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Abstract

Analysis of program running time is important for reactive systems, interactive envi-

ronments, compiler optimizations, performance evaluation, and many other computer

applications. Automatic and efficient prediction of accurate time bounds is partic-

ularly important, and being able to do so for high-level languages is particularly

desirable. This dissertation presents a general approach for automatic and accu-

rate time-bound analysis for high-level languages, combining methods and techniques

studied in theory, languages, and systems. The approach consists of transformations

for building time-bound functions in the presence of partially known input structures,

symbolic evaluation of the time-bound function based on input parameters, optimiza-

tions to make the analysis efficient as well as accurate, and measurements of primitive

parameters, all at the source-language level. We describe analysis and transforma-

tion algorithms and explain how they work. We have implemented this approach

and performed a large number of experiments analyzing Scheme programs. The mea-

sured worst-case times are closely bounded by the calculated bounds. We describe

our prototype system, ALPA, as well as the analysis and measurement results.
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CHAPTER 1

Introduction

Analysis of program running time is important for reactive systems, interactive

environments, compiler optimizations, performance evaluation, and many other com-

puter applications. This analysis has been extensively studied in many fields of com-

puter science: algorithms [60, 32, 33, 104], programming languages [100, 61, 84,

88, 87], and systems [91, 76, 86, 85]. Being able to predict accurate time bounds

automatically and efficiently is particularly important for many time-sensitive appli-

cations, such as reactive systems. It is also particularly desirable to be able to do so

for high-level languages [91, 76].

Since Shaw proposed a timing schema for analyzing system running time based

on high-level languages [91], a number of people have extended it for analysis in the

presence of compiler optimizations [76, 28], pipelining [46, 62], cache memory [4,

62, 31], etc. However, there is still a serious limitation of this timing schema, even in

the absence of low-level complications. This is the inability to provide loop bounds,

recursion depths, or execution paths automatically and accurately for the analysis [75,

2]. For example, the inaccurate loop bounds cause the calculated worst-case time to

be as much as 67% higher than the measured worst-case time in [76], whereas the

manual way of providing such information is potentially an even larger source of error,

in addition to being inconvenient [75]. Various program analysis methods have been

proposed to provide loop bounds or execution paths [2, 29, 44, 47]. However, they

apply only to some classes of programs or use approximations that are too crude for

1



1. INTRODUCTION 2

accurate analysis. Also, separating the loop and path information from the rest of

the analysis is in general less accurate than performing an integrated analysis [70].

This dissertation describes a general approach for automatic and accurate time-

bound analysis that combines methods and techniques studied in the areas of systems,

languages, and theory. It is a language-based approach since it primarily exploits

methods and techniques for static program analysis and transformation, and uses

techniques from systems and theory to improve its accuracy and efficiency.

The approach consists of transformations for building time-bound functions in

the presence of partially known input structures, symbolic evaluation of the time-

bound function based on input parameters, optimizations to make overall the analysis

efficient as well as accurate, and measurements of primitive parameters, all at the

source-language level.

This approach is powerful because it is general in three senses. First, it works for

other kinds of cost analysis as well, such as space analysis and output-size analysis.

Second, the basic ideas also apply to any programming language. I implemented the

approach on a functional, on an imperative and on a high-order language. And third,

the implementation is independent of the underlying systems – compilers, operating

systems, and hardware.

The rest of the dissertation is organized as follows. This chapter describes the

language-based approach. Chapters 2, 3 and 4 present the approach used with a

first-order functional language, an imperative language and a higher-order functional

language respectively. Each chapter describes analysis and transformation algorithms

and explain how they work, as well as the implementation and experiments analyzing

Scheme programs. The measured worst-case times are closely bounded by the calcu-

lated bounds. I describe our prototype system, ALPA, as well as the analysis and

measurement results. Chapter 3 presents the approach with an imperative language in
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two ways. First it uses a program transformation to convert the imperative program

into a functional one using Storage-Passing-Style so the approach from Chapter 2 is

applicable. The second way is to have a new transformation specific for the imper-

ative language. Chapter 5 presents an application of the approach to automatically

obtain a worst-case input, an input that will make the program exhibit its worst-

case execution time. Chapter 6 discusses advantages and disadvantages compared to

related work, limitations and future work.

1. Language-based approach

Language-based time-bound analysis starts with a given program written in a

high-level language, such as Java, ML, or Scheme. The first step is to build a time

function that takes the same input as the original program but returns the running

time in place of (or in addition to) the original return value. This is done by associ-

ating a parameter with each program construct representing its running time and by

summing these parameters based on the semantics of the constructs [100, 12, 91].

The parameters that describe the running times of program constructs are called

primitive parameters. To calculate actual time bounds based on the time function,

three difficult problems must be solved: characterize the input data, optimize the

time-bound function and obtain the values of the primitive parameters.

First, since the goal is to calculate running time without being given particular

inputs, the calculation must be based on certain assumptions about inputs. Thus, the

first problem is to characterize the input data and reflect them in the time function. In

general, due to imperfect knowledge about the input, the time function is transformed

into a time-bound function.

In algorithm analysis, inputs are characterized by their size; accommodating this

requires manual or semi-automatic transformation of the time function [100, 61,
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104]. The analysis is mainly asymptotic, and primitive parameters are considered

independent of the input size, i.e., are constants while the computation iterates or

recurses. Whatever values of the primitive parameters are assumed, a second problem

arises, and it is theoretically challenging: optimizing the time-bound function to

a closed form in terms of the input size [100, 12, 61, 84, 33]. Although much

progress has been made in this area, closed forms are known only for subclasses

of functions. Thus, such optimization cannot be automatically done for analyzing

general programs.

In systems, inputs are characterized indirectly using loop bounds or execution

paths in programs, and such information must in general be provided by the user [91,

76, 75, 62], even though program analyses can help in some cases [2, 29, 44, 47].

Closed forms in terms of parameters for these bounds can be obtained easily from the

time function. This isolates the third problem, which is most interesting to systems

research: obtaining values of primitive parameters for various compilers, run-time

systems, operating systems, and machine hardwares. In recent years, much progress

has been made in analyzing low-level dynamic factors, such as clock interrupt, memory

refresh, cache usage, instruction scheduling, and parallel architectures [76, 4, 62, 31].

Nevertheless, the inability to compute loop bounds or execution paths automatically

and accurately has led calculated bounds to be much higher than measured worst-case

time.

In the area of programming-languages, Rosendahl proposed using partially known

input structures [84]. For example, instead of replacing an input list l with its length

n, as done in algorithm analysis, or annotating loops with numbers related to n, as

done in systems, a partially-known input structure approach would use as input a

list of n unknown elements. The parameters for describing partially known input
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structures are called input parameters. The time function is then transformed auto-

matically into a time-bound function: at control points where decisions depend on

unknown values, the maximum time of all possible branches is computed; otherwise,

the time of the chosen branch is computed. Rosendahl concentrated on proving the

correctness of this transformation. He assumed constant 1 for primitive parameters

and relied on optimizations to obtain closed forms in terms of input parameters, but

again closed forms cannot be obtained for all time-bound functions. Also, Rosendahl

handles only first-order functions. Sands studied time functions for higher-order func-

tions [88, 87], but he did not address any of the three problems described above. In

addition, his analysis is presented only for named functions, not general lambda ab-

stractions.

Combining results from theory to systems, and exploring methods and techniques

for static program analysis and transformation, I have developed a general approach

for computing time bounds automatically, efficiently, and more accurately. The ap-

proach has four main components.

First, an automatic transformation is used to construct a time-bound function

from the original program based on partially known input structures. The resulting

function takes input parameters and primitive parameters as arguments. The only

caveat here is that the time-bound function may not terminate. However, nontermi-

nation occurs only if the recursive/iterative structure of the original program depends

on unknown parts in the given partially known input structures.

Then, to compute worst-case time bounds efficiently without relying on closed

forms, the time-bound function is optimized symbolically with respect to given val-

ues of input parameters. This is based on partial evaluation and incremental com-

putation. This symbolic evaluation always terminates provided that the time-bound

function terminates. The resulting function can be used repeatedly to compute time
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bounds efficiently for different primitive parameters measured for different underlying

systems.

A third component consists of transformations that enable more accurate time

bounds to be computed: lifting conditions, simplifying conditionals, and inlining non-

recursive functions. These transformations should be applied on the original program

before the time-bound function is constructed. They may result in larger code size,

but they allow subcomputations based on the same control conditions to be merged,

leading to more accurate time bounds, which can be computed more efficiently as

well.

Finally, I measure primitive parameters at the source-language level and use the

best conservative estimations in computing the time bound. I have implemented these

transformations and the measurement procedures for a higher-order functional subset

of Scheme. All the transformations and measurements are done automatically, and

the time bound is computed efficiently and accurately. Examples analyzed include

various list processing and numerical programs.

The approach is general because all four components developeded are based on

general methods and techniques. Each particular component requires relative small

improvements or modifications to existing analyses or transformations, but the com-

bination of them for the application of automatic and accurate time-bound analysis

for high-level languages is powerful.

All our analyses and transformations are performed at source level. This allows

implementations to be independent of compilers and underlying systems. It also

allows analysis results to be understood at source level. Our analysis scales well with

program size, as the transformations take linear time in terms of program size, but

depending on program structures, the analysis might not scale well with input size

used in partially known input structures.



CHAPTER 2

Analysis of a Functional Language

This chapter will discuss the approach using a functional language. The chapter

is organized as follows. Section 1 gives a formal definition of the language used.

Sections 2, 3, and 4 present the analysis and transformation methods and techniques.

Section 5 describes our implementation and experimental results.

1. Language definition

The language used is a first-order, call-by-value functional language that has struc-

tured data, primitive arithmetic, Boolean, and comparison operations, conditionals,

bindings, and mutually recursive function calls. A program is a set of mutually re-

cursive function definitions. Its syntax is given by the grammar in Figure 1 and its

semantics is the corresponding subset of Scheme[58, 25].

For example, the program in Figure 2 selects the least element in a non-empty

list.

program ::= (define (f 1 v11 . . . v1n) e1)
...

(define (f m vm1 . . . vmn) em)
e ::= v variable reference

| (c e1 . . . en) data construction
| (p e1 . . . en) primitive operation
| (if e1 e2 e3) conditional expression
| (let ((v e1)) e2) binding expression
| (f e1 . . . en) function application

Figure 1. Definition of the functional language.

I use least as a small running example. To present various analysis results, I also

use several other examples: insertion sort, selection sort, merge sort, set union, list

7



2. ANALYSIS OF A FUNCTIONAL LANGUAGE 8

(define (least x )
(if (null? (cdr x ))

(car x )
(let ((s (least (cdr x ))))

(if (< (car x ) s)
(car x )
s))))

Figure 2. Program least, which selects the smallest element from a list

reversal (the standard linear-time version), and reversal with append (the standard

quadratic-time version).

Even though this language is small, it is sufficiently powerful and convenient to

write sophisticated programs. Structured data is essentially records in Pascal, structs

in C, and constructor applications in ML. Conditionals and bindings easily simulate

conditional statements and assignments, and recursions can simulate loops.

2. Constructing time-bound functions

2.1. Constructing timing functions. The first step is to transform the original

program to construct a timing function, which takes the original input and primitive

parameters as arguments and returns the running time. This is straightforward based

on the semantics of the program constructs.

Given an original program, a set of timing functions are added, one for each

original function, which simply count the time while the original program executes.

The algorithm, given in Figure 3, is presented as a transformation T on the original

program, which calls a transformation Te to recursively transform subexpressions. For

example, a variable reference is transformed into a symbol Tvarref representing the

running time of a variable reference; a conditional statement is transformed into the

time of the test plus, if the condition is true, the time of the true branch, otherwise,

the time of the false branch, and plus the time for the transfers of control. The

function tf denotes the timing function for f .
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program: T

[[
(define (f 1 v11 ... v1n) e1)
...
(define (f m vm1 ... vmn

) em)

]]
=

(define (f 1 v11 ... v1n) e1)
...
(define (f m vm1 ... vmn

) em)
(define (tf 1 v11 ... vn1) Te [[e1]])
...
(define (tf m vm1 ... vmn

) Te [[em]])

variable reference: Te [[v]] = Tvarref

data construction: Te [[(c e1 ... en)]] = (+ T c Te [[e1]] ... Te [[en]])
primitive operation: Te [[(p e1 ... en)]] = (+ T p Te [[e1]] ... Te [[en]])
conditional: Te [[(if e1 e2 e3)]] = (+ T if Te [[e1]] (if e1 Te [[e2]] Te [[e3]]))
binding: Te [[(let ([v e1]) e2)]] = (+ T let Te [[e1]] (let ([v e1]) Te [[e2]]))
function call: Te [[(f e1 ... en)]] = (+ T call Te [[e1]] ... Te [[en]] (tf e1 ... en))

Figure 3. Rules for timing transformation T .

Applying this transformation to the program least, we obtain function least as

originally given and timing function tleast shown in Figure 4. Note that various T ’s

are indeed arguments to the timing function tleast; but are omitted from argument

positions for ease of reading.

(define (tleast x )
(+ T if (+ Tnull? T cdr T varref )

(if (null? (cdr x ))
(+ T car T varref )
(+ T let (+ T call (+ T cdr T varref ) (tleast (cdr x )))

(let ((s (least (cdr x ))))
(+ T if (+ T≤ (+ T car T varref ) T varref )

(if (< (car x ) s)
(+ T car T varref )
T varref )))))))

Figure 4. Function tleast after transformation T

This transformation is similar to the local cost assignment [100], step-counting

function [84], cost function [88], etc. in other work. Our transformation extends

those methods with bindings, and makes all primitive parameters explicit at the

source-language level. For example, each primitive operation p is given a different

symbol Tp, and each constructor c is given a different symbol Tc. Note that the

timing function terminates with the appropriate sum of primitive parameters if the
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original program terminates, and it runs forever to sum to infinity if the original

program does not terminate, which is the desired meaning of a timing function.

2.2. Constructing time-bound functions. Characterizing program inputs in

the time function is difficult to automate [100, 61, 91]. However, partially known

input structures provide a natural means [84]. A special constant unknown is used

to represent unknown values. For example, to represent all input lists of length n,

the following partially known input structure can be used.
(define (list n)

(if (= n 0)
’()
(cons ’unknown (list (− n 1)))))

Similar structures can be used to describe an array of n elements, a matrix of

m-by-n elements, etc.

Since partially known input structures give incomplete knowledge about inputs,

the original functions need to be transformed to handle the special value unknown.

In particular, for each primitive function p, a new primitive function fp is defined

such that fp(v1, ..., vn) returns unknown if any vi is unknown and returns p(v1, ..., vn)

as usual otherwise. A new least upper bound function lub is also defined that takes

two values and returns the most precise partially known structure that both values

conform with.
(define (f p v1 . . . vn)

(if (or (unknown? v1) . . . )
’unknown
(p v1 . . . vn)))

(define (lub v1 v2)
(if (equal? v1 v2)

v1
(if (and v1 is (c1 x 1 . . . x i)

v2 is (c2 y1 . . . yj)
c1 = c2
i = j )

(c1 (lub x 1 y1) . . . (lub x i y i))
’unknown)))
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Also, the timing functions need to be transformed to compute an upper bound

of the running time: if the truth value of a conditional test is known, then the

time of the chosen branch is computed normally, otherwise, the maximum of the

times of both branches is computed. Transformation C, given in Figure 5, embodies

these algorithms, where Ce transforms an expression in the original functions, and Ct

transforms an expression in the timing functions. The variable uf denotes function

f extended with the value unknown, and the variable tbf denotes the time-bound

function for f .

RC0 : C





(define (f 1 v11 v12 . . . v1k
)

exp1)
(define (f 2 v21 v22 . . . v2k

)
exp2)

...
(define (f n vn1 vn2 . . . vnk

)
expn)

(define (tf 1 v11 v12 . . . v1k
)

exp′
1)

(define (tf 2 v21 v22 . . . v2k
)

exp′
2)

...
(define (tf n vn1 vn2 . . . vnk

)
exp′

n)





=

(define (uf 1 v11 v12 . . . v1k
)

Ce [[exp1]])
(define (uf 2 v21 v22 . . . v2k

)
Ce [[exp2]])

...
(define (uf n vn1 vn2 . . . vnk

)
Ce [[expn]])

(define (tbf 1 v11 v12 . . . v1k
)

Ct [[exp′1]])
(define (tbf 2 v21 v22 . . . v2k

)
Ct [[exp′2]])

...
(define (tbf n vn1 vn2 . . . vnk

)
Ct [[exp′n]])

RCe1 : Ce [[v]] = v
RCe2 : Ce [[(c e1 ... en)]] = (c Ce [[e1]] ... Ce [[en]])
RCe3 : Ce [[(p e1 ... en)]] = (f p Ce [[e1]] ... Ce [[en]])
RCe4 : Ce [[(if e1 e2 e3)]] = (let ((v Ce [[e1]]))

(if (unknown? v)
(lub Ce [[e2]] Ce [[e3]])
(if v Ce [[e2]] Ce [[e3]])))

RCe5 : Ce [[(let ((v e1)) e2)]] = (let ((v Ce [[e1]])) Ce [[e2]])
RCe6 : Ce [[(f e1 ... en)]] = (uf Ce [[e1]] ... Ce [[en]])

RCt1 : Ct [[T ]] = T
RCt2 : Ct [[(+ e1 ... en)]] = (+ Ct [[e1]] ... Ct [[en]])
RCt3 : Ct [[(if e1 e2 e3]] = (let ((v Ce [[e1]]))

(if (unknown? v)
(max Ct [[e2]] Ct [[e3]])
(if v Ct [[e2]] Ct [[e3]])))

RCt4 : Ct [[(let ((v e1)) e2)]] = (let ((v Ct [[e1]])) Ct [[e2]])
RCt5 : Ct [[(tf e1 ... en)]] = (tbf Ct [[e1]] ... Ct [[en]])

Figure 5. Rules for Time-Bound transformation C
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Applying this transformation on functions least and tleast yields functions uleast

and tbleast in Figure 6, where function fp for each primitive operator p and function

lub are as given above.

(define (uleast x )
(let ((v0 (f null? (f cdr x ))))

(if (unknown? v0)
(lub (f car x )

(let ((s (uleast (f cdr x ))))
(let ((v1 (f ≤ (f car x ) s)))

(if (unknown? v1)
(lub (f car x ) s)
(if v1 (f car x ) s)))))

(if v0

(f car x )
(let ((s (uleast (f cdr x ))))

(let ((v1 (f ≤ (f car x ) s)))
(if (unknown? v1)

(lub (f car x ) s)
(if v1 (f car x ) s))))))))

(define (tbleast x )
(+ T if Tnull? T cdr T varref

(let ((v2 (f null? (f cdr x ))))
(if (unknown? v2)

(max (+ T car T varref )
(+ T let T call T cdr T varref (tbleast (cdr x ))

(let ((s (uleast (f cdr x ))))
(+ T if T≤ T car T varref T varref

(let ((v3 (f ≤ (f car x ) s)))
(if (unknown? v3)

(max (+ T car T varref ) T varref )
(if v3 (+ T car T varref ) T varref )))))))

(if v2

(+ T car T varref )
(+ T let T call T cdr T varref (tbleast (cdr x ))

(let ((s (uleast (f cdr x ))))
(+ T if T≤ T car T varref T varref

(let ((v3 (f ≤ (f car x ) s)))
(if (unknown? v3)

(max (+ T car T varref ) T varref )
(if v3 (+ T car T varref ) T varref )))))))))))

Figure 6. Function least after Time-Bound transformation C.

