth noting that many works assume the luxury of multiple well-

calibrated cameras or stereo vision, which are to a large extent not yet present in most retail es-

tablishments and/or do not have the desired overlapping fields of view. In contrast, cheap low-

resolution digital monocular color cameras are becoming more and more readily available as well

8



2. Related Work 9

as the hardware for capturing compressed real-time streams provided by these cameras.

In videos taken with a stationary camera, background subtraction is a primary technique used

to segment out foreground pixels. Statistical background modeling based on color distortion has

been presented in [34], but a single mean for each pixel is unlikely to account for the noisiness

of the background in the changing environment of the store. We have also given consideration to

the methods that use a mixture of Gaussians (MoG) to model each pixel [63]. These methods are

superior to the single-modality Gaussian based approaches, yet they operate based on the assump-

tion of a fixed number of modalities which fail to robustly and comprehensively accommodate the

noise and artifacts created by video compression algorithms. We have developed an adaptive back-

ground model based on the dynamic codebook approach which compensates for these problems.

We have built upon the methods utilizing a variable number of modalities [43] to have the model

adapt to changing background conditions while performing background subtraction. Various color

spaces have been investigated for foreground segmentation. The initial success of using HSV, LAB

or YUV spaces [66, 17] to remove the luminance component, therefore reducing lighting artifacts,

was not confirmed by this work. We found that in the tight space of the store environment the inter-

play of colors and cast shadows contributes as much to the changes in hue as to the changes in the

brightness itself.

Most visual tracking systems use some model of human body shape and appearance. Modelling

a body at a joint level, by estimating corresponding angles between limbs and imposing constraints

from human physiology has been done by several researchers [69, 71]. For the video dataset in this

study, given the quality and the resolution, i.e. the number of pixels typically making up a single

body, as well as the complexity of the scenes (with all external and self occlusions) we found this

approach impractical. Single shape primitives (e.g. cylinders, ellipsoids or cones) were shown to

somewhat address these shortcomings by simplifying the model and are the closest to our work.

Appearance can be modeled based on color or texture features for the body as a whole [62, 45]

or for separate parts [60]. There was only a limited focus on modeling dynamic changes in the
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appearance and shape of the person and updating the state of changing environment. Here we

show how the models can be extended by dynamically updating color representations. Overall,

robust initialization and adaptation of shape and appearance models remains an open problem in the

machine vision community.

To create the initial estimates for any tracking algorithm, some form of head position estimation

has been used in related studies. In [29, 71] the vertical projection histogram was computed to

reliably establish the location of head-candidates. Although the aforementioned approach shows

promising results with the horizontally looking camera (i.e. the optical axis parallel to the ground

plane), in this paper we make the argument that such a techniques will be prone to significant

distortion in the case of ceiling mounted camera if the camera pose is not accounted for. As a result

we are using the projection histogram that accounts for the camera and 3D scene parameters.

Once body candidates have been established, one of the primary goals of the tracking system

becomes finding correspondences in time for each such body. The problem is made more complex

by the fact that the number of the people in the scene at any time can either increase (when new peo-

ple are entering the scene) or decrease (when people are exiting the scene). Temporary appearance

and disappearance can also be produced by people fully or partially occluded by rigid objects in the

scene as well as by other moving humans. Even if the number of tracked objects remains constants

this could be due to the same number of people entering and leaving simultaneously.

To deal with these complexities we developed a generative tracking framework based on the

newly found implementations for Markov Chain probability density sampling. In recent research,

random sampling was shown not only to successfully overcome singularities in articulated motion

[21, 55], but particle filtering approach applied to human tracking has also demonstrated potential

in resolving ambiguities while dealing with crowded environments [38, 64, 42]. Working within the

Bayesian framework it has been shown that particle filters can efficiently infer both the number of

objects and their parameters. Another advantage is that in dealing with probability distributions of

mostly unknown nature, particle filters do not make Gaussian assumptions, unlike Kalman filters
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[40, 61]. The canonical conditional density propagation [37] incorporates the complexity of the

scene but is computationally costly and prone to getting stuck in local minima. In these papers

each system state is a multi-body object, which is allowed to change in size (as people enter and

exit). Additionally, the authors introduce some informed particle transitions that can significantly

reduce the computational complexity and help overcome local optima by utilizing knowledge of the

underlying process.

2.2 Activity Recognition

Tracking followed by the analysis of customer behavior in stores is becoming an increasingly

active subject in computer vision publications [29, 28, 31, 71]. In the computer vision community,

detection of shopper groups in checkout lines has been attempted by Haritaoglu [28]. For group-

ing, authors use inter-body distances as well as such specific environmental clues as the cashier’s

activities to determine the start and end of shopping transactions. Several approaches exist based on

Discrete Fourier Transform and Dynamic Time Warping exist for comparing time series and have

been used to measure similarity between motion trajectories. Most recently a method based on the

longest common subsequence for comparing trajectories has been implemented by Buzan et al. in

[5]. The authors perform trajectory-based clustering and retrieval, using a modified version of edit

distance, called the longest common subsequence. Similarities are computed between projections of

trajectories on coordinate axes. Trajectories are grouped based on this distance, using an agglomer-

ative clustering algorithm. The specificity of our task is that it requires a relative time component —

as opposed to comparing just the shapes of the trajectories, yet it must not account for time warps

— as is done in speech recognition.

Rosario et al. [56, 59] have developed a framework based on coupled hidden Markov models

(HMMs) to recognize pedestrian interactions in visual surveillance videos. In this work, simple

behaviors such as walking or changing direction are grouped into higher level interaction scenarios,
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for instance ”approach, meet and walk together.” This publication is, to our knowledge, the closest

to our work, with the key difference being that the time span that we consider to find shopper groups

is in the order of tens of minutes (i.e., it is much longer). Additionally, we formulate our model as a

recognition of the fittest swarming behavior, which gives us a freedom to not establish explicit ties

between events present in Markov modeling.

Another approach is to consider single- or multi-threaded events [33] with consequent events

satisfying a predefined decision tree. Here activity is considered to be composed of action threads,

each thread performed by a single actor. A thread is modeled by a stochastic finite automaton

of event states, which are derived from the trajectory and shape of moving blobs via Bayesian

inference. However this method is more suitable to address single actor behaviors with a well

defined time-sequential structure. The interactions between two or more actors are bracketed into a

limited number of mutually exclusive behavior scenarios, which usually span less than one minute

in time. While this approach has shown some good results on further dissecting human interactions

into shorter pieces, its nature is not suited to perform well with the long-term behavior dynamics.

Some attention has been given to person-to-person interactions in the context of security appli-

cations. In [2] the authors detect hand gestures by using a context-free grammar parsing mechanism.

The grammar and the parser provide longer range temporal constraints, disambiguate uncertain low

level detections, and allow the inclusion of a priori knowledge about the structure of temporal events

in a given domain. Again the attention here is given to the events happening sequentially in time.

We will show that such an approach fails when applied to long-term group detection.

Several attempts were made at group activity recognition in the context of intelligent rooms. In

[70] a two-layer HMM framework is presented to handle a bi-modal input from audio and video.

The activities of each actor in the meeting, such as speaking or taking notes are hierarchically

combined into activities like ”presentation” or ”white board” that depict the character of group

behavior. It is worth noting that this study and the research in [56, 68] are some of the few works

that introduce a two-level event/activity hierarchy. As with all HMM methods, a significant data
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set and human resources are required to train the transition probabilities in Markov models in a

supervised fashion.

An unsupervised statistical solution for detecting play/break activities in soccer games using

hierarchical HMMs is presented in [68]. A Monte Carlo optimization is performed using a set

of prior prototypes derived from the soccer playing rules, with dominant color ratio and motion

intensity used as low level features. This is the case when the application domain knowledge is built

into the system, therefore removing the training stage altogether.

Most recently, an unsupervised bottom-up activity recognition approach was presented in [67].

Their method was based on low-level descriptors, in particular location-specific detection of sig-

nificant pixel changes. The metric called Pixel Change History (PCH) copes well with noise and

clutter, present in complex scenes, where conventional tracking approaches would produce highly

fragmented ”tracklets”. For our purposes, however, it is be suitable, since the specific number of

actors, is of primary interest, therefore an explicit tracking of interacting objects is desired.

The works reviewed in this chapter only present a fraction of the whole body of research in

human motion capture and activity recognition. We purposefully did not elaborate on human action

detection, as it is quite different from activity recognition, in that it looks at the detailed actions

performed by a single actor, such as running or sitting down. Activities, as defined in [53]: ”...are

larger scale events that typically depend on the context of the environment, objects, or interacting

humans”. Throughout this thesis, whenever need be, we will refer to such ”actions” as individual

activities, but the emphasis of this work remains on group activities.

Our novel paradigm for modelling human activities as multiple instances of swarming behavior

is presented in Section 5. Swarming behavior in biology, is an activity of a decentralized group

of multiple agents, such as schools of fish and flocks of birds. It was observed that the agents act

based on a set of simple spatial rules to interact with their immediately neighboring agents. This

observation has lead to an idea that this type of process can be used to model other seemingly

complex systems, consisting of multiple simpler parts and has given rise to a whole new research
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area of swarm intelligence in artificial intelligence [39]. Several studies in this topic deserve a

special mention.

One of the early implementations of swarming intelligence was presented by Reynolds [58] for

animating the flock of birds in computer graphics. Each bird/actor there following a set of simple

rules, such as steering toward the center of the flock and maintaining distance with other flock mem-

bers. Intelligent swarms and in particular a technique called Particle Swarm Optimization or PSO

are currently applied for simulation of complex processes involving multiple locally-interacting

agents [10]. In this approach the problem is modeled by particles in multidimensional space. These

particles are flying through hyperspaceRn and have two essential reasoning capabilities: their mem-

ory of their own best position and knowledge of the swarm’s best, i.e. the particle with the smallest

objective value. Members of a swarm communicate good positions to each other and adjust their

own position and velocity based on these good positions. Our method is different from PSO in that

the target value is already given to us by the tracker. From the generative approach we transition to

a recognition problem with the goal being: find a set of particles that, given their tracking data, best

behave as a group.

Despite many successful applications of swarm intelligence models, to our knowledge there

have yet been no attempts at using this paradigm to solve the problem of group activities in human

behavior.



3

System Overview

3.1 Experimental Setup

In this work two architectures for testing the accuracy of human tracking and precision of shop-

per group detection were developed. These designs are based on two types of cameras located in

retail stores: a perspective projection digital security camera and a panoramic camera.

The perspective projection camera provided the video data for developing and testing of the

tracking algorithm. The data were collected from several camera positions and at various times of

the day. This included a number of sequences from security cameras placed in an electronics retail

store as well as a number of indoor and outdoor publicly available sequences from CAVIAR [6] and

OTCBVS [19] datasets. The resolution of the cameras was 320x240 color pixels.

For the panoramic camera, data were collected over a period of several weeks and recorded to

a portable storage media. We used a panoramic camera system from PointGrey [36], consisting

of six CCD cameras with 1024x768 resolution. Six images are post-processed to give a single

radial panoramic image of 2048x512 in unprojected-map coordinates (see Section 4.1.1 for details).

Overall we analyzed 3 hours of panoramic video and base our evaluation of activity recognition

method on these experiments.

Sample frames with tracking results for all datasets described above are presented in Appendix B.

