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Mario Fifić 

 

 

Emerging holistic properties at face value: 

Assessing characteristics of face perception 

 

 

Holistic face recognition refers to the ability of human cognitive systems to deal in an 

integrative manner with separate face features. A holistic mental representation of a face 

is not a simple sum of face parts. It possesses unitary properties and corresponds to the 

whole face appearance better than to any of its constituent parts. A single face  

feature is better recognized in the learned face context (e.g. Bill’s nose in Bill’s face) than 

in isolation or in a new face context (e.g. Bill’s nose in Joe’s face; Tanaka & Sengco, 

1997). The major goal of this study is to provide a rigorous test of the  

structure and organization of cognitive processes in the holistic perception of faces. 

Participants performed in two types of face categorization tasks that utilized either a self-

terminating or an exhaustive rule for search (OR and AND conditions). Category 

membership was determined by the manipulation of two configural properties: eye-

separation and lips-position. In the first part of each study, participants learned two 

groups of faces, and we monitored the changes in the face recognition system architecture 

and capacity. In the second part, the participants' task was to recognize the learned 

configurations of face features, presented in different face contexts: in the old learned 

faces, in a new face background and in isolation. Using the systems factorial theory tests, 
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combined with statistical analyses and model simulations, we were able to reveal the 

exact organization of the mental processes underlying face perception. The findings 

supported a view that holism is an emergent property which develops with learning. 

Overall, processing exhibited a parallel architecture with positive interdependency 

between features in both the OR and AND conditions. We also found that face units are 

better recognized in the learned face condition than in both the new face context and 

isolation conditions. We showed that faces are recognized not as a set of independent 

face features, but as whole units. We revealed that the cognitive mechanism of positive 

dependence between face features is responsible for forming holistic faces, and provided 

a simulation that produced behaviors similar to the experimental observations. 
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Faces are one of the most important aspects of our perception from many points 

of view. A wide variety of information is available when perceiving faces: they convey 

very important social messages by communication and expressing emotions, and thus 

provide additional information such as personality, social class level, age, health, gender, 

etc. It is not surprising then that face perception is an area of utmost importance in 

psychology and in other disciplines, including machine learning and clinical psychology. 

It is impressive with how little effort face recognition occurs. It is a very fast process, 

effortless, highly accurate and obligatory - you can not look at a familiar face and avoid 

recognizing it (see Young & De Haan, 1995).  

Another striking aspect is the so-called non-homogeneity problem: unlike object 

between-class recognition, all faces share the same basic configuration. Relatively high 

discriminability between numerous faces is achieved only by small displacement of face-

features so that extremely reliable discrimination occurs within the class of face-objects. 

It is therefore believed that face perception is a different form of perception, distinct from 

the perception of other visual objects (Bruce & Humphreys, 1994; Diamond & Carey, 

1986; Farah, Levinson, & Klein, 1995; Farah, Rabinowitz, Quinn, & Liu, 2000; Farah, 

Wilson, Drain, & Tanaka, 1998; Moscovitch, Winocur, & Behrmann, 1997; Tarr, 2003; 

Tarr & Cheng, 2003; Yin, 1969). Support is provided on neuro-anatomical level by 

showing exclusive brain areas activated only during face perception. The fusiform face 

area (FFA) is preferably active to faces than for non-face objects (Grill-Spector, Knouf, 

& Kanwisher, 2004; Kanwisher, McDermott, & Chun, 1997); event-related potentials 

(ERPs) of the visual cortex showed selective responses for faces exhibited by peak 

negative activation at about 170ms after stimulus onset (Bentin, Allison, Puce, Perez, & 
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et al., 1996). Evidence against brain face-modularity is suggested by findings that FFA 

activity is correlated with expertise, even with non-face objects (Greebles; Gauthier, 

Skudlarski, Gore, & Anderson, 2000); in neural cell recording studies with macaque 

monkeys, non-face object selective neurons were found that are strikingly similar to the 

face selective ones (see also Gauthier & Curby, 2005; Haxby et al., 2001). As we could 

see in the previous examples the psychology of face perception generated large scale 

interest of scholars, from different areas (behavioral, cognitive, computational, neural 

etc). 

The major goal of this study is to provide a rigorous test of the structure and 

organization of the cognitive processes in - what is defined as - holistic/configural 

perception of complex stimuli such as faces. Before we explicitly define holistic and 

configural we will use the terms interchangeably. A second important aspect of this study 

is that it utilizes experimental manipulations of faces so that they appear in more realistic 

perceptual context and therefore encourage more natural holistic/configural processing.  

 

Realistic faces 

 

In the first part of this study manipulations used to test cognitive organization are 

based on realistic stimuli. Here a more realistic face refers to the use of whole-faces 

rather than isolated face parts, as well as manipulations of faces that are close to their real 

life appearance – such as a blurred picture or partially occluded face. The standard 

approach to test processing of configural perceptions is based on comparisons of whole-

faces to partial-faces (presentation of single face features while other are removed) 

(Davidoff & Donnelly, 1990; Donnelly & Davidoff, 1999; Farah, 1992; Homa, Haver, & 
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Schwartz, 1976; Tanaka & Farah, 1993; Tanaka & Sengco, 1997). Further, we will 

provide evidence regarding utilization of face parts together with whole-faces affects 

recognition of holistic aspects. We will refer to this property as blocking and mixing 

conditions.  

  

“Face task” 

 

In addition to previous manipulations which are employed with tests for 

architecture and capacity, another part of the study will be focused on a task that 

emphasizes recognition of a whole face. Whole face is defined as a complex face stimuli 

consisted of all face parts which are perceived together. Although the notion of whole 

face sounds like a pleonasm, in the experimental sense it has a different meaning. In 

many investigations concerned with explanation of configural and holistic face 

processing, part of a face is used (feature is presented in isolation such as a picture of lips 

or a nose only) and compared to processing of a whole face (all face features are 

presented). 

We will use only whole faces that are partially occluded by a transparent mask 

over some important features on a face. While this is not a new manipulation, it has never 

been used together with a rigorous set of tests for processing architecture and capacity. 

The critical task instruction is to determined face category membership regardless of 

other possible aspects such as identity, emotion and gender. At the same time this 

manipulation will render some stimuli that are very similar to appear in some realistic 

scenarious, but the main advantage is to test the whole-face perception – where we 

believe the strongest holistic processing effect that could be elicited possibly lies.  
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Holistic and analytic processing of faces 

 

First, we will approach the definitions of both holistic and analytic in more 

general terms, and then through the first part of this paper we will provide a stronger, 

more detailed definition, comparing it to previous approaches and to a large body of 

scientific evidence. 

Holistic, well-configured, configural and Gestalt are all adjectives used to 

describe perception of a complex stimulus that is not perceived as a sum of individual 

features but rather as one perceptual element. Faces are visual stimuli that could be 

described as possessing this holistic property. But holistic perception is not necessarily 

limited only to faces. Gestalt psychologists believed that one of the fundamental 

principles of visual perception is determined by the “good form” of the perceived objects 

(Koffka, 1935).  

Consider the following theoretical example: in a crowded place you are trying to 

locate a familiar friend’s face. Because of his/her familiarity, you need only limited 

information to recognize her/him. Let’s assume that you are limited to search for your 

friend’s eyes only, and that you are relatively successful in recognizing him. Also, 

assume that in another situation you have to search for two facial features at the same 

time, such as particular eyes and a nose. The question is: does adding more search 

features yield slower or faster processing? 

It has been evidenced that performance declines when perceptual load increases, 

in both memory (Sternberg, 1966) and visual search (e.g. Atkinson, Holmgren, & Juola, 

1969). These ubiquitous findings were usually backed up the assumption of capacity 
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limitation. If our cognitive system is limited capacity, we could expect processing to slow 

down when we increase the total amount of information to be processed. But what 

happens in our example when you are looking for a familiar face in a crowd? Studies 

have been conducted where the number of face features were manipulated (Innes-Ker, 

2003). In contrast to typical findings in memory and visual search, performance during 

face perception is facilitated when the information load increases. It was demonstrated 

that presenting a face with more face features (eyes, nose, lips) produced faster 

recognition of that whole face expressing a particular emotion (happiness, anger, etc.) 

(Innes-Ker, 2003). How does that happen? Why is face perception different than other 

object perception? Two general directions of have been taken over the course of the 

years. One was defined as analytic and the other one is holistic processing.  

Analytic perception assumes that all face features are processed independently: a 

face is visually segregated into several elements such as eyes, nose, lips, ears, chin, etc. 

Each segment is perceived separately, suggesting that in our cognitive system there exist 

separate face feature detectors. It also suggests that a face is memorized as a set of 

different memory traces for each independent feature which are conjointly identified. 

On the other hand, holistic processing assumes that a face is processed as a 

unitary stimulus instead of set of independent features. A face is perceived as a whole, 

not as a set of elements. Therefore, a face will make a single memory trace 

representation.  

Both approaches can serve the findings reasonably well (will be discussed in the 

next section in more details). While is it relatively clear what it is meant by analytic 

processing, it is not intuitive what holistic perception of faces is and how we should 
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conceptualize it. This point is a source of perpetual confusion in the research. We would 

like to provide a set of theoretical tools that help us understand what holistic/gestalt really 

means in terms of information processing properties.  

   

Cognitive organization revealed 

 

The structure of cognitive processing is an obscured aspect of most studies in face 

perception. Reports on holistic processing of faces do not usually provide testable models 

of cognitive organization. Rather, they are focused on problems in memory 

representation (also perceptual encoding), or on experimental effects that could suggest 

presence of configural processing which has been operationally defined. Two major 

categories in configural research investigation could be describe as “how” and “what”. 

The latter – the representational issue - is concerned with describing the object of 

perception in terms of its distinguishable physical properties (size, color, frequency, etc), 

as well as how perception of some attributes could be affected by perception of others. 

Such studies usually employ multidimensional scaling techniques (MDS) (Busey, 2001; 

Sergent, 1984; Steyvers & Busey, 2001). The interpretation of how different dimensions 

might interact in perception has been explored in several studies (Garner, 1976; Maddox, 

1992; Shepard, 1964, 1991). However most studies are mute with respect to important 

aspects of configural information processing (such as how the processes are organized, 

conducted, how a decision is made and what is the capacity of the system). Several 

investigations are exceptions (Innes-Ker, 2003; Thomas, 2001a; Wenger & Ingvalson, 

2003; Wenger & Townsend, 2000, 2001). However a study of organization of mental 
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processes is potentially more powerful given that it enables us to look into complex 

processing systems, which is not possible under typical “what” studies.  

The existence of some elementary, piecemeal processing representation is 

assumed both by the analytic approach and also by some holistic approaches (e.g. Bartlett 

& Searcy, 1993). We will call it face-feature, as a representational term. The idea that 

there is some part-face based information used in our system is backed up by findings in 

neural organization and specificity of our visual cortex. It was demonstrated that the 

analysis or decomposition of a visual scene precedes global percept, and that different 

neural substrates especially attuned to detect elements of visual scene are organized into 

more complex neural groups, which respond to more complex combinations of stimuli 

(e.g. Thorpe & Fabre-Thorpe, 2001). 

In the next section we will review findings from several studies that suggest the 

existence of smaller face units, at the representational level. We will also see that 

different theories use features at different levels of abstraction. So, when we use the term 

feature we do not necessarily mean what is typically considered a face-feature: eyes, lips, 

nose, etc; the spatial relation between these nameable features could also be considered a 

feature, for example. 

 

Face features/face-representational units 

 

The following categorization of face-features based on the status of face 

representation could be identified over the body of research: 
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1. Face component, featural, componential, and piecemeal. These terms refer to 

smaller, visually decomposable units which are verbally namable and separable 

from other parts by high contrast (for example eyes), contour or texture.  

2. Relations between elements, the configural information (spatial interrelationship 

of facial features). Physical face features are spatially related so many researchers 

provided evidence that spatial relations could be face feature.  

3. The face as a whole or holistic representation. Raw, whole-face image is stored 

and then utilized later.  

 

First and second order features 

 

Rhodes (Rhodes, 1988) post a question about what the features of identity are? Despite 

the high overall similarity between faces, we are very efficient in face 

identification/recognition. Only a small set of cues can help us differentiate between two 

identical twins. Several studies questioned the importance of salience of some facial cues 

in face recognition (Haig, 1985; Rhodes, 1985; Shepherd, Davies, & Ellis, 1981). One 

way to define a face feature is the ability to label it by a single word in natural language 

(eyes, mouth, chin, nose, etc.). So, Rhodes (1988) defined two sets of face features 

involved in identification/recognition: first-order and second-order features. The first-

order features correspond to discrete face cues that can be labeled (eyes, mouth, chin, 

nose, etc.). The second-order features are configural features, which characterize the 

spatial relations between first-order features and information about the face shape. Also, 

there exist higher-level features which are even more complex and made from the set of 

lower level complex features. For example age is a complex feature that contains 
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information from both the first- and second-order features (eye size, lip thickness, etc.). 

The critical difference between levels of feature complexity is that the first-order features 

can be specified without reference to the other face features, while the second-order 

(configural) features must be specified in relation to some other feature. Several studies 

provided evidence that the higher-order features (such as sex, race, and age, emotion) are 

more important in face perception (Groner, 1967; Milord, 1978; Shepherd & Deregowski, 

1981). Rhodes (1988) found that both the first- and second-order features are encoded 

and represented in the face space, as revealed by the multi dimensional scaling (MDS) 

solution. 

 

Isolated and relational features 

 
Use of the second-order configural information was further detailed by Diamond 

and Carey (Diamond & Carey, 1986). The authors suggested that features of the face-

recognition system could lie along on a continuum which characterizes the level of 

reference of each feature with respect to the other features. On one end of the continuum 

are “isolated” features, or the features that do not make any connections to other features. 

This is the standard view of the cognitive system that is based on independent face 

features. When we move along the continuum, we increase the level of relativity of each 

feature with respect to other features. For example, at some point we could have color, 

texture of hair, shape of mustache, beard or eyeglasses. Going further on that continuum 

increases the relative properties these features and we get some shape face properties (a 

face expression, wide-set eyes, etc.). Sufficiency of the relative aspects was demonstrated 

in the studies were only low frequency information aided face perception (Harmon, 
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1973). A low frequency presented face picture bear virtually no information about 

features. Despite that a face could be recognized above chance. Another line of evidence 

comes from the studies showing that perceivers are very sensitive to tiny perturbations of 

internal face-spacing in photographs (Haig, 1984; Hosie, Ellis, & Haig, 1988). Diamond 

and Carey proposed two important face-relational properties: first- and second-order 

relational properties (Diamond & Carey, 1986). All members of visual objects that 

belong to the same class must share common configuration. So, utilization of the first-

order properties is useful in discrimination between different classes of objects. All faces 

share the same configuration: eyes are above nose and lips, and nose is central and above 

lips. Individuation of the members of the same class is achieved by utilization of second-

order relative properties such as separation of eyes, position of the lips, etc.  

 

Face representation as a point in multidimensional space 

 

Objects that undergo visual perception can be viewed as a point in multi dimensional 

visual space that serves as a meta-theoretical representation of the physical world. 

Correspondingly, each face could be seen as a point in a face-space. Dimensions of that 

space usually have some psychological interpretation, but not necessarily so (see 

computational methods section). Distance between face-representations is usually taken 

as a measure of similarity in that space, where short distances correspond to high 

similarity. The theoretical constructs developed in this approach are concerned with how 

the characterization of that space could explain a body of experimental evidence, and 

account for typical effects found in categorization and recognition tasks. Other aspects 

are concerned with the mathematical properties of the space(s) (O'Toole, Wenger, & 
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Townsend, 2001; Townsend, Solomon, & Smith, 2001; Townsend & Spencer-Smith, 

2004), such as what type of metric should be employed, which type of geometry (spaces) 

should be used for characterization of faces, how to infer face-distance from the measure 

of their similarity, and how the representation relates to holistic or configural face 

encoding. 

 We will briefly refer to the notions of template and prototype, because they are 

important theoretical construct for some theories within this approach. According to the 

prototype model faces are encoded by a reference to a generalized baseline memory 

representation. The idea is relatively old: Galton created a prototypical face by 

superimposing photographs of members of the same family (Galton, 1879). The 

prototype effect is a tendency to respond to a central value of set of exemplars, even when 

it was not seen before (see Cabeza, Bruce, Kato, & Oda, 1999). Diamond and Carey 

(1986) suggested that faces share a common frame (first order relationship), and what 

makes them differentiable within the class of face-objects are spatial deviations from the 

prototypical face. We could also add that a prototype is an averaged entity of the class of 

objects, or the central tendency. Prototype face is located in the center of the face-space.  

How does the prototype theory accounts for some findings? Similarity and 

distance of each perceived face with respect to the prototype plays a role in recognition 

and categorization. Each perceived face is compared to the prototype and the deviation 

from it is encoded. The stored face-information, or face features in this case, is the 

distance or the deviation from the prototype, and this information is utilized in face 

encoding and recognition.  
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In order to optimize recognition more prototypes could be used. For example a 

prototype could be very distinct from the new presented object (a new face). In order to 

gain more flexibility in recognition, two prototypes could be stored as a set of exemplars, 

defining two distinct groups or classes of objects. This approach could account for 

between-category findings via set of face exemplars. 

Based on the role of a prototype in encoding, several approaches could be defined 

(Valentine, 1991). The norm-based model posits a face prototype in the center of the 

multidimensional face-space. Each new face is encoded as a deviation from the prototype 

as a vector in that multidimensional space. The vector points away from the central 

prototype, and its projection of its length onto each dimension characterizes the influence 

of that dimension. Similarity between faces is defined by both calculating the distance 

between two faces (two points in the space) and as well as the distance from each point to 

the origin or prototype. In contrast, in the exemplar-based model the similarity between 

two faces is solely determined by the distance between their points, while the central 

points play no role (Smith & Medin, 2002). 

 An interesting aspect of the prototype theory is that a prototype face could formed 

even thought the exact prototype-face has not been presented at all, simply by mental 

averaging over many previously learned faces (Solso & McCarthy, 1981). Inn, Waldern 

and Solso (Inn, Walden, & Solso, 1993) suggested that the prototype consists of the most 

frequent features. Bruce, Doyle, Dench and Burton (Bruce, Doyle, Dench, & Burton, 

1991) provided evidence that several prototypes could be formed for several distinct 

groups of learned faces.  
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 Formation of the prototype is independent of the level of information that it 

carries. Cabeza and Kato (Cabeza & Kato, 2000) formed two types by a morphing 

technique (elastical blending of pictures): featural and configural prototypes. The 

configural prototype was formed by morphing four different faces into one. The featural 

prototype emphasized the importance of face-features and was created by the morphing 

of features only. 

 Nosofsky (Nosofsky, 1991) showed that the generalized context model, which is 

based on exemplars, can encompass many predictions and experimental findings in face 

processing. This model was generalized from the Medine and Schaffer (Medin & 

Schaffer, 1978) the context model, which in turn, relied on the Shepard-Luce similarity 

choice model for identification (Luce, 1963; Shepard, 1957; Townsend & Landon, 1982). 

In contrast to the generalized context exemplar model the most flexible prototype model 

has less explanatory power. A major alternative to Nosofsky’s generalized context model 

has been the bounded performance model (e.g. Ashby & Gott, 1988). In that model the 

face-space is carved up into a set of mutually exclusive and exhaustive regions, each of 

which is associated with a distinct response.  

 Gestalt and holistic properties could be captured by relatively complex metric 

spaces such as Riemannian metrics on infinite dimensional spaces (Townsend et al., 

2001). They provided a general meta-theory that describes the position of face in an 

infinite dimensional space by a space function, therefore providing the meta theoretical 

set of tools that could be used to describe variety of manifestations of face perception.  

We will return to the finite space for the moment and see in more detail how we 

infer some face properties using classical tools such as multidimensional scaling (MDS). 
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The general goal of the MDS (Kruskal, 1964a, 1964b; Shepard, 1962, 1974, 

1980) approach is to find a set of points in a multidimensional space such that the 

distances between them are monotonically related to some observed measure of pairwise 

dissimilarity (non-parametric MDS). An additional aim is to find a function that relates 

and correctly matches the distances and the observed measures of dissimilarity (metric 

MDS). The procedure of finding an MDS solution is to measure pairwise similarity 

ratings between objects in order to find a set of dimensions and points within those 

dimensions that describe each compared object. The goal of the procedure is to uncover 

the simplest dimensional structure for the directly unobservable psychological space 

which determines the properties of perceptual or memory representations.  

Holistic and analytic properties are examined by inspecting interactivity between 

dimensions. The theory behind the MDS application and the interaction of dimensions is 

carefully covered in the literature (Garner, 1976; Maddox, 1992; Shepard, 1964, 1991). If 

selective attention can be realized through the independent manipulation of each 

dimension then the psychological space is considered to be separable. However, 

interactively and holistically processed dimension are defined as being integral. 

Separability and intergrality are tested by comparing the goodness of fit of Minkowski 

power metrics. The Euclidian metric is associated with the integral dimensions, while the 

City-Block metric defines separable dimensions.  

As Thomas (Thomas, 2001a) pointed out, several aspects of such approaches are 

unsupportive in understating the nature of holistic and analytic processing (by using 

integral and separable properties revealed by the MDS). First, and probably the most 

importantly is the inability to specify the exact source of possible interaction between 
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dimensions (Dzhafarov & Colonius, 1999; Townsend & Thomas, 1993). Further, there is 

a problem with statistical reliability of the power parameter of the metric used (Nosofsky, 

1986; Shepard, 1986). 

  

Computational approaches 

 
In contrast to the MDS approach, various computational approaches extract face-

features from the two-dimensional image, which is analogous to the retinal image, by 

application of visual frequency filters that should correspond to some neural property. 

This approach is usually identified by utilization of the principal component analysis 

(PCA). Instead of frequency filters some authors use models of overlapping receptive 

fields (Edelman & O'Toole, 2001) or Gabor jets (Wiskott, Fellous, Kruger, & von der 

Malsburg, 1997). In principal component analysis, face images are projected onto 

eigenvectors that characterize variation of intensities of two-dimensional image at each 

individual pixel. All these methods provide a rich description of a face stimulus. 

In computational methods, accurate holistic recognition of a face usually requires 

a correct localization of single face-features. For example, eigenfaces (Turk & Pentland, 

1991) and Fisherfaces (Belhumeur & Kriegman, 1997) need accurate localization of key 

features in the face. The features could be extracted in several ways: (1) By generic 

methods based on edges, lines, and curves; (2) By feature template-based methods that 

are used to detect facial features such as eyes; (3) By structural matching methods that 

take into consideration geometrical constraints on the features.  
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Similar to behavioral-based research several computational approaches emphasize 

either holistic representation, featural aspects, or some combination of both. (1) In the 

holistic matching methods, a whole-face image is used as the raw input to the system. 

These methods are based on use of PCA in order to obtain (for example) eigenfaces 

(Craw & Cameron, 1996; Kirby & Sirovich, 1990), Fisherfaces (Belhumeur & Kriegman, 

1997; Swets & Weng, 1996; Zhao, Chellappa, & Krishnaswamy, 1998) (2) In feature-

based (structural) matching, local features (eyes, nose, etc.) are first extracted, and their 

locations and local statistics are used for structural classification. Some of prominent 

examples are the pure geometry method (Kanade, 1973), the dynamic link architecture 

(Okada et al, 1998)(Okada et al., 1998), the hidden Markov model (Nefian & Hayes, 

1998). Finally (3) hybrid methods use both local features and the whole face region in 

recognition. Several approaches can be distinguished: the modular eigenfaces (Pentland, 

Moghaddam, & Starner, 1994), and the face region and components (Huang, Heisele, & 

Blanz, 2003). 

 

Computational methods: what are the features?  

 

The cognitive models of face perception (Cottrell, Dailey, Padgett, & Adolphs, 

2001) are between psychologically plausible models and the engineering-based 

approaches, and should provide a basis for the induction leap, concerning the 

characterization of face processing system. A benefit of that leap depends on (a) the 

biological plausibility of the model, (b) the extent to which actual model performs the 

same task as humans, (c) the correlation between human measures and the face model 
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predictions, (d) the extent to which the model provides useful insight into the nature of 

the process of face perception and (e) novel predictions that the model can account for.  

Cottrell (Cottrell et al., 2001) defines several dimensions of feature-space used to 

characterize features that can be extracted and manipulated using computation methods. 

Rhodes (Rhodes, 1988) noted a difference between two types of features that could be 

extracted from an image: the first-order features (simple face-features) and second-order 

features that are a combination of the former ones. Therefore, there is very close 

similarity between these two approaches based on the type of face representations used, 

though the differences stem from the different assumptions concerning the level of 

characterization of the mechanisms involved in face perception, as well as the processing 

mechanism. Eventually, after enough research evidence is accumulated, both approaches 

should converge and reveal the same cognitive structure. At this moment the 

computational approach makes more bold assumptions about how the extraction process 

is conducted by freely manipulating several representation properties. According to 

Cottrell (Cottrell et al., 2001) the dimensions of face representations are (1) local/global 

depending on spatial context of the features relative to the object of interest (features of 

holistic images are usually treated as memory templates of different complexity level); 

(2) the rigidity of a particular region of interest, which specifies to what extent the feature 

or templates can move on the face image, and to be deformed in order to account for the 

variability of their appearance on the face; and (3) whether the features are learned from 

the examples in the domain of interest.  

Cottrel (2001) differentiated between three type of features derived from raw two-

dimensional face images using PCA: the eigenface, eigenfeature and local principal 
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components. The eigenface is an eigenevector of the covariance matrix of the face image 

set. The eigenfeature uses the same extraction process except that the analysis is 

restricted to the rectangular regions around the eyes and mouth (for example). The local 

principal component eigenvectors: provide a “basis image” and it resembles the filtering 

performed by cells in primary visual cortex. Computations are conducted on a large 

number of small pixel patches sampled uniformly from random positions on the face.  

The general criticism of the computational approaches is the lack of psychological 

plausibility of the theoretical constructs and the fact that there is no clear and strong 

relationship between behavior and properties of these models and observed human 

performance in various cognitive tasks.  

 

Processing models 

 
Face-space and processing structure 

 

In previous section we stated that the two most fundamental questions in face 

perception (and in object perception as well) are concerned with providing a detailed 

status of face representation and organization of mental processes during face perception. 

The two issues are closely interlinked, and some recent attempts have been made in order 

to specify this connection (Sergent, 1984; Thomas, 2001a; Townsend & Thomas, 1993; 

Wenger & Ingvalson, 2003; Wenger & Townsend, 2001). To some extent both the “who” 

and “what” approaches seem to be complementary. By examining the face-space and 

providing a reasonable approximation of its dimensions, we get rich information of what 

could be the building blocks of face representations, which are connected to 
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configural/holistic properties of a face representation. If we can validate that particular 

face representations are holistically memorized, then the face-space describing it should 

be different, in terms of the metric used, and the properties and relations between 

dimensions, when that holistic face representation is compared with some other 

representation that does not posses holistic properties. In fact in order to show that face 

representations are based on analytic mode of processing, which is analogous to the sum 

of independent face-features, a MDS solution of the similarity of an orthogonally 

manipulated set of faces should reveal an orthogonal solution with the same number of 

dimensions. Several seminal studies for both separable and integral dimension stimuli 

were conducted with an identification-categorization task (Nosofsky, 1986, 1987; 

Shepard & Chang, 1963; Shepard, Hovland, & Jenkins, 1961). 

Usually that approach suffers from being relatively static when describing 

perception: what happens in the cognitive system in a more general case when learning 

occurs, and how we actually map the point-wise face representation in that space remains 

more or less imprecisely defined and unclear. Here we care about the processing structure 

during face perception. We will provide one representative example which clearly warns 

the modelers when bypassing the question concerning architecture of face-encoding. By 

the architecture we mean whether processing is organized in serial or parallel, in the 

simplest form possible. So, when a face representation is mapped onto some face-space, 

by application of MDS for example, we really do not know how the cognitive system 

used the dimensions of that space. We do not know whether they are accessed in serial or 

in parallel, for example. Because dimensions can be seen as sources of evidence, and 

both serial and parallel architectures could collect evidence from orthogonal, i.e. 
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independent, dimensions. Even when parallel architecture is limited capacity, 

independence, or orthogonality in this case, can be preserved, and both architectures 

could provide the same MDS solution. Some MDS modelers stick with the parallel 

processing architecture (e.g. Nosofsky & Palmeri, 1997) and some with the serial 

(Tversky & Krantz, 1969). Seriality in the latter case is based on an unsupported 

assumption that orthogonality is equal to analytic processing, which is considered to 

equate with serial processing. A theoretical issue that is closely related to that problem is 

model mimicry (Townsend, 1971a) between serial and parallel structures, and is 

especially hard to solve when simple mean response time analyses are used. 

In addition to the issues with architecture, the MDS solution does not indicate at 

what level there was interaction between dimensions of interest. Usually, the dependency 

between dimensions of face space is solved by determination of the space metric 

properties (separable or non-separable dimensions). But possible levels of interaction are 

numerous: information could interact at stimulus input, during evidence accumulation, at 

the processing output, or at the decisional stage (Ingvalson & Wenger, 2005; Thomas, 

2001a; Wenger & Ingvalson, 2003). 

We will also see that sometimes specific treatment of the face-representation 

dictates the structural issue, i.e. the format of a face representation dictates how processes 

are organized. The two issues of representation and structural organization could be 

tightly interwoven  

Typically, there is a tendency to equate or make functionally inseparable the two 

issues. So for example, analytic processing which assumes piecemeal, feature-like 

representations is usually defined as a slow serial process (e.g. Tversky & Krantz, 1969). 
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In contrast, holistic processing (or perception), which assumes template like 

representations, calls for parallel processing. 

The advantage of using more powerful modeling is the ability to test the system’s 

architecture, dependency, stopping rule, and capacity. We will suggest stronger tests for 

processing structure in a later section. Meanwhile, in next section, we will focus on the 

history of developing the ides of face processing models. 

 

Serial processing 

 

In the experiment of Smith and Nilsen (Smith & Nielsen, 1970), participants had 

to make same/different decisions between two faces, while number of dissimilar features 

was manipulated. The time needed to make response decreased as the number of 

dissimilar features increased. They found that ‘same’ and ‘different’ responses are 

differently affected by the time delay between faces that were compared. ‘Different’ 

responses showed more sensitivity to additional differing of feature-dimensions. ‘Same’ 

responses showed sensitivity to the addition of more relevant dimensions to the faces, 

only at lag of 10s. The authors suggested that a feature comparison process occurs on 

‘different’ trials, while ‘same’ faces are processed more holistically. In fact, with 

prolongation of the delay between the two faces, the observed holistic processing of the 

‘same’ response switched to a more featural, independent processing strategy. So, the 

main assumption concerning identifiabilty of analytic and holistic processing is 

sensitivity (at the mean RT level) to increasing the number of relevant dimension. If 

mean RT is not affected by this increase, then a holistic processing structure is suggested. 

By inspection of mean reaction time for the presence of a particular feature, they also 
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suggested that faces are scanned from the top to the bottom in the serial-like manner. This 

finding was also consistent with analytic processing. When to-be-compared faces were 

separated by 1s during presentation, the manipulation of the number of similar features 

did not show any effect in the “same” condition. That was taken as evidence for a 

template matching process. Thus, they adopted a dual-model, for face recognition: both 

analytic (serial) and holistic (template matching) could be used, depending on properties 

of the faces to be compared. A possible confouding factor was revealed subsequently: the 

number of relevant features is correlated with the number of irrelevant features since the 

faces used in experiments had five features (see Sergent, 1984).  

Further support for serial processing model came from Bradshaw and Wallace 

(Bradshaw & Wallace, 1971), and Hole (Hole, 1994) who suggested that a “same” 

decision takes more time than a ‘different’ due to the engagement of serial, self-

terminating search. Serial self-terminating search means that participants checked one 

face feature at a time: say nose, then the eyes, then the hair, until they found any 

difference. If no differences were observed then they responded ‘same’. Further, Rhodes 

(1988) suggested that faces are processed serially top-to-bottom, emphasizing the 

particular importance of eyes in identity recognition.  

The strict serial architecture is usually enforced by the idea that there exists a 

feature processing order. As indicated in Smith and Nielsen (Smith & Nielsen, 1970) the 

order of processing could be revealed by mean reaction time for particular component. If 

the standard serial system is employed during face perception then processing order could 

be determined by the difference in reaction time needed for each component to be 

recognized. However, we know that the limited capacity parallel processing model can 
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mimic behavior of the standard serial model (Townsend, 1971a), and the processing order 

in the parallel system is determined probabilistically by the ratio of processing rates 

between channels. If processing rates for different face-features are different, then mean 

reaction time for recognition for each component could mimic behavior of standard serial 

system. Therefore, more powerful tests are needed for exact determination of the 

system’s architecture, and such measures could include inspection of termination rule as 

well as and the capacity (Townsend & Ashby, 1983; Townsend & Nozawa, 1995)  

Although the fact that the difference in mean recognition RTs between face 

features cannot be used to reveal architectural properties, it could be used as evidence 

against a strong version of the template model. The template model assumes that faces 

are encoded into icon-like, and unitary face representations, where extraction of face 

parts, or face features, requires approximately the same amount of time. Given that 

different feature-sensitivity was observed in many investigations (Bruce, Dench, & 

Burton, 1993; Davies, Ellis, & Shepherd, 1977; Ellis, 1975; Rakover & Teucher, 1997) it 

could be argued that features, do exist and that they are encoded as independent 

representations (e.g., Sergent, 1984). 

The dual-mode hypothesis, which assumes that the cognitive system relies on 

both featural and holistic sources of information was proposed very early in face 

processing research (Smith & Nielsen, 1970). It is interesting to note that the dual status 

of face representations is usually automatically connected to the different processing 

systems that include serial and parallel processing. We will discuss these issues in the 

next section.  
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Top-to-bottom face processing has also been evidenced in the work of Sergent 

(Sergent, 1982). It is generally found that top facial features provide more information 

than bottom ones. In the study of Shepherd et al (Shepherd et al., 1981; p.105) it was 

found that the participants could rank the face-features with respect to how long they held 

their attention to catch: eyes (62%), hair (22%), mouth (8%).  

Further evidence for analytic processing was suggested by Walker-Smith (1978) 

and also by Tversky and Krantz (Tversky & Krantz, 1969) by showing that the 

contribution of each facial component was independent of other face-components, which 

the authors described by using serial processing model. 

 

The parallel processing models 

 

Matthews (Matthews, 1978) was the first to suggest that perception of faces 

includes a mixture of parallel and serial processing. He used the ‘same-different’ method 

as well, and found that changes to either the hair, eyes or chin are detected equally fast, 

and these features are faster then the eyebrows, nose and mouth. However, this 

conclusion could be questioned (see critique by Sergent, 1984). Averaging across 

different participants could eliminate or mask individual differences that might exhibit a 

strictly serial processing strategy. In fact, Sergent (1984) suggested the parallel 

processing architecture with dependent processes. Sergent pointed out a very important 

general problem with the same/different reaction time approach: if we vary a number of 

different features, then we ultimately change configural properties as well. If a serial 

strategy is likely to be adopted, then it is not certain whether this is because of the change 
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to a number of different features, or because there is a change in configuration. A recent 

publication (Wenger & Townsend, 2001) revealed support for parallel self-terminating 

face processing, using stronger tests for architecture based on the system factorial 

technology (SFT).  

 

The dependency issue 

 

 The issues concerning processing architecture in subsequent investigations are 

practically bypassed, and other means of modeling are used in order to explain the data. 

The reason for avoiding analysis of architecture was twofold: the mimicking between 

serial and parallel models renders some architecture indistinguishable when means are 

used (Townsend, 1971b); so without a strong test not based solely on means it seems 

much easier to adopt the difference feature- and holistic-based representations as an 

explanatory tool. The feature representation invoked the so-called analytic processing 

mode, and everything else was termed the holistic/configural processing of faces, 

although in many variations. This combination of both holistic and analytic modes 

provided a very flexible alchemistic combination that was very powerful in data 

explanation, although complicated to falsify.  

Instead of further developing and testing the validity of some processing models 

(based primarily on architecture) most research has adopted the assumption that governs 

simultaneous usage of both (or many) formats of face-representation during face 

encoding. The pitfalls of avoiding architectural issues were obvious; for example, Sergent 

(1984b) found that the decision time to detect two features is shorter then the time to 

detect only one. In the same/different task she manipulated three dimensions: eyes, chin 
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contour, and “internal space” (whether the eyes and nose were closer to the forehead or 

the chin) and demonstrated decrease in mean reaction time as she increased the number 

of “different” dimensions. Note that only one face-feature (dimension) is needed to make 

a correct “different” response. She found that when she increased the number of different 

features then the decision is faster. This was considered clear evidence for a facial-

representation that consisted of dependent face-parts. 

Sergent (1984) aimed to investigate dependency between facial features rather 

than focusing on the architectural issues. But this is prima facie evidence of how 

knowledge of processing structure can help explain findings. If face processing is 

independent, that is if the processing time of each face-feature is by not affected by 

processing time of other face-feature (stochastic independence) regardless of architecture, 

and can terminate on completion of any feature (self-terminating or minimum time 

processing in this case), then determining whether faces are same/different will depend 

probabilistically on the speed of processing of the most salient or fastest feature. 