The resulting time-bound function takes as arguments partially known input

structures, such as list(n), which take as arguments input parameters, such as n.
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Therefore, the resulting function takes as arguments input parameters and primitive

parameters and computes the most accurate time bound possible.

Both transformations T and C take linear time in terms of the size of the program,

so they are extremely efficient, as also seen in our prototype system ALPA. Note

that the resulting time-bound function may not terminate, but this occurs only if the

recursive structure of the original program depends on unknown parts in the partially

known input structure. As a trivial example, if partially known input structure given

is unknown, then the corresponding time-bound function for any recursive function

does not terminate, since the original program does take infinite time in the worst

case.

3. Optimizing time-bound functions

This section describes symbolic evaluation and optimizations that make computa-

tion of time bounds more efficient. The transformations consist of partial evaluation,

realized as global inlining, and incremental computation, realized as local optimiza-

tion.

The time-bound functions may be extremely inefficient to evaluate given values

for their parameters. In fact, in the worst case, the evaluation takes exponential

time in terms of the input parameters, since it essentially searches for the worst-case

execution path for all inputs satisfying the partially known input structures.

3.1. Partial evaluation of time-bound functions. In practice, values of in-

put parameters are given for almost all applications. This is why time-analysis tech-

niques used in systems can require loop bounds from the user before time bounds are

computed. While in general it is not possible to obtain explicit loop bounds auto-

matically and accurately, we can implicitly achieve the desired effect by evaluating
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RE1 : E [[v]] ρ = ρ(v) look up binding in environment
RE2 : E [[T ]] ρ = T
RE3 : E [[(c e1 ... en)]] ρ = (c E [[e1]] ρ ... E [[en]] ρ)
RE4 : E [[(p e1 ... en)]] ρ = (p E [[e1]] ρ ... E [[en]] ρ)
RE5 : E [[(+ e1 ... en)]] ρ = (symbAdd E [[e1]] ρ ... E [[en]] ρ)
RE6 : E [[(max e1 ... en)]] ρ = (symbMax E [[e1]] ρ ... E [[en]] ρ)
RE7 : E [[(if e1 e2 e3)]] ρ = E [[e2]] ρ if E [[e1]] ρ = true

E [[e3]] ρ if E [[e1]] ρ = false
RE8 : E [[(let ((v e1)) e2)]] ρ = E [[e2]] ρ[v 7→E [[e1]] ρ] bind v in environment
RE9 : E [[(f e1 ... en)]] ρ = e[v1 7→ E [[e1]] ρ, ..., vn 7→ E [[en]] ρ]

where f is defined by f(v1, ..., vn) = e

Figure 7. Rules for symbolic evaluation of programs

the time-bound function symbolically in terms of primitive parameters given specific

values of input parameters.

The evaluation simply follows the structures of time-bound functions. Specifically,

the control structures determine conditional branches and make recursive function

calls as usual, and the only primitive operations are sums of primitive parameters and

maximums among alternative sums, which can easily be done symbolically. Thus,

the transformation simply inlines all function calls, sums all primitive parameters

symbolically, determines conditional branches if it can, and takes maximum sums

among all possible branches if it can not.

The symbolic evaluation E defined in Figure 7 performs the transformations. It

takes as arguments an expression e and an environment ρ of variable bindings and

returns as result a symbolic value that contains the primitive parameters. The evalua-

tion starts with the application of the program to be analyzed to a partially unknown

input structure, e.g., mergesort(list(250)), and it starts with an empty environment.

Assume symbAdd is a function that symbolically sums its arguments, and symbMax

is a function that symbolically takes the maximum of its arguments.
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As an example, applying symbolic evaluation to tbleast on a list of size 100, we

obtain the following result:

tbleast(list(100)) = 497 ∗ Tvarref + 100 ∗ Tnull? + 199 ∗ Tcar + 199 ∗ Tcdr

+99 ∗ T≤ + 199 ∗ Tif + 99 ∗ Tlet + 99 ∗ Tcall

Table 1 gives the results of symbolic evaluation of the timing functions for other

example programs on inputs of various sizes. The last column lists the sums for every

rows. All numbers are exact symbolic counts. They are verified by using a modified

evaluator.

This symbolic evaluation is exactly a specialized partial evaluation. It is fully

automatic and computes the most accurate time bound possible with respect to the

given program structure. It always terminates as long as the time-bound function

terminates.

The symbolic evaluation given only values of input parameters is inefficient com-

pared to direct evaluation given values of both input parameters and particular prim-

itive parameters, but the resulting function takes virtually constant time given any

values of primitive parameters. For example, directly evaluating a quadratic-time

reverse function (that uses append) on input of size 20 takes about 0.96 milliseconds,

whereas the symbolic evaluation takes 670 milliseconds, hundreds of times slower.

However, the resulting function can be evaluated in virtually no time given values of

primitive parameters measured for any underlying systems. I propose further opti-

mizations below that greatly speed up the symbolic evaluation.

3.2. Avoiding repeated summations over recursions. The symbolic evalu-

ation above is a global optimization over all time-bound functions involved. During

the evaluation, summations of symbolic primitive parameters within each function

definition are performed repeatedly while the computation recurses. Thus, we can
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Table 1. Results of symbolic evaluation of time-bound functions (ex-
act counts) for a functional language.

example size varref nil cons null? car cdr ≤ if let call
insertion 10 321 11 55 66 100 55 45 111 0 65

sort 20 1241 21 210 231 400 210 190 421 0 230
50 7601 51 1275 1326 2500 1275 1225 2551 0 1325

100 30201 101 5050 5151 10000 5050 4950 10101 0 5150
200 120401 201 20100 20301 40000 20100 19900 40201 0 20300
300 270601 301 45150 45451 90000 45150 44850 90301 0 45450
500 751001 501 125250 125751 250000 125250 124750 250501 0 125750

1000 3002001 1001 500500 501501 1000000 500500 499500 1001001 0 501500
2000 12004001 2001 2001000 2003001 4000000 2001000 1999000 4002001 0 2003000

selection 10 576 11 55 121 190 200 90 211 55 120
sort 20 2251 21 210 441 780 800 380 821 210 440

50 13876 51 1275 2601 4950 5000 2450 5051 1275 2600
100 55251 101 5050 10201 19900 20000 9900 20101 5050 10200
200 220501 201 20100 40401 79800 80000 39800 80201 20100 40400
300 495751 301 45150 90601 179700 180000 89700 180301 45150 90600
500 1376251 501 125250 251001 499500 500000 249500 500501 125250 251000

1000 5502501 1001 500500 1002001 1999000 2000000 999000 2001001 500500 1002000
2000 22005001 2001 2001000 4004001 7998000 8000000 3998000 8002001 2001000 4004000

merge- 10 456 28 69 192 119 112 25 217 0 138
sort 20 1154 58 177 468 315 284 69 537 0 340

50 3680 148 573 1440 1047 908 237 1677 0 1054
100 8562 298 1345 3284 2491 2116 573 3857 0 2412
200 19526 598 3089 7372 5779 4832 1345 8717 0 5428
300 31354 898 4977 11748 9355 7764 2189 13937 0 8660
500 56354 1498 8977 20948 16955 13964 3989 24937 0 15460

1000 124710 2998 19953 45900 37907 30928 8977 54877 0 33924
2000 273422 5998 43905 99804 83811 67856 19953 119757 0 73852

set 10 582 10 10 121 120 110 100 231 10 120
union 20 2162 20 20 441 440 420 400 861 20 440

50 12902 50 50 2601 2600 2550 2500 5151 50 2600
100 50802 100 100 10201 10200 10100 10000 20301 100 10200
200 201602 200 200 40401 40400 40200 40000 80601 200 40400
300 452402 300 300 90601 90600 90300 90000 180901 300 90600
500 1254002 500 500 251001 251000 250500 250000 501501 500 251000

1000 5008002 1000 1000 1002001 1002000 1001000 1000000 2003001 1000 1002000
2000 20016002 2000 2000 4004001 4004000 4002000 4000000 8006001 2000 4004000

list 10 43 1 10 11 10 10 0 11 0 11
reversal 20 83 1 20 21 20 20 0 21 0 21

50 203 1 50 51 50 50 0 51 0 51
100 403 1 100 101 100 100 0 101 0 101
200 803 1 200 201 200 200 0 201 0 201
300 1203 1 300 301 300 300 0 301 0 301
500 2003 1 500 501 500 500 0 501 0 501

1000 4003 1 1000 1001 1000 1000 0 1001 0 1001
2000 8003 1 2000 2001 2000 2000 0 2001 0 2001

reversal 10 231 11 55 66 55 55 0 66 0 65
with app 20 861 21 210 231 210 210 0 231 0 230

50 5151 51 1275 1326 1275 1275 0 1326 0 1325
100 20301 101 5050 5151 5050 5050 0 5151 0 5150
200 80601 201 20100 20301 20100 20100 0 20301 0 20300
300 180901 301 45150 45451 45150 45150 0 45451 0 45450
500 501501 501 125250 125751 125250 125250 0 125751 0 125750

1000 2003001 1001 500500 501501 500500 500500 0 501501 0 501500
2000 8006001 2001 2001000 2003001 2001000 2001000 0 2003001 0 2003000

speed up the symbolic evaluation by first performing such summations in a prepro-

cessing step. Specifically, we create a vector and let each element correspond to a
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primitive parameter. The transformation S, given in Figure 8, performs this op-

timization. Variable vtbf denotes the transformed time-bound function of f that

operates on vectors.

program: S





(define (tbf 1 v11 ... v1k
)

exp1)
(define (tbf 2 v21 ... v2k

)
exp2)

...
(define (tbf n vn1 ... vnk

)
expn)




=

(define (vtbf 1 v11 ... v1k
)

St [[exp1]])
(define (vtbf 2 v21 ... v2k

)
St [[exp2]])

...
(define (vtbf n vn1 ... vnk

)
St [[expn]])

primitive
parameter: St [[T ]] = create a vector of 0’s except with the

component corresponding to T set to 1
summation:St [[(+ e1 ... en)]] = component-wise summation of all the

vectors among St [[e1]] , ...,St [[en]]
maximum: St [[(max e1 ... en)]] = component-wise maximum of all the

vectors among St [[e1]] , ...,St [[en]]
all other: St [[e]] = e

Figure 8. Transformation S to optimize repeated summations

Let V be the following vector of primitive parameters:

〈Tvarref , Tnil, Tcons, Tnull?, Tcar, Tcdr, T≤, Tif , Tlet, Tcall〉

Applying the above transformation on function tbleast yields function vtbleast shown

in Figure 9, where components of the vectors correspond to the components of V .

The time-bound function tbleast(x) is simply the dot product of vtbleast(x) and

V .

This transformation incrementalizes the computation over recursions to avoid re-

peated summation. Again, this is fully automatic and takes time linear in terms of

the size of the cost-bound function.

The result of this optimization is dramatic. For example, optimized symbolic eval-

uation of the same quadratic-time reverse takes only 2.55 milliseconds, while direct

evaluation takes 0.96 milliseconds, resulting in less than 3 times slow-down. Table 2
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(define (vtbleast x )
(+ 〈1, 0, 0, 1, 0, 1, 0, 1, 0, 0〉

(let ((v0 (f null? (f cdr x ))))
(if (unknown? v0)

(max 〈1, 0, 0, 0, 1, 0, 0, 0, 0, 0〉
(+ 〈1, 0, 0, 0, 0, 1, 0, 0, 1, 1〉

(vtbleast (cdr x ))
(let ((s (uleast (f cdr x ))))

(+ 〈2, 0, 0, 0, 1, 0, 1, 1, 0, 0〉
(let ((v1 (f ≤ (f car x ) s)))

(if (unknown? v1)
〈1, 0, 0, 0, 1, 0, 0, 0, 0, 0〉
(if v1

〈1, 0, 0, 0, 1, 0, 0, 0, 0, 0〉
〈1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉)))))))

(if v0

〈1, 0, 0, 0, 1, 0, 0, 0, 0, 0〉
(+ 〈1, 0, 0, 0, 0, 1, 0, 0, 1, 1〉

(vtbleast (cdr x ))
(let ((s (uleast (f cdr x ))))

(+ 〈2, 0, 0, 0, 1, 0, 1, 1, 0, 0〉
(let ((v1 (f ≤ (f car x ) s)))

(if (unknown? v1)
〈1, 0, 0, 0, 1, 0, 0, 0, 0, 0〉
(if v1

〈1, 0, 0, 0, 1, 0, 0, 0, 0, 0〉
〈1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉)))))))))))

Figure 9. Function tbleast after transformation S.

compares the times of direct evaluation of timing functions, with each primitive pa-

rameter set to 1, and the times of optimized symbolic evaluation, obtaining the exact

symbolic counts as in Figure 1. These measurements are taken on a Sun Ultra 1 with

167MHz CPU and 64MB memory. They include garbage-collection time. The times

without garbage-collection times are all about 1% faster, so they are not shown here.

For merge sort, it takes several days for inputs of size 50 or larger. A special

but simple optimization can be done, and resulting symbolic evaluation takes only

seconds. For all other examples, it takes at most 2.7 hours. Note that, on small

inputs, symbolic evaluation takes relatively much more time than direct evaluation,

due to the relatively large overhead of vector setup; as inputs get larger, symbolic

evaluation is almost as fast as direct evaluation for most examples. Again, after
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the symbolic evaluation, time bounds can be computed in virtually no time given

primitive parameters measured on any machines.

Table 2. Times of direct evaluation vs. optimized symbolic evaluation
(in milliseconds).

insertion sort selection sort merge sort set union list reversal reversal w/app.
size direct symbolic direct symbolic direct symbolic direct symbolic direct symbolic direct symbolic
10 0.49328 1.89057 0.71550 3.04985 1.43136 14.6666 1.44601 4.28571 0.0113 0.1391 0.25637 1.32877
20 1.93942 4.79452 3.89051 14.2352 605.714 8500.00 5.02935 10.6274 0.0211 0.2649 0.96215 2.55132
50 56.6666 87.4193 46.6666 106.451 xxxxxx xxxxxx 134.516 192.666 0.0498 0.6422 23.2283 44.1269

100 451.428 557.142 338.571 571.428 xxxxxx xxxxxx 1026.66 1176.66 0.0973 1.2603 178.000 231.333
500 58240.0 58080.0 39480.0 46050.0 xxxxxx xxxxxx 125910. 117240. 0.5030 6.2426 21540.0 22180.0

2000 4024730 4039860 2666290 2761410 xxxxxx xxxxxx 9205680 9690370 3.6070 27.401 1810280 1711650

4. Making time-bound functions accurate

While loops and recursions affect time bounds most, the accuracy of the time

bounds calculated also depends on the handling of the conditionals in the original

program, which is reflected in the time-bound function. For conditionals whose test

results are known to be true or false at the symbolic-evaluation time, the appropriate

branch is chosen; so other branches, which may even take longer, are not considered

for the worst-case time. This is a major source of accuracy for our worst-case bound.

For conditionals whose test results are not known at symbolic-evaluation time,

we need to take the maximum time among all alternatives. The only case in which

this would produce inaccurate time bound is when the test in a conditional in one

subcomputation implies the test in a conditional in another subcomputation. For

example, consider an expression e0 whose value is unknown and

e1 = (if e0 1 (fibonacci 1000))

e2 = (if e0 (fibonacci 2000) 2)

If we compute the time bound for (+ e1 e2) directly, the result is at least (+ (tfibonacci

1000) (tfibonacci 2000)). However, if we consider only the two realizable execution

paths, we know that the worst case is (tfibonacci 2000) plus some small constants.

This is known as the false-path elimination problem [2].
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Two transformations, lifting conditions and simplifying conditionals, allow us to

achieve the accurate analysis results above. In each function definition, the former

lifts conditions to the out-most scope that the test does not depend on, and the latter

simplifies conditionals according to the lifted condition. For e1 + e2 in the above

example, lifting the condition for e1, we obtain

(if e0 (+ 1 e2) (+ (fibonacci 1000) e2))

Simplifying the conditionals in the two occurrences of e2 to (fibonacci 2000) and

2, respectively, we obtain

(if e0 (+ 1 (fibonacci 2000)) (+ (fibonacci 1000) 2))

To facilitate these transformations, we inline all function calls where the function

is not defined recursively.

The power of these transformations depends on reasonings used in simplifying the

conditionals, as have been studied in many program transformation methods [101,

89, 94, 34, 68]. At least syntactic equality can be used, which identifies the most

obvious source of inaccuracy. These optimizations also speed up the symbolic evalu-

ation, since now obviously infeasible execution paths are not searched.

5. Implementation and experimentation

I have implemented the analysis approach in a prototype system, ALPA (Auto-

matic Language-based Performance Analyzer). I performed a large number of mea-

surements and obtained encouraging good results. I also used the system to obtain

the exact symbolic counts and the performance measurements shown in Section 3.

The implementation is for a subset of Scheme. An editor for the source pro-

grams is implemented using the Synthesizer Generator [83], and thus we can easily

change the syntax for the source programs. For example, the current implementa-

tion supports both the syntax used in this Chapter and the syntax used in [66].
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Time-bound functions are constructed using SSL, a simple functional language used

in the Synthesizer Generator. Lifting conditions, simplifying conditionals, and in-

lining non-recursive calls are also implemented in SSL; they can be applied on the

source program before constructing the time-bound function. The symbolic evalua-

tion and optimizations, as well as measurements of primitive parameters, are written

in Scheme. The measurements and analyses are performed for source programs com-

piled with Chez Scheme compiler [24]. The particular numbers below are taken on

a Sun Ultra 1 with 167MHz UltraSPARC CPU and 64MB main memory, but the

analysis were performed for several other kinds of SPARC stations, and the results

are similar.

I tried to avoid compiler optimizations by setting the optimization level to 0. To

handle garbage-collection time, I performed two sets of experiments: one set excludes

garbage-collection times in both calculations and measurements, while the other in-

cludes them in both. The source program does not use any library; in particular, no

numbers are large enough to trigger the bignum implementation of Chez Scheme. Our

current system does not handle the effects of cache memory or instruction pipelin-

ing; thus I tried to avoid producing large data in the example programs to minimize

possible cache effects.

Since the minimum running time of a program construct is about 0.1 microsec-

onds, and the precision of the timing function is 10 milliseconds, I use control/test

loops that iterate 10,000,000 times, keeping measurement error under 0.001 microsec-

onds, i.e., 1%. Such a loop is repeated 100 times, and the average value is taken to

compute the primitive parameter for the tested construct (the variance is less than

10% in most cases). The calculation of the time bound is done by plugging these

measured parameters into the optimized time-bound function. We then run each
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example program an appropriate number of times to measure its running time with

less than 1% error.

Table A.1 shows the calculated and measured worst-case times for six example

programs on inputs of size 10 to 2000. For the set union example, we used inputs

where both arguments were of the given sizes. These times do not include garbage-

collection times. The item me/ca is the measured time expressed as a percentage

of the calculated time. In general, all measured times are closely bounded by the

calculated times (with about 90-95% accuracy) except when inputs are extremely

small (10 or 20, in 1 case) or extremely large (2000, in 3 cases), which is analyzed

below.

Table A.2 shows the calculated and measured worst-case times that include garbage-

collection times. The results are similar to whose when garbage-collection times are

excluded, except that the percentages are consistently higher than in Table A.1. In

particular, underestimations occur more often for extremely small inputs, for inputs

of size 1000 as well as 2000 on some examples, and for a few other inputs (about

1-2%, in 2 cases). We believe that this is the effect of garbage collection, which we

have only measured in general but not analyzed specifically.