15
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Some of the conditions that are similar for both testbeds are described below. In all sequences, cam-

eras were mounted on the ceiling or the structures located close to the ceiling. Lighting conditions

varied from natural daylight conditions with rapidly changing cloud cover, to a typical retail store

lighting — a combination of incandescent and fluorescent light sources. Data analysis was con-

ducted offline. The most time consuming stage is tracking, with speeds ranging from 0.05 to 5

seconds per frame, depending on the complexity (number of tracked bodies) of the scene. The

resolution of the input scene image also influences the speed of tracking at the background seg-

mentation stage and, implicitly, at the body-model construction phase, since the higher resolution

camera covered more square footage, therefore including more bodies to track.

During the tracking stage the number of errors of type I (false negatives) and type II (false pos-

itives) tend to accumulate, especially when tracking is performed on hours of video data. While

testing the accuracy of our activity recognition methods it was important to prevent the tracking

errors from influencing the activity analysis. Therefore, to validate our activity detection method

a ground truth was created by manually connecting broken tracks, removing the redundant ones

and adding the ones missed by the system. The correction process was performed by several do-

main experts. This data was recorded in the format identical to the tracking performed completely

automatically. The reader is referred to Chapter 4 for a detailed description of the tracking data

format.

3.2 Overview of the Computational Framework

The methods presented in this paper are aimed at developing a tool for retailers to analyze

patterns of behaviors by shoppers in stores and using the results of this analysis to make various

marketing decisions. The system consists of processing layers ranging from low-level image pro-

cessing operations, to tracking the positions of individuals in the store videos, to the higher level

analysis of their movements and activities in the store. Figure 3.1 shows the various layers of the
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system and the individual modules that make up these layers:
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Processing

Camera 
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Figure 3.1: Major processing components of our system

The first layer consists of the pre-processing steps required by the tracker. Background sub-

traction is accomplished by learning a background model which incorporates knowledge about the

changing lighting conditions of the scene. The output from the background subtraction is the binary

foreground map as well as an array of foreground blobs, each represented as a 2D contour. The

process of background learning and the algorithm for separating it from the foreground is presented

in Section 4.1.2 of Chapter 4. Construction of a camera model at this step provides the next stage

of the system with the locations of the vanishing points as well as the scale factor. In addition,
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knowledge about the camera model and the approximate shape of the shoppers is also used to map

the position of the tracked person on a floor map of the store and to obtain rough estimates of the

positions of their heads in order to resolve multiple shoppers possibly occluding each other. In ad-

dition, the model of the static obstacles, adds information to deal with the occlusions by the store

fixtures. Here, we also run an algorithm to detect head candidates for each human body. The details

of this layer are described in Section 4.1 of Chapter 4.

The next layer implements the tracker. The goal of the tracker is twofold. First it attempts to

model each human body in the static scene, so that it best describes the observation. It relies on

the information about the foreground (i.e. the moving regions of the image) as well as the head

candidates and obstacles, created in the previous step. The second goal of the tracker is to introduce

temporal continuity, by building correspondences between the bodies in the current frame and their

counterparts in the previous frame. We show how both of these goals can be achieved by modelling

the system as a Markov Chain, where each state corresponds to one moment in time. A state is a

combination of the individual parameters of each tracked body, such as position, dimensions and

color histogram. Our tracker then uses a probabilistic sampling method to modify the current state

of the Markov Chain. The fitness of the new state is assessed based on how it matches the new

observation and how well it ties to the previous state. The fittest candidate becomes the new state

of the chain. This way, the tracker maintains the identity of people in the store, dynamically assigns

identities when new shoppers enter the scene and removes the identities of the customers leaving the

scene. The results of the tracking are also channelled back to the background subtraction layer to

help exclude human bodies from the background model. The details of this layer are also described

in Chapter 4.

The third layer uses the tracking results from the first two layers to detect short-time manifesta-

tions of a grouping behavior. As part of this analysis, the paths of the shoppers on the store floor are

extracted. This information is then used to determine if some of the shoppers exhibit characteristics

of group behavior to identify swarming events, based on the pattern of their coordinated movements
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in the store. By examining the co-location, co-orientation and co-dwelling of the people in a static

frame, we are using agglomerative clustering to detect the customers that exhibit the most of the

above group characteristics. The details of this layer are described in Chapter 5.

Finally, our activity detection method uses distances between the events detected in the previous

step to form groups of events, indicative of the behavior of shoppers (i.e.swarming activities). This

is done as part of a probabilistic clustering framework. Our algorithm assigns one or more events

to one or more activities with a certain probability. For instance, if enough events relate strongly to

a single cluster, then this supports the hypothesis in favor of group behavior. For this purpose we

define an event proximity measure which can be computed for each pair of events. Based on this

measure, the clustering is performed, and the effects of outliers are alleviated by the use of robust

estimators. We describe our method and related data analyses in Chapter 5.



4

Detection and Tracking

Detecting and tracking human body position is a necessary intermediate step in the process of

developing automated customer activity recognition system. Tracking in crowded environments

is a particularly complex case of human tracking primarily because of the high level of entropy

generated by multiple body occlusions and also because the complexity of the model rises expo-

nentially with an increasing number of people. For this task we developed a Monte Carlo based

generative model within the Bayesian inference framework, which we use in a time-efficient man-

ner to speculate about future system configurations based on two pieces of information: current

model state and current observation. The novel algorithm for adaptive background subtraction we

developed specifically addresses the problems of low-quality, highly-compressed videos, where the

backgrounds can be better represented by a dynamically growing codeword of pixels. Initialization

of the tracking model is done by detecting human head candidates using vanishing point projection

histograms. Individual human body position of each customer in our system is estimated by our

mean-shift tracker for ellipses with a weighted anisotropic Gaussian kernel, that tracks based both

on the color histogram difference as well as on the background/foreground mask consistency [49].

20
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4.1 Detection

To identify the position of each subject in the scene we first employ a range of detection tech-

niques on a static video frame. These techniques do not consider any temporal dependencies and

serve merely as an initialization step for the tracker. The accuracy of this step, however, is of utmost

importance, since any initialization errors tend to quickly propagate throughout the later stages of

processing.

4.1.1 Camera Modelling

While building realistic human body models during the higher-level tracking stages of the sys-

tem, one cannot rely only on the projected image for several reasons. Primarily, the reason is the

ambiguity that arises from the possibility of projecting several distinct world objects into the same

location in the image. Additionally, we would like to approximate each human body with the 3D

shape (an ellipsoid) and thus the image coordinates are not suitable. This is why it is important

to work in 3D scene space. The blob-level observations only provide us with the location in the

two dimensional image plane and therefore there is a need to create mechanisms of converting the

location of the objects to the three dimensional world. To accomplish this, intrinsic and extrinsic

camera parameters must be estimated in order to relate the image space to the scene space. Through-

out the paper we will use the following notation. Let {X,Y, Z} be a system of world coordinates

and Ocam = {Xc, Yc, Zc} camera coordinates where Xc = 0, Yc = 0 and Zc is the elevation of

the camera in cm. Let Osph = {Xs, Ys, Zs} denote the center of the spheroidal body model and

O = {Xo = 0, Yo = 0, Zo = 0} be the origin of the world coordinate system.

4.1.1.1 Perspective Projection Camera

A monoscopic camera can be modelled by the perspective projection or a pinhole camera model.

The model consists of the projection matrix P which converts the coordinates of a point ~X in the
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real world to the homogeneous coordinates ~x in the image plane ~x = P ~X . P is a 3 × 4 matrix as

presented in Equation (4.1):

P = C[R|T ]

C =


fkx 0 x0

0 −fky y0

0 0 1


(4.1)

The matrix C contains intrinsic parameters of the camera: f — the focal length, kx and ky

— dimensions of the image pixel, and x0, y0 — the principal point (intersection of image plane

with the optical axis in image coordinates). R is the camera rotation matrix and T is the camera

translation vector. For the implementation details and advanced properties of pinhole camera model

see [24].

The parameters of a perspective projection camera model are usually found by placing a recog-

nizable object (such as the checker board), with well known 3D coordinates, into the scene and then

finding point-to-point correspondences between the image and the 3D points (i.e. the calibration

process). This method is, however, too intrusive to be applied in the operating store environment.

Our solution is to use the knowledge about the geometric properties of the in-store fixtures for cam-

era calibration. Many man-made environments contain rectilinear structures in the scene. We have

used algorithms that extract vanishing points from the images of parallel lines in such rectilinear

scene structures [15, 9]. The projection of parallel lines in the image converges in the so-called

vanishing point. We are interested in finding the vertical vanishing point VZ as the center of inter-

section of the lines which point in the vertical direction. Two lines are sufficient to find VZ , but in a

noisy environment it is beneficial to consider more lines to achieve higher accuracy in the location

of the vertical vanishing point VZ . This is computed as the centroid of the intersection points of

the images of all the 3D vertical lines. In our application environment there is an abundance of
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man-made rectilinear structures with vertical lines that can be used for that purpose (aisles, boxes,

markings on the floor, doors and windows).

In the calibration phase, a number of lines, parallel in space, are designated manually with the

help of a simple point and click interface (Figure 4.1). Each line is represented as two endpoints

e1 = [x1, y1] and e2 = [x2, y2]

Prior to computing the vanishing point all line endpoints are converted into the homogeneous

coordinates with the origin in the center of the image [w2 ; h2 ], wherew and h are the width and height

of the image in pixels, respectively. The scaling factor is set to the average of image half-width and

half-height (w+h)/4 for better numerical conditioning (i.e. to prevent floating point precision loss;

see [15]).

e′1 = [x1 ×
w

2
, y1 ×

w

2
, (w + h)/2]

e′2 = [x2 ×
w

2
, y2 ×

w

2
, (w + h)/2]

Then in homogeneous coordinates each line can be computed as a cross-product of its endpoints

l = e′1 × e′2.

The 3 × 3 “second moment” matrix M is built from an array of lines li and VZ is computed

from the solution of M by singular value decomposition as the eigenvector that corresponds to the

smallest eigenvalue [12].

The conversion from 3D world coordinates ~X = {X,Y, Z, 1} to 2D homogeneous image co-

ordinates ~x = {x, y, 1} is done by left multiplying by 3 × 4 projection matrix: ~x = P · ~X . Con-

sequently homogeneous coordinates are converted to image coordinates. The conversion from im-

age coordinates, given the Ẑ coordinate in the world is done by solving the system [sx, sy, s] =

P · [X,Y, Ẑ, 1] using singular value decomposition.
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Figure 4.1: Vanishing point VZ can be found
by manually marking two or more vertical
straight lines

Figure 4.2: Marking the objects of known
height to determine the scale

4.1.1.2 Stitched Panoramic Camera

To have a surveillance system fully cover the scene in the retail store, several applications with

multiple perspective projection cameras have been proposed [8, 54, 41]. This setup requires tracking

across different cameras and is associated with the significant increase in system complexity, both

in hardware and in software. Instead, we used a more easily deployable tracking system, which

consisted of a single LadyBug panoramic camera [36].

The output from such a camera, used in our tracking experiments is a 1024 by 256 panoramic

image (see Figure 4.4), stitched from the outputs of 6 monoscopic perspective cameras (see Fig-

ure 4.3). The device is located in the middle of the store, at an elevation of 3 meters and consists of

one camera looking straight down and 5 additional cameras located around the horizontal circum-

ference at even intervals. The store area is approximately 30 × 30 meters, with the most accurate

tracking achieved within a 20 meter radius and gradually degrading towards the periphery, because

the occlusions become more pronounced and the resolution per tracked body is lower.