It is well known that the presence of two signals, which are both positive targets, 

will produce faster RT when compared with the single condition, even when the same 

processing rate parameters are used in both conditions (e.g. Colonius, 1990; Grice, 

Canham, & Boroughs, 1984). Such statistical facilitation occurs with any number of 

multiple targets. The class of models that can produce statistical advantage in the 

redundant target case is the minimum time, independent, parallel processing system (the 

so-called horse race model). Thus we have an example of a particular parallel 

independent architecture that can be confused with the model that assumes dependency, 

as in Sergent (1984). 
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Configural and Holistic processing 

 
Mondloch, Le Grand and Maurer (Mondloch, Le Grand, & Maurer, 2002) broadly 

defined configural processing as perception that involves perceiving relations between 

the features of a stimulus. So according to the authors, configural processing could be 

divided into three types: (1) sensitivity to first-order relations, that is, recognizing a face 

because the eyes are above the nose, and both are above the lips (Diamond & Carey, 

1986; Johnson, Dziurawiec, Ellis, & Morton, 1991; Kanwisher, Tong, & Nakayama, 

1998; Moscovitch et al., 1997); (2) holistic processing, which is based on gluing together 

the features and forming a gestalt (Hole, George, & Dunsmore, 1999; Young, Hellawell, 

& Hay, 1987) – higher recognition accuracy is achieved when a face-feature is presented 

in the context of previously learnt features (Tanaka & Farah, 1993; Tanaka & Sengco, 

1997); and (3) sensitivity to second-order relations, which are defined as information 

concerning the spatial relations among features (Leder & Bruce, 1998, 2000). According 

to the authors, the configural is a more general term than holistic, since the latter is a 

special case of the former.  

For Gauthier and Tarr (Gauthier & Tarr, 2002) the term holistic is a super-

ordinate term and cannot be defined using a single mechanism or representational format. 

Based on separability of experimental findings, they operationally defined holistic by: (1) 

Holistic-configural, referring to the experimental finding showing unique effect of 

configural processing on part identification (e.g. Tanaka & Sengco, 1997); (2) Holistic-

inclusive, referring on obligatory processing of all features from an object compared to 

when a feature of interest is combined with different parts of another object; and (3) 

Holistic-contextual, arising when individual parts are better recognized in the context of 



 28

other parts then in isolation (e.g. Tanaka & Farah, 1993), and is independent of expertise, 

unlike the first two. Bartlett, Searcy, and Abdi defined configural processing as a 

broader category than holistic processing given that configural need not be holistic 

(Bartlett, Searcy, & Abdi, 2003). Configural processing (a) involves template-like 

structure (we will call it the stronger assumption of configural processing) that probably 

includes the whole face (Bartlett & Searcy, 1993; Farah et al., 1998; Yuille, 1991), and 

(b) it is sensitive to the internal facial region, as was revealed in a patient that suffers 

from object agnosia, but not prosopagnosia (Moscovitch et al., 1997), and (c) spatial 

relations between adjacent features are encoded as local representations (such as distance 

between the eyes, mouth and tip of nose, etc.), rather than being global or holistic.  

We will focus now on several approaches that are more explicit in terms of their 

definitions, but they are less general as well. Two definitions of holistic processing have 

been offered by Farah, Tanaka and Drain (Farah et al., 1998) and Carey and Diamond 

(Diamond & Carey, 1986): holistic encoding and configural encoding.  

In holistic encoding parts of perceived objects are not represented and/or 

processed independently but are perceived as a whole. That definition is very close to the 

idea of a template matching scheme. A face representation does not consist of parts or 

face features, but rather the features form a unitary representation. Accessibility of the 

parts is different than the whole face.  

It is debatable whether the unitary form of a holistic representation should always 

help part processing. That is, will a template face structure help or hinder recognition of a 

face feature? Some convention is that good form or gestalt should hinder processing of a 

part (Donnelly & Davidoff, 1999; Tanaka & Farah, 1993; Tanaka & Sengco, 1997). 
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Experimental evidence suggests this is so: a holistic representation can inhibit the search 

for an individual feature .  

The second definition, configural encoding, refers to the idea that the spatial 

relationship between features in a perceived object is a major determinant in holistic 

perception. A representation of an object consists of separate feature representations. 

Also, spatial relations between these features are stored, and they provide a crucial 

contribution to holistic processing. Tanaka and colleagues (Tanaka & Sengco, 1997) 

provided a demonstration of how single feature is more accurately recognized when 

presented in a face background than in isolation.  

 

Holistic vs Configural vs Featural 
 

 
Sometimes the terms holistic and configural are used interchangeably in the 

literature, or sometimes they reverse generality with respect to each other: for example, 

according to some authors (Bartlett et al., 2003; Mondloch et al., 2002) configural is 

broader then holistic, while for others (Gauthier & Tarr, 2002) the reverse is true. It is not 

surprising than that they are frequently confused. 

 Part of the confusion stems from the fact that no absolutely clear definition exists 

of what the individual face features are. Processing face features should be on the 

opposite side of dimension of what we define as a holistic/configural processing. Let us 

see one useful categorization of face-features that is derived from the holistic definition 

(Bartlett et al., 2003): (1) face-features should be explicitly represented in memory codes; 

(2) they are consciously accessible for verbal report; (3) they are encoded in such way 
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that no other feature representation influences them. We could agree with this definition, 

although we will consider some problems.  

Features could also have a configuration; for example, in the definition of the 

first- and second-order relational properties (Diamond & Carey, 1986), face-features on 

the level of cognitive representations are encoded as spatial relations, not particular 

features per se. We can also think of recognizable face features as possessing holistic 

properties: nothing prevents us for treating an eye as a gestalt. It has some form; it is 

comprised of separate feature, and we also have appropriate verbal names for the features 

that constitute an eye (iris, cornea, pupil, eyelid, lashes, etc.). 

So apparent confusion of terms configural and holistic has reasonable grounds: 

definitions of parts and their relations can be arbitrary. Solutions for the feature definition 

could be to treat the smallest part of face as a feature (for example, as extracted in the 

computational approach), or we can look for face parts that are visually discrete and can 

be separately labeled. But then the definition of holistic/configural is troubled - there are 

infinitely many possible spatial relations between infinitesimal face parts, and therefore 

infinitely many levels that holistic/configural properties could be defined. In fact, a face 

and its parts are a complex, spatially-nested structure that possesses a good form and can 

always be broken into smaller feature units. It is almost arbitrary to define the cut-off 

point, to define the features and to define the relations between those defined features.  

 Since the definition of holistic/configural processing suffers from being an 

impenetrable construct, both the terms holistic and configural are usually operationally 

defined in experiments that produce similar experimental effects. The good news is that 

recently we have seen some consensus concerning the definitions of holistic/configural. 
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However, in order to properly define the terms we need to postulate either the 

mechanism (processes) of that processing and/or representational status of face-parts. 

The last thing we want is to define these terms based on operational definitions within the 

experimental paradigms. 

The goal of many researchers in the face recognition field is to provide an 

accurate definition of holistic face perception. A definition through operationalization is 

one way to do this, but in this case it has produced lot of the confusion and disagreement. 

Again, this is mainly because theoretical constructs are uniquely identified with the 

experimental findings, which is the operational definition procedure by itself. Some 

cautious should be raised here, and we must suggest that an operational definition should 

and must be connected with the theoretical validity and uniqueness of the construct. The 

pitfalls of simply naming the experimental effects without thorough theoretical 

investigation including both representational issues and processing structure are 

unavoidable. We recall debatable Sergent (1984) finding of feature dependency 

mentioned earlier that could be explained twofold, but this is not isolated case.  

We suggest that in providing a general theory of (special) face perception, more 

attention should be devoted to testing the validity of theoretical constructs. If it is 

possible that the same experimental effects can be accounted for by different 

organizational principles, then some operationalizations are seriously questionable. 

The question of the building blocks of the face representational system is not only 

what the smallest parts (atoms) are, but also, what are the relationships between them, 

and what imposed structure of relations governs their utilization. Do featural (part-based) 

face representations with different levels of complexity exist and what is their  
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relationship to each other, in terms of a relationship between holistic and analytic 

processing? We suggest that in the cognitive system, all faces are represented with their 

smallest units operating independently. If the smallest units are namable face features 

(eyes, lips, etc.) then several independent mechanisms could collect the evidence for each 

feature presence. Another system is needed to integrate the information coming from all 

these independent detectors in order to make a decision. This is a simple description of 

the independent feature processing model. This is probably an oversimplified view of our 

face cognitive system, but it can serve as a comparison model.  

Given that we have a reasonable abstraction of what the features are, then the 

questions of interest are: what are their relationships to each other, and can they be 

represented at different levels of abstraction? The former question regards 

interdependence between representational features (testable with general recognition 

theory, GRT), and the latter concerns between-feature relationships. For example, simpler 

units can make more complex ones (lips and chin could combine into a lower half of the 

face feature). Does that more complex unit exist on its own, or is it constructed from the 

lower units for each percept? 

In the next section we will outline major research advances in differentiating 

between the statuses of the feature representations. The approaches covered here are the 

feature based dual-mode hypothesis, interactive hypothesis and holistic processing 

theories. The two issues of concern here are the status of feature representations and the 

relationships between them.  
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Featural hypothesis (feature-based) 

 
The discrete facial features (eyes, nose, lips, etc.) are very important in many 

human activities, including many aspects of social life and communication. Some 

features are particularly important in conveying verbal information such as the lips; 

another example, the eyes make the difference between true and false laughter (Ekman, 

Friesen, & Ellsworth, 1972). Face features provide cues to understanding someone’s 

mood, gender, and age. It seems, then, that the featural information, given its importance 

in conveying information, is very important - probably more than configural information 

(Rakover & Teucher, 1997).  

One of the earliest pieces of strong evidence for independence of face features 

was demonstrated by Tversky and Krantz (Tversky & Krantz, 1969). They applied an 

MDS analysis of dissimilarity judgments between pairs of faces. They demonstrated that 

face features are independent and that the whole face experienced as the sum of 

perceptual effects coming from each feature. These findings were criticized on the basis 

of using schematic faces which appear non-realistic.  

In contrast, in face recognition studies when face-encoding instructions are 

manipulated then the faces are recognized on a configural rather than analytical (featural) 

basis. Recognition is more accurate when it follows global evaluative judgments (for 

example, likeability, attractiveness, honesty, personality) than when judgments are 

focused on isolated features (Bower & Karlin, 1974; Patterson & Baddeley, 1977; 

Winograd, 1976).  
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Independent configural and featural (Dual-mode hypothesis) 

The idea of the dual-mode hypothesis is that both featural and configural modes 

of processing operate simultaneously and independently (Bartlett & Searcy, 1993; 

Bartlett et al., 2003; Searcy & Bartlett, 1996). Separability between configural and 

featural processing is evidenced in multiple studies. Some evidence comes from different 

sensitivity to face manipulations such as face inversions (Bartlett et al., 2003). The face 

inversion manipulation is believed to be the most ubiquitous factor that differently affects 

whole faces and face part stimuli. Recognition of features is usually affected by inversion 

to a smaller extent than whole faces. Additional evidence comes from a different role for 

learning and retention of faces. Reinitz et al. (Reinitz, Morrissey, & Demb, 1994) 

suggested that holistic representations are not directly stored in long-term memory, but 

are reconstructed at retrieval based on memory for features and the relationships between 

them. Bartlet (Bartlett, 1993; see also Bartlett et al., 2003) found that in a face 

recognition memory task, a new face composed of previously viewed features is often 

recognized as old. Although this finding could be attributed to featural processing only, 

converging evidence from other behavioral findings, computer simulation and neuro-

imaging studies revealed influence from both holistic and featural processing. Finally, 

featural and configural processing are anatomically distinct (Rhodes, 1985, 1993) and 

show different patterns of hemispheric asymmetries. It has been demonstrated that right 

hemisphere activation extends more anteriorly to include the fusiform face area (FFA) 

(Rossion et al., 2000).  

Although there is converging evidence of independence between featural and 

configural modes, stricter and stronger tests are needed. For example, providing 
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significant effects for the contribution of both models in a behavioral study does not 

discount possible interactions and interdependence. Similarly, evidence of separability of 

neural structures does not prove the non-existence of an interaction. For example, 

Rakover and Teucher demonstrated that recognition of features outside face context is 

affected by face inversion. Thus, features are affected also but to lesser extent than whole 

faces (Rakover & Teucher, 1997).  

Stronger test of reliance on features only during face perception is evidenced in 

Macho and Leder (Macho & Leder, 1998). They pointed out weaknesses of previous 

investigations and the importance of scaling issues in the dimensions of interest. Using 

the logit model, which is more suitable for analysis of proportions and allows for 

hierarchical testing of complex interactions between featural and configural (holistic) 

sources of information, they found that, in face processing, the main contribution come 

from the featural aspects. In their study, they manipulated the size of the face features 

(lips and nose) and the configural aspect (eye separation). No interaction was observed 

between pairwise tests of each feature and the configural aspect. Therefore they are 

assumed to exist as independent face properties. Besides its exact statistical 

appropriateness in investigations dealing with proportions, application of the logit test 

possesses lower statistical power than the general linear model (GLM) which is not the 

appropriate test for proportions or errors. However, use of the GLM is suggested in 

reaction times studies given that reaction time lie on a ratio scale, and it provides a more 

statistically powerful test. 

Leder and Bruce (Leder & Bruce, 2000) found that featural information did not 

depend on the configural information. In one of the conditions, participants had to 
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recognize a face feature, presented in isolation, compared to the case when the same 

feature was presented together with the addition of a redundant face context (in order to 

encourage holistic processing). They suggested that manipulated relational features were 

locally encoded and probably not post-hoc encoded from a face-template representation. 

A similar finding was provided by Macho and Leder (Macho & Leder, 1998) who 

demonstrated that relational information (eye separation) did not interact with the 

availability of other local features, in a face similarity decision task. 

Cabeza and Kato (Cabeza & Kato, 2000) showed that both featural and configural 

information are encoded and stored. They formed featural and configural prototypes and 

demonstrated that both are sensitive to featural and configural manipulations. The 

participants showed a tendency to commit a false alarm when they were presented with a 

previously unseen prototype, and this tendency was equal for both prototypes. Further, 

separability between the two sources of information was suggested when the two 

prototypes showed different sensitivity to face inversion.  

 

Interactive configural and featural 
 
 

Young, Hellawel and Hay (Young et al., 1987) demonstrated that configural and 

featural aspects can interact (see also Hole, 1994). They misaligned the upper and lower 

halves of several faces and asked participants to recognize either the upper or lower half. 

The aligned combination of old and new features hindered participants’ ability to 

correctly recognize single halves. Horizontal dislocation of the halves improved correct 

identity recognition of halves. Combining halves from different faces prevented holistic 
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encoding of single halves, probably by interference between featural and configural 

information preserved in both halves.  

The interaction between the face features and the perception of emotion has been 

demonstrated as well in face expression research. Different facial regions interact to 

produce different emotional expressions (Ekman et al., 1972). For example, the same 

movement of the brow may convey different emotions depending on the movement of the 

mouth (Ekman & Oster, 1979; McKelvie, 1973).  

We will also review the holistic encoding hypothesis (Farah, Tanaka, & Drain, 

1995; Farah et al., 1998; Tanaka & Farah, 1991, 1993; Tanaka & Sengco, 1997) that also 

includes both featural and configural modes. The strong version hypothesized that faces 

are encoded and stored in a way that involves very little featural decomposition. There is 

a strong reliance on configural properties.  

The weaker version assumes that both featural and configural aspects of face-

representations contribute to face perception and recognition (Tanaka & Sengco, 1997), 

but configural information is disproportionaly more utilized than featural. According to 

Tanaka and Sengco (1997): Holistic approach assumes that featural and configural 

interact in the face representation. They are stored together and interact. Change in one 

type of information will change the other one. The exact characterization of a mechanism 

of the interaction was not offered.  

Application of the strong test for processing organization and independence 

between processing modes (Ingvalson & Wenger, 2005) unequivocally revealed that the 

interactive (non-independent) relationship between configural and featural modes exist, 
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and that they operate simultaneously. That is very strong support for the work of 

members of the Farah and Tanaka group.  

 

Holistic processing 

 
Even when images are extremely blurry it is possible to recognize faces (Harmon, 

1973). Single features do not contribute to recognition at this low resolution. Ginsburg 

(Ginsburg, 1978) suggested that the low-spatial frequency information (at about two 

cycles per degree of visual angle) carries the basic face information. Higher levels of 

resolution are needed in order to perceive the featural information. 

The strongest holistic level hypothesis assumes that faces are encoded as the 

templates. The template preserves a detailed face description, almost in a raw image 

format, and is considered to be an exact copy of a perceived face. Individual face features 

can not be selectively accessed from it. This strongest assumption level has its 

disadvantages: the rigid template representation should pose no difference on 

performance when different isolated face features are searched (Sergent, 1984). Also it is 

cumbersome for any system to deal with the number of templates needed to describe 

more realistic faces (or objects) that are perceived from different angles. The idea of 

template representations resurrected when at least some rigid assumptions were relaxed. 

For example, if we assume that some transformation operates on a template by means of 

some scale transformations and 3-D rotation (e.g. Tarr, 1995) it is possible to reduce the 

need for large storage size needed for the template model. Also spatial transformations 

could accompany several stored templates (e.g. Ullman, 1991) (for review in object 

perception, see Palmeri & Gauthier, 2004). In the case of face perception we could 
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assume that the system stores different types of templates, including both featural and 

configural information. Thus, the face recognition system can achieve flexibility and 

generalizibility (e.g. the prototype model of Cabeza & Kato, 2000).  

We could adopt the convention that holistic or a whole in face perception is a 

hierarchically higher-order term that spans across a large part of a face (Bartlett et al., 

2003), encompassing lower-order terms such as the encoded features. The features must 

be defined on a basis of testable and observable properties with converging of both the 

statistical evidence of their perceptual significance and the configural information that is 

defined as a functional and measurable relationship between supposed features. 

 

Defining configurality in terms of processing characteristics:  

Systems factorial technology (SFT) 

 
Our approach to defining configurality looks at the issue from the perspective of 

four general characteristics of real-time information processing. These characteristics can 

be used to describe any information processing system that is operating on more than one 

encoded source of information. Analyzing and formalizing a definition of configurality in 

this way allows us to take advantage of almost three decades worth of important 

theoretical and methodological advances, (Schweickert, 1978; Schweickert, 1983; 

Schweickert, Giorgini, & Dzhafarov, 2000; Schweickert & Townsend, 1989; Townsend, 

1972; Townsend & Ashby, 1978; Townsend & Nozawa, 1995; Townsend & Schweickert, 

1989) advances that allow for strong-inference tests of a complete set of hypotheses 

regarding these characteristics. We refer to this body of work as systems factorial theory 

(SFT).  
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We begin with the issue of process architecture. Generally, there are three 

theoretical alternatives to consider. First, one feature may be processed first, followed by 

another feature. In this case, processing would be characterized as reflecting a serial 

architecture (Figure 1a). Second, both features may be processed at the same time; in this 

case, processing would be characterized as reflecting a parallel architecture (Figure 1b).  

 

Figure 1: (a) A serial system and (b) a parallel system. The input is a source of information for the system, 

for example a face or a non-face stimulus. “A” and “B” denote two channels of processing, two processes, 

or two units. For example “A” and “B” could be face-feature detectors (responding to the presence of an 

eyes and lips). In a serial system both channels process the input information in a non-overlapping manner, 

while in a parallel system the channels operate simultaneously. After all channels finish processing (for 

example, the recognition of a face feature) the decision is generated. In other words, upon the positive 

recognition of all face features the response “I see a face” is generated. Otherwise the response “This is not 

a face” is generated.  

 

Finally, both features may be initially processed in parallel, and the outputs of this 

processing may be pooled or combined into a single “channel” of information. In this 

case, processing would be characterized as a special form of a parallel processing 

architecture known as coactive processing (Figure 2b) (Diederich, 1995; Miller, 1982, 

1991; Mordkoff & Egeth, 1993; Mordkoff & Yantis, 1991; Townsend & Nozawa, 1995). 

The notion of configural processing, which suggests simultaneous use of all sources of 
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information, would seem to be at odds with a serial architecture. This suggests that 

configurality should be associated with a parallel or coactive processing architecture.  

 
 

Figure 2: Schematics of (a) A parallel independent system and (b) A coactive multiple channels processing 

system. A coactive model assumes that an input from separate parallel channels is consolidated into a 

resultant common processor, before a decision is made. 

 

 

The issue of stopping rule refers to the amount of information that is required in 

order for an observer to select a response. Two alternatives are generally considered. On 

the one hand, it may be that once some sufficient amount of either feature has 

accumulated, a response can be made. In this case, the stopping rule would be referred to 

as a self-terminating or minimum-time rule (Figure 3b). On the other hand, it may be that 

there is some requisite amount of both features required before a response can be made. 

In this case, the stopping rule would be referred to as an exhaustive or maximum-time 

rule (Figure 3a). The notion of configurality would seem to be at odds with the use of 

only some minimum amount of information. This suggests that configurality be 

associated with exhaustive processing.  
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Figure 3: (A) Schematics of stopping rules in a serial system. (a) A diagram of the standard serial system in 

the case of AND (exhaustive) processing. (b) The stopping rule in the serial system is depicted as an 

additional arrow which goes from the output of “A” directly to the decision box, allowing for the 

possibility of bypassing process “B”. When the evidence accumulated by process “A” is enough to make a 

decision then the processing can terminate, and additional processing of “B” is unnecessary.  

(B) Schematics of stopping rules in a parallel system. (a) A diagram of the standard parallel system in the 

case of AND (exhaustive) processing. (b) In the OR case, the evidence accumulated by process “B” is 

enough to make a decision and processing can terminate, even “A” has not finished yet processing (this is 

indicated by the short arrow).  

A       B 

 

The issue of independence (Figure 4) refers to the effect that the processing of one 

type of information may or may not have on the rate at which another type of information 

is processed. The first of the two alternatives needing to be considered is that processing 

featural information has no effect on the rate at which configural information is 

processed, and vice versa. In this case, the rates of processing of the two sources of 

information would be characterized as being independent. In contrast, it might be that one 

feature might increase the rate at which another feature is processed, or it might decrease 

the rate at which second feature is processed. In both of these cases, the rates of 

processing would be characterized as being either positively or negatively dependent. The 

notion of configurality would seem to be at odds with independence, suggesting that 

configurality should be associated with dependencies in rates of processing. 
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Figure 4: (I) Dependency between “A” and “B” in a serial system. (a) The standard serial 

independent system, (b) A positively dependent serial system: duration of “B” depends positively on 

duration of “A”, that is, faster processing in “A” will produce facilitation or faster processing in “B” and 

vice versa. For example, in a face recognition task faster recognition of the first face feature could give 

some “confidence” to a second process to speed up processing of a second feature. (c) A negatively 

dependent serial system: the processing time of “B” is inversely related to a processing time of “A”. Faster 

processing of “A” produces slower processing of “B”; that is, “A” inhibits “B”, and vice versa. Overall, a 

positively dependent system with the facilitation exhibits the fastest reaction time (500ms), while a 

negatively dependent system with the inhibition exhibits the slowest reaction time (1000ms).  

(II) Dependency between “A” and “B” in a parallel system. (a) The standard independent parallel system, 

(b) A positively dependent parallel system: The positive arrow from “A” to “B” indicates positive 

facilitation. That is, faster processing of one channel speeds up processing in the other channel (as depicted 

in the figure), and vice versa. (c) A negatively dependent parallel system: the processing time of “A” is 

inversely related to the processing time of “B”. Faster processing of “A” will produce longer processing of 

“B”; that is, “A” inhibits “B” (as depicted in the figure), and vice versa. Overall, a positively dependent 

system with the facilitation exhibits the fastest reaction time (500ms), while a negatively dependent system 

with the inhibition exhibits the slowest reaction time (1000ms).  

I       II 

 

The issue of capacity (Figure 5) is closely related to the issue of (Townsend & 

Wenger, 2004), and refers to the way in which system performance changes as workload 

is varied (Townsend & Ashby, 1978; Townsend & Nozawa, 1995; Townsend & Wenger, 

2004; Wenger & Townsend, 2000). For example, if it is assumed that when one feature 

information is augmented by another feature information (i.e., if the amount of 

information to be processed, and thus the workload, is increased), there will be no 

observable effect on processing efficiency, then the perceptual system can be assumed to 
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possess unlimited capacity (Figure 1b). If, in contrast, it is assumed that augmenting one 

of these sources of information with the other will result in a decrement in performance, 

then the assumption is one of limited capacity processing (Figure 5a). Finally, if this 

same change in workload produces an improvement in performance, then the inference is 

for super capacity processing (Figure 5c). If we think of a variation in workload as being 

accomplished by presenting increasingly more information about a face, then the notion 

of configurality would seem to be at odds with both limited and unlimited capacity 

processing. Instead, having more information (i.e., more of the holism) should lead to 

improvements in performance, suggesting that configurality should be associated with 

super capacity processing. 

 

Figure 5: Graphical intuition of a system’s behavior under different capacity bounds: limited capacity, 

unlimited capacity and super capacity. The total system’s capacity resource remains the same across all 

conditions. (a) In the limited capacity case the total capacity is divided between two channels. (b) In the 

case of unlimited capacity each channel uses the total capacity. (c) In the super capacity case, the capacity 

devoted to each channel exceeds the total system capacity. The additional capacity could stem from some 

third part agent in the system. Note that an increase in channel capacity produces faster processing for that 

channel.  
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Methodology and Tests 

 

Several tests have been designed in order to test the four fundamental properties 

of mental processing (J. T. Townsend & Ashby, 1983; Townsend & Nozawa, 1995). The 

systems factorial test (SFT) helps us uncover the architectural properties, distinguishing 

between serial and parallel processing, as well as determining stopping rule. It can also 

indicate a violation of the assumption of independent feature processing. The statistics 

that were derived to test processing properties are the mean interaction contrast and the 

survivor interaction contrast (Townsend & Nozawa, 1995). The latter is diagnostic 

function that is obtained after the analysis of survivor distribution response time 

functions.  

Also another experimental manipulation of workload should provide data in order 

to test the system’s capacity. The appropriate test would be inspection of the capacity 

coefficient, a ratio of integrated hazard functions for both comparison conditions (part- 

and whole-face). This test is based on a comparison of the total amount of work 

performed on separated face parts with respect to the total amount of work performed on 

a whole face. 

 

A. Systems factorial test (SFT): Critical tests for architectural properties (additive factor 

method and systems factorial technology) 

 
The additive factor method was designed in order to test the presence of serial 

short-term memory processing, when processes are independent and selectively 

influenced by their respective experimental factors (Sternberg, 1969). In order for the 
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system to exhibit additivity, experimental data should show linearity, with the absence of 

interaction between manipulated factors. Sternberg (1969) proposed that mental 

processes are serially organized, indicated by the linear function between reaction time 

and number of elements in the memory set (search set). If the load is increased by one 

element, a constant amount of latency is added to the total reaction time (around 40ms). 

This time was recognized as the time needed to mentally scan a single item. 

 In order to test this model, Sternberg used an ANOVA design, combining sets of 

2-3 experimental factors in a series of experiments (Sternberg, 1969). Findings indicated 

absence of interaction between experimental factors, thereby suggesting that factors 

operated in an independent manner. The independence between factors is realized 

through selective influence.  

Note that theoretically it is possible for processes to affect each other not only 

directly over external factors (selective influence) but indirectly through mutual 

connection between processes (stochastic dependence).  

  Sternberg proposed that possible interaction between factors is due to a failure of 

the selective influence assumption rather than change in architecture (e.g. a change from 

serial to parallel processing). If selective influence for some experimental factor does not 

hold, then that factor could affect two or more cognitive processing stages. 

A statistic that has been used to describe possible interaction between two factors 

with two levels could be presented as follows:  

 

MIC = RTll - RTlh - (RThl - RThh ) = RTll - RTlh - RThl + RThh  equation 1 
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This is known as the mean interaction contrast. This statistic is obtained by the 

double difference of mean RTs associated with each level of separate experimental 

factors. In this case, 2 x 2 factorial conditions. The subscript denotes the values of the 

salience levels of each factor (h=high, l=low), while position of each subscript value 

indicates first or second factor. Here low indicated some manipulation that yields slower 

processing, high for faster processing, for example target brightness level. So, RTlh 

indicates mean response time for experimental condition when first factor was on low 

salience/processing rate, and second factor was on high level. If additivity is observed in 

a data set then MIC is identical to zero. 

 The limitation of the additive factor method was is inability to deal with 

architectures that are not serial - such as parallel or other systems. Schweickert offered a 

deterministic model based on graph theory, which showed how different systems could 

behave under assumption of selective influence (Schweickert, 1978). Most of the 

restrictions of the Schweickert theory were lifted by his subsequent work with Townsend 

(Schweickert & Townsend, 1989; Townsend & Schweickert, 1989). The systems factorial 

technology has been developed in order to test properties of mental processes 

organization under different architectures (Townsend, 1983; Townsend & Nozawa, 

1995). The authors showed that possible interaction between factors, or in other words 

mean interaction contrast that is different from zero (negative or positive), could be 

explained by change in architecture properties and stopping rule (Figure 6) rather than 

failure of selective influence. So, MIC<0, or underadditivity is typical prediction of a 

parallel exhaustive processing system. When MIC>0, or overadditivity is observed, it is 

associated with a parallel self-terminating processing (see Figure 6). In contrast to 
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Sternberg’s proposal (Sternberg, 1969), departure from additivity suggests that a system 

probably conducts parallel search that could be either terminated on finding a target or 

was performed for all elements. However these proposals were restricted to systems in 

which processes are stochastically independent and were selective influence holds. 

In addition to the MIC statistic, a more refined test has been developed based on 

survivor functions (Townsend & Nozawa, 1995). An important novelty was that a new 

assumption has been introduced – that selective influence operates on the distributional 

level. Note that a corresponding assumption of additive factor methods was that selective 

influence operates on mean level, that is - ordering of the means. But it is known that 

mean ordering allows the lowest level of statistical inference (Townsend, 1990). Much 

higher power of inference on behavior of one system is obtained when experimental 

manipulations are observed on distributional level, as ordering of CDF or Survivor 

functions implies an ordering of means, but not vice versa. 

 

 

Figure 6: The time-course of processing of two items (left column), the corresponding deterministic 

(middle column) and stochastic (right column) mean interaction contrast (MIC), across different 

architectures and stopping rules (rows). The time course of processing depicts the change in total 

processing time for different factorial conditions (HH, HL, LH, LL) for different architectures. Each 

upright bold arrow in the graph corresponds to total processing of one unit (in the left column), that could 

be at the H (high) or L (low) level. A dotted upright arrow indicates a process that possibly did not 

complete because the processing terminated on a completion of a previous process. The deterministic MIC, 

in the middle column, represents the duration or the sum of process times (as indicated on the y-axis in the 

first column). Note that we are not able to directly observe the deterministic MIC in experiments because in 

real system processing, components will add some variability or noise. The stochastic MIC is an observable 

measure and is obtained when some variability or noise is added to the overall processing. Error bars 

around each mean condition represent the standard error statistic (added here arbitrarily for the sake of 

presentation).  
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The survivor function is a probability function that gives the probability that one 

component has survived some time. In our case, it measures processing that is not 

finished at time ‘t’. It is very easy to obtain survivor function from response times, as 

S(t)= 1-CDF(t) (cumulative distribution function), and most statistical programs 
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nowadays have an option for calculating either the CDF or survivor function from a data 

set. 

The survivor interaction contrast function is defined as (Townsend & Nozawa, 

1995): 

 SIC(t) = Sll(t) - Slh(t)- (Shl(t) - Shh(t))     (2) 

 
Subscripts are defined in the same way as for MIC. There is specific signature of each 

stochastic processing architecture and stopping rule with respect to the shape of the SIC(t) 

function. For example, the parallel exhaustive model function is negative for all time, 

while serial exhaustive processing SIC function is first negative and then becomes positive 

(ans S-shaped function). In Figure 7 we presented SIC functions for parallel, serial and 

coactive architectures combined with different stopping rule. 

There is a straightforward mathematical relationship between MIC and SIC(t). 

When SIC(t) is integrated from zero to infinity, it will return the exact value of the MIC. 

This is well known mathematical property that integration of survivor function returns the 

expected time for that variable, which is the mean value. When SIC(t) function is 

integrated each term in Equation 2 is separately integrated because of the linearity of 

integration. Therefore it gives exact value of MIC. Thus, the exact value of the MIC is 

equal to the area of the SIC(t) function. 

 

Figure 7: An ordering of joint survivor functions for different factorial conditions (HH, HL, LH, LL) (left 

column) and the survivor interaction contrast (SIC) (right column) across different architectures and 

stopping rules (rows). Note that each SIC function is calculated using SIC(t)=Sll(t) –Slh(t) – Shl(t) + Shh(t). 

Each joint survivor function on the right hand-side is estimated from data (displayed in the left column). 

Note that each combination of architecture and stopping rule exhibits a unique SIC function. The shapes of 

these different SIC functions are independent of the form of the probability density function. 
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While the MIC is single number, the SIC(t) is a function of time. It is important to note that 

different shapes of the SIC(t) could produce the same MIC value. So it is obvious that the 
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survivor interaction contrast is more rigorous test because it demands the exact shape to 

be matched for a particular architecture with stopping rule defined.  

Information may be initially processed in parallel, and the outputs of this 

processing may be pooled or combined into a single “channel” of information. In this 

case, processing would be characterized as a special form of a parallel processing 

architecture known as coactive processing (e.g., Diederich, 1995; Miller, 1982, 1991; 

Mordkoff & Egeth, 1993; Mordkoff & Yantis, 1991, 1993; Townsend & Nozawa, 1995). 

Note that the coactive architecture assumes that all units were processed (exhaustive 

rule). 

  

B. Capacity 

 
This concept was investigated early in information processing research . Recently, 

it has received even more attention. The notion of capacity refers to a system’s response 

to change in workload. If the cognitive system slows down when we increase the 

workload, then it is considered to be limited capacity. If it is not affected it is unlimited 

capacity. Of special interest to us, is the idea of super capacity, where the system speeds 

up processing with increasing informational load (Figure 5). This hypothesized behavior 

could be used to explain some facilitation effects that occur during perception of objects 

with good form, or gestalt processing. For example, some investigations reported a face 

superiority effect in recognition where it was demonstrated that a face feature is more 

accurately recognized in the background of the study face then when a foil face was used. 

One important thing to observe is that capacity can be considered at the individual 

item level (single process) and also at the level of global processing (whole system). Note 
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that in can occur that while processing on a single item is of unlimited capacity, which 

means that this item will be processed at the same speed regardless of the total amount of 

work to be done, the whole processing system is not necessarily unlimited. For example, 

a parallel model with independently processing elements, and an exhaustive stopping 

rule, will show an increasing mean reaction time as a function of the number of processed 

elements, under unlimited capacity at the single element level. By changing the stopping 

rule to self-terminating, it will exhibit overall unlimited capacity, that is, it shows a flat 

function of reaction time as a function of the workload. And further, if the model uses 

minimum time processing, then it will show decreasing mean reaction times as a function 

of the workload.  

 So capacity is closely related to manipulations in architecture, stopping rule 

and/or interdependence between processing units. In order to measure capacity, we will 

use capacity the coefficient (Townsend & Nozawa, 1995). The capacity coefficient is a 

ratio between cumulative hazard functions for holistic case (when all elements are 

processed together), and sum of cumulative hazard functions for separate elements of the 

whole unit. 

A hazard function is conditional probability function which is defined as a ratio 

between density and survivor function: h(t)=f(t)/S(t). When integrated over time, it gives 

the integrated hazard function, H(t), which is a coarser measure but is more stable than 

the hazard function h(t). This statistics is considered measure of total amount of energy 

expended to complete the task by some time t. The hazard function h(t) can be viewed as 

power, while the integrated hazard function as amount of work done. The integrated 

hazard function can be obtained directly from the data using a logarithmic transformation 
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of the observed survivor function H(t)=-ln(S(t)) (Townsend & Ashby, 1983; Townsend & 

Nozawa, 1995; Wenger & Townsend, 2000). 

The capacity coefficient is calculated as a ratio between work done with full 

workload with respect to the sum of total work done on a partitioned workload. We 

denote HAB(t) as the work done on two components at the same time, and HA(t) and HB(t) 

the work done on both components separately.  

 

For OR processing case (self-terminating), the capacity coefficient for two elements is 

defined as 
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For AND processing (exhaustive terminating rule), we will define a new function 

analogous to H(t) as a K(t)=ln(F(t)), where F(t) stands for the cumulative distribution 

function . Note that here the different stopping rule demands change in the calculation 

our function. The capacity coefficient for two elements is now defined as 
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If both capacity coefficients (Co(t) and Ca(t)) have value >1, then processing is 

consider to be super capacity; if C(t) =1 then processing is unlimited capacity, and if 

C(t)<1 then processing is limited capacity.  