In general, the measured worst-case times are closely bounded by calculated upper

bounds for all inputs of medium sizes (up to 500 for measurements including garbage-

collection time, up to 1000 excluding garbage-collection time, and even larger for

faster programs or programs that use less space). Figure 10 depicts the numbers in

Table A.1. Examples such as sorting are classified as complex examples in previous

study [76, 62], where calculated time is as much as 67% higher than measured time,

and where only the result for one sorting program on a single input (of size 10 [76]

or 20 [62]) is reported in each experiment.
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Figure 10. Comparison of calculated and measured worst-case times

for the functional language, without garbage collection.

We found that when inputs are extremely small (10 or 20), the measured time is

occasionally above the calculated time for some examples. Also, when inputs are large

(1000 for measurements including garbage-collection time, or 2000 excluding garbage-

collection time), the measured times for some examples are above the calculated time.



2. ANALYSIS OF A FUNCTIONAL LANGUAGE 24

We attribute these to cache memory effects, and this is further confirmed by measuring

programs, such as Cartesian product, that use extremely large amount of space even

on small inputs (50-200); for example, on input of size 200, the measured time is

65% higher than the calculated time. While this shows that cache effects need to be

considered for larger applications, it also helps validate that our calculated results are

accurate relative to our current model.

Among fifteen programs we have analyzed using ALPA, two of them did not

terminate. One is quick sort, and the other is a contrived variation of sorting; both

diverge because the recursive structure for splitting a list depends on the values of

unknown list elements. We have found a different symbolic-evaluation strategy that

uses a kind of incremental path selection, and the evaluation would terminate for both

examples, as well as all other examples, giving accurate worst-case bounds. We are

implementing that algorithm. We also noticed that static analysis can be exploited

to identify sources of nontermination.



CHAPTER 3

Analysis of an Imperative Language

This chapter extend the time-bound analysis of functional programs to include

assignment and vectors.

In order to analyze programs in the presence of assignments we transform the

imperative program into a functional one using Storage Passing Style (SPS). We then

do the analysis of this new functional program with the technique from the previous

chapter, but with a few necessary changes, to cover the fact that now a store is a

value and it has to be dealt with appropriately.

1. Language definition

We use the same language described in Chapter 2, extended with an assignment

expression, a loop expression, a sequencing expression and with side-effecting prim-

itives (vector and record update). Its syntax is given by the grammar in Figure 1,

and its semantics corresponds to the appropriate subset of Scheme [58, 25] where the

loop expression is defined as in Figure 2. For example, the program in Figure 3 adds

all the elements in a vector of numbers. For ease of analysis and transformation, we

assume that a preprocessor gives a distinct name to each bound variable.

We use vector-sum as a small running example.

2. Converting the imperative program to a functional program

2.1. Assignment elimination. We first transform the original program to elim-

inate assignments, in order to avoid having a mutable environment. This way only

25
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program ::= (define (f 1 v11 . . . v1n) e1)
...

(define (f m vm1 . . . vmn) em)
e ::= v variable reference

| (c e1 . . . en) data construction
| (p e1 . . . en) primitive operation
| (if e1 e2 e3) conditional expression
| (set! v e) assignment expression
| (let ((v e1)) e2) binding expression
| (begin e1 e2) sequencing
| (while e1 e2) loop
| (f e1 . . . en) function application

Figure 1. Definition of the imperative language.

(define-syntax while
(syntax-rules ()

((while test body)
(let loop ()

(if test
(begin body (loop))
’void)))))

Figure 2. Definition of the while expression in Scheme.

(define (vector-sum v)
(let ([sum 0])

(let ([i 0])
(begin

(while (< i (vector-length v))
(begin

(set! sum (+ sum (vector-ref v i)))
(set! i (+ i 1))))

sum))))

Figure 3. Program vector-sum, which returns the addition of all the
numbers in a vector

the store is mutable, and it will greatly simplify the conversion to a functional pro-

gram. In order to eliminate assignment, we first look for variables that are subject to

assignment, using the algorithm shown in Figure 4. For each such variable, we change

the definition to a vector, we change the references to vector references and we change

the assignments to vector updates. This transformation is shown in Figure 5. For
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example, Figure 6 shows the program vector-sum after the assignment elimination

step.

RTsv1 : Tsv [[v]] = ∅
RTsv2 : Tsv [[(c e1 ... en)]] = Tsv [[e1]] ∪ ... ∪ Tsv [[en]]
RTsv3 : Tsv [[(p e1 ... en)]] = Tsv [[e1]] ∪ ... ∪ Tsv [[en]]
RTsv4 : Tsv [[(if e1 e2 e3)]] = Tsv [[e1]] ∪ Tsv [[e2]] ∪ Tsv [[e3]]
RTsv5 : Tsv [[(set! v e)]] = {v} ∪ Tsv [[e]]
RTsv6 : Tsv [[(let ((v e1)) e2)]] = Tsv [[e1]] ∪ Tsv [[e2]]
RTsv7 : Tsv [[(begin e1 e2)]] = Tsv [[e1]] ∪ Tsv [[e2]]
RTsv8 : Tsv [[(while e1 e2)]] = Tsv [[e1]] ∪ Tsv [[e2]]
RTsv9 : Tsv [[(f e1 ... en)]] = Tsv [[e1]] ∪ ... ∪ Tsv [[en]]

Figure 4. Algorithm to find the variables subject to assignment. This
algorithm assumes that each variable has a distinct name.

RTae0 : Tae





(define (f 1 v11 v12 ... v1k
)

exp1)
(define (f 2 v21 v22 ... v2k

)
exp2)

...
(define (f n vn1 vn2 ... vnk

)
expn)




=

(define (f 1 v11 v12 ... v1k
)

(let ((v1i (vector v1i)) . . . )
Taee [[exp1]] (Tsv [[exp1]])))

(define (f 2 v21 v22 ... v2k
)

(let ((v2i (vector v2i)) . . . )
Taee [[exp2]] (Tsv [[exp2]])))

...
(define (f n vn1 vn2 ... vnk

)
(let ((vni (vector vni)) . . . )
Taee [[expn]] (Tsv [[expn]])))

RTaee1 : Taee [[v]] s =
{

v , v 6∈ s
(vector-ref v 0), v ∈ s

RTaee2 : Taee [[(c e1 ... en)]] s = (c Taee [[e1]] s ... Taee [[en]] s)
RTaee3 : Taee [[(p e1 ... en)]] s = (p Taee [[e1]] s ... Taee [[en]] s)
RTaee4 : Taee [[(if e1 e2 e3)]] s = (if Taee [[e1]] s Taee [[e2]] s Taee [[e3]] s)
RTaee5 : Taee [[(set! v e)]] s = (vector-set! v 0 Taee [[e]] s)

RTaee6 : Taee [[(let ((v e1)) e2)]] s =
{

(let ((v Taee [[e1]] s)) Taee [[e2]] s) , v 6∈ s
(let ((v (vector Taee [[e1]] s))) Taee [[e2]] s), v ∈ s

RTaee7 : Taee [[(begin e1 e2)]] s = (begin Taee [[e1]] s Taee [[e2]] s)
RTaee8 : Taee [[(while e1 e2)]] s = (while Taee [[e1]] s Taee [[e2]] s)
RTaee9 : Taee [[(f e1 ... en)]] s = (f Taee [[e1]] s ... Taee [[en]] s)

Figure 5. Assignment elimination transformation

2.2. Lambda lifting step. Since our original functional language has no loops,

we need to remove the loops using the lambda lifting technique [54, 56, 78]. Each

loop will now be a function, with all the free variables as arguments. Figure 7 shows

the program vector-sum after the lambda lifting step.
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(define (vector-sum v)
(let ([sum (vector 0)])

(let ([i (vector 0)])
(begin

(while (< (vector-ref i 0) (vector-length v))
(begin

(vector-set! sum
(+ (vector-ref sum 0) (vector-ref v (vector-ref i 0))))

(vector-set! i (+ (vector-ref i 0) 1))))
(vector-ref sum 0)))))

Figure 6. Program vector-sum, after the assignment elimination step

(define (vector-sum v)
(let ([sum (vector 0)])

(let ([i (vector 0)])
(begin

(vector-sum-loop0 sum i v)
(vector-ref sum 0)))))

(define (vector-sum-loop0 sum i v)
(if (< (vector-ref i 0) (vector-length v))

(begin
(vector-set! sum

(+ (vector-ref sum 0) (vector-ref v (vector-ref i 0))))
(vector-set! i (+ (vector-ref i 0) 1))
(vector-sum-loop0 sum i v))

’void))

Figure 7. Program vector-sum, after the lambda lifting step

2.3. Storage passing style step. The last step to make the program functional

is to convert it to Storage Passing Style (SPS). With this transformation, every ex-

pression will now return two values: the original value and the store, which is a

mapping from locations to values. We need to change all primitive and construction

operations to accept a store as argument, and to return a new store along with the

original value. We call this new primitives “store-aware” primitives and are named by

prepending “sa-” to the name of the original primitive. For primitives that access the

store, we use the fully persistent data structure techniques presented in [21, 22]. For

the rest of the primitives, we just add a new argument store and return it unchanged,

as shown in Figure 8 for a two argument primitive. In the following description, the
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expression 〈exp1 exp2〉 is used for brevity of the presentation instead of the expression

(cons exp1 exp2). Similarly, the expression (let ((〈v s〉 exp0)) exp1) is used instead

of (let ((tmp exp0)) (let ((v (car tmp))) (let ((s (cdr tmp))) exp1))).

The transformation algorithm, given in Figure 9, is presented as a transforma-

tion Tsps on the original program, which calls a transformation Tspse to recursively

transform subexpressions.

(define (sa-quotient arg1 arg2 store)
〈(quotient arg1 arg2) store〉)

Figure 8. Redefinition of primitive quotient to accept and return a
store argument

RTsps0 : Tsps





(define (f 1 v11 v12 ... v1k
)

exp1)
(define (f 2 v21 v22 ... v2k

)
exp2)

...
(define (f n vn1 vn2 ... vnk

)
expn)




=

(define (f 1 v11 v12 ... v1k
store)

Tspse [[exp1]])
(define (f 2 v21 v22 ... v2k

store)
Tspse [[exp2]])

...
(define (f n vn1 vn2 ... vnk

store)
Tspse [[expn]])

RTspse1 : Tspse [[v]] = 〈v store〉
RTspse2 : Tspse [[(c e1 ... en)]] = (let ((〈v1 store〉 Tspse [[e1]]))

. . .
(let ((〈vn store〉 Tspse

[[en]]))
(sa-c v1 . . . vn store))· · · )

RTspse3 : Tspse
[[(p e1 ... en)]] = (let ((〈v1 store〉 Tspse

[[e1]]))
. . .

(let ((〈vn store〉 Tspse [[en]]))
(sa-p v1 . . . vn store))· · · )

RTspse4 : Tspse
[[(if e1 e2 e3)]] = (let ((〈v store〉 Tspse [[e1]]))

(if v Tspse [[e2]] Tspse [[e3]]))
RTspse5 : Tspse [[(begin e1 e2)]] = (let ((〈ignored store〉 Tspse

[[e1]]))
Tspse [[e2]])

RTspse6 : Tspse [[(f e1 ... en)]] = (let ((〈v1 store〉 Tspse [[e1]]))
. . .

(let ((〈vn store〉 Tspse
[[en]]))

(f v1 . . . vn store))· · · )

Figure 9. Transformation Tsps

Rule RTsps0 adds a store argument to each function and it transforms the expres-

sions recursively using Tspse . Notice that the variable store should not be used by the

original program, and it is the same variable through all the transformed program.
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Rule RTspse1 transforms a variable reference to a pair variable–store.

Rules RTspse2, RTspse3 and RTspse6 evaluate the arguments from left to right, car-

rying the store from argument evaluation to argument evaluation, where v1 . . . vn are

fresh variables. At the end we just call the original primitive/constructor/function.

Notice that the bindings of store will shadow all the previous bindings, making the

new store the only accessible store.

Rule RTspse4 evaluates the test expression, binding the value to a fresh variable v,

and shadowing the binding for store.

Rule RTspse5 evaluates the first expression in a sequence, ignores the value and

uses the store to evaluate the second expression.

Applying transformation Tspsto the program vector-sum, we obtain the function

shown in Figure 10.

(define (vector-sum v store)
(let ([〈sum store〉 (sa-vector 0 store)])

(let ([〈i store〉 (sa-vector 0 store)])
(let ([〈ignored0 store〉 (vector-sum-loop0 sum i v store)])

(sa-vector-ref sum 0 store)))))
(define (vector-sum-loop0 sum i v store)

(let ([〈v0 store〉 (sa-vector-ref i 0 store)])
(let ([〈v1 store〉 (sa-vector-length v store)])

(let ([〈v2 store〉 (sa-< v0 v1 store)])
(if v2

(let ([〈v3 store〉 (sa-vector-ref sum 0 store)])
(let ([〈v4 store〉 (sa-vector-ref i 0 store)])

(let ([〈v5 store〉 (sa-vector-ref v v4 store)])
(let ([〈v6 store〉 (sa-+ v3 v5 store)])

(let ([〈ignored1 store〉 (sa-vector-set! sum v6 store)])
(let ([〈v7 store〉 (sa-vector-ref i 0 store)])

(let ([〈v8 store〉 (sa-+ v7 1 store)])
(let ([〈ignored2 store〉 (sa-vector-set! i v8 store)])

(vector-sum-loop0 sum i v store)))))))))
〈’void store〉)))))

Figure 10. Program vector-sum, after transformation Tsps.
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3. Optimizing the SPS function

The resulting function is Storage Passing Style has now many tuple construction

and destruction that can be avoided, to speed up the execution of the analysis. The

idea is to create a tuple only when it is absolutely necessary to do so. We accomplish

this by looking at each primitive and decide if its job is to modify the store, return a

value, or both. For example, (vector-ref v n) only returns a value, (vector-set! v n

e) only modifies the store, and (vector e1 . . . ) both returns a value and modifies the

store.

To avoid tuple creation, we modify the store-aware primitives such that value-

returning procedures (car , cdr , vector-ref , vector-length, null? , eq? , +, −, ∗, >, <,

=) return only the value, store-modifying procedures (set-car! , set-cdr! , vector-set! )

return only a new store, and the rest (cons , make-vector , vector) return a tuple as

before. Then, we modify the tuple bindings accordingly, as shown in Figure 11.

(let ([〈v store〉 exp1])
exp2)

=


(let ([v exp1])

exp2)
if exp1 returns a value

(let ([store exp1])
exp2)

if exp1 returns a store

(let ([〈v store〉 exp1])
exp2)

if exp1 returns both

Figure 11. Optimizing the SPS functions.

After the optimization, there is also a copy propagation step, since some bindings

will be now redundant. Figure 12 shows the function vector-sum after this optimiza-

tion.

4. Running the functional analysis

Once the program is in a functional style, it can be given to the analysis described

in Chapter 2. However, there are some things to consider. First, the store is now a

user variable, which means that when execution paths are unknown, we need to do a
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(define (vector-sum v store)
(let ([〈sum store〉 (sa-vector 0 store)])

(let ([〈i store〉 (sa-vector 0 store)])
(let ([store (vector-sum-loop0 sum i v store)])

(sa-vector-ref sum 0 store)))))
(define (vector-sum-loop0 sum i v store)

(let ([v0 (sa-vector-ref i 0 store)])
(let ([v1 (sa-vector-length v store)])

(let ([v2 (sa-< v0 v1 store)])
(if v2

(let ([v3 (sa-vector-ref sum 0 store)])
(let ([v4 (sa-vector-ref i 0 store)])

(let ([v5 (sa-vector-ref v v4 store)])
(let ([v6 (sa-+ v3 v5 store)])

(let ([store (sa-vector-set! sum v6 store)])
(let ([v7 (sa-vector-ref i 0 store)])

(let ([v8 (sa-+ v7 1 store)])
(let ([store (sa-vector-set! i v8 store)])

(vector-sum-loop0 sum i v store)))))))))
store)))))

Figure 12. Program vector-sum, after SPS optimization.

least-upper bound on stores. Since we know the format of a store, we can do a better

job getting the least upper bound than the general lub function. In fact, the general

lub will return an object that is not a store when given two different stores. The new

lub function is shown in Figure 13.

(define (lub x y)
(if (store? x )

(lub-store x y)
(if (equal? x y)

x
’unknown)))

where
lub-store(s1, s2) = s3

such that
s3(loc) = lub(s1(loc), s2(loc))

Figure 13. The new function lub appropriate for functional programs
converted from imperative.

Second, with the transformation we introduced code that wasn’t there at the

beginning, which is going to have an impact in the resulting bound. The most notable

source of new code is the SPS transformation, which introduces many tuple creation

and tuple destruction of value/store pairs. The solution is to assign a cost of zero

to this new code. To handle the tuple creation and destruction, we introduce new
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primitives pair, 1st and 2nd with zero cost. Since now every function call has a new

argument store, the new cost of a function call is now Tcall − Tvarref and for every

primitive, the new cost is Tprim − Tvarref .

5. Implementation and experimentation

I have implemented this analysis approach in our prototype system, ALPA, obtain-

ing encouraging good results. The methodology is similar to the methodology used

in Section 8. The symbolic evaluation and optimizations, as well as measurements

of primitive parameters, are written in Scheme. The measurements and analyses are

performed for source programs compiled with Chicken Scheme compiler [24]. The

particular numbers below are taken on a Apple Dual G5 CPU and 4GB main mem-

ory, but the analysis were performed for several kinds of SPARC stations, and the

results are similar.

Optimization was set to 0, and there were two sets of experiments to account for

the presence and absence of garbage-collection in the timings. To avoid possible cache

effects, cache was disabled when running the experiments.

Since the minimum running time of a program construct is about 0.1 microsec-

onds, and the precision of the timing function is 1 millisecond, I use control/test loops

that iterate 1,000,000 times, keeping measurement error under 0.001 microseconds,

i.e., 1%. Such a loop is repeated 100 times, and the average value is taken to compute

the primitive parameter for the tested construct (the variance is less than 10% in most

cases). The calculation of the time bound is done by plugging these measured param-

eters into the optimized time-bound function. We then run each example program

an appropriate number of times to measure its running time with less than 1% error.

Table A.3 shows the calculated and measured worst-case times for six example

programs on inputs of size 10 to 2000. These times include garbage-collection times.
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The item me/ca is the measured time expressed as a percentage of the calculated

time. In general, all measured times are bounded by the calculated times (with

about 60-95% accuracy). The programs are insertion, selection and merge sort on

vectors, vector sum, destructive list reversal, and destructive merge sort on lists.

In general, the measured worst-case times are closely bounded by calculated upper

bounds for all inputs. Figure 14 depicts the numbers in Table A.3, normalized on the

asymptotic growth of the respective functions.

6. Direct transformation

One drawback of using a transformation to a functional program to analyze im-

perative programs is that we lose accuracy. In particular, all the computed costs have

more function calls and variable references than the measured costs. To overcome this

inaccuracy, a new transformation is presented directly from the imperative program

to the time-bound function, to avoid introducing new code in the analyzed program.

In order to analyze programs in the presence of assignment, we use, as before,

a transformation T that transform the original program into a new program that

computes the original value plus the time-bound to compute that value and the

resulting environment. The environment is needed in the intermediate steps to help

keep track of the value of the variables before an evaluation, in case we need those

same values to evaluate a different expression in the original context, for example,

with a conditional expression we would like to evaluate both the true branch and the

else branch with the same environment.