The panoramic image in Figure 4.4 is presented in the form of an unprojected map also referred

to as equirectangular projection. In an unprojected map the horizontal coordinate is the longitude

and the vertical coordinate is the latitude. In our case, for each pixel px,y, lat(p) = x ∗ 360◦/w and
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Figure 4.3: Output from six monoscopic sensors within the Ladybug (bottom-right: output from
downward facing camera [36]

Figure 4.4: Stitched panoramic output from Ladybug
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lon(p) = 90◦+y ∗90◦/h, where w and h are image width and height in pixels. This makes x range

from 0◦ to 360◦ and y range from 90◦ to 180◦, effectively covering the southern hemisphere with

the south pole located directly below the camera.

The conversion from image to world Euclidean coordinates is quite straightforward in this

model, with the south pole point on the floor (the center pixel in image 6 in Figure 4.3) desig-

nated as the origin [x = 0, y = 0, z = 0]. Note that the vanishing point histogram now reduces to

its special case of vertical projection histogram, since the vertical projection lines leading to Vz are

now parallel. The conversion from image coordinates, given the Ẑ coordinate in the world is done

by first converting to spherical coordinates {x, y} → {φ, θ} and then finding the world coordinates

from similar triangle geometry


X = cos(θ) tan(π − φ)(Zc − Ẑ)

Y = sin(θ) tan(π − φ)(Zc − Ẑ)

Z = Ẑ

For each of the two camera models outlined above the tracked coordinates are eventually con-

verted into floor coordinate, i.e. Xf , Yf in the floor plane with Z = 0 in the world coordinates. This

way each track can be viewed as a poly-line or a spline spreading across the floor map of the store.

4.1.2 Background Modeling and Subtraction

The ability to extract moving regions in the video data is crucial in visual tracking of humans.

The process of the background subtraction is a class of methods for separating the moving pixels in

the image, from the static background. The basic assumption underlying these approaches is that

the visual appearance of the static parts in the scene (as appearing in the image) remains constant,

while the position of moving objects changes from frame to frame. Thus, if observed for some time,

one can accumulate the image of the stationary parts of the scene and further subtract it from the
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future video data.

Video sequences from the in-store surveillance cameras are frequently compressed with MPEG-

like algorithms, which usually create a periodic noise on the level of a single pixel. Changes in

lighting and dynamic changes in the scene layout, such as new fixtures being introduced, all add

to the complexity of background separation task. We have incorporated a multi-modal statistical

background model based on the codebook approach based on the research by Kim et al. [43] with a

number of improvements, to achieve a stable and sustainable foreground segmentation.

In order to capture multi-distributed light variation on a pixel level and to account for the peri-

odic video compression noise, we model each pixel in the image as a dynamically growing vector

of codewords, a so-called codebook (Figure 4.5). A codeword is represented by: the average pixel

RGB value and by the luminance range Ilow and Ihi allowed for this particular codeword. If an in-

coming pixel is within the luminance range and within some proximity of RGB of the codeword it

is considered to belong to the background. During the model acquisition stage the values are added

to the background model at each new frame if there is no match found in the already existing vector.

Otherwise the matching codeword is updated to account for the information from the new pixel.

Empirically, we have established that there is seldom an overlap between the codewords. However

if this is the case, i.e. more than one match has been established for the new pixel, we merge the

overlapping codewords. We assume that the background noise due to compression is of periodi-

cal nature. Therefore, at the end of training we clean up the values (“stale” codewords) that have

not appeared for periods of time greater than some predefined percentage frames of in the learning

stage as not belonging to the background. For this, as outlined in [43], we keep in each codeword a

so-called “maximum negative run-length (MNRL)” which is the longest interval during the period

that the codeword has not occurred. One additional benefit of this modeling approach is that, given

a significant learning period, it is not essential that the frames be free of moving foreground object.

The background model can be learned on the fly, which is important in the in-store setting, where

the scene cannot be easily vacated of moving people. Also, in our adaptive background model, the
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changing illumination conditions, such as the addition or removal of light sources (e.g. a light bulb

burning out) can be promptly accounted for.

codebook

codeword

Figure 4.5: Color codebook formation. Each pixel is modelled as a stack of codewords — a code-
book.

As a further enhancement, we eliminated the background learning stage as such to enable our

system to operate dynamically. This was done by adding an age parameter to each codeword as

the count of all the frames in which the codeword has appeared. Now, we can start background

subtraction as soon as the majority of the codewords contain modalities that are sufficiently old.

Typically, around 100 frames in our test sequences presented in Chapter 6 were enough for reliable

detection of the foreground objects. This improvement also allows us to perform the removal of

“stale” codewords periodically and not as a one-time event. Now, to determine the “staleness” of a

codeword we consider the ratio between its MNRL and its overall age. We have found that when
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employing “stale” pixel cleanup for the heavily compressed sequences the length of the codebook

required to encapsulate the background complexity within one pixel is usually under 20 codewords.

Additionally, we store the last frame number flast in which the codeword was activated (i.e. it

matched a pixel). To make our model dynamic, we discard the codewords that have not appeared for

long periods of time, which can be computed as the difference between the current frame and flast

for any given codeword. These instances indicate that the background scene has changed, possibly

due to a stationary object placed or removed from the scene, thus causing our model to relearn it

dynamically.

As outlined in Figure 3.1 the first critical step in the presented system is accurate and robust

segmentation of moving foreground regions from a relatively static background. A blob, in general

terms, is a moving region of the image that can consist of the pixels corresponding to one or more

bodies mixed with the rigid moving objects (such as carts or strollers) and other noise artifacts (e.g.

changing illumination). Each blob in our system is represented as a polygon in image coordinates.

The binary mask after background subtraction is filtered with morphological image operators

to remove noise pixels and to bridge small gaps that may exist in otherwise connected blobs. This

results in an array of blobs created where each blob b is represented as an ordered list of vertices vi,

i = 1, . . . , n in two-dimensional image space. The vertices describe the contour of b in which each

adjacent pair of vertices vj and vi is connected by a straight line.

4.1.3 Finding Head Candidates

The surveillance cameras are typically mounted on the ceiling, more than three meters above

the ground. This can be advantageous in discriminating separate humans within a crowd. The head

of a human will have the lowest chance of being occluded, therefore we pursued the goal of finding

head candidates — points that represent the tops of the heads in a blob. In this section, we describe

head detection in more detail.
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To generate human hypotheses within a blob detected in the scene we have used a principle

similar to that of the vertical projection histogram of the blob [29]. The vertical projection histogram

is a way of finding peaks in the silhouette of the human body, by aggregating the values in a binary

foreground mask along each vertical column of pixels. This can yield a histogram, with its maxima

roughly corresponding to the head locations. Of course, this method makes the assumption that the

observation is made with the front facing camera, with the optical axis parallel to the ground. Such

an assumption clearly is not consistent with ceiling mounted cameras, such as the ones typically

placed in retail establishments. Our novel method utilizes information about the vanishing point

location we obtain from the camera during the calibration stage. The projection of the blob is

done along rays going through the vanishing point instead of the parallel lines projecting onto the

horizontal axis of the image.

Figure 4.6: Finding extremes in VPP his-
togram

Figure 4.7: Vanishing point projection (VPP)
histogram

In our implementation each foreground blob is represented as an array of contour vertices Ti

(see Figure 4.7), converted to homogeneous coordinates as described in Section 4.1.1. For each i

our method starts at Ti and counts the number of pixels hi along the line ri = Ti ×VZ coming

through the vanishing point, obtained earlier as part of the camera calibration process.

Then ri is rasterized by Bresenham’s algorithm. Notice that VZ is an ideal point which can



4. Detection and Tracking 31

sometimes fall out of the image boundary or even be situated at an infinity (in the case that the 3D

parallel lines are also parallel to the image plane). Therefore, we needed to modify the rasterization

algorithm to stop as soon as it reaches the image boundary or VZ , whichever comes first. Note that

there is no risk of the process spreading to adjacent blobs, because the foreground mask is rendered

for each blob from its contour independently.

The process continues even after the end of the foreground region is reached, which can be

defined as the first non-foreground pixel, to allow for important contour concavities, such as arms

as well as gaps that are due to camera noise (e.g. see the line originating from T1 in Figure 4.7).

The last foreground pixel reached in such a manner is considered a bottom candidate Bi and the

count of foreground pixels between Ti and Bi is recorded into the histogram bin i.

Resulting from this is our vanishing point projection histogram H = [hi]. We attempt to isolate

local maxima in the histogram in two steps. First, the value hi is considered a local maximum

within a window if it is greater or equal to M of its neighbors on either side (Figure 4.6 shows as an

example the window of size M = 5).

hi ≥ hj , i−
M − 1

2
≤ j ≤ i+

M − 1
2

Because this may result in a number of neighboring vertices with equal values of h selected

as local maxima, we merge all such peaks within their window M and use their average as a can-

didate. In order to account for a cyclic nature of the contour for the leftmost and rightmost bins

the neighbors are wrapped around from the end or the beginning of the histogram correspondingly.

Typically, the window size can be determined as the total number of bins in the histogram divided by

the maximum amount of candidates allowed with one blob. This number is set normally from 3 to

10 depending on the average complexity or crowdedness of the scene. We define the crowdedness as

the number of currently visible tracked bodies. After this stage all the local peaks hi < maxn(hn)/2

are further removed to ensure that only the vertices that correspond to the upper parts of the body
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are considered.

As a result of the head detection process at each frame of the video sequence we obtain an array

of head candidates HC, ∀hc ∈ HC = {hcx, hcy}, where each candidate is a pair of coordinates in

the image plane. A matching floor candidate fc = {xfc, yfc} is created for each head candidate to

represent the point with the X,Y world coordinates equal to those of the head candidate and Z = 0

(see Figure 4.8)

Figure 4.8: Foreground segmentation results. FG regions are highlighted in green. Head and floor
candidates are shown with red and blue dots.

Using the same interactive approach as was used to obtain VZ (Figure 4.7) we also compute

VX and VY (see Section 4.1.1 for more details). For a stationary camera, this calibration procedure

has to be performed only once for the entire video sequence, assuming the position of the camera

does not change. In the same manner (Figure 4.2), the user can designate a number of vertical linear

segments of known height (e.g. aisles, shelves or boxes). Using the heights of the reference objects

to compute the projection scale and knowing the positions in the image of head candidates with their

corresponding floor locations we have employed the approach from [16, 15] to find human heights

in meters.

For more illustrative results of foreground segmentation, head candidate detection and height

estimation see Figure B.1 in Appendix B.
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4.2 Tracking

As outlined in Section 3.2, after creating the camera and background models and specifying

the appearance and shape modelling technique for a human body, we have sufficient information

to build a tracking system. The key goal of the tracker is to find a correspondence between the

bodies, already detected in the current frame with the bodies which appear in the next frame. In this

section we show how to apply Markov Chain Monte Carlo (MCMC) methods to estimate the next

state of the tracker system. Markov Chain Monte Carlo methods allow sampling from probability

distributions based on the construction of a Markov chain that has the desired distribution as its

stationary distribution. The state of the chain after a number of iterations is then used as a sample

from the desired distribution. The quality of the sample improves as a function of the number of

steps. We do not assume the explicit knowledge of our joint distribution, so we have chosen to use

Metropolis-Hastings sampling algorithm [7], which requires only that the probability density can

be calculated at a point. Below we describe the design of our tracker.

4.2.1 Bayesian Model: Observations and States

To implement Bayesian inference process efficiently we model our system as a Markov chain

M = {x, z, x0} and employ a variant of Metropolis-Hastings probability sampling algorithm [22].

The state of the system at each frame is an aggregate of the state of each body xt = {b1, . . . , bn}.

