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ABSTRACT 

 

Consumption of a high-fat meal has been shown to elicit endothelial dysfunction that 

contributes to cardiovascular events. The US diet pattern of frequent meals and snacks 

extends the postprandial state. The focus of this research was to optimize a feeding 

model to study the acute effects of two high-fat meals on endothelial-dependent 

vasodilation (reactive hyperemia index) and a biomarker of oxidative stress. The study 

was conducted to compare changes in endothelial function induced by two different 

feeding regimens (standard feeding regimen and body surface area-based feeding 

regimen) and to study the peripheral vascular function in the extended postprandial 

state. A 2 × 4 within subject design was used to investigate variability in reactive 

hyperemia index and oxidative stress. Ten male subjects (age 19-30 years, BMI 

18.5-24.9 kg/m2, Body surface area 1.5-2.2 m2) were recruited and assigned to two 

feeding regimens, in random order, on different days, with a 1-week washout period. 

Each feeding regimen contained two meals that were consumed as “breakfast” (0h) and 

“lunch” (4h) on the test day. Each meal in feeding regimen 1 provided 850 kilocalories; 

whereas, each meal in feeding regimen 2 provided 460 kilocalorie/m2 subject body 

surface area. Reactive hyperemia index was measured, followed by blood draw at 0, 2, 

4, 6 hours. Blood was analyzed for plasma malondialdehyde as a measure of oxidative 

stress. Blood glucose and triglyceride were measured to monitor the postprandial 

response at 0, 1, 2, 3, 4, 5, 6 hours. Power was too low to detect a significant difference 

in regimen × time interaction and main effect of feeding regimen for reactive 
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hyperemia index and oxidative stress (p>0.05, 1-β<0.6). However, the feeding regimen 

based on body surface area might be a more effective model to use than the standard 

meal as shown by the greater effect size (ηp
2 and ω2). More subjects are needed to 

confirm this finding. Reactive hyperemia index increased from the fasting state to the 

postprandial state (p<0.05). Oxidative stress was elevated 2 hours after “breakfast” 

(p<0.05) and decreased by 4 hours after “breakfast” (p<0.05). 
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Chapter 1 

INTRODUCTION 

     The endothelium is a single layer of cells lining the walls of the blood vessels that 

has physical contact with the blood as the blood circulates in the body (Bonetti, Lerman, 

& Lerman, 2003; Lerman & Burnett Jr, 1992). A function of the endothelium is to 

mediate relaxation of the muscle layer of the vessels through the production of nitric 

oxide (NO). Relaxation is an important function of the vascular smooth muscle. 

Dysfunction of the endothelium is a key contributor to all stages of atherosclerosis and 

associated with the risk of cardiovascular events. Consumption of a single high-fat 

meal leads to endothelial dysfunction; perhaps because the high-fat meal induces 

oxidative stress due to metabolism of cellular fatty acids as well as exogenous dietary 
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fatty acids, which increase production of modified proteins, fatty acids and DNA. The 

usual US meal pattern is repeated meals and snacks every few hours, where the 

postprandial state is extended to a significant part of a day; endothelial function under 

this prolonged oxidative state is poorly studied. In prior research, the postprandial state 

has been elicited by ingestion of either a standard high-fat meal, or a meal based on 

individual body surface area, or a meal based on individual body weight; however, 

none of these studies proposed a rationale for prescribing a certain feeding method over 

another or compared the postprandial effects of different feeding methods. In addition, 

flow-mediated dilation has been widely used as the major indicator of postprandial 

endothelial function changes although it is operator-dependent and generates variations 

in results. To avoid the controversy, this study will apply an automated system, 

peripheral arterial tonometry (tested by EndoPAT 2000), as a substitute for 

flow-mediated dilation to assess the endothelial-dependent vasodilation. The present 

study was a pilot investigation (n=10) and served as a tentative design for future 

research. Power analysis was conducted to determine the effect size of the feeding 

regimens and to estimate the sample size for future research. 

Statement of the Problem 

The focus of the research was to optimize a feeding model to study the acute effects of 

two high-fat meals on endothelial-dependent vasodilation (reactive hyperemia index) 

and a biomarker of oxidative stress (plasma malondialdehyde). Blood triglyceride and 

glucose were measured to describe the model of the extended postprandial state. 
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Purpose of the Study 

     The study was proposed to:    

     1. compare the changes in endothelial-dependent vasodilation induced by two 

different feeding regimens (one consisting of feeding subjects two standard meals, 

separated by four hours or one consisting of feeding subjects two variable sized meals, 

where the amount of the meal was proportional to body surface area). 

     2. study the peripheral vascular function in the extended postprandial state. 

Need for the Study 

     Endothelial dysfunction has been characterized as a key contributor for 

cardiovascular disease and it is referred to as the hallmark of atherosclerosis (Bonetti, 

Lerman, et al., 2003; Deanfield, Halcox, & Rabelink, 2007; Lerman & Zeiher, 2005). In 

fact, a recent multivariate analysis of studies involving close to 2500 patients with 

follow-ups between 1 and 92 months, found that endothelial dysfunction was strongly 

and independently associated with cardiovascular events (Lerman & Zeiher, 2005). The 

lack of direct correlation between the presence of endothelial dysfunction and other 

traditional risk factors further supported the hypothesis that endothelial dysfunction 

may be an integrated, independent and sensitive marker for cardiovascular disease 

(Bonetti, Lerman, et al., 2003).   

     Though endothelial dysfunction has commonly been measured using the 

technique of flow-mediated dilation of the brachial artery, this technique requires a 

highly trained technician to read the ultrasound films, and hours of laborious analysis. 

A newer technique using signals of peripheral arterial tonometry obtained from two 
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finger cuffs has been developed that removes much of the operator-dependent analysis, 

bias, and non-endothelial mediated artifacts that may complicate the measures. The 

technique uses a system called the EndoPAT 2000 (Itamar Medical, Caesarea, Israel). 

EndoPAT 2000 is an emerging non-invasive instrument used to examine the 

endothelial-dependent vasodilation. In clinical research, Endo-PAT2000 has been 

shown to be valid and reliable but less operator-dependent in comparison to flow 

mediated dilation (FMD) (Bonetti, Pumper, Higano, Holmes, & Lerman, 2002; 

Deanfield, et al., 2007; Kuvin, et al., 2003). 

     Prior research in the area of postprandial oxidative stress has focused on the 

change of endothelial function and oxidative stress that occurs 2-3 hours after a single 

meal (Barringer, Hatcher, & Sasser, 2008; Nappo, et al., 2002; Vogel, Corretti, & 

Plotnick, 1997). However, the common US eating behaviors, including frequent snacks 

and repeated meals every few hours, expose the human body to prolonged oxidative 

stress, which may further impair the relaxation function of the vessels (Tushuizen, et al., 

2006). Therefore, it is important to know how our vascular function responds to the 

oxidative stress generated by this particular meal pattern. In addition, prior research has 

been conducted by varying feeding methodologies: feeding a constant quantity of the 

high-fat meal, feeding a variable sized meal based on individual body weight, or 

feeding a variable sized meal based on individual body surface area. It is not clear 

whether one feeding method is superior to the other in terms of reducing the 

unexplained variance and optimizing the postprandial outcome markers. 

     High-fat meal ingestion has been shown to produce excessive reactive oxygen 
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species that oxidize proteins, lipids and DNA. Much of the research has focused on the 

lipid peroxidation; because lipids that are found in cell membranes are easily damaged 

by exogenous oxidative stress and damage to these lipids interferes with subsequent 

function of the cells. When lipids deteriorate, a number of byproducts are formed, 

including isoprostanes, and two aldehydes, malondialdehyde, and 4- hydroxynonenal. 

These byproducts serve as biomarkers for examining oxidative stress status. Recently, a 

protocol using two high-fat meals was adopted for several studies. A study by 

Tushuizen et al. (2006) indicated that flow-mediated dilation of the brachial artery (a 

measure of endothelial function) was significantly impaired after two consecutive 

high-fat meals compared to the baseline; plasma oxidized low-density lipoprotein 

(LDL) and plasma malondialdehyde were significantly increased. But other research 

has questioned the validity of oxidized LDL or damaged LDL assay, because it was 

shown that these measurements were not consistently related to oxidative stress 

(Sjogren, et al., 2005), which may be due to problems with the methodology to measure 

oxidized LDL.  

Delimitations 

     The study was delimited to the following:       

     1. Subjects were male (ages 19-30 y, BMI 18.5-24.9 kg/m2, Body surface area 

1.5-2.2 m2). 

     2. Subjects were recruited based on their BMI and body surface area. Subjects 

were also screened and excluded for history of: coronary artery disease, 

cerebrovascular disease, heart failure, diabetes mellitus, hepatic and renal disease, 
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uncontrolled hypertension, dyslipidemia, untreated or clinically evident thyroid disease 

(Barringer, et al., 2008) and tobacco use (Shimabukuro, et al., 2007). Subjects were also 

excluded for the use of regular medication, including aspirin, anti-platelet drugs, 

anti-inflammatory drugs, lipid-lowering drugs and blood pressure medication (Hall, 

Sanders, Sanders, & Chowienczyk, 2008; Nappo, et al., 2002).  

     3. Subjects were introduced to the testing procedures before tests begin.  

     4. Subjects were required to exclude caffeine, alcohol, multiple vitamin 

supplements and any other supplements 24 hours prior to and on each test day (Berry, et 

al., 2008; Hall, et al., 2008).  

     5. Subjects were required to refrain from physical activity 24 hours prior to and on 

each test day (Berry, et al., 2008; Hall, et al., 2008). 

     6. Subjects were required to undergo an overnight fasting period of at least 12 

hours before each test day; water drinking was permitted.  

     7. The study was carried out in a temperature-controlled lab 079, HPER building 

at Indiana University. 

     8. The study included assessments of endothelial-dependent vasodilation, 

oxidative stress status, blood glucose and triglyceride. 

     9. Endothelial-dependent vasodilation was assessed by the reactive hyperemia 

index, generated by peripheral arterial tonometry tested by EndoPAT 2000.  

     10. A measure of postprandial oxidative stress (lipid peroxidation): plasma 

malondialdehyde, tested by thiobarbituric acid reactive substances (TBARS) assay. 

     11. Blood glucose and triglyceride were obtained by finger stick. 
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     12. The study included two test days and lasted for 6-7 hours/day. 

Limitations 

     Results of the study were interpreted while considering the following limitations:   

     1. Subjects in this study did not represent both genders or all ages of the US 

population so that the results were limited to apparently healthy, normal weighted 

young male subjects, without history of heart diseases, chronic illnesses, or tobacco 

use. 

     2. Dietary pattern and physical activity were lightly controlled. 

     3. EndoPAT 2000 could not calculate the shear stress and blood flow velocity, 

therefore, the calculated reactive hyperemia index was a downstream outcome 

indicator of peripheral endothelial function.  

Assumptions 

     The basic assumptions underlying this study were: 

     1. Subjects followed instructions to undergo a fasting period for 12 hours before 

testing.  

     2. Subjects complied with the investigator’s request of no additional food other 

than the provided meals during the test. 

     3. The impairment of endothelial-dependent vasodilation was reflected by 

decreased reactive hyperemia index (Barringer, et al., 2008). 

     4. The measurement of reactive hyperemia index was valid for assessing 

endothelial-dependent vasodilation. 

     5. The measure of plasma malondialdehyde (tested by TBARS assay) was a valid 
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indicator of oxidative stress. 

     6. Blood glucose and triglyceride levels obtained by finger stick were valid 

substitutes for the results by needle blood draw and analysis. 

Hypotheses 

     This study was designed to test the following hypotheses:   

     1. HA: The feeding regimens affect the reactive hyperemia index differently over 

time. 

     1a. HA: The reactive hyperemia index is significantly different over time after 

feeding standard meals (feeding regimen 1). 

     1b. HA: The reactive hyperemia index is significantly different over time after 

feeding meals by body surface area (feeding regimen 2). 

     1c. HA: The reactive hyperemia index is significantly different between feeding 

regimen 1 and feeding regimen 2 at hour 2 post ingestion. 

     1d. HA: The reactive hyperemia index is significantly different between feeding 

regimen 1 and feeding regimen 2 at hour 4 post ingestion. 

     1e. HA: The reactive hyperemia index is significantly different between feeding 

regimen 1 and feeding regimen 2 at hour 6 post ingestion. 

     2. HA: The reactive hyperemia index changes over time. 

Secondary Hypotheses 

     1. HA: The feeding regimens affect the plasma malondialdehyde level differently 

over time. 

     1a. HA: The plasma malondialdehyde level is significantly different over time after 
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feeding standard meals (feeding regimen 1). 

     1b. HA: The plasma malondialdehyde level is significantly different over time 

after feeding meals by body surface area (feeding regimen 2). 

     1c. HA: The plasma malondialdehyde level is significantly different between 

feeding regimen 1 and feeding regimen 2 at hour 2 post ingestion. 

     1d. HA: The plasma malondialdehyde level is significantly different between 

feeding regimen 1 and feeding regimen 2 at hour 4 post ingestion. 

     1e. HA: The plasma malondialdehyde level is significantly different between 

feeding regimen 1 and feeding regimen 2 at hour 6 post ingestion. 

     2. HA: The plasma malondialdehyde changes over time. 

Definition of Terms 

Butylated hydroxytoluene (BHT). A lipophilic antioxidant food additive that is 

used in cosmetics, pharmaceuticals and etc. 

Caveolae. It is the omega-shaped invaginations on the membrane of endothelial 

cells; it is responsible for signal transduction by shuttling molecules in and out of the 

cell (Bruns & Palade, 1968; Palade, 1953). 

Endothelial-dependent vasodilation. The vessel relaxation process that is 

mediated by endothelium-derived vasodilators, such as nitric oxide (NO). 

Endothelium-derived nitric oxide (NO). An important endothelium-derived 

vasodilator, which inhibits the development of atherosclerosis, including synthesis of 

pro-inflammatory cytokines, the expression of leukocyte adhesion molecules, the 

activation and aggregation of platelets, and the proliferation of vascular smooth muscle 
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cell (Rush, Denniss, & Graham, 2005). NO is synthesized enzymatically from the 

amino acid L-arginine and NADPH in a reaction catalyzed by endothelial NO synthase. 

     Endothelin. A potent endothelium-derived vasoconstrictive peptide comprised of 

21 amino acid residues. Endothelin and NO acts on the same nonselective cation 

channel but endothelin elicits constriction of vascular smooth muscle and promotes the 

growth of endothelial cells and smooth muscle cells. The circulating level of endothelin 

was shown to be elevated in cardiovascular disease, including chronic heart failure, 

ischemic heart disease, hypertension, atherosclerosis and etc. (Masaki, 2004). 

     Endo-PAT 2000 (Itamar Medical, Caesarea, Israel). A device that measures 

tonometry of the peripheral arterial, more specifically, measures changes in fingertip 

blood volume in response to reactive hyperemia (Dhindsa, et al., 2008). Two probes are 

place on the index fingers of both hands to record the fingertip blood volume changes 

(Figure 1-1). The blood cuff is put on the upper arm and inflated for 5 minutes to 

completely occlude the brachial artery to induce ischemia (Figure 1-1).  
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Figure 1-1. EndoPAT 2000 overview (Hamburg & Benjamin, 2009) 

 

After 5 minutes, the blood cuff is deflated and EndoPAT 2000 software calculates the 

reactive hyperemia index. This index is used to evaluate the vascular function, in 

particular, endothelial-dependent vasodilation. A higher reactive hyperemia index 

represents better endothelial responses; a reactive hyperemia index of less than or equal 

to 1.6 indicates endothelial dysfunction whereas greater than 1.6 indicates normal 

endothelial function, characterized by a distinct increase in the post-occlusion signal 

amplitude in comparison to the baseline (Figure 1-2). 

 
Figure 1-2. High and low endothelial responses tested by EndoPAT 2000 

(Hamburg & Benjamin, 2009)  

 

Lipid peroxidation. A chain reaction that leads to structural and functional 

damage of polyunsaturated fatty acids in cell membranes (Spiteller, 2006); during the 

reaction, lipid peroxides (radicals) are formed but unstable and can degrade to 

secondary oxidation products such as malondialdehyde, 4-hydroxynonenal and various 
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isoprostanes. 

L-arginine. The substrate for NO synthesis, which undergoes a five-electron 

oxidation to generate L-citrulline and NO (Voetsch, Jin, & Loscalzo, 2004).   

     Reactive hyperemia. Complex hemodynamic responses of the vasculature that 

occur to accelerate the delivery of oxygen to tissues as well as the removal of metabolic 

byproducts after a period of ischemia (Dhindsa, et al., 2008). 

Reactive hyperemia index (RHI). The ratio of the average pulse wave amplitude 

during the 1 minute period following the release of blood pressure cuff to the average 

pulse wave amplitude during a 210-second baseline period. It is a measure of 

micro-vascular function. The coefficient variation of the reactive hyperemia index was 

shown to be 12% (Dhindsa, et al., 2008) in comparison to 14.7% for flow-mediated 

dilation (Donald, et al., 2008). 

Sensitivity. “The ability of a test to detect disease when it is truly present, e.g., it 

is the probability of a positive test result given that the patient has the disease” (Vasan, 

2006). 

Specificity. “The ability of a test to exclude the disease in patients who do not 

have the disease, e.g., it is the probability of a negative test result given that the patient 

does not have the disease” (Vasan, 2006). 

Superoxide dismutase. In humans, there are three forms of the superoxide 

dismutase enzyme: cytosolic Cu-Zn superoxide dismutase, mitochondrial Mn 

superoxide dismutase, and extracellular Cu-Zn superoxide dismutase (Faraci & Didion, 

2004). These enzymes convert superoxide radicals to hydrogen peroxides and therefore 
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prevent superoxide-induced cellular damage, e.g., inactivation of mitochondrial 

proteins containing Fe-S centers and subsequent hydroxyl radical formation (Faraci & 

Didion, 2004). In addition, superoxide dismutase preserves NO bioavailability by 

inactivating the reaction between NO and superoxide, which reduces peroxynitrite 

radical production and prevent endothelial NO synthase from uncoupling (Faraci & 

Didion, 2004).   

Thiobarbituric acid reactive substances assay (TBARS). Under high temperature 

and acidic condition, malondialdehyde and thiobarbituric acid react to generate a 

malondialdehyde-thiobarbituric acid adduct, which can be measured colorimetrically at 

530-540 nm. The result may be overestimated due to artifacts, reactions between 

thiobarbituric acid and other compounds, such as sugar, amino acid, albumin and 

bilirubin; because products of these reactions overlap the colorimetric absorbance 

range of malondialdehyde-thiobarbituric acid adduct (Grotto, et al., 2009). 

