
TERAGRID 2007 CONFERENCE, MADISON, WI 1

Survey of TeraGrid Job Distribution: Toward Specialized

Serial Machines as TeraGrid Resources

Arvind Gopu, Richard Repasky, and Scott McCaulay

Abstract— As we proceed towards the age of petascale computing, it is important to be aware that even today more than half
of national cyberinfrastructure users are serial users who run single processor code; more over, coarse-grained parallel applica-
tion do not necessarily benefit from a high-speed low-latency interconnect. While a majority of compute resources on the Tera-
Grid today are massive parallel machines with high-speed low-latency interconnects like Myrinet or Infiniband, optimized to run
large fine-grained parallel applications that use hundreds of processors/cores in parallel, usage patterns indicate that there is
still considerable demand that could be just as effectively met by large computational resources with no special high-speed or
low-latency interconnects. Research allocations involving large serial applications or coarse-grained parallel applications could
be allocated to these machines, thus possibly leading to decreased wait times for massive parallel and large serial jobs. This
change in focus would also lower the financial barrier for potential new resource providers to the national cyberinfrastructure, by
allowing them to reallocate funds from the interconnect to additional computational capacity.

Index Terms—Serial, parallel, coarse-grained, fine-grained, MPI, interconnect, Myrinet, Infiniband.

—————————— � ——————————

1 INTRODUCTION

Petascale computing is one of the objectives of the National Sci-
ence Foundation (NSF) in the near future [1]. The TeraGrid [5] is
NSF’s flagship effort to create a national cyberinfrastrucutre and to
move forward toward achieving the petascale computing goal.
Some of the biggest research projects that use TeraGrid resources
run massive parallel applications [6, 7]. Consequently, a majority
of the current computational resources on the TeraGrid are massive
parallel machines with specialized high-speed low-latency inter-
connects like Myrinet [3] or Infiniband [4]; these machines are
primarily designed to run fine-grained parallel applications that use
hundreds of processors/cores in parallel and also have a significant
communication element.

But is there a significant component of research that mainly uses
serial applications on TeraGrid resources? Also, do users who run
coarse-grained parallel applications need a high-speed low-latency
interconnect to run optimally? We believe we have an answer to the
first question based on usage characteristics of TeraGrid users over
a two-year period. We have discovered that more than 50% of the
jobs run on the TeraGrid in the October 2004-06 time period were
single processor jobs; jobs that we will refer to as serial jobs in the
rest of this paper. While there is a valid utility associated with al-
lowing shorter serial jobs to run on parallel machines – they in-
crease overall resource utilization by allowing backfill via. the
scheduler [8] – larger serial jobs most often lead to longer wait
times for parallel jobs, or endure long wait times themselves (for
reasons explained later). It is also well documented that coarse-
grained parallel applications, with negligible amounts of communi-
cation involved, might not necessarily need an expensive high-
speed low-latency interconnect [9, 10].

Given that there is still significant demand (of compute cycles)
that could be just as effectively met by a large computational re-
source with no special high-speed or low-latency interconnect,
TeraGrid research allocation requests involving large serial or
coarse-grained parallel applications could be allocated to such ma-
chines at the POPS allocation stage [2]; doing so might not only

lead to decreased wait times for both parallel and large serial jobs
but also will allow new resource providers to get their feet wet as a
Grid resource provider – get used to the TeraGrid accounting proc-
ess, installing grid software, etc. without the additional responsibil-
ity of having to maintain parallel hardware and software (which
can be a rather substantial task). More over, high-speed low-latency
interconnects have historically constituted 20-30% of total system
cost. Focusing on acquiring serial machines without such intercon-
nects will lower the financial barrier for potential new resource
providers to the national cyberinfrastructure, and will also enable
any resource provider to get more computational power (in terms
of TeraFLOPS) by reallocating funds from the interconnect to
computational capacity.

2 TERAGRID JOB DISTRIBUTION BASED ON PROCESSOR COUNT

The TeraGrid central accounting database maintains usage records
for all jobs run on TeraGrid resources. We queried that database to
retrieve usage on all systems of capacity 1 TeraFLOP or more, over
a two year period (October 2004-06). All data collected was com-
pletely anonymous: no information about the users or their affilia-
tion was collected.

Over 1.8 million jobs had been submitted during that time pe-
riod, out of which almost a million jobs were serial (single proces-
sor) jobs. The distribution based on number of processors used per
job, for all jobs submitted to TeraGrid resources 1 TF or more,
between October 2004-06 is shown in fig.1. As is evident by look-
ing at the graph, all multi-processor jobs add up to about 800,000
jobs. This indicates that a lot of computational research still hap-
pens with the use of serial applications that don’t scale over multi-
ple processors/cores. Researching into the category of parallel jobs
– whether they were fine or coarse-grained – was beyond the scope
of our analysis in this paper.