Each body, in order, is parametrically characterized as bi = {x, y, h, w, c}, where x, y are coordi-

nates of the body on the floor map, h,w its width and height measured in centimeters and c is a 2D

color histogram, represented as 32 by 32 bins in hue-saturation space. The body is modeled by the

ellipsoid with the axes h and w. An additional implicit variable of the model state is the number of

tracked bodies n. I formulate the tracking problem as the maximization of the posterior probability

of the state of the Markov chain.
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4.2.2 Computing the Posterior Probability

The goal of our tracking system is to find the candidate state x′ (a set of bodies along with their

parameters) which, given the last known state x, will best fit the current observation z. Therefore,

at each frame we aim to maximize the posterior probability

P (x′|z, x) = L(z|x′) · P (x′{x}) (4.2)

According to Bayes theorem given in Equation (4.2) we formulate our goal as finding the max-

imum a posteriori:

x′ = argmaxx′(L(z|x′) · P (x′{x})) (4.3)

The right hand side of Equation (4.3) is comprised of the observation likelihood L(z|x′), given

the proposed state and the prior probability of the proposed state. They are computed as joint

likelihoods for all bodies present in the scene as described below. The prior P (x′{x}) is deliberately

shown as a function of the previous state x to reflect the fact that a rule is applied to a first order

Markov chain.

Subsequently we use Metropolis-Hastings sampling algorithm [7] to estimate the next state of

the chain, by random sampling.

α(xt, x′) = min

(
1,
π(x′)
π(xt)

· mt(xt|x′)
mt(x′|xt)

)
. (4.4)

Where x′ is the candidate state, xt is the current state, π(x) is the stationary distribution of our

Markov chain, mt is the proposal distribution. In Equation (4.4), the first part is the likelihood ratio

between the proposed sample x′ and the previous sample xt. The second part is the ratio of the

proposal density in both directions (1 if the proposal density is symmetric).
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This proposal density would generate samples centered around the current state. We draw a new

proposal state x′ with probability mt(x′|x) and then accept it with the probability α(x, x′). The

proposal distribution is a time function, that is at each frame it will be formed based on the rules

outlined below. If x′ is accepted, it becomes the new state of the system xt+1 = x′, otherwise the

system reverts to the current state xt+1 = xt.

To form the proposal distribution we have implemented a number of reversible operators or state

mutations. There are three types of jump transitions Create new body, Remove a body, Recover a

body and three types of diffuse transitions Mean-Shift, Move, Resize implemented in our system

[46]. We give empirically chosen weights to each mutation to add more emphasis to one or another

transition type. In our application normally around 100 jump-diffuse iterations are required for each

frame to reach convergence.

The generalized algorithm for choosing and accepting the new state of the tracker is presented

in Algorithm 1.

for i← 1 to Nmutations do
apply one of the mutations probabilistically to derive a new state x′;
compute observation likelihood L(z|x′);
compute prior P (x′{x});
if α(x, x′) = 1 then

xt+1 = x′;
else

xt+1 = xt with probability α;
end

end
Algorithm 1: MCMC algorithm for generating a new state of the tracker

4.2.3 Body Shape Modelling

Each human body is modelled by a spheroid E, which is a special case of an ellipsoid, with

axis a3 = c corresponding to body height and axes a1 = a2 = a, representing body width b(w).

Experimental trials have shown no significant improvements with the introduction of the tilt angle
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of the spheroid, therefore E is vertically oriented.

The north pole of the spheroid is initialized to coincide with the head candidate V̄ = hc and

the bottom peak V = fc is positioned to match the floor candidate with Zfc = 0 being on the floor

plane.

For the purposes of efficient computation of body histograms and foreground correspondences,

ellipsoids have to be projected onto the 2D image plane. In the perspective projection model el-

lipsoids are projected to form ellipses in image plane [30]. In the panoramic model the projection

results in a distorted ellipse-like shape. Projection implementation details are described in the Ap-

pendix A.

4.2.4 Body Appearance Modelling

Let bi be a body, bounded in the image space by the rectangle xmin, xmax, ymin, ymax, for which

a 2D color histogram C is to be computed, then a Gaussian weight kernel can be defined as:

Kx,y = A exp(−
[(

(x− (xmax − xmin)/2)
σx

)
+
(

(y − (ymax − ymin)/2)
σy

)]
σx = (xmax − xmin)/3

σy = (ymax − ymin)/3

(4.5)

Where A is a normalization coefficient, and standard deviations make sure that alls significant

weights fall within the elliptical region of the body. Gaussian weight kernels K are also shown

in Figure 4.9. The purpose of such a kernel is to simulate the likelihood of any color pixel to be

representative of the one of the body’s persistent colors. We assume that each body has a fixed set

of intrinsic color descriptors, for instance skin color and hair or clothing and accessories. In any

given moment the observed colors vary based on the position and orientation of the body, various
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articulated transformations (squatting, joint bends, etc) and on the nearby objects and lighting con-

ditions. Let us assume that all of the above factors are treated as random, having a limited variance,

and the center of the physical body is less prone to such noise. Then, according to the central limit

theorem, given enough observations, the noise factors will be distributed normally.

To make use of the foreground subtraction, we use color information only from the foreground

pixels. For this purpose we create a binary mask M ∈ [0, 1], which selects only the visible parts of

the blob that correspond to the current body pixels Oi and is computed as:

M = Oi
⋂

(Z = i) (4.6)

In Equation (4.6) Z represents a discrete z-buffer defined in Section 4.2.6.

4.2.5 Priors

In creating a probabilistic model of a body we considered three types of prior probabilities. The

first type of priors imposes physical constraints on the body parameters. Namely, body width and

height are represented by Gaussian densities N(hµ, hσ2) and N(wµ, wσ2), with the corresponding

means and variances reflecting the dimensions of an adult human body physique. Body coordinates

x, y are weighted uniformly within the rectangular regionR of the floor map. Since we track bodies

which may be partially outside of the image boundaries, R slightly exceeds the visible part of the

image to account for such cases.

The second type of prior probabilities sets the dependency between the candidate state at time t

and the accepted state at time t− 1. First, the priors reflect the constancy of the physical size of the

body. Therefore we set the difference between wt, ht and wt−1, ht−1 to reduce the prior probability.

Second, we impose the motion smoothness constraint by using the distance between proposed body

position (xt, yt) and (x̂t−1, ŷt−1). Higher distances result in lower prior probabilities. Position

estimates (x̂t−1, ŷt−1) are generated by running the prediction step of the constant velocity Kalman
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Figure 4.9: Gaussian kernels used in the computation of weighted histogram and in the anisotropic
mean-shift tracking (see Section 4.2.6)
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filter on body position at the previous frame (xt−1, yt−1). The state of the Kalman filter consists of

the location of the body on the floor and its velocity. Although tracking the head seems like a first

reasonable solution, we have established empirically that the perceived human body height varies as

a result of walking, thus the position of the feet on the floor was chosen as a more stable reference

point. A second order Kalman filter, accommodating for body accelerations, was also tested with

no significant improvement in accuracy.

The third type of priors are physical constraints with respect to other moving and static objects

in the scene. First, to avoid spatial overlap between adjacent bodies (as physically impossible) we

have imposed penalties on pairs of pedestrian models located closer than their corresponding body

widths would allow. Second, a similar constraint was imposed on an overlap between pedestrians

and stationary obstacles, which were manually marked in the frame and converted to 3D world

coordinates (see Figure 4.10). We modelled each obstacle in the scene as a cuboid, with the lower

facet lying within the floor plane, the system has a potential of using other types of polyhedra, and

quadrics to represent obstacles.

When a new body is created it does not have a temporal match in the previous state of the

system. In this case we use a normally distributed prior N(d0,Σ), where d0{xf , yf} is the location

of the closest door (designated on the floor plan) and Σ is chosen empirically to account for image

noise. The same process is taking place and the same measure is used when one of the existing

bodies is deleted.

4.2.6 Likelihoods

The second component in forming the proposal probability density relates the observation to the

model state. First, for each existing body model the color histogram c is formed by the process of

weighted accumulation, with more recent realizations of c given more weight. We then compute the

Bhattacharyya distance B(c′t, ct−1) =
√
c′tct−1 between proposed histogram c′t and corresponding

ct−1 in the last frame as part of the observation likelihood (see Equation (4.7).
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Figure 4.10: Manually generated floor plan that contains information about the static obstacles in
the store
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Pcolor = 1− wcolor(1−B(c′t, ct−1)), (4.7)

where wcolor is an importance weight of the color matching
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Figure 4.11: Hue-saturation 2D histograms, with 30 by 30 bins. Examples show for three currently
tracked bodies.

Color histograms are computed with an anisotropic Gaussian weight mask as described in mean-

shift mutation below (see Equation (4.5) and Figure 4.14).

To guide the tracking process by the background map at hand, we use two more components

while computing the model likelihood: we define the amount of blob pixels not matching any body

pixels as P+ and the amount of body pixels not matching any blob pixels P− (see eq. (4.8),(4.9)).

A z-buffer Z is used to compute the blob to body correspondencies as well as for computing the

color histogram of the current observation in order to detect occlusions. In this buffer all the body

pixels are marked according to their distance from the camera (i.e. 0 = background, 1 = furthermost

body, 2 = next closest body, etc.). This way, only visible pixels are considered when computing
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the likelihood (see Figure 4.12). The Z-buffer is updated after each transition to reflect the new

occlusion map.

Figure 4.12: Z-buffer Left: Original frame with tracked pedestrians Right: Z-buffer (lighter shades
of gray are closer to the camera)

In computing the likelihood as outlined above, there is one major shortcoming overlooked in the

previous works [38, 71]. If the computation is done in terms of the numbers of image pixels, then

the bodies closer to the camera to dominate the overall configuration, and the bodies further away

are correspondingly neglected. This becomes particularly evident when the camera covers a large

area, where pedestrian image presentations can vary from under 20 pixels of overall area in the back

of the scene to more than 200 in front. In addition, such neglect makes the system very specific to

the current camera configuration and not portable to a different camera model.

However, it is impossible to fully switch to world coordinates while manipulating with blobs in

image coordinates, since no 3D body models have been assigned yet. To address these shortcomings

we have utilized a so-called “distance weight plane” D which is the image of the same dimensions

as the input frame and Dxy = |PXY Z , CXY Z |, defined as the Euclidean distance between the world

coordinates of the camera CXY Z and the world coordinates of the hypothetical point PXY Z located

at a height z = hµ
2 and corresponding to the image coordinates (x, y). The map produced in this

manner is a rough assessment of the actual size to image size ratio (see Figure 4.13).

To summarize, the implementation of z-buffer and distance weight plane allows computing
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Figure 4.13: Distance weight map. Left: Original frame with tracked pedestrians Right: Distance
weight plane (weights increase from blue to red)

multiple-body configuration with one computationally efficient step. Let I be the set of all the blob

pixels and O be the set of all the pixels corresponding to bodies currently modelled, then

P+ =
∑ (I \O

⋂
Z(Zxy>0)) ·D
|I|

(4.8)

P− =
∑ (O

⋂
Z(Zxy>0) \ I) ·D
|O|

(4.9)

where ′
⋂′ is set intersection, ′·′ is element-wise multiplication; \ is set difference and ′| · |′ is

set cardinality (number of pixels).

4.2.7 Jump-diffusion Transformations

The classical Metropolis-Hastings method operates on the states of fixed dimensionality. A tech-

nique called reversible jump has been used to allow the change of the dimensionality of proposal

distribution [26]. In essence, our approach of probability sampling is a non-deterministic multivari-

ate optimization method. As such it inherits the problems to which other, classical optimization

methods can be prone [22]. Here we present a way to overcome one such problem — traversing



4. Detection and Tracking 44

valleys in the optimization space by using task specific information. Despite this, random sampling

methods are robust because they do not require any assumptions about the probability distributions

of the data.