Urinary nitric oxide metabolites (NOx). NO metabolites (nitrite and nitrate) are 

indirect biomarkers of NO production (Feelisch, et al., 2002).   

Venoarteriolar reflex. The vasoconstriction of the adjacent capillaries, in this way, 

blood flow and capillary pressures in the limb are declined to prevent the venous blood 

pooling and formation of edema under dependent position (Gabrielsen & Norsk, 2007).  
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Chapter 2 

REVIEW OF THE LITERATURE 

Endothelial-dependent Vasodilation 

     Cardiovascular disease has been the leading cause of death in the US every year 

since 1900, except 1918 (Lloyd-Jones, et al., 2009). The American Heart Association 

and the Centers for Disease Control and Prevention reported that approximately 

80,000,000 American adults (approximately 1 in 3) suffered from at least one type of 

cardiovascular disease; 41,900,000 of these people were estimated to be under 61 years 

of age (Lloyd-Jones, et al., 2009). Mortality data showed that cardiovascular diseases 

accounted for 1 of every 2.8 deaths in the United States (Lloyd-Jones, et al., 2009). 

Endothelium dysfunction is associated with several recognized cardiovascular risk 

factors, including smoking, diabetes mellitus, systemic inflammation, obesity and 

hyperlipidemia (Bonetti, Lerman, et al., 2003; Hamburg, et al., 2008; Urbich & 

Dimmeler, 2005; Vita & Keaney, 2002). Increasing evidence shows that endothelial 

dysfunction is clinically relevant. Patients with endothelial vasomotor dysfunction in 

the coronary or peripheral circulation have increased risk for cardiovascular events 

including myocardial infarction, stroke, and etc. (Widlansky, Gokce, Keaney, & Vita, 

2003).   

     The endothelium plays a key role in cardiovascular health, as it regulates vessel 

dilation and constriction, blood fluidity, growth of vascular smooth muscle cells, local 

inflammation and thrombosis by elaborating a number of endothelium-originated 

paracrine factors such as NO and endothelin (Shenouda & Vita, 2007; Tam, et al., 2005; 
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Widlansky, et al., 2003). Endothelium-derived NO is a potent vasodilator and acts to 

inhibit platelet activity, vascular smooth muscle cell growth, and adhesion of 

leukocytes to the endothelial surface (Widlansky, et al., 2003). Nitric oxide is produced 

in endothelial cells from L-arginine catalyzed by endothelial NO synthase located in 

caveolae (invaginations in cell membranes) under the presence of cofactors such as 

nicotinamide adenine dinucleotide phosphate (NADPH), tetrahydrobiopterin (BH4), 

and oxygen as shown in Figure 2-1 (Davignon & Ganz, 2004). Shear stress increases 

intracellular Ca++ which displaces the inhibitor caveolin from calmodulin (CaM); then 

endothelial NO synthase is activated for NO production (Davignon & Ganz, 2004).  

Figure 2-1. Endothelium-derived NO production 
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Reduced NO bioavailability has been identified as an important indicator of endothelial 

dysfunction and is referred to as the hallmark sign of early atherosclerosis (Malek, 

Alper, & Izumo, 1999; Vita & Keaney, 2002). Endothelial dysfunction facilitates 

inflammation, thrombosis, vasoconstriction, and atherosclerotic plaque formation and 

thus contributes to all stages of atherosclerosis (Huang & Vita, 2006; Shenouda & Vita, 

2007). 

     Endothelial function is influenced by age, gender, and physical activity. A study 

conducted by Taddei et al. (2001) showed that forearm blood flow response to 

acetylcholine was negatively correlated with age (r=-0.65, p<0.0001) among 

normotensive subjects; forearm blood flow response was more impaired in subjects 

ages 30-45 years in comparison to younger ages less than 30 years and the response 

further declined in subjects ages 45-60 years. In addition, Celermajer et al. (1994) 

proposed that the age-related endothelial dysfunction occurred earlier in men than 

women. For young women, flow-mediated dilation was shown to change 

correspondingly with serum estrogen during menstrual cycle (Hashimoto, et al., 1995); 

in addition, flow-mediated dilation was higher in the follicular phase than in luteal and 

menstrual phases (Hashimoto, et al., 1995; Kawano, et al., 2001). For postmenopausal 

women, estrogen treatment was shown to increase flow-mediated dilation (Gerhard, et 

al., 1998). Kalantaridou et al. (2006) observed similar results among women (age <40 y) 

with premature ovarian failure and low estrogen level. Exercise training was shown to 

elevate NO availability thus likely increasing exercise capacity and cardiovascular 
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protection, both in healthy individuals and patients with cardiovascular risk factors and 

established diseases (Kingwell, 2000).  

     Endothelial function is also influenced by antioxidant level. Studies by Pleiner et 

al. (2008) and Cangemi et al. (2007) showed that ascorbic acid infusion was inversely 

correlated with the changes in flow-mediated dilation and oxidative stress. Fisher et al. 

(2006; 2003) found that 1-week consumption of flavanol-rich cocoa (821 mg/day) 

improved the endothelial response (reactive hyperemia index, tested by EndoPAT 2000) 

to the ischemia among healthy middle aged and older subjects; a similar result was 

observed by Schroeter et al. (2006) and Heiss et al. (2005) using flow-mediated dilation. 

Dixon et al. (1994) showed the protective effect of β-carotene against oxidative damage; 

they found that β-carotene-deficient diet (58 µg β-carotene/day with sufficient vitamin 

A, C and E) depressed erythrocyte superoxide dismutase activity (p=0.0001) and 

elevated plasma malondialdehyde (p=0.0001) compared to the β-carotene-rich diet 

(>1500 µg/day). In addition, supplementation with multiple antioxidant vitamins was 

found to be protective against atherosclerosis. Plantinga (2007) showed that an 8-week 

supplementation of vitamin C (1 g) and E (400 IU) had beneficial effects on 

flow-mediated dilation and arterial stiffness in hypertensive patients. Neri (2005) 

showed that supplementation with vitamin E (300 mg/day, although the article 

mentioned 300 g/day) and C (250 mg/day) reduced the plasma level of 

malondialdehyde, 4-hydroxynonenal, oxidized LDL, and soluble vascular cell 

adhesion molecule-1 (sVCAM-1), while significantly increasing plasma nitrite and 

nitrate from radial arterial blood (tested by a kit from Cayman Chemical, Ann Arbor, 
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MI). Title et al. (2000) showed that a supplementation with vitamin C (2 g) and vitamin 

E (800 IU) prevented the hyperglycemia-induced (75 g oral glucose loading) 

impairment of flow-mediated dilation.  

Measurements of Endothelial-dependent Vasodilation 

     In clinical studies, endothelial function were studied by infusing acetylcholine  

intravenously and measuring the change in vessel diameter by quantitative coronary 

angiography (Cox, et al., 1989; Ludmer, et al., 1986). In the intact endothelium, infused 

acetylcholine induced vasodilation by stimulating endothelium-derived NO production; 

whereas infused acetylcholine led to vasoconstriction in the dysfunctional endothelium. 

The valid contribution of NO to the endothelial responses has been examined by 

N(G)-mono-methyl-L-arginine, an endothelial NO synthase inhibitor (Goodhart & 

Anderson, 1998). The disadvantage of this technique is that it is extremely invasive and 

hard to test repeatedly.  

     Several noninvasive techniques have also been developed, including the 

flow-mediated dilation technique which has been widely used in clinical research. 

Flow-mediated dilation utilizes an ultrasound-based test to assess the brachial artery 

diameter change induced by reactive hyperemia, therefore evaluating conduit artery 

vascular function in the peripheral circulation (Corretti, et al., 2002). Flow-mediated 

dilation requires high levels of ultrasound expertise in conduct and analysis, 

minimization of environmental and physiological influences, and may be burdened by 

considerably large intra- and inter-operator variability. Several researchers have 

questioned whether this methodology will ever be applied and implemented in routine 
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clinical practice (Bhagat, Hingorani, & Vallance, 1997; Corretti, et al., 2002; 

Tschakovsky & Pyke, 2005).  

     A new technique using peripheral arterial tonometry has been developed that 

removes much of the operator analysis, bias, and non-endothelial mediated artifacts 

that may complicate the measures. The technique employs a system called the 

EndoPAT 2000 (Itamar Medical, Caesarea, Israel). EndoPAT 2000 is another 

non-invasive method to examine the endothelial-dependent vasodilation. In clinical 

research, Endo-PAT2000 has been shown to be valid and reliable but less 

operator-dependent comparing to flow-mediated dilation (Bonetti, et al., 2002; 

Deanfield, et al., 2007; Kuvin, et al., 2003). A study (n=94) by Bonetti et al. (2004) 

showed that the sensitivity and specificity of the EndoPAT system were 80% and 85% 

respectively. The EndoPAT system measures the fingertip blood volume changes that 

are continuously recorded by bio-sensors in the finger probes (Kuvin, et al., 2003). By 

inflating the blood pressure cuff to supra-systolic pressure between 200-300 mmHg (70 

mmHg above systolic pressure), the brachial artery and other small resistance vessels 

are occluded which causes an ischemia in the upper arm (Kuvin, et al., 2003). This local 

ischemia provokes the reactive hyperemia response and induces endothelium 

dependent vasodilation after deflating the blood cuff (Bonetti, Barsness, et al., 2003). 

The magnitude of the reactive hyperemia response indicates the function of 

endothelium (Bonetti, Barsness, et al., 2003). The EndoPAT system automatically 

analyzes these blood volume changes and generates a reactive hyperemia index. This 

reactive hyperemia index was shown to be significantly associated with values obtained 
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by flow-mediated dilation (Dhindsa, et al., 2008). The reactive hyperemia index (RHI) 

is calculated according to the following formula (Bonetti, et al., 2004; Kuvin, et al., 

2003): 

RHI=  

The EndoPAT system has several unique features: the finger probe imparts a uniform 

pressure field to the distal 2/3 of the fingers including the tips so that the 

vasoconstriction due to venoarteriolar reflex (distal venous blood pooling) is avoided; 

the EndoPAT system corrects the index to the control arm thus it decreases the potential 

systemic changes during ischemia (Kuvin, et al., 2003). These systemic changes may 

result from variation in temperature, noise, light and water drinking. 

     There are several other techniques for assessing peripheral vascular health, for 

example, radial artery tonometry, pulse wave analysis, and pulse contour analysis by 

digital photoplethysmography. They have been shown to correlate with flow-mediated 

dilation testing, yet still need further validation because the relative contribution of 

structural changes in the vessel wall to endothelial dependent biology remains 

uncertain (Deanfield, et al., 2007).  

Postprandial Oxidative Stress and Reactive Oxygen Species 

     Oxidative stress was defined by Blomhoff (2005) as “an accumulation of 

non-enzymatic oxidative damage to molecules that threatens the normal functions of a 

cell or an organism” (Blomhoff, 2005). Dietary oxidative overload indicates an 

imbalance between oxidants and antioxidants (Sies, Stahl, & Sevanian, 2005); thus 

oxidative stress can be a combination of overproduced oxidants and reduced 
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antioxidant capacity, in which the antioxidants are not sufficient to protect the cell 

membranes and cells from oxidant attack. Oxidants refer to the reactive oxygen species 

that have been correlated with a large number of human diseases: cancer, diabetes 

mellitus, coronary heart disease, Parkinson’s disease, Altzheimer’s disease, hepatitis, 

inflammatory bowel diseases, and rheumatoid arthritis (Blomhoff, 2005).  

     Reactive oxygen species are produced continuously by cells during the 

metabolism of carbohydrate, protein, and fat (Urso & Clarkson, 2003). They can be 

formed by either breakage of covalent bonds, addition of electrons to a molecule or 

removal of hydrogen by other radicals; these highly reactive species act as electrophiles 

or oxidant agents. They are divided into two categories: radicals (superoxide radical O2·, 

hydroxyl radical OH·, nitric oxide radical NO·, peroxyl radical ROO·, and alkoxy 

radical RO·) and non-radicals (hydrogen peroxide H2O2, organic peroxides, aldehydes, 

hyperchlorous acid HOCl, and ozone O3). These species cause oxidative damage to 

lipid (Blomhoff, 2005), DNA (Barzilai & Yamamoto, 2004), and protein (Davies, 1987; 

Grune, Reinheckel, & Davies, 1997) as shown in Figure 2-2. Radicals, such as 

superoxides, peroxyl radicals, and peroxynitrite radicals, are highly relevant in the lipid 

peroxidation-induced damages. 
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Figure 2-2. Different forms of reactive oxygen species (Knasmüller, et al., 2008)  

 

     Radicals are highly reactive because they contain unpaired electrons and thus have 

the ability to donate or receive other atoms to obtain stability (Blomhoff, 2005). DNA 

can be modified by hydroxyl radical through interaction with the sugar phosphate chain 

and oxidization of bases, which produce thymine glycol, 5-hydroxy-uracil and 

8-hydroxy-desoxyguanosine (Barzilai & Yamamoto, 2004). Protein can be modified by 

some radicals through interactions with nucleophilic amino acids (Davies, 1987; Grune, 

et al., 1997). For example, superoxide and hydrogen peroxide directly oxidize the thiol 

group of cysteine (Levine & Stadtman, 2001); hydroxyl radical can hydroxylate lysine 

and proline. Peptide bonds can also be destroyed by radicals thus causing drastic 

alterations of protein structure and cellular function. For example, peroxynitrite radical 
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reacts with the Fe–S centers of proteins which affects electron transport functions of 

mitochondria (Kushnareva, Murphy, & Andreyev, 2002).  

     Non-radicals are also deleterious to the cells, for example, hydrogen peroxide can 

penetrate the cell membrane and damage cells at low concentrations by degrading heme 

proteins and oxidizing DNA, enzymes, thiol groups and keto acids. Hydrogen peroxide 

is also the source of more deleterious species such as hyperchlorous acid and hydroxyl 

radicals (Fridovich, 1986; Halliwell & Gutteridge, 1999).  

     Normally, reactive oxygen species are eliminated by antioxidant defenses through 

cellular enzymatic and non-enzymatic defenses. The enzymatic defense includes the 

reaction of enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. 

Superoxide dismutase converts the superoxide radical into hydrogen peroxide, which is 

then metabolized into water and oxygen by catalase and glutathione peroxidase 

(Andreazza, et al., 2008).The non-enzymatic defense refers to reactions with small 

molecules such as glutathione, ascorbic acid, tocopherol, carotenoids, polyphenols, and 

uric acid (Prior, Wu, & Schaich, 2005).  

Postprandial Hyperglycemia and Hypertriglyceridemia 

     One form of the oxidative stress, postprandial oxidative stress, is characterized by 

increased oxidative damage after consumption of a high-fat and/or high-carbohydrate 

meal (Bowen & Borthakur, 2004; Ursini & Sevanian, 2002). Postprandial 

hyperlipidemia increases the risk of coronary artery disease (Verschuren, et al., 1995); 

both hyperglycemia and hypertriglyceridemia have been associated with 

atherosclerosis, type 2 diabetes, and obesity (Bae, et al., 2001; WeiChuan, YiHeng, 
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ChihChan, TingHsing, & JyhHong, 2004). Prior research suggested that hyperglycemia 

(Ceriello, et al., 2002; Marfella, Quagliaro, Nappo, Ceriello, & Giugliano, 2001; 

Marfella, et al., 1995) and hypertriglyceridemia (R. Anderson, et al., 2001; Bae, et al., 

2001; Ceriello, et al., 2004) produced an overload of reactive oxygen species that 

mediated the endothelial dysfunction and inflammatory diseases, especially 

atherosclerosis (Ceriello, et al., 2005; Shimabukuro, et al., 2007). It is hypothesized that 

high glucose and fat intake increase acetyl CoA derived from glycolysis and fatty acid 

β-oxidation. Acetyl CoA accelerates the citric acid cycle and thus increases NADH 

production which enters mitochondrial electron transport chain (oxidative 

phosphorylation) for ATP production; however, excessive NADH elevate the 

mitochondrial proton gradient and thus single electrons are transferred to oxygen, 

which lead to the formation of reactive oxygen species, especially superoxide as shown 

in Figure 2-3 (Ceriello, et al., 2004). Several vivo studies supported this hypothesis and 

showed the cumulative and independent effect of glucose and triglyceride in mediating 

postprandial oxidative stress (Ceriello, et al., 2004; Ceriello, et al., 2002; Esposito, et al., 

2002; Nappo, et al., 2002; Tripathy, et al., 2003).  



26 

 

 

Figure 2-3. Production of mitochondrial superoxide. Adapted from Ceriello et al. (2004) 

and Madamanchi et al. (2005). 
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     Superoxide is one of the major oxygen-derived radicals. It is mainly formed by 

uncoupled mitochondrial electron transport chain (non-enzymatically) and can also be 

produced by activated membrane-bound NAD(P)H oxidase in vascular smooth 

muscles, and xanthine oxidase in plasma and endothelial cell as shown in Figure 2-3 

(Madamanchi, et al., 2005). Superoxide reacts with endothelium-derived NO at a rate 

three times faster than with superoxide dismutase, and therefore favors the production 

of peroxynitrite radical that reduces the NO availability and impairs the 

endothelial-dependent vasodilation. 

     Furthermore, the increased peroxynitrite can oxidize and deplete BH4, a cofactor 

for NO production, and thus result in the uncoupling of endothelial NO synthase, which 

directs the reaction towards superoxide production (Davignon & Ganz, 2004). The 

endothelial NO synthase is composed of two globular protein domains (reductase and 

oxygenase/heme domains) that are connected via a flexible protein strand as shown in 

Figure 2-1 (Davignon & Ganz, 2004). In the reductase domain, electrons are generated 

when NADPH reduces FAD that in turn reduces FMN. In the presence of intracellular 

Ca++, calmodulin (CaM, Figure 2-1) is activated to accelerate the transfer of electrons 

across the protein strand to the oxygenase/heme domain. Electrons bind ferric heme 

and are transferred to L-arginine. Under the presence of cofactor BH4, as the electrons 

flow, oxygen is incorporated to produce L-citrulline and NO (Davignon & Ganz, 2004). 

However, when the cofactor BH4 is oxidized by peroxynitrite, the electron from the 

ferric heme reduces oxygen instead to form superoxide (Davignon & Ganz, 2004; 

Madamanchi, et al., 2005). Endothelial NO synthase is then switched from a coupled 
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state to an uncoupled state that further decreases the NO production. 