The base model for both the Ca(t) and Co(t) is the unlimited capacity parallel 

model (UCIP) which is why C(t)=1, is unlimited capacity.  
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General hypotheses on holistic/configural processing 

 

So now state our general research hypotheses concerning organization of mental 

processes in configural/holistic perception: 

 

1. Coactivation or parallel dependent processing: If processing is holistic then 

double factorial experiment applied on face recognition will reveal parallel or 

some form of coactive processing (revealed by the SFT test). It is also tenable to 

assume that processing could exhibit parallel dependent signatures.  

2. Exhaustiveness: We could expect exhaustive processing considering that holistic 

object would probably take advantage of all its parts in perception. A typical 

signature of exhaustiveness is exhibited differently in parallel and serial models 

(revealed by the survivor interaction function). Exhaustiveness is not 

mandatory, since all parts do not have to contribute of the object perception, 

especially in OR case. 

3.  Super capacity: workload manipulation (part-face, whole-face) should indicate 

average faster, more efficient processing for whole faces. Also, the capacity 

coefficient will indicate super capacity C(t)>1 for the whole face. 

4. Stochastic Interdependence: In holistic/configural processing there should be 

some cross-talk between channels (or units) of processing. A stronger 

assumption is that there should be facilitatory interactions between processing 

units. Processing on one unit (say John’s eyes) should help processing of other 

units (say John’s lips). In short we could expect facilitation between units of 
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perception to be realized through positive stochastic dependencies between 

processing times of those units. In a more radical form with extremely high 

positive interactions between units processed in parallel, it is possible that the 

system degenerates into a form of coactivation.  
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General experimental design 
 

This study was divided into two parts, using a between-subjects design: OR and 

AND experiments. For each part, participants must use a different stopping rule in order 

to correctly categorize a set of faces. In the OR experiment, recognition of a single face 

property could yield correct categorization, while in the AND experiment, participants 

must process two manipulated face properties to categorize all faces. A between-subject 

design was employed due to the very large size of each experiment, which for most 

participants, involved approximately 24 1-hour sessions. 

Two configural face properties were manipulated: the eye-separation, and the 

lips-position in a face. The features itself were not altered. Thus, the main manipulation is 

based on altering the distance between the facial dimensions or features (for detailed 

methodological issues see Rakover, 2002). These are considered to be manipulations of 

configural face properties (e.g. Diamond & Carey, 1986; Leder & Bruce, 2000; Tanaka & 

Sengco, 1997) 

Each study had two parts: the learning phase and the test phase. The goal of the 

learning phase was to train participants to correctly recognize faces separated to in two 

groups. The progress of each participant was monitored by inspection of both mean 

reaction times and errors as a function of learning sessions. In order to reveal the 

properties of architecture, stopping rule, capacity and dependency, results were tested by 

the SIC, MIC, and capacity tests, for each session. 

 The goal of the test phase was to observe possible changes in any of the 

processing properties (architecture, dependency and capacity) when a face configuration 
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is changed. The goal of this phase is to seriously impact previously learned configuration 

of features by disrupting it in several ways:  

(a) By removing all parts of the face that were not manipulated and observing only 

two dimensions in isolation (the featural test condition). 

(b) By embedding both learned dimensional properties in a new facial context (the 

configural test condition). 

Performance on each of the two configural disruptions will be fastest and yield fewer 

errors in the standard test condition, that contains regular old faces.  

Our research hypothesis is that categorization would be the fastest, with fewer errors, 

in the standard test condition, than in both the (a) and (b) conditions. 

Compared to similar studies of face perception, (e.g. Tanaka & Sengco, 1997), this 

study should provide a more rigorous test of processing architecture. Of special interest 

are the processing characteristics in the second testing phase, because we expect 

processing to change from holistic to one that is more feasible under analytic processing. 

With configural disruptions we expect that architecture could change to slow serial 

processing, or parallel limited capacity, and that the system will exhibit independent 

feature processing.  

 

The confounding effect of novelty  

 
Important note about the learning phase: In the test phase, introduction of a novelty (part 

of face or background of a face) to an old face should be performed by using features 

from a face that had been previously learned. In short, in the first part of the experiment 

(the learning phase) a participant will learn two distinct groups of faces. In the test phase 
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configuration of faces from the first group will be disrupted by using features from the 

second face group. 

A rationale for this is that the use of completely new faces, or its parts, might 

confound the disruption of the previously learned face. Changes in performance could be 

based on introduction of a novel stimulus rather then just manipulations that disrupt 

configuration only. Note that if the novel part, say a new nose, is put in to a previously 

learned face, this could produce two effects: novelty effect and configural disruption 

effect.  

 If completely new face part is used for a disruption, there is some theoretical 

chance that the system will react to the novel stimulus, probably because attention could 

be attracted to the new and previously unseen (not learned) part. We hypothesize that 

independent analytic processing could be more affected by the novelty than by the 

configuration disruption, in contrast to holistic processing. In fact, analytic processing 

could slow down due to the additional processing of a novel part. So, the potential source 

of a confound lies in possibly different effects of a novel disruptive feature and a 

previously learned disruptive feature, on both analytic and holistic processing. 

 In order to avoid this potential confound, in a separate learning block, participants 

will learn a second face, in contrast to the categorization for the first face (in the AND, 

OR tasks). The task for the second face will be to learn to associate a different name with 

4 different faces. 

 
Blocked and mixed face-context conditions 
 

In the blocked face-context condition all face-stimuli in a block of trials were 

either whole faces, or part-faces mixed with whole faces. The reason for blocking whole-
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faces is our concern that mixing part-faces, or transformed faces, with whole-faces could 

increase the usage of analytic processing on all stimuli. At this stage we don’t reject the 

idea that a face representation could contain both whole-face and part-face 

representations, but we suggest that the whole-face could be considered as a super-

ordinate entity in contrast to part-face representation. We could also imagine whole- and 

part-face based processing strategies as the opposite ends of one continuum that spans 

from part-based to a more holistic representation. 

However we can not avoid mixing both whole- and part-faces. This will be done 

in one separate block needed to investigate the system’s capacity. In the mixed face-

context condition both the part- and whole-faces are used in the same experimental block.  

The experimental face-context effect is tested when the blocked whole-faces or 

blocked part-faces are compared in mixed and blocked face-context conditions. For 

example, we compare reaction time needed to recognize whole face in the blocked 

condition to the mixed condition. A non-significant experimental face-context effect, i.e. 

suggests that the holistic and part-based representations do not share common cognitive 

structure.  

 

Survivor interaction contrast function and Capacity function 
 
 
In this part we try to provide a more detailed description of how all the tests 

(MIC, SIC and capacity) are calculated at different experimental stages, and we aim to 

describe their relationships, in terms of the conditions used to calculate them.  

First, note that the single operative unit in this study is a face. Single whole-faces 

are used during learning sessions in order to facilitate holistic encoding. However not all 
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faces are presented as a whole: the masked-faces appear like whole-faces but some face 

regions vary with respect to brightness. The masked faces appear like a partially hidden 

in the shade of a tree (see Figure 8).  

 

Figure 8: An example of two masked faces. 

 

 

 

 

 

Traditionally, in order to explore holistic encoding, a part-based face is used, with 

the parts or surrounding being removed. We define the masked faces as a complement to 

a part-based face-stimulus given that it does not convey full information from the face 

(see Appendix A). The masked faces are used in one portion of the learning section of the 

experiment in order to test the level of face-representation capacity. Another part-based 

face is the feature-face, which appears in the second part of the experiment (the test 

sessions). The participants observe only two configural face-properties of interest, which 

are the eye-separation and lips-position. But they are instructed that the isolated 

configural features, always presented together, belonged to one of the faces they learnt 

previously. 

In order to apply the MIC and SIC tests, which are ubiquitous tests for the system 

architecture and stopping rule, we need four single faces, with two face properties 

factorially combined at two level of activation/salience. So both the MIC and SIC tests 
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can be only applied on a part of a face-space used in the experimentation. They are not 

single-point-face sensitive tests. Further, in our experimental designs, in both the AND 

and OR conditions, only one set of faces could be used for the architecture test, given that 

they are the set formed by factorially combining the distance between the eyes and the 

lips. 

In contrast, the capacity test can be applied on all faces in the experiment, 

provided that for each single whole- or feature-face the appropriate masked-face is used 

for comparison (see the experimental design section for more details). The capacity test 

could be applied on a set of four faces used for the SIC and MIC tests, by collapsing 

across a category of faces.  

 

Definitions of capacity coefficient function (CCF) 
 
 
As we defined above, the CCF is a ratio between an index of processing of a whole object 

and the sum of indices of processing for separate parts of that object. Although it has a 

different mathematical form for both the AND and OR paradigms, the logic of 

calculation of the CCF is practically the same in both cases. Putting it in more appropriate 

words, we could say that the CCF reflects properties of the system characterized by the 

ratio of a measure of total mental work done on a whole-face, with all the face features 

presented in a biologically appropriate arrangement, and the total amount of mental work 

for each complementary masked face. 

Our experimental paradigm allows us to measure the CCF in several different 

ways, because both indices (numerator and denominator) can be obtained from different 

experimental conditions. Each new CCF has a particular, important role in understanding 
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of the system’s behavior. In order to describe the properties of the system related to a 

concept of the capacity we will define several ways to calculate the capacity coefficient 

function: 

In terms of the experimental block context: we will provide a different definition 

of the CCF depending on whether faces and parts are mixed together, or presented alone. 

In the two experimental conditions: the blocked face-context and mixed face-context. 

Note that in our study both conditions are utilized. However, in the blocked face-context 

condition, only whole faces are presented, while in the mixed face-context condition both 

whole faces and part-based (or masked faces) are presented. The mixed condition was 

called the capacity test, and was designed for investigation of the capacity properties of 

processing of encoded images. However, two outcomes regarding the speed of 

recognition of wholes and parts are formulated. The first is based on face-context free 

effect suggesting that there should be no difference in reaction time for whole faces in 

both the mixed and blocked conditions. The second outcome suggests a dependency 

between the encoding of whole faces and its parts, which will be observable as (usually) 

slower processing of whole faces in the mixed condition relative to the blocked condition.  

 Therefore, we will calculate both CCFs, one that will use an index of processing 

for whole-faces the blocked condition, and one that will use whole-face index from the 

mixed condition. The index of part-based processing will be identical in both cases and it 

will stem from the capacity-test part (mixed blocked condition). We will denote the first 

measure the whole-blocked CCF and the second measure the whole-mixed CCF. 

 The logic behind this manipulation is to maximize the identification of holistic 

face-processing properties. Usually, we would proceed with the second CCF only. But 
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we find evidence that blocked whole faces elicit faster responses than when they are 

mixed with part-based stimuli, then that could obscure our identification of the gestalt 

processing properties by neglecting this source of information.  

The second way to define the CCF is to alter the relative points in the learning 

process. In terms of the learning process we will define the absolute learning CCF and 

the relative learning CCF. The absolute learning CCF reflect changes in the capacity 

coefficient by measuring the amount of work done on whole faces has changed relative to 

the first day/session of training. More formally, the capacity index for the whole face will 

change for different learning sessions, while the capacity index for the part-based 

encoding will be kept constant and taken from the very first session. The absolute 

learning CCF will about the total amount of change of the system’s capacity from the 

very first session, for the encoding of whole faces only.  

The relative learning CCF reflects the possibility that learning could also change 

the processing of the face parts over each experimental session. More precisely both 

indices of the whole-face encoding and the part-based encoding will change as a function 

of the experimental (learning) sessions. This CCF provides information regarding the 

relative amount of learning specifically for that session, by comparing the amount of 

work done on whole faces and part-based faces, for that session.  

Both indices could show similar trends, but it is possible that they indicate 

different capacity patterns over the course of learning. In particular, it is possible that the 

absolute learning CCF shows an increasing trend of the capacity index over the session 

that could correspond to more holistic encoding of the whole face, while the relative 

learning CCF shows no change due to part learning. Alternatively, it is also possible that 
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over the course of learning, participants start to pickup more information from parts and 

treat them as holistic object themselves, which will be indicated by a reduction in value 

of the relative learning CCF as a function of learning sessions. So, given that both 

capacity indices could provide different information about the processing of whole and 

part faces, it is useful to utilize the both.  

 

Definition of learning 

 
Although the term learning is defined differently depending on the area and the focus of 

research, we will tie this term to changes in the capacity. In this study the capacity is 

revealed by the capacity coefficient index that is operationally defined through the 

amount of work done. In fact, it is defined as a ratio of work done when a whole face is 

processed relative to the work done when part of a face is processed. The learning aspect 

refers to the change of both indices, whole and part-based work, across sessions. 

However, the learning process itself could have additional consequences or 

impacts on the face recognition system. It could enhance the status of a memory 

representation (e.g. Sergent, 1984) and/or change other properties of the cognitive 

system, such as the architecture, stopping rule or interdependency (e.g. Wenger & 

Townsend, 2000, 2001). Further learning could occur through automatization (e.g. 

Czerwinski, Lightfoot, & Shiffrin, 1992; Logan & Stadler, 1991; Shiffrin & Schneider, 

1977).  

The capacity coefficient function can not easily or directly prove, reveal or even 

disconfirm some aspects of learning. Rather, it can indicate whether learning occurs and 

to what extent it alters processing efficiency, and very importantly, it provides a better 
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statistical description of the learning process in contrast to utilization of RT means as a 

measure. In order to determine which property of the face encoding system has changed, 

more information is needed. Therefore we will pair the capacity coefficient together with 

the test for the system’s architecture and stopping rule, revealed by the MIC and SIC 

tests.  

With this combination of tests, the learning process can be characterized in more 

detail. We will discuss the expectations of the system’s behavior in later sections that 

describe specific research hypotheses. For now, we will only suggest that the learning 

could occur through the development of a better memory representation (face 

representation), through a decrease in noise in the representation, or through 

enhancement of memory trace strength, and/or through a change of the system’s 

architecture when face comparison occurs (say, from slow serial to fast parallel).  

 

Further definitions: 4 capacity functions  

 
So, from the methodological point of view we could investigate properties of the 

capacity along two important dimensions: mixing or blocking of whole faces with its 

parts (mixed-blocked), and amount of learning with respect to the beginning of a study 

(absolute learning) or amount of learning for each session. Combination of these 

dimensions allows us to calculate four different capacity coefficients:  

 

1. Absolute learning whole-blocked CCF: indicates the total amount of learning by 

comparing the amount of perceptual work done on a whole face during the most 

recent session to the amount of work done on a part-face calculated from the 
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initial session. We expect this CCF function to show an increasing trend during 

learning, mainly due to more efficient learning of whole-faces better learning the 

faces over session trials. Given relatively low discriminability between the faces 

to be learned we expect that participants will show low or limited capacity index 

at the beginning and that the CCF will tend to increase toward super capacity over 

the course of learning. Note that this function is not affected by the possible 

learning of face-parts, because part-based measure of the capacity ratio function 

(for both AND and OR conditions) is taken from the initial learning session and is 

kept constant, while the whole-face measure changes as a function of learning 

session.  

2. Absolute learning whole-mixed CCF: this function is identical to the previous one 

(1), except that the whole-face measure stems from the part of experiment (Figure 

9, the 2nd part) where both whole- and part-faces were mixed together in one 

block. This block was run at the end of each experimental session in order to test 

the capacity properties of the current learning session. We expect that this index 

will increase as a function of learning sessions. It is possible that this measure will 

be of lower magnitude when to (1), because mixing together whole- and part-

faces may produce slower processing of whole-faces than when they are blocked. 

This contextual hypothesis stems from our pilot experiments.  

3. Relative learning whole-blocked CCF: this function is calculated such that both 

the whole- and part-faces responses are taken from current learning session, while 

the whole-face part stems from the blocked face condition, and the part-face 

observations are from mixed-block condition. We expect that this function will 
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not necessarily increase across the learning sessions, but could show an initial 

increase and then decrease later, depending on amount of learning for part-based 

faces. In short, a non-monotonic trend is expected. The reason for this expectation 

is the possibility that participants could learn part-faces as well as whole faces, 

using a similar gestalt-learning mechanism. The increase in efficiency of part-

based information recognition could equate to the learning of the whole-faces.  

4. Relative learning whole-mixed CCF: this function is identical to the previous 

function (3), except that the whole-face measure stems from the experimental 

condition (Figure 9, the 2nd part) where both whole- and part-faces were mixed 

together in one block. We expect that the functions (3) and (4) (over different 

sessions) are also of lower magnitude when compared to either (1) or (2). 

 

 

Method section intro 

 
The goal of the learning phase was to monitor any changes in the architecture 

and capacity during category learning. Thus, each experimental session consisted of two 

parts: in the first part, the test for architecture was applied, and in the second one the 

capacity test was used. Additionally, the test for architecture was incorporated into the 

second portion. The only constraint preventing us from using the architecture test in the 

second part was the relatively small number of observations per condition collected; more 

trials are needed for an accurate test. There is also a possible unwanted consequence of 

architectural change in the recognition of whole faces when both whole faces and part 
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faces are mixed together. In fact, our analysis did show that whole faces are recognized 

slower when blocked together with part-based (masked) faces.  

During the learning phase, participants learned to recognize two sets of faces. 

They had to press mouse buttons with different index fingers for each category response.  

On the first session participants were informed which dimension are important: 

eye-separation (wider or closer) and lip-position (up or down). The reason for providing 

participants with important information concerning experimental manipulations stems 

from the fact that we want participants to reach errorless performance in both tasks. 

Namely, our pilot investigations showed convincingly that without initial help, 

participants could not reveal the important face dimensions within the first couple of 

sessions in the AND task. Providing a precise description of face-space helped 

participants to establish more accurate and reliable performance early in the training. In 

order to equate manipulations for both the OR and AND cases we had to provide the 

same help for the OR case although it was not as necessary as in the AND condition. 
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OR CONDITION 

Experiment learning phase 

Method 

Participants 

Six participants, 3 females and 3 males were paid for their participation. 

Materials 

In the OR categorization task, participants had to decide whether a displayed face 

belonged to the group of gang members or was the hero face. In the first part of each 

session, participants observed only whole-faces. The goal of this part was to investigate 

organization of mental processing by application of the SFT tests (the MIC and SIC). In 

the second part participants observed mixed whole-faces and masked-faces. The goal of 

the second part was to test the capacity of the system (the capacity test). In the third part 

participants switched to a complete identification task, and they had to learn to associate 

each of 4 names with a particular face. The goal of this part was for participants become 

familiar with face features that will be used in the test phase of experiment. Thus, 

participants completed all three parts in each learning session (see Figure 9) 

In the first part we manipulated the following factors: (a) face category, (b) 

feature configuration, and (c) feature saliency. 

For (a), faces could be either the hero a gang member. Four gang member faces 

were designed based on manipulation of (b) which involved changes to either the 

distance between the eyes or the height of the mouth relative to the nose. Finally, the 

saliency or detectability of the configural changes was factorially combined with (b); the 

resulting four faces for the set of gang members.  
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Figure 9: The learning session consisting of three different experimental parts. In the first part, we used 

only whole faces. In the second part, we combined whole faces from the first part with masked faces. In the 

third part, participants identified 4 individual faces. This structure of one learning session was common for 

both the OR and AND designs. 

 

 

 

 

 

 

 

 

 

The saliency of features is defined by the marginal proximity of each face-feature 

projection onto two-dimensional face space (see Figure 10) with respect to the other 

group members. In this case the projection, or marginal value, of each face-feature for 

each gang-member is either close or distant with respect to the projection of same feature 

from the hero. Factorial combination of the face-features (b) and the salience level (c) 

produces four combinations: HH, HL, LH and LL. First letter denotes the saliency of the 

eye-separation, while the second letter denotes the saliency of the lips-position. For 

example, the condition HH defines one gang-member who is the most distant from the 

hero face, in the designed face-space, hence the difference in eye-separation and lips-

position are easiest to detect. Here notation H (high) produces faster recognition than the 

L (low) condition. The saliency is inversely related to the similarity between faces, so a 
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low salience feature on a gang-member face is more similar to the hero face feature than 

a high salience feature. 

 

Figure 10: Two dimensional face-space defined by the eye-separation and lips-position. The saliency of 

features is defined by the marginal proximity of each face-feature projection onto the axes with respect to 

the other group members. In this case the projection, or marginal value, of each face feature for each gang-

member is either close or distant with respect to the projection of the same feature from the hero. Factorial 

combination of the face-feature and the salience level produces four combinations: HH, HL, LH and LL. 

The first letter denotes the saliency level of the eye-separation, while the second letter denotes the saliency 

level of the lips-position. 

 

 

 

 

 

 

 

 

 

 

 

In the second part, in addition to the experimental manipulations (a), (b) and (c) 

from the first part another factor was used: (d) whole-masked faces. On each trial either a 

whole- or masked-face is presented on the screen in a random fashion (Figure 9). Masked 

faces are designed using two types of “worm-like” masks (Figure 11). 
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Figure 11: Two masks used in order to generate the masked faces are presented in the first column. In the 

second column, we showed brightness-inverted masks used to generate complementary masked faces. 

 

 

 

 

 

 

 

 

 

 Each mask was designed in Photoshop 7, and for each mask, a complementary 

brightness mask was designed (Figures 12 and 13), producing a total of 4 masks. Multiple 

masks were designed in order to increase masking variability and to prevent possible 

learning of particular features of a single mask that could eventually produce an 

unwanted search strategy. Masked-faces are generated by superimposing the mask over a 

face using the Mathematica 5 environment by calculating resulting the image by 

multiplying a face and mask picture. The inverse mask was used to obtain get an inverse 

masked picture of the whole face. Similar manipulations on other types of stimuli were 

used in the investigation of configural processing in fingerprint experts (Busey & 

Vanderkolk, 2005). 
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Figure 12: The design of the masked faces. Each face was multiplicatively combined with the 

original and brightness-inverted masks in order to generate two complementary faces. Simple summation 

of the faces in the top row will return the original face. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Example of one set of masked faces for the gang-member faces (in the OR 

condition), or Sharks faces (as they were named in the AND condition). 
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The third part of the experiment a complete identification task where participants 

had to learn to identify 4 faces (Figure 14). Participants were instructed to learn a second 

gang of four faces, where each individual was given a name (John, Peter, Saul and Eric). 

One face was presented on a monitor at time, and the task was to learn to recognize them. 

Participants responded by pressing one of four buttons on a numerical pad (1 to 4). All 

faces contained different face-features (eyes and lips) but they had same face 

background. The goal of this part was to implicitly introduce participants the face-

background that would be used in the test phase of the experiment (next section). Again, 

the background of the face (everything but the eyes and lips) were common for all four 

faces and were not critical for differentiating between faces. 

 
Figure 14: The four faces used in the complete identification task in part three of the learning session. 

Participants responded by pressing one of four buttons on a numerical pad (1 to 4). Press 1 if you see John, 

2 if you see Peter, 3 if you see Saul, and 4 if you see Eric. 
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Design and procedure 

 
Gang-members were presented on half of the trials, and the other half were the 

hero-face. A participant had to decide, by pressing one of the mouse keys with left and 

right index fingers, whether a hero or a gang-member was presented. RT was recorded 

from the onset of a stimulus display, up to the time of response. Each trial consisted of a 

central fixation point (crosshair) for 1070ms followed by a high-pitch warning tone 

which lasted for 700msec. Then a face was presented for 190ms. Upon incorrect 

categorization participants received an error message.  

In the first part of the experiment, participants a received total of 600 trials. The 

hero-face was presented 300 times; gang members were also presented for 300 trials, 

with each gang-member face presented on 75 trials. In the second part, participants 

observed another 240 trials, of which 80 belonged to both whole-faces (divided equally 

by the hero and gang members), and the remaining 160 trials belonged to the two same 

groups but with different types of masks (80 trials for each mask applied on both groups). 

In the third part each face was presented on 75 trials.  

A trial presentation order was pseudo-randomized within each session. 

In each session, participants ran 5 blocks of approximately 200 trials each. All 

participants accomplished a total of 12 sessions during the learning phase of the 

experiment. 

The participants were instructed to achieve high accuracy and to respond as fast as 

possible. For the analyses we aggregated two subsequent learning session sessions into 

one, therefore obtaining a larger number of observations per condition. So for the SFT 

tests, each factorial condition (HH, HL, LH and LL) possessed approximately 150 trials. 
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The reason for the data aggregation was primarily to get more observations in the 

capacity test part. For the capacity analysis, we analyzed approximately 160 trials for 

each integrated hazard function.  
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Results 

Basic Mean RT Analyses 

The GLM univariate analysis was conducted on both the gang-members faces and 

the hero face separately. However, we will focus our attention mainly on the analysis of 

the gang-member faces, given that they are factorially manipulated and allow for 

application of the SFT tests (the MIC and SIC).  

The results from GLM analyses for gang-members, for each participant, are 

presented in Table 1.  

Gang Members 

 First, we analyzed overall learning trends for the gang-member faces, for all 

participants: reaction time as a function of the effect of learning sessions (total number of 

sessions/2). We found that learning trends are all highly significant, (see Table 1) under 

the factor learning session). The decreasing trends of RT as a function of learning session 

are presented in Figure 15, combined with error rates across learning sessions (proportion 

of errors). Generally, it can be observed in Figure 15 that different participants exhibited 

either monotonic decreasing trend of mean reaction time as a function of the session that 

approaches some asymptotic level (Participants 3, 4, 5 and 6), or they exhibited inverse 

U-shaped trends (participants 1 and 2). At the same time, mean error levels exhibited a 

consistent decreasing trend as a function of the session (bars in the Figures 15). We can 

conclude therefore that Participants 1 and 2 exhibited a speed-accuracy trade-off, with 

fast reaction times on some sessions that resulted in a higher proportion of errors. 

Almost identical trends across participants were observed in the hero condition 

(Figure 16). 
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Figure 15: OR condition, learning of the gang faces. Mean RT as a function of learning session, combined 

together with the error rate (proportion of errors), for all participants.  
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Figure 16: OR condition, learning of the hero face. Mean RT as a function of learning session, combined 

together with the error rate (proportion of errors), for all participants. Error bars on mean RT indicate 

standard error.  
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Table 1: The GLM univariate analysis was conducted on the gang-members, for different participants 

(SUB). The main effects and interaction terms are listed in the second column (Factor). Degrees of 

freedom are in the third column (df). The error row defines the degrees of freedom for the F-test error term, 

for that participant. Each F-test value (F) has two degrees of freedom: one from its corresponding row, and 

the other from the error row. The significance level is presented in the column Sig., and the observed power 

for that effect is in the last column.  

 
 

Factor df F Sig. 
Observed

Power 

 

Factor df F Sig. 
Observed

Power 
SUB 
01 Trial order 1 6.387 .012 .715 SUB 

04 Trial order 1 11.846 .001 .931 

 Eyes 1 496.589 .000 1.000  Eyes 1 377.966 .000 1.000 

 Lips 1 564.643 .000 1.000  Lips 1 64.698 .000 1.000 

 Learning Session 5 17.688 .000 1.000  Learning Session 5 63.203 .000 1.000 

 Eyes x Lips 1 245.695 .000 1.000  Eyes x Lips 1 31.077 .000 1.000 

 Eyes x Lips x Learning 
Session 5 3.523 .004 .920  Eyes x Lips x Learning 

Session 5 2.271 .045 .741 

 Error 3362     Error 3430    

SUB 
02 Trial order 1 4.089 .043 .525 SUB 

05 Trial order 1 1.169 .280 .191 

 Eyes 1 196.695 .000 1.000  Eyes 1 584.505 .000 1.000 

 Lips 1 215.888 .000 1.000  Lips 1 307.153 .000 1.000 

 Learning Session 5 21.247 .000 1.000  Learning Session 5 59.618 .000 1.000 

 Eyes x Lips 1 87.142 .000 1.000  Eyes x Lips 1 154.230 .000 1.000 

 Eyes x Lips x Learning 
Session 5 1.550 .171 .548  Eyes x Lips x Learning 

Session 5 2.004 .075 .678 

 Error 3430     Error 3465    

SUB 
03 Trial order 1 61.544 .000 1.000 SUB 

06 Trial order 1 14.011 .000 .963 

 Eyes 1 346.653 .000 1.000  Eyes 1 497.697 .000 1.000 

 Lips 1 287.209 .000 1.000  Lips 1 265.203 .000 1.000 

 Learning Session 5 90.033 .000 1.000  Learning Session 5 46.465 .000 1.000 

 Eyes x Lips 1 121.497 .000 1.000  Eyes x Lips 1 142.552 .000 1.000 

 Eyes x Lips x Learning 
Session 5 1.374 .231 .491  Eyes x Lips x Learning 

Session 5 5.593 .000 .993 

 Error 3467     Error 3419    

 

As can be seen, both manipulated face feature properties, the eye-separation and 

lip-position factorially combined with feature saliency, exhibited significant main effects, 

for all participants, at the p<0.01 level. Thus, manipulation of configural face-feature 

properties produced significant perceptual effects. Both properties also exhibited 
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significant change in detection over learning blocks (Eyes x Session and Lips x Session) 

for most of participants (Table 1).  

 Of the utmost importance, the MIC test, which was tested by the significance of 

the Eyes x Lips interaction, reached significance (power=1) for all participants. At this 

point we can conclude that all participants exhibited non-additive effects on the MIC test. 

Inspection of Figure 17 (third column) shows that all MIC contrasts are positive, that is, 

we uniformly observed overadditivity for all participants.  

 Finally, the 3-way Eyes x Lips x Session interaction, that could indicate change of 

the MIC over the course of learning, was found to be significant for Participants 1, 4, 5 

(marginally) and 6, while Participants 2 and 3 showed non-significant interaction effects. 

Therefore, the participants with the significant 3-way interaction could exhibit the change 

in architecture during learning course. 

 
Learning by across sessions 
 

In order to closely inspect the effect of learning for possible changes in 

architecture (revealed by a change in the MIC and SIC test scores), we applied similar 

GLM analyses using the same design, but separately for each session, for each participant 

(Table 2). The results supported overall analysis in Table 1: when broken into sessions, 

all main effects (Eyes, Lips) are significant as well as the interaction between the two 

(Eyes x Lips), for all participants. Exceptions to this were Participants 4 and 5. 

Participant 4 exhibited additivity in the first two sessions. Further inspection of the SIC 

curves for those sessions indicated that this participant exhibited an S-shaped SIC 

function which is consistent with serial exhaustive processing. Participant 5 exhibited 
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additivity in the first block, but the main effect of Lips was not significant, which renders 

this interaction unusable for the SFT test, and will not be considered.  

 
Table 2: The GLM univariate analysis was conducted on the gang-members, for different participants 

(SUB) across the learning sessions (in successive blocks of rows). The main effects and interaction terms 

are listed in the second column (Factor). Degrees of freedom are in the third column (df). The error row 

defines the degrees of freedom for the F-test error term, for that participant. Each F-test value (F) has two 

degrees of freedom: one from its corresponding row, and the other from the error row. The significance 

level is presented in the column Sig., and the observed power for that effect is in the last column.  

 

Factor df F Sig.
Observed 

Power 

 
Factor 

df F Sig. 
Observed

Power 
Sub 01 Trial order 1 9.997 .002 .884 Sub 02 Trial order 1 .245 .621 .078 
Session 01 Eyes 1 10.794 .001 .906 Session 01 Eyes 1 11.919 .001 .931 
 Lips 1 103.311 .000 1.000  Lips 1 15.900 .000 .978 
 Eyes x Lips 1 6.764 .010 .737  Eyes x Lips 1 9.228 .002 .858 
 Error 483     Error 537    
Session 02 Trial order 1 11.009 .001 .912 Session 02 Trial order 1 .069 .793 .058 
 Eyes 1 92.204 .000 1.000  Eyes 1 19.167 .000 .992 
 Lips 1 217.179 .000 1.000  Lips 1 34.301 .000 1.000 
 Eyes x Lips 1 61.101 .000 1.000  Eyes x Lips 1 9.676 .002 .874 
 Error 562     Error 575    
Session 03 Trial order 1 .467 .495 .105 Session 03 Trial order 1 5.104 .024 .616 
 Eyes 1 208.825 .000 1.000  Eyes 1 35.677 .000 1.000 
 Lips 1 265.514 .000 1.000  Lips 1 57.901 .000 1.000 
 Eyes x Lips 1 121.202 .000 1.000  Eyes x Lips 1 11.604 .001 .925 
 Error 585     Error 579    
Session 04 Trial order 1 .849 .357 .151 Session 04 Trial order 1 .584 .445 .119 
 Eyes 1 101.726 .000 1.000  Eyes 1 43.146 .000 1.000 
 Lips 1 60.409 .000 1.000  Lips 1 15.171 .000 .973 
 Eyes x Lips 1 24.198 .000 .998  Eyes x Lips 1 9.445 .002 .866 
 Error 573     Error 587    
Session 05 Trial order 1 1.138 .287 .187 Session 05 Trial order 1 3.570 .059 .471 
 Eyes 1 67.760 .000 1.000  Eyes 1 51.965 .000 1.000 
 Lips 1 43.210 .000 1.000  Lips 1 52.978 .000 1.000 
 Eyes x Lips 1 32.942 .000 1.000  Eyes x Lips 1 36.297 .000 1.000 
 Error 584     Error 572    
Session 06 Trial order 1 5.120 .024 .618 Session 06 Trial order 1 .082 .775 .059 
 Eyes 1 113.679 .000 1.000  Eyes 1 44.648 .000 1.000 
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 Lips 1 56.311 .000 1.000  Lips 1 45.369 .000 1.000 
 Eyes x Lips 1 58.566 .000 1.000  Eyes x Lips 1 19.992 .000 .994 
 Error 570     Error 575    
 

Factor df 
F Sig.

Observed 
Power 

 
Factor 

df F Sig. 
Observed 

Power 
Sub 03 Trial order 1 14.642 .000 .969 Sub 04 Trial order 1 14.732 .000 .969 
Session 01 Eyes 1 48.063 .000 1.000 Session 01 Eyes 1 74.062 .000 1.000 
 Lips 1 27.499 .000 .999  Lips 1 6.135 .014 .696 
 Eyes x Lips 1 5.528 .019 .651  Eyes x Lips 1 .009 .926 .051 
 Error 556     Error 503    
Session 02 Trial order 1 72.714 .000 1.000 Session 02 Trial order 1 26.856 .000 .999 
 Eyes 1 59.376 .000 1.000  Eyes 1 53.657 .000 1.000 
 Lips 1 54.161 .000 1.000  Lips 1 5.512 .019 .650 
 Eyes x Lips 1 32.198 .000 1.000  Eyes x Lips 1 .507 .477 .110 
 Error 585     Error 578    
Session 03 Trial order 1 6.771 .010 .738 Session 03 Trial order 1 2.269 .133 .324 
 Eyes 1 30.216 .000 1.000  Eyes 1 47.260 .000 1.000 
 Lips 1 36.555 .000 1.000  Lips 1 10.686 .001 .904 
 Eyes x Lips 1 14.029 .000 .962  Eyes x Lips 1 16.020 .000 .979 
 Error 584     Error 585    
Session 04 Trial order 1 .794 .373 .144 Session 04 Trial order 1 .467 .495 .105 
 Eyes 1 59.436 .000 1.000  Eyes 1 88.685 .000 1.000 
 Lips 1 49.918 .000 1.000  Lips 1 18.593 .000 .990 
 Eyes x Lips 1 25.413 .000 .999  Eyes x Lips 1 7.169 .008 .762 
 Error 582     Error 587    
Session 05 Trial order 1 2.337 .127 .333 Session 05 Trial order 1 .041 .839 .055 
 Eyes 1 78.106 .000 1.000  Eyes 1 87.864 .000 1.000 
 Lips 1 83.123 .000 1.000  Lips 1 16.863 .000 .984 
 Eyes x Lips 1 26.577 .000 .999  Eyes x Lips 1 9.754 .002 .877 
 Error 574     Error 587    
Session 06 Trial order 1 .634 .426 .125 Session 06 Trial order 1 .195 .659 .073 
 Eyes 1 120.220 .000 1.000  Eyes 1 81.566 .000 1.000 
 Lips 1 56.914 .000 1.000  Lips 1 23.671 .000 .998 
 Eyes x Lips 1 34.858 .000 1.000  Eyes x Lips 1 23.974 .000 .998 
 Error 581     Error 585    

 

 

Factor df F Sig.

Observed

Power 

 

Factor df F Sig. 