7. Constructing time-bound function

For the first-order functional language, we had two transformation, a timing trans-

formation and a time-bound transformation. However in this case we need to keep
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Figure 14. Comparison of calculated and measured worst-case times

for the imperative language, using SPS.

track of the environment and the storage, which makes the separation of the two

transformation steps more complex, instead of simpler. For this reason, we have only

one transformation step which makes a time-bound function directly from the original

function.

Transformation T is defined by the rules shown in Figure 15
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RT 0 : T


(define (f 1 v11 ... v1k

) exp1)
(define (f 2 v21 ... v2k

) exp2)
...

(define (f n vn1 ... vnk
) expn)


 =

(define (f ∗1 v11 ... v1k
ρ σ) (Te [[exp1]] ρ σ))

(define (f ∗2 v21 ... v2k
ρ σ) (Te [[exp2]] ρ σ))

...
(define (f ∗n vn1 ... vnk

ρ σ) (Te [[expn]] ρ σ))
RTe1 : Te [[v]] = (lambda (ρ σ) 〈(ρ v) T var ρ σ〉)
RTe2 : Te [[c]] = (lambda (ρ σ) 〈c T c ρ σ〉)
RTe3 : Te [[(set! v exp)]] = (lambda (ρ σ)

(let ((〈v1 t1 ρ1 σ1〉 (Te [[exp]] ρ σ)))
〈v1 (+ t1 T set!) ρ1[v 7→v1] σ1〉))

RTe4 : Te [[(begin exp1 exp2)]] = (lambda (ρ σ)
(let ((〈v1 t1 ρ σ〉 (Te [[exp1]] ρ σ)))

(let ((〈v2 t2 ρ σ〉 (Te [[exp2]] ρ σ)))
〈v2 (+ t1 t2 T begin) ρ σ〉)))

RTe5 : Te [[(if exp1 exp2 exp3)]] =
(lambda (ρ σ)

(let ((〈v1 t1 ρ1 σ1〉 (Te [[exp1]] ρ σ)))
(if (unknown? v1)

(let ((〈v2 t2 ρ2 σ2〉 (Te [[exp2]] ρ1 σ1)))
(let ((〈v3 t3 ρ3 σ3〉 (Te [[exp3]] ρ1 σ1)))
〈(lubv v2 v3) (+ T if t1 (max t2 t3)) (lube ρ2 ρ3) (lubs σ2 σ3)〉))

(if v1
(let ((〈v2 t2 ρ2 σ2〉 (Te [[exp2]] ρ1 σ1)))
〈v2 (+ T if t1 t2) ρ2 σ2〉)

(let ((〈v3 t3 ρ3 σ3〉 (Te [[exp3]] ρ1 σ1)))
〈v3 (+ T if t1 t3) ρ3 σ3〉)))))

RTe6 : Te [[(prim exp1 ... expn)]] = (lambda (ρ σ)
(let ((〈v1 t1 ρ σ〉 (Te [[exp1]] ρ σ)))

. . .
(let ((〈vn tn ρ σ〉 (Te [[expn]] ρ σ)))

(let ((〈v0 t0 ρ σ〉 (prim∗ v1 ... vn ρ σ)))
〈v0 (+ t0 t1 ... tn) ρ σ〉))))

RTe7 : Te [[(f exp1 ... expn)]] = (lambda (ρ σ)
(let ((〈v1 t1 ρ σ〉 (Te [[exp1]] ρ σ)))

. . .
(let ((〈vn tn ρ σ〉 (Te [[expn]] ρ σ)))

(let ((〈v0 t0 ρ σ〉 (f ∗ v1 ... vn ρ σ)))
〈v0 (+ T call t0 t1 ... tn) ρ σ〉))))

RTe8 : Te [[(while exp1 exp2)]] = (lambda (ρ σ)
(let ((〈v t ρ σ〉 (Te [[exp1]] ρ σ)))

(while v
(let ((〈ignored t2 ρ2 σ2〉 (Te [[exp2]] ρ σ)))

(let ((〈v1 t1 ρ1 σ1〉 (Te [[exp1]] ρ2 σ2)))
(begin

(set! v v1) (set! t (+ t t1 t2 T loop))
(set! ρ ρ1) (set! σ σ1)))))

(if (unknown? v)
(abort ’infinity)
〈’void (+ Twhile t) ρ σ〉)))

RTe9 : Te [[(let ((v exp1)) exp2)]] = (lambda (ρ σ)
(let ((〈v1 t1 ρ σ〉 (Te [[exp1]] ρ σ)))

(let ((〈v2 t2 ρ σ〉 (Te [[exp2]] ρ[v 7→v1] σ)))
〈v2 (+ T let t1 t2) ρ σ〉)))

Figure 15. Rules for time-bound transformation T
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Rule RT 0 adds the environment and the storage as new arguments to each function

definition, and it applies that argument to the transformation Te of the original body.

Transformation Te builds a function that takes the environment as argument and

returns a quadruple 〈value time new-env new-storage〉 where value is the value com-

puted by the original function, time is the time-bound to compute that function,

new-env is the resulting environment after the evaluation of the expression and new-

storage is the resulting storage after the evaluation of the expression. Notice that

now every function call, including the primitive procedures, receive the environment

and the store, and return the quadruple. The primitive procedures are redefined in a

similar fashion to Figure 8, including the environment as argument.

Rule RTe1 creates a functional expression which returns a quadruple with the value

of v in the environment, the constant Tvar which represents the time associated with

a variable lookup, the unchanged environment and the original store.

Rule RTe2 creates a functional expression which returns a quadruple with the

constant c, the constant Tc which represents the time associated with the constant c,

the original environment and the original store.

In rule RTe3 we bind the resulting quadruple of applying the transformation of

the expression exp to the environment to a new fresh quadruple 〈 v 1 t1 ρ1 σ1〉, and

the resulting quadruple contains the value v1, the time-bound of the evaluation of the

expression plus the time associated with a variable assignment, the new environment

with the variable associated to the new value v1, and the new store.

Rule RTe4 evaluates sequentially the expressions, where the resulting quadruple

has the value and the environment resulting from the second expression, and the time

is the sum of the time-bounds for both expressions plus the time associated with the

sequencing operation.
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Rule RTe5 we first evaluate the condition expression, and if the value of the expres-

sion is unknown then we evaluate both the true branch and the false branch, and the

resulting quadruple contains the least upper bound of the values of the two branches,

the time associated with a conditional expression plus the time-bound of the condi-

tion expression plus the maximum of the time-bounds of the true and false branches,

and the least upper bound of the environments, which is the natural extension of the

least upper bound function for values. If the value of the expression is known then

we take the appropriate branch and add the time-bounds accordingly.

Rule RTe6 applies to primitives, and it evaluates the arguments in order, using the

resulting environment of the previous argument to evaluate the current argument,

and the resulting quadruple contains the application of the primitive to the values,

the sum of all the time-bounds plus the time associated with the constructor, and

the resulting environment of the evaluation of the last argument. If the primitive is

not a constructor, the function prim∗ handles unknown objects in a similar way as

in Chapter 2.

Rule RTe7 is similar to rules RTe5 and RTe6, but instead of calling function f , it calls

the transformed function f ∗ with the environment and store as the extra arguments.

Rule RTe8 uses fresh variables v, t, ρ and σ to keep the value, time-bound, envi-

ronment and store at the end of each loop, so when exiting the loop we can use the

values. If we exited the loop because the condition is unknown, then we abort with a

result of infinity, which means we cannot produce a good bound. This didn’t happen

in any of the examples used.

After transformation T , the function vector-sum is 79 lines long, so Figure 16

shows only part of the function vector-sum after the transformation.

As before, this version has many tuple construction and destruction that are not

necessary. We can use the same technique we used with the SPS approach. Also, all
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(define (vector-sum v ρ σ)
((lambda (ρ σ)

(let ([〈v0 t0 ρ σ〉
((lambda (ρ σ) 〈0 T c ρ σ〉) ρ σ)])

(let ([〈v1 t1 ρ σ〉
((lambda (ρ σ)

(let ([〈v2 t2 ρ σ〉
((lambda (ρ σ) 〈0 T c ρ σ〉) ρ σ)])

(let ([〈v3 t3 ρ σ〉
((lambda (ρ σ)

(let ([〈v4 t4 ρ σ〉
((lambda (ρ σ)

[. . . while-loop . . . ])
ρ
σ)])

(let ([〈v5 t5 ρ σ〉
((lambda (ρ σ)

〈(ρ ’sum) T var ρ σ〉)
ρ
σ)])

〈v5 (+ t4 t5 T seq) ρ σ〉)))
(env:extend ’i v2 ρ)
σ)])

〈v3 (+ t2 t3 T let) ρ σ〉)))
(env:extend ’sum v0 ρ)
σ)])

〈v1 (+ t0 t1 T let) ρ σ〉)))
ρ σ))

Figure 16. Fragment of program vector-sum, after transformation T

those ((lambda (ρ σ) . . . ) . . . ) can be transformed into (let ([ρ . . . ] [σ . . . ]) . . . ) and

then a simple copy-propagation step will get rid of the useless bindings. The code

segment in Figure 16 is shown after this optimization in Figure 17.

(define (vector-sum v ρ σ)
(let ([〈v1 t1 ρ σ〉

(let ([ρ (env:extend ’sum 0 ρ)])
(let ([〈v3 t3 ρ σ〉

(let ([ρ (env:extend ’i 0 ρ)])
(let ([〈v4 t4 ρ σ〉

[. . . while-loop . . . ]])
〈(ρ ’sum) (+ t4 T var T seq) ρ σ〉))])

〈v3 (+ T c t3 T let) ρ σ〉))])
〈v1 (+ T c t1 T let) ρ σ〉))

Figure 17. Program vector-sum, after optimization.
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The optimizations discussed in Chapter 2 also apply to this analysis.

8. Implementation and experimentation

I have implemented the analysis approach in our prototype system, ALPA, obtain-

ing encouraging good results. The methodology is similar to the methodology used

in Chapter 2. The symbolic evaluation and optimizations, as well as measurements

of primitive parameters, are written in Scheme. The measurements and analyses are

performed for source programs compiled with Chicken Scheme compiler [24]. The

particular numbers below are taken on a Dual Apple G5 CPU and 4GB main mem-

ory, but the analysis were performed for several other kinds of SPARC stations, and

the results are similar.

As in the functional case, optimization was set to 0, and there were two sets

of experiments to account for the presence and absence of garbage-collection in the

timings. No numbers are large enough to trigger the bignum implementation. To

avoid possible cache effects, cache was disabled when running the experiments.

Since the minimum running time of a program construct is about 0.1 microsec-

onds, and the precision of the timing function is 1 milliseconds, I use control/test

loops that iterate 1,000,000 times, keeping measurement error under 0.001 microsec-

onds, i.e., 1%. Such a loop is repeated 100 times, and the average value is taken to

compute the primitive parameter for the tested construct (the variance is less than

10% in most cases). The calculation of the time bound is done by plugging these

measured parameters into the optimized time-bound function. We then run each

example program an appropriate number of times to measure its running time with

less than 1% error.

Table A.4 shows the calculated and measured worst-case times for six example

programs on inputs of size 10 to 2000. These times include garbage-collection times.
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The item me/ca is the measured time expressed as a percentage of the calculated

time. In general, all measured times are closely bounded by the calculated times

(with about 80-99% accuracy). The programs are insertion, selection and merge sort

on vectors, vector sum, destructive list reversal, and destructive merge sort on lists.

In general, the measured worst-case times are closely bounded by calculated upper

bounds for all inputs of medium sizes. Figure 18 depicts the numbers in Table A.4

and Table A.3, showing clearly that the direct approach yields more accurate results.

As expected, this approach yields more accurate symbolic counts. In all the

examples tested, the symbolic counts were the exact actual running counts, as opposed

to the SPS approach which over predicted the variable references and the function

calls. The running time of the analysis was just a little higher –between 2% and 5%–

with this approach.

9. Experimentation on a real world program

It is important to verify that this approach scales to larger programs. I tested

this with two programs: arcode [19] (a file compressor using arithmetic coding) and

cruft [13] (a file encryptor).

9.1. Language translation. Both programs are written in C and they must

be translated to the language defined here. For that I used Evil [71], a C++ to

Scheme Compiler. This compiler works in two steps: a C++ parser that generates

Scheme S-expressions, and the compiler proper. I use only the first step to get the C

program in a S-expression syntax, and then a small program I wrote to change from

the S-expression syntax used in Evil to the syntax used here.

9.2. Measurements. The program cruft ran without problems, and it gives the

results shown below. The program arcode, however, suffers from the same problem
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Figure 18. Comparison of calculated and measured worst-case times

for the imperative language using the direct approach.

as quick sort, where the size of the problem depends on the unknown parts of the

input.

The measurements were taken on a Apple Dual G5 CPU and 4GB main memory

using the compiler GCC 4.0.1. The times for the primitive functions were measured as

in the previous section. Since I don’t know the shape of the worst case input, I used 25

different input files per input size: one file with only the NUL character, one file with
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ASCII characters in alphabetical order, three files with ASCII characters in mostly

alphabetical order (90% chance the character is in the correct position), eight files

with ASCII characters in random order, one file with ordered binary characters, three

files with mostly ordered binary characters and eight files with binary characters in

random order. I run the testcases 100 times, where a testcase would run the program

in a loop 2000 times, and for each size I used the time of the file with the worst case.

Table A.5 shows the calculated and measured worst-case times for cruft on inputs

of size 10 to 2000. The item me/ca is the measured time expressed as a percentage of

the calculated time. Again, all measured times are closely bounded by the calculated

times (with about 87% accuracy). Figure 19 depicts the numbers in Table A.5 with

the numbers normalized on the asymptotic growth of cruft.
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Figure 19. Comparison of calculated and measured worst-case times

for the imperative language on program cruft, using the direct ap-

proach.



CHAPTER 4

Analysis of a Higher-Order Language

This chapter extends the language-based approach to a higher-order language.

As before, the approach consists of transformations for building time-bound func-

tions in the presence of partially known input structures, symbolic evaluation of the

time-bound function based on input parameters, optimizations to make the analysis

efficient as well as accurate, and measurements of primitive parameters, all at the

source-language level. To handle higher-order functions, special transformations are

needed to build lambda expressions for computing running times, to optimize the con-

struction of the time lambda expressions, and to optimize the symbolic evaluation.

We describe analysis and transformation algorithms and explain how they work. We

have implemented this approach and performed a large number of experiments ana-

lyzing Scheme programs. The measured worst-case times are closely bounded by the

calculated bounds. We describe our prototype system, ALPA, as well as the analysis

and measurement results.

1. Language definition

We use a high-order, call-by-value functional language that has structured data,

primitive arithmetic, boolean, and comparison operations, conditionals, bindings,

first-class functions, and mutually recursive function calls. A program is a set of

mutually recursive definitions. Its syntax is given by the grammar in Figure 1.

Constants are constructors of arity 0; for convenience, we write c instead of c()

for them. We use constructor nil to denote an empty list, with operator null? as

44
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program ::= (define f 1 e1)
...

(define f m em)
e ::= v variable reference

| (c e1 . . . en) data construction
| (p e1 . . . en) primitive operation
| (if e1 e2 e3) conditional expression
| (let ((v e1)) e2) binding expression
| (letrec ((v e1)) e2) recursive binding exp
| (lambda (v1 ... vn) e) first-class function
| (f e1 . . . en) function application

Figure 1. Definition of the functional language.

the corresponding tester, and we use constructor cons to build a list from a head

element and a tail list, with operators car and cdr as the corresponding selectors. For

simplicity of the presentation, we restrict the discussion to single-variable bindings,

but the implementation handles multiple-variable bindings. For ease of analysis and

transformation, we assume that a preprocessor gives a distinct name to each bound

variable.

Figure 2 gives an example program with definitions index and index-cps. Function

index takes an item and a list and returns the zero-based index of the item in the

list, or −1 if the item is not in the list. It calls function index-cps, which uses

continuation-passing style (CPS) to avoid unnecessary additions if the item is not in

the list. We use this program as a small running example. To present various analysis

results, we also use several other examples as described in Section 4.

Even though this language is small, it is sufficiently powerful and convenient

for writing sophisticated programs. Structured data is essentially records in Pascal,

structs in C, and constructor applications in ML. Conditionals and bindings easily

simulate conditional statements and assignments, and recursions subsume loops.
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(define index
(lambda (item ls)

(index-cps item ls (lambda (x ) x ))))
(define index-cps

(lambda (item ls k)
(if (null? ls)

−1
(if (= item (car ls))

(k 0)
(index-cps item (cdr ls)

(lambda (v) (k (+ v 1))))))))

Figure 2. Example program with definitions index and index-cps.

2. Constructing time-bound function

2.1. Constructing time functions. We first transform the original program to

construct a time function, which takes the original input and primitive parameters as

arguments and returns the running time. This can be done based on the semantics

of each program construct. It is straightforward for all constructs except first-class

functions, i.e., lambda expressions. Partially known input structures may be given

by a user or constructed automatically for typical input structures parameterized by

information such as the length of a list or the height of a complete binary tree.

For example, a variable reference is transformed into a symbol Tvar representing

the running time of a variable reference; a conditional statement is transformed into

the time of the test plus, if the condition is true, the time of the true branch, otherwise,

the time of the false branch, and plus the time for the transfers of control. We

introduce a new function +t to add two or more time expressions.

To handle lambda expressions, it is necessary to introduce new lambda expressions

for computing the running times. A lambda expression evaluates to a closure, where

the body of the lambda is evaluated only when the function represented by the closure

is actually applied. Thus, the time for evaluating the body of a lambda can also only

be computed when the function is actually applied and, therefore, we need to build a
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RT 0 : T


(define v1 e1)

...
(define vn en)


 =

(define v1 Tv [[e1]])
...

(define vn Tv [[en]])
RTv1 : Tv [[v]] = v
RTv2 : Tv [[(c e1 ... en)]] = (c Tv [[e1]] ... Tv [[en]])
RTv3 : Tv [[(p e1 ... en)]] = (p Tv [[e1]] ... Tv [[en]])
RTv4 : Tv [[(if e1 e2 e3)]] = (if Tv [[e1]] Tv [[e2]] Tv [[e3]])
RTv5 : Tv [[(let ((v e1)) e2)]] = (let ((v Tv [[e1]])) Tv [[e2]])
RTv6 : Tv [[(letrec ((v e1)) e2)]] = (letrec ((v Tv [[e1]])) Tv [[e2]])
RTv7 : Tv [[(lambda (v1 ... vn) e0)]] = (lambda-pair (lambda (v1 ... vn) Tv [[e0]])

(lambda (v1 ... vn) Tt [[Tv [[e0]]]]))
RTv8 : Tv [[(e0 e1 ... en)]] = ((value Tv [[e0]]) Tv [[e1]] ... Tv [[en]])

RTt1 : Tt [[v]] = Tvar

RTt2 : Tt [[(c e1 ... en)]] = (+t T c Tt [[e1]] ... Tt [[en]])
RTt3 : Tt [[(p e1 ... en)]] = (+t T p Tt [[e1]] ... Tt [[en]])
RTt4 : Tt [[(if e1 e2 e3)]] = (if e1 (+t T if Tt [[e1]] Tt [[e2]]) (+t T if Tt [[e1]] Tt [[e3]]))
RTt5 : Tt [[(let ((v e1)) e2)]] = (let ((v e1)) (+t T let Tt [[e1]] Tt [[e2]]))
RTt6 : Tt [[(letrec ((v e1)) e2)]] = (letrec ((v e1)) (+t T letrec Tt [[e1]] Tt [[e2]]))
RTt7 : Tt [[(lambda-pair e1 e2)]] = Tlambda

RTt8 : Tt [[((value e0) e1 ... en)]] = (+t T call Tt [[e0]] Tt [[e1]] ... Tt [[en]]
((time e0) e1 ... en))

Figure 3. Rules for time transformation T .

new lambda expression for computing the running time. The body of the time lambda

expression will be based on the body of the original lambda expression, and the time

lambda expression will be evaluated to a time closure. We introduce a special data

constructor lambda-pair to build a pair of an original lambda expression and its time

lambda expression, and we use value and time as the corresponding selectors.