     Superoxide as well as other hyperglycemia- and hypertriglyceridemia-induced 

reactive oxygen species oxidize polyunsaturated fatty acid (PUFA); damage to these 

PUFAs interferes with subsequent function of the cells (Spiteller, 2006). Essential 

PUFAs include omega-6 (n-6) and omega-3 (n-3) fatty acids, both of which are present 

in cereals, walnuts, algae, fish, shellfish, and plant oils (Margioris, 2009; Russo, 2009). 

Among the plant sources, n-6 fatty acids are more abundant in soybean, corn, sunflower, 

safflower oils, whereas n-3 fatty acids are present mainly in linseed and canola oils 

(Russo, 2009). The parent fatty acid of the n-6 PUFAs is linoleic acid (18:2n-6), which 

can be elongated and desaturated to form long-chain n-6 PUFA such as arachidonic acid 

(20:4n-6) that is found in the phospholipids of cell membrane as shown in Figure 2-4 

(Margioris, 2009).  
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Figure 2-4. The n-6 and n-3 PUFAs (Calder, 2005) 

 

Membrane 20:4n-6 is involved in the lipid peroxidation reaction, which is a 

radical-mediated chain of reactions directed towards membrane n-6 PUFA. During this 

process, radicals oxidize 20:4n-6 to form lipid peroxides, which are unstable and can 

decompose to produce reactive aldehydes, such as malondialdehyde and 

4-hydroxynonenal (Figure 2-5).  

 

 



30 

 

 

Figure 2-5. Lipid peroxidation process (Dotan, Lichtenberg, & Pinchuk, 2004) 

 

Malondialdehyde, 4-hydroxynonenal, and isoprostanes are cytotoxic aldehydes and can 

diffuse through membranes and attack targets intracellularly or extracellularly 

(Esterbauer, Schaur, & Zollner, 1991). Therefore, lipid peroxidation is an amplified 

oxidative modification of the initial radical attack. In contrast, n-3 PUFAs (Figure 2-4) 

were shown to suppress oxidative stress by partially displacing 20:4n-6, thus reducing 

substrate for known mediators of inflammation such as 4-series leukotrienes and 
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2-series thromboxanes (Calder, 2005). N-3 PUFAs were also shown to increase the 

production of prostaglandins E3 that has anti-inflammatory property, and thromboxanes 

A3 with low inflammatory, pro-aggregatory and vasoconstrictive properties (Russo, 

2009). In addition, n-3 PUFAs were shown to induce NO production and suppress 

inflammatory indices such as C-reactive protein, soluble intercellular adhesion 

molecule-1 (sICAM-1), sVCAM-1, E-selectin and etc. (Paschos, et al., 2004; Zhao, et 

al., 2007).  

     Increased reactive oxygen species also activate the endothelial cells and induce an 

inflammatory response through pro-inflammatory cytokine production, such as tumor 

necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-18 (IL-18) and etc., which 

activate the production of adhesion molecules, such as sICAM-1 and sVCAM-1, etc. 

(Esposito, Nappo, Giugliano, Palo, et al., 2003; Plotnick, Corretti, & Vogel, 1997). 

Cytokines are small, non-structural proteins that are expressed by nearly every cell 

under stressful events such as ultraviolet light, heat-shock, etc. (Dinarello, 2000). 

Cytokines can be categorized into: pro-inflammatory family, such as TNF-α, IL-1, 

IL-12, IL-18, and anti-inflammatory family, such as IL-4, IL-10, IL-13 (Tedgui & 

Mallat, 2006). TNF-α is correlated with the progression of atherosclerosis and serves as 

a marker for predicting the severity of peripheral arterial disease (Tedgui & Mallat, 

2006). IL-1 and IL-18 activate NF-κB pathway that regulates inflammation through 

controlling the expression of pro-inflammatory cytokines, adhesion molecules, growth 

factors, and inducible NO synthase (Tedgui & Mallat, 2006). Adhesion molecules, such 

as sVCAM-1 and sICAM-1, are immunoglobulins induced by pro-inflammatory 
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cytokines. They are expressed on activated endothelial cells, macrophages, and 

vascular smooth muscles; their release from endothelial cell membranes may reflect 

endothelial activation (Jenny, et al., 2006; Nahrendorf, et al., 2006). Adhesion 

molecules participate in atherosclerosis lesion formation (Jenny, et al., 2006; 

Nahrendorf, et al., 2006) and mediate leukocyte attachment to the endothelial cells and 

their transmigration in the arterial intima.  

Measurement of Postprandial Oxidative Stress 

     Malondialdehyde is one of the most widely accepted and reliable markers for 

oxidative damage; it is detectable in several biological fluids (plasma, serum, and urine) 

and tissues. Lipid peroxidation is also accompanied by the formation of conjugated 

dienes (Figure 2-5), which have also been used as an indicator of oxidative stress, yet 

the measurement is confounded by the continued ex vivo formation of conjugated 

dienes. In addition, the absorbance (230-235 nm) range used to quantify conjugated 

diene confounded by interfering substances with similar absorbance range. Biomarkers 

for measuring DNA damage (single cell gel electrophoresis assay, 

5-hydroxymethyl-2’-deoxyuridine measurement) and protein modification (catalase, 

glutathione peroxidase) have been used in prior research; but these markers many times 

could be formed by pathways other than reactions with reactive oxygen species, 

therefore are not specific indicators for oxidative stress (Grotto, et al., 2009). 

Isoprostane is one of the widely used lipid peroxidation biomarker; it has been 

quantified by several methods, including gas chromatography-mass spectrometry 

(GC-MS), and liquid chromatography tandem mass spectrometry (Berdeaux, Scruel, 
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Cracowski, & Durand, 2006), however, these methods are expensive, time consuming, 

and not easy to apply to large numbers of samples. Although ELISA was developed as 

an alternative to GC-MS, results from ELISA showed inconsistencies that may be due 

to interfering substances in plasma samples (Samuelsson, et al., 1978). Inconsistencies 

between ELISA and GC-MS were also observed in prior research (Proudfoot, et al., 

1999). Before performing the ELISA, biological samples may be purified by affinity 

column or solid phase extraction cartridge C-18. If plasma samples are analyzed, there 

is an additional shortcoming: the generation of artifactual isoprostanes by autoxidation 

of plasma 20:4n-6 if the sample was not handled properly (Roberts & Morrow, 2000).  

     Malondialdehyde is a three-carbon, low-molecular weight aldehyde (Figure 2-6) 

and it is a secondary breakdown product from lipid peroxide during lipid peroxidation 

(Armstrong & Browne, 1994; Dahle, Hill, & Holman, 1962; Yagi, 1998).  

 

Figure 2-6. The structure of malondialdehyde 

 

Malondialdehyde has been recognized as an important indicator of lipid peroxidation 

due to its mutagenic and genotoxic characteristics that are involved in cancer, heart 

disease and many other diseases. Cirak et al. (2003) suggested that serum and tissue 

malondialdehyde levels were higher in malignant brain tumors than healthy controls. 

Scott et al (2003) showed that plasma malondialdehyde was elevated in hemodialysis 
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patients with cardiovascular complications. Kesavulu et al. (2001) found that 

malondialdehyde was higher in type 2 diabetics than in healthy controls; in addition, 

malondialdehyde was even higher among diabetic patients with heart disease than those 

diabetics without heart disease. 

     Malondialdehyde molecules are unstable, polar and water-soluble, therefore they 

are difficult to extract. Also they contains no electrophore, chromophore or fluorophore 

that would aid in detection (Grotto, et al., 2009). TBARS assay is a well-established 

method for screening and monitoring malondialdehyde in plasma, serum, tissues and 

urine (Armstrong & Browne, 1994; Grotto, et al., 2009; Yagi, 1998). The assay results 

can be read colorimetrically (532-535 nm) or fluorimetrically. Normal human plasma 

contains 1.86-3.94 µmol/L TBARS (Richard, et al., 1992; Yagi, 1998). Tinahones et al. 

(2008) found that postprandial plasma TBARS value was significantly higher at 3 

hours post ingestion of a high-fat meal (1.31 ± 0.72 µmol/L) compared to baseline (1.02 

± 0.7 µmol/L) in severely obese subjects (n=29, 9 males and 20 females, ages 44.9 ± 8.6 

y, BMI 54.5 ± 6.4 kg/m2). Yesilova et al. (2005) found that fasting plasma TBARS 

value was significantly higher in patients with nonalcoholic fatty liver disease (0.5 ± 

0.2 µmol/L, n=51, male, ages 20-65 y, BMI 28.12 ± 4.06 kg/m2) compared to 30 

healthy controls (0.36 ± 0.09 µmol/L, n=30, male, ages 20-60 y, BMI 27.54 ± 3.27 

kg/m2). Oteiza (1997) found that fasting plasma TBARS value was significantly higher 

in patients with sporadic amyotrophic lateral sclerosis (1.30 ± 0.1 µmol/L, n=13, 6 

males and 7 females, ages 22-66 y) compared to health controls (1.03 ± 0.06 µmol/L, 

n=11, 8 males and 3 females, ages 32-66 y). Chalasani et al. (2004) found that fasting 
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plasma TBARS value was significantly increased in patients with nonalcoholic 

steatohepatitis (3.4 ± 1.3 µmol/L, n=21, 11 males and 10 females, ages 41 ± 13 y, BMI 

33 ± 4 kg/m2) compared to healthy controls (1.8 ± 0.9 µmol/L, n=19, 9 males and 10 

females, ages 43 ± 14 y, BMI 31 ± 4 kg/m2). There is a controversy cited in the literature 

regarding the lack of sensitivity and specificity of TBARS (Armstrong & Browne, 

1994), because thiobarbituric acid reacts with other compounds in the sample, such as 

sucrose, amino acids and albumin, thus interfering by overlapping with the absorbance 

of malondialdehyde (Grotto, et al., 2009) resulting in an overestimate of lipid 

peroxidation.  

Influence of Single High-fat Meal Consumption on Endothelial Function 

     The endothelial function can be impaired by long term consumption of saturated 

fat-rich meal. Barringer et al. (2008) found that 4-week of high-fat meals led to 

decreased reactive hyperemia index 3 hours post ingestion in 23 healthy subjects 

(-12.37%, p=0.005), but no decline when supplemented with 250 mg flavonoid daily 

(-3.16%, p=0.663). This was a double-blind, crossover treatment design; 23 healthy 

subjects were involved (mean age 43.4±10.4, 78% female, BMI not listed). Each 

subject was assigned in random sequence, to receive a high-fat meal with additional 

flavonoid supplement (for 1 week) or a high-fat meal with placebo (for 1 week). 

Between the two study periods, there was a 2-week washout period to minimize the 

carryover effect. After the washout period, subjects received the other treatment. The 

high-fat meal provided 1010 kilocalories (49.9% from fat), including 56 g total fat (15 g 

saturated fat and 225 mg cholesterol). The meal consisted of one cheese omelet (Jimmy 
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Dean® Three Cheese Omelet™), one croissant (Jimmy Dean® Croissant with Egg and 

Cheese), 4.75 oz of French fries (Ore-Ida® Extra Crispy Fast Food Fries™), and one 

bottle of water.  

     Similar endothelial impairment was observed by Cuevas et al. (2000) and Plotnick 

et al. (2003). Cuevas et al. (2000) showed that flow-mediated dilation was impaired 

(p=0.014) in 11 healthy subjects (male, ages 20-28 y, BMI 20-25 kg/m2) by 4-week of a 

high-saturated fat diet compared to a control diet with antioxidant enriched; however, 

after 4-week supplementation of red wine (240 mL/day), flow-mediated dilation was 

raised to a level comparable to the control diet. The high-fat diet provided an average of 

2565 kilocalories daily (39.9% from fat), including 112.7±12.9 g total fat (35.8±9.6 g 

saturated fat, 35.3±4.2 g monounsaturated fat, 32±4.5 g polyunsaturated fat, 0.12±0.04 

g very long-chain omega-3 fatty acids, and 610±120 mg cholesterol). The control diet 

also provided 2565 kilocalories (27.3% from fat) but contained 77±2.6 g total fat 

(22.7±2.3 g saturated fat, 37.9±2.5 g monounsaturated fat, 9.6±1.4 g polyunsaturated 

fat, 0.38±0.13 g very long-chain omega-3 fatty acids, and 290±90 mg cholesterol) with 

3-fold higher fruit and vegetable intake (675 g) than the high-fat diet. Plotnick et al. 

(2003) found that flow-mediated brachial artery reactivity was significantly reduced in 

38 healthy subjects (14 males and 24 females, ages 36.4±10.1 y, BMI not listed) after 4 

weeks of high-fat meals (p<0.05), but was not impaired when the high-fat meal was 

supplemented with the fruit/vegetable juice concentrate. In this double-blind design, 

subjects received 3 test meals (high-fat meal with placebo, high-fat meal with 4 

capsules of Juice Plus, and high-fat meal with 4 capsules of Juice Plus and 4 capsules of 
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Vineyard) in a random sequence; Juice Plus was a powdered fruit vegetable juice 

concentrate and Vineyard was a supplement of antioxidants with herbal extracts. The 

high-fat meal provided 897 kilocalories (50.2% from fat) and contained 50 g total fat 

(14 g saturated fat and 225 mg cholesterol). It consisted of one Egg McMuffin®, 

Sausage McMuffin®, two hash brown patties (McDonald’s Corporation), and one 

non-caffeinated beverage.    

     Besides long term consumption, an acute consumption of saturated fat-rich meal 

also led to endothelial dysfunction. A study by Padilla et al. (2006) showed that brachial 

artery flow-mediated dilation was significantly reduced between 2 and 6 hours post 

ingestion in 8 healthy subjects (5 males and 3 females, ages 25.5±0.8 y, BMI not listed). 

The high-fat meal consisted of one Egg McMuffin®, one Sausage McMuffin®, two hash 

brown patties (McDonald’s Corporation), and water. The nutrient composition was 

reported from company literature as providing 940 kilocalories and containing 48 g fat 

(16.5 g saturated fat, 4.5 g trans fat and 280 mg cholesterol), 91 g carbohydrates and 33 

g proteins. This result agreed with early studies by Vogel (1997) and Plotnick (1997) 

using similar high-fat meals (McDonald’s Corporation) providing 900 kilocalories, 50 

g fat, 14 g saturated fat and 255 mg cholesterol. 

     It has been shown that the endothelial cells were activated after acute consumption 

of a saturated fat-enriched meal. Nappo et al. (2002) proposed that the postprandial 

hyperlipidemia and hyperglycemia significantly increased the endothelial activation by 

elevating TNF-α, IL-6, sICAM-1 and sVCAM-1 at 0, 2, and 4 hours in both diabetic 

patients (10 males and 10 females, ages 46±5 y, BMI 27.5±1.3 kg/m2) and healthy 
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controls (10 males and 10 females, ages 44±5 y, BMI 26.8±1.2 kg/m2). The increase of 

cytokines and adhesion molecules sustained longer following the high-fat meal than the 

high-carbohydrate meal. The high-fat meal provided 760 kilocalories (59.2% from fat) 

and contained 58 g carbohydrate, 2.8 g fiber, and 50 g fat (20.4 g saturated fat and 246 

mg cholesterol); it consisted of two sausages (80 g), six bread slices (90 g), one small 

egg (40 g), butter (15 g) and olive oil (5 g). The isocaloric (20.6% of total calories from 

fat) high-carbohydrate meal contained 144 g carbohydrate, 4.5 g fiber, and 17 g fat (2.2 

g saturated fat and no cholesterol); it consisted of one cheese-free pizza (300 g) with 

tomatoes (60 g). A study by Esposito et al. (2003) found that postprandial plasma 

triglyceride concentration was correlated with the elevated platelet aggregation 4 hours 

after high-fat meal ingestion (r=-0.23, p<0.05) in 25 healthy subjects (13 males and 12 

females, ages 23-40 y, BMI 23.7±1.9). The high-fat meal provided 760 kilocalories 

(59.2% from fat) and contained 50 g fat (20.4 g saturated fat and 246 mg cholesterol), 

58 g carbohydrate and 2.8 g fiber; it consisted of two sausages, six bread slices, one 

small egg, butter and olive oil). 

     Similar to the effect of saturated fat, a high dose of monounsaturated fat (18:1n-9) 

was shown to reduce endothelial-dependent vasodilation and increase oxidative stress. 

Berry et al. (2008) found that the brachial artery flow-mediated dilation was decreased 

(p<0.001) while the plasma 15-F2t-isoprostane (+10.4 ng/L; p=0.005) and the plasma 

triglyceride were significantly increased 3 hours after the 18:1n-9 enriched meal in 17 

healthy subjects (male, ages 18-40 y, BMI 24.3±3.0 kg/m2). The 18:1n-9 enriched meal 

provided 850 kilocalories and contained 15 g protein, 89 g carbohydrate and 43.3 g fat 
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(42.5 g 18:1n-9, 4 g 18:2n-6, and 0.8 g stearic acid from sunflower oil); it consisted of 

two muffins and one chocolate flavored sweetened milkshake.  

     A mix of monounsaturated fat and saturated fat was also shown to increase 

oxidative stress. Raff et al. (2008) found that 5-week consumption of a high-fat meal 

increased urinary 15-F2t-isoprostane concentration (+1.47 ng/mL, p<0.001) in the 

experimental group (18 male subjects, ages 20-35 y, BMI 19.2-26.7 kg/m2) compared 

to the control group (20 male subjects, ages 19-33 y, BMI 18.8-27 kg/m2). The meal 

provided 1642 kilocalorie (60% from fat) and contained 115 g fat, including 14:0 (11.2 

g), 16:0 (32.2 g), 18:0 (6.44 g), 18:1n-9 (14.03 g), and 18:2n-6 (6 g); it consisted of two 

bread rolls, one piece of cake, a cup of chocolate milk, and butter.  

     Epidemiological data suggested that essential fatty acids, n-6 and n-3 PUFAs, had 

protective effect on cardiovascular health (Hu, et al., 1997; Mozaffarian, et al., 2005). 