Observed 

Power 
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Sub 05 Trial order 1 5.104 .024 .616 Sub 06 Trial order 1 .580 .447 .118 

Session 01 Eyes 1 41.723 .000 1.000 Session 01 Eyes 1 43.785 .000 1.000 

 Lips 1 37.944 .000 1.000  Lips 1 2.314 .129 .330 

 Eyes x Lips 1 6.161 .013 .698  Eyes x Lips 1 1.048 .306 .176 

 Error 543     Error 542    

Session 02 Trial order 1 1.825 .177 .271 Session 02 Trial order 1 3.438 .064 .457 

 Eyes 1 114.947 .000 1.000  Eyes 1 117.902 .000 1.000 

 Lips 1 93.753 .000 1.000  Lips 1 52.711 .000 1.000 

 Eyes x Lips 1 44.274 .000 1.000  Eyes x Lips 1 36.848 .000 1.000 

 Error 575     Error 568    

Session 03 Trial order 1 2.077 .150 .301 Session 03 Trial order 1 .683 .409 .131 

 Eyes 1 128.824 .000 1.000  Eyes 1 82.785 .000 1.000 

 Lips 1 76.313 .000 1.000  Lips 1 59.334 .000 1.000 

 Eyes x Lips 1 38.951 .000 1.000  Eyes x Lips 1 14.187 .000 .964 

 Error 575     Error 567    

Session 04 Trial order 1 6.576 .011 .726 Session 04 Trial order 1 9.791 .002 .878 

 Eyes 1 119.696 .000 1.000  Eyes 1 122.621 .000 1.000 

 Lips 1 39.764 .000 1.000  Lips 1 112.211 .000 1.000 

 Eyes x Lips 1 23.838 .000 .998  Eyes x Lips 1 65.102 .000 1.000 

 Error 582     Error 580    

Session 05 Trial order 1 4.425 .036 .556 Session 05 Trial order 1 11.411 .001 .921 

 Eyes 1 107.637 .000 1.000  Eyes 1 135.056 .000 1.000 

 Lips 1 48.106 .000 1.000  Lips 1 84.418 .000 1.000 

 Eyes x Lips 1 32.534 .000 1.000  Eyes x Lips 1 52.414 .000 1.000 

 Error 590     Error 581    

Session 06 Trial order 1 .692 .406 .132 Session 06 Trial order 1 1.607 .205 .244 

 Eyes 1 135.406 .000 1.000  Eyes 1 48.841 .000 1.000 

 Lips 1 41.245 .000 1.000  Lips 1 29.918 .000 1.000 

 Eyes x Lips 1 29.844 .000 1.000  Eyes x Lips 1 17.283 .000 .986 

 Error 595     Error 576    

 

Learning sessions and MIC 
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We investigated the relationship between learning block and the change of the 

MIC. In the GLM analyses some participants showed significant change of MIC score as 

leaning progressed (as a function of learning sessions). This finding suggests that the 

MIC value should change as a function of the sessions. In order to test this, we ran a 

multiple regression analysis using subjects’ MIC scores as the dependent variable, while 

the session number, the mean RT, and their interaction were independent variables. The 

proportion of explained variability of the MIC change was R2=0.58, F(2,35)=22.83, 

p<0.01, with both the block and mean RT contributing significantly. Given the obtained 

proportion of unexplained variability, the change in the MIC values can not be 

completely attributed to learning. When averaged over participants, the MIC value 

showed increase only from the first learning session, MICblock1=41ms, to around 100ms 

value for the other sessions. On average, this increase indicates strong MIC value change 

between the first and the rest of sessions only.  

 

Mean and Survivor Interaction Contrast Functions  

 
Both the MIC and SIC are powerful tools for investigating the organization of 

mental processes. In fact, the SIC function provides more information than the MIC test 

by allowing more inferential power. When integrated over time, the SIC function returns 

the exact MIC score. It is obvious then, that different shapes of SIC function could 

predict the same MIC value. Therefore, in our analyses we will graph both functions. 

  

In Figure 17 we show the MIC results for different participants, paired with their 

corresponding SIC functions. Note that both tests are calculated for RTs collapsed across 
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learning sessions. We also provide an additional corresponding plot of the survivor 

functions used to calculate the SIC function (Figure 17, left column). Survivor functions 

are nicely ordered for all participants (LL>LH≈HL>HH), which implies a corresponding 

ordering of the means. Notably, the results for both the MIC and SIC reveal parallel 

architecture with minimum time stopping rule. The results are uniform over all 

participants. 

 
 
 
 Figure 17: The SFT tests results for the OR condition, for gang-member faces, for all participants. The 

results are based on all learning sessions combined. The first column depicts the ordering of the joint 

survivor functions for the different factorial conditions (HH, HL, LH, LL). The survivor interaction 

contrast functions (SIC) are in the middle column, and the MIC results are in the right column. 
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In the Figure 17 B we separated the both tests into different learning sessions. In 

accordance with previous analyses based on GLM tests, and following overall finding of 

overadditivity on both the MIC and SIC levels, we revealed the same signature of parallel 

minimum time processing architecture in almost all conditions, for different participants.  
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Figure 17 B: The SFT tests results for the OR condition, for gang-member faces, for all participants. The 

results are broken down for each participant across the learning sessions. The first column depicts the 

ordering of joint survivor functions for the different factorial conditions (HH, HL, LH, LL). The survivor 

interaction contrast functions (SIC) are in the right column. The learning sessions are presented in rows.  
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Participant 2  Survivor  SIC 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

 
 

Session 1

Session 2

Session 3

Session 4

Session 5

Session 6



 91

Participant 3  Survivor  SIC 
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Participant 4 Survivor  SIC 
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Participant 5 Survivor  SIC 
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Participant 6 Survivor  SIC 
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Again, the exception to this is Participant 4, who exhibited additivity on the MIC 

testing using GLM, and S-shaped SIC functions, in the first two learning sessions, which 

is strong support for serial exhaustive strategy in early learning.  

It is interesting to note that some of the calculated SIC functions posses the small 

negative blip signature for fast reaction times. However appearance of the negative blip is 
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not consistent over the learning sessions, and usually can be observed in the midst of the 

learning sessions, rather than in the end, where it would be expected. This expectation is 

based on the fact that if the negative blip is a signature of coactive processing, then it 

would be more likely that coactive processing develops later in the learning process. 

However, this is not evident in our results (Figure 17 B). 

 

Difference between blocked and mixed whole-face conditions 

 
We adopted a null hypothesis which states that there is no difference on the mean 

RT level between blocked and mixed conditions when whole-faces are categorized. In the 

blocked condition, only whole-faces were presented on each trial. In the mixed condition, 

both whole-faces and masked-faces were combined together in the experimental block, 

and were randomly presented in the experiment. No mean RT difference suggests that the 

two forms of representation, or processes (whole- and masked-faces) are independent and 

not influenced directly or indirectly by some third agent. Direct independence is in 

agreement with the idea that the two processes do not share any common mechanism or 

representational format. If they have a common structure/representation then processing 

both types of stimuli in the mixed condition will produce a difference in processing 

relative to the condition in which only one type is presented. The indirect form of 

dependence hypothesis assumes that both types are processed independently but could be 

connected to a common agent; for example, they may share processing resources. For 

example, if both types (whole and masked) require the same amount of capacity, then 

mixed presentation of both will place more demands on the system’s capacity and that 

can slow down processing of both, in contrast to when only one is presented.  
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 The idea that both representations (whole- and part-faces) are utilized in the 

system during face encoding has long history (see the recently published strong test for 

dual processing by Ingvalson & Wenger, 2005).  

 In order to test the null hypothesis, we ran a paired sampled t-test, on the mean 

RT difference between processing time for whole faces in the blocked condition (the SFT 

test) of the learning session and processing time for whole faces in the mixed condition 

(from capacity test part) (see Figure 9, the 2nd part). We found that whole-faces are 

processed faster in the blocked condition, than in the mixed condition: t(5)=-9.58, 

Mblocked=536ms, SD=71ms, and Mmixed=619ms, SD=70ms, and this finding is consistent 

over all participants when ran separate analyses. We could conclude that somehow the 

processing of whole faces in the two conditions is influenced by the processing of part-

based (masked) information. The major consequence of this finding is in the calculation 

of the capacity functions in the next part. Since there is significant difference of 

processing of whole faces depending on the presence of a part face context in the 

experiment, we must utilize the calculation of two additional capacity coefficient 

functions, each of which uses a different whole face (taken from the blocked and mixed 

conditions). 

 

Capacity coefficient Functions  

 
We calculated 4 different coefficient capacity functions for each participant. In 

Figures 18 to 25, we present the calculated capacity coefficient functions, along with 

bootstraped 90% percentile confidence intervals (for utilization of bootstrapping in 

statistical inference see (Efron & Tibshirani, 1993; Zandt, 2002)), for both gang-member 
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faces (pooled together into one condition) and the hero-face. So for each participant, we 

calculated a total of 8 capacity functions, for each learning session. Confidence intervals 

delimit the area in which the CCF would fall most likely in, when the same experiment is 

repeated. We are generally interested in any violations of the capacity coefficient value 

equal to one. Since the shape of the calculated integrated hazard function depends on 

sampling properties, it is possible that apparent violations of the calculated CCF are 

evident but not certain, in a probabilistic way. That is, under some circumstances, the 

number of sampled observations may be insufficient to establish an unbiased estimated of 

the population capacity function. A sufficient sample size would be reasonably large, 

with up to several thousands of observations needed to achieve stable behavior. So, in 

order to reduce error of inference, we calculated 90% confidence intervals around our 

capacity coefficient functions, describing the area of high confidence of our statistical 

inference.  

We assume that in the case of super capacity (that is, C(t)>1) both bounds of the 

confidence intervals should swing above the value of one. In the case of unlimited 

capacity, C(t)=1 should lie in between the two confidence intervals; in other words, the 

upper interval would be above one, and the lower interval would be below one. Finally, 

in the case of limited capacity, both confidence interval bounds should fall below the 

value of one. 

It is also possible that at different points in the time scale, the estimated confidence 

intervals are a combination of cases described above. For example, at some point in time 

both bounds might lie above one, and at another time the bounds might include one. 

Then, following the definition of the capacity coefficient function and its relation to real a 
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system property (Townsend & Nozawa, 1995) we could assume that at some point, the 

system is of super capacity, but is of unlimited capacity for a later time interval. 

 In Figures 18-25 we plot CCFs (4) for each participant (6), for both the gang 

member and hero faces. We grouped the CCFs with respect to the block conditions 

(blocked whole faces vs. mixed whole faces with masked faces), for each type of face.  

 We also used scales on the y-axis that are common for all figures in the 

experiment, so the reader can see the changes of overall magnitude as a function of 

learning sessions.  

On each figure we denote by a black bold line the calculated CCF; with red dotted 

lines we present the bootstrapped 90% confidence intervals. The C(t)=1 reference is 

denoted by horizontal line. Note that a violation of this value bound in any direction 

(super capacity or limited capacity) will show, at some time violation, by both 

bootstrapped confidence interval bounds. That is, both bounds will swing above or below 

the C(t)=1 value.  

In some figures it could be difficult to verify by eye confidence interval violations 

of C(t) =1. Although this could be solved by rescaling of the y-axis, then a reader will 

miss information of magnitude across sessions. Again, we scale the y-axis such that all 

CCFs for one logical conditions (OR or AND) are comparable, given the highest 

observed CCF. In order to aid a reader’s understanding of Figures 18-25, we added 

statistical conclusion concerning violations in each small figure: if CCF function was 

super, unlimited or limited capacity then we used uppercase letters S, U and L, 

respectively. If a transition was observed, that is if for some time CCF was super capacity 

and then unlimited capacity for remaining time, we used an arrow symbol. So the 
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notation S→U→L means that the CCF exhibited all capacity states over the course of 

time. Also note a decreasing order of capacity is usually preserved given that CCF for OR 

processing typically exhibits a reduction in magnitude over time (Townsend & Wenger, 

2004). 
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Figure 18: The absolute learning whole-blocked CCFs, for the gang members, across the 
learning sessions (Block), plotted separately for all participants (blue line). Around each CCF we depict 
calculated 90% confidence intervals calculated by bootstrapping (red dotted line). We provided the 
statistical conclusion concerning violations of C(t)=1 bound, in each small figure. If the CCF was super, 
unlimited or limited capacity, then we used the uppercase letters S, U and L, respectively. An arrow 
indicates an observed transition between the capacity states.  
Participant 01 

 
Participant 02 

 
Participant 03 

 

S→U S→U→L S→U→L S→U→L S→U→L S→U→L 

S→U→L S→U→L S→U→L S→U→L S→U→L S 

S→U→L S→U→L S→U→L S→U→L S→U→L S→U→L 
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Figure 19: The Absolute learning whole-mixed CCFs, across the learning sessions (Block), plotted 
separately for all participants (blue line). Around each CCF we depict calculated 90% confidence intervals 
calculated by bootstrapping (red dotted line). We provided the statistical conclusion concerning violations 
of C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited capacity, then we used the 
uppercase letters S, U and L, respectively. An arrow indicates an observed transition between the capacity 
states.  
Participant 01 

 
Participant 02 

 
Participant 03 

 

S→U→L S→U→L S→U→L S→U→L S→U→L U→L 
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Figure 20: The Relative learning whole-blocked CCFs, across the learning sessions (Block), plotted separately 
for all participants (blue line). Around each CCF we depict calculated 90% confidence intervals calculated by 
bootstrapping (red dotted line). We provided the statistical conclusion concerning violations of C(t)=1 bound, in 
each small figure. If the CCF was super, unlimited or limited capacity, then we used the uppercase letters S, U 
and L, respectively. An arrow indicates an observed transition between the capacity states.  
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Figure 21: The Relative learning whole-mixed CCFs, across the learning sessions (Block), plotted 
separately for all participants (blue line). Around each CCF we depict calculated 90% confidence intervals 
calculated by bootstrapping (red dotted line). We provided the statistical conclusion concerning violations 
of C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited capacity, then we used the 
uppercase letters S, U and L, respectively. An arrow indicates an observed transition between the capacity 
states.  
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Figure 22: The Absolute learning whole-blocked CCFs, for the Hero across the learning sessions (Block), 
plotted separately for all participants (blue line). Around each CCF we depict calculated 90% confidence 
intervals calculated by bootstrapping (red dotted line). We provided the statistical conclusion concerning 
violations of C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited capacity, then we 
used the uppercase letters S, U and L, respectively. An arrow indicates an observed transition between the 
capacity states.  
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Figure 23: The Absolute learning whole-mixed CCFs, for the Hero, across the learning sessions (Block), 
plotted separately for all participants (blue line). Around each CCF we depict calculated 90% confidence 
intervals calculated by bootstrapping (red dotted line). We provided the statistical conclusion concerning 
violations of C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited capacity, then we 
used the uppercase letters S, U and L, respectively. An arrow indicates an observed transition between the 
capacity states.  
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Figure 24: The Relative learning whole-blocked CCFs, for the Hero, across the learning sessions (Block), 
plotted separately for all participants (blue line). Around each CCF we depict calculated 90% confidence 
intervals calculated by bootstrapping (red dotted line). We provided the statistical conclusion concerning 
violations of C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited capacity, then we 
used the uppercase letters S, U and L, respectively. An arrow indicates an observed transition between the 
capacity states.  
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Figure 25: The Relative learning whole-mixed CCFs, for the Hero, across the learning sessions (Block), 
plotted separately for all participants (blue line). Around each CCF we depict calculated 90% confidence 
intervals calculated by bootstrapping (red dotted line). We provided the statistical conclusion concerning 
violations of C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited capacity, then we 
used the uppercase letters S, U and L, respectively. An arrow indicates an observed transition between the 
capacity states. 
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Analyses of Gang-members (which allows SFT test) 

 
Overall, most of the CCFs violate C(t)=1 toward super capacity at early response 

times. The mixed block condition produced lower magnitude CCFs than the whole face 

blocked condition. This is consistent with the finding on mean RTs which showed slower 

processing in the mixed condition. Also the mixed condition exhibited unlimited CCFs in 

many cases. Both the absolute and relative learning CCFs clearly violate the capacity 

value of 1 toward super capacity in the blocked condition, for almost all participants and 

learning sessions. Also for some participants, there is a trend of magnitude change of 

CCFs over learning.  

1. Absolute learning whole-blocked CCF (Figure 18): All participants, except 1 and 

2 show increasing trend of CCF magnitude as a function of learning session. This 

increase reflects the amount of learning of the whole faces. Participants 1 and 2 

exhibited a significant violation toward super capacity, with a flat learning trend.  

 

2. Absolute learning whole-mixed CCF (Figure 19): Participants exhibited mainly 

unlimited CCF with a tendency to reach super capacity in later learning sessions 

(Participants 3, 4, 5, 6). Also, these participants showed an increase in magnitude 

of CCFs with learning. Participant 1 was super capacity for all sessions. Overall 

magnitudes of these CCFs were lower than the ones observed in the blocked 

condition. The resulting CCFs resembled those in (1) with smaller magnitude.  

3. Relative learning whole-blocked CCF(Figure 20): In this condition all participants 

exhibited super capacity for all learning sessions. No monotonic trend of change 

in magnitude as a function of sessions is directly evident, across all participants. 
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On the whole, Participants 3, 5 and 6 exhibited an increasing trend to some extent. 

We can conclude that, for some participants, learning occurred at different levels 

for different sessions. For Participants 1, 2 and 4, it seems that the learning effects 

were largest at the beginning and in the middle of the learning session, followed 

by some decrease in learning activity.  

4. Relative learning whole-mixed CCF (Figure 21): Super capacity has been 

demonstrated only in a few cases around sessions 5 and 6 for some participants. 

On the whole, unlimited capacity processing was demonstrated for almost all 

participants, with low magnitude of CCFs relative to the C(t)=1 bound. We can 

conclude that in the mixed condition participants were unable to benefit from the 

observation of whole faces only. No regular trend of CCF magnitude change can 

be observed across different participants, which is similar to the previous case (3). 

 

Overall, super capacity dominated in the blocked condition, and most of the 

participants exhibited an increasing trend of absolute learning effects. The exhibited 

super capacity property suggests the presence of a possible positive interdependence 

between face features, which implicates the presence of gestalt properties during 

recognition of the gang-faces. Absolute and relative learning CCFs did not show the same 

trends over the learning sessions.  

 

Analyses of the capacity coefficient functions for the Hero face condition 

 
Again, note that the single hero face did not allow of application of the SFT tests 

for architecture and stopping rule. Like the gang faces, categorization in this case could 
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be conducted using an OR rule, so we investigated capacity properties of the hero face as 

well.  

Similar to the case of the gang faces, the overall finding is that most of the CCFs 

violate value C(t)=1 toward super capacity. The mixed condition produced a lower 

magnitude CCF than the blocked condition. In contrast to the gang faces the mixed 

condition exhibited super capacity CCFs, and the overall magnitude of the CCFs were 

larger. Both the absolute and relative learning CCFs clearly violate C(t)=1 toward super 

capacity in the blocked condition, for almost all participants and learning sessions. Also, 

for some participants there is a trend of CCF magnitude change.  

 

1. Absolute learning whole-blocked CCF (Figure 22): All participants, except 1 and 

2, show an increasing trend of CCF magnitude as a function of the earning 

session. That increase corresponds to the amount of learning of whole face. 

Participants 1 and 2 exhibited significant violation toward super capacity, with a 

flat learning trend.  

2. Absolute learning whole-mixed CCF (Figure 23): Participants exhibited mainly 

super capacity CCFs. Also, Participants 2,3 and 4 showed increase in CCF 

magnitude of with learning, Overall magnitudes of CCFs were lower than the 

CCFs observed in the blocked condition (1).  

3. Relative learning whole-blocked CCF (Figure 24): In this condition, all 

participants exhibited super capacity for all learning sessions. No monotonic trend 

of magnitude change as a function of sessions is directly evident across different 

participants. We can conclude that for some participants learning occurred at 
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different levels for different sessions. For Participants 1, 4 and 6 it seems the 

learning effects were strongest at the beginning and in the middle of learning 

sessions, followed by some decrease in learning activity.  

4. Relative learning whole-mixed CCF (Figure 25): Super capacity has been 

demonstrated in many cases. We observed lower magnitude CCFs than in (3). No 

regular trend of CCF magnitude change can be observed across different 

participants, which is similar to case (3). 

 

Overall, participants exhibited super capacity during perception of the hero face, and 

most of the participants exhibited an increasing trend of absolute learning effects. The 

super capacity property suggests the presence of possible positive interdependence 

between face features, which implies the presence of gestalt properties during recognition 

of the hero-faces. 
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Experiment test phase OR condition 

 

 

Method 

 

Participants 

 
Same participants from the learning phase. 

 

Materials 

 
This experiment phase was divided into three different subexperiments: (1) 

Standard-face test session, identical to the face categorization session from the learning 

phase (2) Configural-face test and (3) Feature-face test (Figure 26). All participants 

performed each subexperiment 4 times, and the order of work for each participant was 

counterbalanced using the Latin-square design.  

We will not provide here a detail description of the standard-face test, given that it 

was described in the previous section. The configural-face and feature-face tests had the 

same task design, except that they utilized different face stimuli. Thus, we will proceed 

with a generic description for both.  

The instruction of both testing conditions resembled the standard-face test 

condition (see Figure 9). The only difference was that in both the first and second parts of 

the categorization task, new faces appeared in the set of stimuli, which were also tested 
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with the SFT tests (the MIC and SIC) and capacity. Each subexperiment started with 24 

practice trials. 

 

 

 

Figure 26: The experiment test phase. This phase part was divided into three different subexperiments: (1) 

Standard-test session, identical to the one from the learning part; (2) Configural-test and (3) Featural-test. 

They all have three parts but they utilize different types of faces. In the second part, we used faces from the 

first part with the addition corresponding masked faces, for all subexperiments. 
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 Figure 28: The OR condition, new faces in the configural-test: two dimensional face-space 

defined by the eye-separation and lips-position. The saliency of features is defined by the marginal 

proximity of each face-feature projection onto the axes with respect to the other group members. In this 

case the projection, or marginal value, of each face feature for each gang-member is either close or distant 

with respect to the projection of the same feature from the hero. The design is the same as in the standard-

test or the learning session except that the old faces have their face background completely changed.  

 

 

 

 

 

 

 

 

 

 

In the configural-test experiment (2) (Figure 28) participants were told the 

following story: “After an incident that happened with the gang and hero, the members 

from both groups are hiding from the police. We are informed that they put some 

disguises on their faces in order not to be recognized. However ALL of them wear the 

same disguise. The disguise covers everything except the eyes and lips. Have in mind that 

lips-position and eye-separation are the same as before because the disguise does not 

cover them” (Figure 27, 1st row). 
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Figure 27: Upper row: An old face and new face after configural manipulation. Note that the eye-separation 

and lips-position are the same, while the new face has the whole background of the face changed. Bottom 

row: In the feature faces (right) the face background has been removed. 

 

 

 This is one gang-member.  Now he wears the disguise. 

    

 This is one gang-member.  Now he wears the disguise. 

     

   

 

In the featural-test experiment (3) (Figure 29) participants were told the following story: 

“After the incident they made the members from both the gang and hero are hiding from 

the police. We are informed that they put some disguises on their faces in order not to be 

recognized. The disguise covers everything except the eyes and lips. In this session some 

of the faces presented will have the eyes and lips only! Have in mind that the lips-

position and eye-separation are the same as before because the disguise does not cover 

them” (Figure 27, 2nd row). 
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Figure 29: the OR condition, feature-faces in the featural-test: two dimensional face-space 

defined by the eye-separation and lips-position. The saliency of features is defined by the marginal 

proximity of each face-feature projection onto the axes with respect to the other group members. In this 

case the projection, or marginal value, of each face feature for each gang-member is either close or distant 

with respect to the projection of the same feature from the hero. The design is the same as in the standard-

test or the learning session except that the old faces have their face background completely removed.  

 

 

 

 

 

 

 

 

 

 

 

So, in both subexperiments, the featural- and configural-test subexperiments, it 

was emphasized that the critical configural information, that was both necessary and 

sufficient to generate a correct response, did not change. In this part, participants received 

400 trials of the old whole-faces, and 200 of the configurally manipulated faces. So for 

the SFT tests (MIC and SIC) there were 50 and 25 trials per condition, respectively in 

one session. Note that only gang faces are used in these analyses, which constitutes half 

of the total number of trials. The reason for using more old (standard) whole-face trials 

than new (configural whole-faces) stemmed from previous pilot studies which indicated 

that approximately 1:2 ratio can produce the biggest configural effects. We also wanted 
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our participants to rely more on old whole-faces then to learn new faces to a larger extent. 

If they are exposed to new faces more than the old faces, they could learn them as new 

face stimuli, new face configurations, and then we will not be able to investigate the 

effect of disrupting of the old configurations. 

 After that portion in all subexperiments, participants received a set of trials 

designed for application of the capacity test (Figure 26, the 2nd part). Now, in 

subexperiments (2) and (3) both types of faces presented in the previous block were 

partially masked in order to examine the capacity of the system. So, all faces in both the 

old and new groups appeared 240 times for each group. Note that in this part 1/6 of the 

trials were old whole faces, 2/6 of the trials were old masked whole-faces, 1/6 trials were 

new configural whole-faces and the final 2/6 were new configural masked faces. 

And, in the final part of all subexperiments participants finished with the with the 

four faces complete identification task with total of 100 trials (Figure 26, the 3rd part) 

 

Design and procedure 

Gang members were presented on half of the trials, while and the other half was the 

hero face. A participant had to decide, by pressing one of the mouse keys with the left 

and right index fingers, whether the hero or a gang-member was presented. RT was 

recorded from the onset of stimulus display, up to the time of response. Each trial 

consisted of a central fixation point (crosshair) for 1070ms followed by a high-pitch 

warning tone which lasted for 700msec. Then a face was presented for 190ms. Upon 

incorrect categorization, participants received an error message.  
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In the first part, participants received a total of 600 trials. The hero face was 

presented 300 times, as were all gang members, with each gang-member face was 

presented on 75 trials. In the second part, participants observed another 240 trials, of 

which 80 belonged to both types whole faces (divided equally between the hero and gang 

faces), and the other 160 trials belonged to the same two groups but with different types 

of masks (80 trials for each mask) applied on both groups. 

In the third part, the experiment a complete identification task where participants 

had to learn to identify 4 faces, a total of 100 trials were used. We used same presentation 

rates as in the previous parts.  

The trial presentation order was pseudo-randomized within each session. In each 

session, participants ran 5 blocks of approximately 200 trials each. All participants 

accomplished a total of 12 sessions (three parts for sessions each) during the test phase of 

the experiment.  The participants were instructed to achieve high accuracy and to respond 

as fast as possible. For the analyses we aggregated the four experimental sessions into 

one, therefore achieving larger number of observation per condition. The reason for the 

data aggregation was to attain more statistical power. So for the SFT tests, each factorial 

condition (HH, HL, LH and LL) possessed around 600 trials. And for the capacity 

analysis, we provided approximately 320 trials for each integrated hazard function, in 

each subexperiment.  

 
Results 

Basic Mean RT Analyses 

First, we compared mean processing time for the different subexperiments: the 

configural-test, featural-test and standard-test, for all the gang and hero trials together, in 
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the experiment. We also performed analyses for the gang-members on blocked trials, 

separately. All participants exhibited the following ordering: 

RTstandard<RTfeature<RTconfigural, except Participant 1 (Table 3 left panel – “All trials”). The 

main effect of the type of experiment was significant for all separate participants, at the 

level of p<0.01, with power=1. So, almost all participants were fastest in the standard-test 

conditions with the old faces, than in both the new configural-test and featural-test 

subexperiments. Further, the experiment with the new configuration faces exhibited 

slower processing than the experiment when feature faces were used. It could be 

suggested that on average, the new face context presented in the configural 

subexperiment produced the most detrimental effect on face perception.  

We also investigated the mean difference on processing of old whole faces in the 

different subexperiments. In the configural experiment, old faces were mixed with the 

new configural faces; in the featural experiment they were mixed with the faces that 

contained only features, and in the third experiment, or the standard test, they were 

presented alone, as in the learning phase. As in the previous analysis on all trials, almost 

all participants exhibited the RT ordering RTstandard<RTfeature<RTconfigural, except 

Participant 1 who exhibited RTstandard<RTconfigural<RTfeature, (F(1,1948)= 14.847, p<0.01); 

and Participant 4 who exhibited a significant difference, with RTstandard>RTfeature, (F(1, 

1976)=5.61, p<0.05). 
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Table 3: Mean RTs and standard errors for each subexperimental condition (configural-test, featural-test 
and standard-test), for individual participants. Table is vertically divided into two parts: all experimental 
trials were averaged for both hero and gang faces on the left side; and averaged over gang-member blocked 
trials, which are old whole faces from different subexperiments, on the right side.  

 All Trials 
OLD Gang-members 

blocked trials 

 Mean Std. Error Mean Std. Error 

 Participant 01  RT(ms)    RT(ms)   
Configural-test 743.503 3.710 701.830 7.888 

Featural-test 781.695 3.730 739.109 7.816 

Standard-test 791.344 4.275 742.707 6.407 

 Participant 02       
Configural-test 595.072 2.641 564.991 5.848 

Featural-test 590.354 2.669 530.095 5.779 

Standard-test 551.063 3.043 510.442 4.710 

 Participant 03       
Configural-test 553.857 1.912 507.453 3.067 

Featural-test 503.270 1.900 457.305 3.059 

Standard-test 480.206 2.197 444.177 2.502 

 Participant 04       
Configural-test 507.224 1.847 493.541 3.590 

Featural-test 486.697 2.057 452.357 3.975 

Standard-test 477.183 2.373 463.747 3.249 

 Participant 05        
Configural-test 670.019 2.715 595.790 4.707 

Featural-test 629.727 2.717 549.622 4.700 

Standard-test 578.045 3.097 505.953 3.830 

 Participant 06       
Configural-test 560.216 2.339 515.668 4.266 

Featural-test 560.624 2.358 490.759 4.190 

Standard-test 528.277 2.669 484.826 3.424 

 

From this analysis, we can conclude that mean processing time of the old whole-

faces is different for different experimental contexts, and is differently affected by the 

presence of either configural or featural faces. We will use this finding later, when 

calculating the capacity coefficients for different conditions.  
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In the subexperiments 1 and 2 we used new changed faces and old whole-faces 

(Figures 28 and 29): in experiment 1 (configural test) we replaced the complete face 

background except for the two important face dimensions (eyes and lips). In the 

experiment 2 (featural test) we completely removed the face background and left the only 

two critical face properties. In both experiments, we are interested in whether these 

manipulations produced changes in the processing organization, i.e. the architecture of 

mental processes during face recognition. So the outcome of each face manipulation was 

compared to the outcome of the processing of the old faces. But the old faces were 

presented in multiple experimental situations: in the standard-test experiment, which was 

the exact copy of the design used in the learning phase, as well as in each subexperiment, 

together with the configurally altered faces (configural- and featural-test). Since we 

demonstrated that mixing different types of faces could produce changes in processing of 

each type, (the difference between the standard-test experiment and each of the two: the 

configural- and featural-test) we investigated architectural differences between 

processing of each type of altered faces (configural and featural) and the processing of 

old faces in all that experiments. 

  

Comparison of the processing characteristics between old faces and new faces for the 

standard- and configural-tests (Configural x Standard design) 

 

We ran the GLM analysis, type I model, using the following fixed factors: the 

eye-separation (high/low), lips-position (high/low) and the experimental group (3 levels: 

group1=old-configural, group2=new-configural and group3=old-standard). The old-
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configural conditions are based on trials when old faces from the configural-test were 

used. The new configural conditions consisted of new faces made from the old faces by 

configural alteration (changing the face context), also from the configural-test. The old 

standard faces are taken from the standard-test. As a covariate we chose the trial order. 

Of the most interest in this study is the relation between groups 1 and 2 and between 

groups 1 and 3.  

In both groups the old-configural and old-standard, we examined processing of 

whole faces, but the difference is that in the old-standard, whole faces were not mixed 

with configurally altered faces. Therefore we expect that the mean face processing should 

be fastest in the old-standard condition (group 1). We expect that the main effect of the 

experimental group will be significant, and that the three way interaction between two 

face-features of interest and experimental group (Eyes x Lips x Exp group) will be 

significant. The interaction would indicate a possible change in the architecture between 

different experimental groups. Namely, we expect that processing of the old-standard 

faces could be based on a different mechanism than processing of the new-configural 

faces. Given that, on average, we observed differences between the processing of whole 

faces when they are presented along and when combined with configurally altered faces 

(the old-standard and old-configural faces) we expect to observe some changes in the 

processing architecture. In fact, we expect that by altering the face configuration the 

system will switch from a fast, efficient processor (probably parallel) to a less optimal 

processing system (maybe serial) under the constraints of new face configuration. 

Results from the GLM analyses are presented in Table 4 (left) and the mean RTs 

are presented in the Figure 30. 
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Figure 30 : Mean RTs from the test phase for different types of faces. The old and new configural faces are 

from the configural-test; the old and new featural faces are from the featural-test. The old faces are from the 

standard-test subexperiment. Error bars around the mean RT indicate standard error. 
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Table 4: GLM univariate analysis was conducted on gang-members, for individual participants (SUB). The 

main effects and interaction terms are listed in the second column (Factor). Degrees of freedom are in the 

third column (df). The error row defines the degrees of freedom for the F-test error term, for that 

participant. Each F-test value (F) has two degrees of freedom: one from its corresponding row, and the 

second one from the error row. A significance level is presented in the column Sig., and the observed power 

for that effect is in the last column. Table is vertically divided between two different analyses: a 

comparison of the processing characteristics between old faces and new faces for the standard- and 

configural-tests (Configural x Standard design, on the left side) and a comparison of the processing 

characteristic differences between old faces and new faces based on removing the face context (Featural x 

Standard design, on the right side) 
 

Configural x 

Standard  df F Sig.

Observed 

Power 

Featural x 

Standard df F Sig. 

Observed

Power 

Participant 01     

Trial order 1 6.711 .010 .736 Trial order 1 4.147 .042 .530 

Eyes 1 176.247 .000 1.000 Eyes 1 160.531 .000 1.000 

Lips 1 124.336 .000 1.000 Lips 1 113.848 .000 1.000 

Exp group 2 8.001 .000 .956 Exp group 2 4.723 .009 .791 

Eyes x Lips 1 78.816 .000 1.000 Eyes x Lips 1 50.201 .000 1.000 

Eyes x Exp group 2 3.685 .025 .679 Eyes x Exp group 2 1.792 .167 .376 

Lips x Exp group 2 1.823 .162 .382 Lips x Exp group 2 7.514 .001 .944 

Eyes x Lips x Exp group 
2 1.023 .360 .230 

Eyes x Lips x Exp 
group 

2 3.198 .041 .613 

Error 2326    Error 2344    

Participant 02          

Trial order 1 11.224 .001 .918 Trial order 1 .965 .326 .166 

Eyes 1 278.019 .000 1.000 Eyes 1 231.284 .000 1.000 

Lips 1 139.735 .000 1.000 Lips 1 72.244 .000 1.000 

Exp group 2 44.900 .000 1.000 Exp group 2 21.946 .000 1.000 

Eyes x Lips 1 79.190 .000 1.000 Eyes x Lips 1 47.898 .000 1.000 

Eyes x Exp group 2 4.170 .016 .736 Eyes x Exp group 2 7.345 .001 .939 

Lips x Exp group 2 .378 .685 .111 Lips x Exp group 2 14.954 .000 .999 

Eyes x Lips x Exp group 
2 3.384 .034 .639 

Eyes x Lips x Exp 
group 

2 6.145 .002 .891 

Error 2336    Error 2348    

Participant 03          

Trial order 1 50.089 .000 1.000 Trial order 1 27.422 .000 .999 

Eyes 1 450.579 .000 1.000 Eyes 1 470.282 .000 1.000 
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Lips 1 383.481 .000 1.000 Lips 1 174.005 .000 1.000 

Exp group 2 338.709 .000 1.000 Exp group 2 55.060 .000 1.000 

Eyes x Lips 1 242.839 .000 1.000 Eyes x Lips 1 102.546 .000 1.000 

Eyes x Exp group 2 42.307 .000 1.000 Eyes x Exp group 2 22.960 .000 1.000 

Lips x Exp group 2 55.523 .000 1.000 Lips x Exp group 2 4.442 .012 .764 

Eyes x Lips x Exp group 
2 35.546 .000 1.000 

Eyes x Lips x Exp 
group 

2 2.354 .095 .478 

Error 2320    Error 2351    

Participant 04          

Trial order 1 10.040 .002 .886 Trial order 1 1.278 .258 .204 

Eyes 1 283.332 .000 1.000 Eyes 1 168.151 .000 1.000 

Lips 1 46.173 .000 1.000 Lips 1 44.254 .000 1.000 

Exp group 2 27.342 .000 1.000 Exp group 2 39.638 .000 1.000 

Eyes x Lips 1 21.027 .000 .996 Eyes x Lips 1 29.968 .000 1.000 

Eyes x Exp group 2 12.406 .000 .996 Eyes x Exp group 2 11.672 .000 .994 

Lips x Exp group 2 5.152 .006 .827 Lips x Exp group 2 .459 .632 .125 

Eyes x Lips x Exp group 
2 1.411 .244 .304 

Eyes x Lips x Exp 
group 

2 2.751 .064 .545 

Error 2624    Error 2340    

Participant 05          

Trial order 1 22.886 .000 .998 Trial order 1 2.493 .114 .352 

Eyes 1 199.115 .000 1.000 Eyes 1 320.334 .000 1.000 

Lips 1 143.791 .000 1.000 Lips 1 38.270 .000 1.000 

Exp group 2 229.018 .000 1.000 Exp group 2 181.158 .000 1.000 

Eyes x Lips 1 47.818 .000 1.000 Eyes x Lips 1 32.382 .000 1.000 

Eyes x Exp group 2 6.366 .002 .901 Eyes x Exp group 2 47.095 .000 1.000 

Lips x Exp group 2 26.713 .000 1.000 Lips x Exp group 2 10.002 .000 .985 

Eyes x Lips x Exp group 
2 4.822 .008 .800 

Eyes x Lips x Exp 
group 

2 3.870 .021 .702 

Error 2341    Error 2341    

Participant 06          

Trial order 1 3.881 .049 .504 Trial order 1 7.079 .008 .758 

Eyes 1 212.241 .000 1.000 Eyes 1 183.303 .000 1.000 

Lips 1 106.000 .000 1.000 Lips 1 109.716 .000 1.000 

Exp group 2 44.545 .000 1.000 Exp group 2 146.558 .000 1.000 

Eyes x Lips 1 56.135 .000 1.000 Eyes x Lips 1 66.053 .000 1.000 

Eyes x Exp group 2 5.181 .006 .829 Eyes x Exp group 2 19.532 .000 1.000 

Lips x Exp group 2 1.842 .159 .386 Lips x Exp group 2 3.693 .025 .680 

Eyes x Lips x Exp group 
2 .651 .522 .160 

Eyes x Lips x Exp 
group 

2 .333 .717 .104 

Error 2327    Error 2314    
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From the results presented in Table 4 (left part of the table), we see that all main 

effects of Lips and Eyes were significant at the p<0.01 level, with power=1. Also the 

main effect of experimental group was significant for all participants, which indicates 

that there is a significant mean RT difference between experimental groups. In Figure 30 

we present mean RTs for different experimental groups: all participants except 

Participant 1, exhibited the following order of mean RTs: RTold-faces<RTold-

configuration<RTnew-configuration (old-faces are whole faces from the standard condition, and 

old-configuration faces are the old faces presented together with the configurally altered 

faces, and new configuration are the new-faces). Participant 1 exhibited reverse trend for 

the old-standard and new-configural faces, i.e. he exhibited slower mean RT processing 

on whole faces when they were not combined with the configurally altered faces. On the 

other hand, he demonstrated (as other participants did) faster processing of whole faces 

than configural faces when they were combined together in the experimental sessions.  