The time transformation T embodies the overall algorithm and is given in Fig-

ure 3. It takes an original program, builds lambda pairs for lambda expressions in

each definition ei using transformation Tv, where subscript v is mnemonic for value,

and builds the time component of each lambda pair based on the value component

of the pair using transformation Tt, where subscript t is mnemonic for time. To

avoid clutter, we reuse identifiers v1, ..., vn in the transformed program; this does not

cause any problem since the old meanings of theses identifiers are not used in the

transformed program.
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Rules RTv1 to RTv6 handle expressions other than lambda expressions or func-

tion calls, so they transform subexpressions recursively. Rule RTv7 takes a lambda

expression and creates a lambda pair; the first component is the body transformed

recursively by Tv, and the second component is the time body transformed further by

Tt. To make the transformation run in linear time, the resulting expression of Tv [[e0]] is

shared. Rule RTv8 takes an application of function e0 and transforms subexpressions

recursively; since Tv [[e0]] evaluates to a lambda pair, its value component is selected

and applied to the transformed arguments.

Rule RTt1 transforms a variable reference to the time of a variable reference Tvar.

Rule RTt2 (respectively RTt3) sums the times of evaluating the arguments and the

time of the primitive (respectively constructor). Rule RTt4 sums the times of the

conditional transfer, of evaluating the condition, and of evaluating the true branch,

if the condition is true; otherwise, it sums the times of the conditional transfer, of

evaluating the condition, and of evaluating the false branch. Rules RTt5 and RTt6

include the bindings unchanged, because the transform body may refer to the bound

variable; they sum the times of making a binding, of evaluating the expression for

the bound variable, and of evaluating the body. Rule RTt7 just returns the time of

evaluating a lambda abstraction; there is no need to go into the body of the lambda,

because this time does not depend on the body. Rule RTt8 sums the times of making

a function call, of evaluating e0 and all its argument expressions, and of evaluating

the function; the function is given by the time component of the lambda pair.

Transformation T as described above runs in linear time in terms of the size of the

given program. Intuitively, each subexpression is transformed at most twice: once

by Tv and once by Tt. A formal proof is done by an induction on the number of

subexpressions in the program, and the number of nestings of first-class functions.
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Figure 4 shows the result of this transformation applied to function index-cps.

Shared code is presented with where clauses when this makes the code smaller. For

ease of presentation, we give all constants the same symbol Tk for their times.

(define index-cps
(lambda-pair

(lambda (item ls k)
(if (null? ls)

−1
(if (= item (car ls))

((value k) 0)
((value index-cps) item (cdr ls) lambda1))))

(lambda (item ls k)
(if (null? ls)

(+t T if (+t Tnull? T varref ) T k)
(+t T if (+t Tnull? T varref )

(if (= item (car ls))
(+t T if (+t T= T varref (+t T car T varref ))

(+t T call ((time k) 0) T var T k))
(+t T if (+t T= T varref (+t T car T varref ))

(+t T call T var T var

((time index-cps) item (cdr ls) lambda1)
T closure (+t T cdr T varref )))))))))

;; where lambda1 is
(lambda-pair

(lambda (v) ((value k) (+ v 1)))
(lambda (v) (+t T call ((time k) (+ v 1)) T var

(+t T+ T k T varref ))))

Figure 4. Function index-cps after transformation T .

This transformation is similar to the local cost assignment [100], step-counting

function [84], cost function [88], etc. in other work. Our transformation extends

those methods with bindings and general first-class functions. It also makes all prim-

itive parameters explicit at the source-language level. For example, each primitive

operation p is given a different symbol Tp, and each constructor c is given a differ-

ent symbol Tc. Note that the time function terminates with the appropriate sum of

primitive parameters if the original program terminates, and it runs forever to sum

to infinity if the original program does not terminate, which is the desired meaning

of a time function.
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2.2. Constructing time-bound functions. To characterize the program input

we use again partially known input structures with unknown values. We also define

a new primitive function fp for each primitive function p and a new least upper bound

function lub as in Chapter 2.

Also, the time functions need to be transformed to compute an upper bound of the

running time. If the truth value of a conditional test is known, then the time of the

chosen branch is computed, otherwise, the maximum of the times of both branches

is computed.

Because functions are first-class objects, their values can also be unknown. If we

try to apply an unknown function, the result is unknown, and the time is infinite, as

shown below by definitions value apply and time apply. We could keep more precise

information than unknown. This can be a set of possible function values. Then the

upper bound of the times of applying all functions in the set can be taken. This is

easy to implement, but it may be expensive to compute if it is indeed needed. An

important fact is that in all examples mentioned in this Chapter, this is not needed,

i.e., the naturally given partially known input contains enough information to decide

all lambdas at analysis time.
(define value apply

(lambda (v0 v1 ... vn)
(if (unknown? v0)

’unknown
((value v0) v1 ... vn))))

(define time apply
(lambda (v0 v1 ... vn)

(if (unknown? v0)
’infinite
((time v0) v1 ... vn))))

The time-bound transformation Tb given in Figure 5 embodies the overall algo-

rithm. It takes a program obtained from time transformation T and builds the

corresponding time-bound version. It uses two transformations: Tvb and Ttb. Tvb

transforms an expression that computes the original value, and Ttb transforms an

expression that computes the running time. Again, identifiers v1, ..., vn are reused in

the transformed program.
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RTb0 : Tb

(define v1 e1)
...

(define vn en)

 =
(define v1 Tvb [[e1]])

...
(define vn Tvb [[en]])

vb1 : Tvb [[v]] = v
vb2 : Tvb [[(c e1 ... en)]] = (c Tvb [[e1]] ... Tvb [[en]])
vb3 : Tvb [[(p e1 ... en)]] = (f p Tvb [[e1]] ... Tvb [[en]])
vb4 : Tvb [[(if e1 e2 e3)]] = (let ((v Tvb [[e1]]))

(if (unknown? v)
(lub Tvb [[e2]] Tvb [[e3]])
(if v Tvb [[e2]] Tvb [[e3]])))

vb5 : Tvb [[(let ((v e1)) e2)]] = (let ((v Tvb [[e1]])) Tvb [[e2]])
vb6 : Tvb [[(letrec ((v e1)) e2)]] = (letrec ((v Tvb [[e1]])) Tvb [[e2]])

vb7 : Tvb

[[
(lambda-pair

(lambda (v1 ... vn) e1)
(lambda (v1 ... vn) e2))

]]
=

(lambda-pair
(lambda (v1 ... vn) Tvb [[e1]])
(lambda (v1 ... vn) Ttb [[e2]]))

vb8 : Tvb [[((value e0) e1 ... en)]] = (value apply Tvb [[e0]] Tvb [[e1]] ... Tvb [[en]])

tb1 : Ttb [[T ]] = T
tb2 : Ttb [[(+t e1 ... en)]] = (+t Ttb [[e1]] ... Ttb [[en]])
tb3 : Ttb [[(if e1 e2 e3)]] = (let ((v Tvb [[e1]]))

(if (unknown? v)
(max Tvb [[e2]] Tvb [[e3]])
(if v Tvb [[e2]] Tvb [[e3]])))

tb4 : Ttb [[(let ((v e1)) e2)]] = (let ((v Tvb [[e1]])) Ttb [[e2]])
tb5 : Ttb [[(letrec ((v e1)) e2)]] = (letrec ((v Tvb [[e1]])) Ttb [[e2]])
tb6 : Ttb [[((time e0) e1 ... en)]] = (time apply Tvb [[e0]] Tvb [[e1]] ... Tvb [[en]])

Figure 5. Rules for time-bound transformation Tb.

Rule vb1 leaves variables unchanged, as they do not change with the introduction

of the value unknown. Rule vb2 transforms arguments of a constructor recursively.

Rule vb3 transforms the arguments recursively and replaces the primitive operator p

by the new operator fp that returns unknown if any of the arguments evaluates to

unknown. Rule vb4 transforms subexpressions recursively, builds an expression that

binds the value of the transformed e1 to a distinct variable v, and if the value of

v is unknown returns the least upper bound of the values of the two transformed

branches, otherwise returns the value of the appropriate branch based on the value of

v. Rules vb5 and vb6 do not directly use the value unknown, so they simply transform

subexpressions recursively. Rule vb7 uses Tvb to transform the value component of the

lambda pair and uses Ttb to transform the time component. Rule vb8 uses function

value apply to apply the transformed function to the transformed arguments.
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Rule tb2 transforms subexpressions recursively. Rule tb3 is similar to rule vb4,

except that it computes the maximum time instead of the least upper bound when the

value of the condition is unknown. Rules tb4 and tb5 use Tvb to transform the binding

expression, and recursively use Ttb to transform the body. Rule tb6 uses time apply to

handle unknown functions; it uses Tvb to transform the argument expressions because

the time lambda expression takes values as arguments.

Applying transformation Tb to function index-cps in Figure 4 yields function index-

cps in Figure 6. Again, shared code is presented with where clauses.

The transformed time-bound function is guaranteed to terminate, provided the

original program terminates. In practice, we impose an upper bound on the analysis

time, and, if the analysis does not terminate within this time, we report this together

with the time-bound calculated till this time

3. Optimizing time-bound function

Time-bound functions may be extremely inefficient to evaluate given values for

their parameters. In fact, even when it terminates, in the worst case, the evaluation

takes exponential time in terms of the input parameters, since it essentially searches

for the worst-case execution path for all inputs satisfying the partially known input

structures.

This section describes symbolic evaluation and optimizations that make the com-

putation of time bounds drastically more efficient so that it is feasible to compute

them quickly for input sizes in the thousands. The transformations consist of partial

evaluation, realized as global inlining, and incremental computation, realized as local

optimization.



4. ANALYSIS OF A HIGHER-ORDER LANGUAGE 53

(define index-cps
(lambda-pair

(lambda (item ls k)
(let ((v1 (f null? ls)))

(if (unknown? v1)
(lub −1 exp1)
(if v1 −1 exp1))))

(lambda (item ls k)
(let ((v2 (f null? ls)))

(if (unknown? v2)
(max (+t T if (+t Tnull? T varref ) T k) time1)
(if v2 (+t T if (+t Tnull? T varref ) T k) time1))))))

where exp1 is
(let ((v3 (f = item (f car ls))))

(if (unknown? v3)
(lub ((value k) 0) ((value index-cps) item (f cdr ls) lambda1))
(if v3 ((value k) 0) ((value index-cps) item (f cdr ls) lambda1))))

and time1 is
(+t T if (+t Tnull? T varref )

(let ((v4 (f = item (f car ls))))
(if (unknown? v4)

(max time2 time3)
(if v4 time2 time3))))

where time2 is
(+t T if (+t T= T varref (+t T car T varref ))

(+t T call ((time k) 0) T varref T k))
and time3 is

(+t T if (+t T= T varref (+t T car T varref ))
(+t T call ((time index-cps) item (f cdr ls)lambda1)
T varref T varref (+t T cdr T varref ) T lambda))

where lambda1 is (lambda-pair
(lambda (v) ((value k) (f + v 1)))
(lambda (v) (+t T call ((time k) (f + v 1))

T varref , (+t T+ T k T varref ))))

Figure 6. Function index-cps after time-bound transformation Tb.

3.1. Partial evaluation of time-bound functions. In practice, values of in-

put parameters are given for almost all applications. This is why time-analysis tech-

niques used in systems can require loop bounds from the user before time bounds are

computed. While in general it is not possible to obtain explicit loop bounds auto-

matically and accurately, we can implicitly achieve the desired effect by evaluating

the time-bound function symbolically in terms of primitive parameters given specific

values of input parameters.
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The evaluation simply follows the structures of time-bound functions. Specifically,

the control structures determine conditional branches and make recursive function

calls as usual. The only primitive operations are sums of primitive parameters and

maximums among alternative sums, which can easily be done symbolically. Thus,

the transformation simply inlines all function calls, sums all primitive parameters

symbolically, determines conditional branches if it can, and takes maximum sums

among all possible branches if it can not.

The symbolic evaluation E defined in Figure 7 performs the transformations. It

takes as arguments an expression e and an environment ρ of variable bindings and

returns as result a symbolic value that contains the primitive parameters. The evalu-

ation starts with the application of the program to be analyzed to a partially known

input structure, e.g., index(unknown, list(100)), and it starts with an empty envi-

ronment. Assume adds is a function that symbolically sums its arguments, i.e., it

sums the counts respectively for primitive parameters, and maxs is a function that

symbolically takes the maximum of its arguments.

se1 : E [[v]] ρ = ρ(v)
se2 : E [[T ]] ρ = T
se3 : E [[(c e1 ... en)]] ρ = (c E [[e1]] ρ ... E [[en]] ρ)
se4 : E [[(p e1 ... en)]] ρ = (p E [[e1]] ρ ... E [[en]] ρ)
se5 : E [[(add e1 ... en)]] ρ = (adds E [[e1]] ρ ... E [[en]] ρ)
se6 : E [[(max e1 ... en)]] ρ = (max s E [[e1]] ρ ... E [[en]] ρ)

se7 : E [[(if e1 e2 e3)]] ρ =
{
E [[e2]] ρ, E [[e1]] ρ = true
E [[e3]] ρ, E [[e1]] ρ = false

se8 : E [[(let ((v e1)) e2)]] ρ = E [[e2]] ρ[v 7→E [[e1]] ρ]
se9 : E [[(letrec ((v e1)) e2)]] ρ = E [[e2]] ρ[v 7→E [[e1]] ρ]
se10 :E [[(lambda (v1 ... vn) e0)]] ρ = 〈(lambda (v1 ... vn) e0), ρ〉
se11 :E [[(e0 e1 ... en)]] ρ = E [[e′0]] ρ

′[v1 7→ E [[e1]] ρ, ...,
vn 7→ E [[en]] ρ]

where 〈(lambda (v1 ... vn) e ′0), ρ
′〉

= E [[e0]] ρ

Figure 7. Rules for symbolic evaluation of programs
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As an example, applying symbolic evaluation to the time-bound function for index

on an unknown item and a list of size 100, we obtain the following result:

E [[index(unknown, list(100))]] ∅ =

101 ∗ Tk + 802 ∗ Tvar + 201 ∗ Tif

+ 201 ∗ Tcall + 101 ∗ Tlambda + 100 ∗ Tcar

+ 100 ∗ Tcdr + 101 ∗ Tnull? + 99 ∗ T+ + 100 ∗ T=

3.2. Avoiding repeated summations over recursions. The symbolic evalua-

tion above is a global optimization over all time-bound functions involved. During the

evaluation, summations of symbolic primitive parameters within each function defi-

nition are performed repeatedly while the computation recurses. Thus, we can speed

up the symbolic evaluation by first performing such summations in a preprocessing

step. Specifically, we create a vector and let each element correspond to a primitive

parameter. The transformation S defined in Figure 8 performs this optimization.

We introduce two new functions: addsv performs symbolic addition by component-

wise summation of the argument vectors, and maxsv computes the component-wise

maximum of the argument vectors.

program: S

(define v1 e1)
...

(define vn en)

 =
(define v1 St [[e1]])

...
(define vn St [[en]])

primitive
parameter: St [[T ]] =

{
create a vector of 0’s except
with the component corre-
sponding to T set to 1

summation:St [[(add e1 ... en)]] = (addsv St [[e1]] ... St [[en]])
maximum: St [[(max e1 ... en)]] = (maxsv St [[e1]] ... St [[en]])
all other: St [[e]] = e

Figure 8. Transformation S to optimize repeated summations.

Applying this optimization to the time-bound version of function index-cps in

Figure 6 yields the definition in Figure 9.
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(define index-cps
(lambda-pair

(lambda (item ls k)
(let ((v1 (f null? ls)))

(if (unknown? v1)
(lub −1 exp1)
(if v1 −1 exp1))))

(lambda (item ls k)
(let ((v2 (f null? ls)))

(if (unknown? v2)
(max sv 〈0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0〉 time1)
(if v2 〈0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0〉 time1))))))

where exp1 is
(let ((v3 (f = item (f car ls))))

(if (unknown? v3)
(lub ((value k) 0) ((value index-cps) item (f cdr ls) lambda1))
(if v3 ((value k) 0) ((value index-cps) item (f cdr ls) lambda1))))

and time1 is
(let ((v4 (f = item (f car ls))))

(if (unknown? v4)
(max sv (addsv 〈1 0 0 1 1 0 0 0 0 0 0 1 4 2 0 0 1 0〉 ((time k) 0))

(addsv 〈1 1 0 1 1 0 0 0 0 0 0 0 6 2 0 0 1 0〉
((time index-cps) item (f cdr ls) lambda1)))

(if v4

(addsv 〈1 0 0 1 1 0 0 0 0 0 0 1 4 2 0 0 1 0〉 ((time k) 0))
(addsv 〈1 1 0 1 1 0 0 0 0 0 0 0 6 2 0 0 1 0〉

((time index-cps) item (f cdr ls) lambda1)))))
where lambda1 is

(lambda-pair
(lambda (v) ((value k) (f + v 1)))
(lambda (v) (addsv 〈0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 1 0〉

((time k) (f + v 1)))))

Figure 9. Function index-cps after optimization for avoiding repeated
summations, where the tuples are for 〈Tcar, Tcdr, Tcons, Tnull?, Teq?, T+,
T−, T∗, T>, T<, T=, Tconst, Tvarref , Tif , Tlet, Tletrec, Tfuncall, Tclosure〉.

This incrementalizes the computation in each recursive step to avoid repeated

summation. As other transformations we have described, this is fully automatic and

takes linear time, here in terms of the size of the time-bound function.

The result of this optimization is dramatic. For example, optimized symbolic

evaluation of the same curried Ackermann with input 〈3, 7〉 takes only 1.68 seconds

while unoptimized symbolic evaluation takes 127 seconds.
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On small inputs, symbolic evaluation takes relatively much more time than direct

evaluation, due to the relatively large overhead of vector setup; as inputs get larger,

symbolic evaluation is almost as fast as direct evaluation for most examples. After

the symbolic evaluation, time bounds can be computed in virtually no time given

primitive parameters measured on any machine. Note that profiling will not produce

a time bound for all inputs described by the partially known input structures; if

enumeration is used, then it will not be faster than our analysis, which is essentially

doing a smart form of enumeration.

Time-bound functions can further be made more accurate by lifting conditions,

simplifying conditionals, and inlining non-recursive functions, as done previously

in [66].

4. Implementation and experimentation

We have implemented the analysis approach in our prototype system ALPA. We

performed a large number of measurements and obtained encouraging good results.

The implementation is for a subset of Scheme. The prototype is implemented using

Chez Scheme v6.0a compiler [24]. The input is a program as defined in Section 1,

but with Scheme syntax. The output is an optimized time-bound function that takes

an input size and returns the symbolic time bound of the program for inputs of that

size. The implementations consists of 500 lines of scheme code, nearly twice the size

of the implementation for the functional language described in Chapter 2.

The computer used to take the measurements is a Sun Enterprise 450 Model 4400

with four 400MHz CPUs, 1 GB of RAM, and 4.6 GB virtual memory.