Nestel et al. (1997) found that arterial compliance was enhanced after 4-week 

supplementation of 18:3n-3 (providing 9% of total energy) in 15 obese subjects (BMI 

25-36 kg/m2, ages < 65 y), although oxidative stress was significantly increased that 

was indicated by elevated TBARS in oxidized LDL. Tholstrup et al. (2004) found that 3 

weeks of fish oil supplemented high-fat meal did not increase the plasma and urinary 

15-F2t-isoprostane concentration compared to high-oleic acid meal in 16 healthy 

subjects (male, ages 35-75 y, BMI 21.9-32.5 kg/m2). The high-oleic acid meal provided 

1523.8 kilocalories (40% from fat) and contained 80 g fat, including 16:0 (7.4 g), 18:0 

(11.9 g), 18:1n-9 (34.1 g) and 18:2n-6 (22.9 g). The isocaloric fish oil meal replaced 5% 

of the oleic acid with PUFA (20:5n-3, 22:5n-3 and 22:6n-3); it consisted of one bun, one 
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piece of cake, one small package of spread, and a ready-made dinner. Romieu et al. 

(2008) found that fish oil (2 capsules/day, each containing 83.2% n-3 PUFA) or soy oil 

(2 capsules/day, each containing 52.7% 18:2n-6, 22.5% 18:1n-9 and 16.3% saturated 

fat) led to increased Cu/Zn superoxide dismutase activity and increased plasma 

glutathione level in 52 subjects (42 males, ages 60-96 y, BMI 16.6-37.2).  

Dietary n-6 PUFAs were considered to induce oxidative stress and inflammatory 

effects, because dietary 18:2n-6 was the precursor of membrane 20:4n-6 that was 

involved in lipid peroxidation (Griffin, 2008). Nevertheless, a meta-analysis by 

Mensink et al. (2003) suggested that 18:2n-6 had the most potent effect on lowering 

plasma LDL, triglycerides, and the ratio of total to HDL cholesterol. The mechanism 

was proposed as 18:2n-6 reduced LDL production and enhanced hepatic 

receptor-dependent LDL clearance (Spady & Dietschy, 1988; Woollett, Spady, & 

Dietschy, 1992). Prior human studies found that high 18:2n-6 diet, providing 16-29% of 

total energy, was shown to significantly lower plasma LDL by 16%-22% compared to 

high saturated fat diet, providing 19%-30% of total energy (J. Anderson, Grande, & 

Keys, 1976; Baudet, Dachet, Lasserre, Esteva, & Jacotot, 1984; Becker, Illingworth, 

Alaupovic, Connor, & Sundberg, 1983; Hegsted, McGandy, Myers, & Stare, 1965). 

Sanders et al. (2006) found that a n-6:n-3 ratio of 3:1 reduced both fasting and 

postprandial plasma triglyceride among 258 subjects (ages 45-70 y, BMI 20-35 kg/m2). 

Long term dietary treatments (6% energy from polyunsaturated fat, 11-13% from 

saturated fat, 11-15% from monounsaturated fat) with different n-6 to n-3 ratio (5:1, 3:1, 

and 10:1) was applied in this study and neither treatment significantly alter hemostatic 
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risk factors, such as fibrinogen, factor VIIc coagulant activity, activated factor VII, 

factor XII and postprandial activated factor XII.  

Influence of Two High-fat Meal Consumption on Endothelial Function 

     Oxidized LDL and malondialdehyde (as measured by the TBARS assay with an 

additional alkaline hydrolysis step) were used to indicate oxidative stress by Tushuizen 

et al. (2006); however, the specificity and sensitivity of the testing methods and the 

biomarkers themselves were highly controversial. Tushuizen et al. (2006) showed that 

two consecutive high-fat meals, rich in saturated fat, significantly impaired 

flow-mediated dilation at hour 6 in 17 healthy subjects (male, ages 25.4±3 y, BMI 

23.6±2 kg/m2). The plasma malondialdehyde (p=0.01) and the oxLDL/LDL cholesterol 

ratio (p=0.001) were increased at hour 6. Each high-fat meal provided 900 kilocalories 

(50% from fat) and contained 55 g carbohydrate, 30 g protein, and 50 g fat (30 g 

saturated fat). The first high-fat meal (at 8:30 am) consisted of one EggMcMuffin® 

(McDonald’s), one croissant with butter and marmalade, 200 mL milk with 20 mL 

cream. The second high-fat meal (at 12:30 pm) consisted of one Quarterpounder® 

(McDonald’s), one croissant with butter, and 200 mL milk.  

     N-3 polyunsaturated fat was shown to have a better protective effect on arterial 

stiffness in comparison to n-9 monounsaturated fat. Hall et al. (2008) found that an 

oleic acid (46% 18:1n-9) enriched meal impaired arterial compliance by increasing 

digital volume pulse-stiffness index, while an eicosapentaenoic acid (EPA)-enriched 

meal (39% 18:1n-9, 6% EPA and DHA) did not. In fact, the EPA (20:5n-3) enriched 

meal decreased stiffness index 3 hours post ingestion. The plasma NOx (nitrate and 
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nitrite) decreased significantly at 6 hours, indicating decreased NO production; the 

plasma 15-F2t-isoprostane increased by 48% at 6 hours; however these changes may 

result from the ingestion of the second meal rich in saturated fat. In this single-blind 

crossover design, 17 healthy subject (male, ages 18-35 y, BMI 20-32 kg/m2) randomly 

received an EPA-enriched meal or a high-oleic acid meal followed by a second high-fat 

meal, in random sequence, on two separate study periods with 1-week washout period. 

The EPA-enriched meal provided 844.8 kilocalorie (54.7% from fat) and contained 

51.3 g fat (4.7 g EPA, 0.7 g DHA, 36.6 g 18:1n-9, 1.1 g 16:0, 4.3 g 18:2n-6), 86.7 g 

carbohydrate, and 15.2 g protein; it consisted of two muffins and one milkshake. The 

isocaloric 18:1n-9 enriched meal differed only in the fatty acid composition: 43.6 g 

18:1n-9, 1.3 g 16:0, and 5.1 g 18:2n-6. The second high-fat meal provided 658.6 

kilocalorie and contained 43.7 g fat (25.6 g saturated fat), 46 g carbohydrate and 21 g 

protein.  

Influence of Feeding Meal by Body Surface Area on Endothelial Function 

     Body surface area is the calculated surface of a human body. One recommended 

formula is the Mosteller formula (Mosteller, 1987)

 

For example, for a person with 60 kg body weight and 168 cm height, his/her body 

surface area is 1.67 m2. 

     Some investigators have fed the high-fat meal based on individual body surface 

area. Giannattasio et al. (2005) fed subjects 680 kilocalories/m2. Results showed that 

the radial artery diameter and blood flow were markedly impaired (p<0.05) at 6 hours 
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in 16 subjects (ages 46.6±2.5 y) with untreated mild hypertriglyceridemia and 

dyslipidemia, but were not significantly altered in 7 normotriglyceridemic subjects 

(ages 35.1±2.4 y). Subjects were provided with the same oral high-fat load (83% fat, 5% 

proteins, 12% carbohydrates); food sources were not mentioned. Shimabukuro (2007) 

found that an acute high-fat meal (30 g fat/m2) decreased the forearm blood flow 

(p<0.0001) 2 and 4 hours post ingestion in 12 healthy subjects (6 males and 6 females, 

ages 30-43 y, BMI 23.3±0.9 kg/m2), while neither an acute high-carbohydrate nor a 

standard meal had significant impact. In this crossover design, subjects received a 

high-fat meal, a high-carbohydrate meal or a standard meal in random order on 

different days separated with 1-week washout period. The high-fat meal contained 342 

kilocalories/100 g meal (35% was from fat) and provided 1239-1332 kilocalories. The 

high-carbohydrate meal provided 300 kilocalories (100% from carbohydrate). The 

standardized meal provided 478 kilocalories (32.7% fat, 50.4% carbohydrate, 16.7% 

protein). A study by Muntwyler et al. (2001) did not find the high-fat meal (700 

kilocalorie/m2, 83% from fat, 14% from carbohydrate, 3% from protein) have any 

significant impact on forearm blood flow at hour 4 although plasma triglyceride level 

was significantly elevated in 12 healthy subjects (male, ages 29.5±1.5 y, BMI 23.2±1.2 

kg/m2). Here, the high-fat meal consisted of 180 mL dairy cream, 2 g lean milk powder, 

20 mg sucrose (possibly a typographic error) and 10 g chocolate powder. The limitation 

is that this study did not specify the fatty acid composition, thus it is hard to compare 

with other postprandial studies; in addition, the test meal contained chocolate powder 

which might serve as an antioxidant source.  
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     Meal feeding based on body weight has also been studied. Westphal et al. (2006) 

showed how protein-supplemented high-fat meal affected flow-mediated dilation in 16 

healthy students (8 males and 8 females, ages 19-23 y, BMI 18.5-25 kg/m2). Results 

showed that the average flow-mediated dilation was reduced by 58% after a high-fat 

meal, however, not significantly altered when additional caseinate protein or soy 

protein was supplemented. This was a crossover design; each subject received three test 

meals in random sequence with 1-week washout period. One meal consisted of 

whipping cream and was given based on body weight (3 mL/kg body weight). For 

example for a subject with 60 kg body weight, the high-fat meal provided 577.8 

kilocalories (92.5% from fat) and contained 59.4 g fat (32.8 g saturated fat and 16.3 g 

monounsaturated fat). The protein-rich meals provided an additional 50 g sodium 

caseinate or 50 g soy protein.  

Summary 

     The literature reviewed provides a general background of high-fat meal induced 

postprandial oxidative stress and endothelial function change. Prior research primarily 

focused on the impact of single high-fat meal, yet overlooked the repeated eating and 

snacking pattern that prolonged the postprandial oxidative stress. In addition, literature 

regarding different feeding regimens (standard meal, variable sized meal based on body 

surface area and based on body weight) does not provide substantial evidence to 

indicate which approach is better at lowering the unexplained variance. Therefore, 

study is needed to compare the effects of different feeding regimens on oxidative stress 

and endothelial function. To support the optimization of the feeding model, saturated 
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fat-rich diet is used as the source of oxidative stress to elicit potent postprandial effects 

since saturated fat has been extensively studied for its deleterious effect on LDL, 

triglyceride, oxidative stress and endothelial function. Another additional emphasis 

needed is the application of EndoPAT system, which is an emerging substitution for 

flow-mediated dilation for endothelial function assessment in the research area. 

 

Chapter 3 

PROCEDURES 

     The focus of the research was to compare the effect of two feeding regimens on 

endothelial function assessed by reactive hyperemia index. The conduct of the study 

included the following organizational steps: (a) design of the study; (b) selection of 

subjects; (c) arrangements for conducting the study; (d) test procedures; (e) treatment 

of data.  

Design of the Study 

     A two factor (2 × 4) Within Subject Design was selected, as shown in Table 3-1. 

The independent variables were feeding regimen (A), with two levels: feeding regimen 

1 (two standard meals: two muffins and one milk drink per person as “breakfast” at 0h 

and as “lunch” at 4h) and feeding regimen 2 (two variable sized meals based on 

individual body surface area: muffins and milk drinks for 460 kilocalorie/m2 each as 

“breakfast” at 0h and as “lunch” at 4h), and time (B) with four levels: 0, 2, 4, 6 hour. 

The dependent variables measured were reactive hyperemia index and plasma 

malondialdehyde (TBARS). Each subject completed two test days separated by a 
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1-week washout period; each test day started at 8:00 am and lasted 6-7 hours.  

 

Table 3-1. ANOVA table of Within Subject Design1 (Keppel, 2004d) 

  
 1 A, feeding regimen; B, time; S, subject; Y, values of reactive hyperemia index;  
  T, the grand sum , sum of all reactive hyperemia index scores. 
  

    Prior to the test day, subjects’ height and weight were recorded. Individual body 

surface area was calculated by the following formula (Mosteller, 1987): 

.  

Twenty-four hours prior to each test day, subjects were asked to exclude caffeine, 

alcohol, tobacco, multiple vitamin supplements and any other supplements; subjects 

were also asked to refrain from working out or other physical activity. Subjects were 

also required to undergo a fasting period of at least 12 hours. On the test day, subjects 

were asked if they had followed each of the directions (Table 3-2). 
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Table 3-2. Test day questionnaire 

Did you consume any of the following substances in the past 24 hours? 
o Caffeine containing drinks 
o Alcohol 
o Tobacco 
o Multiple vitamin supplements 
o Other supplements 

2. Did you exercise during the past 24 hours? 
3. Did you eat anything during the past 12 hours? 

 

     Subjects were assigned to the two feeding regimens in random order. Each feeding 

regimen contained two meals that were consumed at time point 0 and 4 hours of the test 

day (Figure 3-1). Each meal in feeding regimen 1 provided 850 kilocalories; whereas, 

each meal in feeding regimen 2 provided 460 kilocalorie/m2 body surface area. 

Subjects were given 15 minutes to finish each meal. Reactive hyperemia index was 

measured after the meal, and followed by blood draw at 0, 2, 4, 6 hours (Figure 3-1); 10 

mL of blood was drawn each time (a total amount of 40 mL blood was drawn on each 

test day). Blood was frozen at -80°C and later analyzed for plasma malondialdehyde 

concentration. Blood glucose and triglyceride concentration were measured by finger 

stick at 0, 1, 2, 3, 4, 5, 6 hours to monitor the postprandial state. 

 
Figure 3-1. Timeline of the test procedure each day 
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Selection of Subjects 

Subjects were selected using the following criteria: 

• Male 

• age 21-26 years 

• healthy BMI (18.5-24.9 kg/m2)  

• body surface area ranging 1.5-2.2 m2 (Table 3-3).    

 
Table 3-3. Reference for body surface area 

Height 
(inches) 

Weight 
(lb) 

BMI  
(kg/m2) 

Body surface area  
(m2) 

65 149.5 24.9 1.76 
65 111.0 18.5 1.52 
70 173.5 24.9 1.97 
70 129.0 18.5 1.70 
75 199.0 24.9 2.19 
75 148.0 18.5 1.89 

 

Subjects were excluded using the following criteria:  

• history of coronary artery disease, cerebrovascular disease, heart failure, 

diabetes mellitus, hepatic and renal disease, uncontrolled hypertension, 

dyslipidemia, and evident thyroid disease (Barringer, et al., 2008) 

• tobacco use (Shimabukuro, et al., 2007) 

• use of regular medication, including aspirin, antiplatelet drugs, 

anti-inflammatory drugs, lipid-lowering drugs and blood pressure medication; 

similar criteria was used before by Hall et al. (2008) and Nappo et al. (2002). 

Health history was obtained through a questionnaire (Table 3-4).  
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Table 3-4. Screening questionnaire 

1. What is the month and year of your birth? 

2. How often do you smoke? 

3. How often do you exercise? 

4. Do you have a history of         ? 
o Heart disease 
o Stroke 
o Diabetes mellitus 
o Uncontrolled hypertension  
o Thyroid disease  
o Dyslipidemia  

o elevation of plasma total cholesterol, LDL, or triglycerides 
o low level of HDL 

o Liver diseases  
o Kidney diseases 

5. Are you currently taking any of the following medications regularly?  
o Aspirin 
o Anti-platelet drugs 
o Anti-inflammatory drugs 
o Lipid-lowering drugs  
o Blood pressure medication 

6. Do you take supplements, such as vitamin and minerals etc.? If yes, how often? 

7. Do you have an allergy or intolerance to milk or wheat? 
 

 

     These criteria were selected to improve the external validity and allow the results 

to be generalized to a population of healthy male ages 21-26 years. A male population 

was selected because endothelial responses have been shown to vary between genders, 

therefore should be separately investigated during development of a model. The 

restrictions on age, BMI, cardiovascular disease history and smoking habit were 

imposed to reduce factors known to alter vascular function, and thus add power to the 

analysis of the experimental data by reducing the unexplained variance. 
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Arrangements for Conducting the Study 

     The study was approved by the Indiana University Institutional Review Board 

(#090800057). IRB approval and study forms are found in Appendix A. The study was 

conducted in a temperature-controlled laboratory. Subjects were informed of the test 

procedures as well as potential risks and signed a consent form. Subjects were 

compensated with $25.00 cash, results of their fasting blood glucose and triglyceride 

concentration, and a handout on dietary guidance.   

Test Procedures 

Feeding regimens 

     The meal consisted of muffins and a milk drink. Nutrition Data System for 

Research software (Minneapolis, MN) was used to analyze the composition of the meal. 

Each muffin was formulated to provide 321 kilocalories and contained 21.1 g fat. Each 

milk drink provided 208 kilocalories and contained 8.5 g fat. The nutrient composition 

is shown in Table 3-5 and 3-6.  
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Table 3-5. Muffin nutrients composition1 

Nutrient Quantity 
Calories 

(%) 

Energy, kcal 321.0 
 Total fat, g  21.1 58.1 

 
Saturated fatty acids, g   5.3 14.5 

 
Monounsaturated fatty acids, g   9.4 25.7 

 
Polyunsaturated fatty acids, g   5.5 15.2 

 
Trans fatty acids, g   3.6 

 
 

Omega-3 fatty acids, g   0.3 
 

 
Cholesterol, mg   0.0 

 Total carbohydrate, g  30.1 37.3 

Total protein, g   3.3  4.3 

Vitamins 
   

 
Vitamin A (Retinol), µg 12.0 

 
 

Vitamin D (calciferol), µg  0.2 
 

 
Vitamin E (α-tocopherol), mg  0.8 

 
 

Vitamin C (ascorbic acid), mg  0.0 
 

 
Vitamin K, µg  9.1 

 
 

Thiamin (vitamin B1), mg  0.1 
 

 
Riboflavin (vitamin B2), mg  0.1 

 
 

Niacin (vitamin B3), mg  1.7 
 

 
Vitamin B6, mg  0.0 

 
 

Vitamin B12, µg  0.1 
   Folate, µg 21.0   

1 per one muffin. 
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Table 3-6. Milk drink nutrients composition1 

Nutrient Quantity 
Calories 

(%) 

Energy, kcal 208.0 
 Total fat, g   8.5 36.2 

 
Saturated fatty acids, g   2.5 10.5 

 
Monounsaturated fatty acids, g   3.6 15.3 

 
Polyunsaturated fatty acids, g   2.1  8.9 

 
Trans fatty acids, g   1.4 

 
 

Omega-3 fatty acids, g   0.1 
 

 
Cholesterol, mg   5.0 

 Total carbohydrate, g 24.8 47.0 

Total protein, g  8.4 17.1 

Vitamins 
   

 
Vitamin A (Retinol), µg 139.0 

 
 

Vitamin D (calciferol), µg   2.3 
 

 
Vitamin E (α-tocopherol), mg   0.3 

 
 

Vitamin C (ascorbic acid), mg   4.1 
 

 
Vitamin K, µg   3.6 

 
 

Thiamin (vitamin B1), mg   0.1 
 

 
Riboflavin (vitamin B2), mg   0.4 

 
 

Niacin (vitamin B3), mg   1.9 
 

 
Vitamin B6, mg   0.2 

 
 

Vitamin B12, µg   1.2 
   Folate, µg   12.0   

1 per 249 g milk drink. 
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     Each meal in feeding regimen 1 consisted of two muffins and one milk drink per 

subject and contained 850 total kilocalories, 55 g fat (4 g loss in the muffin tins), 15 g 

protein, and 85 g carbohydrate. Each meal in feeding regimen 2 consisted of muffins 

and milk drink in a quantity that supplied 460 kilocalories/m2 individual body surface 

area. For a subject with a body surface area of 1.85 m2 (the average between 1.5-2.2 m2 

range), he consumed the same calories (850 kilocalories) in each meal in both feeding 

regimens. For a subject with a body surface area of 2.2 m2, the meal quantity of feeding 

regimen 2 was determined by the following calculations: 

• 460 kilocalories × 2.2 m2 = 1012 kilocalories  

The subject consumed 1012 kilocalories in each meal in feeding regimen 2 

•  321a + 208b = 1012  

     a = 2b 

a, the quantity of muffin; b, the quantity of the milk drink  

The above equation was solved and the muffin : milk drink ratio was 2.4 : 1.2, 

therefore 2.4 muffins and 1.2 milk drink were served. 