Additionally, the MIC tests, revealed by the two-way interaction Lips x Eyes, 

were significant for all participants, with very high power>.99. Overall, MIC values were 

positive for all participants, revealing oveardditivity. However, further analysis of the 

MIC values, will be broken down for different experimental conditions, for each 

participant (see Figures 31, 32 and 33).  
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Figure 31: The SFT test results for the OR standard-test condition, for gang-member faces, for all 

participants. The results are based on all sessions combined. The first column depicts the ordering of the 

joint survivor functions for the different factorial conditions (HH, HL, LH, LL). The survivor interaction 

contrast functions (SIC) are in the middle column, and the MIC results are in the right column. 
 
Participant 1  Survivor   SIC   MIC 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1
PH

T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

L H
EYE SEPARATION

600

650

700

750

800

850

900

950

TR
H

s
m

L

L H

PIL
N

OITIS
OP

 
Participant 2 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

L H
EYE SEPARATION

400

450

500

550

600

650

700

TR
H

s
m

L

L H

PIL
N

OITIS
OP

 
Participant 3 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

L H
EYE SEPARATION

350

400

450

500

550

TR
H

s
m

L

L H

PIL
N

OITIS
OP

 
Participant 4 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

L H
EYE SEPARATION

400

450

500

550

TR
H

s
m

L

L H

PIL
N

OITIS
OP

 
Participant 5 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

L H
EYE SEPARATION

400

450

500

550

600

650

TR
H

s
m

L

L H

PIL
N

OITIS
OP

 
Participant 6 

25 50 75 100 125 150 175 200
RT bins H10 msL

0.2

0.4

0.6

0.8

1

PH
T
=
<

tL

ll

lh

hl

hh

0 50 100 150 200
RT bins H10 msL

-0.4

-0.2

0

0.2

0.4

CIS

L H
EYE SEPARATION

400

450

500

550

600

TR
H

s
m

L

L H

PIL
N

OITIS
OP

 
 



 137

Figure 32: The SFT test results for the OR configural-test condition, for gang-member faces, for all 

participants. The results are based on all sessions combined. The first column depicts the ordering of the 

joint survivor functions for the different factorial conditions (HH, HL, LH, LL). The survivor interaction 

contrast functions (SIC) are in the middle column, and the MIC results are in the right column. 
Participant 1  Survivor   SIC   MIC 
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Figure 33: The SFT test results for the OR featural-test condition, for gang-member faces, for all 

participants. The results are based on all sessions combined. The first column depicts the ordering of the 

joint survivor functions for the different factorial conditions (HH, HL, LH, LL). The survivor interaction 

contrast functions (SIC) are in the middle column, and the MIC results are in the right column. 
Participant 1  Survivor   SIC   MIC 
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The three way interaction Eyes x Lips x Exp group, indicates whether there is a 

significant change of architecture for different experimental groups. This interaction was 

significant for Participants 2, 3 and 5, therefore indicating a possible change of 

architecture, due to the configural changes in the face. 

From Figure 30 it can be observed that, across all participants, there are fewer 

errors in the old-face condition than for both the old-configural and new-configural faces. 

The main variable of interest for this study was RT, and the participants had a goal to 

reduce their error levels. The error rate was not analyzed separately, given that for some 

cases it was very small with no variance. We performed a repeated measures analysis by 

averaging the group error proportions across all participants (F(2,10)= 7.87, p<0.009; M 

old-configuration=.029, S.E.Mean=.004, Mnew-configuration=.047, S.E.Mean=.008, Mold-faces=.012, 

S.E.Mean =.002). So, the error level was, on average, lower than 5%, and consistent with 

the mean RT analysis.  

Overall we conclude that there is a significant trend for all participants to process 

configurally altered faces slower than the old faces, for both face manipulations (the old-

configural and old-standard faces). Both mean RT and mean error level replicates the 

findings from previous studies that revealed similar effects of configuration change 

(Tanaka & Sengco, 1997). 

 
Comparison of the processing characteristic differences between old faces and new faces 

based on removing the face context (featural change) (Featural x Standard design) 

 
The same GLM analyses were run on these trials. The only difference was in the 

data source. The group 1 observations (old configural faces) are collected from the part 
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experiment where old whole faces are combined with the feature-only faces (see Figure 

26), the group 2 data stems from the same subexperiment, but now consists of feature-

only faces, and the group 3 data stems from the standard comparison experiments, with 

old whole faces, same as in the previous analyses. The goal of this experiment was to 

determine the effect of removing the face background, (which was not important for the 

correct decision), on mental organization during face processing. Although the face 

background was not necessary to make a correct decision, if face encoding is based on 

gestalt/holistic processes, we would expect that by removing it, we would have a larger 

effect of the configural/holistic strategies rather than the analytic.  

The results of GLM analyses, comparable to the previous section, are presented in 

Table 4, right. Also, mean RT for the different experimental groups are presented in 

Figure 26 (old-featural and new-featural groups).  

From the results presented in Table 4 (right side of the table) we can see that all 

the main effects of Lips and Eyes were significant at the p<0.01 level with power=1. 

Also, the main effect of experimental group was significant for all participants, which 

indicates that there is a significant mean RT difference between experimental groups. In 

Figure 4 we present mean RTs for the different experimental group: All participants 

exhibited a similar pattern of mean RTs: RTold-faces≈RTold-feautres<RTnew-configuration, when 

old faces are the whole faces from the standard condition, old-featural faces are the old 

faces but presented together with featural faces, and new-configuration are the new 

featural-faces. 

Also, the MIC tests revealed by the two-way interaction Lips x Eyes were 

significant for all participants with very high power=1. Overall, MIC values were positive 
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for all participants, revealing overadditivity. However, in further analysis, the MIC values 

will be broken down for different experimental conditions, and for each participant (see 

Figures 31, 32 and 33).  

The three way interaction Eyes x Lips x Exp group indicates whether there is 

possibly a significant change of architecture for different experimental groups. This 

interaction was significant for most participants, with Participants 3 and 4 reaching 

marginal significance and with the exception of Participant 6. 

From Figure 30 it could be observed that, across all participants, there is a clear 

trend of higher error reduction in both the old-faces and old-featural conditions than for 

the new-featural faces. We performed a repeated measures analysis by averaging the 

group error proportions across all participants (F(1.013,5.063)= 6.049, p<0.056), which 

was of marginal significance (Mold-featural=0.014, S.E.Mean=0.0017, Mnew-featureal=0.070, 

S.E.Mean=0.023, Mold-faces=0.012, S.E.Mean=0.002). Note that we used the Greenhouse-

Geisser test because the sphericity assumption was violated. Thus, the error level was on 

average, lower than 7%. 

Overall we conclude that there is a significant trend for all participants to process 

featurally based faces both slower and with more errors than the old faces. 

 

Mean and Survivor Interaction Contrast Functions  

Both the mean interaction contrast (MIC) and survivor interaction contrast test 

results are presented in Figures 31, 32 and 33, for all experimental groups of interest. The 

results are only for the gang members, because the design only allowed their data to be 

tested for architecture. We present data from each subexperiment.  
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We focus on the SIC functions presented in Figures 31, 32 and 33. Overall, the 

data are dominated by positive unimodal SIC functions for different subexperiments and 

participants. The positive SIC function with one peak is a strong indicator of parallel self-

terminating (minimum time) processing architecture. Also, this finding is supported by 

the appropriate ordering of survivor functions (first column in Figures 31, 32 and 33) 

combined with the overadditive MIC results. With the exception of several cases within 

the feature test, primarily the ordering of survivor functions is persevered. 

In the standard test (Figure 31) we can see that all participants exhibited clear, 

positive SIC functions, while their MIC values revealed overadditivity. Further, 

Participants 2 and 6 exhibited small negative deviations that may be indicators of a 

coactive processing structure. We conclude that presentation of old faces in the OR task 

utilized parallel processing architecture on two processing features, and participants 

could terminate processing as soon as one feature was recognized. 

The configural-test group revealed similar results at the SIC and MIC levels, with 

appropriate ordering of survivor functions (Figure 32). We conclude that when faces are 

configurally altered, that is when their background is removed and replaced with a new 

one, the processing architecture of the face features remained parallel self-terminating. 

Note that although Participant 4 exhibited a small positive MIC value, only one face 

dimension (the eye separation) was significant. However, Participant 4 (Table 3) also 

exhibited the fastest mean RT in the feature-test condition in contrast to the configural-

test and standard-test conditions, for the gang-member faces. We suggest that this 

participant qualitatively changed processing strategy which was based on a more analytic 

than holistic approach.  
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 The feature-test SIC analysis revealed a different picture: several Participants (1, 

2 and 5) did not exhibit regular MIC and SIC functions (Figure 33). In fact it is evident 

that they showed significance of the eye separation only, while no effect was delivered 

from the lip position. The other three participants showed regular parallel self-terminating 

SIC functions, which was also supported at the MIC level. However, these findings are 

not surprising. Without the face-background face features loose their support system and 

their spatial tags. While the eye separation can work as an independent feature because it 

is possible to learn the spatial relation between them, the lips are more detrimentally 

affected because they lost their immediate points of reference and can now only be 

related to the eyes.  

We averaged the MIC scores over all participants and ran a repeated measures 

GLM analysis (Table 5). The main effect of the difference between averaged MICs was 

not significant, but note that the number of participants is rather small. Interestingly, the 

standard test exhibited a lower mean MIC score than the configural test, while the 

featural test revealed the smallest MIC value. We suggest that a large part of the 

magnitude of MIC value is due to the presence of whole face structure regardless of 

whether it is old (standard) or new (configural). 

Table 5: Mean MIC values and their standard deviations, averaged over all participants, for three 

subexperiments, for gang-members faces. 

 

 Mean MIC (ms) Std. Deviation
Standard-test 82.4341 37.61489 
Configural-test 128.8395 94.14451 
Feature-test 39.4559 44.60154 
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It is interesting to note that ordering at the mean RT level for almost all 

participants was RTstandard-test<RTfeature-test<RTconfigural-test, for the gang-member faces. It 

could be expected then that both the SIC and MIC would show some monotonic 

transition between conditions, such as diminishing or increasing magnitudes. But when 

compared between groups, the SIC functions did not show a transition. The second very 

interesting aspect of the feature test is that, on average, attenuation of one face feature 

(lips) produced faster processing when compared to the introduction of a new face 

background (the configural test). So we can reconstruct the following scenario: removing 

the face background attenuated one face dimension and produced slower processing on 

average than with the standard old faces. Now, putting on a new face background slowed 

processing even more, probably because the new face background provided invalid 

reference cues for detection of spatial relations between features which could be realized 

through dependency between face units and, at the same time, re-engaged processing of 

the previously attenuated lips, producing overall significant effect on them.  

If the last is true then the capacity test should reveal the smallest CCF for the 

featural-test condition when compared with both the standard-test and configural-test 

conditions. 

 

The capacity test 

We calculated several different capacity functions for each participant. In Figures 

34 and 35 we present the calculated capacity functions, along with bootstrapped 90% 

percentile confidence intervals, for both the gang-member faces (pooled together into one 

condition) and the hero face. So for each participant we calculated 8 capacity functions, 4 

for the gang members and 4 for the hero face, in the blocked conditions. 
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 We expect that the holistic advantage of processing old whole faces will be 

evident as super capacity processing, i.e. the capacity coefficient function confidence 

interval bounds will swing above the C(t)=1 value. Subsequently, we expect that the CCF 

confidence interval for the new configural-faces test will be below C(t)=1 value. We 

assume that new configuration will impose lot of processing demands because the 

cognitive system has to process unknown global face configuration that has not been 

observed before, and probably slower processing can be engaged (serial). The weaker 

assumption of a holistic/configural effect does not necessarily predict super capacity, but 

a significant magnitude difference between CCFs for old faces and new faces. 

Also given that we found that processing of old faces is affected by mixing them 

with new-configural faces, we expect that in that the CCF for the standard test old-faces 

to be bigger then the CCF for old faces configural test.  

As far as the feature-test condition is concerned, we expect that the feature faces 

(from the featural-test condition) will exhibit CCFs that are below C(t)≤1, thereby 

revealing unlimited or limited capacity. In a weaker form, this assumption predicts that it 

is not necessary for the value to be lower than 1, because we can expect some configural 

properties to emerge even from the feature only presentation, given that some 

configuration can be inferred from the presentation of the eyes and lips only. So in this 

weaker form, it is possible that the CCF for feature-only faces exhibits even moderate 

upper violation of C(t)=1 value, toward super capacity.  

By comparing the CCFs obtained for different conditions, we expect that any 

holistic/configural processing will be evident in strong violations of C(t)=1 value for the 

old faces. We expect limited capacity for both new faces and for feature faces. 
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The weaker assumption does not assume violation of some value of C(t), but that 

there should be an ordering effect between old whole faces and new faces, such that old-

face CCF is significantly bigger than the new-face and feature-face CCFs.  

 We also predict that the hero face should exhibit a similar pattern of results to the 

gang-faces, for different conditions.  

Now we will introduce two methods for calculating CCFs. Note again that the 

goal is to calculate a measure of gestalt/holistic properties of whole face encoding. This is 

reflected in the amount of work done on whole faces, compared to the cognitive effort 

needless to process part-based faces. So, this function is a relative measure, and it could 

be affected by the learning of the part-based information, if any occurs. It is debatable 

whether a feature or part-based information could be learned as a gestalt or could posses 

a good form. With respect to the amount of learning of the part-based information, we 

can derive two CCFs. In the first method, the part-based trials of the old faces used for 

calculation, stem from the actual experimental sessions. Implicitly, we assume that there 

is no additional learning conducted on part-based information. In the second method, the 

part-based trials are from the very first learning session, from the initial phase of the 

study. Note that here we are dealing only with the learning aspect of the part-based 

information from the old faces, not the new faces.  

 

Method 1 

The CCFs were calculated by taking the ratio of integrated hazard functions, 

which is a measure of the amount of work done on old whole faces, and the amount of 

work done on the part-based faces. We used the trials only from the standard test for the 

numerator (the old whole-faces) trials, and so are taken from the first part of experiment 
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where whole faces were not combined with part faces. On the other hand trials for the 

denominator of the CCF, or the part-based faces, stem from the capacity test, which is 

taken from the mixed condition.  

 

Method 2 

In the second method, the CCFs are calculated by changing the source for the 

denominator origin. In fact, the trials for the denominator are taken from the very first 

learning sessions. The rationale for this was that if we are to compare the effects of 

encoding of whole old faces to the whole new faces (configurally changed), then we 

should use the denominators that reflect the same amount of learning of part-based faces 

as the whole face learning portion (numerator). For the old faces, these are very first trials 

of the learning sessions, while for the new configural faces, the part-based faces were 

introduced for the first time in the test phase. So in order to get a better description and 

eliminate different levels of learning of part-based old and new faces, we have to use 

trials of part based faces that equate the degree of learning.  

 

The capacity test results 

 
We present the calculated CCFs for different experimental conditions for the 

gang-members, in Figure 34, for each participant. Both old and new whole face-

conditions were taken from the blocked sessions, where they were not mixed with part-

based information. The first function (top of Figure 34 A) represents the CCF for the old 

faces from the standard-test condition, where only old faces were presented alone. The 

next function for the old-faces configural test also shows the CCF for the old faces, but 
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taken from the experimental condition when they were presented together with the new 

configural faces. The new faces configural-test represents the CCF for new faces from the 

same test session. The old faces featural-test represents the CCF when old faces are 

presented together with feature-only faces in the session (see design figure 26, the 2nd 

part, feature-face test), and the feature faces from the featural-test function correspond to 

the CCF for feature faces only from that same condition. The right column of Figure 34 B 

shows the same CCFs calculated by the second method.  

Overall, we observe that for the most participants, the old-faces CCF exhibited the 

highest value and dominates the other conditions. Also, we can observe that the weaker 

assumption of configural effects is satisfied for almost all cases; that is, CCFold 

faces>CCFnew faces. Second, for almost all participants, the CCFs for the new configural 

faces include C(t)=1 in the confidence intervals and therefore suggesting the absence of 

super capacity. These values of CCFs do not suggest that the configurally altered faces 

exhibited limited capacity processing. When feature faces were, processed CCFs are 

below C(t)=1, for most of the time and are generally of lower magnitude than for the new 

faces. This implies limited capacity of the features only.  

 We will now perform separate analyses on the gang-members and the hero face.  
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Figure 34: (A) calculated CCFs for different experimental conditions for gang-members, for each 

participant, presented on a separate page. Both old and new whole face-conditions were taken from the 

blocked sessions, where they were not mixed with part-based information. (1) represents the CCF for the 

old faces from the standard-test condition, where only old faces were presented alone. (2) CCF for the old 

faces configural test, but taken from the experimental condition when they were presented together with the 

new configural faces. (3) new faces configural-test represents the CCF for new faces from the same test 

session as the second CCF. (4) The old faces featural-test represents the CCF when old faces are presented 

together with feature-only faces in the session. (5) CCF for the feature faces from the featural-test function 

feature faces only, from that same session as the fourth CCF. The (6), (7) and (8) CCFs are calculated by 

the second method.  

(B) The configural test based on a comparison of bootstrapped confidence intervals, between old 

faces CCFs (calculated by two methods) and new faces CCFs. Figure on the left is a comparison between 

(1) and (3) CCFs; and figure on the right is a comparison between (3) and (6) CCFs. 
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The configural effect and capacity functions for the gang faces 
 

Figure 34 consists of multiple graphs, for a single participant. Overall, we can 

observe that all old faces from the standard test (first plot) calculated by both methods 

exhibited super capacity for all participants. New faces exhibited unlimited capacity for 

Participants 1, 2 and 3, while Participants 4, 5 and 6 exhibited super capacity. The feature 

faces for all participants consistently exhibited unlimited to very limited capacity. Not all 

old faces in both the configural-test and featural-test were super capacity, which is 

consistent with our previous finding that, on average, processing is slower when old-faces 

are combined with altered faces in the same experiment.  

On another figure we report two graphs of the most interest: the comparison 

between old faces (calculated by two methods) and new faces. This test is based on a 

comparison of the magnitude of CCFs and their corresponding confidence intervals. In 

order for the two CCFs to exhibit a significant difference, both functions must be 

separated from each other that all confidence intervals do not overlap, at least at some 

point in time. We also expect that the difference if it exists will follow a monotonic 

relationship and that no change of sign of that difference will be observed at any time. 

That is, we expect there to be no reversal of the effects of the expected difference. 

When compared for the configural effect, Figure 34 B, all participants exhibited a 

significant difference between the old face and new face CCFs for both calculation 

methods. We found that in all cases the old face CCF was statistically larger in magnitude 

than the new face CCF. The exceptions to this were Participants 2 and 4, but only for the 

method 1. We conclude that configurally altering the old face into the new face resulted 

in a reduction of CCF magnitude, which could correspond to a reduction in the 
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dependency between face features. Half of the participants exhibited super capacity when 

processing the new faces, so the introduction of a novel facial surround was not very 

detrimental to processing, as we expected.  

On the other hand, removing the face background (the featural-test) never 

produced super capacity, but resulted in a combination of both unlimited and limited 

capacity, with predominantly limited capacity processing.  

 

The configural effect and capacity functions for the hero face 

 
The following results are very similar to the processing of the gang-member 

faces. 

Figure 35 consists of multiple graphs as described above, for a single participant. 

Overall, we can observe that all old faces from the standard test (first plot) calculated by 

both methods exhibited super capacity for all participants.  

New faces exhibited unlimited capacity for Participants 1, 2, 3 and 6, while 

Participants 4 and 5 exhibited super capacity. The feature faces for all participants 

consistently exhibited unlimited to very limited capacity. Not all old faces in the 

configural-test were super capacity (Participants 1, 2 and 5). This is consistent with our 

previous finding that, on average, processing is slower when old faces are combined with 

altered faces in the same experiment. All old faces in the featural-test were super 

capacity.  

When compared for the configural effect, Figure 35 B all participants exhibited a 

significant difference between the old-face and new face CCFs for both methods. The old 

faces exhibited a CCF with statistically larger magnitude than new face CCF. Two 
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participants (4 and 5) exhibited super capacity when processing the new faces, so the 

introduction a novel background was not very detrimental to processing in those cases. 

Removal of the face background (the featural-test) never produced super capacity but 

resulted in a combination of unlimited and limited capacity, with more prominent limited 

capacity.  

 

Figure 35: (A) calculated CCFs for different experimental conditions for hero face, for each 

participant, presented on a separate page. Both old and new whole face-conditions were taken from the 

blocked sessions, where they were not mixed with part-based information. (1) Represents the CCF for the 

old faces from the standard-test condition, where only old faces were presented alone. (2) CCF for the old 

faces configural test, but taken from the experimental condition when they were presented together with the 

new configural faces. (3) New faces configural-test represents the CCF for new faces from the same test 

session as the second CCF. (4) The old faces featural-test represents the CCF when old faces are presented 

together with feature-only faces in the session. (5) CCF for the feature faces from the featural-test function 

feature faces only, from that same session as the fourth CCF. The (6), (7) and (8) CCFs are calculated by 

the second method.  

(B) The configural test based on a comparison of bootstrapped confidence intervals, between old 

faces CCFs (calculated by two methods) and new faces CCFs. Figure on the left is a comparison between 

(1) and (3) CCFs; and figure on the right is a comparison between (3) and (6) CCFs. 
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We conclude that in the OR case, face background plays an important role in face 

recognition/categorization and even if it was not analogous to the background that had 

been previously learnt.  
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AND condition 
 

Experiment learning phase 

 

The same design and analyses have been applied in the AND condition 

 

Method 

 

Participants 

 
Six participants, 4 females and 2 males were paid for their participation. 

Materials 

 
In the AND experiment, participants had to make a decision whether a displayed 

face belonged to one of two groups of gang-member faces: Jets or Sharks. In the first part 

of each session, participants observed only whole faces. The goal of this part was to 

investigate the organization of mental processing by application of the SFT tests (the 

MIC and SIC). In the second part, participants observed both whole faces and masked 

faces mixed together. The goal of the second part was to test the capacity of the system 

(the capacity test). In the third part, participants moved to a complete identification task, 

and they had to learn to identify 4 different faces, with associated names. The goal of this 

part was to implicitly let participants develop familiarity with some face properties that 

will be used in the test phase of experiment. 
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In the first part we manipulated the following factors: (a) face category, two 

categories were Jets or Sharks. Four member faces were designed for each gang; (b) 

feature configuration and (c) feature saliency.  

Feature configuration involved changes to either the distance between the eyes or 

the height of the mouth relative to the nose. The saliency of features is defined by the 

marginal proximity of each face-feature projection onto the two-dimensional face space 

(see Figure 36) with respect to the other category group members. In this case the 

projection, or marginal value, of each face-feature for each gang-member is either close 

or distant with respect to the projection of same feature from the most similar member of 

the other gang. So (b) and (c) were factorially combined, in the each gang group. For the 

Sharks, factorial combination of the face features and the salience level produces four 

combinations: HH, HL, LH and LL. The first letter denotes the saliency level of the eye-

separation, while the second letter denotes the saliency level of the lips position. So the 

condition HH defines one Shark gang member who is the most distant from the closest 

member of the Jet gang, in the designed face space. Here, the salience level H (high) 

results in faster recognition than the L condition. The saliency is connected to the 

similarity as well: low salience feature of one gang member face is more similar to the 

corresponding features from the other gang than high salience features. No control over 

the stopping rule could be imposed to the Jets members. In their case, termination of 

processing could occur if processing finish for the unique Jets feature (either the most 

separated eyes or the lowest lips). But if a feature, shared with the Sharks face, is 

processed first, then the decisions can not be made and processing should continue until 

the termination of the next feature. That complicates the utilization of Jets faces in both 
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the SFT tests (MIC and SIC) and the capacity test. A capacity test for this possibly mixed 

stopping rule has not been derived yet. 

 

Figure 36: The AND condition, two dimensional face-space defined by the eye-separation and lips-

position. The saliency of features is defined by the marginal proximity of each face-feature projection onto 

the axes with respect to the other group members. Boxed faces belong to Sharks, while faces outside the 

box are Jets. Jets faces are positioned such that they share one face property with the Sharks. However, in 

order to recognize Sharks member both face features must be recognized. Jets could be recognized on 

completion of only one feature that is unique for them. In this example Jets posses one feature that is 

spread-out the most, while all Sharks faces appear more compact. 

 

 

 

 

 

 

 

 

 

 

In the second part, in addition to the experimental manipulations from the first part 

another factor was manipulated: whole masked faces. So both whole- and masked-faces 
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Third part of experiment was a complete identification task identical to the one 

used in the OR design categorization task where participants have to learn to categorize 4 

faces (see Figure 9).  

Design and procedure 

 
The identical design was used as in the OR task. In each session participants run 5 

blocks of approximately 200 trials each. In contrast to the OR condition, the AND 

condition demanded a longer learning phase. All participants accomplished a minimum 

total of 12 sessions during the learning phase of the experiment. However, some 

participants accomplished a total of 20 sessions (Participants 1 and 4). Because of the 

duration of whole experimental project, the difficultly of the learning process and 

participants’ availability, different participants accomplished different numbers of 

learning sessions. However, we monitored their performance during the learning phase 

and when they reached a learning plateau, on both errors and RTs, we decided when to 

stop with the learning phase and proceed to the test phase. 

 

Results 

Basic Mean RT Analyses 

 

The GLM univariate analysis was conducted on both Sharks and Jets faces 

separately. However, we will focus our analysis mainly on the Sharks faces, given that 

they are factorially manipulated and allow for application of the SFT tests (the MIC and 

SIC tests). The results from GLM analyses for Sharks, for each participant, are presented 

in the Table 6.  
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Table 6: GLM univariate analysis was conducted on the Sharks, for different participants (SUB). The main 

effects and interaction terms are listed in the second column (Factor). Degrees of freedom are in the third 

column (df). The error row defines degrees of freedom for the F-test error term, for that participant. Each 

F-test value (F) has two degrees of freedom: one from its corresponding row, the other from the error row. 

The significance level is presented in the column Sig., and the observed power for that effect is in the last 

column.  

 

Source df F Sig.
Observed

 Power 

 

Source df F Sig. 
Observed

 Power 
SUB 
01 

Trial order 1 24.388 .000 .999 SUB 
04 

Trial order 1 86.280 .000 1.000 

 Eyes 1 306.153 .000 1.000  Eyes 1 295.647 .000 1.000 
 Lips 1 496.686 .000 1.000  Lips 1 474.777 .000 1.000 
 Learning 

Session 9 92.649 .000 1.000  Learning 
Session 9 40.317 .000 1.000 

 Eyes x Lips 1 2.360 .125 .336  Eyes x Lips 1 .457 .499 .104 
 Eyes x Learning 

Session 9 .542 .845 .274  Eyes x Learning 
Session 9 7.419 .000 1.000 

 Lips x Learning 
Session 9 8.041 .000 1.000  Lips x Learning 

Session 9 2.801 .003 .963 

 Eyes x Lips x 
Learning 
Session 

9 2.435 .009 .931 
 Eyes x Lips x 

Learning 
Session 

9 3.051 .001 .977 

 Error 5442     Error 5500    
SUB 
02 

Trial order 1 2.768 .096 .384 SUB 
05 

Trial order 1 .011 .917 .051 

 Eyes 1 208.876 .000 1.000  Eyes 1 45.142 .000 1.000 
 Lips 1 600.470 .000 1.000  Lips 1 331.313 .000 1.000 
 Learning 

Session 8 194.411 .000 1.000  Learning 
Session 6 49.843 .000 1.000 

 Eyes x Lips 1 21.270 .000 .996  Eyes x Lips 1 3.466 .063 .461 
 Eyes x Learning 

Session 8 2.943 .003 .957  Eyes x Learning 
Session 6 .690 .658 .279 

 Lips x Learning 
Session 8 14.463 .000 1.000  Lips x Learning 

Session 6 2.303 .032 .806 

 Eyes x Lips x 
Learning 
Session 

8 7.836 .000 1.000 
 Eyes x Lips x 

Learning 
Session 

6 1.894 .078 .709 

 Error 4632     Error 4013    
SUB 
03 

Trial order 1 .405 .525 .098 SUB 
06 

Trial order 1 3.033 .082 .414 

 Eyes 1 133.132 .000 1.000  Eyes 1 215.746 .000 1.000 
 Lips 1 660.560 .000 1.000  Lips 1 442.881 .000 1.000 
 Learning 

Session 7 35.012 .000 1.000  Learning 
Session 7 56.778 .000 1.000 

 Eyes x Lips 1 26.029 .000 .999  Eyes x Lips 1 3.818 .051 .497 
 Eyes x Learning 

Session 7 3.873 .000 .984  Eyes x Learning 
Session 7 1.770 .089 .726 

 Lips x Learning 
Session 7 2.266 .027 .845  Lips x Learning 

Session 7 8.681 .000 1.000 

 Eyes x Lips x 
Learning 
Session 

7 4.870 .000 .997 
 Eyes x Lips x 

Learning 
Session 

7 .470 .857 .209 

 Error 4193     Error 4071    
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  First, we analyzed the overall learning trends for Sharks faces, for all participants: 

reaction time as a function of the effect of learning session. We found that learning trends 

are all highly significant, with p<0.001 (see Table 6 under the factor Learning Session). 

The trends of RT as a function of learning session are presented in Figure 37, combined 

together with the error rate (proportion of errors). All participants exhibited a reduction in 

the proportion of errors to some asymptotic value as a function of learning sessions. Four 

participants (1, 2, 3 and 6) exhibited a reduction in both mean RTs and errors. Participant 

4 exhibited a trade-off between mean RT and mean proportion of errors for the first three 

sessions. Participant 4 has a U-shaped mean RT plot as a function of the learning session, 

in which mean RT increased for the last two sessions, accompanied by a low asymptotic 

error level.  

As it can be seen from Table 6, both manipulated face features, the eye-separation and 

lip-position factorially combined with feature saliency, exhibited significant main effects, 

for all participants separately (Table 6 the significance for rows Eyes and Lips, 

separately). Thus, manipulation of configural face-feature properties produced significant 

perceptual effects.  

Both features also exhibited a significant change in detection over learning 

sessions for most of the participants (Eyes x Session and Lips x Session) (Table 6).  

 Of the utmost importance, the MIC test, which was tested by the 

significance of the Eyes x Lips interaction, was highly significant for Participants 2 and 

3; it was marginally significant for Participants 5 and 6, and non-significant for 

Participants 1 and 4. At this point, we can conclude that 4 of the participants exhibited 

non-additive effects on the MIC test. Inspection of Figure 38 shows that all MIC 

contrasts are negative; that is, they are underadditive for these participants. 

Underadditivity on the MIC level is usually associated with a parallel exhaustive 
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processing architecture, if processes are independent and selectively influenced. 

Participants 1 and 4 exhibited additivity, which is considered to be, on the MIC level, a 

signature of serial exhaustive processing. 
Figure 37: The AND condition, learning of Sharks faces. Mean RT as a function of learning session, 

combined together with the error rate (proportion of errors), for all participants. Error bars on the mean RT 

indicate standard error.  
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Figure 38: The SFT tests results for the AND condition, for Sharks faces, for all participants. The results 

are based on all learning sessions combined. The first column depicts the ordering of the joint survivor 

functions for the different factorial conditions (HH, HL, LH, LL). The survivor interaction contrast 

functions (SIC) are in the middle column, and the MIC results are in the right column. 
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 Finally, the 3-way interaction Eyes x Lips x Session, which could indicate a 

change of MIC over the course of learning, was found to be significant for all 

participants, with the exception of Participant 5 who reached marginal significance and 

Participant 6 who was non significant. The participants with a significant 3-way 

interaction could exhibit a change in architecture during the course of learning. 

 

Learning session and MIC 

 
In order to closely inspect the effect for learning to possible changes in 

architecture (revealed by changes in the MIC and SIC test scores) we applied similar 

GLM analysis using the same design but separately for each session for each participant 

(Table 7). The results supported the overall analysis in Table 6: when broken into 

sessions, almost all main effects (Eyes, Lips) are significant. Exceptions to this were the 

main effects on the first learning session for several participants. However, after the first 

block, all main effects were found to be significant.  