Since the minimum running time of a program construct is about 0.1 microsec-

onds, and the precision of the time function is 10 milliseconds, we use control/test
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loops that iterate 10,000,000 times, keeping measurement error under 0.001 microsec-

onds, i.e., 1%. Such a loop is repeated 100 times, and the average value is taken to

compute the primitive parameter for the tested construct (the variance is less than

10% in most cases). The calculation of the time bound is done by plugging these

measured parameters into the optimized time-bound function. We then run each

example program an appropriate number of times to measure its running time with

less than 1% error.

All the measurements were done by starting a new Scheme process, loading the

needed definitions, measuring the time of interest, and exiting Scheme. This ensures

that only the time related to the given program is counted.

The example programs shown here are: ack : Ackermann function programmed

using the standard first-order recursive definition; ack-curried : a curried version of

Ackermann function that uses higher-order functions (and is almost twice as fast as

the standard first-order function); tak-cps : the Takeuchi function in CPS, part of

the Gabriel benchmark suite [35]; reverse: standard first-order list reverse function;

rev-cps : a CPS version of reverse; split : taking a predicate and a list and returning

two lists, one whose elements satisfy the predicate and another whose elements do not

satisfy the predicate; fix : factorial function programmed using the Y combinator for

a heavy use of higher-order functions; map: standard map function; union: taking

two sets and returning the union; index : taking an item and a list and returning the

index of the item in the list, or −1 if the item is not in the list.

Table 1 gives the results of symbolic evaluation of the time-bound functions for

these example programs on inputs of various sizes. Several counts of the primitive

operations are merged to fit the table on the page. All numbers are exact symbolic

counts. They are verified by using a modified evaluator.
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Table 1. Results of symbolic evaluation of time-bound functions for

a higher-order language.

program size var ref constant list ops +/- compare if let(rec) lambda call
ack 〈3,1〉 472 328 0 153 164 164 0 0 106

〈3,5〉 190848 127560 0 63533 63780 63780 0 0 42438
〈3,7〉 3122332 2082904 0 1040439 1041452 1041452 0 0 693964
〈3,9〉 50237624 33497192 0 16744513 16748596 16748596 0 0 11164370

ack 〈3,1〉 277 171 0 98 62 62 6 4 111
curried 〈3,5〉 105989 63787 0 42194 21346 21346 6 4 42443

〈3,7〉 1734421 1041459 0 692954 347492 347492 6 4 693969
〈3,9〉 27908901 16748603 0 11160290 5584230 5584230 6 4 11164375

tak- 〈19,8,1〉 16121904 1560183 0 1560183 2080245 2080245 1 1560185 3640430
cps 〈19,9,1〉 46538205 4503696 0 4503696 6004929 6004929 1 4503698 10508627

〈19,9,3〉 2582251 249894 0 249894 333193 333193 1 249896 583089
〈19,10,1〉 122680095 11872266 0 11872266 15829689 15829689 1 11872268 27701957

rev 10 299 10 231 0 0 66 0 0 66
20 1094 20 861 0 0 231 0 0 231
50 6479 50 5151 0 0 1326 0 0 1326

100 25454 100 20301 0 0 5151 0 0 5151
200 100904 200 80601 0 0 20301 0 0 20301
500 627254 500 501501 0 0 125751 0 0 125751

1000 2504504 1000 2003001 0 0 501501 0 0 501501
2000 10009004 2000 8006001 0 0 2003001 0 0 2003001

rev- 10 422 11 231 0 0 66 0 56 123
cps 20 1537 21 861 0 0 231 0 211 443

50 9082 51 5151 0 0 1326 0 1276 2603
100 35657 101 20301 0 0 5151 0 5051 10203
200 141307 201 80601 0 0 20301 0 20101 40403
500 878257 501 501501 0 0 125751 0 125251 251003

1000 3506507 1001 2003001 0 0 501501 0 500501 1002003
2000 14013007 2001 8006001 0 0 2003001 0 2001001 4004003

split 10 128 33 53 0 20 41 0 10 32
20 248 63 103 0 40 81 0 20 62
50 608 153 253 0 100 201 0 50 152

100 1208 303 503 0 200 401 0 100 302
200 2408 603 1003 0 400 801 0 200 602
500 6008 1503 2503 0 1000 2001 0 500 1502

1000 12008 3003 5003 0 2000 4001 0 1000 3002
2000 24008 6003 10003 0 4000 8001 0 2000 6002

fix 10 275 22 0 20 11 11 0 212 233
20 545 42 0 40 21 21 0 422 463
50 1355 102 0 100 51 51 0 1052 1153

100 2705 202 0 200 101 101 0 2102 2303
200 5405 402 0 400 201 201 0 4202 4603
500 13505 1002 0 1000 501 501 0 10502 11503

1000 27005 2002 0 2000 1001 1001 0 21002 23003
2000 54005 4002 0 4000 2001 2001 0 42002 46003

map 10 84 2 41 10 0 11 0 1 22
20 164 2 81 20 0 21 0 1 42
50 404 2 201 50 0 51 0 1 102

100 804 2 401 100 0 101 0 1 202
200 1604 2 801 200 0 201 0 1 402
500 4004 2 2001 500 0 501 0 1 1002

1000 8004 2 4001 1000 0 1001 0 1 2002
2000 16004 2 8001 2000 0 2001 0 1 4002

union 10 705 10 361 0 100 231 10 0 121
20 2605 20 1321 0 400 861 20 0 441
50 15505 50 7801 0 2500 5151 50 0 2601

100 61005 100 30601 0 10000 20301 100 0 10201
200 242005 200 121201 0 40000 80601 200 0 40401
500 1505005 500 753001 0 250000 501501 500 0 251001

1000 6010005 1000 3006001 0 1000000 2003001 1000 0 1002001
2000 24020005 2000 12012001 0 4000000 8006001 2000 0 4004001

index 10 72 11 31 9 10 21 1 12 21
20 142 21 61 19 20 41 1 22 41
50 352 51 151 49 50 101 1 52 101

100 702 101 301 99 100 201 1 102 201
200 1402 201 601 199 200 401 1 202 401
500 3502 501 1501 499 500 1001 1 502 1001

1000 7002 1001 3001 999 1000 2001 1 1002 2001
2000 14002 2001 6001 1999 2000 4001 1 2002 4001
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Table 2 shows the calculated and the measured worst-case running time for these

programs with various input sizes. The item me/ca is the measured time expressed

as a percentage of the calculated time. In general, all measured times are closely

bounded by the calculated times (with about 70-98% accuracy).

Table 2. Calculated and measured worst-case times (in milliseconds.)

ackermann ackermann (curried)
size calculated measured me/ca calculated measured me/ca

〈3,1〉 0.03207 0.02861 89.2002 0.02059 0.01503 72.9892
〈3,5〉 12.8462 10.6540 82.9348 7.89957 5.33000 67.4719
〈3,7〉 210.051 174.943 83.2863 129.241 89.1780 69.0009
〈3,9〉 3379.19 2888.33 85.4739 2079.53 1517.27 72.9621

takeuchi (CPS)
size calculated measured me/ca

〈19,8,1〉 576.058 509.402 88.4289
〈19,9,1〉 1662.87 1473.49 88.6111
〈19,9,3〉 92.2675 81.6250 88.4655

〈19,10,1〉 4383.53 3912.50 89.2543
reverse reverse (CPS) split

size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.02410 0.01854 76.9136 0.02872 0.02395 83.3632 0.00877 0.00769 87.7389
20 0.08873 0.06615 74.5462 0.10591 0.08774 82.8435 0.01710 0.01489 87.0741
50 0.52675 0.38781 73.6221 0.63007 0.52147 82.7634 0.04211 0.03588 85.2049

100 2.07054 1.53300 74.0385 2.47907 2.06100 83.1357 0.08378 0.07103 84.7775
200 8.20967 6.03300 73.4864 9.83483 8.13700 82.7365 0.16713 0.14151 84.6698
500 51.0395 37.9980 74.4481 61.1641 50.6200 82.7609 0.41717 0.35321 84.6673

1000 203.797 158.995 78.0164 244.252 202.042 82.7185 0.83391 0.70749 84.8399
2000 814.470 656.137 80.5600 976.205 815.471 83.5348 1.66738 1.40501 84.2642

fix map union
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.02059 0.01981 96.1887 0.00578 0.00476 82.2714 0.04512 0.03547 78.5966
20 0.04087 0.03879 94.9079 0.01133 0.00900 79.4816 0.16680 0.13401 80.3414
50 0.10169 0.09605 94.4445 0.02798 0.02169 77.5121 0.99204 0.80972 81.6212

100 0.20308 0.19183 94.4597 0.05572 0.04360 78.2375 3.90155 3.08000 78.9429
200 0.40584 0.38599 95.1080 0.11121 0.08781 78.9532 15.4734 12.1280 78.3794
500 1.01413 0.97661 96.3001 0.27768 0.22843 82.2614 96.2121 75.1470 78.1055

1000 2.02794 1.93700 95.5154 0.55513 0.48007 86.4776 384.186 315.918 82.2304
2000 4.05556 4.00700 98.8024 1.11003 0.95652 86.1700 1535.42 1260.83 82.1163

index
size calculated measured me/ca
10 0.00476 0.00344 72.26890
20 0.00894 0.00647 72.37136
50 0.02148 0.01561 72.67225

100 0.04273 0.03073 71.91668
200 0.08575 0.06166 71.90670
500 0.21951 0.15412 70.21092

1000 0.43402 0.31197 71.87917
2000 1.05827 0.77977 73.68346



CHAPTER 5

Production of a Worst-Case Input

There has been much work in analyzing worst-case execution time as well as

bounds for other cost measures, making use of program annotations and various

approximations and no profiling, but these analyses do not produce actual worst-case

inputs. Because of the use of annotations and approximations, such analyzed bounds

may be loose and unreliable. Therefore, it is extremely important to check whether

the analyzed bounds are realizable by actual worst-case inputs. Once actual worst-

case inputs are constructed, one can analyze worst-case behaviors most precisely, by

doing profiling and tracing on the worst-case inputs.

This chapter describes a method for automatic production of worst-case inputs.

Given a measure of interest and a set of possible inputs, worst-case input analysis

constructs an input that has the worst-case cost for the given measure among the

given set of inputs.

The method consists of five steps: (1) construct a cost function of the program

based on the cost model for the given measure, (2) construct a cost-bound function

of the program using abstractions based on the cost function and the given partially

known input structure, (3) optimize the cost-bound function drastically to avoid heav-

ily repeated cost computations, (4) symbolically evaluate the optimized cost-bound

function to collect a set of constraints on the worst-case inputs, and (5) generate a

worst-case input to satisfy the collected constraints.

The center of the method is the cost-bound function, which exploits both the idea

of abstraction in program analysis and the idea of enumeration in model checking.

61
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Therefore, we call the method model analysis. The cost model is the basis of correct-

ness; the constraint satisfaction validates the accuracy; and the drastic optimization

makes the analysis feasible in terms of efficiency. Given a cost-bound analysis based

on enumeration and abstraction, our method provides a framework for validating

the accuracy of the cost bounds computed, by trying to construct actual worst-case

inputs.

To the best of our knowledge, this is the first method for automatic analysis of

worst-case input. It meets the challenge by exploiting and combining many methods

and techniques for cost modeling, input capture, abstraction, enumeration, optimiza-

tion, symbolic evaluation, constraint construction, and constraint satisfaction.

This chapter presents the precise formulation of the method for a simple functional

language, but the framework underlying the method is general and applies to imper-

ative languages as well. There are still two caveats: the cost-bound function could be

too expensive to compute and the constraints could not unsatisfiable, meaning that

an accurate bound could not be computed and the bound is too loose to be realized

by an actual input. However, for common challenging examples used in real-time and

embedded applications, such as various sorting and queuing methods, the method

succeeded easily in making the cost-bound functions efficient and constructing the

actual worst-case inputs. This is shown through an implementation of the analysis

in ALPA (Automatic Language-based Performance Analyzer) and our experiments

with a number of programs for sorting and other tasks.

The rest of the chapter is organized as follows. Section 1 describes the program-

ming language used. Section 2 describes the method to construct the cost functions.

Section 3 describes the method to construct the cost-bound functions. Section 4 de-

scribe the method to obtain the constraints that a worst-case input should satisfy.

Section 5 describes optimization methods to speed up the analysis. Section 6 describes
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the method to obtain an actual input out of the set of constraints. Section 7 discusses

the power and limitations of the method. Section 8 describes the implementation and

experiments.

1. Language

We use the same language used in Chapter 2: a first-order, call-by-value functional

language that has structured data, primitive arithmetic, Boolean, and comparison

operations, conditionals, bindings, and mutually recursive function calls. A program

is a set of mutually recursive function definitions. Its syntax is given by the grammar

in Figure 1.

program ::= (define (f 1 v11 . . . v1n) e1)
...

(define (f m vm1 . . . vmn) em)
e ::= v variable reference

| (c e1 . . . en) data construction
| (p e1 . . . en) primitive operation
| (if e1 e2 e3) conditional expression
| (let ((v e1)) e2) binding expression
| (f e1 . . . en) function application

Figure 1. Definition of the functional language.

For example, the program in Figure 2 computes the set union of two sets.

(define (union set1 set2)
(if (null? set1)

set2
(let ((rr (union (cdr set1) set2)))

(if (member? (car set1) set2)
rr
(cons (car set1) rr)))))

(define (member? item ls)
(if (null? ls)

#f
(if (eq? item (car ls))

#t
(member? item (cdr ls)))))

Figure 2. Program union, which computes the set union of two sets.
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2. Constructing cost functions

To construct a cost function we transform the original program to return a tuple

with two values, instead of only one. The tuple returned contains the original returned

value, and the cost of computing that value.

We use parameters to represent the cost of each primitive operation. For example,

C+ is the cost of the addition operation, Ccall is the cost of a function call, and Cif

is the cost of a conditional branch.

The program transformation is defined by Tc in Figure 3.

Rule Rc0 defines a function f ∗ for every function f in the original program. The

body of this function will be the original body transformed with expression trans-

former Tce .

Rule Rc1 transforms a variable reference v into the tuple composed by the variable

v, and the constant Cvar which represents the cost of computing a variable reference.

Rule Rc2 transform the constant c into the tuple composed by the original constant

c, and the constant Cc which represents the cost of computing the constant c.

Rule Rc3 transforms a conditional expression. The transformed program will first

compute the tuple value/cost for the condition expression, and it will bind those values

to fresh variables v1 and t1. If the value v1 is true then the program will compute the

tuple value/cost of the then branch and bind the values to fresh variables v2 and c2,

and return a tuple with the value v2, and the addition of the costs of the conditional

expression and the then branch plus the cost of the jump, represented by Cif . If the

value v1 is false, the value and cost taken are those from the else branch.

The expression (let ((〈v c〉 exp)) body) is not part of the language, but it is

presented for clarity, instead of the expression (let ((tmp exp)) (let ((v (car tmp)) (c

(cdr tmp))) body)) where tmp, v, and c are fresh variables. Similarly, the expression

〈exp1 exp2〉 is not part of the language, and it is presented instead of (cons exp1 exp2).
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Rc0 : Tc





(define (f 1 v11 v12 . . . v1k
)

e1)
(define (f 2 v21 v22 . . . v2k

)
e2)

...
(define (f n vn1 vn2 . . . vnk

)
en)




=

(define (f ∗1 v11 v12 . . . v1k
)

Tce [[e1]])
(define (f ∗2 v21 v22 . . . v2k

)
Tce [[e2]])

...
(define (f ∗n vn1 vn2 . . . vnk

)
Tce [[en]])

Rc1 : Tce [[v ]] = 〈v C var〉
Rc2 : Tce [[c]] = 〈c C c〉
Rc3 : Tce [[(if e1 e2 e3)]] = (let ((〈v1 c1〉 Tce [[e1]]))

(if v1
(let ((〈v2 c2〉 Tce [[e2]]))
〈v2 (+ C if c1 c2)〉)

(let ((〈v3 c3〉 Tce [[e3]]))
〈v3 (+ C if c1 c3)〉)))

Rc4 : Tce [[(let ((v e1)) e2)]] = (let ((〈v c1〉 Tce [[e1]]))
(let ((〈v2 c2〉 Tce [[e2]]))
〈v2 (+ C let c1 c2)〉))

Rc5 : Tce [[(cons e1 . . . en)]] = (let ((〈v1 c1〉 Tce [[e1]])
...

(〈vn cn〉 Tce [[en]]))
〈(cons v1 . . . vn) (+ C cons c1 . . . cn)〉)

Rc6 : Tce [[(prim e1 . . . en)]] = (let ((〈v1 c1〉 Tce [[e1]])
...

(〈vn cn〉 Tce [[en]]))
〈(prim v1 . . . vn) (+ C prim c1 . . . cn)〉)

Rc7 : Tce [[(f e1 . . . en)]] = (let ((〈v1 c1〉 Tce [[e1]])
...

(〈vn cn〉 Tce [[en]]))
(let ((〈v0 c0〉 (f ∗ v1 . . . vn)))
〈v0 (+ C call c0 c1 . . . cn)〉))

Figure 3. Rules for transformation Tc.

Rule Rc4 transforms a binding expression, where the tuple returned by the trans-

formation of exp1 is bound to variable v, and fresh variable t1. The resulting tuple

will contain the value of the second expression, and the sum of Clet and the costs for

exp1 and exp2.

Rule Rc5 transform a constructor application. The transformation of the n argu-

ments to the constructor are bound to n fresh tuples. The resulting tuple consists of
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the application of the constructor to the values, and the sum of all the costs for the

arguments plus the cost associated with the constructor (Cprim).

Rule Rc6 applies to primitives other than constructors, and it is very similar to

rule Rc5.

Rule Rc7 binds the transformed arguments to fresh tuples, and then it binds the

tuple resulting from the call to the transformed function f ∗ to fresh variables v0, t0,

p0. The resulting tuple will be composed of value v0, and the sum of all the costs

of the arguments plus the cost of the function plus Ccall which represents the cost

associated with a function call.

Figure 4 Shows the function member? after transformation Tc.

(define (member?∗ item ls)
(let ((〈v1 c1〉 (let ((〈v2 c2〉 〈ls C var〉))

〈(null? v2) (+ C null? c2)〉)))
(if v1

(let ((〈v3 c3〉 〈#f C c〉))
〈v3 (+ C if c1 c3)〉)

(let ((〈v4 c4〉 (let ((〈v5 c5〉
(let ((〈v6 c6〉 〈item C var〉)

(〈v7 c7〉 (let ((〈v8 c8〉 〈ls C var〉))
〈(car v8) (+ C car c8)〉)))

〈(eq? v6 c7) (+ C eq? c6 c7)〉)))
(if v5

(let ((〈v9 c9〉 〈#t C c〉))
〈v9 (+ C if c5 c9)〉)

(let ((〈v10 c10〉
(let ((〈v11 c11〉 〈item C var〉)

(〈v12 c12〉
(let ((〈v13 c13〉 〈ls C var〉))
〈(cdr v13) (+ C cdr c13)〉)))

(let ((〈v14 c14〉 (member?∗ v11 v12)))
〈v14 (+ C call c11 c12 c14)〉))))

〈v10 (+ C if c5 c10)〉)))))
〈v4 (+ C if c1 c4)〉))))

Figure 4. Program member, after transformation Tc.
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3. Constructing cost-bound functions

Characterizing program inputs and capturing them in the timing function are

difficult to automate. However, partially known input structures provide a natural

mean. Special values unknown represents unknown values. For example, to capture

all input lists of length n, the following partially known input structure can be used.