A sample calculation of different body surface area meal is shown in Table 3-7. 

Table 3-7. Sample reference for feeding meal based on body surface area 

Body surface area 
(m2) 

Calories based on BSA 
(kilocalories) 

Ratio of muffin to  
milk drink 

1.52  699 1.64 : 0.82 
1.70  782 1.84 : 0.92 
1.76  811 1.90 : 0.95 
1.89  867 2.04 : 1.02 
1.97  907 2.14 : 1.07  
2.19 1006 2.36 : 1.18 
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     The muffin recipe was modified from previous studies in the literature (Berry, et 

al., 2008; Hall, et al., 2008). The dry ingredients (Table 3-8) were weighed using an 

electronic balance (Model #XS2002S Mettler-Toledo Inc., Columbus, OH). All dry 

ingredients were stirred into a large bowl using a large spoon and a spatula and were 

sifted twice using a sifter. Vanilla extract was measured with a 25 mL graduated 

cylinder. Water was measured with a 100 mL graduated cylinder. Skim milk was 

measured by a 250 mL graduated cylinder. The vegetable shortening was weighed in a 

pan, melted, and added to other ingredients. Dry and wet ingredients were stirred in a 

mixing bowl for 2 minutes. Batter was weighed into 40 individual foil muffin cups (78 

g/cup) in muffin tins (75 mL). Muffin tins were baked in two preheated fan-assisted 

ovens at 400°F for 18 minutes. The recipe yielded 40 muffins. Muffins were cooled, 

covered with plastic wrap, put into large freezer storage plastic bags and frozen until 

needed for the study.  

 

 

 

 

 

 

 

 

 



55 

 

Table 3-8. Ingredients for muffins1 

Ingredients Quantity 
Percent Weight 

(%) 
Cornstarch2, g 187 6.0 

Pastry flour3, g 550 17.6 

Granulated sugar4, g 550 17.6 

Baking powder5, g 38.5 1.2 

Dried pasteurized egg white6, g 77 2.5 
   
Skim milk7, mL 737 24.2 

Vegetable shortening8, g 920 29.5 

Pure vanilla extract9, mL 19 0.6 

Water, mL 58 1.8 
   
Total, g 3120 100 

1 Each muffin is made with 78 g batter.  
2 Cornstarch, Kroger Co., Cincinnati, OH.  
3 Pastry Flour #76353, Bloomingfoods, Bloomington, IN. 
4 Value Granulated sugar, Kroger Co., Cincinnati, OH.      
5 Baking Powder, Kroger Co., Cincinnati, OH.  
6 Just Whites, Deb-El Foods Co., Papetti Plaza, Elizabeth, NJ.  
7 Skim Milk, Kroger Co., Cincinnati, OH.  
8 Vegetable Shortening, Kroger Co., Cincinnati, OH; The ingredients of the vegetable shortening include: 
partially hydrogenated soybean and cottonseed oil with mono- and diglycerides.    
9 Rodelle Gourmet Vanilla Extract, Custom Blending Inc., Fort Collins, CO. 
 

     The milk drink was prepared using skim milk, chocolate instant drink powder and 

vegetable shortening (Table 3-9). Chocolate instant drink powder was weighed in a 

large bowl. Skim milk was measured with a 250 mL graduated cylinder, and was added 

to the powder and mixed with an electric hand mixer (Kitchenaid®, St. Joseph, MI). 

Melted vegetable shortening was weighed and stirred into the drink. 
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Table 3-9. Ingredients for one milk drink 

Ingredients Quantity 
Percent Weight 

(%) 

Skim milk1, mL 220 90.8 

Nesquik®2, g 15 6.0 

Vegetable shortening3, g 8 3.2 

 
  

Total, g 249 100 
1 Skim Milk, Kroger Co., Cincinnati, OH.  
2 Nestle USA, Inc., Glendale, CA.  
3 Vegetable shortening, Kroger Co., Cincinnati, OH. The ingredients of the vegetable shortening include: 
partially hydrogenated soybean and cottonseed oil with mono- and diglycerides. 
 

     The endothelial function was measured using the EndoPAT 2000 (Itamar Medical, 

Caesarea, Israel). The instrument was turned on 20 minutes prior to use and left on for 

the day. The temperature of the room was maintained between 21-24°C. Lights were 

dimmed and the room was quiet. The subject rested on an exam table in the supine 

position for 20 minutes prior to measurements. 

     Subject’s baseline blood pressure (systolic/diastolic) was measured from the 

dominant arm (non-tested arm) using an automated oscillometric blood pressure 

monitor (Omron M7, HEM 780, Omron Healthcare Corporation, Kyoto, Japan). The 

blood cuff was moved to the tested arm (non-dominant arm) and placed above the 

elbow. Test procedures were explained to the subject and subject’s gender, age, and 

blood pressure were entered into the software, following the instructional prompts 

provided by the EndoPAT 2000 system. A deflated probe was inserted into a groove of 

each arm-support. The subject’s index fingers were inserted into the probes. Probes 

were inflated using the EndoPAT2000 software, then index fingers were removed from 



57 

 

the grooves. A foam anchor was placed on the root of each middle finger. To secure the 

tubing, the free end of the tubing was taped and formed a “U turn”, which would not 

touch the back of the hand (Figure 3-2).  

 

Figure 3-2. EndoPAT 2000 overview (Hamburg & Benjamin, 2009) 

 

Signal quality was monitored for 1 minute to inspect for leaks and abnormal 

connections. The baseline signals of blood volume change were recorded for 5-10 

minutes. Before occlusion, the timer was adjusted to 5 minutes, the gain of the occluded 

arm was adjusted to 20,000 g, and the time base was adjusted to 00:00:15 sec. The 

blood pressure cuff was inflated to 70 mmHg above baseline systolic blood pressure 

and held for exactly 5 minutes, then released rapidly. The time base was changed back 

to 1 minute. The post occlusion signal was continuously recorded for 10 minutes. After 

completing the signal recording, the probes were detached and discarded.  

     The baseline signals and the post occlusion signals were automatically analyzed 
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by the EndoPAT 2000 software and expressed as reactive hyperemia index (Hamburg & 

Benjamin, 2009; Hamburg, et al., 2008):  

RHI=  

 

     Blood samples for glucose and triglyceride analysis were collected at 0-premeal, 1, 

2, 3, 4-premeal, 5, 6 hours during testing by 1.8 mm, 21 gauge clinical safety lancets 

(Stat-Let®, North Miami, FL) and capillary tube from finger tips. Blood was analyzed 

in a CardioChek® PA analyzer (Polymer Technology Systems Inc., Indianapolis, IN) 

that had been fitted with a memory chip, turned on, and activated by insertion of a color 

coded test panel (Metabolic Syndrome Panel, Polymer Technology Systems Inc., 

Indianapolis, IN). Capillary tube blood was immediately applied to the test panel and 

results were read and recorded. Although not relevant to this study, HDL concentration 

was also obtained as a component of the metabolic test panel. 

     Blood samples for thiobarbituric acid reactive substances assay was drawn from 

subjects at each of the 4 time points (0-premeal, 2, 4-premeal, 6 hour). At each 

collection time, a 21 gauge needle was used to draw 10 mL of blood from the median 

cubital vein or median cephalic vein into a 15-mL EDTA-treated Vacutainer tube. 

Plasma was separated in a centrifuge using a swinging bucket rotor (JS4.3, J2-HC 

Beckman, Fullerton, CA) set at 910 x g (2000 rpm) for 10 minutes at 4°C. After 

centrifugation, the top layer of plasma was transferred into four 1.5-mL microfuge 

tubes (about 300 µL /tube) using a transfer pipet (#73990-016, VWR Scientific, Batavia, 

IL). All plasma samples were then supplemented with 0.005% BHT (3 µL/300 µL 
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plasma) and 2 mM indomethacin (1.5 µL/300 µL plasma). Microfuge tubes were 

placed into microfuge tube boxes and frozen at -78°C until analysis. 

     Thiobarbituric Acid reactive substances (TBARS) was assayed as a measure of 

malondialdehyde (MDA), utilizing the reaction between MDA and TBA to form an 

MDA-TBA adduct under high temperature and acidic conditions measured 

colorimetrically at 530-540 nm. Four separate assays were conducted to measure 

TBARS in plasma from 10 subjects. All samples from 3 subjects were measured with 

each assay; thus plasma from a subject’s 4 time points were measured in the same assay.  

     Reagents were constituted according to Buege and Aust (1978) and Park et al. 

(2005) as shown in appendix B. Standards were prepared using 99% 

1,1,3,3-Tetramethoxypropane and ultrapure water (RO/Elix-treated, Millipore, 

Billerica, MA) to create MDA concentrations of 0, 0.625, 1.25, 2.5, 5.0, 10.0, 25.0, 50.0 

µM. Standards or treatment plasma (250 µL) were transferred by pipette (P1000 

pipetman, Gilson Inc., Middleton, WI) using 1000 µL capacity sterile tips, into 1.5 mL 

polypropylene screw cap centrifuge tubes. BHT solution (0.202 M, 10µL) and SDS 

solution (10% w/v, 50 µL) were added to each tube and tubes were swirled briefly to 

mix contents. Color reagent (500 µL) was added forcefully to each tube. Caps were 

placed on tubes and tubes were placed in foam stabilizers and boiled for 30 minutes. 

After boiling, vials were removed and incubated in an ice bath for 10 minutes to stop 

the reaction. Tubes were subjected to centrifugation in a fixed angle rotor 

microcentrifuge at 6000~7000 x g for 10 minutes at 4°C. Cold samples from each tube 

(200 µL) were transferred to wells in a microtiter plate and absorbance was measured at 
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532 nm and 600 nm using a plate reader (Biotek Powerwave, Winooski, VT) within 30 

minutes of removal from centrifuge. Each treatment sample and standard was read in 

triplicate.  

      Average absorption of each standard and sample at both wavelengths were 

calculated separately from the readings. To adjust for the light scattered, OD600 was 

subtracted from OD532. Mean Δ(OD532- OD600) was plotted for each standard 

concentration to form the standard curve. The concentration of MDA in the test samples 

were determined from the MDA standard curve: MDA (µM of sample) = [(OD532- 

OD600) of treatment sample – (y intercept)]/slope. 

 

Treatment of Data 

     SPSS version 18.0 (Chicago, IL) was used for data analysis.  

Subject characteristics 

     Descriptive statistic was used to generate the mean, standard deviation and range 

for subjects’ age, body mass index, body surface area, blood pressure, fasting heart rate, 

fasting blood glucose, triglyceride and HDL. Within Subject (2×7) ANOVA was used 

to analyze blood glucose, triglyceride, and HDL data. Within Subject (2×4) ANOVA 

was used to analyze the heart rate data. When the interaction term was significant, 

simple main effects were analyzed. 

 

Testing of statistical assumptions 

     Normality was examined by Shapiro-Wilk and Kolmogorov-Smirnov tests. The 
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distribution was evaluated by residuals histogram, skewness and kurtosis and a box plot 

was used to identify outliers (Keppel, 2004c; Tabachnick & Fidell, 2007a). When the 

deviation from the normality assumption was significant or skewness and kurtosis were 

beyond the range of -1 to 1, data were transformed (Tabachnick & Fidell, 2007a).  

     Assumption of sphericity was examined by Mauchly’s test to determine if the 

correlations between group means were consistent (not significantly different) for each 

independent variable (Keppel, 2004b).  

 

Tests of hypotheses 

     1. HA: The feeding regimens affect the reactive hyperemia index differently over 

time.  

     For hypothesis 1, a two factor (2 × 4) Within Subject Analysis of Variance 

(ANOVA) was used to determine if there was a significant feeding regimen × time 

interaction and feeding regimen main effect for reactive hyperemia index (Keppel, 

2004d). Planned comparisons were used to determine the difference between two 

feeding regimens. When the interaction was significant, hypotheses 1a, 1b, 1c, 1d and 

1e for simple main effect were tested.  

     1a. HA: The reactive hyperemia index is significantly different over time after 

feeding standard high-fat meals (feeding regimen 1). 

    1b. HA: The reactive hyperemia index is significantly different over time after 

feeding high-fat meals based on body surface area (feeding regimen 2). 

     Reactive hyperemia index from each feeding regimen was analyzed separately, for 
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the simple main effect, using one-way ANOVA to determine if there was a significant 

difference between 4 time points (Keppel, 2004d).  

     1c. HA: The reactive hyperemia index is significantly different between feeding 

regimen 1 and feeding regimen 2 at hour 2 post ingestion. 

     1d. HA: The reactive hyperemia index is significantly different between feeding 

regimen 1 and feeding regimen 2 at hour 4 post ingestion. 

     1e. HA: The reactive hyperemia index is significantly different between feeding 

regimen 1 and feeding regimen 2 at hour 6 post ingestion. 

     Reactive hyperemia index at each time point except for 0 hour was analyzed 

separately, for simple main effect, using one-way ANOVA to determine if there was a 

significant difference between two feeding regimens (Keppel, 2004d).  

     2. HA: The reactive hyperemia index changes over time. 

     For hypothesis 2, the main effect of time in the 2 × 4 ANOVA was used to examine 

how reactive hyperemia index differed between four time points. Planned comparisons 

were used to determine the difference between fasting state and postprandial state. 

 

Tests of secondary hypotheses 

     1. HA: The feeding regimens affect the plasma malondialdehyde level differently 

over time. 

     For hypotheses 1 and 6, a two factor (2 × 4) Within Subject Analysis of Variance 

(ANOVA) was used to determine if there was a significant feeding regimen × time 

interaction and feeding regimen main effect for plasma malondialdehyde (Keppel, 
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2004d). If interaction was significant, then hypotheses 1a, 1b, 1c, 1d and 1e were 

analyzed. 

     1a. HA: The plasma malondialdehyde level is significantly different over time 

when feeding standard meals (feeding regimen 1). 

     1b. HA: The plasma malondialdehyde level is significantly different over time 

when feeding meals by body surface area (feeding regimen 2). 

     Plasma malondialdehyde from each feeding regimen was analyzed separately, for 

simple main effect, using one-way ANOVA to determine if there were any significant 

differences between the 4 time points (Keppel, 2004d).  

     1c. HA: The plasma malondialdehyde level is significantly different between 

feeding regimen 1 and feeding regimen 2 at hour 2 post ingestion. 

     1d. HA: The plasma malondialdehyde level is significantly different between 

feeding regimen 1 and feeding regimen 2 at hour 4 post ingestion. 

     1e. HA: The plasma malondialdehyde level is significantly different between 

feeding regimen 1 and feeding regimen 2 at hour 6 post ingestion. 

     Plasma malondialdehyde at each time point except for 0 hour was analyzed 

separately, for simple main effect, using one-way ANOVA to determine if there was a 

significant difference between two feeding regimens (Keppel, 2004d).  

     2. HA: The plasma malondialdehyde changes over time. 

     For hypothesis 2, main effect of time in the 2 × 4 ANOVA was used to examine 

how plasma malondialdehyde differed between four time points. Planned comparisons 

were used to examine the difference between fasting and postprandial state. Post-hoc 
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was also used for exploratory purposes. 

 

Power analysis and effect size 

     Variation (sum of squares) of the tested effect and error were obtained for 

dependent variables from the ANOVA and used to calculate power. SPSS was used to 

estimate the observed power and effect size (partial eta squared, ηp
2). Effect size 

estimates the proportion of variance in a dependent variable that is associated with an 

independent variable and it assesses how levels of the independent variable predict the 

total variance of the dependent variable (Tabachnick & Fidell, 2007b). Partial eta 

squared (ηp
2) shows the proportion of variance in the dependent variable, SSeffect + 

SSerror, attribute to the effect, SSeffect (Tabachnick & Fidell, 2007b). The effect size is 

small when ηp
2 is 0.01, medium when ηp

2 is 0.09, and large when ηp
2 is 0.25 

(Tabachnick & Fidell, 2007b). Effect size (ω2) in the population was also estimated for 

each effect by the following formula: ω2 =  , where “a” was the level of 

a independent variable, “F” was the F ratio of a tested effect and n was the subject 

number in each level of the independent variable (Keppel, 2004a). The effect size is 

small when ω2 is 0.01, medium when ω2 is 0.06, and large when ω2 is 0.15 (Keppel, 

2004a). G*Power 3.0 software (Parkville, Australia) was used to generate graphs of 

power by subject number which provided estimates of sample size necessary for 

adequate study power (1-β=0.6) for dependent variables to strengthen the ability of the 

model to detect significant differences in future studies (Erdfelder, Faul, & Buchner, 

1996).  
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Chapter 4 

ANALYSIS OF DATA AND DISCUSSION OF RESULTS 

     The focus of the study was to optimize a feeding model to study the acute effects 

of two consecutive high-fat meals on endothelial-dependent vasodilation (reactive 

hyperemia index) and a biomarker of oxidative stress (plasma malondialdehyde). 

Blood triglyceride and glucose were monitored to describe the model of the extended 

postprandial state. The analysis of the data is presented in this chapter according to the 

following topics: (a) demographic data; (b) Within Subject Analysis of Variance; (c) 

power and subject estimates; (d) effect size estimates. 