 
Table 7: GLM univariate analysis was conducted on the Sharks, for different participants (SUB) across 

learning sessions (in successive blocks of rows). The main effects and interaction terms are listed in the 

second column (Factor). Degrees of freedom are in the third column (df). The error row defines degrees of 

freedom for F-test error term, for that participant. Each F-test value (F) has two degrees of freedom: one 

from its corresponding row, and the second one from the error row. A significance level is presented in the 

column Sig., and the observed power for that effect is in the last column.  
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Source df F Sig. 
Observed 

Power 

 

Source df F Sig. 
Observed 

Power 
Sub 01 Trial order 1 4.060 .044 .520 Sub 02 Trial order 1 1.064 .303 .177 
Session 01 Eyes 1 12.314 .000 .938 Session 01 Eyes 1 4.624 .032 .574 
 Lips 1 .269 .604 .081  Lips 1 .844 .359 .150 
 Eyes x Lips 1 .163 .687 .069  Eyes x Lips 1 8.482 .004 .828 
 Error 462     Error 477     
Session 02 Trial order 1 13.285 .000 .953 Session 02 Trial order 1 32.484 .000 1.000 
 Eyes 1 32.122 .000 1.000  Eyes 1 4.382 .037 .552 
 Lips 1 28.780 .000 1.000  Lips 1 23.648 .000 .998 
 Eyes x Lips 1 .439 .508 .101  Eyes x Lips 1 27.773 .000 1.000 
 Error 531     Error 522     
Session 03 Trial order 1 9.735 .002 .876 Session 03 Trial order 1 .718 .397 .135 
 Eyes 1 59.651 .000 1.000  Eyes 1 24.149 .000 .998 
 Lips 1 20.014 .000 .994  Lips 1 113.737 .000 1.000 
 Eyes x Lips 1 1.844 .175 .273  Eyes x Lips 1 19.110 .000 .992 
 Error 548     Error 538     
Session 04 Trial order 1 3.520 .061 .465 Session 04 Trial order 1 1.140 .286 .187 
 Eyes 1 33.915 .000 1.000  Eyes 1 27.956 .000 1.000 
 Lips 1 34.712 .000 1.000  Lips 1 111.397 .000 1.000 
 Eyes x Lips 1 4.360 .037 .550  Eyes x Lips 1 13.035 .000 .950 
 Error 559     Error 541     
Session 05 Trial order 1 5.068 .025 .613 Session 05 Trial order 1 .021 .885 .052 
 Eyes 1 33.423 .000 1.000  Eyes 1 40.731 .000 1.000 
 Lips 1 81.394 .000 1.000  Lips 1 158.200 .000 1.000 
 Eyes x Lips 1 .166 .684 .069  Eyes x Lips 1 1.129 .288 .186 
 Error 556     Error 559     
Session 06 Trial order 1 3.510 .062 .464 Session 06 Trial order 1 .001 .981 .050 
 Eyes 1 55.619 .000 1.000  Eyes 1 28.991 .000 1.000 
 Lips 1 96.715 .000 1.000  Lips 1 128.013 .000 1.000 
 Eyes x Lips 1 2.411 .121 .341  Eyes x Lips 1 1.445 .230 .224 
 Error 554     Error 568     
Session 07 Trial order 1 .333 .564 .089 Session 07 Trial order 1 4.312 .038 .545 
 Eyes 1 23.655 .000 .998  Eyes 1 56.560 .000 1.000 
 Lips 1 106.821 .000 1.000  Lips 1 118.127 .000 1.000 
 Eyes x Lips 1 .632 .427 .125  Eyes x Lips 1 5.401 .020 .641 
Session 08 Error 551     Error 567     
 Trial order 1 .647 .422 .126 Session 08 Trial order 1 .931 .335 .161 
 Eyes 1 48.062 .000 1.000  Eyes 1 40.046 .000 1.000 
 Lips 1 82.991 .000 1.000  Lips 1 102.739 .000 1.000 
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 Eyes x Lips 1 10.943 .001 .910  Eyes x Lips 1 3.580 .059 .472 
Session 09 Error 562     Error 565     
 Trial order 1 .055 .815 .056 Session 09 Trial order 1 2.093 .149 .302 
 Eyes 1 32.221 .000 1.000  Eyes 1 19.972 .000 .994 
 Lips 1 80.261 .000 1.000  Lips 1 36.699 .000 1.000 
 Eyes x Lips 1 1.152 .284 .188  Eyes x Lips 1 .024 .876 .053 
Session 10 Error 566     Error 287     
 Trial order 1 .006 .938 .051       

 Eyes 1 34.240 .000 1.000       

 Lips 1 102.632 .000 1.000       

 Eyes x Lips 1 5.136 .024 .619       

 Error 544          

 

 

Source df F Sig. 
Observed 

 Power 

 

Source df F Sig. 
Observed 

Power 
Sub 03 Trial order 1 1.250 .264 .200 Sub 04 Trial order 1 .599 .439 .121 
Session 01 Eyes 1 4.477 .035 .560 Session 01 Eyes 1 1.760 .185 .263 
 Lips 1 80.893 .000 1.000  Lips 1 18.454 .000 .990 
 Eyes x Lips 1 12.448 .000 .941  Eyes x Lips 1 .696 .405 .132 
 Error 475     Error 506     
Session 02 Trial order 1 .058 .810 .057 Session 02 Trial order 1 10.573 .001 .901 
 Eyes 1 1.947 .163 .286  Eyes 1 14.207 .000 .964 
 Lips 1 74.967 .000 1.000  Lips 1 20.951 .000 .995 
 Eyes x Lips 1 33.166 .000 1.000  Eyes x Lips 1 5.086 .025 .615 
 Error 562     Error 552     
Session 03 Trial order 1 .011 .918 .051 Session 03 Trial order 1 3.118 .078 .422 
 Eyes 1 14.585 .000 .968  Eyes 1 24.006 .000 .998 
 Lips 1 62.054 .000 1.000  Lips 1 39.265 .000 1.000 
 Eyes x Lips 1 10.601 .001 .902  Eyes x Lips 1 9.937 .002 .882 
 Error 571     Error 532     
Session 04 Trial order 1 11.963 .001 .932 Session 04 Trial order 1 28.790 .000 1.000 
 Eyes 1 26.921 .000 .999  Eyes 1 14.331 .000 .966 
 Lips 1 118.873 .000 1.000  Lips 1 44.100 .000 1.000 
 Eyes x Lips 1 1.378 .241 .216  Eyes x Lips 1 .072 .788 .058 
 Error 573     Error 546     
Session 05 Trial order 1 3.711 .055 .485 Session 05 Trial order 1 5.992 .015 .686 
 Eyes 1 13.872 .000 .961  Eyes 1 22.049 .000 .997 
 Lips 1 95.864 .000 1.000  Lips 1 62.762 .000 1.000 
 Eyes x Lips 1 .419 .518 .099  Eyes x Lips 1 .876 .350 .154 
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 Error 572     Error 568     
Session 06 Trial order 1 .037 .847 .054 Session 06 Trial order 1 .206 .650 .074 
 Eyes 1 45.689 .000 1.000  Eyes 1 23.663 .000 .998 
 Lips 1 123.430 .000 1.000  Lips 1 62.084 .000 1.000 
 Eyes x Lips 1 .852 .356 .151  Eyes x Lips 1 .567 .452 .117 
 Error 569     Error 549     
Session 07 Trial order 1 41.249 .000 1.000 Session 07 Trial order 1 25.851 .000 .999 
 Eyes 1 25.022 .000 .999  Eyes 1 57.094 .000 1.000 
 Lips 1 95.991 .000 1.000  Lips 1 38.235 .000 1.000 
 Eyes x Lips 1 3.375 .067 .450  Eyes x Lips 1 2.051 .153 .298 
 Error 581     Error 571     
Session 08 Trial order 1 .988 .321 .168 Session 08 Trial order 1 24.770 .000 .999 
 Eyes 1 20.338 .000 .994  Eyes 1 29.968 .000 1.000 
 Lips 1 56.835 .000 1.000  Lips 1 107.419 .000 1.000 
 Eyes x Lips 1 1.078 .300 .179  Eyes x Lips 1 2.519 .113 .354 
 Error 283     Error 557     
    Session 06 Trial order 1 33.573 .000 1.000 
     Eyes 1 81.565 .000 1.000 
     Lips 1 64.714 .000 1.000 
     Eyes x Lips 1 .479 .489 .106 
     Error 545     
    Session 09 Trial order 1 .123 .725 .064 
     Eyes 1 89.258 .000 1.000 
     Lips 1 64.895 .000 1.000 
     Eyes x Lips 1 5.399 .021 .640 
     Error 565     

 

 

Source df F Sig. 
Observed 

 Power 

 

Source df F Sig. 
Observed 

 Power 
Sub 05 Trial order 1 30.118 .000 1.000 Sub 06 Trial order 1 .953 .329 .164 
Session 01 Eyes 1 2.961 .086 .404 Session 01 Eyes 1 30.720 .000 1.000 
 Lips 1 21.958 .000 .997  Lips 1 1.060 .304 .177 
 Eyes x Lips 1 1.688 .194 .254  Eyes x Lips 1 .354 .552 .091 
 Error 544     Error 462     
Session 02 Trial order 1 5.474 .020 .646 Session 02 Trial order 1 1.677 .196 .253 
 Eyes 1 7.906 .005 .802  Eyes 1 24.559 .000 .999 
 Lips 1 151.416 .000 1.000  Lips 1 38.124 .000 1.000 
 Eyes x Lips 1 17.194 .000 .985  Eyes x Lips 1 1.105 .294 .182 
 Error 569     Error 499     
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Session 03 Trial order 1 51.931 .000 1.000 Session 03 Trial order 1 11.828 .001 .930 
 Eyes 1 6.206 .013 .701  Eyes 1 41.398 .000 1.000 
 Lips 1 142.670 .000 1.000  Lips 1 68.448 .000 1.000 
 Eyes x Lips 1 5.223 .023 .626  Eyes x Lips 1 3.339 .068 .446 
 Error 579     Error 495     
Session 04 Trial order 1 .682 .409 .131 Session 04 Trial order 1 .696 .404 .132 
 Eyes 1 21.845 .000 .997  Eyes 1 26.287 .000 .999 
 Lips 1 135.185 .000 1.000  Lips 1 74.629 .000 1.000 
 Eyes x Lips 1 .506 .477 .110  Eyes x Lips 1 2.095 .148 .304 
 Error 578     Error 511     
Session 05 Trial order 1 .249 .618 .079 Session 05 Trial order 1 .077 .782 .059 
 Eyes 1 48.258 .000 1.000  Eyes 1 28.908 .000 1.000 
 Lips 1 128.385 .000 1.000  Lips 1 50.467 .000 1.000 
 Eyes x Lips 1 .164 .686 .069  Eyes x Lips 1 .531 .467 .112 
 Error 579     Error 519     
Session 06 Trial order 1 169.481 .000 1.000 Session 06 Trial order 1 5.047 .025 .611 
 Eyes 1 3.288 .070 .441  Eyes 1 39.067 .000 1.000 
 Lips 1 13.414 .000 .955  Lips 1 61.838 .000 1.000 
 Eyes x Lips 1 .142 .706 .066  Eyes x Lips 1 .112 .739 .063 
 Error 578     Error 528     
Session 07 Trial order 1 33.444 .000 1.000 Session 07 Trial order 1 .351 .554 .091 
 Eyes 1 4.893 .027 .598  Eyes 1 12.359 .000 .939 
 Lips 1 39.113 .000 1.000  Lips 1 91.166 .000 1.000 
 Eyes x Lips 1 .775 .379 .142  Eyes x Lips 1 .309 .579 .086 
 Error 580     Error 528     
    Session 08 Trial order 1 8.420 .004 .825 
     Eyes 1 35.274 .000 1.000 
     Lips 1 137.927 .000 1.000 
     Eyes x Lips 1 .006 .936 .051 
     Error 522     

 

The significance of the interaction between the two (Eyes x Lips) exhibited 

variability over the learning sessions. However, this apparent variability of significance 

of the interaction over different session was found to be associated with a lawful change 

of the MIC over the learning sessions. In fact, it can be observed from Table 7, that the 

MIC scores tended to increase from some negative value toward zero, and sometimes it 



 179

reached a positive value, as a function of learning session. So, we investigated the 

relationship between learning session and the change of MIC.  

We previously showed a significant three-way interaction (Eyes x Lips x 

Sessions) for most participants which directly indicates that the MIC values should 

exhibit some change as a function of learning session. In order to test this, we ran a 

multiple regression analysis using subjects’ MIC scores as the dependent variable, while 

the session, the mean RT, and their interaction were independent variables. The 

proportion of explained variability of the MIC change was R2=0.58, (F(2,35)=22.83), 

with both variables, the session and mean RT, contributing significantly. So, almost 60% 

of the individual variability of MIC values can be explained by the amount of learning 

and mean reaction time across learning sessions.  

 When we average over different participants, these predictors can explain 94% of 

the MIC variability, due to function smoothing after averaging over participants (see 

Figure 39) (R2=.94, F(2,7)=50.172, p<0.001); both predictor variables (learning session 

and mean RT for each session) entered the regression analysis and were significant at the 

p<0.05 level. 

 
Figure 39: MIC value as a function of the learning session, averaged over participants.  
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Mean and Survivor Interaction Contrast Functions  

  

In figure 40 we show the MIC results for different participants, combined with 

their corresponding SIC functions. Note that both tests are calculated over all learning 

session. We also provide additional corresponding figures of the survivor functions used 

to calculate the SIC function (Figure 40 on the left). 

Figure 40: The SFT tests results for the AND condition, for Shark faces, for all participants. The results are 

broken down for each participant across the learning sessions. The survivor interaction contrast functions 

(SIC) are in the left column. The MIC values are presented in the right column; dotted lines connect points 

with high lips-position saliency level (H). The learning sessions are presented in rows 
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Participant 2 SIC   MIC 
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Participant 3 SIC   MIC 
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Participant 4 SIC   MIC 
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Participant 5 SIC   MIC 

0 50 100 150 200
RT HmsL

-0.4

-0.2

0

0.2

0.4

CIS

 L H
EYE SEPARATION

500

550

600

650

700

TR
H

s
m

L

L H

PIL
N

OITIS
OP

  

0 50 100 150 200
RT HmsL

-0.4

-0.2

0

0.2

0.4

CIS

 L H
EYE SEPARATION

400

450

500

550

600

650

700

TR
H

s
m

L

L H

PIL
N

OITIS
OP

  

0 50 100 150 200
RT HmsL

-0.4

-0.2

0

0.2

0.4

CIS

 L H
EYE SEPARATION

400

450

500

550

600

650

TR
H

s
m

L

L H

PIL
N

OITIS
OP

  

0 50 100 150 200
RT HmsL

-0.4

-0.2

0

0.2

0.4

CIS

 L H
EYE SEPARATION

400

450

500

550

600

TR
H

s
m

L

L H

PIL
N

OITIS
OP

  

0 50 100 150 200
RT HmsL

-0.4

-0.2

0

0.2

0.4

CIS

 L H
EYE SEPARATION

350

400

450

500

550

600

TR
H

s
m

L

L H

PIL
N

OITIS
OP

 

Session 1

Session 2

Session 3

Session 4

Session 5

Session 9

Session 10



 186

0 50 100 150 200
RT HmsL

-0.4

-0.2

0

0.2

0.4

CIS

 L H
EYE SEPARATION

500

550

600

650

700

TR
H

s
m

L

L H

PIL
N

OITIS
OP

 

 0 50 100 150 200
RT HmsL

-0.4

-0.2

0

0.2

0.4

CIS

L H
475
500
525
550
575
600
625
650

L H

 
 
Participant 6 SIC   MIC 
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From the shapes of the SIC functions, we see that the conclusions from this test 

support the basic MIC test using the GLM analyses (see above). Participants 1 and 4 

exhibited S-shaped SIC functions, which corresponds to the serial exhaustive 

architecture, on stronger level than the ordering of means. Other participants’ SIC 

functions are mainly negative, which is strong indication of parallel exhaustive 

processing. Participant 2 exhibited some mixture of both functions, where the early part 

of the SIC is S-shaped and the later part is predominantly negative. The shape of the SIC 

function warns us about possible scaling issues when combining several SIC functions 

which are calculated from different sessions, that could be affected by different levels of 

learning. So, in the next session we decided to break down the overall SIC function into 

several functions for each learning session.  

 In Figure 40 we broke down the both the MIC and SIC into different learning 

sessions. In agreement with previous analyses based on GLM tests, and following overall 

finding of underadditivity on both the MIC and SIC levels, we revealed the same 

signature of parallel maximum time (exhaustive) processing architecture as in earlier 

sessions, for different participants. Again, the shapes of the SIC functions paralleled the 

findings on the MIC level, where we discovered lawful changes of MIC over learning 

Session 7

Session 8
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sessions. In fact, for most participants, there is a common scenario that develops over the 

sessions. In the first learning sessions, participants usually show unordered means (such 

that LL>LH≈HL>HH does not hold). We suggest that the initial learning set the 

processes in an appropriate frame of constraints and pushed toward optimal performance. 

The process of learning established the desired ordering of means and survivor functions 

in later sessions. Around the third session a negative SIC function is clearly established, 

suggesting that parallel exhaustive architecture was engaged, for almost all participants. 

Then, later in learning there is a clear tendency for reduction in the MIC value to zero 

which reaches a positive value for the later learning sessions, for most of the participants. 

This lawful change in the MIC value was accompanied by change of the shape of the SIC 

function, which made a transition from mainly negative to a positive, S-shaped function. 

And in many cases, processing did produce MIC overadditivity, which is exhibited as a 

positive S-shaped SIC function (in Table 7 we can see that some of the MIC tests with 

positive values are significant).  

 

Difference between blocked and mixed whole-face conditions 

 
As the null hypothesis, we assumed that there was no difference on the mean level 

between blocked and mixed conditions when whole faces are used. Again, we tested the 

relationship between the utilization of part-based faces and whole-face information. 

 In order to test this hypothesis we ran paired sample t-tests on the mean difference 

between processing whole faces in the first part (the SFT test) of the learning session and 

processing time for whole faces in the mixed condition (from the capacity test part) for 

each participants. We found that whole faces are processed faster in the blocked than in 
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the mixed conditions (t(5)=-6.468, RTblocked=667ms, SD =66ms, and RTmixed=746ms, SD 

= 82ms), and that this finding is consistent over all participants. We conclude that the 

processing of whole faces in the two conditions is altered by the context of part-based 

(masked) information. The major consequence of this finding is on calculation of the 

capacity functions in the next section. Since there is a significant difference of processing 

of whole faces depending on the presence of a part-face context in the experiment, we 

will utilize calculation of two different capacity coefficient functions, each of which uses 

a different whole-face calculation (from either the blocked or mixed conditions). 

 

Capacity Coefficient Functions (CCFs) 

 
We calculated 4 different capacity coefficient functions for each participant, for each 

stimulus category. In Figures 41, 42, 43 and 44 we present the calculated CCFs, along 

with bootstrapped 90% percentile confidence intervals, for both Sharks faces (pooled 

together into one condition). So for each participant, we calculated 8 CCFs, for each 

learning session. Confidence intervals delimit the area in which the capacity coefficient 

function could fall when the same experiment is repeated. 

We assume that in the case of super capacity (C(t)>1), both confidence interval 

bounds should swing above the value of one. In the case of unlimited capacity, the CCF 

value of one should be in between the two confidence interval bounds; in other words, 

one bound is above C(t)=1 and the other one is below C(t)=1. And in the case of limited 

capacity, both confidence interval bounds should fall below C(t)=1.  
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It is also possible that at different points in the time scale, the generated confidence 

intervals are some combination of cases, such that at some point in time they are both 

above one, and for a later time they could contain C(t)=1.  

 In Figures 41-44, we plot CCFs (4) for each participant (6), for Sharks only. 

Remember that Sharks were the group of faces that permitted application of the SFT test. 

Jets did not permit SFT analysis: in order to decide that a face was a Jet, a combination of 

OR and AND processing could be used. If participant processed a unique Jet’s feature 

first, then he/she can terminate, but if a shared (with Sharks) face feature is processed 

first, then the second feature must be processed as well. 

 We also used scales on the y-axis that are common for all figures in the 

experiment, so a reader can see changes of magnitude as a function of learning session. 

On each figure, we denoted by a blue bold line the calculated CCF, and with red dotted 

lines we present the bootstrapped 90% confidence intervals. Ca(t)=1 reference value is 

denoted by a horizontal line. Note that violation of C(t)=1 in any direction (super 

capacity or limited capacity) must show at least at some point a violation of both 

bootstrapped confidence interval bounds. That is, they both must swing above or below 

C(t)=1. 

In some figures, it could be difficult to verify by eye violations of C(t)=1 for the 

confidence intervals. Although that could be solved by rescaling of the y-axis, the reader 

will miss information about magnitude over the learning sessions. Again, we scale the y-

axis such that all CCFs for one logical conditions (OR or AND) are comparable, given 

the largest observed CCF. In order to increase the understanding of Figures 41-44, we 

added the statistical conclusions concerning violations in each small figure: if the CCF 
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was super, unlimited or limited capacity then we used uppercase letters S, U and L, 

respectively. If a transition was observed, that is for some time a CCF could be super 

capacity then unlimited capacity for rest of the time, we used an arrow symbol. So, the 

notation S→U→L means that the CCF exhibited all capacity states over the course of 

time. In some rare cases, the order could be more complex, but on the whole this is what 

we can observe in this study. It was previously demonstrated that the Ca(t) function for 

AND processing usually shows an increasing trend as a function of time (Townsend & 

Wenger, 2004). Note however that this is true in most cases in the observed CCF only, 

but after bootstrapping the lower confidence interval bound showed a final decreasing 

trend as a function of time.  
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 Figure 41: The absolute learning whole-blocked CCFs, for the Sharks members, across the learning 
sessions (Block), separately for all participants (blue line). Around each CCF we depict calculated 90% 
confidence intervals calculated by bootstrapping (red dotted line). We provided the statistical conclusion 
concerning violations of the C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited 
capacity then we used the uppercase letters S, U and L, respectively. An arrow indicates an observed transition 
between the capacity states.  
Participant 01 

 
Participant 02 

 
Participant 03 

 

 S→U S→U S→U S    S    S→U  S→U S→U S S→U 

 S→U S→U S→U S→U    S→U    S  S→U S S 

 S→U S→U S→U S→U    S→U    S→U  S→U S→U 
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Participant 04 

 
Participant 05 

 
Participant 06 

 

 S→U S→U S→U S→U    S→U    S→U  S→U S→U S→U S→U 

 S→U S→U S→U S→U    S→U    S→U  S→U 

 S→U S S→U S    S→U    S  S→U S→U 
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Figure 42: The Absolute learning whole-mixed CCFs, for the Sharks members, across the learning 
sessions (Block), separately for all participants (blue line). Around each CCF we depict calculated 90% 
confidence intervals calculated by bootstrapping (red dotted line). We provided the statistical conclusion 
concerning violations of the C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited 
capacity then we used the uppercase letters S, U and L, respectively. An arrow indicates an observed 
transition between the capacity states.  
Participant 01 

 
Participant 02 

 
Participant 03 

 

 S→U S→U S S→U    S    S  S S S S 

 S→U S→U S→U S    S→U    S→U  S S S 

 S→U S→U S→U S→U    S→U    S→U  S→U S 
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Participant 04 

 
Participant 05 

 
Participant 06 

 

 S→U S→U S→U L→U→S  S→U→L U S→U S→U 

 S S→U S→U S    S    S→U  S 

 S→U S→U S→U S→U    S→U    S  S S 

   L→U→S    L→U→S 
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Figure 43: The Relative learning whole-blocked CCFs, for the Sharks members, across the learning sessions 
(Block), separately for all participants (blue line). Around each CCF we depict calculated 90% confidence 
intervals calculated by bootstrapping (red dotted line). We provided the statistical conclusion concerning 
violations of the C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited capacity then we 
used the uppercase letters S, U and L, respectively. An arrow indicates an observed transition between the 
capacity states.  
Participant 01 

 
Participant 02 

 
Participant 03 

 

 S→U S S S    S→U    S→U  S→U S→U S→U S→U 

 S→U S S S→U    S    S  S S S 

 S→U S→U S S    S    S  S→U S→U 
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Participant 04 

 
Participant 05 

 
Participant 06 

 

 S→U S S→U S→U    S    S  S S S S→U 

 S→U S S→U S→U    S→U    S  S→U 

 S→U S→U S→U S→U    S→U    S→U  S→U S→U 
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Figure 44: The Relative learning whole-mixed CCFs, for the Sharks members, across the learning sessions 
(Block), separately for all participants (blue line). Around each CCF we depict calculated 90% confidence 
intervals calculated by bootstrapping (red dotted line). We provided the statistical conclusion concerning 
violations of the C(t)=1 bound, in each small figure. If the CCF was super, unlimited or limited capacity then we 
used the uppercase letters S, U and L, respectively. An arrow indicates an observed transition between the 
capacity states. 
Participant 01 

 
Participant 02 

 
Participant 03 

 

 S→U S S S    S→U    S→U  S→U S→U S S 

 S→U S S→U S    S    S  S S S 
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Participant 04 

 
Participant 05 

 
Participant 06 

 
 

 S→U S→U S→U S    S    S  S S S S→U 

 S S S S    S    S  S 

 S→U S S S→U    S→U    S→U  S→U S→U 
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Analyses of Sharks (which allows SFT test) 

 
The overall finding is that most CCFs violate value C(t)=1 toward super capacity. 

The mixed condition produced lower magnitude CCF values than the blocked conditions. 

This is consistent with the finding on mean RTs which showed slower processing in the 

mixed condition. Also, the mixed condition exhibited super capacity CCFs in all cases. 

Both the absolute and relative learning CCFs clearly violate C(t)=1 toward super capacity 

in the blocked condition, for almost all participants and learning sessions. Also for some 

participants, there is a trend of CCF magnitude change.  

 

1. Absolute learning whole-blocked CCF (Figure 41): Several participants exhibited 

a monotonic increasing magnitude as a function of learning session (Participants 

1, 2 and 3 to some extent). Other participants exhibited either a steady stable 

(Participant 4) or irregular trend (Participants 5 and 6). In all cases, the first block 

CCF is of smallest magnitude.  

2. Absolute learning whole-mixed CCF (Figure 42): Similar to (1), participants 

exhibited super capacity CCFs with either an increasing trend of CCF magnitude 

(Participants 1,2, 6) or some non-monotonic trend. The resulting CCFs resembled 

the ones in (1) with smaller magnitude. Participant 2 exhibited extreme super 

capacity behavior in the last sessions which did not fit the scaling window; for the 

sake of scaling issues we leave it blank in the figure and note that its real value is 

above 100. Careful examination of both confidence intervals for Participant 4 

revealed that super capacity was achieved for some short period of time, although 

in the figure it does not appear so.  
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3. Relative learning whole-blocked CCF (Figure 43): In this condition, all 

participants exhibited super capacity for all learning sessions. No monotonic trend 

of magnitude change as a function of sessions is directly evident, across different 

participants. We can conclude that for some participants learning occurred at 

different levels for different sessions. For Participants 3, 4 and 6, it seems that the 

learning effects were strongest at the beginning and in the middle of the learning 

sessions, followed by some decrease in learning activity.  

4. Relative learning whole-mixed CCF (Figure 44): Super capacity has been 

demonstrated in all cases, with irregular trends over the learning sessions. As in 

previous cases, we can conclude that in the mixed condition participants were 

hampered to benefit from observation of whole-faces only.  

 

Overall, super capacity was observed in all conditions with the largest magnitude in 

the blocked conditions in both the absolute and relative learning CCFs. It is interesting to 

observe that participants who exhibited smaller magnitude CCFs in the absolute blocked 

learning condition showed sizable CCF values in the relative learning blocked condition 

(Participants 3 and 4). This finding validates the use of different CCF definitions, and 

will be discussed later. The exhibited super capacity property suggests the possible 

presence of positive interdependence between face features, which implies the possible 

presence of gestalt properties during recognition of the Shark faces. Absolute and relative 

learning CCFs did not show same trends over the learning sessions.  
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Experiment test phase AND condition  

 

Method 

 

Participants 

 
The same six participants, 4 females and 2 males were paid for their participation. 

Materials 

 
We used the same materials and design as in the OR test phase experiment. We 

will briefly remind the reader.  

This experiment phase was divided into three different subexperiments: (1) 

Standard-face test session, identical to the one from the learning phase; (2) Configural-

face test and (3) Feature-face test (see Figure 9). Each participant performed each 

subexperiment 4 times, and order of work for each participant was counterbalanced using 

the Latin-square design.  

In the configural-test experiment (2) (Figure 45) participants were told following 

story: “After the incident that happened with the Jets and Sharks, the members from both 

gangs are hiding from the police. We are informed that they put some disguises on their 

faces in order not to be recognized. However ALL of them wear the same disguise. The 

disguise covers everything except the eyes and lips. Have in mind that lips position and 

eyes separation are the same as before because the disguise does not cover them” (Figure 

45).  
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Figure 45: The AND condition, new faces in the configural-test: two dimensional face-space defined by 

the eye-separation and lips-position. The saliency of features is defined by the marginal proximity of each 

face-feature projection onto the axes with respect to the other group members. Boxed faces belong to 

Sharks, while faces outside the box are Jets. Jets faces are positioned such that they share one face property 

with Sharks. However in order to recognize a Sharks member, both face features must be recognized. Jets 

could be recognized on completion of only one feature that is unique for them. In this example Jest posses 

one feature that is spread-out the most, while all Sharks faces appear more compact. The design is the same 

as in the standard-test or the learning sessions except that the old faces have their face background 

completely replaced.  

 

 

 

 

 

 

 

 

  And also, in the featural-test experiment (3) (Figure 46) participants were told 

following another story: “After the incident they made the members from both gangs are 

hiding from the police. We are informed that they put some disguises on their faces in 

order not to be recognized. The disguise covers everything except the eyes and lips. In 

this session some of the faces presented will have the eyes and lips only! Have in mind 

that the lips-position and eye-separation are the same as before because the disguise does 

not cover them”. So, in both the featural- and configural-test subexperiments, it was 

emphasized that the critical configuration that was both necessary and sufficient to 

generate a correct response did not change.  
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Figure 46: The AND condition, feature-faces in the featural-test: two dimensional face-space defined by 

the eye-separation and lips-position. The saliency of features is defined by the marginal proximity of each 

face-feature projection onto the axes with respect to the other group members. Boxed faces belong to 

Sharks, while faces outside the box are Jets. Jets faces are positioned such that they share one face property 

with Sharks. However in order to recognize a Sharks member, both face features must be recognized. Jets 

could be recognized on completion of only one feature that is unique for them. In this example Jest posses 

one feature that is spread-out the most, while all Sharks faces appear more compact. The design is the same 

as in the standard-test or the learning sessions except that the old faces have their face background 

completely removed.  

 

 

 

 

 

 

 

 

Design and procedure 

Same as in the OR condition.  

 

Results 

Basic Mean RT Analyses 

 
First, we compared mean processing time for different subexperiments, the 

configural, featural and standard tests, for all trials in the experiment and for the Sharks 
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blocked trials. All participants exhibited the following ordering: 

RTstandard<RTfeature<RTconfigural (Table 8, left panel all trials). The main effect of the type of 

experiment was significant, for all participants, at the level of p<0.01, with power=1. So, 

all participants were fastest in the standard experiment that used the old faces, than in 

both the new configuration and feature subexperiments.  

We also tested the effect of the experiments on processing old faces on the Sharks 

trials for each participant (Table 8, right panel). Here all participants adhered with the 

same ordering of means, except Participant 1 who had the following order: RTstandard> 

RTfeature, (F(1, 1896)=2.13, p<0.05).  

So, we conclude that the standard experiment (3) exhibited on average faster 

processing than the configural and featural subexperiments where we used configurally 

altered faces and faces that posses only the features of importance. We can also conclude 

that new whole faces that are configurally altered mixed together in the same sessions 

with the old faces affected processing of old whole faces. This is evidenced by 

comparison of the configural and standard subexperiment (1 and 3). The same holds for 

the featural manipulation: providing only features in the experiment will alter the 

processing of old whole faces in the same session when compared to the old whole faces. 

In both cases, the alteration of faces (featural and configural) produced slower processing 

of old whole faces. So mixing the configurally altered faces and whole old faces has a 

detrimental effect on old face encoding, and we suggest that old whole-face processing is 

directly or indirectly related to the processing of the altered whole-face processing. They 

either rely on a shared processing mechanism or/and share similar representation space. 
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Table 8: Mean RTs and standard errors for each subexperimental condition (configural-test, featural-test 

and standard-test), for individual participants. Table is vertically divided into two parts: all experimental 

trials were averaged for both Jets and Sharks faces on the left side; and averaged over Sharks faces blocked 

trials, which are old whole faces from different subexperiments, on the right side.  

 

 All Trials 
OLD Shark -members 

blocked trials 

 Mean Std. Error Mean Std. Error 

 Participant 01  RT(ms)    RT(ms)   
Configural-test 644.734 2.865 638.818 6.000 

Feature-test 652.383 2.863 576.133 5.719 

Standard-test 623.265 3.210 591.254 4.698 

 Participant 02     
Configural-test 711.483 3.908 609.701 6.264 

Feature-test 696.500 3.905 576.471 6.124 

Standard-test 583.428 4.371 509.194 5.032 

 Participant 03     
Configural-test 713.643 4.467 681.392 8.942 

Feature-test 706.685 4.569 581.906 8.763 

Standard-test 633.445 5.103 566.198 7.157 

 Participant 04     
Configural-test 740.893 4.196 717.490 8.969 

Feature-test 747.162 4.266 674.467 8.761 

Standard-test 687.851 4.779 641.470 7.169 

 Participant 05      
Configural-test 566.605 2.457 521.323 4.352 

Feature-test 550.662 2.476 486.874 4.310 

Standard-test 493.576 2.795 461.245 3.550 

 Participant 06     
Configural-test 719.726 2.847 686.175 6.258 

Feature-test 669.923 2.858 633.130 6.093 

Standard-test 660.447 3.216 632.326 5.009 

 

Since we demonstrated that mixing different types of faces can produce changes 

in the processing of each type (the differences between the standard test and both the 
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configural-test and featural-test), we investigated architectural differences between 

processing of each type of altered faces (configural and featural) and the processing of 

old faces in all subexperiments. 

 

Comparison of the processing characteristic differences between old faces and new faces 

for the standard-test and configural-test (Configural x Standard design) 

  
We ran a GLM analysis, type I model, for separate subexperiments (1 and 3) 

using the following fixed factors: the eye-separation (high/low), lips-position (high/low), 

and the experimental group (3 levels: group1=old-configural, group2=new-configural and 

group3=old-standard). The old-configural conditions are based on trials when old faces 

from the configural-test were used. The new configural conditions consisted of new faces 

made from the old faces by configural alteration (changing the face context), also from 

the configural-test. The old standard faces are taken from the standard-test.  

As a covariate, we chose the trial order. Of most interest in the study is the 

relation between group2 (new-configural faces) and groups 1 and 3 (old-faces). In both 

groups 1 and 3 we examined processing of whole faces, but the difference is that in 

group3, whole-faces were not mixed with configurally altered faces. Therefore, we 

expect that the mean face processing should be fastest in group 3.  

 
Table 9: GLM univariate analysis was conducted on the Sharks faces, for different participants (SUB). The 

main effects and interaction terms are listed in the second column (Factor). Degrees of freedom are in the 

third column (df). The error row defines the degrees of freedom for the F-test error term, for that 

participant. Each F-test value (F) has two degrees of freedom: one from its corresponding row, and the 

second one from the error row. A significance level is presented in the column Sig., and the observed power 

for that effect is in the last column. Table is vertically divided between two different analyses: a 

comparison of the processing characteristics between old faces and new faces for the standard- and 
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configural-tests (Configural x Standard design, on the left side) and a comparison of the processing 

characteristic differences between old faces and new faces based on removing the face context (Featural x 

Standard design, on the right side) 

 
 
 
 
Configural x 
Standard df F Sig.

Observed
Power 

Featural x 
Standard df F Sig. 

Observed
Power 

Participant 01          
Trial order 1 1.125 .289 .185 Trial order 1 12.439 .000 .941 
Eyes 1 130.218 .000 1.000 Eyes 1 83.785 .000 1.000 
Lips 1 385.439 .000 1.000 Lips 1 436.880 .000 1.000 
Exp group 2 31.225 .000 1.000 Exp group 2 70.992 .000 1.000 
Eyes x Lips 1 5.763 .016 .670 Eyes x Lips 1 5.987 .014 .686 
Eyes x Exp group 2 9.114 .000 .976 Eyes x Exp group 2 1.021 .360 .229 
Lips x Exp group 2 9.860 .000 .984 Lips x Exp group 2 16.627 .000 1.000 
Eyes x Lips x Exp group 2 .429 .651 .120 Eyes x Lips x Exp 

group 2 12.933 .000 .997 

Error 2197    Error 2213    

Participant 02          
Trial order 1 2.802 .094 .387 Trial order 1 .089 .765 .060 
Eyes 1 174.895 .000 1.000 Eyes 1 163.494 .000 1.000 
Lips 1 384.190 .000 1.000 Lips 1 224.756 .000 1.000 
Exp group 2 161.488 .000 1.000 Exp group 2 311.117 .000 1.000 
Eyes x Lips 1 13.448 .000 .956 Eyes x Lips 1 3.577 .059 .472 
Eyes x Exp group 2 3.217 .040 .616 Eyes x Exp group 2 3.183 .042 .611 
Lips x Exp group 2 10.849 .000 .991 Lips x Exp group 2 3.150 .043 .606 
Eyes x Lips x Exp group 2 .492 .612 .131 Eyes x Lips x Exp 

group 2 3.438 .032 .646 

Error 2238    Error 2215    

Participant 03          
Trial order 1 .495 .482 .108 Trial order 1 202.882 .000 1.000 
Eyes 1 146.282 .000 1.000 Eyes 1 139.901 .000 1.000 
Lips 1 474.727 .000 1.000 Lips 1 490.702 .000 1.000 
Exp group 2 66.536 .000 1.000 Exp group 2 143.852 .000 1.000 
Eyes x Lips 1 .039 .843 .055 Eyes x Lips 1 .134 .715 .065 
Eyes x Exp group 2 6.044 .002 .885 Eyes x Exp group 2 2.338 .097 .475 
Lips x Exp group 2 15.348 .000 .999 Lips x Exp group 2 25.669 .000 1.000 
Eyes x Lips x Exp group 2 3.357 .035 .635 Eyes x Lips x Exp 

group 2 5.467 .004 .850 

Error 2276    Error 2280    
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Participant 04          
Trial order 1 6.535 .011 .724 Trial order 1 7.288 .007 .770 
Eyes 1 146.021 .000 1.000 Eyes 1 147.057 .000 1.000 
Lips 1 305.001 .000 1.000 Lips 1 197.880 .000 1.000 
Exp group 2 35.852 .000 1.000 Exp group 2 39.653 .000 1.000 
Eyes x Lips 1 1.011 .315 .171 Eyes x Lips 1 2.322 .128 .331 
Eyes x Exp group 2 1.529 .217 .327 Eyes x Exp group 2 .951 .387 .216 
Lips x Exp group 2 15.555 .000 .999 Lips x Exp group 2 1.437 .238 .309 
Eyes x Lips x Exp group 2 .343 .710 .105 Eyes x Lips x Exp 

group 2 2.552 .078 .512 

Error 2183    Error 2152    

Participant 05          
Trial order 1 .003 .953 .050 Trial order 1 .003 .953 .050 
Eyes 1 76.870 .000 1.000 Eyes 1 81.031 .000 1.000 
Lips 1 300.112 .000 1.000 Lips 1 298.972 .000 1.000 
Exp group 2 195.750 .000 1.000 Exp group 2 257.749 .000 1.000 
Eyes x Lips 1 1.243 .265 .200 Eyes x Lips 1 .074 .786 .058 
Eyes x Exp group 2 .235 .790 .087 Eyes x Exp group 2 6.305 .002 .899 
Lips x Exp group 2 10.660 .000 .990 Lips x Exp group 2 9.585 .000 .981 
Eyes x Lips x Exp group 2 1.242 .289 .272 Eyes x Lips x Exp 

group 2 .049 .952 .057 

Error 2320    Error 2301    

Participant 06          
Trial order 1 .337 .561 .089 Trial order 1 .535 .464 .113 
Eyes 1 179.886 .000 1.000 Eyes 1 112.201 .000 1.000 
Lips 1 347.972 .000 1.000 Lips 1 243.427 .000 1.000 
Exp group 2 44.277 .000 1.000 Exp group 2 14.990 .000 .999 
Eyes x Lips 1 .095 .757 .061 Eyes x Lips 1 1.269 .260 .203 
Eyes x Exp group 2 9.595 .000 .981 Eyes x Exp group 2 .234 .792 .087 
Lips x Exp group 2 2.966 .052 .578 Lips x Exp group 2 3.821 .022 .696 
Eyes x Lips x Exp group 2 .891 .410 .205 Eyes x Lips x Exp 

group 2 .155 .856 .074 

Error 2156    Error 2127    

 

 

Results from the GLM analyses are presented in Table 9 (left) and the mean RTs 

are presented in Figure 47. We expected to find a significant main effect of the 

experimental group, as well as three way interaction between the two face features of 

interest and experimental group (Eyes x Lips x Exp group). The interaction would 
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indicate a possible change the architecture the between different experimental groups 

observed. Namely, we expect that processing in group 3 (old faces from standard-test) 

could be based on a different mechanism than processing in the group 2 (configurally 

altered faces). Given that, on average, we had observed differences between the 

processing of old whole faces when they were presented alone or combined with 

configurally altered faces (group 3 and group 1), we could expect changes in the 

observed face processing architecture. In fact, we expect that by altering the face 

configuration the system switch from faster system (probably parallel) to less optimal 

processing (maybe serial) under the constraints of new the face configuration. 