————————————————

• Arvind Gopu, Indiana University, agopu@indiana.edu
• Richard Repasky, Indiana University, rrepasky@indiana.edu
• D Scott McCaulay, Indiana University, smccaula@indiana.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUScholarWorks

https://core.ac.uk/display/213813831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 TERAGRID 2007 CONFERENCE, MADISON, WI

3 ANALYSIS OF SERIAL JOB CHARACTERISTICS ON THE TERAGRID

Given that more than half of the jobs submitted to TeraGrid re-
sources are serial jobs, we will analyze their characteristics in more
detail. In particular we will delve into how short serial jobs are
used for backfill (defined in the subsection below) and how larger
serial jobs can endure long queue wait times themselves and/or can
lead to parallel jobs enduring long queue wait times.

3.1 Scheduler Backfill on Parallel Systems

To maximize overall resource utilization while also preventing
excessive delays in starting large parallel jobs, most massive paral-
lel machines allow for scheduler backfill using short single proces-
sor and/or small multi-processor jobs. A backfill capable scheduler
allows jobs with smaller resource requirements to continuously use
up resources before it can accumulate enough resources to run a
larger job [8, 11]. To illustrate the concept of backfill, let us con-
sider the following scenario involving two users: one user submits
a large parallel job, the other submits a set of short serial jobs;
while the resource manager is collecting resources – compute
nodes – for the parallel job, it might allow several of the serial jobs
to run on the compute nodes it has collected so far, provided those
serial jobs will finish before the time it expects to have all the
nodes required for the parallel job.That is essentially what backfill
capable schedulers do.

3.2 Backfill vs. Increased Queue Wait Times

Many parallel machines are configured to prefer massive parallel
jobs over smaller parallel jobs over single processor jobs in that
order, to ensure optimal utilization of their expensive interconnect.
Yet, as mentioned earlier, from a resource provider perspective,
smaller jobs, especially short serial jobs, are excellent candidates to
provide backfill [11]. The backfill scheme explained in section 3.1
works very well provided:

• The serial jobs under discussion are submitted after the paral-
lel job has been submitted, and

• The wall time requirement for the serial jobs is such that they
will finish before the scheduler can accumulate all the required
nodes for the parallel job.

The scheme does not work very well when one or more serial
jobs are submitted before the parallel job is submitted; in that case,
the parallel job might end up waiting till some of the (already run-
ning) serial jobs complete because the resource manager might not
have enough free resources to schedule the parallel job to start.

The scheme also does not work well when users submit serial

jobs with really large wall-clock time requirement, jobs that cannot
finish in time for the scheduler to allow them to start via backfill; in
this case, the serial jobs may end up waiting much longer on the
queue.

3.3 Wall-clock time Distribution of Serial Jobs on
TeraGrid

We analyzed the usage data we retrieved from the TeraGrid central
usage database, and tabulated job wall-clock times for all the serial
jobs that were submitted in the October 2004-06 time period on
resources bigger than 1 TF. The results are shown below in table 1.

The wall-clock time distribution for serial jobs tabulated in table

1 is plotted in fig.2. As is evident, over 60% of the serial jobs take
one hour or less to complete. These make perfect candidates for
backfill on large parallel machines, and are already increasing sys-
tem utilization on TeraGrid resources.

In the above graph, the jobs that take more than an hour of wall-

clock time constitute approximately 37% of all serial jobs. Consid-
ering the scenario explained in section 3.1, it is conceivable that
they could have waited for a longer time in their queue; or they
could have caused parallel jobs submitted after them to wait for a
longer time in the queue (because the scheduler was waiting for
them to finish and free up compute nodes for the larger parallel
job). Short parallel jobs running coarse-grained parallel codes also
fall under the same category as the above larger serial jobs – quan-
tifying those jobs would be very interesting but is out of the scope
of our analysis in this paper.

Job Wall-clock
Time (hours)

Number of Jobs Percentage of
Jobs

0 – 1 597699 63.67%
1 – 2 157170 16.74%
2 – 5 136803 14.57%
5 – 10 32308 3.44%
10 – 20 9146 0.97%
20 – 50 5262 0.50%

50+ 428 0.05%

Table 1: Distribution of Serial Jobs on TeraGrid

Fig.2. Plot showing Number of jobs vs. Serial job wall-clock

Fig.1. Plot showing Number of jobs vs. Processor Count per Job

GOPU ET AL.: SURVEY OF TERAGRID JOB DISTRIBUTION: TOWARD SPECIALIZED SERIAL MACHINES AS TERAGRID RESOURCES 3

4 POSSIBLE IMPROVEMENT: ALLOCATION OF SERIAL AND COARSE-
GRAINED PARALLE JOBS TO RESOURCES WITH NO HIGH-SPEED
INTERCONNECT

We believe it is worth considering categorization of research allo-
cation requests that use serial applications into two categories –
requests that use:

1. Short Serial Jobs: Serial jobs that have short wall-clock

times, say, maximum wall-clock time of one hour; Monte
Carlo simulations, or experiments where a short application is
repeatedly run several hundred or thousand times, fall into this
category. As explained before, these jobs would make for ex-
cellent cases for back-fill because the scheduler knows the
job’s wall-clock time requirement is short and can afford to
schedule them while it is collecting resources for a parallel
job.