Create: Draw a random head candidate/floor candidate pair (hc, fc) and create a new body model

b using its head and foot coordinates. At this point for the tuple b = {x, y, h, w,C} the actual height

and floor coordinates of the body are estimated (see Section 4.1.1). The width of the newly created

body is set originally to the mean wµ.

Several heuristic enhancements are applied at this step to optimize the random space traversal.

If b{h} > hµ + 3h2
σ, i.e. the body is untypically tall, it gets split into two bodies of identical height

hmu + rand(−1, 1)h2
σ, which, in the world coordinates, corresponds to two pedestrians standing

on the same projection line and partially occluding each other. Also, if the initial candidate is too

short bi{h} < hµ − 3h2
σ the body is expanded around it’s center, to a random new height ĥ =

hmu + rand(−1, 1)h2
σ. While creating and deleting bodies, the distance from the door N(d0, σ)

is accounted for in such a way that only the candidates close enough to the existing doors can be

added or removed from the scene.

Remove: Remove a randomly selected body b. The body is excluded from further tracking, the

path is terminated and saved. Additionally, to improve computational efficiency, the bodies repeat-

edly showing no underlying blob pixels are periodically removed from the scene.

Recover: Recover a recently deleted body from an array of bodies, removed within a recent time

window δ(t). The time window is chosen to be long enough to include sudden illumination aberra-

tions and short-term complete occlusions (e.g. a person is walking past a tall shelf for 2 seconds).

The recently deleted array is maintained as a FIFO queue and is updated every time a new body

is removed. This mutation dramatically reduced the number of iterations needed in the system to
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overcome multiple full occlusions, taking place frequently in crowded scenes. This way each track

is presented as a continuous array of observations (one for each frame), with a number of records

marked as invisible. The invisible records are not used for further activity recognition.

Mean-shift: Move one of the existing bodies by applying the mean-shift operator [14] with

weighted anisotropic Gaussian kernel. The kernel is formed as a Gaussian, elliptically-shaped mask,

where the weights increase with increased Mahalanobis distance. Additionally, if a pixel value of

the foreground mask (corresponding to the background) is zero or the same pixel value from the

Z-buffer is greater (i.e. located further from the camera) than the current body, the weight in the

kernel is effectively zeroed out. This, in essence, performs a standard color-based mean shift, but

accounts only for the pixels belonging to the hypothesized body model.

The mean-shift gradient descent is performed based on the Bhattacharyya distance between

color histograms, as computed in Equation (4.7).

Move: Second type of position shift is moving the body to a random “initial head candidate”

drawn from a pool of head candidates contained in some proximity from the current body position. It

allows for the head candidates, not initially revealed (possibly due to image noise), to be considered

in the subsequent frames. The Z-buffer is updated after each such transition to reflect the new

occlusion map.

Resize: Change the height or width of a random body. Either a new height ĥ = hmu+rand(−1, 1)h2
σ

or a new width ŵ = wmu+ rand(−1, 1)w2
σ is generated for bi and the existing h or w is replaced

by it.
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H

Figure 4.14: Mean-shift illustration: Left: Canonical mean-shift with rectangular kernel Right:
Anisotropic kernel, with depth mask accounting for obstacles



5

Activity Analysis

5.1 Modeling Group Activities

In this section we present a general methodology for modeling and subsequent automatic classi-

fication of the high-level activities of groups of people. To proceed efficiently we had to answer the

question of mapping the knowledge efficiently onto the computation to yield a productive method-

ology. In our case the interpretation must describe a number of high-level human activities while at

the same time retaining a certain level of mathematical formalism. With respect to the representation

the problem can be divided into three levels of abstraction:

Level 1: At the lowest level, a model of each tracked body is viewed as a vector of features:

• x, y location of the human body (in floor coordinates) identified by the tracker,

• w, h human height and width in centimeters

• c̄ 32x32 2D color histogram in hue-saturation space

• α body motion orientation

• p blob parameters, such as size in pixels and speed of change, can also be used but tend to be

noisy

47
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Level 2: The motion of each body is viewed in a goal-oriented framework, where the customer

has goals and sub-goals and the rest of the frames reflect the process of achieving these goals [20].

The types of goals in a retail store may include such actions as: finding an aisle, browsing a fixture,

finding a product, inspecting a product, finding a sales representative, interacting with a sales rep-

resentative, proceeding to checkout, etc. The list is by no means exhaustive but is indicative of the

range of activities by individual customers. We directly observe from this list that all such activities

can be regarded as either walking, i.e. progressing with a more or less constant speed toward a goal

or a sub-goal; or dwelling, (i.e. being situated in a fixed area with no or insignificant or undirected

motion).

Level 3: The higher-level types of customer activity which are indicative of shopping habits are

the average size and formation of shopper groups. Such groups are typically characterized by the

large periods of motion coordination between the actors with a group. At this level of representation

simple motion tasks from one or multiple actors are grouped to form more complex behaviors. The

types of retail customer activities to consider can be classified into two categories. The first category

is personalized activities like interacting with products, reacting to advertisements, searching for

an item or help, avoiding traffic or browsing. The second category is group activities: customer

assistance, shopper groups, checkout line. From the wide array of subtasks naturally occurring in

retail environments, we have singled out one that is of primary interest to marketing research and yet

is feasible to solve as a computer vision problem, given the physical limitations of the framework.

We detect “shopper groups”, which can be further used as a means to interpret shopping habits of

an average customer.

We have considered a number of approaches to model spatial group behaviors. Most prominent

in the literature is the approach to model each individuals state as one of the hidden Markov model

(HMM). Further, to emulate a group activity, HMMs can be coupled or layered to represent differ-

ent levels of behavior complexity. While suitable for certain types of activities (mostly, short term

“actions”), first order HMMs are limited in their power to link with the previous states, since most
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human activity is non-Markovian, i.e., it does not depend only on the previous state. As a general-

ization for the group behavior, the variants of Bayesian networks have been used with each node,

modeled as a Markov chain, however these are typically limited by the number of agents taking part

in group activity. A different view is building behavioral models of one or many actors by training

an artificial neural network classifier. The advantage of this method is that it can learn hidden depen-

dencies without the knowledge of priors and thus can be used to classify a wide range of activities.

The major drawback here is the need for many training samples to simulate prior knowledge, which

in most cases are not readily available or hard to generate [56].

Despite the relative success of the methods described above in detecting short-term or individual

actions, their performance is limited in detecting group activities. We developed a novel two-stage

approach that fits well with the idea of a three-layer abstraction of activities, ranging from lower-

level observations, to task detection, to the detection of behaviors. We provide a detailed account

of how clustering techniques can be used to convert tracking information into a set of short-time

behavioral events and further to group such events in the blocks, representative of the grouping

behavior. In our work we applied hierarchical or agglomerative clustering in two instances both

of which are characterized by the presence of non-euclidian distances. More specifically, the rules

that hold for standard ”cloud of Euclidian points”’ clustering, (e.g. the fact that the cluster can

be simply regarded as a centroid of its elements) are not applicable under the presence of metric

distance measures, for which no addition operations can be defined. Since no cluster mean can be

determined, some classical clustering validity measures (such as Davies-Bouldin index [18]) cannot

be applied. Additionally, the intuition behind the agglomerative approach is that the algorithm starts

by introducing the least possible bias into the entire process. In other words, most likely merges are

made in the beginning when the price of error is the highest.
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Figure 5.1: Major processing components of activity detection algorithm
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The outline of this chapter is presented in Figure 5.1. We first describe the pre-processing steps

which we use to form time series suitable for our analysis. Then we define the distance measures

used by our event detector and activity recognition algorithm. Finally we provide the outline of the

clustering techniques we use to detect grouping of customers.

5.2 Obtaining Shopper Trajectories

As each accepted body candidate progresses along the floor map, we record at each step the

x, y coordinates along with the body orientation angle φ and a unique body ID and append it to

a separate data structure Ai = {x, y, φ, ID}, where i is the path number. This way at each time

moment the array A represents a complete trajectory history for all the bodies traveled in the scene

since the start of a sequence.

Equipped with this information, we can accomplish several low-level activity analysis tasks for

retail marketing applications, such as identifying queue lengths and queue wait times, building store

traffic heat maps, aisle penetration maps and, equipped with the purchase data, computing customer

conversion rate.

5.2.1 Path Trajectory Smoothing

At the level of a single frame, inaccuracies arise in tracking the x, y locations on the floor

map. The inaccuracies of the first type are primarily due to the imprecise camera calibration and

camera lens radial distortions. These inaccuracies, however, do not create significant fluctuations

from frame to frame. Erratic behavior of the paths comes, we observed, from the second type of

inaccuracies — the image noise, such as shadows or false foreground regions, mistaken for the shifts

in the positions of the bodies by the jump-diffusion tracker.

A Kalman filter does not have a sufficient effect on smoothing the trajectories because it ac-

counts explicitly only for the last observation. To bring out the major trends in customer walking
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trajectories and remove erratic motion patterns we applied Gaussian smoothing. This way, each

point along the path pt0 is taken as

pt0 =
t=t0+σ∑
t=t0−σ

pt ·N(t; t0, σ2) (5.1)

Where N is a density function for normal distribution with the mean t0 and variance σ2.

5.3 Event Detection

A radically new approach — the perspective borrowed from artificial life — is to employ a

generative model with multiple independent agents acting according to simple rules [65]. This is

referred to as a multi-agent system or MAS. Consider the case of shopper groups, that is, people

who shop together. We can reason about each person in a group as an independent agent acting

according to the following rules [57]:

• avoid collisions with the neighbors

• maintain fixed distance with the neighbors

• coordinate velocity vector with the neighbors when in motion

Swarming events e are defined as short term activity sequences of multiple agents interacting

with each other. An agent b is an instance of a customer’s path generated by the tracker, taken at the

current frame.

Depending on the types of swarming events to be detected, various proximity measures or other

heuristics are used. In the case of grouping events, for each actor we used the relative position on

the floor p, body orientation azimuth φ and binary dwelling state δ = [T, F ] to compute the distance

metric as follows:
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d(bi, bj) = w1||pi, pj ||+ w2|(φi − φj)|+ w3(δi ↔ δj) (5.2)

This way a distance is computed as a linear combination of three components: cohesion, co-

alignment and co-dwelling with weights w1, w2 and w3 representing relative importance of each

rule. Cohesion is the Euclidean distance between two points on the floor plane, co-alignment is the

minimal absolute difference between two motion orientations (each in the range from 0 to 2π), and

co-dwelling is the logical equality between two dwelling states.

Co-dwelling Explained. Our ultimate goal is to model customer orientation using the orientation

of the body, direction of movement, blob motion, facial color and co-relation with other actors and

objects. For each type of motion a different approach is required for assessing the predominant

orientation of the body. While for the walking customer the prevalent factor may be the direction

of motion, for the dwelling person a more detailed inspection of the focus of attention, involving

body shape and color or texture analysis is required [45]. From the behavior recognition point of

view the subsequent goal is to incorporate the knowledge of the individual’s state and attention to

model complex spatial interactions in the group. For this, two types of customer dynamics can

be considered: walking and dwelling. The last is identifiable through detection of customer dwell

events: implemented in [48].