 

Demographic Data 

     The baseline characteristics of subjects in this study are shown in Table 4-1. All 

ten subjects were healthy males. The mean age of subjects was 24 years (range of 20-30 

years), body mass index 22.4 kg/m2 (range of 20.4-25 kg/m2), and body surface area 

1.91 m2 (range of 1.617-2.109 m2). Fasting blood pressures were within normal ranges 

for adults that diastolic blood pressure was less than 80 mm Hg and systolic blood 

pressure was less than 120 mm Hg (Chobanian, et al., 2003). Mean fasting blood 

glucose was within the normal range: less than 100 mg/dL (American Diabetes 

Association, 2010). Fasting triglycerides was less than 150 mg/dL which was in the 

normal range (American Heart Association, 2010). Mean fasting HDL was below the 

desirable level (60 mg/dL, heart disease protection level), however was above 40 
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mg/dL below which was associated with increased risks of heart disease in men 

(American Heart Association, 2010). 

 
Table 4-1. Anthropometric and clinical characteristics of subjects prior to study   
Characteristics Mean1 
Age, y   24.4 ± 3.4  (20-30) 
Body mass index, kg/m2   22.4 ± 1.5  (20.4-25) 
Body surface area, m2    1.9 ± 0.1  (1.617-2.109) 
Systolic blood pressure, mm Hg 119.5 ± 7.7  (109-130) 
Diastolic blood pressure, mm Hg   71.7 ± 5.5  (63-81) 
Fasting heart rate, bpm   58.1 ± 8.9  (44-74) 
Fasting glucose, mg/dL   93.9 ± 7.9  (75-105) 
Fasting HDL, mg/dL   43.4 ± 12.3 (30-79) 
Fasting triglycerides, mg/dL   69.9 ± 24.8 (49-143) 
1 Values are means ± SD, n=10 (male). 

     

     The average of blood glucose concentrations at each time point (0-6h) from 

feeding regimen 1 (standard meal) and feeding regimen 2 (body surface area-based 

meal) are shown in Table 4-2 and Figure 4-1. In both feeding regimens, blood glucose 

concentration changed in a similar pattern. Blood glucose level started low (93.9 mg/dL) 

in the fasting state and was elevated one hour (112.9 mg/dL) into the postprandial state, 

reached the peak (113.1 mg/dL) 2 hours after the second high-fat meal (p<0.05) at time 

point 6h.  
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Table 4-2. Mean blood glucose concentration1 

Time post meal  
(hours) 

Blood glucose 
Regimen 1 (standard) 

mg/dL 

Blood glucose 
Regimen 2 (body surface area) 

mg/dL 

Mean2 
mg/dL 

0 93.5 ± 3.2 94.3 ± 1.7 93.9a  ± 2.2     

1 113.5 ± 6.8 112.3 ± 6.4 112.9c ± 5.2 

2 99.6 ± 4.5 97.0 ± 2.9 98.3ab ± 3.1 

3 95.4 ± 2.3 100.7 ± 2.8 98.1b  ± 1.8 

4 95.4 ± 2.8 98.3 ± 3.2 96.9a  ± 1.8 

5 113.2 ± 4.8 104.8 ± 2.6 109.0c  ± 3.2 
6 117.3 ± 3.9 108.9 ± 3.5 113.1c  ± 3.2 

1 Values are mean ± SEM, n=10 (male).  
2 Data are analyzed by 2 × 7 Within Subject ANOVA. Means that do not share the same superscript are 
significantly different (Fisher’s Least Significant Difference Test, p<0.05). 
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Figure 4-1. Mean glucose concentration (± SEM) over time. Data are analyzed by 2 × 7 
Within Subject ANOVA. Means that do not share the same letter are significantly 
different (Fisher’s Least Significant Difference Test, p<0.05). 
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     The average of blood triglyceride concentration at each time point (0-6h) from 

both feeding regimens is shown in Table 4-3 and Figure 4-2. In both feeding regimens, 

blood triglyceride concentration was low in the fasting state (69.9 mg/dL) and was 

increased 3 hours after the first high-fat meal (121.5 mg/dL, p<0.05). Blood 

triglyceride concentration reached peak level 1 hour after the second high-fat meal 

(173.0 mg/dL, p<0.05) and decreased 2 hours after the second high-fat meal (122.2 

mg/dL, p<0.05). 

 
Table 4-3. Mean blood triglyceride concentration1 

Time post meal  
(hours)  

Blood triglyceride 
Regimen 1(standard) 

mg/dL 

Blood triglyceride 
Regimen 2 (body surface area) 

mg/dL 

Mean2 
mg/dL 

0 59.8 ± 4.5 79.9 ± 9.3 69.9a ± 5.4 
1 75.3 ± 8.4 85.4 ± 7.8 80.4a ± 5.2 
2 72.6 ± 6.6 91.6 ± 7.1 82.1a ± 4.5 

3 113.0 ± 14.9 130.0 ± 13.4 121.5b ± 11.5 

4 109.5 ± 12.0 115.0 ± 16.7 112.3b ± 9.8 

5 155.0 ± 16.9 190.9 ± 24.0 173.0c ± 18.7 
6 105.4 ± 10.0 138.9 ± 21.5 122.2b ± 12.5 

1 Values are mean ± SEM, n=10 (male). 
2 Data are analyzed by 2 × 7 Within Subject ANOVA. Means that do not share the same superscript are 
significantly different (Fisher’s Least Significant Difference Test, p<0.05). 
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Figure 4-2. Mean triglyceride concentration (± SEM) over time. Data are analyzed by 2 
× 7 Within Subject ANOVA. Means that do not share the same letter are significantly 
different (Fisher’s Least Significant Difference Test, p<0.05). 
 
 

     As shown in Table 4-4 and Figure 4-3, mean HDL level were similar over time 

(0-6h) in two feeding regimens (p>0.05). 

Table 4-4. Mean HDL concentration1 

Time post meal 
(hours)  

HDL 
Regimen 1 (standard) 

mg/dL 

HDL 
Regimen 2 (body surface area) 

mg/dL 

Mean2 
mg/dL 

0 44.0 ± 4.5 42.8 ± 3.4 43.4a ± 3.8 
1 45.0 ± 3.6 45.0 ± 4.3 45.0 a ± 3.8 
2 45.4 ± 4.0 43.1 ± 3.5 44.3 a ± 3.7 
3 44.2 ± 3.9 43.0 ± 3.7 43.6 a ± 3.7 
4 46.1 ± 4.5 44.6 ± 4.4 45.4 a ± 4.3 
5 46.4 ± 4.4 46.3 ± 4.9 46.4 a ± 4.6 
6 46.6 ± 4.1 44.6 ± 4.9 45.6 a ± 4.4 

1 Values are mean ± SEM, n=10 (male).  
2 Data are analyzed by 2 × 7 Within Subject ANOVA. Means that do not share the same superscript 
are significantly different (Fisher’s Least Significant Difference Test, p<0.05). 
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Figure 4-3. Mean HDL concentration (± SEM) over time. Data are analyzed by 2 × 7 
Within Subject ANOVA. Means that do not share the same letter are significantly 
different (Fisher’s Least Significant Difference Test, p<0.05). 

 

     Mean heart rate slightly increased 2 hours after the first high-fat meal (p<0.05), 

decreased to baseline 4 hours after the first high-fat meal (p<0.05), and then slightly 

increased to reach a peak at 6h (2 hours after the second high-fat meal, p<0.05), as 

shown in Table 4-5 and Figure 4-4. 
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Table 4-5. Heart rate (bpm) before and after standard high-fat meals or high-fat meals based on 
body surface area in healthy men1 

    
Regimen 1  

(standard meal)  
Regimen 2 

(body surface area meal) 
Mean2  

Time post 1st meal         

 
0 h 58.20 ± 2.81 57.90 ± 2.94 58.05a ± 2.65 

 
2 h 61.70 ± 2.91 61.80 ± 2.79 61.75b ± 2.61 

 
4 h 58.90 ± 1.95 56.80 ± 2.08 57.85a ± 1.95 

 
6 h 62.5 ± 2.09 62.00 ± 2.02 62.25b ± 1.81 

     
P-values3 (1-β) 

   
 

Feeding regimen 0.68 (0.07) 
 

 
Time  0.002 (0.94) 

 
  Feeding regimen × time 0.56 (0.18)   
1 Values are means ± SEM, n=10. 
2 Means do not share the same superscript are significantly different (Fisher’s Least Significant Different 
Test, p<0.05). 
3 P value and power, calculated using Within Subject ANOVA, p<0.05. Adequate power should be at 
least 0.6. 
 

0

15

30

45

60

75
Regimen 1 (standard)
Regimen 2 (body surface area)

0 2 4 6

a
b

a
b

Time (hours)

H
ea

rt
 R

at
e 

(b
pm

)

 
Figure 4-4. Mean heart rate (±SEM) over time. Data are analyzed by Within Subject 
ANOVA. Values are means ± SEM, n=10. Feeding regimen effect, p=0.68; time effect, 
p=0.002; feeding regimen × time, p=0.56. Means that do not share the same letter are 
significant difference between time points across feeding regimens (Fisher’s Least 
Significant Difference Test, p<0.05). 
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Within Subject Analysis of Variance 

Reactive hyperemia index  

     Residuals of reactive hyperemia index data were not normally distributed (p<0.05) 

as shown in Table 4-6, therefore the assumption of Analysis of Variance was violated. A 

histogram of the residuals (Figure 4-5) showed a positive skew; two outliers were 

identified from subject 9 and 10 using a box plot of the residuals (Figure 4-6). The 

skewness (1.03) and kurtosis (1.27) were beyond the range from -1 to +1 (Table 4-6).  

 
Table 4-6. Normality assumption test for reactive hyperemia index 

  Test Values 

Residuals1 0 ± 0.06 

95% Confidence interval (-0.12,0.12) 
Skewness2 1.03 
Kurtosis2 1.27 
Shapiro-Wilk normality test3 p=0.001 
Kolmogorov-Smirnov normality test3 p=0.01 
1 Values are mean ± SEM, n=80. 
2 Skewness and Kurtosis show the asymmetry and peakness of the residuals 
and should be zero for normal distributed data. 
3 Data are not normally distributed when p<0.05 
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Figure 4-5. Distribution of residuals for reactive hyperemia index 

 

 

Figure 4-6. Box plot of reactive hyperemia index residuals 
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     As shown in Table 4-7, Mauchly’s W was not significant either for time (p=0.54) 

or feeding regimen × time interaction (p=0.11), therefore the assumption of sphericity 

was maintained. Mauchly’s test did not generate a result for feeding regimen since there 

were only two levels of feeding regimen.  

 
Table 4-7. Sphericity assumption test for reactive hyperemia index 

Source of variance Mauchly's W1 df Significance Epsilon2 

Feeding regimen 1 0 . 1 
Time 0.59 5 0.54 0.80 
Feeding regimen*Time 0.31 5 0.11 0.56 
1 Mauchly's test is used to test the null hypothesis that the error covariance matrix of 
the orthonormalized dependent variables is proportional to an identity matrix.  
2 Eplison index may be used to adjust the degrees of freedom for the averaged tests of 
significance.  

     Data was transformed by reflection (inverse) to normalize data. Statistical analysis 

of reflected reactive hyperemia index gave the same results as unreflected data, thus 

results are presented for unreflected reactive hyperemia index. 

     The ANOVA table for reactive hyperemia index is shown in Table 4-8 and results 

are summarized in Figure 4-7 and Table 4-9. As shown in Table 4-8, there was not 

enough power to detect a significant time × feeding regimen interaction (p=0.42, ω2=0, 

1-β=0.24), therefore a conclusion cannot be drawn as to whether the two feeding 

regimens impact reactive hyperemia index differently over time. Power was also too 

low to detect a significant difference between feeding regimen 1 and 2 (p=0.46, ω2=0, 

1-β=0.12). However, there were significant differences between time points (p=0.01, 

ω2=0.12, 1-β=0.84). Analysis of the planned comparison showed that reactive 
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hyperemia index at 0h (fasting state) was significantly lower in comparison to 2h, 4h 

and 6h respectively, and was significantly lower than the pooled postprandial reactive 

hyperemia index from 2h-6h (Table 4-9 and 4-10). Reactive hyperemia index at 0h 

from regimen 2 (body surface area meal) was lower than 6h (2 hours after the second 

meal, p<0.05), whereas reactive hyperemia index at 0h from regimen 1 (standard meal) 

was not different (p>0.05), as shown in Table 4-9 and 4-10. 

 
Table 4-8. Within Subject ANOVA for reactive hyperemia indexa 

Source of variation 
Sum of 
squares 

df 
Mean 

squares 
F Significance  ω2 b  ηp

2 c  1-β d 

Feeding regimen 0.2 1 0.2 0.6 0.46 0.00 0.06 0.12 
Error (feeding regimen) 2.9 9 0.3 

     
Time 2.4 3 0.8 4.6 0.01 0.12 0.34 0.84 
Error (time) 4.7 27 0.2 

     
Feeding regimen×Time 1.0 3 0.3 1.0 0.42 0.00 0.10 0.24 
Error (Regimen×Time) 8.7 27 0.3           
a Values are mean ± SEM, n=10 (male). 
b Omega squared is an estimate of the dependent variance accounted for by the independent variable in the 
population for a fixed effects model. 
c Partial eta squared is the proportion of the effect plus error variance that is attributable to the effect. 
d Power calculated by SPSS. Adequate power should be at least 0.6. 
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Figure 4-7. Mean reactive hyperemia index (± SEM) over time. Data are analyzed by 
Within Subject ANOVA. Values are means ± SEM, n=10. Feeding regimen effect, 
p=0.46; time effect, p=0.01; feeding regimen × time, p=0.42.  
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Table 4-9. Mean reactive hyperemia index before and after standard high-fat meals or high-fat 
meals based on body surface area in healthy men1 

    
Regimen 1 

(standard meal) 
Regimen 2  

(body surface area meal)2 
Mean 

Time post 1st meal3,4 
   

 
0 h 1.61 ± 0.06 1.53‡ ± 0.06 1.57a* ± 0.05 

 
2 h 2.02 ± 0.23 1.58  ± 0.12 1.80b ± 0.13 

 
4 h 2.05 ± 0.25 1.99  ± 0.13 2.02b ± 0.13 

 
6 h 1.86 ± 0.19 2.04‡ ± 0.23 1.95b ± 1.51 

     
P-values5(1-β) 

   

 
Feeding regimen 0.46 (0.12) 

 
 

Time 0.01 (0.84) 
 

 
Feeding regimen × time 0.42 (0.24) 

 

     
Changes post meal6 

   
            "Breakfast" Δ 2 h - 0 h    0.41 ± 0.24    -0.19 ± 0.3 0.23a  ± 0.12 
            "Lunch"    Δ 6 h - 4 h    0.05 ± 0.12      0.05 ± 0.25 -0.07b ± 0.13 

     
P-values5(1-β) 

   

 
Feeding regimen 0.85 (0.05) 

 
 

Time 0.03 (0.66) 
 

 
Feeding regimen × time 0.17 (0.27)   

1 Values are means ± SEM, n=10. 
2 ‡ indicates a significant difference between 0h and 6h after body surface area meal (planned comparison, 
p<0.05). 
3 Means that are significantly different from the baseline (0h) do not share the same letter (planned 
comparison, p<0.05). * indicates a significant difference between fasting state at 0h and a pooled 
postprandial state 2-6 h (planned comparison, p<0.05).  
4 0h, baseline at fasting state; 2h, 2 hours after the first high-fat meal; 4h, 4 hours after the first meal and right 
before the second meal; 6h, 6 hours after the first meal and 2 hours after the second meal. 
5 P value and power, calculated using Within Subject ANOVA, p<0.05. Adequate power should be at least 
0.6. 
6 Means that do not share the same superscript are significantly different, p<0.05. 
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Table 4-10. Planned comparisons for reactive hyperemia index 

  
Regimen 1  

(standard meal) 
  

Regimen 2  
(body surface area meal) 

    
Mean 

squares 

  

Contrast 0h 2h 4h 6h   0h 2h 4h 6h ΣC2a φ2b Fc 
1 1 -1 0 0 

 
1 -1 0 0 4 0.21 0.53 3.12* 

2 1 -1 0 0 
 

0 0 0 0 2 0.17 0.85 2.83 
3 0 0 0 0 

 
1 -1 0 0 2 0.00 0.01 0.04 

            
 

 
4 1 0 -1 0 

 
1 0 -1 0 4 0.81 2.03 11.94* 

5 1 0 -1 0 
 

0 0 0 0 2 0.19 0.95 3.17 
6 0 0 0 0 

 
1 0 -1 0 2 0.21 1.05 3.50 

              
7 1 0 0 -1 

 
1 0 0 -1 4 0.58 1.45 8.53* 

8 1 0 0 -1 
 

0 0 0 0 2 0.06 0.30 1.00 
9 0 0 0 0 

 
1 0 0 -1 2 0.26 1.30 4.33* 

              
10 0 1 0 -1 

 
0 1 0 -1 4 0.09 0.23 1.35 

11 0 1 0 -1 
 

0 0 0 0 2 0.03 0.15 0.50 
12 0 0 0 0 

 
0 1 0 -1 2 0.21 1.05 3.50 

              
13 0 1 1 0 

 
0 -1 -1 0 4 0.25 0.63 1.97 

              
14 3 -1 -1 -1 

 
3 -1 -1 -1 24 4.50 1.88 11.06* 

15 3 -1 -1 -1 
 

0 0 0 0 12 1.21 1.01 3.37 
16 0 0 0 0   3 -1 -1 -1 12 1.04 0.87 2.89 

a The sum of the contrast squared. 
b The sum of the cross products of mean and contrast. 
c F ratio, * indicates significant difference, p<0.05. 

 

     The ANOVA table for changes in reactive hyperemia index is shown in Table 4-11. 

There was not enough power to detect a significant time × feeding regimen interaction 

(p=0.17, ω2=0.03, 1-β=0.27). The power was also too low to detect a significant main 

effect of feeding regimen (p=0.85, ω2=0, 1-β=0.05). There were significant differences 

between time points (p=0.03, ω2=0.13, 1-β=0.66) which indicated reactive hyperemia 

index changed differently 2 hours after the first meal in comparison to the second meal. 

As shown in Table 4-9 and Figure 4-8, reactive hyperemia index increased from 0 hour 
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to 2 hour whereas it decreased from 4 hour to 6 hour (p<0.05). 