〈unknown1, unknown2, unknown3, unknown4, ..., unknownn〉

The reason to have unique unknowns is to be able to define constrains in using the

unknowns. For example, for the list 〈unknown1, unknown2, unknown3, unknown4〉,

the worst-case input for the insert sort algorithm should satisfy the following con-

straints:

unknown1<unknown2

unknown2<unknown3

unknown3<unknown4

which means the list should be in decreasing order.

To create partially known input structures the following procedure can be used.

(define (list n)

(if (= n 0)

’()

(cons (make-unknown) (list (− n 1)))))

where make-unknown is a procedure with no arguments that returns a unique value

unknown. Similar structures can be used to describe an array of n elements, a matrix

of m-by-n elements, etc.

Since partially known input structures give incomplete knowledge about inputs,

the original functions need to be transformed to handle the special values unknown.

In particular, for each primitive function p, we define a new function fp such that
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(fpv1...vn) returns unknown if any vi is unknown and returns (pv1...vn) as usual oth-

erwise. We also define a new function lub that takes two values and returns the most

precise partially known structure that both values conform with. These definitions

are shown in Figure 5.

(define (fprim v1 ... vn)
(if (or (unknown? v1) ... (unknown? vn))

(make-unknown)
(prim v1 ... vn)))

(define (lub a b)
(if (equal? a b)

a
(if (unknown? a)

a
(if (unknown? b)

b
(if (and v1 is (c1 x 1 . . . x i)

v2 is (c2 y1 . . . yj)
c1 = c2
i = j )

(c1 (lub x 1 y1) . . . (lub x i y i))
(make-unknown))))))

Figure 5. Redefinition of primitives and definition of the new lub function.

The program transformation is defined by transformation Tb shown in Figure 6.

This transformation is very similar to Tc. The only difference is in the treatment of

if expressions, which should now take unknown into account, and in the treatment

of a primitive function, which now calls the new fprim function.

Rule Rb3 transforms a conditional expression. The transformed program will first

compute the tuple value/cost for the condition expression, and it will bind those values

to fresh variables v1 and c1. If the value of the condition expression is unknown then

the program will compute the tuple for both branches and return a tuple with the

least upper bound of the values, the cost of the jump plus the cost of the condition

expression plus the maximum cost of the two branches. If the value of the condition

expression is not unknown then the program will take the appropriate branch and

return the tuple with the value of the then branch if the condition is true or the value
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RTb0 : Tb





(define (f 1 v11 v12 . . . v1k
)

exp1)
(define (f 2 v21 v22 . . . v2k

)
exp2)

...
(define (f n vn1 vn2 . . . vnk

)
expn)




=

(define (f ∗1 v11 v12 . . . v1k
)

Tbe [[exp1]])
(define (f ∗2 v21 v22 . . . v2k

)
Tbe [[exp2]])

...
(define (f ∗n vn1 vn2 . . . vnk

)
Tbe [[expn]])

RTbe1 : Tbe [[v]] = 〈v Cvar〉
RTbe2 : Tbe [[c]] = 〈v Cc〉
RTbe3 : Tbe [[(if e1 e2 e3)]] = (let ((〈v1 c1〉 Tbe [[e1]]))

(if (unknown? v1)
(let ((〈v2 c2〉 Tbe [[e2]])

(〈v3 c3〉 Tbe [[e3]]))
(if (> c2 c3)

〈(lub v2 v3) (+ C if c1 c2)〉
〈(lub v3 v2) (+ C if c1 c3)〉))

(if v1
(let ((〈v2 c2〉 Tbe [[e2]]))
〈v2 (+ C if c1 c2)〉)

(let ((〈v3 c3〉 Tbe [[e3]]))
〈(lub v3 v2) (+ C if c1 c3)〉))))

RTbe4 : Tbe [[(let ((v e1)) e2)]] = (let ((〈v c1〉 Tbe [[e1]]))
(let ((〈v2 c2〉 Tbe [[e2]]))
〈v2 (+ C let c1 c2)〉))

RTbe5 : Tbe [[(cons e1 ... en)]] = (let ((〈v1 c1〉 Tbe [[e1]])
...

(〈vn cn〉 Tbe [[en]]))
〈(cons v1 ... vn) (+ C cons c1 ... cn)〉)

RTbe6 : Tbe [[(prim e1 ... en)]] = (let ((〈v1 c1〉 Tbe [[e1]])
...

(〈vn cn〉 Tbe [[en]]))
〈(f prim v1 ... vn) (+ C prim c1 ... cn)〉)

RTbe7 : Tbe [[(f e1 ... en)]] = (let ((〈v1 c1〉 Tbe [[e1]])
...

(〈vn cn〉 Tbe [[en]]))
(let ((〈v0 c0 (f ∗ v1 ... vn)))
〈v0 (+ C call c0 c1 ... cn)〉))

Figure 6. Rules for Time-Bound transformation Tb

of the else branch if the condition is false, and the sum of the cost Cif , the cost of

the condition expression and the cost of the branch taken.

Rule Rb6 applies to primitives other than constructors, and it is very similar to

rule Rc5 from transformation Tc. The difference is the value part of the resulting tuple

which calls function fprim instead of primitive prim.
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The other rules are the same as in transformation Tc, and so are not described

here.

Example. Figure 7 show function member? after transformation Tb.

(define (member? ∗ item ls)
(let ((〈v1 c1〉 (let ((〈v2 c2〉 〈ls C var〉))

〈(f null? v2) (+ C null? c2)〉)))
(if (unknown? v1)

(let ((〈v3 c3〉 〈#f C c〉)
(〈v4 c4〉 expr1))

(if (> c3 c4)
〈(lub v3 v4) (+ C if c1 c3)〉
〈(lub v4 v3) (+ C if c1 c4)〉))

(if v1

(let ((〈v3 c3〉 〈#f cc〉))
〈v3 (+ C if c1 c3)〉)

(let ((〈v4 c4〉 expr1 ))
〈v4 (+ C if c1 c4)〉)))))

;; where expr1 is
(let ((〈v5c5〉 (let ((〈v6 c6〉 〈item C var〉)

(〈v7 c7〉 (let ((〈v8 c8〉 〈ls C var〉))
〈(f car v8) (+ C car c8)〉)))

〈(f eq? v6 v7) (+ C eq? c6 c7)〉)))
(if (unknown? v5)

(let ((〈v9 c9〉 〈#t C c〉)
(〈v10 c10〉 expr2))

(if (> c9 c10)
〈(lub v9 v10) (+ C if c5 c9)〉
〈(lub v10 v9) (+ C if c5 c10)〉))

(if v5

(let ((〈v9 c9〉 〈#t C c〉))
〈v9 (+ C if c5 c9)〉)

(let ((〈v10 c10〉 expr2))
〈v10 (+ C if c5 c10)〉))))

;; where expr2 is
(let ((〈v11 c11〉 〈item C var〉)

(〈v12 c12〉 (let ((〈v13 c13〉 〈ls C var〉))
〈(f cdr c13) (+ C car c13)〉)))

(let ((〈v14 c14〉 (member? ∗ v11 v12)))
〈v14 (+ C call c11 c12 c14)〉))

Figure 7. Function member? after transformation Tb
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4. Collecting worst case constraints

In order to collect the constraints that will give us the worst-case input, we need

to modify the program to return the set of constraints along with the original value

and the bound cost of the expressions. The program transformation is defined by

Tp shown in Figure 8. This transformation is very similar to Tb, but now every

transformed expression returns a triple instead of a tuple. This triple contains the

original value, the cost, and the set of constraints. For example, in the transformation

of a function call, we collect the triple for all the arguments and for the actual call,

and the resulting triple will have the value and cost as in Tb, and the union of all the

constraints returned by the arguments and the call.

Rule Rp0 defines a function f ∗ for every function f in the original program. The

body of this function will be the original body transformed with expression trans-

former Tpe .

Rule Rp1 transforms a variable reference v into the triple composed by the variable

v, the constant Cvar which represents the cost of computing a variable reference, and

the empty set which means there are no constraints to satisfy to get that cost.

Rule Rp2 transform the constant c into the triple composed by the original constant

c, the constant Cc which represents the cost of computing the constant c, and the

empty set.

Rule Rp3 transforms a conditional expression. This rule is very similar to rule Rb3

from transformation Tb. The constraints part of the triple is computed as follows. If

the value of the condition expression is not unknown, then the constraints for the

transformed expression will be the union of the constraints in the condition expression

and the constraints of the appropriate branch. If the value of the condition expression

is unknown then the constraints will include the condition expression if the then
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RTp0 : Tp





(define (f 1 v11 v12 . . . v1k
)

exp1)
(define (f 2 v21 v22 . . . v2k

)
exp2)

...
(define (f n vn1 vn2 . . . vnk

)
expn)




=

(define (f ∗1 v11 v12 . . . v1k
)

Tpe [[exp1]])
(define (f ∗2 v21 v22 . . . v2k

)
Tpe [[exp2]])

...
(define (f ∗n vn1 vn2 . . . vnk

)
Tpe [[expn]])

RTpe1 : Tpe [[v]] = 〈v Cvar ∅〉
RTpe2 : Tpe [[c]] = 〈v Cc ∅〉
RTpe3 : Tpe [[(if e1 e2 e3)]] = (let ((〈v1 c1 p1〉 Tpe

[[e1]]))
(if (unknown? v1)

(let ((〈v2 c2 p2〉 Tpe
[[e2]])

(〈v3 c3 p3〉 Tpe [[e3]]))
(if (> c2 c3)

〈(lub v2 v3) (+ C if c1 c2) (∪ p1 p2 {’e1})〉
〈(lub v3 v2) (+ C if c1 c3) (∪ p1 p3 {’(not e1)})〉))

(if v1
(let ((〈v2 c2 p2〉 Tpe

[[e2]]))
〈v2 (+ C if c1 c2) (∪ p1 p2)〉)

(let ((〈v3 c3 p3〉 Tpe [[e3]]))
〈v3 (+ C if c1 c3) (∪ p1 p3)〉))))

RTpe4 : Tpe
[[(let ((v e1)) e2)]] = (let ((〈v c1 p1〉 Tpe

[[e1]]))
(let ((〈v2 c2 p2〉 Tpe [[e2]]))
〈v2 (+ C let c1 c2) (∪ p1 p2)〉))

RTpe5 : Tpe
[[(cons e1 ... en)]] = (let ((〈v1 c1 p1〉 Tpe

[[e1]])
...

(〈vn cn pn〉 Tpe [[en]]))
〈(cons v1 ... vn) (+ C cons c1 ... cn) (∪ p1 ... pn)〉)

RTpe6 : Tpe
[[(prim e1 ... en)]] = (let ((〈v1 c1 p1〉 Tpe

[[e1]])
...

(〈vn c1 pn〉 Tpe [[en]]))
〈(f prim v1 ... vn) (+ C prim c1 ... cn) (∪ p1 ... pn)〉)

RTpe7 : Tpe [[(f e1 ... en)]] = (let ((〈v1 c1 p1〉 Tpe [[e1]])
...

(〈vn cn pn〉 Tpe [[en]]))
(let ((〈v0 c0 p0 (f ∗ v1 ... vn)))
〈v0 (+ C call c0 c1 ... cn) (∪ p0 p1 ... pn)〉))

Figure 8. Rules for Time-Bound transformation Tp

branch has a higher cost than the else branch, or it will include the negation of the

condition expression otherwise.

Rules Rp4, Rp5, Rp6, and Rp7 are similar to their corresponding rules in transfor-

mation Tb, while also they collect the constraints of the subexpressions.

Example. Figure 9 show function member? after transformation Tp.
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(define (member? ∗ item ls)
(let ((〈v1 c1 p1〉 (let ((〈v2 c2 p2〉 〈ls C var ∅〉))

〈(f null? v2) (+ C null? c2) p2〉)))
(if (unknown? v1)

(let ((〈v3 c3 p3〉 〈#f C c ∅〉)
(〈v4 c4 p4〉 expr1))

(if (> c3 c4)
〈(lub v3 v4) (+ C if c1 c3) (∪ p1 p3 {’(null? ls)})〉
〈(lub v4 v3) (+ C if c1 c4) (∪ p1 p4 {’(not (null? ls))})〉))

(if v1

(let ((〈v3 c3 p3〉 〈#f C c ∅〉))
〈v3 (+ C if c1 c3) (∪ p1 p3)〉)

(let ((〈v4 c4 p4〉 expr1))
〈v4 (+ C if c1 c4) (∪ p1 p4)〉)))))

;; where expr1 is
(let ((〈v5 c5 p5〉 (let ((〈v6 c6 p6〉 〈item C var ∅〉)

(〈v7 c7 p7〉 (let ((〈v8 c8 p8〉 〈ls C var ∅〉))
〈(f car v8) (+ C car c8) p8〉)))

〈(f eq? v6 v7) (+ C eq? c6 c7) (∪ p6 p7)〉)))
(if (unknown? v5)

(let ((〈v9 c9 p9〉 〈#t C c ∅〉)
(〈v10 c10 p10〉 expr2))

(if (> c9 c10)
〈(lub v9 v10) (+ C if c5 c9) (∪ p5 p9 {’(eq? item (car ls))})〉
〈(lub v10 v9) (+ C if c5 c10) (∪ p5 p10 {’(not (eq? item (car ls)))})〉))

(if v5

(let ((〈v9 c9 p9〉 〈#t C c ∅〉))
〈v9 (+ cif c5 c9) (∪ p5 p9)〉)

(let ((〈v10 c10 p10〉 expr2))
〈v10 (+ C if c5 c10) (∪ p5 p10)〉))))

;; where expr2 is
(let ((〈v11 c11 p11〉 〈item C var ∅〉)

(〈v12 c12 p12〉 (let ((〈v13 c13 p13〉 〈ls C var ∅〉))
〈(f cdr c13) (+ C car c13) p13〉)))

(let ((〈v14 c14 p14〉 (member? ∗ v11 v12)))
〈v14 (+ C call c11 c12 c14) (∪ p11 p12 p14)〉))

Figure 9. Function member? after transformation Tp

It is important to instantiate the variables inside a constraint to be added. This

means, instead of “(null? ls)” we should have (for example) “(null? unknown3)”.

The constraints in the listing above are presented as the former for brevity, but they

actually represents the latter.
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5. Optimization

As a result of the simple mechanical transformation, the resulting program has

several inefficiencies. For example, in the definition of member?∗, the value of variable

c5 is always (+ C eq? C var C car C var), and at every iteration in the loop the program

performs those three additions (along with the corresponding variable bindings). Also,

the value of variable c9 is always Cc, and the value of c10 is always (+ C call C var C cdr

C c c14), which means c9 is never greater than c10 so we can avoid the test (if (> c9

c10) ...) and execute only the else branch.

Another inefficiency comes from the triple construction and destruction. For ev-

ery subexpression there is a construction of a triple, and an immediate destruction.

Instead of
(let ((tmp 〈a b c〉))

(let ((v (car tmp))
(c (cadr tmp))
(p (caddr tmp)))

body))

we can have
(let ((v a)

(c b)
(p c))

body)

The only triples we must create now are the triples in tail position in the body of

a function, and conversely the only triples to destruct are the resulting from function

calls.

The optimizations are implemented using a modified transformer and an abstract

interpreter. The modified transformer implements transformation Tp, but it avoids

creating triples when possible. It uses a technique similar to Destination Driven Code

Generation [26]. In this case, the subexpression transformer receives the variable

names where the values of the triple should be stored, and the transformed program
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will bind them directly if possible, or through triple construction/deconstruction if

not (for example, when there is a function call).

The abstract interpreter receives a program and returns an optimized program.

The domain of the interpreter is the set of tagged expressions, where the tag is the

type of the expression (if known). The special forms are not tagged. For example,

the expression (+ 3 5) is fed to the interpreter as (〈procedure +〉 〈number 3〉 〈number

5〉) and the more complicated expression (if (null? (cons 1 ’())) 5 4) is fed as (if

(〈procedure null? 〉 (〈procedure cons〉 〈number 1〉 〈null ’()〉)) 〈number 4〉 〈number 8〉).

The primitive procedures are clever enough to do constant folding, so the interpreter

returns 〈number 8〉 for both previous expressions. The interpreter is also capable of

doing copy propagation. To do this, a variable reference is transformed into its value,

if it is a constant. For example, the in the expression (let ((x 5)) x ) the reference x is

transformed into 〈number 5〉. The interpreter also does useless binding elimination,

so the previous expression is evaluated finally to 〈number 5〉.

Example. Figure 10 show function member? after the optimizations.

Notice that eq?(item, car(ls)) cannot be a constraint anymore, and the only triple

constructions are in tail position, and the only triple destructions are at function call

sites.

6. Constructing worst-case inputs

The output of the transformed program is a set of constraints that the worst case

input must satisfy. For example, with two lists of size three, the system says the

worst input case for the program union

union([unknown0, unknown1, unknown2], [unknown3, unknown4, unknown5])

should satisfy the following constrains:
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(define (member?∗ item ls)
(let ((v1 (f null? ls)))

(if (unknown? v1)
(let ((v7 (f car ls)))

(let ((v5 (f eq? item v7)))
(let ((〈v4 c4 p4〉

(if (unknown? v5)
(let ((v6 (f cdr ls)))

(let ((〈v14 c14 p14〉 (member?∗ item v6)))
〈(lub v14 #t) (+ c14 302.325) (∪ p14 {’(not (eq? item (car ls)))})〉))

(if v5

〈#t 162.25 ∅〉
(let ((v6 (f cdr ls)))

(let ((〈v14 c14 p14〉 (member?∗ item v6)))
〈v14 (+ c14 302.325) p14〉))))))

(if (> 0.25 c4)
〈(lub #f v4) 79.35 (∪ p4 {’(null? ls)})〉
〈(lub v4 #f) (+ c4 79.1) (∪ p4 {’(not (null? ls))})〉))))

(if v1

〈#f 79.35 ∅〉
(let ((v7 (f car ls)))

(let ((v5 (f eq? item v7)))
(let ((〈v4 c4 p4〉

(if (unknown? v5)
(let ((v6 (f cdr ls)))

(let ((〈v14 c14 p14〉 (member?∗ item v6)))
〈(lub v14 #t) (+ c14 302.325) (∪ p14 {’(not (eq? item (car ls)))})〉))

(if v5

〈#t 162.25 ∅〉
(let ((v6 (f cdr ls)))

(let ((〈v14 c14 p14〉 (member?∗ item v6)))
〈v14 (+ c14 302.325) p14〉))))))

〈v4 (+ c4 79.1) p4〉)))))))

Figure 10. Function member? after transformation Tb

unknown3 6= unknown0 ∧ unknown3 6= unknown1 ∧ unknown3 6= unknown2 ∧

unknown4 6= unknown0 ∧ unknown4 6= unknown1 ∧ unknown4 6= unknown2 ∧

unknown5 6= unknown0 ∧ unknown5 6= unknown1 ∧ unknown5 6= unknown2

Once we have the constraints we use the Omega Calculator to obtain an actual

input. The Omega Calculator (OC) is a set of routines for manipulating linear con-

straints over integer variables, Presburger formulas, and integer tuple relations and

sets. We feed the constraints to the OC and it will simplify the constraints. For



5. PRODUCTION OF A WORST-CASE INPUT 77

example, for the constraint

(unknown0 < unknown1) ∧ (unknown0 < unknown2) ∧ (unknown1 < unknown2)

OC will reply with

unknown0 < unknown1 < unknown2

.

The process to obtain an actual input is iterative. At each iteration we look at

the constraints and apply the following rules.

(1) For every constraint that involves only one variable, a constant and a ≤ (or

≥) operator, we equate the variable to that constant. For example, if the

constraint is unknown2 ≤ 4 we define unknown2 = 4.