5.3.1 Deterministic Agglomerative Clustering of Bodies

Once the metric is defined, the algorithm starts out with each body/actor representing a singleton

cluster and iteratively applies agglomerative clustering procedures. We sample every ∆’th frame of

the tracking sequences and perform the following operations with respect to the visible bodies found

in that frame. The distance d(bi, bj) from Equation (5.2) is computed for each pair of i and j. The

closest pair is found and the bodies are merged. For each new step in clustering process, given the
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current clustering Cn, n ∈ [1, N ] a clustering validity index (see [3]) is computed as follows:

I = Ii + Ic

Ii =
∑N

n=1

∑M
m=1 am ∈ Cn
N

Ic =

∑N
n=1

[
1− µ

(
D(Cn)
D({C})

)]
N

(5.3)

Where D(Cn) is the diameter of the cluster Cn and D({C}) is the diameter of the combined

cloud of elements.
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Figure 5.2: Clustering validity. Left: isolation Ii and compactness Ic Right: Combined validity
index I

The validity index consists of the isolation index Ii and compactness index Ic computed over

all existing clusters and normalized by their number. The isolation index for each node shows the

percentage of nearest neighbors that belong to the same cluster. The compactness index indicates

how compact the clusters are in comparison to the diameter of the entire node cloud. The clustering

process continues until the validity index I stops increasing. This is indicated by the sign of the

difference between I at a current step n and I at the previous step n− 1
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5.4 Activity Detection

Swarming activities are defined as prolonged higher level behavioral activities involving multi-

ple agents and comprised of one or more swarming events, possibly distant in time. We introduce

a method of grouping swarming events into such activities based on their time co-ordination and

agent composition.

Let Bei = {b ∈ ei} be the set of all bodies/actors bj taking part in the event ei. Also let τei

and τej be the average times of events ei, ej correspondingly happening, measured in frames (i.e. a

mean of event start frame and event end frame).

D2
e(ei, ej) = {λ1Dactors + λ2Dtime}2 (5.4)

Dactors(ei, ej) = σ1

( |(Bei \Bej )⋃(Bej \Bei)|
|Bei

⋃
Bej |

)
Dtime(ei, ij) = σ2(|τei − τej |)

Where “\” — is a set difference operator. The Equation (5.4) consists of two parts. The actors

part of the equation measures similarity in actor compositions of two events, with all actors matching

as the closest case and none of the actors matching as the other extreme. The time component is the

distance in time. Relative weights λ1, λ2 were set 0.7 and 0.3 to prioritize the fact that events that

belong to the same activity tend to have same participants. σ1 and σ2 are sigmoid functions defined

as:

σ1(t) =
1

1 + exp −(t−∆)
S

(5.5)

σ2(t) = tanh
(
t

S

)
(5.6)
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For σ1, its argument range is [0, 1], therefore we empirically choose the shift ∆ = 0.4 and

scale S = 0.07 to get a function profile which would not punish excessively for the discrepancy of

only a few actors. The reasoning is that such a difference may be due either to tracking noise or

to shopping group volatility. σ2 measures the distance in frames (with 15 frames in one second),

therefore we set the S = 1000 to account for the fact that only distances of several dozen seconds

or more are considered significant. Figures 5.3, 5.4 show profiles of both functions.
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Having computed the distance between any pair of eventsD2
e(ei, ej), the distance from an event

to the activity (which is a number of events grouped together) can be measured by Equation (5.7).

The measure is essentially a distance from a node in hyperspace to a centroid of the cluster of the

nodes and is used in clustering of events (see Section 5.4.1)

D2
a(ai, ej) =

∑
∀ek∈ai u

2
ikψikD(ek, ej)∑

∀ek∈ai u
2
ikψik

(5.7)

Where ρ and ψ are an asymmetric variant of Tukey’s biweight estimators from robust statistics

theory [32, 27] (see Section 5.4.1) and uik is the contribution weight of the event ek to the activity

ai, with
∑
∀k uik = 1. As can be observed from Figure 5.6 there are two clearly visible ridges in

our distance function d. The first type arises from the the increase in the number of matching actors

and the second from the drop in the average time distance between two events

5.4.1 Fuzzy Agglomerative Clustering of Events

Fuzzy methods are increasingly used to elegantly handle cluster membership ambiguities in

data with ill-defined cluster borders [25]. Generally, a classical c-means clustering algorithm is

extended to include fuzzy cluster membership weights (see [1]). This way each single node can

probabilistically belong to multiple clusters, with the high probabilities indicating the higher degree

of confidence.

We use an approach based on agglomerative clustering [25] with fuzzy weight and distances,

based on robust statistics we aim to address some of the major shortcomings of conventional par-

titional clustering: manual choice of number of clusters, problematic initialization, sensitivity to

outliers and measurement noise.

Let A = {ai, i = 1, . . . , C} be a set of C swarming activities and E = {ej , j = 1, . . . , N}

a set of N swarming events. Each event’s ei degree of membership in cluster aj is expressed as a

fuzzy membership weight W = [wij ], such that
∑C

i=1wij = 1, for1 ≤ j ≤ N .
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Then the goal of the method is to minimize the objective function:

F (A,W ;E) =
C∑
i=1

N∑
j=1

(wij)2ρ(D2
aij)− α

C∑
i=1

 N∑
j=1

wijψ(D2
aij)

2

(5.8)

Where ρ and ψ are an asymmetric variant of Tukey’s biweight estimators from robust statistics

theory [32, 27]. The purpose of Bisquare estimators is to reduce the influence of outliers (i.e. in

our case extremely large distances) and thus stabilize the process of clustering. The loss function

ρ ∈ [0,medi(D2
aij) + αMADi(D2

aij)] starts reaching saturation point as the MAD (the median

of absolute deviations) gets further from the median med for all distances in cluster i. ψ(x) is a

monotonically nonincreasing weight function. See [25] for more implementation details of robust

estimators.

Computing a derivative ∂F
∂wij

and setting it to zero we obtain the update equation for membership

weights:

wij =
1/ρ(D2

aij)∑C
n=1 1/ρ(D2

aij)
+
α(|ai| − |ai|)
ρ(D2

aij)
(5.9)

Where |ai| =
∑N

j=1wijψ(D2
aij) is a robust cardinality of cluster ai and

|an| =
∑C

i=1 |an|/ρ(D2
ain)∑C

i=1 1/ρ(D2
ain)

(5.10)

is the weighted average of robust cardinalities for all clusters.

Also, α is a parameter controlling the speed of agglomeration (see [25] for details).

Then, given the objective function in Equation (5.8), the solution to the optimization is computed

by Newton’s method described in Algorithm 2.

Special care has to be taken during the initialization stage. One undesired side-effect of fuzzy
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initialize clusters;
repeat

for i← 1 to C, j ← 1 to N do
compute D2

aij ;
end
for i← 1 to C do

estimate medi and MADi;
end
for i← 1 to C, j ← 1 to N do

update ρ(D2
aij) and ψ(D2

aij);
end
for i← 1 to C do

compute |ai| and |ai|;
end
for i← 1 to C, j ← 1 to N do

update weights wij according to eq. (5.9);
end
for i← 1 to C do

update number of clusters N ;
end

until convergence of F (A,W ;E) ;

Algorithm 2: Fuzzy Clustering of Swarming Events
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clustering can be that the cluster with a higher data-density attracts all points from other, less

”heavy” clusters (i.e. clusters with lower cardinality) [44].

5.5 Benchmarking Against Single Step Activity Detectors

To detect groups of shoppers we tried a method of clustering motion trajectories by treating each

path as a time series and computing a special measure based on spatio-temporal matching [48].

The outline of this method is provided here. As a one tier approach it does not have the potential

to cope with activities based on multiple events during long periods of time (see section 6.2)

Therefore, we assume that people who shop together can be identified by the following criteria:

they enter the scene together, leave the scene together, have a small mean intra-group distance, have

a small mean difference between paths.

When comparing two trajectories as signals, there are two important aspects: time shift between

two signals and the signal shape. To elegantly incorporate both of these considerations and to

account for all empirically established criteria we have created the proximity metric based on the

combination Euclidean distance and the shape distance of two signals.

fij(T ) =
∫ [(

xi(t)− xj(t+ T )
)2 +

(
yi(t)− yj(t+ T )

)2]dt (5.11)

dij =
∫
fij(T )×N(0, σ2)dT (5.12)

If the time t is discrete, as it is in our case with each measurement corresponding to a single

video frame, the equations above can be rewritten as:
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dij =
∆∑

T=−∆

t=t2−T∑
t=t1+T

[(xi(t)− xj(t+ T )]2 + [yi(t)− yj(t+ T )]2

×
× N(0, σ2)

t2 − t1

(5.13)

Thus the distance dij between two trajectories dij is the weighted sum of trajectory proximities

at each time moment. The interval [−∆,∆] is a time cutoff that can reduce the computation time.

The standard deviations of normally distributed weights can be increased to account for higher

time spread between people in the same group. We have chosen ∆ = 3σ.

The integration is started at time t1 when both objects are visible in the scene for the first time

and end it at time t2, when at least one object has left the scene. The interval [t1, t2] is sometimes

referred to as the longest common subsequence in the literature. Since there must be no favoring

of shorter or longer paths, the distance measure is normalized by the length of the traveled interval

t2 − t1.

Because people in a shopping group are not guaranteed to either appear or leave the scene at

the same time, we propose to compute the trajectory similarity measure on piecewise uninterrupted

segments — that is the intervals of time where both bodies in question were present and were

successfully tracked in the scene.

Naturally, we do not compute the distance between pairs with very small longest common sub-

trajectories because these will not result in a statistically significant measure. The cutoff for the

common subsequence length was chosen empirically at 3 seconds, or 45 frames (at 15 fps).

Furthermore, for computational efficiency, we sub-sample the trajectories. This is justified be-

cause the physical location of a person does not change significantly within a time interval of 10

frames (< 1 sec). Once the pairwise distances for all trajectories are known, as our next step the

paths are clustered based on this measure.

We apply an agglomerative hierarchical clustering, where each object is initially placed into its
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own cluster C. Therefore, if we have N objects to cluster, we start with N singleton groups.

The clustering requires a distance threshold to be specified. Once this is done, the procedure is

as follows:

1. Compare all pairs of groups and mark the pair that is closest.

2. The distance between this closest pair of groups is compared to the threshold value.

(a) If the distance between this closest pair is less than the threshold distance, these groups

become linked and are merged into a single group. Return to Step 1 to continue the

clustering.

(b) If the distance between the closest pair is greater than the threshold, the clustering stops.

If the threshold value is too small, there will still be many groups present at the end, and many

of them will be singletons. Conversely, if the threshold is too large, objects that are not very sim-

ilar may end up in the same cluster. The threshold value was determined empirically from video

sequences of varying complexity.

When merging two clusters, the center point of the new cluster at each frame C ′ is determined

as a weighted average of two paths corresponding to the centers of the merged clusters

C ′t = C1
t · |C1|+ C2

t · |C2| (5.14)

Where Ct is the location along the path of the group C at time t and |C| is the number of the

trajectories belonging to the cluster with center in C.
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Experimental Results

The performance of the algorithm described in Chapter 3 was evaluated by running it on a set

of video sequences recorded with a perspective projection camera. Activity recognition was tested

on a different dataset that has been collected in a real retail store and then annotated manually by

domain experts to provide the ground truth.

6.1 Visual Tracking Results

We tested the low-level parts of our tracking system on a number video sequences from two

different cameras mounted in a retail store chain and on the publicly available CAVIAR dataset [6].

Some sample frames and results of the head candidates detection as well as height estimation from

the test video sequences are presented in figure 6.1.