 

From the results presented in Table 9 (left part of the table), we see that all main 

effects of Lips and Eyes were significant at the p<0.01 level and power=1. Also, the main 

effect of the experimental group was significant for all participants, which indicates that 

there is significant mean RT processing difference between experimental groups. In 

Figure 47 we present the mean RTs for the different experimental groups. All participants 

exhibited the following order of mean RTs: RTold-faces<RTnew-configuration. We conclude that 

changes in face configuration, which is manipulated by changing the face surround, 

resulted in overall slower processing of faces. When we apply separate contrast analyses 

between RTold-faces and RTnew-configuration, all differences reached significance, except for 

Participants 1 and 4 with p>.241 level. 
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Figure 47: The AND condition: mean RTs from the test phase for Sharks faces. The old and new configural 
faces are from the configural-test; the old and new featural faces are from the featural-test. The old faces 
are from the standard-test subexperiment. Error bars around the mean RT indicate standard error. 
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When we ran separate contrast analyses on mean processing times between RTold-

configuration (old faces in the experimental context with configurally altered faces) and 
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RTnew-configuration faces from the same sessions, then for three participants (2,5 and 6) we 

observed the expected significant ordering of the means: RTold-configuration<RTnew-configuration; 

three participants (1, 3 and 4) exhibited a reverse order: RTold-configuration>RTnew-configuration, 

while Participant 3 exhibited no significant difference at (p=.102). We previously 

concluded (Table 3) that old faces were processed more slowly when they are combined 

with the new-configural faces than when they are presented alone. However, the absence 

of the expected ordering of old and new faces, depending on experimental context, could 

be produced by utilization of a special face encoding strategy, and we will return to this 

issue later when discussing all findings. 

At this point, we could suggest that changes in configuration produced significant 

differences in face encoding. When configurally altered faces are compared to the old 

faces, for each subexperiment we observed that configurally altered faces were 

recognized more slowly, for all participants. Also, the MIC tests, revealed by the two-

way interaction Lips x Eyes, were significant for Participants 1 and 2. Overall MIC 

values were positive for Participants 1 and 2, while for others the MICs were very close 

to additivity (MIC=0). However, further analysis of the MIC values, will be broken down 

for different experimental conditions, for each participant (see Figures 48, 49 and 50).  

Now we will turn our attention to the interaction. The three way interaction Eyes 

x Lips x Exp group indicates whether there is a possible change of architecture for 

different experimental groups, between differently altered faces. This interaction between 

the old faces and new configurations was significant only for Participant 3, 

(F(1,1533)=7.345, p<0.01), thereby indicating a possible the change of architecture due 

to the configural changes in the face. 
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We can conclude that all participants exhibited mainly an increase in mean RT 

and only one case of architecture change when the configuration of faces changed. A 

relative exception to this general finding is Participant 4, who did not exhibit any 

significant change. Participant 1 did not exhibit an overall slowing down on the mean RT 

level but he show a change in architecture.  

From Figure 47 it can be observed that, across almost all participants, there is a 

clear trend of error reduction in the old faces condition, but not for the both the old-

configural and new-configural faces. The main variable of interest for this study is RT 

and the participants had the goal of reducing their error levels. The error percentage was 

not analyzed separately, given that for some cases it was very small with no variance.  

Overall, we conclude that all participants processed old faces in the standard 

comparison test faster than new-configuration faces. This finding is the prime evidence 

for a configural effect in face perception when two face features are exhaustively 

processed (AND case). When we change the background of the previously learnt face, 

then on average we people are slower than when recognizing the original old face. The 

old faces alone are also processed faster than the old-configuration faces; that is the same 

old faces are recognized more slowly when they are mixed with new faces, which is, 

again, support for the thesis that participants are adjusting their global processing strategy 

(generally speaking) that affects recognition of both types of faces. For several 

participants old faces in the configural-test are recognized slower than new-configural 

faces in the same test (Participants 1, 3 and 4). We suggest that these participants favored 

some aspects of face processing that aided the recognition of isolated features or feature 
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configurations in the new faces, while at the same time, hindered their ability to 

recognize the old faces.  

Figure 48: The SFT tests result for the AND standard-test condition, for Sharks faces, for all participants. 
The results are based on all sessions combined. The first column depicts the ordering of the joint survivor 
functions for the different factorial conditions (HH, HL, LH, LL). The survivor interaction contrast 
functions (SIC) are in the middle column, and the MIC results are in the right column. 
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Figure 49: The SFT test results for the AND configural-test condition, for Sharks faces, for all 

participants. The results are based on all sessions combined. The first column depicts the ordering of the 

joint survivor functions for the different factorial conditions (HH, HL, LH, LL). The survivor interaction 

contrast functions (SIC) are in the middle column, and the MIC results are in the right column. 
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Figure 50: The SFT tests results for the AND featural-test condition, for Sharks faces, for all participants. 

The results are based on all sessions combined. The first column depicts the ordering of the joint survivor 

functions for the different factorial conditions (HH, HL, LH, LL). The survivor interaction contrast 

functions (SIC) are in the middle column, and the MIC results are in the right column. 
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Comparison of the processing characteristic differences between old faces and new faces 

based on removing the face context (Featural x Standard design) 

 
The same GLM analyses were run on these trials. The only difference was in the 

data source. The group 1 observations (old configural faces) are collected from the part of 

the experiment where old whole faces are combined with the feature-only faces (see 

Figure 9,the 2nd part); The group 2 data stems from the subexperiment but now consists 

of feature-only faces, and the group 3 data stems from the standard-test subexperiment, 

with the same whole old faces as in the previous case. The goal of this experiment was to 

determine the effect of removing the face background, which was not important for the 

correct decision, on change in mental organization during face processing. Although the 

face background was not necessary to make a correct decision, if face encoding is based 

on gestalt/holistic processes, we could expect its removal should affect the 

configural/holistic strategies, more than the analytic strategies.  

The results of the GLM analyses, comparable to the above analyses, are presented 

in Table 9, right. Also, mean RT for the different experimental groups are presented in 

Figure 47 (old-featural and new-featural groups) together with the above mean RTs from 

the configural test. From the results presented in Table 9 (right side of the table) we can 

see that all main effects of Lips and Eyes were significant at the p<0.01 level with 

power=1. Also, the main effect of experimental group was significant for all participants, 

which indicates that there is a significant mean RT processing difference between 

experimental groups. In Figure 47, we present mean RTs for different experimental 

groups. All participants exhibited a similar pattern of mean RTs: RTold-faces≈RTold-

features<RTnew-featural, (where old-faces are whole faces from the standard block, old-featural 
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faces are the old faces presented together with the feature-only altered faces, and new-

featural are the new feature-only faces (see Figure 47).  

Also, the MIC tests results, revealed by the two-way interaction Lips x Eyes, were 

significant only for Participants 1 and 2. However, further analysis of the MIC values, 

will be broken down for different experimental conditions, for each participant (see 

Figures 48, 49 and 50).  

The three way interaction, Eyes x Lips x Exp group, indicates whether there is a 

possibly significant change of architecture for different experimental groups. This 

interaction was significant for Participants 1, 2, 3 and 4 (for Participants 4 it was 

marginally significant), and not significant for Participants 5 and 6. A significant three-

way interaction indicates a possible change of architecture due to removal of the face 

background.  

From Figure 47 it can be observed that, across all participants, there is a clear 

trend of error reduction in both the old-faces and old-featural conditions, but not for the 

new-featural faces. In fact, with the approximate average error level between 15% and 

20%, the new-feature condition exhibited the highest error level, compared to all 

subexperiments, across all participants. 

Overall we conclude that there is a significant trend for all participants to process 

featurally based faces both more slowly and with more errors than the old faces. 

 

Mean and Survivor Interaction Contrast Functions  

 

Both the mean interaction contrast (MIC) and survivor interaction contrast (SIC) 

test results are presented in Figures 48, 49 and 50, for all three groups of interest: 
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standard, featural and configural. The results are only for the Shark faces, because the 

design allowed for only that data to be analyzed with the architecture tests. We present 

data from each subexperiment.  

We focus on the SIC functions presented in Figures 48, 49 and 50. Overall, there 

are a variety of shapes of SIC functions for different subexperiments and participants. 

The good thing is that all the SIC shapes are regular and interpretable. In almost all cases 

the necessary ordering of survivor functions is persevered. 

In the standard-test (Figure 48) we can see that Participants 1, 2 and 3 exhibited 

mostly positive, S-shaped SIC functions. Participant 4 exhibited additive S-shaped SIC 

function, with a positive area equal to a negative area of the function. Participants 5 and 6 

exhibited mainly negative SIC functions. It is important to note that while we would be 

likely to attribute an S-shaped SIC a serial exhaustive mechanism, given the findings in 

the learning part, we strongly suggest that this function corresponds to a parallel 

exhaustive architecture with positively dependent processing units (face features). In the 

learning phase it was astutely demonstrated that all participants exhibited changes in 

architecture, while their SIC functions transformed from parallel exhaustive negative SIC 

functions to S-shaped, mainly positive functions. We concluded that participants in the 

standard-test condition exhibited similar SIC functions to those exhibited during the 

learning phase. S-shaped positive functions (with bigger positive part) were taken as a 

prime evidence of parallel exhaustive processing architecture with dependent processing 

units. However, there is possibility that some participants switched to serial S-shaped SIC 

function. Later we will discuss that possibility and show why it is not likely.  

 



 220

The configural-test group revealed similar results at the SIC and MIC levels, with 

the appropriate ordering of the survivor functions (Figure 49). We can conclude that 

when faces are configurally altered, that is when their background is removed and 

replaced with a new background, then the SIC functions remained either S-shaped or 

negative. 

The feature-test SIC analysis revealed uniform findings for all participants: 

underadditivity, that is negative SIC functions, are evident for most of the participants. 

This is consistent with parallel exhaustive processing strategy. In contrast to the OR 

featural-test findings, here all main effects are significant, which suggests that both 

isolated features produced significant perceptual effects in the AND condition.  

We averaged the mean MIC score over different participants and ran repeated 

measures GLM analysis (Table 10). The main effect between different subexperiments 

(Table 10) between averaged MICs was significant (F(2,10)=6.358, p<0.05, 

power=0.78). The mean MIC value is positive in the standard-test that is based on old 

whole faces. When the new face background is introduced, then the averaged MIC value 

is reduced and becomes negative. In the feature-test condition, the averaged MIC value is 

even more negative that corresponds to mainly negative SIC function. We conclude that 

the altering of the previously learnt faces produced striking reductions of the averaged 

MIC values. This finding is uniform over all participants, and we found the same trends 

when we ran single participant analyses.  
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Table 10: The mean MIC values and their standard deviations, averaged over all participants, for three 

subexperiments, on Sharks faces. 

 

 Mean MIC (ms) Std. Deviation
Standard-test 22.6636 26.20794
Configural-test -22.1176 46.12938
Feature-test -69.0931 53.53711

 

It is interesting to note that the ordering at the mean RT level for almost all 

participants was RTstandard-test<RTfeature-test<RTconfigural-test, for the Shark faces (Table 8, right 

column), except Participant 1 who exhibited RTfeature-test<RTstandard-test<RTconfigural-test. 

Similar to the OR condition, it could be expected then that both the SIC and MIC would 

show some monotonic transition, for example diminishing or increasing magnitude, 

following the mean RT order. On the SIC level the transitions were not observed between 

the standard-test and configural-test conditions. But the featural-test condition exhibited 

change in SIC shape, when compared with both the standard-test and configural-test 

conditions.  

Unlike in the OR condition, the feature-test produced valid MIC and SIC tests, 

which means that all main effect (lips-position and eye-separation on different levels of 

saliency) were perceptually distinct and statistically significant. So, when the face 

background was removed, leaving only two features, processing architecture was clearly 

parallel exhaustive processing on both the MIC and SIC levels.  

The new-face background provided in the configural-test did produced slower 

recognition of faces on average than in other two conditions. However according to the 

transition in the MIC and SIC value, it seems that the mechanism achieving this is 

reducing dependency between processing units.  
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The second very interesting aspect of the feature test is that, on average, 

attenuation one face feature (lips) produced faster processing when compared to 

introducing a new face background (the configural-test). So we can reconstruct the 

following scenario: removing the face background attenuated one dimension and 

produced slower processing on average than the standard old faces. Adding a new face 

background slowed even more, probably because the new face background provided 

invalid reference cues for spatial detection of features (that could be realized through 

dependency between face units), but at the same time reengaged on the previously 

attenuated lips, producing an overall significant effect on them.  

If this scenario is true, then the capacity test should reveal smallest CCFs for the 

featural-test condition when compared with the both the standard-test and configural-test 

conditions. This was supported by the capacity test results. 

 

The capacity test 

 
We calculated several different capacity coefficient functions for each participant. In 

Figure 51, we present the calculated capacity coefficient functions, along with 

bootstrapped 90% percentile confidence intervals, only for Sharks faces (pooled together 

into one condition). So for each participant, we calculated 4 capacity functions. 

We expect that the holistic advantage of processing of whole old faces will be 

evident as super capacity; that is, the capacity coefficient function will show both 

confidence interval bounds above the C(t)=1 value. Subsequently, we expect that the 

CCF for the new faces configural test will be below the C(t)=1 value, for both its 

confidence interval bounds.  
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The weaker assumption of a holistic/configural effect does not necessarily predict 

super capacity effect, but merely a significant difference between CCFs for old faces and 

new faces. Also given that we found that processing of old faces is sensitive to configural 

information, we expect that the CCF for old faces will be bigger than the CCF for old 

faces in the configural test (old faces presented together with the configurally altered 

faces).  

As far as the feature-only condition is concerned, we expect that the feature faces 

will exhibit CCF confidence intervals that are significantly below the C(t)≤1 value, 

revealing unlimited or limited capacity. In the weaker form, the holistic effect assumption 

predicts that it is not necessary for the C(t) value to be lower then one, because we can 

expect some configural properties to emerge even from the feature-only presentation, 

given that some configuration could be inferred from the presentation of the eyes and lips 

only. So in the weaker form, it is possible that the CCF for feature-only faces exhibits 

even a moderate upper violation of C(t)=1, toward super capacity.  

With respect of the amount of learning of the part based information we derived 

two CCFs. In the first method, the part-based trials of the old faces taken for the 

calculation stem from the experiment test phase sessions. Implicitly we assume that there 

is no additional learning conducted on part-based information, starting from the initial 

learning sessions. In the second method, the part-based trials are from the very first 

learning session. Note that here we are dealing only with the learning aspect of the part-

based information from the old-faces, not the new-faces.  
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A detailed description of both methods could be taken from the OR condition. 

The only difference is that in the AND CCF the numerator and denominator reverse their 

roles.  

 

The capacity test results 

 
We present calculated CCFs for different experimental conditions, for the Sharks 

faces, in Figure 51 A, for each participant. Both old and new whole face conditions were 

taken from the blocked sessions, where they were not mixed with part-based information. 

The first function (top of Figure 51) represents the CCF for old faces from the standard-

test condition, where only old faces were presented. In the next figure, the old faces 

configural test also represents a CCF for old faces, but now taken from the subexperiment 

when they were presented together with the new faces. The new-faces configural test 

represents a CCF for new faces from the same subexperiment. The old-faces featural test 

represents the CCF when old faces are presented together with feature-only faces (see 

design Figure 9, the 2nd part), and the feature faces from the featural-test is the CCF for 

feature only faces from the same subexperiment as the previous one. 

 The right column of Figure 51 B represents the same CCFs calculated by the by 

the first and second method. 

 We can observe that for most participants, the old-faces CCF calculated by the 

second method exhibited the highest magnitude and dominated the other conditions. The 

exception to this was Participant 4, who exhibited a reverse trend. Also, we can observe 

that weaker assumption of configural effects is satisfied for almost all cases; that is, 
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CCFold-faces > CCFnew-faces. All CCFs exhibited super capacity, that includes featural-test 

faces, significantly violating the C(t)=1 bound. 

 

The configural effect and capacity functions for the Sharks faces 

 
Figure 51 consists of multiple graphs, as described above, for a single participant. 

Overall, we can observe that all old faces from the standard test (first plot), calculated by 

both methods exhibited super capacity, for all participants. However, the magnitudes of 

the CCFs were different for the different cases. In general, the magnitude ordering was 

established such that CCFold-faces>CCFnew-faces>CCFfeature-faces. All feature faces exhibited 

very flat CCFs, with the smallest magnitude compared to the other conditions.  

In Figure 51 B we report the two graphs of the most interest: the comparison 

between old faces (calculated by two methods) and new faces. This test is based on 

comparison of the CCF magnitudes and their corresponding confidence intervals. In order 

for two CCFs to exhibit a significant difference, both functions must be separated from 

each other enough that the confidence intervals of the two CCFs do not overlap, at least 

at some point in time. We also expected the difference to follow a monotonic trend 

(increasing or decreasing), with no change of sign of that difference observed for 

different times. That is, we expected that there is no reversal of effects of the expected 

difference. 

When compared for the configural-test effect, (Figure 51 B) all participants 

exhibited a significant difference between the old-face and new-face CCFs for method 2. 

Method 1 of CCF calculation did not show a significant difference between old- and new-

faces, for Participants 1, 3, 4 and 6, while it was significant for Participants 2 and 5. 
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Method 2 established the following order: CCFold-face > CCFnew-face, for all participants, 

except Participant 4 who exhibited the reverse trend. We will discuss this case later.  

We conclude that configurally altering the old-face into the new-face produced a 

reduction in CCF magnitude, which could correspond to a reduction in the dependency 

between face features. All participants exhibited super capacity when processing the new 

faces. Also, no qualitative change in the architecture was observed between 

subexperiments. So the introduction of a novel face background was not very detrimental 

to processing, as we could expect. On the other hand removing the face background (the 

featural-test) greatly reduced the CCFs magnitude.  

The magnitudes of the whole face CCFs were sizable, which could correspond to 

massive positive interdependency between face features. As in the OR case, we conclude 

that, in the AND case, face background plays an important role in face recognition 

detection and aids face detection even if it was not analogous to the background that had 

been previously learned. 

Figure 51: (A) calculated CCFs for different experimental conditions for Shark faces, for each 

participant, presented on a separate page. Both old and new whole face-conditions were taken from the 

blocked sessions, where they were not mixed with part-based information. (1) represents the CCF for the 

old faces from the standard-test condition, where only old faces were presented alone. (2) CCF for the old 

faces configural test, but taken from the experimental condition when they were presented together with the 

new configural faces. (3) new faces configural-test represents the CCF for new faces from the same test 

session as the second CCF. (4) The old faces featural-test represents the CCF when old faces are presented 

together with feature-only faces in the session. (5) CCF for the feature faces from the featural-test function 

feature faces only, from that same session as the fourth CCF. The (6), (7) and (8) CCFs are calculated by 

the second method.  

(B) The configural test based on a comparison of bootstrapped confidence intervals, between old faces 

CCFs (calculated by two methods) and new faces CCFs. Figure on the left is a comparison between (1) and 

(3) CCFs; and figure on the right is a comparison between (3) and (6) CCFs. 
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General discussion 

 
Holistic face recognition, in broader terms, refers to the ability of human 

cognitive systems to deal in an integrative manner with separate perceptual units, which 

we usually call feature representations. An integrated holistic mental representation of a 

face is not a simple sum of face parts. It possesses unitary properties and corresponds to 

the whole image/face appearance better than to any individual part of it. Obviously our 

cognitive system greatly benefits of this holistic quality: when we observe faces in the 

street we are not cognitively attracted to and aware of their single feature properties. 

Rather, we see bundles of features as an individual or even a particular identity. It was 

suggested that the same rules of organization of perception operate in face and non-face 

object perception (Bruce & Humphreys, 1994; Diamond & Carey, 1986; Tarr, 2003). 

Other researchers opt for giving special status to the face encoding system (Farah et al., 

1995; Farah et al., 2000; Farah et al., 1998; Moscovitch et al., 1997).  

In contrast to holistic processing, analytic processing operates at the lower level 

of perceptual organization. Visual objects are perceived as decomposed parts rather than 

unitized wholes, and awareness is directed to relatively small details that comprise an 

object. So, face features, such as nose, eyes, ears, etc., are brought to our perceptual 

awareness. Analytic recognition is strongly supported by unequivocal findings of the 

brain’s neurophysiological segregation that supports visual scene decomposition (De 

Valois & De Valois, 1988; Graham, 1989). At the lower levels of the visual pathways 

such as V1 where columnar organization of neuron cells was discovered, only single 

features such as differently oriented lines are recognized. Higher neural centers deal with 

more complex features, usually made of some combination of the simpler features. So 
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with high certainty we state that that a brain decomposes a visual scene and then 

reconstruct it again. Higher levels of the cortex play a role in what we believe to be 

holistic recognition (e.g. Grill-Spector et al., 2004; Kanwisher et al., 1997).  

Holistic recognition is operationally defined as the advantage for the recognition 

of a single feature when it is presented in the context of a whole face or whole object 

(Tanaka & Farah, 1993). The face superiority effect has been demonstrated in many 

studies: face parts are recognized better in their old face context than when they are in a 

new face context, or when they are presented in isolation (Davidoff & Donnelly, 1990; 

Donnelly & Davidoff, 1999; Leder & Bruce, 2000; Tanaka & Farah, 1993; Tanaka & 

Sengco, 1997), and in the context of scrambled faces (Homa et al., 1976; Mermelstein, 

Banks, & Prinzmetal, 1979). This context or part-to-whole superiority effect is not 

limited to faces but extends to other stimuli such as words, visual objects or geometric 

(Davidoff & Donnelly, 1990; Enns & Gilani, 1988; Reicher, 1969; Weisstein & Harris, 

1974; Wheeler, 1970) 

But in realistic face perception, which is based solely on the appearance of whole 

faces, features are rarely present in isolation. We really do not have opportunity to 

observe isolated face features. They are always embedded into some face background or 

face context. On some rare cases, some features could be presented in isolation, such as 

when doctors wear a face mask. Usually in these cases, our face perception is disrupted to 

a large extent and other non-face cues are needed to make correct recognition. So the 

operational definition above is not necessarily at the level at which the strongest holistic 

properties of face perception are exhibited. Another problem with the part-to-whole 

paradigm is that it uses face parts mixed with whole faces, and therefore facilitates 
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analytic or part-based information rather than to bolster use of a holistic representation. 

Presentation of isolated features in the study encourages participants to learn them and to 

adjust their mental strategies in order to perform optimally. A good question is: do we 

really change the status of these features presented in isolation? Because single features 

also possesses good form, it makes sense to assume that the features could be learned as 

holistic stimuli as well. Then, a possible methodological confound could arise when 

comparing processing of isolated features and whole faces, especially if they were 

subjected to different amounts of learning. Some other methods in face studies include 

only whole faces (e.g. Cabeza & Kato, 2000; Thomas, 2001b; and many proponents of 

the MDS paradigm). However, using the part-to-whole paradigm could still be beneficial 

in holistic face-research. But even if we adopt the part-to-whole paradigm, some 

precautions are necessary. Several theoretical issues were left elusive: how can we 

describe and characterize both featural and holistic face representations, and how are 

mental comparisons between the two conducted? For example, let’s assume that we 

formed a holistic representation of John’s face, and that his isolated eyes were presented 

the computer screen. How do we compare that feature with the holistic representation to 

make a correct decision? What are the processes? How can we compare representations 

with different formats, at all? These are all problematic issues for the strong holistic 

hypothesis, which states that faces are unitary representational units.  

In the face of findings that support featural component processing, the strong 

hypothesis of holistic perception is less appealing (as detailed in Farah et al., 1995; Farah 

et al., 1998; Tanaka & Farah, 1991, 1993; Tanaka & Sengco, 1997). Most of 

aforementioned questions are left unanswered. However, the proponents of the weaker 
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holistic hypothesis find some shelter. The weaker version assumes that in the holistic 

representation, not only a configural face representations encoded but also featural 

representations are encoded. So, featural and configural information are encoded 

together, and they interact such that when one is changed (manipulated) the other changes 

as well. Now the weak hypothesis can accommodate variety of part-to-whole findings.  

This hypothesis should not be confused with the independent dual-mode 

hypothesis (Bartlett & Searcy, 1993; Bartlett et al., 2003; Searcy & Bartlett, 1996). In its 

standard form, the dual-mode hypothesis assumes that both configural/holistic and 

featural properties are available during face perception, and they operate independently. 

The difference between weak holistic hypothesis and dual-model is a presence of the 

interaction between parts and whole face representations. The difference seems subtle 

especially in the light of the absence of strong mathematical model of face perception. 

Macho and Ladder (1998) demonstrated how appropriate modeling could be use to better 

articulate holistic hypotheses. 

It is interesting to note that even with the strong holistic hypothesis, Tanaka and 

Sengco (1997) open the possibility that face parts could be stored separately, given that 

participants performed above chance during recognition of isolated features. However, 

that possibility reduces the strong holistic hypothesis to the weak one. This assumption 

concerning multiple types of face encoding is more general and more flexible. At the 

same time, it is less likely to be tested and falsified. Particularly if the processes that 

relate the different representations are not specified, the validity of operational definition 

of the holistic perception is questionable. It is not surprising, then, that several concerns 

are raised: Ingvalson & Wenger (2005) argued that none of the studies of holistic face 
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processing involve a logical or formal analysis of the complete set of alternative 

hypotheses, and use experimental procedure that can allow for strong-inference tests of 

the hypotheses. 

 

Defining holistic processing in terms of characteristics of processing 

 

Let us consider four general dimensions of real-time information processing: 

architecture, stopping rule, independence and capacity. By the architecture we mean the 

spatial and temporal arrangement of the psychological processes that are required to 

perform a given task. Historically, the distinction is between serial and parallel 

processing (Atkinson et al., 1969). Serial processing means that all face features are 

processed in sequential order (for example: eyes first, then lips, then nose, etc.) (Figure 

1). Parallel processing means that all face features are processed concurrently – starting at 

the same time. One special form of parallel processing is coactive processing. 

Coactivation is defined as a set of parallel processes that converge into a single channel 

before a logical gate is reached (Figure 2). A logical gate (AND, OR) combines outputs 

from subsystem operators and defines rules for making a decision. 

The second dimension is that of stopping rule (Figure 3). A self-terminating rule 

means that in order to make a decision not all face features are required to be processed. 

Exhaustive processing means all feature must complete before a decision is made 

(Colonius & Townsend, 1997; Townsend & Ashby, 1983; Townsend & Colonius, 1997; 

Van Zandt & Townsend, 1993). For example, a self-terminating search would be to find 

your friend’s face in a crowd only by examining eyes. If you are familiar with her, face 

then probably only the eyes (for example) could help you successfully search. However, 
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it is possible that such perception is not possible and you might need to process all face 

features. This would be a case of exhaustive processing. 

 The third dimension of processing is independence (Figure 4). By this we mean 

the degree to which the processing rate of any one feature or element affects the rate of 

processing of any or all of the other elements. If there are positive dependencies between 

perceived features, then recognition of the first will aid recognition of the second one, 

and vice-versa. In our example, it might be possible that when the eyes are recognized, it 

speeds up recognition of the nose. 

 The final dimension is that of process capacity (Figure 5). The question of 

interest is the manner in which a system responds to manipulations of workload. If 

performance is unaffected with the increase of workload, then the system is believed to 

have unlimited capacity. Consequently if performance declines, the system is of limited 

capacity. And if performance improves with an increased load, then the system possesses 

super capacity. An example of limited capacity would be a case when increasing the 

number of features in a face yield slower processing. Our cognitive system might take 

more time because with each added feature there is more work to be done.  
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Conclusions 

 
In our experiments we manipulated two face features: the eye-separation and lips-

position. Both could be categorized as the second-order relational features (Diamond & 

Carey, 1986). Many studies have demonstrated the importance of spatial relations 

between face features, which could be stored or encoded in a face representation 

(Diamond & Carey, 1986; Haig, 1984; Hosie et al., 1988; Rhodes, 1988). At least two 

features are needed to test the holistic effect. Configural or spatial changes on faces 

produced a set of four faces (the gang or Sharks depending on the experiment) on which 

we applied the SFT technology by calculating the MIC, SIC and capacity functions. 

Participants went through a series of learning sessions in order to establish and to 

emphasize holistic encoding of these faces.  

During the learning phase, according to introspective reports, participants started 

with some form of an analytic strategy. But after several sessions, faces started to appear 

as whole individuals, sometimes described by their perceived emotion, social identity or 

even just as someone’s familiar face. Both the OR and AND conditions revealed exactly 

what was observed at the introspective level: the architecture of the face processing was, 

in both conditions, parallel exhibiting exactly predictable shapes for each specific 

termination rule. In the OR condition, parallel self-terminating SIC functions dominated; 

in the AND condition, initial learning sessions revealed parallel exhaustive search. The 

strong validity of these findings relies on the strong validity of the SFT technology.  

In addition to the SIC tests, the capacity coefficient functions revealed lower 

magnitudes for initial sessions, though still of super capacity in both the OR and AND 

conditions. This occurred in the blocked condition for both the absolute and relative 
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learning CCFs. Absolute learning exhibited a trend of increasing magnitude across 

learning sessions. Some participants did not exhibited an increasing trend (or it was very 

weak), but for some of them, this was affected by the presence of a speed-accuracy trade-

off that dominated during the first learning sessions. The notion of capacity is closely 

related to the hypothesis of independence between processing of face features; so it can 

be concluded that face features exhibited some weak dependency at the beginning, 

yielding super capacity CCFs. Additionally, they exhibited a trend of increasing 

dependency during the learning phase. 

During later learning we observed changes in the architecture. In the AND 

condition, architecture exhibited a marvelous transition from a negative SIC function to 

an S-shaped SIC, in many cases with larger positive area than negative. All participants 

exhibited this trend, some of them to a larger extent than others. Although the S-shaped 

function with equal areas is typically considered to serial exhaustive processing, it could 

be implied that the architecture switched from parallel to serial during the learning. 

However the architecture switch could be rejected based on two criteria: (a) theoretically 

it is not acceptable that processes that become faster exhibit the change from parallel 

exhaustive to serial exhaustive processing in conjunction with an increase in the capacity 

index, and (b) the simplest model of the observed transition is one that supports a change 

in dependency between processing units, rather than a change in architecture. However, 

the observed changes in both architecture and capacity can be plausibly explained by a 

parallel system that develops positive dependency over the course of learning, followed 

by an increase in the single rate parameters for both channels (features). This explains the 

data very well in a simple and elegant fashion. Moreover, it was earlier demonstrated by 
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Townsend and colleagues that some real time system could exhibit the observed behavior 

with a set of relatively simple assumptions concerning the organization of processing 

systems (Townsend & Nozawa, 1995; Townsend & Wenger, 2004). 

The OR condition did not show such obvious transitions on the SIC level as a 

function of learning. For most of the participants, data did show increasing trends of 

absolute and/or relative learning CCFs, except for two participants who exhibited a 

speed-accuracy trade-off. Overall, we concluded that super capacity increased as a 

function of learning. That strongly implies an increasing dependency between face 

processing units over the course of learning.  

In fact, both analytic calculations and simulations explain why it is not possible to 

observe a strong change of SIC as a function of increasing dependency between units in 

the minimum time parallel processing system. The shape of the SIC function does not 

change much in its appearance for different levels of positive dependency between 

processing units. The only indicator that processing has reached the limits of extreme 

super capacity is a small negative “blip” value of the predominantly positive SIC 

function. That model is defied as coactive processing system (Figure 2 B). We observed 

the appearance of several negative blips in the data, but these were mainly associated 

with middle learning sessions. Regardless of the sizable CCF, we were not able to 

observe lawful changes in the appearance of the negative blip as a function of the 

learning, and can not conclude that the parallel self-terminating model switching in a 

coactive structure by the end of the learning phase. However, we can conclude that the 

parallel minimum time architecture was preserved and that interdependency increased to 

a large extent toward the later training sessions.  
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In order to illustrate these conclusions, we provide a demonstration of the parallel 

model for both the AND and OR cases as suggested above, and show how through lawful 

manipulation of the rate parameters of a single face feature and the rates that describe the 

changes due to learning, we can mimic the observed behavior of the data. Note that the 

model presented here is a stochastic model, and it is a replica of the dynamic system 

suggested in the Townsend & Wenger parallel processing system (Townsend & Wenger, 

2004). For the sake of simplicity, but without any loss in generalization, the dependency 

between units has been realized as a violation of selective influence. So we assumed that 

an increase in each channel rate is accompanied by some increase in the other channel 

rate, assuming a positive, direct dependency (Townsend, 1984; Townsend & Thomas, 

1994). 
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Modeling 

 
Most of the participants exhibited a uniform pattern of changes in both the SIC 

and capacity tests over the course of learning. The SIC function showed lawful changes 

in the shape indicating specific transitions of architecture, especially for the AND 

condition, while the absolute learning CCFs exhibited increasing trends for most of the 

participants. To our knowledge, the simplest model that can encompass these findings is 

a parallel architecture that develops positive dependence between processing units over 

the course of learning.  

The goal of this section is to provide modeling support for the assumption of an 

emerging property of face holism that was evidenced by our participants during learning. 

We assume that participants started with an independent parallel model, for both the 

AND and OR cases. Over the course of learning, the cognitive system develops 

facilitatory cross-channel structure between face-feature detectors. The larger the 

facilitation is, the more faces appear holistic.  

We will briefly discuss one possible form of interdependence between processing 

units based on violations of direct selective influence. Selective influence is defined as 

the 1:1 correspondence between experimental manipulations and internal subsystems. A 

violation of selective influence means that manipulation of a single experimental factor 

influences both (or several) subsystems of processing. Mutual facilitation between 

processing units can occur through the failure of selective influence in a direct way. In 

our case that could be exemplified as follows: If selective influence holds then, for 

example, the experimental manipulation on the eye-separation influences only the eye-

separation detector, not the lips-position detector. However, when selective influence 
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fails then each experimental manipulation could affect both face-feature detectors, thus 

producing the dependency effect. This violation of selective influence is defined as a 

direct dependency (Townsend, 1984).  

Selective influence can also bi violated indirectly. For example, if during learning 

phase the face detectors for eye-separation and lips-position exchange accumulated 

information concerning the positive recognition of each feature, then processing of the 

other channel or detector could be speed up. If the system is more certain that the eye-

separation belongs to John (for example), then the lips-position detector can benefit, and 

speed up its processing. This is an example of positive indirect dependence between units 

of processing (e.g. Townsend, 1984). It is indirect because that the rate of the eye-

separation accumulator can affect the rate of accumulation of the lips-position detector, 

indirectly via the accumulation time of the random variable from the eye-separation 

detector.  

In our simulations, these two forms of interdependency provided similar 

predictions regarding the shape of the SIC function in both the AND and OR cases. For 

the sake of simplicity, in our simulation here, we will use the direct non-selective 

influence dependency system. We will also constrain our approach to the use of an 

exponential density function as a statistical descriptor of completion time for each feature 

detector (channel). But, it will not affect the generalizibilty of the demonstration given 

that we will provide only a qualitative account of our findings.  

 We will use parallel self-terminating and exhaustive stochastic models to describe 

the variability of recognition time as a function of learning session. We assume that the 

completion rates of each of the two face-feature detectors are defined by an exponential 
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density function (for simplicity). We provide models for both the OR and AND 

experiments.  