2. Large Serial Jobs: We had already shown about 37% of se-
rial jobs on the Teragrid require more than an hour of wall-
clock time. We also researched locally at Indiana University,
and found that more than half of our HPC/Grid computing us-
ers run serial applications that need several days’ worth of
wall-time. While it might seem like there is a need for these
codes to be optimized and/or parallelized, it is also necessary
to remember that old legacy applications are not always
straight-forward to optimize or parallelize. These users, when
they submit their jobs on large parallel resources, may end up
facing one of two situations explained before in section 3.1 –
they either start running before a massive parallel job is sub-
mitted thus clogging up the scheduler’s capabilities to sched-
ule the latter (till the serial job finishes); or they get stuck in
the queue for long periods of time, because the scheduler does
not let them run given their long wall time requirement.

It might also be worth considering the classification of allocation

requests that use parallel applications into two categories – requests
that use:

1. Coarse-grained (Embarrassingly) Parallel Applications:
Coarse-grained parallel applications that do not have a signifi-
cant amount of communication (message passing) do not re-
quire high-speed low-latency interconnect [9, 10], and can run
on a serial machine (without any high-speed or low-latency in-
terconnect) with almost no or very minimal performance hit.

2. Fine-grained Parallel Applications: Parallel applications that
have a significant communication element (message passing),
for example, codes that process grids of data and so forth, fall
under this category. These applications are perfect for massive
parallel compute systems with a high-speed low-latency inter-
connect like Myrinet [3] or Infiniband [4], and would opti-
mally use such systems and their expensive interconnect.

If the above categorizations of serial and parallel applications are

made, we believe that there is a good case to be made for special-
ized serial resources – ones with no high-speed low-latency inter-
connect. TeraGrid resource providers, possibly existing ones but
especially potential new resource providers, could consider provid-
ing such serial resources (at least, to start with). Then research
allocations involving either large serial applications or coarse-
grained parallel applications could be allocated to these machines,
possibly leading to decreased wait times for both large parallel and
large serial jobs. Allocations that use small serial applications (say,
with a wall-clock time requirement of one hour or less) could still
be allocated to larger parallel systems with expensive intercon-
nects, and these jobs could be used for backfill thus retaining the
advantage of increased utilization of those resources. This change
in focus (i.e. offering serial machines with no expensive intercom-
nect) would also lower the financial barrier for potential new re-

source providers to the national cyberinfrastructure, by allowing
them to reallocate funds from the interconnect to additional compu-
tational capacity. And this change would enhance the user experi-
ence for both parallel and serial users, with likely earlier job start
times. It also might provide an opportunity for new resource pro-
viders to get their feet wet in becoming part of the grid without
having to worry about maintaining specialized parallel hardware
and software, a task that can be very involved.

5 SUMMARY

In this paper, we presented job distribution characteristics derived
from usage data collected off the TeraGrid central usage database.
We showed the distribution of single processor (serial) jobs versus
multi-processor (parallel) jobs. We explained the utility of short
serial jobs for scheduler backfill. We explained how TeraGrid re-
source providers might consider offering serial resources with no
high-speed or low-latency interconnect, and possibly reduce queue
wait times for both massive parallel and large serial jobs. We put
forth a case for considering allocation of requests that involve large
serial or coarse-grained parallel applications to such specialized
serial resources. We also explained the added benefits to resource
providers in offering such serial resources, without expensive inter-
connects, especially for new resource providers.

ACKNOWLEDGMENT

We wish to thank Larry Simms for his assistance with analysis and
visualization of the TeraGrid usage data using SAS. We also wish
to thank David Hart and Chris Baumbauer of the TeraGrid Ac-
counting working group for permitting us to query the TeraGrid
central database to collect usage data used on this paper.

REFERENCES

[1] NSF High Performance Computing System Acquisition: Towards a
Petascale Computing Environment for Science and Engineering:
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=13649
[2] Partnership Online Proposal System (POPS): https://pops-submit.ci-
partnership.org/
[3] Myricom Home Page: http://myri.com/
[4] Infiniband Trade Associated Home: http://www.infinibandta.org/home
[5] TeraGrid Home Page: http://teragrid.org/
[6] Dong, S., Karniadakis, G. E., and Karonis, N. T. 2005. Cross-Site Com-
putations on the TeraGrid. Computing in Science and Engg. 7, 5 (Sep.
2005), 14-23.
[7] Theoretical and Computational Biophysics Group at UIUC – Software
Page: http://www.ks.uiuc.edu/Development/
[8] MOAB Scheduler Backfill function:
http://www.clusterresources.com/products/mwm/docs/8.2backfill.shtml
[9] Ron Pepper and Rinku Gupta, “Designing High Performance Clusters”,
http://www.dell.com/downloads/global/power/ps1q05-20040175-Pepper.pdf
[10] How to Determine the Correct Interconnect Technology for an HPC
Cluster: http://shareit.jotxpert.net/WikiHome/Articles/88671
[11] IBM Cluster Information Center – Using the Backfill Scheduler:
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/co
m.ibm.cluster.loadl.doc/loadl34/am2ug30514.html