One of the most frequent cases of detecting false positives was occurring when not enough

frames were allotted for the background acquisition and, consequently, some people standing were

interpreted as part of the background. Once these people later moved, not only the moving person

but the pixels where she used to stand were detected as foreground objects. The background sub-

traction approach has given good results even under extreme lighting conditions (see (i) and (j) in

Figure 6.1).

64



6. Experimental Results 65

The falsely detected head locations, were primarily the video compression artifacts influencing

the background subtraction process. Nevertheless, the algorithm shows robust performance with

significant levels of illumination noise, under the low-quality, real-life capturing conditions.

The false negative head candidates had two primary causes. First, parts of the foreground region

become separated from the body or sometimes a part of the shadow is considered as a separate body,

and this causes a false candidate to be detected (see (a) in Figure 6.3). We believe that human shape

modeling will solve this problem. A second factor, one that badly influences the detection, is when

the heads are not pronounced enough to create a local maximum in the histogram (see (b) in figure

6.3). This problem can be solved in the future by color and texture analysis within the blob.

To partially evaluate the quality of the results, we have analyzed a number of detected head

candidates in the sequences with two people that were detected as a single blob (Figure 6.2). The

evaluation shows that the outputs from our methods can be used at the initialization stage of the

tracking algorithm. To further evaluate the quality of our method candidate hit/miss and average

error analysis based on their coordinates is required.

We performed preliminary evaluation of our tracking system for the presence of three major

types of inconsistencies: misses, false hits, and identity switches. A miss is when the body is not

detected or it is detected but tracked for an insignificant portion of its path (< 30%). A false hit

is when a new body is created where there is no actual person present. Most of the false hits are a

result of more than one body in the model being assigned to a single body in the scene. An identity

switch is when two or more bodies exchange their IDs once within the close proximity from each

other. By visually counting the number of each of types of errors on a number of sequences of
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a b

c d

e f

g h

i j

Figure 6.1: (a) - (j) Head candidates from test frames. Left image is the original frame. In the right
image ”red” represents foreground mask, small black dots indicate the locations of Ti and Bi; blue
ellipses are fitted with TiBi as the major axis
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Figure 6.2: Head detection algorithm performance evaluation. This graph shows the number of
frames when 1, 2, or 3 heads were detected. The true number of heads is 2.
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Figure 6.3: (a,b) Incorrect head detection from test frames. Left image is the original frame. On the
right image red represents foreground mask, small black dots indicate the locations of Ti and Bi;
blue ellipses are fitted with TiBi as the major axis; (c,d) Illustrate height detection: brown plates
contain height mean and variance for each ellipse



6. Experimental Results 68

overall 6000 frames (about 400 seconds) we have obtained results summarized in Table 6.1. Note

that these sequences were taken from the OTCBVS color-thermal dataset [19] and the background

subtraction was done by using both RGB and thermal information.

Seq Ppl P− P+ P+/−

1 15 3 1 3
2 8 0 0 0
3 16∗ 0 1 2
4 3∗∗ 0 0 0
5 2 0 0 0
6 4 0 0 0

ALL 48 3 2 5
% 100 12.5 4.1 10.4

Table 6.1: Tracking results for projection camera model, based on the manually observed ground
truth (* - two infants, below the tracked height limit, lead tracker to some confusion; ** - 2 pedes-
trian covered by trees not counted). P− indicates missed people, P+ indicates falsely detected
people (primarily due to shading artifacts) and P+/− indicates two pedestrian IDs swapping

The most common mistakes made by the tracker, were false hits. We have observed that the

majority of false hits (more than 50%) are short lived, i.e. they typically last for only several frames.

These cases can be further post-processed by temporal filtering to remove insignificantly short paths.

Sometimes, however, false detections are accompanied by ID switches, when a body that is tracked

for a long time is substituted for a false hit. This presents a more complicated problem and deserves

further study.

Overall performance of the tracker is promising, primarily because it produces satisfactory de-

tection and prolonged tracking in crowded scenes. The output from our tracking module serves as a

reliable basis for obtaining customer paths (Figure 6.4) and the detection of shopper groups (Figure

6.5).
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Figure 6.4: Customer paths marked on the floor map (circles represent dwell-locations, with the
size of a circle proportional to dwell time)

Figure 6.5: Select frames showing the detection of shopping groups (marked as white boxes)
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6.2 Activity Recognition Results

To test our method for activity recognition we used three tracking sequences recorded with

the panoramic camera in an apparel retail store, each sequence being one hour long. These se-

quences were annotated manually by domain experts to obtain the assisted shopping groups markup

as ground truth. The total number of customers appearing in the scene in these three hours is 245 and

the actual number of shopper groups is 50 with 111 of the customers in groups. Of these groups, 7

were composed of three people and 2 composed of four people, the rest were two-customer groups.

We decided to exclude from consideration the groups formed earlier than 5 minutes prior to the

sequence end as well as customers who were at the store at the beginning and left in the first 5

minutes of tracking, since tracking information was on average less than 20% complete for such

tracks. Several store employees were also excluded from the results, to avoid counting events such

as a customer seeking assistance, conversing with an employee over a long period of time or on

several consequent occasions.

Tables 6.2 and 6.3 show the total number of groups present in each scene (from the ground truth

dataset), the percentages of correctly identified shopper groups as well as false positives (groups

detected where none were present) and false negatives (missed groups).

Sequence Groups P+ P− Partial
1 20 0 7 0
2 17 1 3 1
3 17 0 7 0

Total 54 1 17 4
Percent 100 1.8 31.5 7.4

Table 6.2: Activity detection validation results against manually observed ground truth (Clusters
with 5 or more contributing events are considered valid. Event sampling frequency: every 30 frames.
P+ are false groups not present in the scene, P− are missed groups, and partially detected groups
have at least 2 actors correctly identified)

These sequences represent one hour of typical store traffic on three different days taken form

4PM to 5PM. It is interesting to observe that the correct detection rates are higher for the first
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Sequence Groups P+ P− Partial
1 20 0 7 0
2 17 1 3 1
3 17 0 7 0

Total 54 1 12 2
Percent 100 1.8 22.2 3.7

Table 6.3: Activity detection validation results against manually observed ground truth (Clusters
with 5 or more contributing events are considered valid. Event sampling frequency: every 10
frames)

sequence, which also contained some of the heaviest traffic. We conclude from this that the perfor-

mance accuracy of our group detector is proportional to the length of the tracks involved. Average

store visit for a group can range anywhere from 5 to 15 minutes, which provided significant length

of tracking data for our two stage clustering unit in most cases.

In general, path length linearly influences the accuracy of the clustering algorithm, with more

events generated over a longer period of time, resulting in a higher detection rate. False positives are

primarily due to the behaviors exhibiting patterns similar to grouping. One such behavior was, for

instance, a customer co-mingling with an unrelated customer over a long period of time or several

times. This took place in highly congested areas, such as checkout register or nearby sales racks.

Another major cause for mis-detection is the inadequate time during which group participants were

visibly present in the scene (i.e. were behind the fixture).

One-way analysis of variance with the duration of activity as an independent variable and the

detection confidence [0, 1] as a dependent variable reveals a presence of strong correlation (pval ≈

10−11).

We conclude that simple spatio-temporal grouping of actors is not enough for higher level group

activity recognition as the groups might form coincidentally. Spatial analysis of simple grouping

events provides an increased accuracy for group activity recognition. The essential characteristic

of our swarming event data is the presence of outliers as well as the fuzzy character of activity

memberships. Some of the swarming events happen coincidentally, due to crowding effects in the
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store. Figure 6.9 gives an example of such coincidental grouping.
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Figure 6.6: Swarming events in space-time (axis t represents frame number of event; X, Y - aver-
age event location on the floor plane) Dot size corresponds to the validity of event (5.3). Dots of
matching color belong to the same activity

We compared two-level activity recognition results to a simple one level time-space convolution

technique from Section 5.5. Due to its design, the simple detector was not able to handle any of

the complex activities, i.e. the ones consisting of multiple events separated in time by at least one

episode when the actors are apart in space. The approximate duration of the activities on which it

worked was in the order of 60 seconds. Therefore we conclude that our two-level design is necessary

for the detection of in-store grouping activities.

Another interesting observation we made while comparing groups detected by the system to the

manually annotated ground truth is how easy it is to miss such activity for a human observer. In
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Figure 6.7: Shopping groups from sequence 2 (first 15 minutes) automatically arranged by prox-
imity metric. The lengths of the edges connecting numbered nodes, correspond to the distance in
non-Euclidean space calculated per Equation (5.7)
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Figure 6.8: Group detection accuracy as a function of path duration (path length is counted as the
duration of the visible part of the tracks when at least one of the group members was present in the
scene)
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(1a) (1b)

(2a) (2b)

Figure 6.9: (1a) Two actors form a real shopper group (marked with solid blue) (1b) One of the ac-
tors from 1a in a coincidental event (marked with zebra yellow) (2a) Passer-by temporarily increases
group cardinality to three (2b) Passer-by walking away
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three hours of video the system detected 6 groups that were not originally spotted by the operator,

consequently ground truth had to be adjusted to include missing observations (results in tables 6.2

and 6.3 are given in comparison to the corrected ground truth). This leads us to believe that the

system provides a valuable tool for aiding and potentially completely eliminating manual group

activity labelling in video sequences.



7

Conclusion

7.1 Contributions

In this work we presented a method for customer tracking in crowded environments. We used

automatically obtained tracks to extract customer group information from several hours of retail

store video recordings. The method presented in this thesis computes for each customer a path, an

approximate size of the body, a list of dwell locations and the orientation of travel.

The tracking system presented starts with the new noise-resistant background subtraction tech-

nique followed by the vanishing point projection head candidate search algorithm to handle ini-

tialization. Temporal tracking is organized as a Markov chain optimizing Monte Carlo sampling,

with the state of each body, the number of bodies, knowledge of static occluders and doorways all

incorporated into a single model. By utilizing information about the tracking environment (such as

human heights and entrance/exit locations) in the form of prior probabilities we are able to increase

the tracking accuracy in relation to the appearance-only based trackers.

The activity recognition part of this work constitutes a significant contribution to the field of

automated behavior recognition. Group behaviors, as formulated in this thesis, yet have not been

addressed in the related literature. We show how to build a two-layer system of detecting group-

ing activities, by using shorter grouping events as the building blocks. For finding activities we
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demonstrated how to use deterministic and fuzzy variants of hierarchical clustering techniques. The

reduction of the influence of the outliers in clustering is achieved by introducing robust influence

functions into the group distance metric.

To summarize, both in tracking and activity recognition we introduced a number of novel meth-

ods:

• Adaptive codebook background model: To eliminate the influence of light changes and

camera noise as well as to make the tracker perform well in the crowded environment we

introduced a codebook based background model which is capable of re-sampling the multi-

modal structure of the color of each pixel on-line. (Section 4.1.2). We demonstrated how this

model can be used in a combined tracking scenario with color and thermal sensors.

• Variable system state dimensionality: Our system uses the reversible Monte Carlo sampling

method to model and estimate the state of each pedestrian (Section 4.2.1). The dimensionality

of the system was incorporated into the system as one of its variables.

• Initialization ambiguity: The blob-tracker initialization suffers when more than one object

merge to form one blob. In this work we used the analysis of the blob outline to find head

candidates as the peaks in the vanishing point projection histogram. The VPP is a newly

introduced alternative to a vertical projection histogram that allows to incorporate camera

model to get a less distorted projection (Section 4.1.3).

• Mean shift: Extended the mean-shift algorithm [14] by introducing the distance weight

plane, z-buffer and including the foreground map into the histogram computation (Section

4.2.7 and 4.2.6).