The general mathematical form of this model is very similar to the dynamic 

model between two parallel channels (Townsend & Wenger, 2004) where real-time 

dynamic system is used, based on simulation. In this study, we will derive the analytic 

stochastic forms of that dynamic model, for both the OR and AND conditions. Our goal 

is to demonstrate that the simplest possible model can qualitatively account for the 

exhibited data. We try to account on the changes for the SIC functions, mean RTs and 

CCFs as a function of learning session. 

 

OR case, parallel self-terminating model 

 
The joint density function of the parallel self-terminating (minimum time) independent 

model, on two processing units can be written as (Townsend & Ashby, 1983): 

 

( ; , ) ( ; ) ( ; ) ( ; ) ( ; )eyes lips eyes eyes lips lips eyes lips lips lipsf t x x f t x S t x S t x f t x= ⋅ + ⋅  

 

A marginal density function is denoted with f(t,x), and a marginal survivor function is 

S(t,x), for all t={0, ¶}; rate parameter of information accumulation is denoted by x. Thus, 

,lips lipsx x are the distribution rate parameters that define the speed of accumulation for 

each face feature (eyes and lips). The two processing face units refer to eye-separation 

and lips-position. The corresponding joint survivor function is: 

'

( '; , ) ( ; ) ( ; ) ( ; ) ( ; )eyes lips eyes eyes lips lips eyes eyes lips lips
t t

S t x x f t x S t x S t x f t x dt
∞

=

= ⋅ + ⋅∫  
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We assume the dependent processing parallel minimum-time architecture with direct 

non-selective influence. The joint density function and the survivor function are defined 

as: 

1

1 2
1 2 2

( ; , , , ) ( ; ) ( ; ) ( ; ) ( ; )eyes lips eyes lips eyes lips eyes lips
eyes lips eyes lips eyes lips

modif
modif modif
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Note that the direct non-selective influence is realized through the multiplication 

of parameters ,lips lipsx x between processing units. Thus both parameters appear in each 

density function. The modifiers of rate parameters are denoted as 1 2,modif modif and are 

defined in a similar way as the cross-talk parameters in the dynamical systems model of 

Townsend and Wenger (2004).  

 

The role of modifier parameters is to affect the values of each unit rate parameter 

,lips lipsx x , and therefore affect the speed of processing of corresponding face unit. The 

dependent parallel minimum-time model, from equation above, could be reduced to 

independent if we set the modifiers such that 1 lipsmodif x= and 2 eyesmodif x= and replace 

them in above equation. The magnitudes of 
1 2

1 1,
modif modif

 defines the level of mutual 

interaction between processing units. If the value of that ratio is getting larger then the 

strength of positive dependency is larger as well.  
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We will also assume the following constraints: 
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SIC test implementation 

  
We will provide an example of how both the SIC function and mean RT change as a 

function of learning (sessions). Recall that the SIC function is defined as the double 

difference between the 4 joint survivor functions for the double factorial conditions, 

where each subscript letter denotes either the high or low salience level of manipulation 

of a single processing unit.  

 

( ) ( ) ( ) ( ) ( )ll hl lh hhSIC t S t S t S t S t= − − +  

 

We assume that the rate parameters ,lips lipsx x are constant over learning, and that 

the modifiers will monotonically change their values over the course of learning. We will 

also assume that the first session exhibits no cross-talk between channels, which is equal 

to the parallel independent self-terminating system. Table 11 below lists the values of 

parameters used in the calculation, where each row corresponds to one simulated learning 

sessions (7 sessions).  
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The values of the parameters 1 2,modif modif are further constrained such that they 

are not free to vary over the learning sessions. We assume that their values will change as 

a function of learning according to the following equation: 

 

modif1=0.0013 - 0.000191118 Session

modif2=0.0005 - 0.0000024711 Session
where Session={0,1,2,3,4,5,6}

⋅

⋅  

The value of Sessions was zero for the first learning session in order to achieve that the 

modifiers have the same value as the corresponding rate parameters for each processing 

unit. 

Table 11: Values of the parameters used in simulations for both the OR and AND experiments.  

high low 1
modif1

1
modif2

0.013
0.013
0.013
0.013
0.013
0.013
0.013

0.005
0.005
0.005
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0.005
0.005

76.9231
90.1809
97.114
103.202
108.961
114.594
120.213

200.
210.398
215.029
218.723
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224.848
227.547` 

Figure 52: Calculated mean RT over learning sessions. The trend of RT reduction qualitatively corresponds 

to the observed data on each group of faces in the OR experiments.  

1 2 3 4 5 6 7
Block Session

2050
2100
2150
2200
2250
2300
2350

TR
H

s
m

L

1 2 3 4 5 6 7

 

Session 1 
Session 2 
Session 3 
Session 4 
Session 5 
Session 6 
Session 7 



 249

In Figure 53, we present the SIC function over different learning sessions. As we 

can see from Figure 53 the shape is primarily overadditive during different stages of 

learning. It is interesting to observe that the appearance of the negative blip, a small 

negative deviation from the overall positive SIC function, was exhibited for fast reaction 

times. The magnitude of the negative blip tends to increase as a function of the learning 

session.  
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Figure 53: Simulated SIC functions for parallel positively dependent minimum-time (OR) 

processing model, across learning sessions.  
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Absolute learning CCFs 

 
In Figure 54, we present the absolute learning CCFs over different learning sessions. 

Recall that in the absolute learning CCF, the integrated hazard ratio of the processing of 

parts, from the denominator, has the same value over learning session. In order to 

characterize the processing of face parts (in the denominator) we arbitrarily set their 

respective values to { ,lips lipsx x }/2, for each face feature. As we can see from the figure 54 

the magnitude of the CCF is around one in the first session, and tends to increase in value 

with the increase in positive facilitation between units. This simulation provides, 

qualitatively an account of our experimental findings. Note that the flat shape of the CCF 

is a simplification artifact due to utilization of the exponential density function, and 

should not be considered important.  
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Figure 54: Simulated the absolute capacity coefficient functions (CCFs) for parallel positively dependent 

minimum-time (OR) processing model, across learning sessions.  
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Discussion 

 
We conclude that mere manipulation of the intensity of the cross-talk structure, 

realized through the modifying parameters, provided an appealing approach to explaining 

data. All aspects of analysis mean RT, overall shapes of the SIC functions and CCFs 

showed very similar trends in simulation as functions of learning. For example, observe 

the results of Participants 3, 5 or 6, in the OR condition. However, the simulation showed 

an evidence of the coactivation in processing: a size of negative blip (small deviation 

from mostly positive SIC functions) tends to increase with increasing positive 

dependency between face feature detectors. For most participants the real experimental 

data did not exhibit a monotonically increasing small negative blip deviation. On the 

other hand, the results of Participants 5 or 6 did show an increasing small negative blip, 

but which rarely appears in the later sessions, although they exhibited monotonically 

increasing the absolute CCFs. A possible explanation is that we have not included noise 

in the model above, so it is possible that the noise can mask the negativity in some cases. 

However we also leave open the possibility that some other factors might influence their 

disappearance in the real data, that can include sampling variability.  

 

AND case, parallel exhaustive model 

 
The joint density function of the parallel self-terminating (minimum time) independent 

model, on two processing units could be written as (Townsend & Ashby, 1983): 

 
( , ; , ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; ) ( ; )eyes lips eyes lips eyes eyes eyes lips eyes lips lips lips lips lips lips lips eyes eyes lips lips lips lipsf t t x x f t x S t x f t x f t x S t x f t x= ⋅ ⋅ + ⋅ ⋅
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A marginal density function is denoted with f(t,x), and a marginal survivor function is 

S(t,x), for all t={0, ¶}; rate parameter of information accumulation is denoted by x. Thus, 

,lips lipsx x are the distribution rate parameters that define the speed of accumulation for 

each face feature (eyes and lips).  

 

Next, we assume the above architecture dependent processing through direct non-

selective influence. The joint density function and survivor functions are presented as: 
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Note that direct non-selective influence is realized through multiplication of the 

parameters ,lips lipsx x between processing units. Thus, they both appear in each density. 

The modifiers of the rate parameters are denoted as 1 2,modif modif and they are defined in 

a similar way to the cross-talk parameters in the dynamic systems model of Townsend 

and Wenger (2004).  
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As in the OR case, we will also assume following constraints: 

1 2

, { , }

1 , 0

, 0
1 , 0

lips lips

lips lips

x x high low

x x

modif modif
high low

low high

=

≤ ≤

≤
≤ ≤
≤

 

 

The model above can be reduced to an independent parallel exhaustive model if we set 

the values of the modifiers to 1 lipsmodif x= and 2 eyesmodif x=  in the above equation. The 

magnitudes of 
1 2

1 1,
modif modif

 define the level of mutual interaction between processing 

units. As the value of that ratio is getting larger then the strength of positive dependency 

is larger as well.  

 

SIC test implementation 

  
We will provide an example how both the SIC function and mean RT change as a 

function of learning. We assume that the rate parameters ,lips lipsx x are constant over 

learning, and that the modifiers will monotonically change their values over the course of 

learning. We also assume that the first session exhibits no between channel cross-talk, 

that is a parallel independent exhaustive architecture. Table 11 above lists values of 

parameters used in the simulation, where each row corresponds to one session (7 total). 

The values of parameters 1 2,modif modif are calculated by the same function as in the OR 

condition. 
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Figure 55: Calculated mean RTs over learning sessions. The decreasing trend of RTs corresponds to the 

observed data on each group of faces in the AND experiments.  
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In Figure 56, we present the change of SIC functions over the different learning 

sessions. As we can see from Figure 56, the SIC shape starts as a primarily negative 

function, which is the signature of parallel exhaustive processing. Over the course of 

learning, the negative SIC function evolves into an S-shaped function that is 

predominantly positive by the final session.  
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Figure 56: Simulated SIC functions for parallel positively dependent minimum-time (AND) processing 

model, across learning sessions.  

 

0 20 40 60 80100120
RT bins H10 msL

-0.4
-0.2

0
0.2
0.4

CIS
HtL

Session 7

0 20 40 60 80100120
RT bins H10 msL

-0.4
-0.2

0
0.2
0.4

CIS
HtL

Session 5

0 20 40 60 80100120
RT bins H10 msL

-0.4
-0.2

0
0.2
0.4

CIS
HtL

Session 6

0 20 40 60 80100120
RT bins H10 msL

-0.4
-0.2

0
0.2
0.4

CIS
HtL

Session 3

0 20 40 60 80100120
RT bins H10 msL

-0.4
-0.2

0
0.2
0.4

CIS
HtL

Session 4

0 20 40 60 80100120
RT bins H10 msL

-0.4
-0.2

0
0.2
0.4

CIS
HtL

Session 1

0 20 40 60 80100120
RT bins H10 msL

-0.4
-0.2

0
0.2
0.4

CIS
HtL

Session 2

 



 258

Absolute Learning CCFs 
 

In Figure 57, we present the absolute learning CCFs over different learning 

sessions. Recall that in the absolute learning CCF, the integrated hazard functions for the 

processing of parts are kept constant over the learning session. In order to characterize 

the processing of face parts (in the denominator) we arbitrarily set their respective values 

to { ,lips lipsx x }/2, for each face feature. As we can see from Figure 57 the magnitude of the 

CCF tends to increase with the increase in positive facilitation between units. This 

simulation provides, qualitatively, an account of our experimental findings.  
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Figure 57: Simulated the absolute capacity coefficient functions (CCFs) for parallel positively dependent 

minimum-time (AND) processing model, across learning sessions.  
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We conclude that mere manipulation of the cross-talk structure, realized through 

the modifying parameters, provided an appealing explanation for the data in the AND 

condition. All aspects - the mean RTs, overall shapes of SIC functions, and the CCFs - 

showed very similar qualitative patterns to the real observed trends as a function of 

learning. For example, observe the results that Participants 1 or 2 showed in the AND 

condition. By simple manipulation of the change of positive cross-talk between 

processing units, we are able to qualitatively account for the observed data.  

Thus, we have demonstrated how the simplest possible manipulation of the 

system’s structure can account for all the learning trends revealed in both the OR and 

AND conditions. This provides very strong support for the hypothesis regarding learning 

and holistic face effect outlined at the beginning of study. The direct implication is that a 

holistic face representation is an emerging property which relies mainly on the 

establishment of a dependency structure between feature representations.  
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Final conclusions 

 
We conclude that the learning phase analysis and conclusions provided firm and 

unequivocal support for our approach by defining configurality in terms of characteristics 

of processing (SFT). More generally, gestalt/holistic/configural is an emerging property, 

as it could be learned. During the learning sessions, we observed the development of 

gestalt properties in the both AND and OR conditions at both the SIC and capacity levels.  

The learning of faces is not based on a change of architecture of the system. 

Rather, a parallel architecture was preserved over all blocks of learning. What is learnt is 

a stochastic interdependence between two face features. We suggest that the dependence 

was based on positive facilitation between processing units, such that recognition of one 

face feature bolstered recognition of the other one. At this point, we can not decide 

whether this facilitation happened directly between the two face features or if it was 

indirect over some third agent. For example, it is possible that the dependency between 

the eyes and lips was realized through other background features, rather than directly 

between the two. The testing phase (second part of the experiment) will provide more 

information regarding the properties of this facilitation by comparison between the 

processing old faces used in the standard test and processing exhibited on new-faces that 

were either configurally of featurally manipulated.  

The positive facilitation developed very early in learning, in the first two sessions. 

We can not provide an answer as to whether face processing is special given that we did 

not investigate a comparable case with a non-face object. It could be implied that face 

encoding relies on some very old, or even innate mechanisms, that gives a quick rise to 

super capacity in the first secessions. But more importantly, the emergence of an even 
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more mutually facilitatory structure implies that learning can always play a significant 

role in face perception. Why, then, restrict the learning only to faces? It seems reasonable 

to assume that even a non-face object will show an increase of capacity as a function of 

learning. It is important to note that the strong or weak holistic hypothesis of object 

recognition should not depend on a starting level of learning during initial sessions, but 

rather whether the learned objects exhibit the same or similar trends of SIC and capacity 

(during learning and the configural test).  

We also conclude that holistic/configural properties are not static. At the end of 

some learning period they do not necessarily stop and dig a trench at that point. The 

cognitive system could access different levels of a face representation on imaginary 

analytic/holistic dimension. What is demonstrated here is that sensitivity of whole face 

encoding depends on global experimental context: when whole faces are mixed with 

masked faces, recognition was slowed down, in contrast to when whole faces are 

presented in the blocked condition. We refer here to the blocked-mixed effect exhibited 

on both the mean RT level and capacity coefficient function level, which is stronger. 

When combined with part-based faces, whole-face encoding is slower. We suggest that 

the proposed processing system (Modeling section above) can be consciously controlled, 

at least at the level that regulates a level of mutual facilitation between learnt features. By 

that we mean that participants can adjust their global experimental strategies during face 

encoding such that they can attain more holistic/configural than analytic/featural 

properties. In our model, this is simply done by controlling the values of the mutual 

facilitators between channels. What was previously learned can be manipulated further. 

However, these issues are beyond the scope of this and more investigation is needed.  
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The test phase 

 
In the test phase, we compared three experimental parts. In the first, which served 

as the control, participants perceived old faces. In the configural-test, we investigated the 

possibly detrimental change of face background to the recognition of faces. The old faces 

were replaced with the new face backgrounds, where only two important facial features 

(the eye-separation and lips-position) remained at their original spatial positions. This 

manipulation was analogous to the part-to-whole manipulation of Tanaka and Sengco 

(1997), which is considered to be the ultimate configural test. In the featural test, we 

completely removed the face background, and left only the two important face 

dimensions. This is the analogue of the recognition of a feature(s) in the isolation. The 

comparison of these test conditions will indicate the role of face background.  

 

OR 

In the standard test experiment, we replicated the findings from the learning 

session; that is, participants exhibited parallel self-terminating architecture with super 

capacity, revealed by the SIC and capacity tests. We confirmed previous findings 

obtained in the learning session. The configural test also exhibited parallel self-

terminating architecture. Only 3 participants revealed super capacity, while the other half 

exhibited unlimited capacity. Additional tests based on statistical comparisons of 

bootstrapped confidence intervals around CCFs revealed that for all participants old faces 

exhibited a larger magnitude of capacity than in new-face condition (configurally 

altered). Moreover, in the feature-test condition, half of the participants exhibited parallel 
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self-terminating architecture, while the other half showed non-regular MIC and SIC 

results, with the lips-position effect not significant. Their capacity functions were all of 

the smallest magnitude when compared with other conditions and never super capacity.  

On the mean RT and mean accuracy levels we replicated the general findings 

necessary to establish the configural effect: old whole faces were processed faster and 

more accurately than the new faces and feature faces (criteria established after Tanaka & 

Farah, 1993; Tanaka & Sengco, 1997).  

However, it was surprising to observe that new faces did not disrupt face 

recognition to a larger extent. In fact, architecture did not change with the configural 

manipulation. Instead the capacity has changed. We conclude that the configural effect 

defined as severely disrupting the face background produced a slight regression to the 

parallel self-terminating model, but still preserved facilitation between units.  

More interestingly, the face features produced deeper regression by suppressing 

some perceptual effects. Participants’ performance was not seriously affected, because in 

this task the feature detectors read from redundant sources and only one feature needed to 

be completely processed. The absence of the lips-position effect also makes sense 

because we removed the face background that cued the spatial position of the lips. When 

removed, the lips remained without local support. It is then evident that the learning did 

not establish a direct connection between the spatial positions of the eyes and lips. 

Rather, it seems that participants relied on local support from the surrounding face 

features not important for making decision.  

Also, the difference between the standard and configural tests also supports the 

aforementioned idea that local background features aided recognition of the two critical 
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features. This support comes from two sources. The first one is direct support for a 

connection established between, for example, the old nose and the eye-separation. When 

the old nose is replaced with the new nose, then that relationship disappeared. The second 

support comes through help in the first order spatial localization of the two important 

features. Face background has the simple role of providing tags use to globally locate the 

other features (first order relations). We propose that the new configuration forced 

participants to suppress the learnt relationship between any two face properties, in this 

example the nose and eye-separation. When the whole face background is removed, then 

both types of supports are lost, and participants could only use very local spatial codes for 

making the decision.  

 

AND 

In the standard test experiment, we replicated the findings from the learning 

session where participants exhibited mainly S-shaped SIC functions, which correspond to 

parallel exhaustive positively dependent architectures. Two participants exhibited mostly 

negative SIC functions which correspond to parallel exhaustive independent processing. 

Participants exhibited super capacity in almost all conditions, with different magnitudes. 

Additional tests based on statistical comparisons of bootstrapped confidence intervals 

around the CCFs revealed that for all participants, old faces exhibited larger magnitudes 

of capacity than in new-face conditions (configurally altered), with the exception of 

Participant 4. Moreover, in the feature-test condition, all participants exhibited parallel 

exhaustive architecture, with statistically regular MIC and SIC results. Their capacity 
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functions were all of the smallest magnitude compared to the other conditions and were 

never super capacity.  

On the mean RT and mean accuracy levels, we also replicated the general 

findings of the configural effect: old whole faces were processed faster and more 

accurately then the new faces and feature faces. 

Similar to the OR condition, the configural disruption did not change the 

architecture. Instead, the capacity has changed. We conclude that the configural effect 

produced a moderate regression to the parallel exhaustive model, still preserving 

facilitation between the units, but to a lesser extent.  

The face features produced a larger difference between old and feature faces. 

More interestingly, both face features (the eye-separation and lips-position) generated 

significant effects when the face background was removed. In contrast to the OR 

condition, the lips-position produced significant perceptual effects and obviously did not 

depend on the removed local features. In fact, we suggest that in the AND task, the 

integrative feature processes spread over larger face area on the face in contrast to the OR 

task. We suggest that the lips were stochastically correlated with the eyes during the 

learning, because a decision required the processing of both, and that remained during the 

featural-test, producing perceptual effects for both features. We also conclude that the 

role of the face background is important as the third agent because it helps the face 

features to establish the parallel positively dependent processing structure, which 

ultimately contributes to the some form of holistic representation.  
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Study of Wenger and Ingvalson (Wenger & Ingvalson 2002) showed not much 

support for the strong holistic hypothesis. In subsequent paper (Wenger & Ingvalson 

2003) they replicated previous findings that revealed the decisional component was 

responsible for configural effects observed in their studies. They used the constructs of 

general recognition theory (GRT) in order to investigate the source of holism in face 

perception. Within the GRT framework, there are several instances at which holism could 

be produced. The informational dependence is defined as the dependency between 

processing (face) features and is realized within the single stimulus. This is considered as 

the strongest level of holism. The informational separability is defined as the ability to 

recognize one feature of stimulus (face) irrespective of changes of the level on the other 

feature. The decisional separability localizes the holism in the response criteria, by 

allowing the decision boundary for one feature to shift across levels of the other feature. 

The decisional separability is the weakest form of holism because it is not produced by 

the interaction between processing features, but by shift of a decisional response criteria. 

Direct consequence of the violation of the decisional separability could be that a face 

representation is encoded as a set of independent features, and not as a unified 

representation, as suggested by the strong holistic hypothesis. This approach provides 

information of representational status of holistic processing. Although the GRT provides 

more complex view into the system’s structure, the issue of architecture and how 

processes are organized is not explained in the framework.  

The natural question that arises is whether the results from our study could be 

explained by the failure of the decisional separability. The theory that can combined both 

the GRT and the SFT approach is not developed yet. But we can provided some 
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reasoning here how the violation of the decisional separability can or can not be related to 

our findings. Note that we explained our results in terms of violations of the dependency 

between processing features (strong holism), but under the SFT approach.  

All three constructs of the GRT mentioned above, the informational dependence, 

informational separability, decisional separability are logically independent of each 

other. Although it is possible that they interact in some peculiar way. At this point we 

could consider the case whey they are independent only (Appendix B). The proof of 

Proposition 2 demonstrates that even though the decisional separability could be violated 

in the SFT experimental design conditions, it would be violated in the same way in all 

factorial condition in the SFT design (HH, HL, LH and LL in 2 x 2 factorial design), and 

will not change the predictions for different architectures. If the decisional aspect is 

independent of what happens between two processing features, then the decisional aspect 

will not interfere with the SIC function appearance, qualitatively.  

In the corollary of Proposition 2 we suggest that the findings regarding the 

importance of the decisional component in the holistic encoding (Wenger & Ingvalson 

2003) can not be used as an explanation of exhibited behavior of change of SIC functions 

during learning sessions. Therefore, we suggest that the findings in our study support 

stronger holistic hypothesis, which assumes violation of independence between encoded 

face units. However, if there the decisional component is affected by how features are 

processed in term the speed and/or possible interaction between them, then no such 

conclusion can be accepted. We are looking forward the new unified theory of the GRT 

and SFT in order to provide stronger conclusion.  
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In this study, we aimed to investigate the processing characteristics of face 

recognition. We applied the stronger tests for the architecture and capacity of the system. 

We extended previous lines of investigation by controlling for different stopping rules – 

exhaustive and self-terminating - that were manipulated through the AND and OR 

conditions. In order to accommodate for typical part-to-whole paradigms that are 

considered to be the ultimate tests for holistic/configural encoding, we manipulated two 

face features in a factorial manner, and employed a categorization paradigm. Unlike 

previous studies (Tanaka & Farah, 1993; Tanaka & Sengco, 1997), we collected both RT 

and observed errors. The results replicated general findings using part-to-whole 

configural tasks on the error level (Tanaka & Sengco, 1997). The advantage of this study 

was demonstrated in the precise characterization of the processing properties of the face 

recognition system.  

We propose the property of holism that is emergent and develops over time. It 

also depends on the nature of the task, and can be modulated to cover a large area of the 

face and produce large integrative effects of face units. Overall, processing exhibited a 

parallel architecture with positive cross-talk between features, that appear to be controlled 

by cognitive strategy or task expectations. The emergent property of holistic processing 

indicates that no static view of mental face representation or/and processing structure is 

plausible. So the real question is not what the final status of face representations is, for 

example. Or exactly how the structure is organized during face perception. The real issue 

is how the system changes with experience, in terms of both the representation and the 

mental organization, and what dynamical structure can accommodate for these changes.  
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We also propose that the cross-talk structure is closely related to what we 

observed as a configural face effect, and could be task-dependant. This also fits the view 

suggested under the strong holistic hypothesis, which assumed the interaction between 

featural and configural information. Our suggestion is that this interaction could be 

controlled, and that participants can exhibit cognitive control that range from analytic 

strategies, favoring independent features realized through no cross-talk, to extremely 

holistic processing strategy, such that they fuse all units into a single channel, which 

eventually seems to happen if we increase the cross-talk between units to a very large 

extent. It is also possible to exhibit in-between strategies, which could account for 

findings when participants favored features more then configurations, or vice versa.  

We will conclude with the statement that this study represents an alternative 

theoretical view of the face recognition process. We questioned the validity of the 

theories based on attempts to operationally define the notion of holism, without 

systematic theoretical constructs. The strong tests coupled with simulations and stable 

patterns of data on the single participant’s level, supported our research hypotheses. 
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Appendix A 

 

The capacity bound for the masked whole-faces 

 
Some concerns have been raised about using the masked faces in order to 

calculate the capacity coefficient function in both the OR and AND conditions. Recall 

that for the OR condition (self-terminating), the capacity coefficient function is defined 

as: 

)()(
)()(0 tHtH

tHtC
BA

AB

+
=  

Usually, both denominator terms are calculated from processing of a single 

processing feature (Townsend & Nozawa, 1995). We will use a face study example: the 

HAB stands for a whole face that consists of two important features, while HA and HB 

stand for the single face features, presented on separate trials. In this study we used the 

masked whole faces in order to calculate the denominator values (see method section). 

Both denominator conditions are designed by applying a shading mask over a whole face: 

two complementary masks based on pixel brightness level were produced (Figure 11). 

The concern was that this manipulation could change the capacity bound of C(t)=1, 

which is the bound of the unlimited capacity independent parallel processing system 

(UCIP). It is possible that the masks will allow for some non-linear effects in face 

perception such that the complementary masked part provides more information than a 

single face feature.  
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In order to show why our approach of using the masked faces is more beneficial, 

we will emphasize two aspects: first, the importance of using the whole-masked faces 

rather than feature-based faces for denominators; second, we will provide more 

experimental evidence testing capacity bounds of the masked whole faces and the single 

features. 

Several reasons motivated the utilization of the masked whole faces in the 

capacity. The main goal of this study was to minimize the use of featural sources of face 

information. Our concern is that we should emphasize holistic strategies in face 

recognition, rather than analytic ones where participants could focus most of their 

attention in learning what the parts are (so called part-whole paradigm). The masked 

whole faces appear like whole faces in a more realistic, everyday background, like a face 

that you can see under the shade of a tree, chandelier or curtain. Additionally for the 

AND condition, a single feature trial can not be incorporated into the original task. Note 

that all Sharks faces in the AND condition share both their critical features with some 

Jets faces. Feature sharing design led to successful application of an the exhaustive 

processing rule with the Sharks, which was necessary for the study.  

In order to investigate possible bound changes when the masked whole faces were 

used, we ran an additional experiment in which we wanted to compare mean processing 

times for masked and single-feature faces.  

 

Method 

Participants 

Six new participants were paid for participation.  
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Materials 

In the OR experiment we used the HH face from the gang-member group, and the 

hero face. We used the most distinctive faces because of the short duration of this 

experiment. Three types of faces were used for each of the gang member and hero faces: 

whole faces, masked faces and half faces (see Figure 58). 

 

Figure 58: A whole face, its complementary masked faces, and its half-faces. 

         

Design and procedure 

Each participant accomplished two 45 minutes sessions, each run on separate days.  

Each session started with 100 practice trials that consisted only of gang-member 

and hero whole face presentations. The hero face was presented on half of the trials, and 

the gang-member on another half trials. A participant had to decide, by pressing one of 

the mouse keys with the left and right index fingers, whether the hero or the gang-

member was presented. RT was recorded from the onset of stimulus display, up to the 

time of response. Each trial consisted of a central fixation point (crosshair) for 1070ms 

followed by a high-pitch warning tone which lasted for 700msec. After that, a face was 

presented for 190ms. Upon incorrect categorization participants received an error 

message.  

 Each face manipulation for both the hero and gang faces was presented on 240 

trials in total, equally dived by the hero and gang-member.  
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Results 

We run repeated measures GLM on the six subjects. The main effect of face 

manipulation was significant (F(1.083, 5.417)=61.09, p<0.001, power=1), corrected by 

Greenhouse-Geisser criterion, because the assumption of sphericity was significantly 

violated. Mean RT for each face type is presented in Table 12. It can be observed that on 

average the masked faces are recognized faster than half-faces. 

 

Table 12: Mean RTs for each face type, along with mean standard errors. 

 

 Mean RT (ms) StErrorMean
Whole-faces 567 25 
Masked-faces 634 20 
Half-faces 672 28 

 

We ran pretest contrast analysis between the mean RT from Table 12, using the 

Bonferroni adjustment for multiple comparisons. The contrast of interest between the 

masked faces and half faces was not statistically significant, with p=0.103. However, it 

was significant using the LSD contrast test, p<0.05. We conclude that there is a 

possibility that using the masked faces can produce a change of the capacity bound 

Co(t)=1.  

The masked faces yield faster recognition than the half faces, and that can 

influence our inference of the capacity exhibited in different situations. Since the 

difference between the two types of stimuli favored faster processing of masked faces we 

will investigate the consequences of a possible capacity bound movement. In fact, it is 

possible to establish the following mathematical proof: 



 296

 

Proposition 1: If we allow some process to speed-up one or both of the two single-

features trial conditions, which are used to calculate the two integrated hazard functions 

in the denominator, then the unlimited capacity bound for minimum time (OR) 

independent processing will be smaller than Co(t)=1. 

 

Proof: 

 The capacity function is defined as 

  
, ( )

( )
( ) ( )

a b
o

a b

H t
C t

H t H t
=

+
, , , ,ln( ( )) ln( ( ))

ln( ( )) ln( ( )) ln( ( )) ln( ( ))
a b a b a b a b
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S t S t
S t S t S t S t
−

= =
− − +

 

 
Where , ,( )a b a bS t is the joint survivor function for two simultaneously processed 

units, and ( )aS t , ( )bS t are two survivor functions that each corresponds to a single 

processed unit. When minimum time parallel independent architecture is employed then 

( )oC t =1 (Townsend & Nozawa, 1995).  

Let’s assume another function 

 
, , ,

' ' ' '

( ) ln( ( ))
'( )

( ) ( ) ln( ( )) ln( ( ))
a b a b a b

o
a b a b

H t S t
C t

H t H t S t S t
= =

+ +
 

 
that corresponds to another experiment. Let us assume that in this experiment, single 

units are affected such that following hold: 

 
'( ) ( )a aS t S t>  and/or '( ) ( )b bS t S t> , {0, }t∈ ∞  

 
such that for all,  
 

'[ ] [ ]a aE t E t>  and/or '[ ] [ ]b bE t E t> . 
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Then it follows that after applying the natural logarithm, the following holds, given that it 
is a monotonic and well-behaved transformation we can assume 
 

'ln( ( )) ln( ( ))a aS t S t<  and/or 'ln( ( )) ln( ( ))b bS t S t<  
 
which directly implies,  
 

' 'ln( ( )) ln( ( )) ln( ( )) ln( ( ))a b a bS t S t S t S t+ < +  
 
If the numerator term , ,ln( ( ))a b a bS t is common for both functions it directly follows that, 
 

( )oC t > '( )oC t . 
 
 

Thus, even the though processing time between the a’ and b’ units could be 

independent, the bound for unlimited capacity exhibited in the Ha,b condition will be 

lower than Co(t)=1. If one adopts the standard UCIP bound at Co(t)=1 to infer capacity 

level (super, unlimited or limited), this bound will be more conservative, than when 

processes a and b were used. Thus the upper violation above the standard bound will 

indicate super capacity. In other words, in the case of the a’ and b’ units, the system has 

to exhibit more super capacity than in the Ha,b condition in order to violate Co(t)=1.  

 
End of proof  

 

Corollary of Proposition 1: If two parallel minimum time processes a’ and b’ can 

exhibit positive facilitatory interdependence in each trial condition (for both terms the 

denominator) then such processing will reduce the bound for detecting super capacity.  
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Similar to Proposition 1 if two processes exhibit positive dependence then the 

same mathematical reasoning will follow, provided that the numerator term exhibits 

similar behavior. In short, any violation of C(t)=1 toward super capacity will indicate 

super capacity at an even stronger level, because the system has to exhibit more positive 

dependency in the numerator term to overcome the denominator terms.  

An example could be the complementary masks used in our study. If it is possible 

that the single features of interest (either eye-separation or lips-position), can exhibit 

additional positive interaction in each masked face, used as one of the denominator terms, 

then processing time will speed-up for that component. Consequently, the whole face (in 

the numerator) has to exhibit even more positive dependency in order for the whole 

function to be Co(t)>1, and super capacity.  

Given that in the additional experiment we demonstrated that masked faces can 

result in faster processing than the half faces, we conclude that by adopting Co(t)=1 as the 

UCIP bound, we make the capacity test more conservative.  

Similar logic will apply for the AND condition, because of the symmetry of 

equations. However, we have not explicitly proved this case, given that this task 

involving the half faces, masked and whole faces in the AND condition ought to be more 

complicated. Caution is raised because the half faces do note require the exhaustive rule 

condition, while the masked- and whole faces are part of the AND condition (exhaustive 

strategy), and can not be combined in the same task. 

We adopt the more conservative UCIP bound C(t)=1. We also rely on the weak 

hypothesis of the presence of a super capacity: CCFs should show an increasing trend in 

their magnitudes as a function of learning, at least. Recall that the presence of holistic 
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properties is realized through the positive mutual facilitation between units, and should 

be revealed by an increasing trend of CCF magnitude over the learning sessions.  
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Appendix B 

 

Wenger and Ingvalson (Wenger & Ingvalson 2002; Wenger & Ingvalson 2003) used the 

general recognition theory (GRT) in order to assess characteristics of face recognition. 

They showed that the decisional component was responsible for configural effects 

observed in face-perception, which supported weak holistic hypothesis. Since no exact 

theory exist how the GRT and SFT are related, it is not clear whether the findings in this 

study could be explained by the failure of decisional component (as defined in the GRT). 

Here we provide the mathematical proof for the proposition which states that if the 

decisional component and stochastic dependency are independent, in their nature, then 

failure of decisional component will not affect the outcome of the SIC calculation on 

qualitative level.  

 

Proposition 2: adding random variable to some processing architecture (serial or 

parallel) that is calculated by the survivor interaction contrast function (SIC) will not 

qualitatively a shape of the SIC function (a sign a function and a number of crossings of 

x-axis), if the added r.v. is independent of processing properties in all factorial conditions 

of the SIC.  

 

Proof: 

Serial exhaustive case 

The survivor interaction contrast could be defined as convolution of products of the 

difference between marginal density and survivor functions: 
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In order to add the base time r.v. we will convolute its density and distribute the terms: 
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The convolution allows for rearranging the terms in the equation 
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and since the convolution of two density function is another density function 
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If rename variables the outcome is formally equivalent to the first expression above, 
 

( ) ( )
3

3 2 2 1 2 2 3 2 1 3 2 2
2 0

( ) ( ) ( ) ( ) ( )  
t

x x y y
t

SIC t f t f t S t t S t t dt′ ′
=
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Provided that x2’>x1’ and y2>y1, and consequently Sx2(t)<Sx1(t)and Sy2(t)<Sy1(t), for all 
t. 
 

The necessity argument can not be provided given that it is possible that some dependent 

serial exhaustive system can produce overall additivity, and can produce the same 

outcome as the independent and selectively influenced system.  
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For the parallel architecture we use similar argumentation. Let assume parallel 

independent architecture with two processes, then factorial combination in terms of the 

SIC function could be presented as:  

 

Parallel exhaustive processing 

 
( ) ( )2 1 2 1( ) ( ) ( ) ( ) ( )x x y ySIC t F t F t F t F t= − − ⋅ −  

Given that 2 1 2 1( ) ( ),  ( ) ( ) for all t={0, }x x y yF t F t F t F t> > ∞ , and x2>x1 and y2>y1 
 
 
Adding a base time r.v. by convolution 
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We can rename the variables: 

( ) ( )2 1 2 1 1
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t
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t

SIC t F t F t F t F t dt′ ′
=

= − − ⋅ −∫  

given that 
 

2 1( ) ( )y yF t F t′ ′> , for all t.  
 
So we showed that the SIC value is not affected by adding the r.v. base time which is 

identical for all factorial conditions. Similarly we derive the proof for parallel exhaustive 

processing, and serial minimum time processing. Again, the necessity argument is can 

not be provided from the same reasons from above.  

End of proof  
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Corollary of Proposition 2: If the decision time r.v. is independent of both the base time 

and the architecture processing time (for both serial and parallel architectures), and is 

identically distributed across different factorial conditions in the SIC function, then its 

inclusion will not qualitatively (a sign a function and a number of crossings of x-axis) 

affect the shape of the SIC function.  
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