(2) If no constraint satisfies the first rule, then for every constraint that involves

only one variable, a constant and a < (or >) operator, we equate the vari-

able to that constant minus (or plus) 1. For example, if the constraint is

unknown1 < 4 then we define unknown1 = 3.

(3) If no constraint satisfies the first 2 rules, then we choose any variable and

equate the variable to any constant.

The iterative process ends when there are no more variables to define.

Example. After following this rules to the constraint for the union program with

sets of size 3, OC says that the worst case input are the lists [0, 0, 0] and [1, 1, 1]. Notice

that those lists are not really sets, but nowhere in the definition of union implies that

the arguments are sets. Since we want a valid input for the worst case, we may

want to introduce those constraints manually(unknown0 6= unknown1, unknown0 6=

unknown2 and so on). After the introduction of these constraints, the OC comes up

with the input [0,−1,−3] and [−2, 2, 1].
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Following this method, the worst input cases for insert sort, select sort and merge

sort, on a list of size 16 are respectively a list with all zeroes, a list in decreasing

order, and the list [0,−3,−2,−3,−1,−4,−3,−4, 0,−6,−5,−6,−4,−7,−6,−7]. For

these simple cases it is easy to verify that those are indeed examples of worst case

inputs for each algorithm.

7. Discussion

We have described a method to automatically construct an input that exhibits the

worst case behavior for a program. This method is completely automatic and based

in high-level language constructs. Since the method is automatic, there is no need for

the programmer to annotate the program, and there is no danger of the annotation

mismatching the program and other problems described by De Millo et. al.[18].

Under certain conditions, this method generates constraints that are not satisfi-

able. This means that the bound found is not realizable. Consider the expression

(+ (if (> x 0) (∗ x 2) 2) (if (> x 0) 2 (∗ x 2)))

The set of constraints for the first part is {x > 0}, and the set of constraint for

the second part is {x 6> 0}. The set of constraints for the whole expression is then

{x > 0, x 6> 0} which of course is unsatisfiable. The solution is to lift the conditions,

as is done in Chapter 2.

8. Implementation and experimentation

We have implemented this technique in a prototype system, ALPA (Automatic

Language-based Performance Analyzer). We performed a large number of measure-

ments and obtained encouraging good results.

The implementation is for a functional subset of Scheme. The prototype is imple-

mented using Chez Scheme v6.9 compiler [25] and the Omega Calculator. The input
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to the system is a program as defined in Section 1, but with Scheme syntax. The

output from the system is an actual input with the worst case execution cost if the

system was able to find one. The implementations consists of 1000 lines of scheme

code, not counting comments or blank lines.

The computer used to take the measurements is a Sun Enterprise 450 Model 4400

with four 400MHz CPUs, 2 GB of RAM, and 6.6 GB virtual memory.

8.1. Experiments. The implementation was tested with a small set of functional

programs. The program index takes an item and a list, and return the index of such

item in the list, if it is there, or −1 if it is not. The program union computes the

union of two sets. The program selectsort sorts a list of numbers in increasing

order using the selection sort algorithm. The program insertsort sorts a list of

numbers in increasing order using the insertion sort algorithm. We used three different

implementations of merge sort: traditional merge sort (split in first half and second

half), odd−even merge sort (split in even-indexed and odd-indexed items) and bottom−

up merge sort (split in lists of one element). The program pqueue maintains a priority

queue. The program bigindex computes the index of an item in a list (the same as

the program index), but it is 700 lines long. It is there as a quick attempt to test

the scalability of this technique. It is that long because it has 100 functions, where

f0 calls f1 if there is need for recursion, f1 calls f2 and so on, where f100 calls f1.

The translation times for some of the programs are shown in Table 1. The trans-

formations appear to run in linear time, with respect to the size of the program, as

expected. It is easy to see from structural induction that the transformation Tp is

applied only once to each subexpression in a program. From the table we can also

see that the optimization pass is the most expensive in the transformation, taking up

to 80% of the total transformation time.
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Table 1. Translation times with and without optimizations enabled.

Lines of code of each program. Times in milliseconds.

Program: index insert union select odd-even bottom-up traditional bigindex

Without: 4.02 5.70 5.94 8.76 12.18 15.72 20.34 630.50

With: 14.40 20.24 22.82 30.18 73.10 80.88 93.50 849.90

LOC: 9 11 14 18 23 31 34 703

Table 2 shows the execution times of the constraint generator programs for insert−

sort and union for input lists of various sizes. For an input of size 10, the optimized

version of insert−sort∗ executes in 68% of the time of the non optimized version. For

an input of size 1000, the optimized version executes in 12% of the time of the non

optimized version.

Table 2. Execution times for the constraint generator for insert−sort

and union procedures. Times for optimized (o) and not optimized (d)

programs. Times in milliseconds.

Input Size 10 20 100 200 500 1000

Insert Sort (n) 0.56 2.60 200.0 1505.0 23512.4 199637.0

Insert Sort (o) 0.38 1.97 76.0 428.1 3923.0 24192.0

Union (n) 0.90 4.00 150.0 737.3 7858.0 55710.0

Union (o) 0.35 1.16 42.5 237.0 2112.6 11302.0



CHAPTER 6

Conclusion

An overview of comparison with related work in time analysis appears in Chap-

ter 1, Section 1. Certain detailed comparisons have also been discussed while present-

ing our method. This section summarizes them, compares with other related work,

and concludes.

Compared to work in algorithm analysis and program complexity analysis [61,

88, 87, 104], this work counts symbolic primitive parameters precisely, so it allows

us to calculate actual time bounds and validate the results with experimental mea-

surements. There is also work on analyzing average-case complexity [33], which has a

different goal than worst-case bounds. Compared to work in systems [91, 76, 75, 62],

this work explores program analysis and transformation techniques to make the anal-

ysis automatic, efficient, and accurate, overcoming the difficulties caused by the in-

ability to obtain loop bounds, recursion depths, or execution paths automatically and

precisely. There is also work for measuring primitive parameters of Fortran programs

for the purpose of general performance prediction [86, 85], where information about

execution paths was obtained by running the programs on a number of inputs; for

programs such as insertion sort whose best-case and worst-case execution times differ

greatly, the predicted time using that method could be very inaccurate.

Reistad and Gifford [81] studied static analysis that helps estimating running

times in the presence of first-class procedures, and the results of the estimation were

used for dynamic parallelization. Their analysis produces only a formula that needs

to be computed at run time after information about the particular input is available;

81
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they do not analyze time bounds in the presence of incomplete knowledge about

the input as we do. Also, their cost systems do not handle user-defined recursive

procedures as we do; as pointed out by Hughes and others [53], the extension to user-

defined recursive procedures is a major one that affects the entire system. They also

mention that they handle imperative constructs, but the analysis and transformations

given do not handle mutable data, so relevant constructs can be simulated easily using

bindings.

Several type systems [53, 52, 17] have been proposed for reasoning about space

and time bounds, and some of them include implementations of type checkers [53, 17].

These do not analyze cost, or build cost functions. Programmers are required to

annotate their programs with cost functions as types; some programs have to be

rewritten to have feasible types [53, 52].

A number of techniques have been studied for obtaining loop bounds or execution

paths for analyzing time bound [75, 2, 29, 44, 47, 11]. Manual annotations [75, 62]

are inconvenient and error-prone [2]. Automatic analysis of such information has

two main problems. First, even when a precise loop bound can be obtained by

symbolic evaluation of the program [29], separating the loop and path information

from the rest of the analysis is in general less accurate than an integrated analysis [70].

Second, approximations for merging paths from loops, or recursions, very often lead

to nontermination of the time analysis, not just looser bounds [29, 44, 70]. Some new

methods, while powerful, apply only to certain classes of programs [47]. In contrast,

our method allows recursions, or loops, to be considered naturally in the overall

execution-time analysis based on partially known input structures. In addition, our

method does not merge paths from recursions, or loops; this may cause exponential

time complexity in the analysis, but our experiments on test programs show that the
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analysis is still tractable for input sizes in the thousands. We have also studied simple

but powerful optimizations to speed up the analysis.

In the analysis for cache behavior by Ferdinand and others [31], loops are trans-

formed into recursive calls, and a predefined callstring level determines how many

times the fixed point analysis iterates and thus how the analysis results are approxi-

mated. Our method allows the analysis to perform the exact number of recursions, or

iterations, for the given partial input data structures. Recent work by Lundqvist and

Stenstrom [70] is based on essentially the same ideas as ours. They apply the ideas

at machine instruction level and can more accurately take into account the effects of

instruction pipelining and data caching, but their method for merging paths for loops

would lead to nonterminating analysis for many programs, for example, a program

that computes the union of two lists with no repeated elements. We apply the ideas

at source-level, and our experiments show that we can calculate more accurate time

bound and for many more programs than merging paths, and the calculation is still

efficient.

The idea of using partially known input structures originates from Rosendahl [84].

We have extended it to manipulate primitive parameters, to handle binding con-

structs, and most importantly, to include higher-order functions. The power of our

method also lies in the optimizations of the time-bound function using partial eval-

uation, incremental computation, and transformations of conditionals to make the

analysis more efficient and more accurate. Partial evaluation [8, 57], incremental

computation [68, 67], and other transformations have been studied intensively in

programming languages. Their applications in our time-bound analysis are particu-

larly simple and clean; the resulting transformations are fully automatic and efficient.

We have started to explore a suite of new language-based techniques for time anal-

ysis, in particular, analyses and optimizations for further speeding up the evaluation
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of the time-bound function. To make the analysis even more accurate and efficient, we

can automatically generate measurement programs for all maximum subexpressions

that do not include transfers of control; this corresponds to the large atomic-blocks

method [76]. We also believe that the lower-bound analysis is symmetric to the upper-

bound analysis, by replacing maximum with minimum at all conditional points; there,

special pruning actually allows us to speed up the analysis even further. Finally, we

plan to accommodate more lower-level dynamic factors for timing at the source-

language level [62, 31]. In particular, we have started applying our general approach

to analyze space consumption [95] and hence to help predict garbage-collection and

caching behavior.

In conclusion, the approach we developed is based entirely on program analysis

and transformations at the source level. The methods and techniques are intuitive;

together they produce automatic tools for analyzing time bounds efficiently and accu-

rately. We find the accuracy of the experimental results very encouraging, especially

considering that we are analyzing recursive programs at source-level, with garbage

collection, and currently without special treatment for instruction pipelining or cache

effects.
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Tables

Table 1. Calculated and measured worst-case times (in milliseconds),
without garbage collection.

insertion sort selection sort merge sort
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.06751 0.06500 96.3 0.13517 0.12551 92.9 0.11584 0.11013 95.1
20 0.25653 0.25726 100.3 0.52945 0.47750 90.2 0.29186 0.27546 94.4
50 1.55379 1.48250 95.4 3.26815 3.01125 92.1 0.92702 0.85700 92.4

100 6.14990 5.86500 95.4 13.0187 11.9650 91.9 2.15224 1.98812 92.4
200 24.4696 24.3187 99.4 51.9678 47.4750 91.4 4.90017 4.57200 93.3
300 54.9593 53.8714 98.0 116.847 107.250 91.8 7.86231 7.55600 96.1
500 152.448 147.562 96.8 324.398 304.250 93.8 14.1198 12.9800 91.9

1000 609.146 606.000 99.5 1297.06 1177.50 90.8 31.2153 28.5781 91.6
2000 2435.29 3081.25 126.5 5187.17 5482.75 105.7 68.3816 65.3750 95.6

set union list reversal reversal w/app.
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.10302 0.09812 95.2 0.00918 0.00908 98.8 0.05232 0.04779 91.3
20 0.38196 0.36156 94.7 0.01798 0.01661 92.4 0.19240 0.17250 89.7
50 2.27555 2.11500 92.9 0.04436 0.04193 94.5 1.14035 1.01050 88.6

100 8.95400 8.33250 93.1 0.08834 0.08106 91.8 4.47924 3.93600 87.9
200 35.5201 33.4330 94.1 0.17629 0.16368 92.9 17.7531 15.8458 89.3
300 79.6987 75.1000 94.2 0.26424 0.24437 92.5 39.8220 35.6328 89.5
500 220.892 208.305 94.3 0.44013 0.40720 92.5 110.344 102.775 93.1

1000 882.094 839.780 95.2 0.87988 0.82280 93.5 440.561 399.700 90.7
2000 3525.42 3385.31 96.0 1.75937 1.65700 94.2 1760.61 2235.75 127.0

85



A. TABLES 86

Table 2. Calculated and measured worst-case times (in milliseconds),
with garbage collection.

insertion sort selection sort merge sort
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.06844 0.06698 97.9 0.13610 0.12778 93.9 0.11701 0.11273 96.3
20 0.26008 0.26476 101.8 0.53301 0.48645 91.3 0.29486 0.28216 95.7
50 1.57539 1.53062 97.2 3.28974 3.06625 93.2 0.93673 0.88150 94.1

100 6.23544 6.06750 97.3 13.1042 12.1850 93.0 2.17502 2.03875 93.7
200 24.8100 25.1187 101.2 52.3083 49.3375 94.3 4.95249 4.70100 94.9
300 55.7240 55.8428 100.2 117.612 115.718 98.4 7.94661 7.75000 97.5
500 154.570 153.125 99.1 326.519 320.833 98.3 14.2718 13.3200 93.3

1000 617.623 630.750 102.1 1305.53 1585.50 121.4 31.5533 29.5937 93.8
2000 2469.18 3318.50 134.3 5221.06 8376.25 160.4 69.1252 68.7000 99.4

set union list reversal reversal w/app.
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.10318 0.09875 95.7 0.00935 0.00960 102.7 0.05325 0.04996 93.8
20 0.38230 0.36242 94.8 0.01832 0.01740 95.0 0.19596 0.18077 92.2
50 2.27639 2.12062 93.2 0.04521 0.04375 96.8 1.16194 1.06250 91.4

100 8.95569 8.3650 93.4 0.09003 0.08531 94.8 4.56477 4.1840 91.7
200 35.5235 33.5167 94.4 0.17967 0.17131 95.3 18.0936 16.6416 92.0
300 79.7037 75.3800 94.6 0.26932 0.25625 95.1 40.5867 37.4921 92.4
500 220.901 208.355 94.3 0.44860 0.42530 94.8 112.465 108.325 96.3

1000 882.111 839.96 95.2 0.89682 0.86580 96.5 449.038 421.8 93.9
2000 3525.45 3385.93 96.0 1.79324 1.74350 97.2 1794.50 2473.5 137.8

Table 3. Calculated and measured worst-case times (in milliseconds)
for the imperative language, using SPS.

insertsort list-mergesort mergesort
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.067637 0.057228 84.61026 0.064566 0.049438 76.56949 0.154043 0.123428 80.12580
20 0.261368 0.212860 81.44076 0.166667 0.128768 77.26105 0.371773 0.299041 80.43660
50 1.596142 1.305419 81.78590 0.548978 0.429809 78.29264 1.129826 0.927734 82.11295

100 6.332710 5.114257 80.75938 1.287664 1.018432 79.09148 2.556371 2.114746 82.72453
200 25.22562 20.76171 82.30407 2.955253 2.417968 81.81934 5.700747 4.778808 83.82775
300 56.67825 45.20312 79.75390 4.681983 3.841308 82.04446 9.054851 7.610351 84.04722
500 157.2626 124.9062 79.42524 8.385997 6.981445 83.25122 16.08930 13.43945 83.53036

1000 628.5185 500.6250 79.65158 18.67365 16.21875 86.85363 35.09691 29.51171 84.08636
2000 2513.008 1990.750 79.21778 41.15115 33.88281 82.33745 76.02501 64.23437 84.49110

reverse! selectsort vector-sum
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.007180 0.006777 94.39671 0.057102 0.053535 93.75354 0.013775 0.009872 71.66783
20 0.013994 0.013376 95.58393 0.208539 0.186370 89.36968 0.025902 0.015682 60.54226
50 0.034436 0.032634 94.76739 1.224741 1.087646 88.80617 0.062285 0.045570 73.16320

100 0.068507 0.064651 94.37153 4.791386 4.218750 88.04863 0.122924 0.087127 70.87917
200 0.136648 0.126800 92.79296 18.94832 16.47460 86.94493 0.244200 0.170776 69.93274
300 0.204790 0.188507 92.04881 42.47012 37.35937 87.96623 0.365477 0.262512 71.82718
500 0.341073 0.304565 89.29618 117.6083 101.6562 86.43626 0.608030 0.432556 71.14050

1000 0.681780 0.573608 84.13386 469.3390 404.5625 86.19835 1.214413 0.736328 60.63238
2000 1.363195 1.081420 79.32985 1875.165 1613.750 86.05907 2.427180 1.754638 72.29124
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Table 4. Calculated and measured worst-case times (in milliseconds)
for the imperative language, using the direct approach.

insertsort list-mergesort mergesort
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.064447 0.057228 88.79754 0.060180 0.049438 82.14974 0.128231 0.123428 96.25400
20 0.249517 0.212860 85.30865 0.155863 0.128768 82.61660 0.310681 0.299041 96.25348
50 1.524904 1.305419 85.60666 0.514573 0.429809 83.52728 0.947944 0.927734 97.86796

100 6.051141 5.114257 84.51724 1.209050 1.018432 84.23405 2.149917 2.114746 98.36404
200 24.10583 20.76171 86.12736 2.778507 2.417968 87.02401 4.803626 4.778808 99.48335
300 54.16348 45.20312 83.45682 4.408732 3.841308 87.12954 7.637164 7.610351 99.64891
500 150.2876 124.9062 83.11144 7.907639 6.981445 88.28734 13.58397 13.43945 98.93608

1000 600.6499 500.6250 83.34721 17.61970 16.21875 92.04893 29.66984 29.51171 99.46705
2000 2401.596 1990.750 82.89278 38.84885 33.88281 87.21701 64.33920 64.23437 99.83706

reverse! selectsort vector-sum
size calculated measured me/ca calculated measured me/ca calculated measured me/ca
10 0.006808 0.006777 99.54794 0.053656 0.053535 99.77370 0.009919 0.009872 99.52056
20 0.013381 0.013376 99.96277 0.196160 0.186370 95.00957 0.018833 0.015682 83.26668
50 0.033099 0.032634 98.59662 1.152156 1.087646 94.40093 0.045574 0.045570 99.99003

100 0.065962 0.064651 98.01231 4.507106 4.218750 93.60217 0.090143 0.087127 96.65435
200 0.131689 0.126800 96.28760 17.82309 16.47460 92.43406 0.179280 0.170776 95.25632
300 0.197416 0.188507 95.48717 39.94719 37.35937 93.52190 0.268418 0.262512 97.79971
500 0.328869 0.304565 92.60977 110.6197 101.6562 91.89703 0.446692 0.432556 96.83527

1000 0.657503 0.573608 87.24037 441.4430 404.5625 91.64545 0.892379 0.736328 82.51291
2000 1.314770 1.081420 82.25166 1763.698 1613.750 91.49807 1.783752 1.754638 98.36784

Table 5. Calculated and measured worst-case times (in milliseconds)
for the imperative language on program cruft, using the direct ap-
proach.

cruft
size calculated measured me/ca
10 0.49460 0.5699919 86.8
20 0.50297 0.5800838 86.7
50 0.53088 0.6103595 87.0

100 0.57823 0.6608190 87.5
200 0.66760 0.7617380 87.6
300 0.75428 0.8626570 87.4
500 0.93486 1.0644950 87.8

1000 1.38272 1.5690900 88.1
2000 2.27100 2.5782800 88.1
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