• Prolonged tracking: The system is able to perform robust tracking through illumination

changes and occlusions due to the use of obstacle maps and the recovery of recently deleted

objects incorporated as one of the mutation in MCMC method (Section 4.2.6).
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• Formalizing high level group activities: In this thesis we proposed a generalized event-

activity based framework for automatic human group behavior categorization. The idea is

borrowed from the intelligent swarms field, where it is used in a generative sense, to generate

the next state of the simulated process, and re-applied in a discriminative way, to measure

distance between various types of grouping behaviors. Each customer is treated as a member

of the swarm, acting based on a set of simple, well-defined rules. We demonstrate how to

define such rules, based on the type of swarming activity one intends to detect. The idea is

illustrated for the customer grouping activity in retail store (Section 5.1).

• Robustly handling group data with outliers: Here we applied fuzzy clustering methods

with robust metrics to reduce the influence of outliers. This approach proved to be extremely

suitable for the problem of hierarchically clustering swarming events, with many of the events,

being due to the noise (customers coincidentally showing group characteristics) and often

events contributing to more than one activity (Section 5.4).

7.2 Future Work

Beyond the scope of this thesis we intend to continue research in this direction. Below is the list

of particular problems we would like to address:

• Improved Tracking: We have not explored one class of features for human body tracking —

so-called feature points. A feature point is usually a small area in the image that contains a

significant amount of information about the object, e.g. an edge or a corner. Using such well-

established techniques as SIFT descriptors [50] has a promise of increasing tracking accuracy,

while reducing the computational load.

• Detect Other Types of Swarming Activities: Using the general framework presented in

Section 5.1, but modifying the distance equations we plan to detect several other swarming
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behaviors in the retail stores. These include but are not limited to estimation of length of the

checkout line and detecting customer-employee interactions. Also, the detection of dwelling

state is to be automated by learning two of the method’s parameters, dwell time threshold and

dwell area radius, through supervised learning using training video sequences.

• Demographical analysis: The color histogram information and facial feature descriptors

recorded for each customer can potentially be used to determine person’s age, gender or

ethnicity.

• Sensor Fusion: Detailed information about product interaction can be achieved by fusing the

results of visual tracking with RFID based positioning of certain merchandise items. This

way, when in a close proximity to a specific item, the customer can be categorized as inter-

acting with it if the visual cues support this hypothesis (e.g. hands are reaching out towards

the fixture).

• Security: A combination of tracking and activity recognition can be used for theft detec-

tion. If “picking up an object” event is detected and not followed by “checkout” event, the

probability of “shoplifting” behavior is increased.

• Visualization: An important aspect related to the vision techniques presented in this work

is the visualization of customer trajectories and various aggregate marketing statistics (dwell

time, traffic density maps, etc). The ultimate plan is to have a visual representation of the

entire 3D model of the store with various layers of information embedded. This presents a

potentially valuable tool of conveying quantitative tracking and AR results to the business

community.

Using the presented general framework for automated recognition of swarming activities as the

next steps in activity recognition we expect to recover the following quantitative measurements:

identifying queue lengths and queue wait times, building store traffic heat maps, aisle penetration
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maps and estimating customer conversion rate, i.e. the number of people making purchases in rela-

tion to the total number of customers in the store.

We plan to extensively validate the accuracy of the group detection algorithm using the man-

ually marked dataset of more than 30000 frames provided by CAVIAR project [6]. Although the

evaluation of the tracking subsystem shows promising results, the author is aware that a more formal

evaluation has to be performed for each of the customer activity characteristics.

Another potential improvement is to enhance the quality of our depth maps using a 3D CAD

model of the store, which we expect to result in highly stable tracking due to improved handling of

scene fixture occlusions. Such models, currently under development, will incorporate the layout of

the store fixtures, product placement and camera location.

We are currently investigating the use of the visual tracker in combination with the customer

counting camera installed at the entrance that would impose an additional constraint on our system

by providing an exact number of the bodies in the store. This method could facilitate uninterrupted

tracking of each customer for longer periods of time, which can be further used to compute the

percentage customer distribution in the different areas of the store and provide important clues

into the “conversion rate” analysis (the ratio of the amount of purchases to the total number of

customers) more reliably. With the increased quality of captured video we hope to get enough detail

to perform an analysis of certain product interaction aspects: attention (i.e. turning the torso towards

the product, or squatting/reaching for the product), browsing (when hands are performing “reaching

out” gestures).

In the future, the position and orientation of body ellipsoid can be combined with multiple-view

color representation for more reliable color tracking [45]. We believe that this kind of tracking will

provide information for customer attention analysis, such as rough estimations of customer gaze

center or interactions within customer groups [28].
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Another potential improvement in tracking can come from the use of multiple cameras with

overlapping fields of view. Such a setup, while difficult to implement, can provide additional disam-

biguation in situations when two people cross paths. Combining the views of two or more cameras

can help make better decisions about the locations of the bodies.

The tracking currently is performed under the assumption that all moving objects are human.

Future direction that we are researching is using features specific to human pedestrians, such as

periodic gait signature [47] to differentiate people from shopping carts and other moving structures.

One potential improvement also lies in using multi-modally distributed priors on human height, to

successfully track children.
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A

Spheroid Mapping

Let E, be a special case of an ellipsoid with axis a3 = c corresponding to body height bi(h)
and axes a2 = a3 = a, representing the width of the body bi(w). Let {X,Y, Z} be a system of
world coordinates and Ocam = {Xc, Yc, Zc} camera coordinates where Xc = 0, Yc = 0 and Zc is
the elevation of the camera in cm. Let Osph = {Xs, Ys, Zs} denote the center of the spheroid and
O = {Xo = 0, Yo = 0, Zo = 0} be the origin of the world coordinate system. Then the equation of
the spheroid is given by:

(X −Xs)2

a2
+

(Y − Ys)2

a2
+

(Z − Zs)2

c2
= 1 (A.1)

A.1 Perspective Projection

A projection of an ellipsoid E onto a plane is an ellipse if E is entirely inside the field of view.
Otherwise, if E is fully outside the field of view the projection is an empty set ∅, The process
of rasterizing a spheroid thus reduces to rasterizing an ellipse, representing its projection. The
perspective projection of the ellipsoid is described in greater detail in [30].

A.2 Equirectangular Projection

In equirectangular projection coordinates the process becomes essentially a projection of an
ellipsoid onto a sphere. Image coordinates are describing a sphere with y = φ representing the
latitude and x = θ representing the longitude. Below we describe the algorithm to rasterize a
vertically oriented 3D spheroid onto the image in unprojected map coordinates.

First, let’s find the first and last horizontal scanlines in the image between which the projection
of the spheroid is contained. In order to do that let’s slice E with a plane OcamOOsph, to get an
ellipse.

(x− d)2

a2
+

(y − b)2

c2
= 1 (A.2)

In Equation (A.2), y = Z and coordinate x is collinear to
−−−−−−→
[Xs, Ys, 0] −

−→
O . Also, d =

|O, {Xs, Ys, 0}| is the distance of the floor point of the spheroid from the origin.
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Let’s define a family of lines originating at C over a parameter φ as:

{
x = 0 + sin(φ)t
y = Zc − cos(φ)t

(A.3)

The intersection of a line from family (A.3) with the ellipse in (A.2) will produce either zero
(when the line misses the ellipse), two (when the line goes through the ellipse) or one (when the
line is tangent the ellipse) solution. To establish rasterization limits we need to find the latter. By
substituting x and y from (A.3) into (A.2), we get a quadratic equation:


At2 +Bt+ C = 0

A = c2 sin2(φ) + a2 cos2(φ)

B = −2[c2d sin(φ) + a2(Zc − Zs) cos(φ)]

C = c2(d2 − a2) + a2(Zc − Zs)2

(A.4)

In order to have a single solution the discriminant B2 − 4AC has to be equal to zero. Solving
this for φ will give us two lattitudal angles φ1, φ2 which correspond to the first and last horizontal
scanlines.

As the next step we find θ1, θ2 the longtitudal limits within each scanline (see Figure A.2). In
order to do so, we need to find the intersection of the spheroid (A.1) and a cone (A.5).


X = Zc tan(φ)cos(θ)t
Y = Zc tan(φ)sin(θ)t
Z = Zc(1− t)

(A.5)

The intersection of a cone (A.5) with the ellipsoid (A.1) will produce either zero (when the cone
misses the ellipse),∞ (when the cone goes through the ellipse), or one (when the cone is touches
the ellipse) solution. To establish rasterization limits on θ we need to find the latter. By substituting
X,Y and Z from Equation (A.5) into Equation (A.1), we get a quadratic equation:


At2 +Bt+ C = 0

A = Z2
c (c2 tan2(φ) + a2)

B = −2Zc[c2 tan(φ)(Xs cos(θ) + Ys sin(θ) + a2(Zc − Zs)]
C = c2(X2

s + Y 2
s ) + a2(Zc − Zs)2 − a2c2

(A.6)

If there are more than zero solutions, a positive discriminant corresponds to the points on the
intersection of the cone and spheroid and a zero discriminant matches the boundaries. Setting the
discriminant to zero and solving the resulting quadratic equation for θ we obtain the limits:
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θ1,2 =
U0Xs ±

√
X2
sY

2
s − U2

0Y
2
s + Y 4

s

X2
s + Y 2

s

U0 = ±
√
AC − F
E

E = c2 tan(φ)Zc
F = a2dZc

(A.7)

Rasterization process becomes an iterative filling of horizontal lines from φ1 to φ2, where within
each line the pixels from θ1 to θ2 are inside the projection of the spheroid.

Figure A.1: Finding spheroid range in hori-
zontal scanlines

Figure A.2: Finding spheroid limits in hori-
zontal scanlines
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a b

c d

e f

g h

i j

Figure B.1: (a) - (j) Head candidates from test frames. Left image is the original frame. On the right
image red represents foreground mask, small black dots indicate the locations of Ti and Bi; blue
ellipses are fitted with TiBi as the major axis; (i) and (j) Height detection: brown plates contain
height mean and variance for each ellipse
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Figure B.2: Sample frames showing tracking in three sequences from CAVIAR dataset [6]: columns
are three tracking sequences, rows are frame snapshots taken successively. Sequence 1: a group of
four people enters the scene. Sequence 2: Two pairs of customers enter the store (0,1 and 2,3) and
5,4 re-appear at the back of the store. Sequence 3: 1 exits the store, 2 and 3 walk past the store and
4 enters the store
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Figure B.3: Sample frames showing tracking in three sequences from OTCBVS dataset [19]:
columns are three tracking sequences, rows are frame snapshots taken successively. Sequence 1:
Multiple pedestrians are tracked on the sidewalk through occlusions. Sequence 2: 0 and 2 intersect
and then split. Sequence 3: A group 4, 5 and several single pedestrians are tracked
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Figure B.4: Sample frames showing tracking sequence from apparel retail store (rows are frame
snapshots taken successively). Customers 11 and 12 enter the store and proceed along the left side
wall. Customers 1, 3 and 5 are at the checkout. Customers 6, 9 and 0 are browsing fixtures with the
merchandise
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Figure B.5: Sample frames showing tracking sequence from electronics store (columns are three
tracking sequences, rows are frame snapshots taken successively) Sequence 1: 0, 1 are walking
with a cart, 4 is dwelling then leaves, employee 3 is assisting customer 2 Sequence 2: employee 1
is assisting customer 2, customers 3,4 are slowly browsing Sequence 3: A complex scenario, with
multiply bodies partially occluded
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