 
Table 4-11. Within Subject ANOVA for changes in reactive hyperemia indexa 

Source of variation 
Sum of 
squares 

df 
Mean 

squares 
F Significance  ω2 b  ηp

2 c  1-β d 

Feeding regimen 0.1 1 0.1 0.0 0.85 0.00 0.00 0.05 
Error (feeding regimen) 11.2 9 1.3 

     
Time 0.9 1 0.9 7.1 0.03 0.13 0.44 0.66 
Error (time) 1.1 9 0.1 

     
Feeding regimen×Time 0.9 1 0.9 2.2 0.17 0.03 0.20 0.27 
Error (Regimen×Time) 3.6 9 0.4           
a Values are mean ± SEM, n=10.  
b Omega squared is an estimate of the dependent variance accounted for by the independent variable in the 
population for a fixed effects model. 
c Partial eta squared is the proportion of the effect plus error variance that is attributable to the effect. 
d Power is calculated by SPSS. Adequate power should be at least 0.6. 
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Figure 4-8. Changes in reactive hyperemia index (± SEM) 2 hours post each meal. Data 
are analyzed by Within Subject ANOVA. Values are means and standard error, n=10. 
Feeding regimen effect, p=0.85; time effect, p=0.03; feeding regimen × time, p=0.17. 
*Different from changes in reactive hyperemia index at 2h-0h time interval, p<0.05. 
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Thiobarbituric acid reactive substances 

     Residuals of thiobarbituric acid reactive substances data were not normally 

distributed (p<0.05) as shown in Table 4-12, therefore the assumption of ANOVA was 

violated. The histogram of residuals (Figure 4-9) had a slightly negative skew 

(skewness=-0.09) but was close to zero, whereas kurtosis(-1.34) was beyond the range 

of -1 to +1 that indicated a slightly flat normal curve. No outliers were observed in the 

box plot (Figure 4-10). Although there was a violation of the normality assumption, 

considering the value of the skewness, kurtosis, the shape of the residual plot and the 

small subject number, Within Subject ANOVA was still conducted. 

 
Table 4-12. Normality assumption test for thiobarbituric acid reactive substances data 

  Test Values 

Residuals1 0 ± 0.04 
95% Confidence interval (-0.07,0.07) 
Skewness2 -0.09 
Kurtosis2 -1.34 
Shapiro-Wilk normality test3 p=0.001 
Kolmogorov-Smirnov normality test3 p=0.002 
1 Values are mean ± SEM, n=80. 
2 Skewness and Kurtosis show the asymmetry and peakness of the residuals and should be zero 
for normal distributed data. 
3 Data are not normally distributed when p<0.05. 
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Figure 4-9. Distribution of thiobarbituric acid reactive substances residuals 

 

 

Figure 4-10. Box plot of thiobarbituric acid reactive substances residuals 
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     The assumption of sphericity was satisfied as shown in Table 4-13. Mauchly’s W 

was not significant for time (p=0.65) or the feeding regimen × time interaction (p=0.91). 

Mauchly’s test did not give a result for feeding regimen since there were only two levels 

of feeding regimen.  

 
Table 4-13. Sphericity assumption test for thiobarbituric acid reactive substances 

Source of variance Mauchly's W1 df Significance Epsilon2 

Feeding regimen 1 0 . 1 
Time 0.65 5 0.65 0.8 
Feeding regimen × Time 0.82 5 0.91 0.9 
1 Mauchly's test is used to test the null hypothesis that the error covariance matrix of the 
orthonormalized dependent variables is proportional to an identity matrix.  
2 Eplison index may be used to adjust the degrees of freedom for the averaged tests of 
significance.  

     ANOVA table for thiobarbituric acid reactive substances was shown in Table 4-14 

and results were summarized in Table 4-15 and Figure 4-11. As shown in Table 4-14 

and 4-15, there was not enough power to detect a significant time × feeding regimen 

interaction (p=0.65, ω2=0, 1-β=0.15). Power was too low to detect a significant 

difference between feeding regimen 1 and 2 (p=0.17, ω2=0.01, 1-β=0.27). There were 

significant differences between four time points (p=0.04, ω2=0.07, 1-β=0.66). 

Thiobarbituric acid reactive substances increased from 0h to 2h (planned comparison, 

p<0.05, Table 4-16); there was also a significant decrease in thiobarbituric acid reactive 

substances from 2h to 4h (Fisher’s Least Significant Different Test, p<0.05), as shown 

in Table 4-15. 
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Table 4-14. Within Subject ANOVA for thiobarbituric acid reactive substancesa 

Source of variation 
Sum of 
squares 

df 
Mean 

squares 
F Significance  ω2 b  ηp

2 c  1-β d 

Feeding regimen 0.04 1 0.04 2.21 0.17 0.01 0.20 0.27 

Error (feeding regimen) 0.17 9 0.02 
     

Time 0.09 3 0.03 3.11 0.04 0.07 0.26 0.66 

Error (time) 0.27 27 0.01 
     

Feeding regimen × Time 0.02 3 0.07 0.55 0.65 0.00 0.06 0.15 

Error (Regimen×Time) 0.33 27 0.01           
a Values are mean ± SEM, n=10. 
b Omega squared is an estimate of the dependent variance accounted for by the independent variable in the 
population for a fixed effects model. 
c Partial eta squared is the proportion of the effect plus error variance that is attributable to the effect. 
d Power is calculated by SPSS. 
 
 

Table 4-15. Thiobarbituric acid reactive substances (µmol/L) before and after standard 
high-fat meals or high-fat meals based on body surface area in healthy men1 

    
Regimen 1 

(standard meal) 2 
Regimen 2 

(body surface area meal) 
Mean3  

Time post 1st meal   
   

 
0 h 0.62‡ ± 0.11 0.62 ± 0.10 0.62a ± 0.10 

 
2 h 0.72‡ ± 0.11 0.67 ± 0.12 0.70b ± 0.11 

 
4 h 0.64 ± 0.11 0.57 ± 0.11 0.61a ± 0.11 

 
6 h 0.67 ± 0.12 0.60 ± 0.10 0.64ab ± 0.11 

     P-values4 (1-β) 
   

 
Feeding regimen 0.17 (0.27) 

 
Time 0.04 (0.66) 

  Feeding regimen × time 0.65 (0.15) 
1 Values are means ± SEM, n=10. 
2 ‡ indicates a significant increase from 0h to 2h after standard meal (planned comparison, p<0.05). 
3 Means do not share the same superscript are significantly different (planned comparison and Fisher’s 
Least Significant Different Test, p<0.05). 
4 P value and power, calculated using Within Subject ANOVA, p<0.05. Adequate power should be 
above 0.6. 
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Figure 4-11. Mean thiobarbituric acid reactive substances (±SEM) over time. Data are 
analyzed by Within Subject ANOVA. Values are means ± SEM, n=10. Feeding regimen 
effect, p=0.27; time effect, p=0.66; feeding regimen × time, p=0.15. Means that do not 
share the same letter are significant difference between time points across feeding 
regimens (planned comparison and Fisher’s Least Significant Difference Test, p<0.05). 
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Table 4-16. Planned comparisons for thiobarbituric acid reactive substances 

  
Regimen 1  

(standard meal) 
  

Regimen 2 
(body surface area meal) 

    
Mean 

squares 

  

Contrast 0h 2h 4h 6h   0h 2h 4h 6h ΣC2a φ2b Fc 
1 1 -1 0 0 

 
1 -1 0 0 4 0.02 0.05 5.00* 

2 1 -1 0 0 
 

0 0 0 0 2 0.01 0.05 5.00* 
3 0 0 0 0 

 
1 -1 0 0 2 0.00 0.01 1.00 

            
 

 
4 1 0 -1 0 

 
1 0 -1 0 4 0.00 0.00 0.00 

5 1 0 -1 0 
 

0 0 0 0 2 0.00 0.00 0.00 
6 0 0 0 0 

 
1 0 -1 0 2 0.00 0.01 1.25 

              
7 1 0 0 -1 

 
1 0 0 -1 4 0.00 0.00 0.00 

8 1 0 0 -1 
 

0 0 0 0 2 0.00 0.01 1.25 
9 0 0 0 0 

 
1 0 0 -1 2 0.00 0.00 0.00 

              
10 0 1 0 -1 

 
0 1 0 -1 4 0.01 0.03 2.50 

11 0 1 0 -1 
 

0 0 0 0 2 0.00 0.01 1.25 
12 0 0 0 0 

 
0 1 0 -1 2 0.00 0.03 2.50 

              
13 0 1 1 0 

 
0 -1 -1 0 4 0.01 0.03 1.25 

              
14 3 -1 -1 -1 

 
3 -1 -1 -1 24 0.00 0.00 0.00 

15 3 -1 -1 -1 
 

0 0 0 0 12 0.00 0.00 0.00 
16 0 0 0 0   3 -1 -1 -1 12 0.00 0.00 0.00 

a The sum of the contrast squared. 
b The sum of the cross products of mean and contrast. 
c F ratio, * indicates significant difference, p<0.05. 

 

Power and Subject Estimates 

     Graphs of power × subject estimate were generated using G*Power software 

(Parkville, Australia) for each main effect and interaction term in the ANOVA of each 

dependent variable. Graphs of power × subject estimates are presented by feeding 

regimen main effect, time main effect and feeding regimen × time interaction. 

     To achieve an adequate power of 0.6 for feeding regimen main effect, 54 subjects 

might be needed for reactive hyperemia index and 17 subjects might be needed for 
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thiobarbituric acid reactive substances to detect significant statistical differences 

(Figure 4-12 and 4-13).  

 

 
Figure 4-12. Power × subject estimates of feeding regimen main effect for reactive 
hyperemia index 
 

 
Figure 4-13. Power × subject estimates of feeding regimen main effect for 
thiobarbituric acid reactive substances 

     Adequate power was achieved for time main effect for reactive hyperemia index 
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(1-β=0.84) and thiobarbituric acid reactive substances (1-β=0.66) analysis (Figure 4-14 

and 4-15). 

 

Figure 4-14. Power × subject estimates of time main effect for reactive hyperemia 
index 
 

 
Figure 4-15. Power × subject estimates of time main effect for thiobarbituric acid 
reactive substances 

     To reach an adequate power of 0.6 for regimen × time interaction, 25 subjects 
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might be needed for reactive hyperemia index and 43 subjects might be needed for 

thiobarbituric acid reactive substances to detect statistical significance (Table 4-16 and 

4-17). 

 
Figure 4-16. Power × subject estimates of feeding regimen × time interaction for 
reactive hyperemia index 
 

 
Figure 4-17. Power × subject estimates of feeding regimen × time interaction for 
thiobarbituric acid reactive substances 

     In summary, more subjects are needed to achieve adequate power and statistical 
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significance.  

 

Effect Size Estimates 

     Effect sizes, analyzed in two Within Subject ANOVAs, are shown for each feeding 

regimen in Table 4-18. Regimen 2 shows a greater effect on reactive hyperemia index 

than regimen 1. The effect of both feeding regimens on thiobarbituric acid reactive 

substances measured at these time points was small. Both regimens have large effect on 

heart rate, but regimen 2 had a much greater effect compared to regimen 1. 

 
Table 4-18. Effect size estimates, ηp2 and ω2b, for reactive hyperemia index, 
thiobarbituric acid reactive substances and heart rate 

Time effect ηp
2a ω2b 

Regimen 1 (standard meal) 
  

 
Reactive hypremia index 0.12 0.00 

 
Thiobarbituric acid reactive substances 0.21 0.03 

 
Heart Rate 0.29 0.16 

 
   

Regimen 2 (body surface area meal) 
  

 
Reactive hypremia index 0.32 0.07 

 
Thiobarbituric acid reactive substances 0.13 0.01 

  Heart Rate 0.39 0.27 
a Partial eta squared is the proportion of the effect plus error variance that is 
attributable to the effect. Small effect (ηp

2=0.01); medium effect (ηp
2=0.09); large 

effect (ηp
2=0.25).  

b Omega squared is an estimate of the dependent variance accounted for by the 
independent variable in the population for a fixed effects model. Small effect 
(ω2=0.01); medium effect (ω2=0.06); large effect (ω2=0.15). 
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Chapter 5 

DISUSSION, CONCLUSIONS, IMPLEMENTATIONS AND 

RECOMMENDATIONS 

Discussion 

     There was not enough power to determine whether dietary regimens had different 

effects on postprandial vascular function, as shown by the insignificant main effect of 

feeding regimen (p>0.05, ω2=0, 1-β=0.12). Power was also too low to detect a 

significant time × feeding regimen interaction (p>0.05, ω2=0, 1-β=0.24). Thus, no 

conclusions can be drawn as to whether the two feeding regimens affect the reactive 

hyperemia index differently over time. Additional subjects are needed to complete 

exploration of this model. Reactive hyperemia index has been investigated in other 

studies with the subject number ranging from 20 (Haller, et al., 2007) to 1957 

(Hamburg, et al., 2008). The sensitivity and specificity of the EndoPAT were reported 

as 80% and 85% respectively using 94 subjects by Bonetti et al (2004), however, power 

and effect size in these studies were not reported. 

     This study found significant differences between the four time points (p=0.01, 

ω2=0.12, 1-β=0.84). Peripheral vascular function, as measured by reactive hyperemia 

index, before “breakfast” (0h) was significantly lower than that of 2h, 4h, and 6h (or 2 

hours past “lunch”), respectively, and was significantly lower than the postprandial 

reactive hyperemia index pooled over 2h-6h (Table 4-9 and 4-10). This result occurred 

possibly because the meals caused an increase in hyperemic pulse wave amplitude or a 

decrease in resting pulse wave amplitude (numerator and denominator in reactive 
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hyperemia index).  

      The decrease in resting pulse wave amplitude is supported by several papers in 

the literature. Jakulj et al. (2007) found a high-fat meal increased total peripheral 

resistance (mean arterial pressure divided by cardiac output) which indicated increased 

vasoconstriction (Simon, et al., 1982). The increased vasoconstriction may decrease the 

resting pulse wave amplitude, just as shown by Nohria (2006) that a vasoconstriction 

drug (phenylephrine, nitric oxide inhibitor) decreased the resting pulse wave amplitude 

but not the final reactive hyperemia index. That the final index remained constant was 

possibly because the hyperemic pulse wave amplitude decreased at the same time due 

to suppression of nitric oxide production. In the case of the meal though, with no 

external nitric oxide inhibitor, the production of nitric oxide during hyperemia would 

continue to elevate the hyperemic pulse wave amplitude and thus elevate the index. The 

total peripheral resistance may increase while the brachial artery diameter increases, 

because changes in the brachial artery diameter is only a local response in the arm and 

cannot be used to represent the systemic changes in the body. Simon et al. (1982) found 

that a vasodilator (nitroglycerin) increased the brachial artery diameter but did not 

change the total peripheral resistance (p<0.05). 

     The increase in hyperemic pulse wave amplitude may be explained by a 

heightened hyperemic nitric oxide production mediated by the increased postprandial 

digital blood flow due to the activation of sympathetic nerve system (Nohria, et al., 

2006). Fingertips are rich in arteriovenous anastomoses and the amount of blood flow 

in the digits are reported to be largely affected by peripheral blood flow (Nohria, et al., 
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2006). Raitakari et al. (2000) found an increased in resting brachial artery diameter and 

forearm blood flow (p<0.001, p<0.001) 3 hours and 6 hours after feeding 12 healthy 

subjects (7 males and 5 females, aged 33 ± 7 years) a high-fat meal, whereas the flow 

mediated dilation did not change over time (p>0.05). Forearm blood flow was used as a 

measure of microvascular function, calculated from brachial artery diameter and mean 

blood velocity and tested by venous occlusion strain-gauge plethysmography. The meal 

contained 1030 kcal and consisted of a sausage, two muffins and two hash browns 

cooked in tallow fat, providing 48% saturated, 40% monounsaturated, 7.4% 

polyunsaturated, and 4.6% trans fatty acids. A similar result was found by Gokce et al. 

(2001), in which the high-fat meal induced a 36% increase in forearm blood flow 

(p=0.03) at 2, 4, and 6 hours from a baseline.   

     Although these meals were rich in fat, the increased forearm blood flow might 

have been a carbohydrate-induced response. Young et al. (2010) found that a 

mixed-meal (527±12 kilocalories) induced an increase in plasma glucose, insulin 

concentration, muscle sympathetic nerve activity, and forearm blood flow in healthy 

subjects. In addition, Berne et al. (1989) and Scott et al. (2002) found a strongly 

positive correlation between plasma insulin concentration and the muscle sympathetic 

nerve activity. These two factors facilitate the glucose uptake and the blood flow 

redistribution into the skeletal muscle (Scherrer, Randin, Vollenweider, Vollenweider, 

& Nicod, 1994). Forst et al. (2005) found that the microvascular response to 

acetylcholine was increased within the first postprandial hour (p<0.05), indicating an 

increased nitric oxide-mediated vasodilation. Scherrer et al. (1994) found that a nitric 
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oxide inhibitor (NG-monometyl-L-arginine, L-NMMA) but not nitric 

oxide-independent vasoconstrictor (norepinephrine) blunted the increase in forearm 

blood flow (p<0.05). Insulin-independent mechanisms should also be considered. 

Fujimura et al. (1997) found that meal consumption activated tension receptors in the 

stomach wall through vagal afferent fibres during stomach distension, thus increased 

muscle sympathetic nerve activity and subsequently increased superior mesenteric 

artery flow (O'Donovan, Feinle, Tonkin, Horowitz, & Jones, 2002; Rossi, et al., 1998).  

     In summary, two mechanisms are proposed to explain the increased reactive 

hyperemia index. First, the high fat in the meals may trigger the increase in total 

peripheral resistance which decreases resting pulse wave amplitude and thus increases 

the final index. Secondly, the carbohydrate component of the meal may increase the 

peripheral blood flow due to the heightened muscle sympathetic nerve activity 

mediated by insulin concentration and/or stomach distension. This may increase the 

nitric oxide production during hyperemic and thus increase the hyperemic pulse wave 

amplitude and subsequently lead to an elevated reactive hyperemia index.  

     High-fat meals induced increased reactive hyperemia index in our study, whereas 

they have been shown to decrease flow mediated dilation in other studies, as shown in 

Table 5-1. The increase in postprandial reactive hyperemia index may also be a 

transient effect due to short-term high-fat meal ingestion, because a study by Barringer 

et al. (2008) showed that 4 weeks of 1010 kcal high-fat meals led to a decreased 

reactive hyperemia index 3 hours post ingestion (-12.37%, p=0.005). Thus long-term 

consumption of high-fat meals may assert more potent effects as endothelial 
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dysfunction.  

     In addition, the change in reactive hyperemia index 2 hours after “breakfast” was 

larger than the changes 2 hours after “lunch” (p<0.05), in other words, the postprandial 

increase in reactive hyperemia index was significantly diminished after the second 

high-fat meal which may indicate impaired endothelial function (Table 4-9, Figure 4-8). 

A similar result was observed by Tushuizen et al. (2006), suggesting that flow mediated 

dilation of the brachial artery was significantly impaired after two consecutive high-fat 

meals compared to the baseline (Table 5-1). 
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Table 5-1. Summary of other research studies with healthy subjects that examine endothelial function in 
response to a high-fat meal  

Author(year) Subject High-fat meal composition   Comments 

Cuevas  
et al. (2000) 

11 males 
20-28 y 
BMI 20-25 
kg/m2 
  

2565 kilocalories daily (39.9% 
from fat, 112.7±12.9 g fat with 
35.8±9.6 g saturated fat) 

 Flow-mediated dilation decreased 
after 4-week of high-fat meals  
(p=0.014) 

Plotnick  
et al. (2003) 

38(14 males) 
36.4±10.1 y 
 
  

897 kilocalories (50.2% from fat, 
50 g fat with 14 g saturated fat; 
consisted of 1 Egg McMuffin®, 
Sausage McMuffin®, 2 hash 
brown patties, and 1 
non-caffeinated beverage.    

 Flow-mediated dilation decreased 
after 4-week of high-fat meals  
(p<0.05). 

Berry  
et al. (2008) 

17 males 
18-40 y 
BMI 24.3±3  
kg/m2 
  

850 kilocalories, 43.3 g fat with 
42.5 g 18:1n-9, 4 g 18:2n-6, and 
0.8 g stearic acid; consisted of 2 
muffins and 1 chocolate flavored 
milkshake.  

 Brachial artery flow mediated 
dilation decreased (p<0.001) 
while the plasma 
15-F2-isoprostane increased 3 
hours post meal (p<0.05). 

     Tushuizen 
et al. (2006) 

17 males 
25.4±3 y 
BMI 23.6±2 
kg/m2 
  

900 kilocalories (50% from fat, 
50 g fat with 30 g saturated fat). 
The first meal (at 8:30 am) 
consisted of 1 EggMcMuffin®, 1 
croissant with butter and 
marmalade, 200 mL milk with 20 
mL cream. The second meal (at 
12:30 pm) consisted of 1 
Quarterpounder® (McDonald’s), 
1 croissant with butter, and 200 
mL milk.  

 After two consecutive high-fat 
meal flow mediated dilation was 
impaired significantly at 6 hour; 
plasma malondialdehyde 
(p=0.01) and the oxLDL/LDL 
cholesterol ratio (p=0.001) were 
increased. 

Ayer 
et al. (2009) 

11 obese and 
11 healthy 
subjects (14 
males, 
32.1±6.3 y 
BMI 18-25 
kg/m2) 
  

1000 kilocalories (60 g fat with a 
ratio of saturated fat1.0 : 
monounsaturated fat 0.85 : 
polyunsaturated fat 0.39); 
consisted of a slice of carrot cake 
and a milkshake. 

  Flow mediated dilation, reactive 
hyperemia index, hyperemic 
forearm blood flow and brachial 
pulse wave velocity did not differ 
between healthy and obese 
subjects or 3 hours after the meal. 
Heart rate increased 3 hours post 
ingestion (p<0.001). 
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     Our study also found that the heart rate, an index of cardiovascular reactivity, was 

increased 2 hours after “breakfast”, then decreased to baseline, and subsequently  

increased 2 hours after “lunch” (p<0.05). This finding agreed with Jakulj et al. (2007) 

that meal consumption induced an increased in heart rate, blood pressure, stroke 

volume, total peripheral resistance, and cardiac output (p<0.05), indicating an 

increased postprandial cardiovascular reactivity to stress. Jakulj (2007) also found that 

high-fat meal consumption may be associated with increased cardiovascular reactivity 

to behavioral stress tasks (mental arithmetic, public speech task, arm ischemia, and cold 

pressor) as the high-fat meal increased the total peripheral resistance (p<0.05) 

compared with a low-fat meal. A possible mechanism was put forth based on results 

from prior studies that found increased cardiovascular reactivity led to peripheral 

vascular resistance which contributed to microvascular hypertension and microvessel 

damage in obese individuals (Mitchell, et al., 2005; Serne, de Jongh, Eringa, IJzerman, 

& Stehouwer, 2007) and formation of plaques on vessels walls eventually resulted in 

the reduction of vessel diameter and elasticity (Stamler, Wentworth, & Neaton, 1986). 

These changes may not apply to healthy populations.  

     The marker of oxidative stress (thiobarbituric acid reactive substances) used in 

this study was detected in the range of 0.40 µmol/L to 0.85 µmol/L. A similar range was 

observed in a study by Yesilova et al. (2005), in which fasting plasma thiobarbituric 

acid reactive substances were significantly higher in patients with nonalcoholic fatty 

liver disease (0.5 ± 0.2 µmol/L, n=51, male, ages 20-65 y, BMI 28.12 ± 4.06 kg/m2) 

compared to healthy controls (0.36 ± 0.09 µmol/L, n=30, male, ages 20-60 y, BMI 
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27.54 ± 3.27 kg/m2). Many other studies have reported higher values of thiobarbituric 

acid reactive substances. For example, Richard et al. (1992) and Yagi (1998) found that 

normal human plasma contains 1.86-3.94 µmol/L thiobarbituric acid reactive 

substances; Oteiza (1997) found that fasting plasma thiobarbituric acid reactive 

substances were significantly higher in patients with sporadic amyotrophic lateral 

sclerosis (1.30 ± 0.1 µmol/L, n=13, 6 males and 7 females, ages 22-66 y) compared to 

healthy controls (1.03 ± 0.06 µmol/L, n=11, 8 males and 3 females, ages 32-66 y). 

Chalasani et al. (2004) found that fasting plasma thiobarbituric acid reactive substances 

were significantly increased in patients with nonalcoholic steatohepatitis (3.4 ± 1.3 

µmol/L, n=21, 11 males and 10 females, ages 41 ± 13 y, BMI 33 ± 4 kg/m2) compared 

to healthy controls (1.8 ± 0.9 µmol/L, n=19, 9 males and 10 females, ages 43 ± 14 y, 

BMI 31 ± 4 kg/m2).  

     As with reactive hyperemia index, this study did not have enough power to 

determine whether dietary regimens had different effects on postprandial oxidative 

stress, as shown by the insignificant main effect of feeding regimen (p=0.17, ω2=0.01, 

1-β=0.27). Power was also too low to detect a significant time × feeding regimen 

interaction (p>0.05, ω2=0, 1-β=0.24). Thus, no conclusions can be drawn as to whether 

the two feeding regimens impact the reactive hyperemia index differently over time. 

Similarly, the power was also not high enough to detect a significant time × feeding 

regimen interaction (p=0.65, ω2=0, 1-β=0.15). Thus it is not known whether feeding 

standard meals or those based on body size affect oxidative stress differently over time.  

     There were significant differences between the four time points (p=0.04, ω2=0.07, 



98 

 

1-β=0.66). Thiobarbituric acid reactive substances increased from 0 hour to 2 hour 

(p<0.05) and decreased from 2 hour to 4 hour after “breakfast” (p<0.05, Table 4-14). 

These results are similar to findings by Tinahones et al. (2008), where postprandial 

plasma thiobarbituric acid reactive substances were significantly higher at 3 hours post 

ingestion of a high-fat meal (1.31 ± 0.72 µmol/L) compared to baseline (1.02 ± 0.7 

µmol/L) in severely obese subjects (n=29, 9 males and 20 females, ages 44.9 ± 8.6 y, 

BMI 54.5 ± 6.4 kg/m2). The increase in postprandial thiobarbituric acid reactive 

substances indicated heightened oxidative stress 2 hours after a high-fat meal as 

described in prior research (Armstrong & Browne, 1994; Dahle, et al., 1962; Yagi, 

1998). There was not an increase in thiobarbituric acid reactive substances after the 

second high-fat meal at 6h. This indicated no elevated oxidative stress after the second 

high-fat meal. This result is contrast to findings by Tushuizen et al. (2006) in which 

thiobarbituric acid reactive substances were increased after two consecutive 900 kcal 

high-fat meal compared to the fasting state (p=0.01). The discrepancy may be due to 

increased antioxidant defense, such as by superoxide dismutase, an enzyme that 

converts the superoxide radical into hydrogen peroxide and is subsequently 

metabolized into water and oxygen by catalase and glutathione peroxidase (Andreazza, 

et al., 2008). Prior (2005) suggested a non-enzymatic defense, such as ascorbic acid, 

tocopherol, carotenoids, polyphenols, and uric acid to reduce oxidative load. This 

discrepancy may also result from the inconsistency of the semi-quantitative 

thiobarbituric reactive substances assay (Armstrong & Browne, 1994). 

     The power analyses indicated that at least 50 subjects are needed to study reactive 
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hyperemia index and 43 subjects to study thiobarbituric acid reactive substances to 

improve the statistical power and the ability to detect significance. Although the main 

effect of feeding regimen for each dependent variable was not significantly different, 

there was a increase in reactive hyperemia index from 0h to 6h in the body surface 

area-based meal regimen (planned comparison, p<0.05, Table 4-8), whereas not in the 

standard meal. In addition, the body surfaced area-based regimen showed a greater 

effect on reactive hyperemia index (ηp
2=0.32, ω2=0.07) and heart rate (ηp

2=0.39, 

ω2=0.27) than regimen 1 (ηp
2=0.12, ω2=0; ηp

2=0.29, ω2=0.16), as shown in Table 4-17. 

The body surface area-based meal may be a more effective model to study the vascular 

reactivity in comparison to the standard meal; however, more subjects are needed to 

confirm this finding. 

     The effect of both feeding regimens on thiobarbituric acid reactive substances 

measured at these time points was small (ω2<0.06). It is possible the effect is small 

because the peak of the oxidative stress may have been missed using these testing time 

points, therefore, other time points, such as 3h and 8h, may be considered. The small 

effect size and the large estimated subject number (n=43) also indicated that 

thiobarbituric acid reactive substances may not be a sensitive marker of oxidative stress 

in this model. Other biomarkers, such as F2-isoprostane and hydrogen peroxide, may be 

more useful to reflect postprandial oxidative stress.   

Conclusions 

     1. Postprandial vascular reactivity (reactive hyperemia index) increased from 

fasting state to postprandial state (p<0.05), possibly due to increased total peripheral 



100 

 

resistance induced by the high fat content or increased peripheral blood flow induced 

by the elevated muscle sympathetic nerve activity, insulin response and/or stomach 

distension after “breakfast” and “lunch”. Endothelial function was impaired as 

reflected in smaller increase in reactive hyperemia index after the second high-fat meal 

“lunch” than after the first high-fat meal “breakfast”(p<0.05).  

     2. Oxidative stress (thiobarbituric acid reactive substances) was elevated 2 hours 

after “breakfast” (p<0.05) and decreased by 4 hours after “breakfast” (p<0.05).  

     3. The feeding regimen based on body surface area may be a more effective model 

to use than the standard meal as shown by the greater effect size (ηp
2 and ω2). More 

subjects are needed to confirm this finding. 

 

Implementations and Recommendations 

     The study used automated peripheral arterial tonometry (via EndoPAT 2000), as a 

substitute for flow-mediated dilation to assess the endothelial-dependent vasodilation, 

to avoid the operator-dependent bias in the ultrasound measurement and correct for 

uncontrollable physiological and environmental variables.      

     Consumption of two high-fat meals in healthy young adult males leads to 

endothelial dysfunction, perhaps because the high-fat meal induces oxidative stress 

through metabolism of cellular fatty acids as well as exogenous dietary fatty acids 

which increase production of modified proteins, fatty acids and DNA. The protocol 

studied here focused on understanding the repeated eating and snacking/meal pattern 

that extends the postprandial oxidative stress to a significant part of a day. The same 
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model could be applied to study a different population such as overweight or patients 

with diabetes mellitus to understand how vascular function is affected by chronic 

diseases and health complications.  

     To obtain a more comprehensive view of the oxidative status in response to the 

high-fat meal, supplementary oxidative stress markers may be considered, for example 

F2- isoprostanes, oxidized LDL, hydrogen peroxide, and superoxide dismutase enzyme. 

Markers to measure the body’s ability to quench oxidative stress, such as total 

antioxidant capacity, may also be useful in understanding the effects of a prolonged 

postprandial state.  

     Blood pressure and total peripheral resistance should be measured along with 

endothelial function and blood biomarkers to demonstrate the effects of the high-fat 

meal on cardiovascular reactivity. Plasma insulin concentration and peripheral blood 

flow should be measured to prove the mechanism of how high-fat meals affect the 

endothelial function. Based on these data, future studies with more subjects may 

provide adequate power to detect differences in healthy young adult males. The feeding 

regimen based on body surface area may be a more effective model to use due to the 

larger effect size.  
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APPENDIX A 

INSTITUTIONAL REVIEW BOARD APPROVAL AND DOCUMENTATIONS 
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APPENDIX B 

THIOBARBITURIC ACID REACTIVE SUBSTANCE ASSAY PROTOCOL 
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PROTOCOL 

1. Make up reagents. 

 

Materials  Health 
Hazard  

Molecular 
weight 
(g/mol) 

Density Preparation 

≥99% TCA 3 163.39  15 g 
TBA 0 144.15  0.375 g  

     
12 N HCl 0 36.46  Mix 2.1 mL with 

97.9 mL water 

     
BHT 2 220.35  0.446 g in 10 mL 

ethanol 

     
≥98% SDS 2 288.38  0.5 g in 5 mL water 

     

≥99.5% Ethanol 2 46.07 0.789 
g/mL 

256 µL ethanol in 
11.9 mL water (2.1% 
ethanol/water) 

     
99% 
1,1,3,3-Tetramethoxypropane 

1 164.2 0.997 
g/mL 

1 mg in 12.18 mL 
2.1% ethanol/water 
(0.00821% w/v) 

Ultrapure water      300 mL 
 

Solution  Stock solution Volume/test 
tube Final Concentration 

TCA1 15% w/v in 0.25 N HCl   
500 µL 

0.567 M 
TBA1 0.375% w/v in 0.25 N HCl 0.016 M 
0.25 N HCl1 100 mL   0.156 M 

BHT 10 mL (0.202 M) 10 µL 0.002 M 

SDS 5 mL (10% w/v in water) 50 µL 0.021 M 

Sample OR  
stock 
standard 

  250 µL   

Total  
810 µL 

 
1Color reagent = TCA (15 g) + TBA (0.375 g) + 0.25 N HCl (100 mL). 
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  Health 
Hazzard 

MW 
(g/mol) 

 
Concentration  Density Preparation Solution 

99% 
Ethanol 2 46.07  

0.789 
g/mL 10 mL    

BHT  2 220.35 0.045 M  
0.05 g in 5 
mL ethanol 1.00% 

BHT  2 220.35 0.225 mM    
10 µL 1% 

BHT + 1.99 
mL ethanol 

0.005% 

 

  
 

MW 
(g/mol)  Concentration  Density Mass 

(mg) 
Indomethacin 

1 
 

(Concentrated) 

357.78 10µM x 200folds=  
2 mM  

2 mM x 357.78 
g/mol =  

0.72 mg/mL in 
ethanol 

6.1 

 

2. Labeling and utensils. 

9 disposable glass tubes (Stock, A-H), flask (Ultrapure Water), 32 1.5-mL 

microcentrifuge tubes (S1-S8, 1-24), pipette man (1000 µL, 200 µL, 10 µL), water 

bath, floating rack, ice bath. 

3. Prepare standards. 

•  To obtain the Standard Stock Solution (125 µM): dilute the 1,1,3,3 – 

tetramethoxypropane (250 µL, 0.00821% w/v in 2.1% ethanol/water) with 

ultrapure water (750 µL) in a clean glass tube. 

• Take 8 clean glass tubes A-H. 

• Add the standard stock solution (125 µM) and water to each glass tube as 

follows. 
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Glass 
tube 

Standard stock 
solution w/ 
water (µL) 

Water 
(µL) 

MDA 
concentration 

(µM) 
A     0 1,000 0 
B     5 995 0.625 
C     10 990 1.25 
D     20 980 2.5 
E     40 960 5 
F     80 920 10 
G     200 800 25 
H     400 600 50 

 

• For standard curve: take 1.5-mL micro centrifuge tubes S1-S8. Add 

reagents as follows. 

 
Standard 

A-H 

BHT 
(0.005% 

in ethanol) 

IDM 
(2 mM) 

BHT 
(0.202 

M) 

SDS 
(10% w/v) 

Color 
reagent 

S1 250 µL 2.5 µL 1.25 µL 10 µL 50 µL 500 µL 
S2 250 µL 2.5 µL 1.25 µL 10 µL 50 µL 500 µL 
S3 250 µL 2.5 µL 1.25 µL 10 µL 50 µL 500 µL 
S4 250 µL 2.5 µL 1.25 µL 10 µL 50 µL 500 µL 
S5 250 µL 2.5 µL 1.25 µL 10 µL 50 µL 500 µL 
S6 250 µL 2.5 µL 1.25 µL 10 µL 50 µL 500 µL 
S7 250 µL 2.5 µL 1.25 µL 10 µL 50 µL 500 µL 
S8 250 µL 2.5 µL 1.25 µL 10 µL 50 µL 500 µL 

 

4. Prepare plasma samples (samples had been supplemented with 0.005% BHT/EtOH 

and 2 mM indomethacin). Take 24 1.5-mL centrifuge tubes labeled as 1-24. Add 

reagents as follows.  

  

Plasma 
sample 

BHT  
(0.202 M) 

SDS 
(10% w/v) 

Color 
reagent 

1 250 µL 10 µL 50 µL 500 µL 
. 250 µL 10 µL 50 µL 500 µL 
. 250 µL 10 µL 50 µL 500 µL 
. 250 µL 10 µL 50 µL 500 µL 

24 250 µL 10 µL 50 µL 500 
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5. Incubate centrifuge tubes in boiling water for 30 min (Park, et al., 2005). Then put 

centrifuge tubes on an ice bath to stop the reaction.  

6. Centrifuge tubes at 14,000 rpm (6000~7000 x g) for 10 min. 

7. Transfer 200 µL supernatant to 96-well microplate. Transfer each standard in 

duplicate. Transfer each sample in triplicate. 

8. Read absorbance at 532 nm and 600 nm. The malondialdehyde concentration can 

be calculated from [532 nm] - [600 nm] or using an extinction coefficient of 1.56 x 

105 M-1 cm-1 (Buege & Aust, 1978). 

 

 


